Science.gov

Sample records for active tasks task

  1. Human task-specific somatosensory activation.

    PubMed

    Ginsberg, M D; Yoshii, F; Vibulsresth, S; Chang, J Y; Duara, R; Barker, W W; Boothe, T E

    1987-08-01

    We used positron emission tomography to study normal patterns of local cortical metabolic activation induced by somatosensory stimuli. Palpation and sorting of mah-jongg tiles by textured design increased local glucose metabolic rate (lCMRgl), by 18% on average, in contralateral somatosensory cortex. A graphesthesia task gave a similar result. In contrast, vigorous vibrotactile stimulation of fingers, face, or knee did not produce a consistent focus of activation. Our results indicate that lCMRgl activation is best achieved by somatosensory tasks requiring an active perceptual effort.

  2. Task-free MRI predicts individual differences in brain activity during task performance.

    PubMed

    Tavor, I; Parker Jones, O; Mars, R B; Smith, S M; Behrens, T E; Jbabdi, S

    2016-04-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. PMID:27124457

  3. Task-free MRI predicts individual differences in brain activity during task performance.

    PubMed

    Tavor, I; Parker Jones, O; Mars, R B; Smith, S M; Behrens, T E; Jbabdi, S

    2016-04-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.

  4. Brain activities during synchronized tapping task.

    PubMed

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-01-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  5. Anterior Medial Prefrontal Cortex Exhibits Activation during Task Preparation but Deactivation during Task Execution

    PubMed Central

    Koshino, Hideya; Minamoto, Takehiro; Ikeda, Takashi; Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki

    2011-01-01

    Background The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. Methodology/Principal Findings Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. Conclusions/Significance The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing. PMID:21829668

  6. Task-Related, Low-Frequency Task-Residual, and Resting State Activity in the Default Mode Network Brain Regions

    PubMed Central

    Zhang, Sheng; Li, Chiang-Shan R.

    2012-01-01

    The hypothesis of a default mode network (DMN) of brain function is based on observations of task-independent decreases of brain activity during effort as participants are engaged in tasks in contrast to resting. On the other hand, studies also showed that DMN regions activate rather than deactivate in response to task-related events. Thus, does DMN “deactivate” during effort as compared to resting? We hypothesized that, with high-frequency event-related signals removed, the task-residual activities of the DMN would decrease as compared to resting. We addressed this hypothesis with two approaches. First, we examined DMN activities during resting, task residuals, and task conditions in the stop signal task using independent component analysis (ICA). Second, we compared the fractional amplitude of low-frequency fluctuation (fALFF) signals of DMN in resting, task residuals, and task data. In the results of ICA of 76 subjects, the precuneus and posterior cingulate cortex (PCC) showed increased activation during task as compared to resting and task residuals, indicating DMN responses to task events. Precuneus but not the PCC showed decreased activity during task residual as compared to resting. The latter finding was mirrored by fALFF, which is decreased in the precuneus during task residuals, as compared to resting and task. These results suggested that the low-frequency blood oxygen level-dependent signals of the precuneus may represent a useful index of effort during cognitive performance. PMID:22661964

  7. Change in hippocampal theta activity with transfer from simple discrimination tasks to a simultaneous feature-negative task

    PubMed Central

    Sakimoto, Yuya; Sakata, Shogo

    2014-01-01

    It was showed that solving a simple discrimination task (A+, B−) and a simultaneous feature-negative (FN) task (A+, AB−) used the hippocampal-independent strategy. Recently, we showed that the number of sessions required for a rat to completely learn a task differed between the FN and simple discrimination tasks, and there was a difference in hippocampal theta activity between these tasks. These results suggested that solving the FN task relied on a different strategy than the simple discrimination task. In this study, we provided supportive evidence that solving the FN and simple discrimination tasks involved different strategies by examining changes in performance and hippocampal theta activity in the FN task after transfer from the simple discrimination task (A+, B− → A+, AB−). The results of this study showed that performance on the FN task was impaired and there was a difference in hippocampal theta activity between the simple discrimination task and FN task. Thus, we concluded that solving the FN task uses a different strategy than the simple discrimination task. PMID:24917797

  8. Task breakdown

    NASA Technical Reports Server (NTRS)

    Pavlich, Jane

    1990-01-01

    The topics concerning the Center for Space Construction (CSC) space construction breakdown structure are presented in viewgraph form. It is concluded that four components describe a task -- effecting, information gathering, analysis, and regulation; uncertainties effect the relative amount of information gathering and analysis that occurs; and that task timing requirements drive the 'location in time' of cognition.

  9. Task Lists for Health Occupations. Radiologic Aide. Activity Aide. Optometric Assistant. Physical Therapy Aide. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Lathrop, Janice

    These task lists contain employability skills and tasks for the following health occupations: radiologic aide, activity aide, physical therapy aide, and optometric assistant. The duties and tasks found in these lists form the basis of instructional content for secondary, postsecondary, and adult occupational training programs. Employability skills…

  10. Modulation of human motoneuron activity by a mental arithmetic task.

    PubMed

    Bensoussan, Laurent; Duclos, Yann; Rossi-Durand, Christiane

    2012-10-01

    This study aimed to determine whether the performance of a mental task affects motoneuron activity. To this end, the tonic discharge pattern of wrist extensor motor units was analyzed in healthy subjects while they were required to maintain a steady wrist extension force and to concurrently perform a mental arithmetic (MA) task. A shortening of the mean inter-spike interval (ISI) and a decrease in ISI variability occurred when MA task was superimposed to the motor task. Aloud and silent MA affected equally the rate and variability of motoneuron discharge. Increases in surface EMG activity and force level were consistent with the modulation of the motor unit discharge rate. Trial-by-trial analysis of the characteristics of motor unit firing revealed that performing MA increases activation of wrist extensor SMU. It is suggested that increase in muscle spindle afferent activity, resulting from fusimotor drive activation by MA, may have contributed to the increase in synaptic inputs to motoneurons during the mental task performance, likely together with enhancement in the descending drive. The finding that a mental task affects motoneuron activity could have consequences in assessment of motor disabilities and in rehabilitation in motor pathologies.

  11. Task Analysis of Shuttle Entry and Landing Activities

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.; Vanderark, Stephen T.

    1993-01-01

    The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.

  12. Task-dependent posterior cingulate activation in mild cognitive impairment

    PubMed Central

    Ries, Michele L.; Schmitz, Taylor W.; Kawahara-Baccus, Tisha N.; Torgerson, Britta M.; Trivedi, Mehul A.; Johnson, Sterling C.

    2009-01-01

    Neuroimaging research has demonstrated that the posterior cingulate cortex (PCC) is functionally compromised in individuals diagnosed with amnestic Mild Cognitive Impairment (MCI), a major risk factor for the development of Alzheimer’s disease (AD). In functional magnetic resonance imaging (fMRI) studies with healthy participants, this same region is active during self-appraisal (requiring retrieval of semantic knowledge about the self) as well as episodic recognition of recently-learned information. Administering both types of tasks to people with MCI may reveal important information regarding the role of the PCC in recollection. This study investigated fMRI activation in the PCC in individuals with MCI and age, gender, and education-matched controls across two tasks. The first task was a visual episodic recognition task in which participants indicated whether pictures had or had not been presented during a study session. The second task was an autobiographical self-appraisal task in which subjects rated themselves on a set of trait adjectives. Results of a conjunction analysis revealed the PCC as the sole region commonly active during both tasks in the healthy older adults. Furthermore, additional analysis revealed an interaction in the PCC indicating a task-dependent response in the MCI group. MCI participants showed PCC activation during self-appraisal, but not during episodic retrieval. These results suggest in MCI that the PCC shows functional degradation during episodic retrieval of visual information learned in the laboratory. In contrast, the PCC’s role in retrieval and evaluation of highly-elaborated information regarding the self is more well-preserved. PMID:16102979

  13. Physical Activity Perceptions of Task- and Ego-Oriented Children

    ERIC Educational Resources Information Center

    Cruickshanks, Carla M.

    2010-01-01

    Children begin to show sedentary behaviors around the age of 12 and increased mortality is associated with sedentary behaviors in children and adults. This case study examined physical activity (PA) perceptions of task oriented and ego oriented children. Research has addressed perceptions based on goal orientations and how perception of PA changes…

  14. Response Activation in Overlapping Tasks and the Response-Selection Bottleneck

    ERIC Educational Resources Information Center

    Schubert, Torsten; Fischer, Rico; Stelzel, Christine

    2008-01-01

    The authors investigated the impact of response activation on dual-task performance by presenting a subliminal prime before the stimulus in Task 2 (S2) of a psychological refractory period (PRP) task. Congruence between prime and S2 modulated the reaction times in Task 2 at short stimulus onset asynchrony despite a PRP effect. This Task 2…

  15. Spontaneous and task-evoked brain activity negatively interact

    PubMed Central

    He, Biyu J.

    2013-01-01

    A widely held assumption is that spontaneous and task-evoked brain activity sum linearly, such that the recorded brain response in each single trial is the algebraic sum of the constantly changing ongoing activity and the stereotypical evoked activity. Using functional magnetic resonance imaging (fMRI) signals acquired from normal humans, we show that this assumption is invalid. Across widespread cortices, evoked activity interacts negatively with ongoing activity, such that higher prestimulus baseline results in less activation or more deactivation. As a consequence of this negative interaction, trial-to-trial variability of cortical activity decreases following stimulus onset. We further show that variability reduction follows overlapping but distinct spatial pattern from that of task activation/deactivation and it contains behaviorally relevant information. These results favor an alternative perspective to the traditional dichotomous framework of ongoing and evoked activity – one that views the brain as a nonlinear dynamical system whose trajectory is tighter when performing a task; further, incoming sensory stimuli modulate the brain’s activity in a manner that depends on its initial state. We propose that across-trial variability may provide a new approach to brain mapping in the context of cognitive experiments. PMID:23486941

  16. ICA model order selection of task co-activation networks

    PubMed Central

    Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.

    2013-01-01

    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802

  17. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  18. Flexible task-specific control using active vision

    NASA Astrophysics Data System (ADS)

    Firby, Robert J.; Swain, Michael J.

    1992-04-01

    This paper is about the interface between continuous and discrete robot control. We advocate encapsulating continuous actions and their related sensing strategies into behaviors called situation specific activities, which can be constructed by a symbolic reactive planner. Task- specific, real-time perception is a fundamental part of these activities. While researchers have successfully used primitive touch and sonar sensors in such situations, it is more problematic to achieve reasonable performance with complex signals such as those from a video camera. Active vision routines are suggested as a means of incorporating visual data into real time control and as one mechanism for designating aspects of the world in an indexical-functional manner. Active vision routines are a particularly flexible sensing methodology because different routines extract different functional attributes from the world using the same sensor. In fact, there will often be different active vision routines for extracting the same functional attribute using different processing techniques. This allows an agent substantial leeway to instantiate its activities in different ways under different circumstances using different active vision routines. We demonstrate the utility of this architecture with an object tracking example. A control system is presented that can be reconfigured by a reactive planner to achieve different tasks. We show how this system allows us to build interchangeable tracking activities that use either color histogram or motion based active vision routines.

  19. Brain Activation of Identity Switching in Multiple Identity Tracking Task.

    PubMed

    Lyu, Chuang; Hu, Siyuan; Wei, Liuqing; Zhang, Xuemin; Talhelm, Thomas

    2015-01-01

    When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects' identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically.

  20. Active vision task and postural control in healthy, young adults: Synergy and probably not duality.

    PubMed

    Bonnet, Cédrick T; Baudry, Stéphane

    2016-07-01

    In upright stance, individuals sway continuously and the sway pattern in dual tasks (e.g., a cognitive task performed in upright stance) differs significantly from that observed during the control quiet stance task. The cognitive approach has generated models (limited attentional resources, U-shaped nonlinear interaction) to explain such patterns based on competitive sharing of attentional resources. The objective of the current manuscript was to review these cognitive models in the specific context of visual tasks involving gaze shifts toward precise targets (here called active vision tasks). The selection excluded the effects of early and late stages of life or disease, external perturbations, active vision tasks requiring head and body motions and the combination of two tasks performed together (e.g., a visual task in addition to a computation in one's head). The selection included studies performed by healthy, young adults with control and active - difficult - vision tasks. Over 174 studies found in Pubmed and Mendeley databases, nine were selected. In these studies, young adults exhibited significantly lower amplitude of body displacement (center of pressure and/or body marker) under active vision tasks than under the control task. Furthermore, the more difficult the active vision tasks were, the better the postural control was. This underscores that postural control during active vision tasks may rely on synergistic relations between the postural and visual systems rather than on competitive or dual relations. In contrast, in the control task, there would not be any synergistic or competitive relations.

  1. International Reference Ionosphere (IRI): Task Force Activity 2000

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2000-01-01

    The annual IRI Task Force Activity was held at the Abdus Salam International Center for Theoretical Physics in Trieste, Italy from July 10 to July 14. The participants included J. Adeniyi (University of Ilorin, Nigeria), D. Bilitza (NSSDC/RITSS, USA), D. Buresova (Institute of Atmospheric Physics, Czech Republic), B. Forte (ICTP, Italy), R. Leitinger (University of Graz, Austria), B. Nava (ICTP, Italy), M. Mosert (University National Tucuman, Argentina), S. Pulinets (IZMIRAN, Russia), S. Radicella (ICTP, Italy), and B. Reinisch (University of Mass. Lowell, USA). The main topic of this Task Force Activity was the modeling of the topside ionosphere and the development of strategies for modeling of ionospheric variability. Each day during the workshop week the team debated a specific modeling problem in the morning during informal presentations and round table discussions of all participants. Ways of resolving the specific modeling problem were devised and tested in the afternoon in front of the computers of the ICTP Aeronomy and Radiopropagation Laboratory using ICTP s computer networks and internet access.

  2. Task complexity modulates pilot electroencephalographic activity during real flights.

    PubMed

    Di Stasi, Leandro L; Diaz-Piedra, Carolina; Suárez, Juan; McCamy, Michael B; Martinez-Conde, Susana; Roca-Dorda, Joaquín; Catena, Andrés

    2015-07-01

    Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing) were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG recordings may help to evaluate an operator's cognitive performance in challenging real-life scenarios, and thus could aid in the prevention of catastrophic events. PMID:25728307

  3. Hippocampal theta wave activity during configural and non-configural tasks in rats.

    PubMed

    Sakimoto, Yuya; Hattori, Minoru; Takeda, Kozue; Okada, Kana; Sakata, Shogo

    2013-03-01

    This study examined hippocampal theta power during configural and non-configural tasks in rats. Experiment 1 compared hippocampal theta power during a negative patterning task (A+, B+, AB-) to a configural task and a simple discrimination task (A+, B-) as a non-configural task. The results showed that hippocampal theta power during the non-reinforcement trial (non-RFT) of the negative patterning task was higher than that during the simple discrimination task. However, this hippocampal power may reflect sensory processing for compound stimuli that have cross-modality features (the non-RFT of the negative patterning task was presented together with visual and auditory stimuli, but the non-RFT of the simple discrimination task was presented with visual or auditory stimulus alone). Thus, in experiment 2, we examined whether the experiment 1 results were attributable to sensory processing of a compound stimulus by comparing hippocampal theta power during negative patterning (A+, B+, AB-), simultaneous feature-negative (A+, AB-), and simple discrimination tasks (A+, B-). Experiment 2 showed that hippocampal theta activity during the non-RFT in the negative patterning task was higher than that in the simultaneous feature-negative and simple discrimination tasks. Thus, we showed that hippocampal theta activity increased during configural tasks but not during non-configural tasks.

  4. Transient Decline in Hippocampal Theta Activity during the Acquisition Process of the Negative Patterning Task

    PubMed Central

    Sakimoto, Yuya; Okada, Kana; Takeda, Kozue; Sakata, Shogo

    2013-01-01

    Hippocampal function is important in the acquisition of negative patterning but not of simple discrimination. This study examined rat hippocampal theta activity during the acquisition stages (early, middle, and late) of the negative patterning task (A+, B+, AB-). The results showed that hippocampal theta activity began to decline transiently (for 500 ms after non-reinforced stimulus presentation) during the late stage of learning in the negative patterning task. In addition, this transient decline in hippocampal theta activity in the late stage was lower in the negative patterning task than in the simple discrimination task. This transient decline during the late stage of task acquisition may be related to a learning process distinctive of the negative patterning task but not the simple discrimination task. We propose that the transient decline of hippocampal theta activity reflects inhibitory learning and/or response inhibition after the presentation of a compound stimulus specific to the negative patterning task. PMID:23936249

  5. Reduction of Dual-task Costs by Noninvasive Modulation of Prefrontal Activity in Healthy Elders

    PubMed Central

    Manor, Brad; Zhou, Junhong; Jor'dan, Azizah; Zhang, Jue; Fang, Jing; Pascual-Leone, Alvaro

    2016-01-01

    Dual tasking (e.g., walking or standing while performing a cognitive task) disrupts performance in one or both tasks, and such dual-task costs increase with aging into senescence. Dual tasking activates a network of brain regions including pFC. We therefore hypothesized that facilitation of prefrontal cortical activity via transcranial direct current stimulation (tDCS) would reduce dual-task costs in older adults. Thirty-seven healthy older adults completed two visits during which dual tasking was assessed before and after 20 min of real or sham tDCS targeting the left pFC. Trials of single-task standing, walking, and verbalized serial subtractions were completed, along with dual-task trials of standing or walking while performing serial subtractions. Dual-task costs were calculated as the percent change in markers of gait and postural control and serial subtraction performance, from single to dual tasking. Significant dual-task costs to standing, walking, and serial subtraction performance were observed before tDCS (p < .01). These dual-task costs were less after real tDCS as compared with sham tDCS as well as compared with either pre-tDCS condition (p < .03). Further analyses indicated that tDCS did not alter single task performance but instead improved performance solely within dual-task conditions (p < .02). These results demonstrate that dual tasking can be improved by modulating prefrontal activity, thus indicating that dual-task decrements are modifiable and may not necessarily reflect an obligatory consequence of aging. Moreover, tDCS may ultimately serve as a novel approach to preserving dual-task capacity into senescence. PMID:26488591

  6. Reaction time-related activity reflecting periodic, task-specific cognitive control.

    PubMed

    Barber, Anita D; Pekar, James J; Mostofsky, Stewart H

    2016-01-01

    Reaction time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in cognitive control regions. The current study examined whether the Primary Condition (PC) effect and RT-BOLD effect both reflect the same cognitive control processes. In addition, RT-BOLD effects were examined in two Go/No-go tasks with different demands to determine whether RT-related activity is task-dependent, reflecting the recruitment of task-specific cognitive processes. Data simulations showed that RT-related activity could be distinguished from that of the primary condition if it is mean-centered. In that case, RT-related activity reflects periodically-engaged processes rather than "time-on-task" (ToT). RT-related activity was mostly distinct from that of the primary Go contrast, particularly for the perceptual decision task. Therefore, RT effects can reflect additional cognitive processes that are not captured by the PC contrast consistent with a periodic-engagement account. RT-BOLD effects occurred in a separate set of regions for the two tasks. For the task requiring a perceptual decision, RT-related activity occurred within occipital and posterior parietal regions supporting visual attention. For the task requiring a working memory decision, RT-related activity occurred within fronto-parietal regions supporting the maintenance and retrieval of task representations. The findings suggest that RT-related activity reflects task-specific processes that are periodically-engaged, particularly during less demanding tasks. PMID:26318935

  7. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  8. Task-discriminative space-by-time factorization of muscle activity.

    PubMed

    Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien

    2015-01-01

    Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.

  9. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  10. Absorbed in the task: Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity.

    PubMed

    Tops, Mattie; Boksem, Maarten A S

    2010-12-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently predicted self-reported persistence. We hypothesized that, during a prolonged monotonous task, absorption would predict initial ERN amplitudes, constraint would delay declines in ERN amplitudes and deterioration of performance, and drive for reward would predict left RFA when a reward could be obtained. Study 2, employing EEG recordings, confirmed our predictions. The results showed that most traits that have in previous research been related to ERN amplitudes have a relationship with the motivational trait persistence in common. In addition, trait-context combinations that are likely associated with increased engagement predict larger ERN amplitudes and RFA. Together, these results support the hypothesis that engagement may be a common underlying factor predicting ERN amplitude.

  11. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables

    PubMed Central

    Rácz, Kornelius; Valero-Cuevas, Francisco J.

    2013-01-01

    The Uncontrolled Manifold (UCM) hypothesis and Minimal Intervention principle propose that the observed differential variability across task relevant (i.e., task goals) vs. irrelevant (i.e., in the null space of those goals) variables is evidence of a separation of task variables for efficient neural control, ranked by their respective variabilities (sometimes referred to as hierarchy of control). Support for this comes from spatial domain analyses (i.e., structure of) of kinematic, kinetic, and EMG variability. While proponents admit the possibility of preferential as opposed to strictly uncontrolled variables, such distinctions have only begun to be quantified or considered in the temporal domain when inferring control action. Here we extend the study of task variability during tripod static grasp to the temporal domain by applying diffusion analysis. We show that both task-relevant and task-irrelevant parameters show corrective action at some time scales; and conversely, that task-relevant parameters do not show corrective action at other time scales. That is, the spatial fluctuations of fingertip forces show, as expected, greater ranges of variability in task-irrelevant variables (>98% associated with changes in total grasp force; vs. only <2% in task-relevant changes associated with acceleration of the object). But at some time scales, however, temporal fluctuations of task-irrelevant variables exhibit negative correlations clearly indicative of corrective action (scaling exponents <0.5); and temporal fluctuations of task-relevant variables exhibit neutral and positive correlations clearly indicative of absence of corrective action (scaling exponents ≥0.5). In agreement with recent work in other behavioral contexts, these results propose we revise our understanding of variability vis-á-vis task relevance by considering both spatial and temporal features of all task variables when inferring control action and understanding how the CNS confronts task

  12. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  13. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  14. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  15. Task-specific Dystonias

    PubMed Central

    Torres-Russotto, Diego; Perlmutter, Joel S.

    2009-01-01

    Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127

  16. Prefrontal activation during two Japanese Stroop tasks revealed with multi-channel near-infrared spectroscopy.

    PubMed

    Watanabe, Yukina; Sumitani, Satsuki; Hosokawa, Mai; Ohmori, Tetsuro

    2015-01-01

    The Stroop task is sometimes used in psychiatric research to elicit prefrontal activity, which presumably reflects cognitive functioning. Although there are two Stroop tasks (Kana script and Kanji script) in Japan, it is unclear whether these tasks elicit the same hemoglobin changes. Moreover, it is unclear whether psychological conditions or characteristics influence hemoglobin changes in the Japanese Stroop task. The aim of this study was to clarify whether hemoglobin changes elicited by the two Japanese Stroop tasks accurately reflected cognitive functioning. Hemoglobin changes were measured with multi-channel near-infrared spectroscopy (NIRS) in 100 healthy Japanese participants performing two Japanese Stroop tasks. The Beck-Depression Inventory (BDI), State-Trait-Anxiety Inventory (STAI), and Maudsley Obsessive Compulsive Inventory (MOCI) were administered to participants to identify psychological conditions or personality characteristics. Compared with the Kanji task, the Kana task produced a greater Stroop effect and a larger increase in oxyhemoglobin (oxy-Hb) concentration. Moreover there were no significant correlations between oxy-Hb concentration and BDI, STAI-trait, STAI-state, or MOCI scores. Therefore we found that a participant's psychological conditions or characteristics did not influence the hemodynamic changes during either task. These data suggest the Kana Stroop task is more useful than the Kanji Stroop task for NIRS studies in psychiatric research.

  17. Recalling academic tasks

    NASA Astrophysics Data System (ADS)

    Draper, Franklin Gno

    This study was focused on what students remembered about five middle school science tasks when they were juniors and seniors in high school. Descriptions of the five tasks were reconstructed from available artifacts and teachers' records, notes and recollections. Three of the five tasks were "authentic" in the sense that students were asked to duplicate the decisions practitioners make in the adult world. The other two tasks were more typical school tasks involving note taking and preparation for a quiz. All five tasks, however, involved use of computers. Students were interviewed to examine what and how well they recalled the tasks and what forms or patterns of recall existed. Analysis of their responses indicated that different kinds of tasks produced different levels of recall. Authentically situated tasks were remembered much better than routine school tasks. Further, authentic tasks centered on design elements were recalled better than those for which design was not as pivotal. Patterns of recall indicated that participants most often recalled the decisions they made, the scenarios of the authentically situated tasks, the consequences of their tasks and the social contexts of the classroom. Task events, in other words, appeared to form a framework upon which students constructed stories of the tasks. The more salient the events, the richer the story, the deeper and more detailed the recall of the task. Thus, authentic tasks appeared to lend themselves to creating stories better than regular school tasks and therefore such tasks were recalled better. Implications of these patterns of recall are discussed with respect to issues of school learning and assessment.

  18. Generic cognitive adaptations to task interference in task switching.

    PubMed

    Poljac, Edita; Bekkering, Harold

    2009-11-01

    The present study investigated how the activation of previous tasks interferes with the execution of future tasks as a result of temporal manipulations. Color and shape matching tasks were organized in runs of two trials each. The tasks were specified by a cue presented before a task run, cueing only the first trials of each run. Response times (RTs) and error rates were measured for task switching and task repetition conditions. Task interference was varied as a function of response-cue interval (RCI of 300 and 900ms), that is, the interval between the task runs. Keeping the response-stimulus interval within the task runs constant at 300ms allowed the disentangling of the direct effects of RCI manipulation on performance (first trials) from the general effects on performance (both trials in the run). The data showed similar performance improvement due to RCI increase on both trials in the task run. Furthermore, increasing RCI improved both switch and repetition performance to a similar extent. Together, our findings provide further evidence for accounts stressing generic effects of proactive task interference in task switching.

  19. Evidence of Conjoint Activation of the Anterior Insular and Cingulate Cortices during Effortful Tasks.

    PubMed

    Engström, Maria; Karlsson, Thomas; Landtblom, Anne-Marie; Craig, A D Bud

    2014-01-01

    The ability to perform effortful tasks is a topic that has received considerable interest in the research of higher functions of the human brain. Neuroimaging studies show that the anterior insular and the anterior cingulate cortices are involved in a multitude of cognitive tasks that require mental effort. In this study, we investigated brain responses to effort using cognitive tasks with task-difficulty modulations and functional magnetic resonance imaging (fMRI). We hypothesized that effortful performance involves modulation of activation in the anterior insular and the anterior cingulate cortices, and that the modulation correlates with individual performance levels. Healthy participants performed tasks probing verbal working memory capacity using the reading span task, and visual perception speed using the inspection time task. In the fMRI analysis, we focused on identifying effort-related brain activation. The results showed that working memory and inspection time performances were directly related. The bilateral anterior insular and anterior cingulate cortices showed significantly increased activation during each task with common portions that were active across both tasks. We observed increased brain activation in the right anterior insula and the anterior cingulate cortex in participants with low working memory performance. In line with the reported results, we suggest that activation in the anterior insular and cingulate cortices is consistent with the neural efficiency hypothesis (Neubauer).

  20. TASK: Let's Have a Party!

    ERIC Educational Resources Information Center

    Rees, James

    2012-01-01

    In this article, the author describes a creative way to demystify contemporary art for students. TASK is artist Oliver Herring's creation, where participants actively interpret instructions found on little pieces of paper--what he calls "tasks." An art classroom has all the key ingredients for a TASK event: (1) people; (2) materials; (3) space;…

  1. Designing Probabilistic Tasks for Kindergartners

    ERIC Educational Resources Information Center

    Skoumpourdi, Chrysanthi; Kafoussi, Sonia; Tatsis, Konstantinos

    2009-01-01

    Recent research suggests that children could be engaged in probability tasks at an early age and task characteristics seem to play an important role in the way children perceive an activity. To this direction in the present article we investigate the role of some basic characteristics of probabilistic tasks in their design and implementation. In…

  2. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight.

  3. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest.

    PubMed

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A; De Dios, Yiri E; Gadd, Nichole E; Wood, Scott J; Riascos, Roy; Kofman, Igor S; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  4. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the underlying brain activation changed as a function of HDBR. Eighteen healthy men participated in this study. They remained continuously in the 6° head-down tilt position for 70 days. Functional MRI for bimanual finger tapping was acquired during both single task and dual task conditions, and repeated at 7 time points pre-, during- and post-HDBR. Another 12 healthy males participated as controls who did not undergo HDBR. A widely distributed network involving the frontal, parietal, cingulate, temporal, and occipital cortices exhibited increased activation for dual tasking and increased activation differences between dual and single task conditions during HDBR relative to pre- or post-HDBR. This HDBR-related brain activation increase for dual tasking implies that more neurocognitive control is needed for dual task execution during HDBR compared to pre- and post-HDBR. We observed a positive correlation between pre-to-post HDBR changes in dual-task cost of reaction time and pre-to-post HDBR change in dual-task cost of brain activation in several cerebral and cerebellar regions. These findings could be predictive of changes in dual task processing during spaceflight. PMID:27601982

  5. Atypical Activation during the Embedded Figures Task as a Functional Magnetic Resonance Imaging Endophenotype of Autism

    ERIC Educational Resources Information Center

    Spencer, Michael D.; Holt, Rosemary J.; Chura, Lindsay R.; Calder, Andrew J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal…

  6. Task 1 quarternary tectonics

    SciTech Connect

    Bell, J.W.

    1994-12-31

    Activities on the task of quarternary tectonics for the Yucca Mountain Site investigations are described. Technical topics include: A preliminary reveiw of Bare Mountain Trench; A preliminary detailed lineament map of the Southwestern part of the proposed repository; A discussion on the 1994 Double Spring Flat, Nevada earthquake; and evidence for temporal clustering.

  7. JV Task 119 - Effects of Aging on Treated Activated Carbons

    SciTech Connect

    Edwin Olson; Lucinda Hamre; John Pavlish; Blaise Mibeck

    2009-03-25

    For both the United States and Canada, testing has been under way for electric utilities to find viable and economical mercury control strategies to meet pending future mercury emission limits. The technology that holds the most promise for mercury control in low-chlorine lignite to meet the needs of the Clean Air Act in the United States and the Canada-Wide Standards in Canada is injection of treated activated carbon (AC) into the flue gas stream. Most of the treated carbons are reported to be halogenated, often with bromine. Under a previous multiyear project headed by the Energy & Environmental Research Center (EERC), testing was performed on a slipstream unit using actual lignite-derived flue gas to evaluate various sorbent technologies for their effectiveness, performance, and cost. Testing under this project showed that halogenated ACs performed very well, with mercury capture rates often {ge} 90%. However, differences were noted between treated ACs with respect to reactivity and capacity, possibly as a result of storage conditions. Under certain conditions (primarily storage in ambient air), notable performance degradation had occurred in mercury capture efficiency. Therefore, a small exploratory task within this project evaluated possible differences resulting from storage conditions and subsequent effects of aging that might somehow alter their chemical or physical properties. In order to further investigate this potential degradation of treated (halogenated) ACs, the EERC, together with DOE's National Energy Technology Laboratory, the North Dakota Industrial Commission (NDIC), the Electric Power Research Institute (EPRI), SaskPower, and Otter Tail Power Company, assessed the aging effects of brominated ACs for the effect that different storage durations, temperatures, and humidity conditions have on the mercury sorption capacity of treated ACs. No aging effects on initial capture activity were observed for any carbons or conditions in the investigation

  8. Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2013-06-01

    A learning scheme based on Random Forests is used to discriminate the task to be executed using only myoelectric activity from the upper limb. Three different task features can be discriminated: subspace to move towards, object to be grasped and task to be executed (with the object). The discrimination between the different reach to grasp movements is accomplished with a random forests classifier, which is able to perform efficient features selection, helping us to reduce the number of EMG channels required for task discrimination. The proposed scheme can take advantage of both a classifier and a regressor that cooperate advantageously to split the task space, providing better estimation accuracy with task-specific EMG-based motion decoding models, as reported in [1] and [2]. The whole learning scheme can be used by a series of EMG-based interfaces, that can be found in rehabilitation cases and neural prostheses.

  9. Functional Task Test (FTT)

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar; Peters, Brian T.; Rescheke, Millard F.; Wood, Scott; Lawrence, Emily; Koffman, Igor; Ploutz-Snyder, Lori; Spiering, Barry A.; Feeback, Daniel L.; Platts, Steven H.; Stenger, Michael B.; Lee, Stuart M.C.; Arzeno, Natalia; Feiveson, Alan H.; Ryder, Jeffrey; Garcia, Yamil; Guilliams, Mark E.

    2009-01-01

    This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.

  10. Children's Performance on a False-belief Task Is Impaired by Activation of an Evolutionarily-Canalized Response System.

    ERIC Educational Resources Information Center

    Keenan, Thomas; Ellis, Bruce J.

    2003-01-01

    Two studies examined how task content that activates predator-avoidance affects preschool children's performance on a false-belief task. Findings indicated that the proportion of correct answers on the playmate-avoidance task was greater than that for the predator-avoidance task, suggesting that activation of the predator-avoidance system…

  11. Task Time Tracker

    2013-07-24

    This client-side web app tracks the amount of time spent on arbitrary tasks. It allosw the creation of an unlimited number of arbitrarily named tasks ans via simple interactions, tracks the amount of time spent working on the drfined tasks.

  12. Launching Complex Tasks

    ERIC Educational Resources Information Center

    Jackson, Kara J.; Shahan, Emily C.; Gibbons, Lynsey K.; Cobb, Paul A.

    2012-01-01

    Mathematics lessons can take a variety of formats. In this article, the authors discuss lessons organized around complex mathematical tasks. These lessons usually unfold in three phases. First, the task is introduced to students. Second, students work on solving the task. Third, the teacher "orchestrates" a concluding whole-class discussion in…

  13. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    PubMed Central

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  14. Cognitive Activities in Solving Mathematical Tasks: The Role of a Cognitive Obstacle

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2016-01-01

    In the process of learning mathematics, students practice various forms of thinking activities aimed to substantially contribute to the development of their different cognitive structures. In this paper, the subject matter is a "cognitive obstacle", a phenomenon that occurs in the procedures of solving mathematical tasks. Each task in…

  15. A Goal Activation Approach to the Study of Executive Function: An Application to Antisaccade Tasks

    ERIC Educational Resources Information Center

    Nieuwenhuis, Sander; Broerse, Annelies; Nielen, Marjan M. A.; de Jong, Ritske

    2004-01-01

    We argue that a general control process, responsible for the activation and maintenance of task goals, is central to the concept of executive function. Failures of this process can become manifest as "goal neglect": disregard of a task requirement even though it has been understood (Duncan, 1995). We discuss the results of several published and…

  16. A Cross-Cultural Investigation into How Tasks Influence Seatwork Activities in Mathematics Lessons

    ERIC Educational Resources Information Center

    Serrano, Ana M.

    2012-01-01

    This study examined how types of tasks influenced student activities/thinking and defined the role of Seatwork in mathematics lessons. It used 60 lessons from the TIMSS videotaped Study. These data indicated that practice was the most prevalent form of tasks in the U.S. In Germany, students completed mathematical calculations after a complex…

  17. Advanced Marketing 8130. Instructional Areas. Duties and Tasks. Learning Activities. Referenced Resources.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond.

    This resource handbook, which is designed for use by instructors of courses in advanced marketing, consists of a duty/task list with referenced resources, a duty/task list with learning activities, and a list of resources. Included in each list are materials dealing with the following topics: communication in marketing, economics in marketing,…

  18. Trunk postures and upper-body muscle activations during physically demanding wildfire suppression tasks.

    PubMed

    Neesham-Smith, Daniel; Aisbett, Brad; Netto, Kevin

    2014-01-01

    This study examined the trunk postures and upper-body muscle activations during four physically demanding wildfire suppression tasks. Bilateral, wireless surface electromyography was recorded from the trapezius and erector spinae muscles of nine experienced, wildfire fighters. Synchronised video captured two retroreflective markers to allow for quantification of two-dimensional sagittal trunk flexion. In all tasks, significantly longer time was spent in the mild and severe trunk flexion (p ≤ 0.002) compared to the time spent in a neutral posture. Mean and peak muscle activation in all tasks exceeded previously established safe limits. These activation levels also significantly increased through the performance of each task (p < 0.001). The results suggest that the wildfire suppression tasks analysed impose significant musculoskeletal demand on firefighters. Fire agencies should consider developing interventions to reduce the exposure of their personnel to these potentially injurious musculoskeletal demands.

  19. Trunk postures and upper-body muscle activations during physically demanding wildfire suppression tasks.

    PubMed

    Neesham-Smith, Daniel; Aisbett, Brad; Netto, Kevin

    2014-01-01

    This study examined the trunk postures and upper-body muscle activations during four physically demanding wildfire suppression tasks. Bilateral, wireless surface electromyography was recorded from the trapezius and erector spinae muscles of nine experienced, wildfire fighters. Synchronised video captured two retroreflective markers to allow for quantification of two-dimensional sagittal trunk flexion. In all tasks, significantly longer time was spent in the mild and severe trunk flexion (p ≤ 0.002) compared to the time spent in a neutral posture. Mean and peak muscle activation in all tasks exceeded previously established safe limits. These activation levels also significantly increased through the performance of each task (p < 0.001). The results suggest that the wildfire suppression tasks analysed impose significant musculoskeletal demand on firefighters. Fire agencies should consider developing interventions to reduce the exposure of their personnel to these potentially injurious musculoskeletal demands. PMID:24365452

  20. Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

    PubMed

    Wu, Zhenghua

    2014-01-01

    Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.

  1. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    SciTech Connect

    Okhuysen, Brett S.; Pulliam, Elias Noel

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  2. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  3. Planetary image conversion task

    NASA Technical Reports Server (NTRS)

    Martin, M. D.; Stanley, C. L.; Laughlin, G.

    1985-01-01

    The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.

  4. Incentive value, unclear task difficulty, and cardiovascular reactivity in active coping.

    PubMed

    Richter, Michael; Gendolla, Guido H E

    2007-03-01

    An experiment with 44 participants assessed the moderating effects of four levels of incentive value on cardiovascular responses in active coping. Randomly assigned to one of four different incentive conditions, participants performed a memory task without knowing its difficulty in advance. By means of successfully performing the task participants could either win no reward, 10 Swiss Francs, 20 Swiss Francs, or 30 Swiss Francs. In accordance with the theoretical predictions derived from motivational intensity theory, reactivity of systolic blood pressure and heart rate monotonically increased with incentive value. Thereby, these findings provide additional empirical evidence for the predictions of motivational intensity theory with regard to unclear task difficulty and extend recent research (Richter, M., Gendolla, G.H.E., 2006. Incentive effects on cardiovascular reactivity in active coping with unclear task difficulty. Int. J. Psychophysiol. 61, 216-225.), which was not conclusive regarding the predicted monotonic relationship between incentive value and cardiovascular reactivity under conditions of unclear task difficulty.

  5. Age-Related Changes in Brain Activation Underlying Single- and Dual-Task Performance: Visuomanual Drawing and Mental Arithmetic

    ERIC Educational Resources Information Center

    Van Impe, A.; Coxon, J. P.; Goble, D. J.; Wenderoth, N.; Swinnen, S. P.

    2011-01-01

    Depending on task combination, dual-tasking can either be performed successfully or can lead to performance decrements in one or both tasks. Interference is believed to be caused by limitations in central processing, i.e. structural interference between the neural activation patterns associated with each task. In the present study, single- and…

  6. Investigating the muscle activities of performing surgical training tasks using a virtual simulator.

    PubMed

    Huang, Chun-Kai; Suh, Irene H; Chien, Jung Hung; Vallabhajosula, Srikant; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-01-01

    The objective of this study was to determine the muscle activities of upper extremities while performing fundamental surgical training tasks using a virtual simulator. Six subjects performed virtual cutting tasks and their muscle activities of upper extremities were measured. The results demonstrated a significant increase in muscle activities in both proximal and distal upper extremities, which are the common areas of occurrence of injury after prolonged practice. This study suggests that the upper trapezius and the extensor digitorum are essential prime movers to perform surgical training tasks. These muscles should be monitored for performance assessment in future studies.

  7. Job level risk assessment using task level ACGIH hand activity level TLV scores: a pilot study.

    PubMed

    Drinkaus, Phillip; Sesek, Richard; Bloswick, Donald S; Mann, Clay; Bernard, Thomas

    2005-01-01

    Existing upper extremity musculoskeletal disorder analytical tools are primarily intended for single or mono-task jobs. However, many jobs contain more than 1 task and some include job rotation. This case/control study investigates methods of modifying an existing tool, the American Conference of Governmental Industrial Hygienists (ACGIH) Hand Activity Level (HAL) Threshold Limit Value (TLV), to assess the upper extremity risk of multi-task jobs. Various methods of combining the task differences and ratios into a job level assessment were explored. Two methods returned significant odds ratios, (p < .05) of 18.0 (95% CI 1.8-172) and 12.0 (95% CI 1.2-120). These results indicate that a modified ACGIH HAL TLV may provide insight into the work-related risk of multi-task jobs. Further research is needed to optimize this process. PMID:16219155

  8. The role of peer groups in male and female adolescents' task values and physical activity.

    PubMed

    Yli-Piipari, Sami; Jaakkola, Timo; Liukkonen, Jarmo; Kiuru, Noona; Watt, Anthony

    2011-02-01

    The purpose of this longitudinal study was to examine the role of peer groups and sex in adolescents' task values and physical activity. The participants were 330 Finnish Grade 6 students (173 girls, 157 boys), who responded to questionnaires that assessed physical education task values during the spring semester (Time 1). Students' physical activity was assessed one year later (Time 2). The results indicated that adolescent peer groups were moderately homogeneous in terms of task values toward physical education and physical activity. Girls' peer groups were more homogeneous than those of boys in regards to utility and attainment values. Furthermore, the results for both girls and boys showed that particularly intrinsic task value typical for the peer group predicted group members' physical activity. The findings highlight the important role of peer group membership as a determinant of future physical activity. PMID:21526593

  9. Perceptual demand modulates activation of human auditory cortex in response to task-irrelevant sounds.

    PubMed

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Mangalathu, Jain; Desai, Anjali; Binder, Jeffrey R; Liebenthal, Einat

    2013-09-01

    In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130-230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.

  10. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze.

  11. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed Central

    Wenzel, Markus A.; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Objective Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user’s interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Approach Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Results Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). Significance The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI. PMID:27792781

  12. Failing to deactivate: the association between brain activity during a working memory task and creativity.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-03-15

    Working memory (WM) is an essential component for human higher order cognitive activities. Creativity has been essential to the development of human civilization. Previous studies from different fields have suggested creativity and capacity of WM have opposing characteristics possibly in terms of diffuse attention. However, despite a number of functional imaging studies on creativity, how creativity relates to brain activity during WM has never been investigated. In this functional magnetic resonance imaging (fMRI) study, we investigated this issue using an n-back WM paradigm and a psychometric measure of creativity (a divergent thinking test). A multiple regression analysis revealed that individual creativity was significantly and positively correlated with brain activity in the precuneus during the 2-back task (WM task), but not during the non-WM 0-back task. As the precuneus shows deactivation during cognitive tasks, our findings show that reduced task induced deactivation (TID) in the precuneus is associated with higher creativity measured by divergent thinking. The precuneus is included in the default mode network, which is deactivated during cognitive tasks. The magnitude of TID in the default mode network is considered to reflect the reallocation of cognitive resources from networks irrelevant to the performance of the task. Thus, our findings may indicate that individual creativity, as measured by the divergent thinking test, is related to the inefficient reallocation of attention, congruent with the idea that diffuse attention is associated with individual creativity.

  13. Effects of overhead work configuration on muscle activity during a simulated drilling task.

    PubMed

    Maciukiewicz, Jacquelyn M; Cudlip, Alan C; Chopp-Hurley, Jaclyn N; Dickerson, Clark R

    2016-03-01

    Overhead work is a known catalyst for occupational shoulder injury. Industrial workers must often adopt awkward overhead postures and loading profiles to complete required tasks, potentially elevating injury risk. This research examined the combined influence of multiple overhead working parameters on upper extremity muscular demands for an industrial drilling application. Twenty-two right-handed males completed 24 unilateral and bilateral overhead work exertions stratified by direction (upward, forward), point of force application (15, 30 and 45 cm in front of the body), and whole-body posture (seated, standing). The dependency of electromyographic (EMG) activity on several factors was established. Significant two-way interactions existed between point of force application and direction (p < 0.0001) and direction and whole body posture (p < 0.0001). An average increase in muscular activity of 6.5% maximal voluntary contraction (MVC) occurred for the contralateral limb when the bilateral task was completed, compared to unilateral tasks, with less than a 1% MVC increase for the active limb. These findings assist evidence-based approaches to overhead tasks, specifically in the construction industry. A bilateral task configuration is recommended to reduce glenohumeral stability demands. As well, particularly for tasks with a far reach distance, design tasks to promote a forward directed exertion. The considerable inter-subject variability suggests that fixed heights are not ideal, and should be avoided, and where this is not possible reaches should be reduced. PMID:26674399

  14. PFC Activity Pattern During Verbal WM Task in Healthy Male and Female Subjects: A NIRS Study.

    PubMed

    Gao, Chenyang; Zhang, Lei; Luo, Dewu; Liu, Dan; Gong, Hui

    2016-01-01

    Near-infrared spectroscopy (NIRS), as a non-invasive optical imaging method, has been widely used in psychology research. Working memory (WM) is an extensively researched psychological concept related to the temporary storage and processing of information. Many neuropsychological studies demonstrate that several brain areas of prefrontal cortex (PFC) are engaged during verbal WM tasks. The gender-based differences in WM remains under dispute. To better understand the active module and gender differences in PFC activity patterns during verbal WM tasks, we investigated the blood oxygenation changes of the PFC in 15 healthy subjects using a homemade multichannel continuous-wave NIRS instrument, while performing a verbal n-back task. We employed traditional activation and novel connectivity analyses simultaneously. Males had a higher level of oxygenation activity and connectivity in PFC than females. Only the results of females revealed a leftward lateralization in the 2-back task. PMID:27526142

  15. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  16. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  17. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  18. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices

    PubMed Central

    Szameitat, André J.; Vanloo, Azonya; Müller, Hermann J.

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  19. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices.

    PubMed

    Szameitat, André J; Vanloo, Azonya; Müller, Hermann J

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  20. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    PubMed

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  1. Motivated cognitive control: Reward incentives modulate preparatory neural activity during task-switching

    PubMed Central

    Savine, Adam C.; Braver, Todd S.

    2010-01-01

    It is increasingly appreciated that executive control processes need to be understood in terms of motivational as well as cognitive mechanisms. The current study examined the impact of performance-contingent reward incentives (monetary bonuses) on neural activity dynamics during cued task-switching performance. Behavioral measures indicated that performance was improved and task-switch costs selectively reduced on incentive trials. Trial-by-trial fluctuations in incentive value were associated with activation in reward-related brain regions (dopaminergic midbrain, paracingulate cortex) and also modulated the dynamics of switch-selective activation in the brain cognitive control network in both an additive (posterior PFC) and interactive way (dorsolateral PFC, dorsomedial PFC, and inferior parietal cortex). In dorsolateral PFC, incentive-modulation of activation predicted task-switching behavioral performance effects in a hemispherically specialized manner. Further, in left dorsolateral PFC, incentive modulation specifically enhanced task-cue related activation, and this activation in turn predicted that the trial would be subsequently rewarded (due to optimal performance). The results suggest that motivational incentives have a selective effect on brain regions that subserve cognitive control processes during task-switching, and moreover, that one mechanism of effect might be the enhancement of cue-related task preparation within left dorsolateral PFC. PMID:20685974

  2. Individual differences in neural activity during a facial expression vs. identity working memory task.

    PubMed

    Neta, Maital; Whalen, Paul J

    2011-06-01

    Facial expressions of emotion constitute a critical portion of our non-verbal social interactions. In addition, the identity of the individual displaying this expression is critical to these interactions as they embody the context in which these expressions will be interpreted. To identify any overlapping and/or unique brain circuitry involved in the processing of these two information streams in a laboratory setting, participants performed a working memory (WM) task (i.e., n-back) in which they were instructed to monitor either the expression (EMO) or the identity (ID) of the same set of face stimuli. Consistent with previous work, during both the EMO and ID tasks, we found a significant increase in activity in dorsolateral prefrontal cortex (DLPFC) supporting its generalized role in WM. Further, individuals that showed greater DLPFC activity during both tasks also showed increased amygdala activity during the EMO task and increased lateral fusiform gyrus activity during the ID task. Importantly, the level of activity in these regions significantly correlated with performance on the respective tasks. These findings provide support for two separate neural circuitries, both involving the DLPFC, supporting working memory for the faces and expressions of others. PMID:21349341

  3. NSI security task: Overview

    NASA Technical Reports Server (NTRS)

    Tencati, Ron

    1991-01-01

    An overview is presented of the NASA Science Internet (NSI) security task. The task includes the following: policies and security documentation; risk analysis and management; computer emergency response team; incident handling; toolkit development; user consulting; and working groups, conferences, and committees.

  4. Task Description Language

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Apfelbaum, David

    2005-01-01

    Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.

  5. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  6. Development of statistical models for predicting muscle and mental activities during repetitive precision tasks.

    PubMed

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md; Taha, Zahari

    2016-09-01

    This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while subjects were performing the task. Thus, models were developed using those variables. The models were found valid after validation using other students' and workers' data. Findings from this study can contribute as a reference for future studies investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue, especially to manage job schedules and rotation. PMID:27053140

  7. Putting Mathematical Tasks into Context

    ERIC Educational Resources Information Center

    Nagle, Courtney R.; Styers, Jodie L.

    2015-01-01

    Although many factors affect students' mathematical activity during a lesson, the teacher's selection and implementation of tasks is arguably the most influential in determining the level of student engagement. Mathematical tasks are intended to focus students' attention on a particular mathematical concept and it is the careful developing and…

  8. Quarternary tectonics, Task 1

    SciTech Connect

    Bell, J.W.

    1993-09-30

    Activities conducted for the evaluation of the geology and seismotectonics stability of Yucca Mountain as a potential site for the underground disposal of high-level radioactive wastes continued. Tasks concerned with quaternary tectonics include: scheduling of photography of Little Skull Mountain area; the collection and dating of rock varnish samples from the 1932 Cedar Mountain earthquake area for carbon 14 AMS and cation-ratio analysis; collection of samples for thermoluminescence dating from the 1932 Cedar Mountain earthquake area; mapping of the northern area of Crater Flat; and surveying of the May 17, 1993 Eureka the Valley earthquake area.

  9. TASK DIFFICULTY MODULATES ACTIVITY OF SPECIFIC NEURONAL POPULATIONS IN PRIMARY VISUAL CORTEX

    PubMed Central

    Chen, Yao; Martinez-Conde, Susana; Macknik, Stephen L.; Bereshpolova, Yulia; Swadlow, Harvey A.; Alonso, Jose-Manuel

    2008-01-01

    Spatial attention enhances our ability to detect stimuli at restricted regions of the visual field. This enhancement is thought to depend on the difficulty of the task being performed, but the underlying neuronal mechanisms for this dependency remain largely unknown. Here we demonstrate that task difficulty modulates neuronal firing rate at the earliest stages of cortical visual processing (area V1) in the macaque monkey. These modulations are spatially specific: increasing task difficulty enhances V1 neuronal firing rate at the focus of attention and suppresses it in regions surrounding the focus. Moreover, we show that response enhancement and suppression are mediated by distinct populations of neurons that differ in direction selectivity, spike width, interspike interval distribution and contrast sensitivity. Our results provide strong support for center-surround models of spatial attention and suggest that task difficulty modulates the activity of specific populations of neurons in the primary visual cortex. PMID:18604204

  10. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  11. Maximally Expressive Task Modeling

    NASA Technical Reports Server (NTRS)

    Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.

  12. The temporal dynamics of metacognition: Dissociating task-related activity from later metacognitive processes.

    PubMed

    Desender, Kobe; Van Opstal, Filip; Hughes, Gethin; Van den Bussche, Eva

    2016-02-01

    In recent years, neuroscience research spent much effort in revealing brain activity related to metacognition. Despite this endeavor, it remains unclear exactly when metacognitive experiences develop during task performance. To investigate this, the current study used EEG to temporally and spatially dissociate task-related activity from metacognitive activity. In a masked priming paradigm, metacognitive experiences of difficulty were induced by manipulating congruency between prime and target. As expected, participants more frequently rated incongruent trials as difficult and congruent trials as easy, while being completely unable to perceive the masked primes. Results showed that both the N2 and the P3 ERP components were modulated by congruency, but that only the P3 modulation interacted with metacognitive experiences. Single-trial analysis additionally showed that the magnitude of the P3 modulation by congruency accurately predicted the metacognitive response. Source localization indicated that the N2 task-related activity originated in the ACC, whereas the P3-interplay between task-related activation and metacognitive experiences originated from the precuneus. We conclude that task-related activity can be dissociated from later metacognitive processing.

  13. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  14. The Dissipating Task-Repetition Benefit in Cued Task Switching: Task-Set Decay or Temporal Distinctiveness?

    ERIC Educational Resources Information Center

    Horoufchin, Himeh; Philipp, Andrea M.; Koch, Iring

    2011-01-01

    Decay of task-set activation, as commonly assumed in models of task switching, has been thought to be indexed by manipulating the response-to-cue interval (RCI) in a task-cuing paradigm. We propose an alternative account for RCI effects suggesting that episodic task retrieval is modulated by temporal distinctiveness, which we define as the ratio…

  15. Stability and variability: indicators for passive stability and active control in a rhythmic task.

    PubMed

    Wei, Kunlin; Dijkstra, Tjeerd M H; Sternad, Dagmar

    2008-06-01

    Using a rhythmic task where human subjects bounced a ball with a handheld racket, fine-grained analyses of stability and variability extricated contributions from open-loop control, noise strength, and active error compensation. Based on stability analyses of a stochastic-deterministic model of the task--a surface contacting the ball by periodic movements--open-loop or dynamic stability was assessed by the acceleration of the racket at contact. Autocovariance analyses of model and data were further used to gauge the contributions of open-loop stability and noise strength. Variability and regression analyses estimated active error compensation. Empirical results demonstrated that experienced actors exploited open-loop stability more than novices, had lower noise strength, and applied more active error compensations. By manipulating the model parameter coefficient of restitution, task stability was varied and showed that actors graded these three components as a function of task stability. It is concluded that actors tune into task stability when stability is high but use more active compensation when stability is reduced. Implications for the neural underpinnings for passive stability and active control are discussed. Further, results showed that stability and variability are not simply the inverse of each other but contain more quantitative information when combined with model analyses.

  16. Using Antecedent Physical Activity to Increase On-Task Behavior in Young Children

    ERIC Educational Resources Information Center

    Luke, Sara; Vail, Cynthia O.; Ayres, Kevin M.

    2014-01-01

    A withdrawal design was used to investigate how physical activity affects on-task behavior of young children with significant developmental delays in a special education preschool classroom. Five preschool age children with significant developmental delays engaged in either physical activity or seated center activities for 20 min prior to a 15-min…

  17. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  18. Balancing emotional processing with ongoing cognitive activity: the effects of task modality on intrusions and rumination

    PubMed Central

    Curci, Antonietta; Soleti, Emanuela; Lanciano, Tiziana; Doria, Valentina; Rimé, Bernard

    2015-01-01

    In the present paper we aimed to show that competition for resources between post-emotional processes and the execution of a cognitive task will result in two possible effects: (1) an impairment of the cognitive task in the short run and (2) an elongation of intrusions and rumination in the long run. The outcome of this competition is influenced by the interaction of the modality (verbal vs. visuospatial) of cognitive tasks run in the aftermath of an emotional experience and the nature (verbal vs. visuospatial) of the same experience. Non-clinical participants were given a working memory task (OSPAN vs. an analog Visual task) before and after the presentation of negative vs. neutral material (a novel excerpt in Experiment 1 and a video clip in Experiment 2). Intrusions and rumination were measured after a 24-h delay. Rumination was also assessed immediately after the experimental induction. Results showed that exposure to verbal negative material impaired verbal performance (Experiment 1); by contrast, exposure to visual negative material impaired both verbal and visuospatial performance (Experiment 2). Intrusions were only affected by the emotional valence of the original experience, while performing a visuospatial task resulted in enhanced rumination only after exposure to verbal emotional material. The findings of both experiments suggest that emotional processing spreads over time in balance with ongoing cognitive activities, and, in such a balance, the visuospatial processing mode tends to prevail over verbal engagements. PMID:26379598

  19. Dissociating sentential prosody from sentence processing: activation interacts with task demands.

    PubMed

    Plante, Elena; Creusere, Marlena; Sabin, Cynthia

    2002-09-01

    Sentence processing was contrasted with processing of syntactic prosody under two task conditions in order to examine the representation of these components of language and their interaction with working memory load. Twelve adults received fMDI scans while they listened to low-pass filtered and unfiltered sentences either passively, or during tasks that required subjects to remember and recognize information contained in the stimuli. Results indicated that temporal activation for prosodic stimuli differed compared to activation for sentence stimuli only during passive listening tasks. The inclusion of memory demands was associated with frontal activation, which was differentially lateralized for sentence and prosodic stimuli. The results demonstrate differential brain activation for prosodic vs sentential stimuli which interacts with the memory demands placed on the subjects.

  20. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: A Duality of Activation Mechanisms Account.

    PubMed

    Imbir, Kamil K

    2016-01-01

    Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled) should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency, and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance. PMID:26869974

  1. Effect of Mild Thyrotoxicosis on Performance and Brain Activations in a Working Memory Task

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2016-01-01

    Aims Disturbed levels of thyroid hormones are associated with neuropsychiatric disorders, including memory impairments. The aim of this study was to evaluate effects of mild induced thyrotoxicosis on working memory and its neural correlates. Methods Twenty-nine healthy, male subjects with normal thyroid state participated in the study. Functional MRI was acquired during a working memory task (n-back task) before and after ingesting 250 μg L-thyroxin per day for a period of eight weeks. In addition, neuropsychological tests were performed. Results In the hyperthyroid condition the subjects showed slower reaction times, but a higher accuracy in the 0-back version of the memory tasks. Fewer differences between euthyroid and hyperthyroid state were seen for the more difficult conditions of the n-back task. FMRI revealed effects of difficulty in the parahippocampal gyrus, supplementary motor area, prefrontal cortex, anterior cingulate cortex, posterior cerebellum, rolandic operculum and insula (p<0.05, FWE corrected). When comparing euthyroid and hyperthyroid condition in relation to task-induced activation, differences of activation were found in the right prefrontal cortex as well as in the right parahippocampal area. In the psychological assessment, the alerting effect in the Attention Network Task (ANT) and four out of five parameters of the auditory verbal learning test (AVLT) showed an increase from euthyroid to hyperthyroid state. Conclusions It can be concluded that even a short-term intake of thyroid hormones leads to an activation of brain areas associated with working memory and to an improvement of accuracy of working memory tasks. PMID:27536945

  2. Effects of reaction time variability and age on brain activity during Stroop task performance.

    PubMed

    Tam, Angela; Luedke, Angela C; Walsh, Jeremy J; Fernandez-Ruiz, Juan; Garcia, Angeles

    2015-09-01

    Variability in reaction time during task performance may reflect fluctuations in attention and cause reduced performance in goal-directed tasks, yet it is unclear whether the mechanisms behind this phenomenon change with age. Using fMRI, we tested young and cognitively healthy older adults with the Stroop task to determine whether aging affects the neural mechanisms underlying intra-individual reaction time variability. We found significant between-group differences in BOLD activity modulated by reaction time. In older adults, longer reaction times were associated with greater activity in frontoparietal attentional areas, while in younger adults longer reaction times were associated with greater activity in default mode network areas. Our results suggest that the neural correlates of reaction time variability change with healthy aging, reinforcing the concept of functional plasticity to maintain high cognitive function throughout the lifespan.

  3. Investigating the correlation between the neural activity and task performance in a psychomotor vigilance test.

    PubMed

    Hu, Zhongze; Sun, Yu; Lim, Julian; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Neural activity is known to correlate with decrements in task performance as individuals enter the state of mental fatigue which might lead to lowered productivity and increased safety risks. Incorporating a passive brain computer interface (BCI) technique that detects changes in subject's neural activity and predicts the behavioral performance when the subject is underperforming might be a promising approach to reduce human error in real-world situations. Here, we developed a reliable model using EEG power spectrum to estimate time-on-task performance in a psychomotor vigilance test (PVT) which can fit across individuals. High correlation between the estimated and actual reaction time was achieved. Hence, our results illustrate the feasibility for modeling time-on-task decrements in performance among different individuals from their brainwave activity, with potential applications in several domains, including traffic and industrial safety. PMID:26737349

  4. Associations between prefrontal cortex activation and H-reflex modulation during dual task gait

    PubMed Central

    Meester, Daan; Al-Yahya, Emad; Dawes, Helen; Martin-Fagg, Penny; Piñon, Carmen

    2014-01-01

    Walking, although a largely automatic process, is controlled by the cortex and the spinal cord with corrective reflexes modulated through integration of neural signals from central and peripheral inputs at supraspinal level throughout the gait cycle. In this study we used an additional cognitive task to interfere with the automatic processing during walking in order to explore the neural mechanisms involved in healthy young adults. Participants were asked to walk on a treadmill at two speeds, both with and without additional cognitive load. We evaluated the impact of speed and cognitive load by analyzing activity of the prefrontal cortex (PFC) using functional Near-Infrared Spectroscopy (fNIRS) alongside spinal cord reflex activity measured by soleus H-reflex amplitude and gait changes obtained by using an inertial measuring unit. Repeated measures ANOVA revealed that fNIRS Oxy-Hb concentrations significantly increased in the PFC with dual task (walking while performing a cognitive task) compared to a single task (walking only; p < 0.05). PFC activity was unaffected by increases of walking speed. H-reflex amplitude and gait variables did not change in response to either dual task or increases in walking speed. When walking under additional cognitive load participants adapted by using greater activity in the PFC, but this adaptation did not detrimentally affect H-reflex amplitude or gait variables. Our findings suggest that in a healthy young population central mechanisms (PFC) are activated in response to cognitive loads but that H-reflex activity and gait performance can successfully be maintained. This study provides insights into the mechanisms behind healthy individuals safely performing dual task walking. PMID:24600375

  5. Performance-Related Activity in Medial Rostral Prefrontal Cortex (Area 10) during Low-Demand Tasks

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Simons, Jon S.; Frith, Christopher D.; Burgess, Paul W.

    2006-01-01

    Neuroimaging studies have frequently observed relatively high activity in medial rostral prefrontal cortex (PFC) during rest or baseline conditions. Some accounts have attributed this high activity to the occurrence of unconstrained stimulus-independent and task-unrelated thought processes during baseline conditions. Here, the authors investigated…

  6. Task Control Signals in Pediatric Tourette Syndrome Show Evidence of Immature and Anomalous Functional Activity

    PubMed Central

    Church, Jessica A.; Wenger, Kristin K.; Dosenbach, Nico U. F.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Tourette Syndrome (TS) is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008). A prior resting-state functional connectivity MRI (rs-fcMRI) analysis in TS has revealed functional immaturity in both putative control networks, with “anomalous” correlations (i.e., correlations outside the typical developmental range) limited to the adaptive control network (Church et al., 2009). The present study used functional MRI (fMRI) to study brain activity related to adaptive control (by studying start-cues signals), and to task-maintenance (by studying signals sustained across a task set). Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue) activity will be altered in TS, including activity inconsistent with typical development (“anomalous”). Second, group differences found in task-maintenance (i.e., sustained) activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task-maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents with TS

  7. The Relationship between Cortisol Activity during Cognitive Task and Posttraumatic Stress Symptom Clusters

    PubMed Central

    Duan, Hongxia; Wang, Li; Zhang, Liang; Liu, Jing; Zhang, Kan; Wu, Jianhui

    2015-01-01

    Background The latest development in the dimensional structure of posttraumatic stress disorder (PTSD) is a novel 6-factor model, which builds on the newly released DSM-5. One notable gap in the literature is that little is known about how distinct symptom clusters of PTSD are related to hypothalamic–pituitary–adrenal (HPA) axis activity when people perform a relatively less stressful cognitive task. The purpose of this study was to investigate the relationship between cortisol activity when individuals perform cognitive tasks in the laboratory and a contemporary phenotypic model of posttraumatic stress symptomatology in earthquake survivors. Methods Salivary cortisol while performing cognitive tasks was collected and analyzed in 89 adult earthquake survivors. The PTSD Checklist for the DSM-5 (PCL-5) was used to assess the severity of total PTSD as well as six distinct symptom clusters. Regression analyses were conducted to examine the associations between the six distinct PTSD symptom clusters and cortisol profiles. Results The results showed that the score of the negative affect symptom cluster, but not anhedonia or other clusters, was positively associated with cortisol levels before and during the cognitive tasks. Conclusion The results showed that higher cortisol levels before and during cognitive tasks might be specifically linked to a distinct symptom cluster of PTSD—negative affect symptomatology. This suggests that a distinction should be made between negative affect and anhedonia symptom clusters, as the 6-factor model proposed. PMID:26630485

  8. Age-related shifts in brain activity dynamics during task switching.

    PubMed

    Jimura, Koji; Braver, Todd S

    2010-06-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  9. Simultaneous EEG-fMRI Reveals a Temporal Cascade of Task-Related and Default-Mode Activations During a Simple Target Detection Task

    PubMed Central

    Walz, Jennifer M.; Goldman, Robin I.; Carapezza, Michael; Muraskin, Jordan; Brown, Truman R.; Sajda, Paul

    2013-01-01

    Focused attention continuously and inevitably fluctuates, and to completely understand the mechanisms responsible for these modulations it is necessary to localize the brain regions involved. During a simple visual oddball task, neural responses measured by electroencephalography (EEG) modulate primarily with attention, but source localization of the correlates is a challenge. In this study we use single-trial analysis of simultaneously-acquired scalp EEG and functional magnetic resonance image (fMRI) data to investigate the blood oxygen level dependent (BOLD) correlates of modulations in task-related attention, and we unravel the temporal cascade of these transient activations. We hypothesize that activity in brain regions associated with various task-related cognitive processes modulates with attention, and that their involvements occur transiently in a specific order. We analyze the fMRI BOLD signal by first regressing out the variance linked to observed stimulus and behavioral events. We then correlate the residual variance with the trial-to-trial variation of EEG discriminating components for identical stimuli, estimated at a sequence of times during a trial. Post-stimulus and early in the trial, we find activations in right-lateralized frontal regions and lateral occipital cortex, areas that are often linked to task-dependent processes, such as attentional orienting, and decision certainty. After the behavioral response we see correlates in areas often associated with the default-mode network and introspective processing, including precuneus, angular gyri, and posterior cingulate cortex. Our results demonstrate that during simple tasks both task-dependent and default-mode networks are transiently engaged, with a distinct temporal ordering and millisecond timescale. PMID:23962956

  10. Task-dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    PubMed Central

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on response restrictions but to a greater extent on associative binding processes, usually subserved by the hippocampus. To elucidate the relevance of the frontal and medial-temporal areas during verbal retrieval tasks, we applied varying degrees of response specification. During fMRI data acquisition, 18 subjects performed a free verbal association (FVA), a semantic verbal fluency (SVF) task, and a phonological verbal fluency (PVF) task. Externally guided word production served as a baseline condition to control for basic articulatory and reading processes. As expected, increased brain activity was observed in the left lateral and bilateral medial frontal cortices for SVF and PVF. The anterior cingulate gyrus was the only structure common to both fluency tasks in direct comparison to the less restricted FVA task. The hippocampus was engaged during associative and semantic retrieval. Interestingly, hippocampal activity was selectively evident during FVA in direct comparison to SVF when it was controlled for stimulus–response relations. The current data confirm the role of the left prefrontal–cingulate network in constrained word production. Hippocampal activity during spontaneous word production is a novel finding and seems to be dependent on the retrieval process (free vs. constrained) rather than the variety of stimulus–response relationships that is involved. PMID:18578599

  11. Trait Anxiety Modulates Brain Activity during Performance of Verbal Fluency Tasks

    PubMed Central

    Gawda, Barbara; Szepietowska, Ewa

    2016-01-01

    Trait anxiety is thought to be associated with pathological anxiety, and a risk factor for psychiatric disorders. The present study examines the brain mechanisms associated with trait anxiety during the performing of verbal fluency tasks. The aim is to show how trait anxiety modulates executive functions as measured by verbal fluency, and to explore the link between verbal fluency and anxiety due to the putative negative biases in high-anxious individuals. Seven tasks of verbal fluency were used: letter “k,” “f,” verbs, “animals,” “vehicles,” “joy,” and “fear.” The results of 35 subjects (whole sample), and 17 subjects (nine men, eight women) selected from the whole sample for the low/high-anxious groups on the basis of Trait Anxiety scores were analyzed. The subjects were healthy, Polish speaking, right-handed and aged from 20 to 35 years old. fMRI (whole-brain analysis with FWE corrections) was used to show the neural signals under active participation in verbal fluency tasks. The results confirm that trait anxiety slightly modulates neural activation during the performance of verbal fluency tasks, especially in the more difficult tasks. Significant differences were found in brain activation during the performance of more complex tasks between individuals with low anxiety and those with high anxiety. Greater activation in the right hemisphere, frontal gyri, and cerebellum was found in people with low anxiety. The results reflect better integration of cognitive and affective capacities in individuals with low anxiety. PMID:26903827

  12. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia.

  13. Neural correlates of executive dysfunction in schizophrenia: failure to modulate brain activity with task demands.

    PubMed

    Dirnberger, Georg; Fuller, Rebecca; Frith, Chris; Jahanshahi, Marjan

    2014-11-12

    In schizophrenia, executive functions are impaired and are associated with altered activation of prefrontal areas. We used H2[15]O PET to examine patients with schizophrenia and matched controls on a random number generation (RNG) task and a control counting (COUNT) task. To assess the effects of increasing task demand, both tasks were performed at three different rates (intervals 1, 2 or 3 s). Both groups showed a significant increase in the nonrandomness of responses at faster rates of RNG. Despite similar performances, patients but not controls showed higher activation of the right dorsolateral prefrontal cortex (DLPFC) and atypically reduced activation of the right anterior cingulate gyrus and the right medial frontal gyrus in RNG compared with COUNT, whereas only for controls, activation of the left DLPFC was increased and activation of the right superior temporal gyrus and the right superior frontal gyrus was reduced in the same comparison. Whereas for the controls several cortical areas including the bilateral superior temporal gyrus and the bilateral DLPFC, together with the right cerebellum, showed significant changes in regional cerebral blood flow with faster or slower rates, patients with schizophrenia showed rate-dependent changes only in the left cerebellum. In conclusion, the patients' failure to modulate cortical activation with changing demands of rate, particularly in prefrontal areas and in the cerebellum, and even when performance is similar to that in healthy controls, is a characteristic of their abnormal pattern of executive processing. PMID:25275638

  14. Effects of feedback on activation of the quadriceps during weight-bearing tasks of the Wii

    PubMed Central

    Fernandes da Silva, Fabiano; Aparecido de Souza, Renato; Dias, Eric Fernandes; Silveira, Landulfo; Villaverde, Antonio Balbin

    2015-01-01

    [Purpose] This investigation evaluated the effect of real-time feedback on electrical activation of the quadriceps during 3 weight-bearing tasks of the Wii Fit Plus®. [Subjects] Thirty male healthy volunteers were recruited. [Methods] Activation of the vastus medialis, vastus lateralis, and rectus femoris muscles was recorded during virtual lunge, single leg extension, and single leg reach exercises. Each exercise was performed twice in 3 randomized experimental conditions (with visual feedback, with auditory feedback, and with no feedback). The normalized electromyographic data (using maximum voluntary isometric contraction) were analyzed using repeated measures analysis of variance and Tukey’s test. [Results] No significant difference was found in the muscles among the feedback conditions during the 3 exercises. However, the variation in the muscle activity of the vastus medialis and vastus lateralis (18.23–29.20% of maximum voluntary isometric contraction) was higher (47–62%) than that in the rectus femoris (7.35–12.98% of maximum voluntary isometric contraction). [Conclusion] Real-time feedback did not alter quadriceps activation during the Wii tasks. Additionally, these games showed electromyographic activation levels similar to those for the same tasks outside the virtual environment. The Wii weight-bearing tasks could therefore constitute a physical activity program but without the additional benefit of feedback. PMID:26180301

  15. Effects of feedback on activation of the quadriceps during weight-bearing tasks of the Wii.

    PubMed

    Fernandes da Silva, Fabiano; Aparecido de Souza, Renato; Dias, Eric Fernandes; Silveira, Landulfo; Villaverde, Antonio Balbin

    2015-06-01

    [Purpose] This investigation evaluated the effect of real-time feedback on electrical activation of the quadriceps during 3 weight-bearing tasks of the Wii Fit Plus(®). [Subjects] Thirty male healthy volunteers were recruited. [Methods] Activation of the vastus medialis, vastus lateralis, and rectus femoris muscles was recorded during virtual lunge, single leg extension, and single leg reach exercises. Each exercise was performed twice in 3 randomized experimental conditions (with visual feedback, with auditory feedback, and with no feedback). The normalized electromyographic data (using maximum voluntary isometric contraction) were analyzed using repeated measures analysis of variance and Tukey's test. [Results] No significant difference was found in the muscles among the feedback conditions during the 3 exercises. However, the variation in the muscle activity of the vastus medialis and vastus lateralis (18.23-29.20% of maximum voluntary isometric contraction) was higher (47-62%) than that in the rectus femoris (7.35-12.98% of maximum voluntary isometric contraction). [Conclusion] Real-time feedback did not alter quadriceps activation during the Wii tasks. Additionally, these games showed electromyographic activation levels similar to those for the same tasks outside the virtual environment. The Wii weight-bearing tasks could therefore constitute a physical activity program but without the additional benefit of feedback.

  16. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    ERIC Educational Resources Information Center

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  17. Walking while Performing Working Memory Tasks Changes the Prefrontal Cortex Hemodynamic Activations and Gait Kinematics

    PubMed Central

    Lin, Ming-I B.; Lin, Kuan-Hung

    2016-01-01

    Background: Increasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. Methods: Twenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles) with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back). Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. Results: In comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO) concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on the narrow

  18. Task directed sensing

    NASA Technical Reports Server (NTRS)

    Firby, R. James

    1990-01-01

    High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.

  19. Brief report: manipulation of task difficulty in inhibitory control tasks.

    PubMed

    Lindqvist, Sofia; Thorell, Lisa B

    2009-01-01

    The present study investigated how task difficulty can be manipulated in inhibitory control tasks. Tasks from three widely used task paradigms - a Go/No-Go task, a Stop-Signal task,and a Flanker task - were manipulated on two parameters each (Go/No-Go task: interstimulus interval, prepotency. Stop-signal task: stop-signal-delay, prepotency. Flanker task:number of distractors, size of target stimulus). Participants were 86 children (age 4-6) from a population-based sample. The results showed no significant effects on the Go/No-Go task but both main and interaction effects on the Stop-Signal task and the Flanker task. Together, these findings indicate that task difficulty can be successfully manipulated in inhibitory control tasks. However, the interactive rather than additive effects on performance suggest that the level of one parameter only has the desired effect under certain conditions. This new information about how to manipulate task difficulty is important when adapting tasks for use with children of different ages, as well as when designing training programs for improving inhibitory control among children with ADHD. PMID:18608218

  20. The Association Between Eye Movements and Cerebellar Activation in a Verbal Working Memory Task.

    PubMed

    Peterburs, Jutta; Cheng, Dominic T; Desmond, John E

    2016-09-01

    It has been argued that cerebellar activations during cognitive tasks may masquerade as cognition, while actually reflecting processes related to movement planning or motor learning. The present study investigated whether the cerebellar load effect for verbal working memory, that is, increased activations in lobule VI/Crus I and lobule VIIB/VIIIA, is related to eye movements and oculomotor processing. Fifteen participants performed an fMRI-based Sternberg verbal working memory task. Oculomotor and cognitive task demands were manipulated by using closely and widely spaced stimuli, and high and low cognitive load. Trial-based quantitative eye movement parameters were obtained from concurrent eye tracking. Conventional MRI analysis replicated the cerebellar load effect in lobules VI and VIIB/VIIIa. With quantitative eye movement parameters as regressors, analysis yielded very similar activation patterns. While load effect and eye regressor generally recruited spatially distinct neocortical and cerebellar regions, conjunction analysis showed that a small subset of prefrontal areas implicated in the load effect also responded to the eye regressor. The present results indicate that cognitive load-dependent activations in lateral superior and posteroinferior cerebellar regions in the Sternberg task are independent of eye movements occurring during stimulus encoding. This is inconsistent with the notion that cognitive load-dependent cerebellar activations merely reflect oculomotor processing. PMID:26286918

  1. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  2. Flight tests for the assessment of task performance and control activity

    NASA Technical Reports Server (NTRS)

    Pausder, H. J.; Hummes, D.

    1982-01-01

    The tests were performed with the helicopters BO 105 and UH-1D. Closely connected with tactical demands the six test pilots' task was to minimize the time and the altitude over the obstacles. The data reduction yields statistical evaluation parameters describing the control activity of the pilots and the achieved task performance. The results are shown in form of evaluation diagrams. Additionally dolphin tests with varied control strategy were performed to get more insight into the influence of control techniques. From these test results recommendations can be derived to emphasize the direct force control and to reduce the collective to pitch crosscoupling for the dolphin.

  3. A modelization of the task allocation problem for prescribing activity in an ICU.

    PubMed Central

    Renard, J. M.; Bricon-Souf, N.; Guigue, L.; Beuscart, R.

    2000-01-01

    The improvement of coordination between Health Care Professionals belonging different specialities and who are extremely mobile, is a crucial problem in Medicine. A workflow System is one example of the new informatics tools which facilitate the transfer of information and responsibility between health care providers. Medical informatics systems in particular should be reactive enough to cope with the flexibility of real work situations: in this paper, we present the task allocation problem. We distinguish between the workflow control process and the notifying process, which concerns the sharing out of the tasks between the actors concerned. We focus on the impact of strategies of notification on the progress of coordinated work. We propose a simulator to model and study the different ways of sharing tasks between actors in an Intensive Care Unit's activity of prescription. PMID:11079971

  4. Annual Progress report - General Task

    SciTech Connect

    Wesnousky, S.G.

    1993-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing tasks.

  5. Left inferior-parietal lobe activity in perspective tasks: identity statements.

    PubMed

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., "the tour guide is also the driver" activate the left IPL in contrast to a control statements, "the tour guide has an apprentice." This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL.

  6. Cognitive Conflict in a Syllable Identification Task Causes Transient Activation of Speech Perception Area

    ERIC Educational Resources Information Center

    Saetrevik, Bjorn; Specht, Karsten

    2012-01-01

    It has previously been shown that task performance and frontal cortical activation increase after cognitive conflict. This has been argued to support a model of attention where the level of conflict automatically adjusts the amount of cognitive control applied. Conceivably, conflict could also modulate lower-level processing pathways, which would…

  7. Beyond Rhyme or Reason: ERPs Reveal Task-Specific Activation of Orthography on Spoken Language

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Perre, Laetitia; Ziegler, Johannes C.

    2011-01-01

    Metaphonological tasks, such as rhyme judgment, have been the primary tool for the investigation of the effects of orthographic knowledge on spoken language. However, it has been recently argued that the orthography effect in rhyme judgment does not reflect the automatic activation of orthographic codes but rather stems from sophisticated response…

  8. Task-Dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    ERIC Educational Resources Information Center

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on…

  9. Evaluating Integrated Task Based Activities and Computer Assisted Language Learning (CALL)

    ERIC Educational Resources Information Center

    Anwar, Khoirul; Husniah, Rohmy

    2016-01-01

    This study is to evaluate the implementation of Task Activities based on CALL which consist of observing, questioning, exploring, and communicating. The developed materials are nine chapters that had been implemented in two different classes of SMPN 1 Gresik and SMPM 4 Gresik in Indonesia. Of quesionnaires and interviews, the results indicate that…

  10. Left inferior-parietal lobe activity in perspective tasks: identity statements

    PubMed Central

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677

  11. Individual Differences for Self-Regulating Task-Oriented Reading Activities

    ERIC Educational Resources Information Center

    Vidal-Abarca, Eduardo; Mana, Amelia; Gil, Laura

    2010-01-01

    The goal of this study is to analyze the self-regulation processes present in task-oriented reading activities. In the 1st experiment, we examined the following self-regulation processes in the context of answering questions about an available text: (a) monitoring the comprehension of the question, (b) self-regulating the search process, and (c)…

  12. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  13. Short- and long-term changes in anterior cingulate activation during resolution of task-set competition.

    PubMed

    Woodward, Todd S; Ruff, Christian C; Ngan, Elton T C

    2006-01-12

    Alternating between task sets involves detection that the current task set is unfavorable, initiation of a change in set, and application of the new task set while fine-tuning to optimally adjust to the demands of the environment. Functional magnetic resonance imaging (fMRI) studies of cognitive flexibility consistently report activation of the anterior cingulate cortex and/or adjacent pre-supplementary motor regions (ACC/pre-SMA, medial Brodmann's areas 24/32/6), suggesting that these cortical regions are involved in switching task set. In the current study, our objective was to probe whether ACC/pre-SMA activation would decrease for a number of trials following a switch in task set, implying longer-term involvement in fine-tuning adjustments. By measuring activation when switching between word reading and color naming in response to Stroop stimuli, ACC/pre-SMA activation was observed when actively countering the influence of the irrelevant task set, and this activation decreased as a function of the number of trials since a task switch. Basal ganglia and thalamic regions also displayed a decreased response over successive trials after task switches. These findings suggest that the ACC/pre-SMA are not only involved in generating a new course of action, but are also involved (along with subcortical regions) in fine-tuning operations that resolve competition between task sets over subsequent repetitions of the same task. PMID:16376861

  14. Differences in neural activation as a function of risk-taking task parameters.

    PubMed

    Congdon, Eliza; Bato, Angelica A; Schonberg, Tom; Mumford, Jeanette A; Karlsgodt, Katherine H; Sabb, Fred W; London, Edythe D; Cannon, Tyrone D; Bilder, Robert M; Poldrack, Russell A

    2013-01-01

    Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART), which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analog Risk Taking (BART) task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity (DI) and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step toward characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  15. Task-Based Learning: The Interaction between Tasks and Learners.

    ERIC Educational Resources Information Center

    Murphy, Jacky

    2003-01-01

    Investigates the relationship between tasks and learners in task-based learning. Findings suggest that manipulation of task characteristics and conditions may not achieve the intended pedagogic outcomes, and that new ways are needed to focus learners' attention of form without sacrificing the meaning-driven principles of task-based learning.…

  16. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task

    PubMed Central

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect. PMID:26696871

  17. An 8-Month Randomized Controlled Exercise Trial Alters Brain Activation During Cognitive Tasks in Overweight Children

    PubMed Central

    Krafft, Cynthia E.; Schwarz, Nicolette F.; Chi, Lingxi; Weinberger, Abby L.; Schaeffer, David J.; Pierce, Jordan E.; Rodrigue, Amanda L.; Yanasak, Nathan E.; Miller, Patricia H.; Tomporowski, Phillip D.; Davis, Catherine L.; McDowell, Jennifer E.

    2014-01-01

    Objective Children who are less fit reportedly have lower performance on tests of cognitive control and differences in brain function. This study examined the effect of an exercise intervention on brain function during two cognitive control tasks in overweight children. Design and Methods Participants included 43 unfit, overweight (BMI ≥ 85th percentile) children 8- to 11-years old (91% Black), who were randomly divided into either an aerobic exercise (n = 24) or attention control group (n = 19). Each group was offered a separate instructor-led after-school program every school day for 8 months. Before and after the program, all children performed two cognitive control tasks during functional magnetic resonance imaging (fMRI): antisaccade and flanker. Results Compared to the control group, the exercise group decreased activation in several regions supporting antisaccade performance, including precentral gyrus and posterior parietal cortex, and increased activation in several regions supporting flanker performance, including anterior cingulate and superior frontal gyrus. Conclusions Exercise may differentially impact these two task conditions, or the paradigms in which cognitive control tasks were presented may be sensitive to distinct types of brain activation that show different effects of exercise. In sum, exercise appears to alter efficiency or flexible modulation of neural circuitry supporting cognitive control in overweight children. PMID:23788510

  18. Influence of Task Difficulty and Background Music on Working Memory Activity: Developmental Considerations.

    ERIC Educational Resources Information Center

    Kaniel, Shlomo; Aram, Dorit

    1998-01-01

    A study of 300 children in kindergarten, grade 2, and grade 6 found that background music improved visual discrimination task performance at the youngest and middle ages and had no effect on the oldest participants. On a square identification task, background music had no influence on easy and difficult tasks but lowered performance on…

  19. Frontal EEG activation asymmetry reflects cognitive biases in anxiety: evidence from an emotional face Stroop task.

    PubMed

    Avram, Julia; Balteş, Felicia Rodica; Miclea, Mircea; Miu, Andrei C

    2010-12-01

    Electroencephalography (EEG) has been extensively used in studies of the frontal asymmetry of emotion and motivation. This study investigated the midfrontal EEG activation, heart rate and skin conductance during an emotional face analog of the Stroop task, in anxious and non-anxious participants. In this task, the participants were asked to identify the expression of calm, fearful and happy faces that had either a congruent or incongruent emotion name written across them. Anxious participants displayed a cognitive bias characterized by facilitated attentional engagement with fearful faces. Fearful face trials induced greater relative right frontal activation, whereas happy face trials induced greater relative left frontal activation. Moreover, anxiety specifically modulated the magnitude of the right frontal activation to fearful faces, which also correlated with the cognitive bias. Therefore, these results show that frontal EEG activation asymmetry reflects the bias toward facilitated processing of fearful faces in anxiety. PMID:20607389

  20. Embodied Task Dynamics

    ERIC Educational Resources Information Center

    Simko, Juraj; Cummins, Fred

    2010-01-01

    Movement science faces the challenge of reconciling parallel sequences of discrete behavioral goals with observed fluid, context-sensitive motion. This challenge arises with a vengeance in the speech domain, in which gestural primitives play the role of discrete goals. The task dynamic framework has proved effective in modeling the manner in which…

  1. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  2. Creating Positive Task Constraints

    ERIC Educational Resources Information Center

    Mally, Kristi K.

    2006-01-01

    Constraints are characteristics of the individual, the task, or the environment that mold and shape movement choices and performances. Constraints can be positive--encouraging proficient movements or negative--discouraging movement or promoting ineffective movements. Physical educators must analyze, evaluate, and determine the effect various…

  3. Chizu Task Mapping Tool

    SciTech Connect

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  4. Randomization in robot tasks

    NASA Technical Reports Server (NTRS)

    Erdmann, Michael

    1992-01-01

    This paper investigates the role of randomization in the solution of robot manipulation tasks. One example of randomization is shown by the strategy of shaking a bin holding a part in order to orient the part in a desired stable state with some high probability. Randomization can be useful for mobile robot navigation and as a means of guiding the design process.

  5. Project Echo Task Group

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'A technician assigned to the Project Echo Task Group separates the two hemispheres of the Echo 1 container for inspection. The charge that freed the balloon was placed inside of a ring encircling the canister at its equator.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 181.

  6. Job Task Analysis.

    ERIC Educational Resources Information Center

    Clemson Univ., SC.

    This publication consists of job task analyses for jobs in textile manufacturing. Information provided for each job in the greige and finishing plants includes job title, job purpose, and job duties with related educational objectives, curriculum, assessment, and outcome. These job titles are included: yarn manufacturing head overhauler, yarn…

  7. Data Center Tasking.

    ERIC Educational Resources Information Center

    Temares, M. Lewis; Lutheran, Joseph A.

    Operations tasking for data center management is discussed. The original and revised organizational structures of the data center at the University of Miami are also described. The organizational strategy addresses the functions that should be performed by the data center, anticipates the specialized skills required, and addresses personnel…

  8. Hormonal contraceptives masculinize brain activation patterns in the absence of behavioral changes in two numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert

    2014-01-16

    The aim of the present study was to identify, whether and how oral hormonal contraceptives (OCs) alter women's number processing. Behavioral performance and brain activation patterns (BOLD-response) of 14 OC-users were evaluated during two distinct numerical tasks (number comparison, number bisection) and compared to 16 men (high testosterone), and 16 naturally cycling women, once during their follicular (low hormone levels) and once during their luteal cycle phase (high progesterone). For both tasks, reliable sex differences and menstrual cycle dependent modulation have previously been described. If progestogenic effects of the synthetic progestins contained in OC play a predominant role, OC-users should be comparable to luteal women. If androgenic effects of the synthetic steroids exert the progestogenic actions, OC-users should be comparable to men. Likewise, if neither of the above are the case, the reduction of endogenous steroids by OCs should make OC-users comparable to follicular women. Our findings suggest that OC-users resemble follicular women in their behavioral performance, but show male-like brain activation patterns during both tasks. Analysis of brain-behavior relationships suggests that OC-users differ from naturally cycling women in the way they recruit their neural resources to deal with challenges of the tasks. We conclude that OCs, which are used by 100 million women worldwide, may have profound effects on cognition that have not been recognized so far. PMID:24231554

  9. Control processes through the suppression of the automatic response activation triggered by task-irrelevant information in the Simon-type tasks.

    PubMed

    Kim, Sanga; Lee, Sang Ho; Cho, Yang Seok

    2015-11-01

    The congruency sequence effect, one of the indices of cognitive control, refers to a smaller congruency effect after an incongruent than congruent trial. Although the effect has been found across a variety of conflict tasks, there is not yet agreement on the underlying mechanism. The present study investigated the mechanism underlying cognitive control by using a cross-task paradigm. In Experiments 1, 2, and 3, participants performed a modified Simon task and a spatial Stroop task alternately in a trial-by-trial manner. The task-irrelevant dimension of the two tasks was perceptually and conceptually identical in Experiment 1, whereas it was perceptually different but conceptually identical in Experiment 2. The response sets for both tasks were different in Experiment 3. In Experiment 4, participants performed two Simon tasks with different task-relevant dimensions. In all experiments in which the task-irrelevant dimension and response mode were shared, significant congruency sequence effects were found between the two different congruencies, indicating that Simon-type conflicts were resolved by a control mechanism, which is specific to an abstract task-irrelevant stimulus spatial dimension. PMID:26479902

  10. Dynamic trajectory of multiple single-unit activity during working memory task in rats

    PubMed Central

    Zhang, Xiaofan; Yi, Hu; Bai, Wenwen; Tian, Xin

    2015-01-01

    Working memory plays an important role in complex cognitive tasks. A popular theoretical view is that transient properties of neuronal dynamics underlie cognitive processing. The question raised here as to how the transient dynamics evolve in working memory. To address this issue, we investigated the multiple single-unit activity dynamics in rat medial prefrontal cortex (mPFC) during a Y-maze working memory task. The approach worked by reconstructing state space from delays of the original single-unit firing rate variables, which were further analyzed using kernel principal component analysis (KPCA). Then the neural trajectories were obtained to visualize the multiple single-unit activity. Furthermore, the maximal Lyapunov exponent (MLE) was calculated to quantitatively evaluate the neural trajectories during the working memory task. The results showed that the neuronal activity produced stable and reproducible neural trajectories in the correct trials while showed irregular trajectories in the incorrect trials, which may establish a link between the neurocognitive process and behavioral performance in working memory. The MLEs significantly increased during working memory in the correctly performed trials, indicating an increased divergence of the neural trajectories. In the incorrect trials, the MLEs were nearly zero and remained unchanged during the task. Taken together, the trial-specific neural trajectory provides an effective way to track the instantaneous state of the neuronal population during the working memory task and offers valuable insights into working memory function. The MLE describes the changes of neural dynamics in working memory and may reflect different neuronal population states in working memory. PMID:26441626

  11. Working together may be better: activation of reward centers during a cooperative maze task.

    PubMed

    Krill, Austen L; Platek, Steven M

    2012-01-01

    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis.

  12. Emotional task management: neural correlates of switching between affective and non-affective task-sets

    PubMed Central

    Reeck, Crystal

    2015-01-01

    Although task-switching has been investigated extensively, its interaction with emotionally salient task content remains unclear. Prioritized processing of affective stimulus content may enhance accessibility of affective task-sets and generate increased interference when switching between affective and non-affective task-sets. Previous research has demonstrated that more dominant task-sets experience greater switch costs, as they necessitate active inhibition during performance of less entrenched tasks. Extending this logic to the affective domain, the present experiment examined (a) whether affective task-sets are more dominant than non-affective ones, and (b) what neural mechanisms regulate affective task-sets, so that weaker, non-affective task-sets can be executed. While undergoing functional magnetic resonance imaging, participants categorized face stimuli according to either their gender (non-affective task) or their emotional expression (affective task). Behavioral results were consistent with the affective task dominance hypothesis: participants were slower to switch to the affective task, and cross-task interference was strongest when participants tried to switch from the affective to the non-affective task. These behavioral costs of controlling the affective task-set were mirrored in the activation of a right-lateralized frontostriatal network previously implicated in task-set updating and response inhibition. Connectivity between amygdala and right ventrolateral prefrontal cortex was especially pronounced during cross-task interference from affective features. PMID:25552571

  13. Atypical activation during the Embedded Figures Task as a functional magnetic resonance imaging endophenotype of autism.

    PubMed

    Spencer, Michael D; Holt, Rosemary J; Chura, Lindsay R; Calder, Andrew J; Suckling, John; Bullmore, Edward T; Baron-Cohen, Simon

    2012-11-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal and frontal brain regions. Autism and sibling groups, however, did not differ in terms of activation during this task. This suggests that the pattern of atypical activation identified may represent a functional endophenotype of autism, related to familial risk for the condition shared between individuals with autism and their siblings. We also found that reduced activation in autism relative to control subjects in regions including associative visual and face processing areas was strongly correlated with the clinical severity of impairments in reciprocal social interaction. Behavioural performance was intact in autism and sibling groups. Results are discussed in terms of atypical information processing styles or of increased activation in temporal and frontal regions in autism and the broader phenotype. By separating the aspects of atypical activation as markers of familial risk for the condition from those that are autism-specific, our findings offer new insight into the factors that might cause the expression of autism in families, affecting some children but not others.

  14. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks

    PubMed Central

    Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos

    2014-01-01

    The dorsolateral prefrontal and the posterior parietal cortex have both been implicated in the guidance of visual attention. Traditionally, posterior parietal cortex has been thought to guide visual bottom-up attention, whereas prefrontal cortex to bias attention through top-down information. More recent studies suggest a parallel time course of activation of the two areas in bottom-up attention tasks, suggesting a common involvement, though these results do not necessarily imply identical roles, either. To address the specific roles of the two areas, we examined the influence of neuronal activity recorded from the prefrontal and parietal cortex of monkeys as they performed attention tasks based on choice probability and correlation between reaction time and neuronal activity. The results revealed that posterior parietal but not dorsolateral prefrontal activity correlated with behavioral choice during the fixation period, prior to the appearance of the stimulus, resembling a bias factor. This preferential influence of posterior parietal activity on behavior was transient, so that dorsolateral prefrontal activity predicted choice after the appearance of the stimulus. Additionally, reaction time was better predicted by posterior parietal activity. These findings confirm an involvement of both dorsolateral prefrontal and posterior parietal cortex in the bottom-up guidance of visual attention but indicate different roles of the two areas in the guidance of attention and a dynamic time course of their effects, influencing behavior at different stages of the task. PMID:24964224

  15. Microprocessor multi-task monitor

    SciTech Connect

    Ludemann, C.A.

    1983-01-01

    This paper describes a multi-task monitor program for microprocessors. Although written for the Intel 8085, it incorporates features that would be beneficial for implementation in other microprocessors used in controlling and monitoring experiments and accelerators. The monitor places permanent programs (tasks) arbitrarily located throughout ROM in a priority ordered queue. The programmer is provided with the flexibility to add new tasks or modified versions of existing tasks, without having to comply with previously defined task boundaries or having to reprogram all of ROM. Scheduling of tasks is triggered by timers, outside stimuli (interrupts), or inter-task communications. Context switching time is of the order of tenths of a milllisecond.

  16. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study.

    PubMed

    Lu, Chia-Feng; Liu, Yan-Ci; Yang, Yea-Ru; Wu, Yu-Te; Wang, Ray-Yau

    2015-01-01

    In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking.

  17. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Yang, Yea-Ru; Wu, Yu-Te; Wang, Ray-Yau

    2015-01-01

    In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking. PMID:26079605

  18. Effect of postural angle on back muscle activities in aging female workers performing computer tasks.

    PubMed

    Kamil, Nabilla Sofia Mohd; Dawal, Siti Zawiah Md

    2015-06-01

    [Purpose] This study investigated the effects of postural angle on back muscle activity during a computer task in aging women. [Subjects] Seventeen women ≥50 years old participated. [Methods] The participants were instructed to perform computer-related tasks for 20 minutes on a workstation that simulated typical office working conditions. Back posture was measured from the measured trunk and pelvic angles. Electromyography activities were recorded simultaneously from the cervical erector spinae, longissimus, and multifidus muscles. [Results] The lowest mean percentages of maximum voluntary contraction for the cervical erector spinae and longissimus muscles were obtained when the upper trunk and pelvic angles were between 0° to -5° from the sagittal plane. The back muscle activities increased as the upper trunk and pelvic angles exceeded 0°. Statistical analysis showed significant correlations between upper trunk angle and cervical erector spinae and longissimus muscle activities. Similarly, pelvic angle was significantly correlated with cervical erector spinae and multifidus muscle activities. [Conclusion] A neutral back posture minimizes muscle activities in aging women performing computer tasks.

  19. Oscillatory cortical activity during a motor task in a deafferented patient.

    PubMed

    Patino, Luis; Chakarov, Vihren; Schulte-Mönting, Jürgen; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2006-07-01

    Little is known about the influence of the afferent peripheral feedback on the sensorimotor cortex activation. To answer this open question we investigated the alpha and beta band task-related spectral power decreases (TRPow) in the deafferented patient G.L. and compared the results to those of six healthy subjects. The patient has been deafferented up to the nose for 24 years but her motor fibers are unaffected and she can perform complex motor tasks under visual control. We recorded EEG (58 scalp positions) as well as the exerted force during a visuomotor task. The subjects had to maintain in precision grip an isometric force at 15% of the maximal voluntary contraction. In the patient we found a significantly higher alpha band spectral power during rest and larger alpha TRPow decreases during the motor task when compared to the healthy subjects' data. In contrast, we did not observe any significant differences between patient and controls for the beta band TRPow. The results indicate an altered functional alpha band network state in the patient, probably due to the chronic deafferentation leading to a deep 'idling' state of the contralateral sensorimotor area.

  20. Evaluating Reverse Speech as a Control Task with Language-Related Gamma Activity on Electrocorticography

    PubMed Central

    Brown, Erik C; Muzik, Otto; Rothermel, Robert; Matsuzaki, Naoyuki; Juhász, Csaba; Shah, Aashit K; Atkinson, Marie D; Fuerst, Darren; Mittal, Sandeep; Sood, Sandeep; Diwadkar, Vaibhav A; Asano, Eishi

    2012-01-01

    Reverse speech has often been used as a control task in brain-mapping studies of language utilizing various non-invasive modalities. The rationale is that reverse speech is comparable to forward speech in terms of auditory characteristics, while omitting the linguistic components. Thus, it may control for non-language auditory functions. This finds some support in fMRI studies indicating that reverse speech resulted in less blood-oxygen-level-dependent (BOLD) signal intensity in perisylvian regions than forward speech. We attempted to externally validate a reverse speech control task using intracranial electrocorticography (ECoG) in eight patients with intractable focal epilepsy. We studied adolescent and adult patients who underwent extraoperative ECoG prior to resective epilepsy surgery. All patients received an auditory language task during ECoG recording. Patients were presented 115 audible question stimuli, including 30 reverse speech trials. Reverse speech trials more strongly engaged bilateral superior temporal sites than did the corresponding forward speech trials. Forward speech trials elicited larger gamma-augmentation at frontal lobe sites not attributable to sensorimotor function. Other temporal and frontal sites of significant augmentation showed no significant difference between reverse and forward speech. Thus, we failed to validate reported evidence of weaker activation of temporal neocortices during reverse compared to forward speech. Superior temporal lobe engagement may indicate increased attention to reverse speech. Reverse speech does not appear to be a suitable task for the control of non-language auditory functions on ECoG. PMID:22387167

  1. Attention in a multi-task environment

    NASA Technical Reports Server (NTRS)

    Andre, Anthony D.; Heers, Susan T.

    1993-01-01

    Two experiments used a low fidelity multi-task simulation to investigate the effects of cue specificity on task preparation and performance. Subjects performed a continuous compensatory tracking task and were periodically prompted to perform one of several concurrent secondary tasks. The results provide strong evidence that subjects enacted a strategy to actively divert resources towards secondary task preparation only when they had specific information about an upcoming task to be performed. However, this strategy was not as much affected by the type of task cued (Experiment 1) or its difficulty level (Experiment 2). Overall, subjects seemed aware of both the costs (degraded primary task tracking) and benefits (improved secondary task performance) of cue information. Implications of the present results for computational human performance/workload models are discussed.

  2. Predicting hand orientation in reach-to-grasp tasks using neural activities from primary motor cortex.

    PubMed

    Zhang, Peng; Ma, Xuan; Huang, Hailong; He, Jiping

    2014-01-01

    Hand orientation is an important control parameter during reach-to-grasp task. In this paper, we presented a study for predicting hand orientation of non-human primate by decoding neural activities from primary motor cortex (M1). A non-human primate subject was guided to do reaching and grasping tasks meanwhile neural activities were acquired by chronically implanted microelectrode arrays. A Support Vector Machines (SVMs) classifier has been trained for predicting three different hand orientations using these M1 neural activities. Different number of neurons were selected and analyzed; the classifying accuracy was 94.1% with 2 neurons and was 100% with 8 neurons. Data from highly event related neuron units contribute a lot to the accuracy of hand orientation prediction. These results indicate that three different hand orientations can be predicted accurately and effectively before the actual movements occurring with a small number of related neurons in M1.

  3. Alzheimer Disease Alters the Relationship of Cardiorespiratory Fitness With Brain Activity During the Stroop Task

    PubMed Central

    Gayed, Matthew R.; Honea, Robyn A.; Savage, Cary R.; Hobbs, Derek; Burns, Jeffrey M.

    2013-01-01

    Background Despite mounting evidence that physical activity has positive benefits for brain and cognitive health, there has been little characterization of the relationship between cardiorespiratory (CR) fitness and cognition-associated brain activity as measured by functional magnetic resonance imaging (fMRI). The lack of evidence is particularly glaring for diseases such as Alzheimer disease (AD) that degrade cognitive and functional performance. Objective The aim of this study was to describe the relationship between regional brain activity during cognitive tasks and CR fitness level in people with and without AD. Design A case-control, single-observation study design was used. Methods Thirty-four individuals (18 without dementia and 16 in the earliest stages of AD) completed maximal exercise testing and performed a Stroop task during fMRI. Results Cardiorespiratory fitness was inversely associated with anterior cingulate activity in the participants without dementia (r=−.48, P=.05) and unassociated with activation in those with AD (P>.7). Weak associations of CR fitness and middle frontal cortex were noted. Limitations The wide age range and the use of a single task in fMRI rather than multiple tasks challenging different cognitive capacities were limitations of the study. Conclusions The results offer further support of the relationship between CR fitness and regional brain activity. However, this relationship may be attenuated by disease. Future work in this area may provide clinicians and researchers with interpretable and dependable regional fMRI biomarker signatures responsive to exercise intervention. It also may shed light on mechanisms by which exercise can support cognitive function. PMID:23559521

  4. Correlations in background activity control persistent state stability and allow execution of working memory tasks

    PubMed Central

    Dipoppa, Mario; Gutkin, Boris S.

    2013-01-01

    Working memory (WM) requires selective information gating, active information maintenance, and rapid active updating. Hence performing a WM task needs rapid and controlled transitions between neural persistent activity and the resting state. We propose that changes in correlations in neural activity provides a mechanism for the required WM operations. As a proof of principle, we implement sustained activity and WM in recurrently coupled spiking networks with neurons receiving excitatory random background activity where background correlations are induced by a common noise source. We first characterize how the level of background correlations controls the stability of the persistent state. With sufficiently high correlations, the sustained state becomes practically unstable, so it cannot be initiated by a transient stimulus. We exploit this in WM models implementing the delay match to sample task by modulating flexibly in time the correlation level at different phases of the task. The modulation sets the network in different working regimes: more prompt to gate in a signal or clear the memory. We examine how the correlations affect the ability of the network to perform the task when distractors are present. We show that in a winner-take-all version of the model, where two populations cross-inhibit, correlations make the distractor blocking robust. In a version of the mode where no cross inhibition is present, we show that appropriate modulation of correlation levels is sufficient to also block the distractor access while leaving the relevant memory trace in tact. The findings presented in this manuscript can form the basis for a new paradigm about how correlations are flexibly controlled by the cortical circuits to execute WM operations. PMID:24155714

  5. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

    PubMed

    González-Villar, Alberto J; Bonilla, F Mauricio; Carrillo-de-la-Peña, María T

    2016-10-01

    It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time-frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials-that is, the stop-N2 and stop-P3-were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing. PMID:27160368

  6. Task Performance and Meta-Cognitive Outcomes When Using Activity Workstations and Traditional Desks

    PubMed Central

    Pilcher, June J.; Baker, Victoria C.

    2016-01-01

    The purpose of the current study is to compare the effects of light physical activity to sedentary behavior on cognitive task performance and meta-cognitive responses. Thirty-eight undergraduate students participated in the study. The participants used a stationary bicycle with a desk top and a traditional desk while completing two complex cognitive tasks and measures of affect, motivation, morale, and engagement. The participants pedaled the stationary bicycle at a slow pace (similar in exertion to a normal walking pace) while working. The results indicated that cognitive task performance did not change between the two workstations. However, positive affect, motivation, and morale improved when using the stationary bicycle. These results suggest that activity workstations could be implemented in the work place and in educational settings to help decrease sedentary behavior without negatively affecting performance. Furthermore, individuals could experience a positive emotional response when working on activity workstations which in turn could help encourage individuals to choose to be more physical active during daily activities. PMID:27445921

  7. Muscle activation during the Pack Hike test and a critical wildfire fighting task.

    PubMed

    Netto, Kevin; Lord, Cara; Petersen, Aaron; Janssen, James; Nichols, David; Aisbett, Brad

    2013-03-01

    The aim of this study was to examine the muscle activation of six global muscles during the successful completion of the Pack Hike test (PHT) and compare this to muscle activations during a critical wildfire fighting task. In-field surface electromyography was recorded from eight male wildfire fighters during the PHT and the rakehoe task - a critical wildfire suppression activity. All participants successfully completed the PHT within the 45-min time limit. No significant changes in peak muscle activation levels as well as no significant shifts in median frequency in the six muscle analysed were recorded during the 4.83-km hike. Significantly different peak muscle activation levels were recorded in four of the six muscles tested when the PHT was compared to the rakehoe task. These results suggest the PHT should not be administered in isolation and other tests that specifically challenge upper body muscle endurance should be incorporated into a battery that accurately assesses the job-specific fitness of wildfire fighters.

  8. Muscle activation during the Pack Hike test and a critical wildfire fighting task.

    PubMed

    Netto, Kevin; Lord, Cara; Petersen, Aaron; Janssen, James; Nichols, David; Aisbett, Brad

    2013-03-01

    The aim of this study was to examine the muscle activation of six global muscles during the successful completion of the Pack Hike test (PHT) and compare this to muscle activations during a critical wildfire fighting task. In-field surface electromyography was recorded from eight male wildfire fighters during the PHT and the rakehoe task - a critical wildfire suppression activity. All participants successfully completed the PHT within the 45-min time limit. No significant changes in peak muscle activation levels as well as no significant shifts in median frequency in the six muscle analysed were recorded during the 4.83-km hike. Significantly different peak muscle activation levels were recorded in four of the six muscles tested when the PHT was compared to the rakehoe task. These results suggest the PHT should not be administered in isolation and other tests that specifically challenge upper body muscle endurance should be incorporated into a battery that accurately assesses the job-specific fitness of wildfire fighters. PMID:22981470

  9. Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity.

    PubMed

    McGregor, Keith M; Sudhyadhom, Atchar; Nocera, Joe; Seff, Ari; Crosson, Bruce; Butler, Andrew J

    2015-06-01

    Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.

  10. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    PubMed

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions.

  11. Task Performance and Meta-Cognitive Outcomes When Using Activity Workstations and Traditional Desks.

    PubMed

    Pilcher, June J; Baker, Victoria C

    2016-01-01

    The purpose of the current study is to compare the effects of light physical activity to sedentary behavior on cognitive task performance and meta-cognitive responses. Thirty-eight undergraduate students participated in the study. The participants used a stationary bicycle with a desk top and a traditional desk while completing two complex cognitive tasks and measures of affect, motivation, morale, and engagement. The participants pedaled the stationary bicycle at a slow pace (similar in exertion to a normal walking pace) while working. The results indicated that cognitive task performance did not change between the two workstations. However, positive affect, motivation, and morale improved when using the stationary bicycle. These results suggest that activity workstations could be implemented in the work place and in educational settings to help decrease sedentary behavior without negatively affecting performance. Furthermore, individuals could experience a positive emotional response when working on activity workstations which in turn could help encourage individuals to choose to be more physical active during daily activities. PMID:27445921

  12. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas

    PubMed Central

    Yoon, Hyun-Ah; Castelle, Michael; Edgar, J. Christopher; Biassou, Nadia M.; Frim, David M.; Spire, Jean-Paul; Kohrman, Michael H.

    2008-01-01

    Electrocorticographic (ECoG) spectral patterns obtained during language tasks from 12 epilepsy patients (age: 12–44 years) were analysed in order to identify and characterize cortical language areas. ECoG from 63 subdural electrodes (500 Hz/channel) chronically implanted over frontal, parietal and temporal lobes were examined. Two language tasks were performed. During the first language task, patients listened to a series of 50 words preceded by warning tones, and were asked to repeat each word. During a second memory task, subjects heard the 50 words from the first task randomly mixed with 50 new words and were asked to repeat the word only if it was a new word. Increases in ECoG gamma power (70–100 Hz) were observed in response to hearing tones (primary auditory cortex), hearing words (posterior temporal and parietal cortex) and repeating words (lateral frontal and anterior parietal cortex). These findings were compared to direct electrical stimulation and separate analysis of ECoG gamma changes during spontaneous inter-personal conversations. The results indicate that high-frequency ECoG reliably differentiates cortical areas associated with receptive and expressive speech processes for individual patients. Compared to listening to words, greater frontal lobe and decreased temporal lobe gamma activity was observed while speaking. The data support the concept of distributed functionally specific language modules interacting to serve receptive and expressive speech, with frontal lobe ‘corollary discharges’ suppressing low-level receptive cortical language areas in the temporal lobe during speaking. PMID:18669510

  13. Task switching in a hierarchical task structure: evidence for the fragility of the task repetition benefit

    NASA Technical Reports Server (NTRS)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.

  14. The task force process

    SciTech Connect

    Applegate, J.S.

    1995-01-31

    This paper focuses on the unique aspects of the Fernald Citizens Task Force process that have contributed to a largely successful public participation effort at Fernald. The Fernald Citizens Task Force passed quickly by many procedural issues. Instead, the Task Force concentrated on (a) educating itself about the site, its problems, and possible solutions, and (b) choosing a directed way to approach its mandate: To make recommendations on several {open_quotes}big picture{close_quotes} issues, including future use of the site, cleanup levels, waste disposition, and cleanup priorities. This paper presents the approach used at Fernald for establishing and running a focused site-specific advisory board, the key issues that have been faced, and how these issues were resolved. The success of Fernald in establishing a strong and functioning site-specific advisory board serves as a useful model for other DOE facilities, although the Fernald model is just one of many approaches that can be taken. However, the approach presented here has worked extremely well for Fernald.

  15. Mobile Thread Task Manager

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin J.

    2013-01-01

    The Mobile Thread Task Manager (MTTM) is being applied to parallelizing existing flight software to understand the benefits and to develop new techniques and architectural concepts for adapting software to multicore architectures. It allocates and load-balances tasks for a group of threads that migrate across processors to improve cache performance. In order to balance-load across threads, the MTTM augments a basic map-reduce strategy to draw jobs from a global queue. In a multicore processor, memory may be "homed" to the cache of a specific processor and must be accessed from that processor. The MTTB architecture wraps access to data with thread management to move threads to the home processor for that data so that the computation follows the data in an attempt to avoid L2 cache misses. Cache homing is also handled by a memory manager that translates identifiers to processor IDs where the data will be homed (according to rules defined by the user). The user can also specify the number of threads and processors separately, which is important for tuning performance for different patterns of computation and memory access. MTTM efficiently processes tasks in parallel on a multiprocessor computer. It also provides an interface to make it easier to adapt existing software to a multiprocessor environment.

  16. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks

    PubMed Central

    Pinti, Paola; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Merla, Arcangelo; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul; Tachtsidis, Ilias

    2015-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks. PMID:26651025

  17. Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task.

    PubMed

    Vartanian, O; Jobidon, M-E; Bouak, F; Nakashima, A; Smith, I; Lam, Q; Cheung, B

    2013-04-16

    Working memory (WM) training has been shown to lead to improvements in WM capacity and fluid intelligence. Given that divergent thinking loads on WM and fluid intelligence, we tested the hypothesis that WM training would improve performance and moderate neural function in the Alternate Uses Task (AUT)-a classic test of divergent thinking. We tested this hypothesis by administering the AUT in the functional magnetic resonance imaging scanner following a short regimen of WM training (experimental condition), or engagement in a choice reaction time task not expected to engage WM (active control condition). Participants in the experimental group exhibited significant improvement in performance in the WM task as a function of training, as well as a significant gain in fluid intelligence. Although the two groups did not differ in their performance on the AUT, activation was significantly lower in the experimental group in ventrolateral prefrontal and dorsolateral prefrontal cortices-two brain regions known to play dissociable and critical roles in divergent thinking. Furthermore, gain in fluid intelligence mediated the effect of training on brain activation in ventrolateral prefrontal cortex. These results indicate that a short regimen of WM training is associated with lower prefrontal activation-a marker of neural efficiency-in divergent thinking.

  18. Goal striving strategies and effort mobilization: When implementation intentions reduce effort-related cardiac activity during task performance.

    PubMed

    Freydefont, Laure; Gollwitzer, Peter M; Oettingen, Gabriele

    2016-09-01

    Two experiments investigate the influence of goal and implementation intentions on effort mobilization during task performance. Although numerous studies have demonstrated the beneficial effects of setting goals and making plans on performance, the effects of goals and plans on effort-related cardiac activity and especially the cardiac preejection period (PEP) during goal striving have not yet been addressed. According to the Motivational Intensity Theory, participants should increase effort mobilization proportionally to task difficulty as long as success is possible and justified. Forming goals and making plans should allow for reduced effort mobilization when participants perform an easy task. However, when the task is difficult, goals and plans should differ in their effect on effort mobilization. Participants who set goals should disengage, whereas participants who made if-then plans should stay in the field showing high effort mobilization during task performance. As expected, using an easy task in Experiment 1, we observed a lower cardiac PEP in both the implementation intention and the goal intention condition than in the control condition. In Experiment 2, we varied task difficulty and demonstrated that while participants with a mere goal intention disengaged from difficult tasks, participants with an implementation intention increased effort mobilization proportionally with task difficulty. These findings demonstrate the influence of goal striving strategies (i.e., mere goals vs. if-then plans) on effort mobilization during task performance.

  19. Task-specific effects of reward on task switching.

    PubMed

    Umemoto, Akina; Holroyd, Clay B

    2015-07-01

    Although cognitive control and reinforcement learning have been researched extensively over the last few decades, only recently have studies investigated their interrelationship. An important unanswered question concerns how the control system decides what task to execute and how vigorously to carry out the task once selected. Based on a recent theory of control formulated according to principles of hierarchical reinforcement learning, we asked whether rewards can affect top-down control over task performance at the level of task representation. Participants were rewarded for correctly performing only one of two tasks in a standard task-switching experiment. Reaction times and error rates were lower for the reinforced task compared to the non-reinforced task. Moreover, the switch cost in error rates for the non-reinforced task was significantly larger compared to the reinforced task, especially for trials in which the imperative stimulus afforded different responses for the two tasks, resulting in a "non-paradoxical" asymmetric switch cost. These findings suggest that reinforcement at the task level resulted in greater application of top-down control rather than in stronger stimulus-response pathways for the rewarded task.

  20. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (p<0.05, FDR corrected). This result is consistent with the previous functional neuroimaging studies that have found the VLPFC activation related to verbal working memory. However, we found no significant hemisphere dominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  1. Task frequency influences stimulus-driven effects on task selection during voluntary task switching.

    PubMed

    Arrington, Catherine M; Reiman, Kaitlin M

    2015-08-01

    Task selection during voluntary task switching involves both top-down (goal-directed) and bottom-up (stimulus-driven) mechanisms. The factors that shift the balance between these two mechanisms are not well characterized. In the present research, we studied the role that task frequency plays in determining the extent of stimulus-driven task selection. In two experiments, we used the basic paradigm adapted from Arrington (Memory & Cognition, 38, 991-997, 2008), in which the effect of stimulus availability serves as a marker of stimulus-driven task selection. A number and letter appeared on each trial with varying stimulus onset asynchronies, and participants performed either a consonant/vowel or an even/odd judgment. In Experiment 1, participants were instructed as to the relative frequency with which each task was to be performed (i.e., 50/50, 60/40, or 75/25) and were further instructed to make their transitions between tasks unpredictable. In Experiment 2, participants were given no instructions about how to select tasks, resulting in naturally occurring variation in task frequency. With both instructed (Exp. 1) and naturally occurring (Exp. 2) relative task frequencies, the less frequently performed task showed a greater effect of stimulus availability on task selection, suggestive of a larger influence of stimulus-driven mechanisms during task performance for the less frequent task. When goal-directed mechanisms of task choice are engaged less frequently, the relative influence of the stimulus environment increases. PMID:26106057

  2. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia.

    PubMed

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  3. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    PubMed Central

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  4. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  5. Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm.

    PubMed

    Haupt, Sven; Axmacher, Nikolai; Cohen, Michael X; Elger, Christian E; Fell, Juergen

    2009-09-01

    Successful information processing requires the focusing of attention on a certain stimulus property and the simultaneous suppression of irrelevant information. The Stroop task is a useful paradigm to study such attentional top-down control in the presence of interference. Here, we investigated the neural correlates of an auditory Stroop task using fMRI. Subjects focused either on tone pitch (relatively high or low; phonetic task) or on the meaning of a spoken word (high/low/good; semantic task), while ignoring the other stimulus feature. We differentiated between task-related (phonetic incongruent vs. semantic incongruent) and sensory-level interference (phonetic incongruent vs. phonetic congruent). Task-related interference activated similar regions as in visual Stroop tasks, including the anterior cingulate cortex (ACC) and the presupplementary motor-area (pre-SMA). More specifically, we observed that the very caudal/posterior part of the ACC was activated and not the dorsal/anterior region. Because identical stimuli but different task demands are compared in this contrast, it reflects conflict at a relatively high processing level. A more conventional contrast between incongruent and congruent phonetic trials was associated with a different cluster in the pre-SMA/ACC which was observed in a large number of previous studies. Finally, functional connectivity analysis revealed that activity within the regions activated in the phonetic incongruent vs. semantic incongruent contrast was more strongly interrelated during semantically vs. phonetically incongruent trials. Taken together, we found (besides activation of regions well-known from visual Stroop tasks) activation of the very caudal and posterior part of the ACC due to task-related interference in an auditory Stroop task. PMID:19180558

  6. Modulation of Brain Activity during a Stroop Inhibitory Task by the Kind of Cognitive Control Required

    PubMed Central

    Grandjean, Julien; D’Ostilio, Kevin; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus. PMID:22911806

  7. Modulation of brain activity during a Stroop inhibitory task by the kind of cognitive control required.

    PubMed

    Grandjean, Julien; D'Ostilio, Kevin; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus. PMID:22911806

  8. Arousal Modulates Activity in the Medial Temporal Lobe during a Short-Term Relational Memory Task.

    PubMed

    Thoresen, Christian; Jensen, Jimmy; Sigvartsen, Niels Petter B; Bolstad, Ingeborg; Server, Andres; Nakstad, Per H; Andreassen, Ole A; Endestad, Tor

    2011-01-01

    This study investigated the effect of arousal on short-term relational memory and its underlying cortical network. Seventeen healthy participants performed a picture by location, short-term relational memory task using emotional pictures. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level dependent signal relative to task. Subjects' own ratings of the pictures were used to obtain subjective arousal ratings. Subjective arousal was found to have a dose-dependent effect on activations in the prefrontal cortex, amygdala, hippocampus, and in higher order visual areas. Serial position analyses showed that high arousal trials produced a stronger primacy and recency effect than low arousal trials. The results indicate that short-term relational memory may be facilitated by arousal and that this may be modulated by a dose-response function in arousal-driven neuronal regions.

  9. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  10. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    PubMed

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  11. Locomotion and Task Demands Differentially Modulate Thalamic Audiovisual Processing during Active Search.

    PubMed

    Williamson, Ross S; Hancock, Kenneth E; Shinn-Cunningham, Barbara G; Polley, Daniel B

    2015-07-20

    Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or "top-down" weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state, though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways.

  12. Learner Mining of Pre-Task and Task Input

    ERIC Educational Resources Information Center

    Boston, Jeremy Scott

    2008-01-01

    The findings reported in this article suggest that learners inevitably "mine" wordings contained in pre-task and task materials when performing tasks, even when the teacher did not explicitly draw learner attention to these features. However, this was found to be true only with written materials, and learners did not appear to mine specific…

  13. Silicon material task review

    NASA Technical Reports Server (NTRS)

    Lorenz, J. H.

    1986-01-01

    The objectives of the Flat-plate Solar Array (FSA) Project Silicon Material Task are to evaluate technologies, new and old; to develop the most promising technologies; to establish practicality of the processes to meet production, energy use, and economic criteria; and to develop an information base on impurities in polysilicon and to determine their effects on solar cell performance. The approach involves determining process feasibility, setting milestones for the forced selection of the processes, and establishing the technical readiness of the integrated process.

  14. Task Analysis Inventories. Series II.

    ERIC Educational Resources Information Center

    Wesson, Carl E.

    This second in a series of task analysis inventories contains checklists of work performed in twenty-two occupations. Each inventory is a comprehensive list of work activities, responsibilities, educational courses, machines, tools, equipment, and work aids used and the products produced or services rendered in a designated occupational area. The…

  15. Using Activity Schedules to Increase On-Task Behavior in Children at Risk for Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Cirelli, Christe A.; Sidener, Tina M.; Reeve, Kenneth F.; Reeve, Sharon A.

    2016-01-01

    The effects of activity schedules on on-task and on-schedule behavior were assessed with two boys at risk for attention-deficit/hyperactivity disorder (ADHD) and referred by their public school teachers as having difficulty during independent work time. On-task behavior increased for both participants after two training sessions. Teachers, peers,…

  16. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  17. Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2014-09-01

    Movements that involve simultaneous coordination of muscles of the right and left lower limbs form a large part of our daily activities (e.g., standing, rising from a chair). This study used functional magnetic resonance imaging to determine which brain areas are used to control coordinated lower-limb movements, specifically comparing regions that are activated during bilateral exertions to those performed unilaterally. Plantarflexor exertions were produced at a target force level of 15% of the participants' maximum voluntary contraction, in three conditions, with their right (dominant) foot, with their left foot, and with both feet simultaneously. A voxel-wise analysis determined which regions were active in the bilateral, but not in the unilateral conditions. In addition, a region of interest (ROI) approach was used to determine differences in the percent signal change (PSC) between the conditions within motor areas. The voxel-wise analysis showed a large number of regions (cortical, subcortical, and cerebellar) that were active during the bilateral condition, but not during either unilateral condition. The ROI analysis showed several motor regions with higher activation in the bilateral condition than unilateral conditions; further, the magnitude of bilateral PSC was more than the sum of the two unilateral conditions in several of these regions. We postulate that the greater levels of activation during bilateral exertions may arise from interhemispheric inhibition, as well as from the greater need for motor coordination (e.g., synchronizing the two limbs to activate together) and visual processing (e.g., monitoring of two visual stimuli).

  18. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  19. Inhibition in Dot Comparison Tasks

    ERIC Educational Resources Information Center

    Clayton, Sarah; Gilmore, Camilla

    2015-01-01

    Dot comparison tasks are commonly used to index an individual's Approximate Number System (ANS) acuity, but the cognitive processes involved in completing these tasks are poorly understood. Here, we investigated how factors including numerosity ratio, set size and visual cues influence task performance. Forty-four children aged 7-9 years completed…

  20. Task Analysis: A Proactive Paradigm.

    ERIC Educational Resources Information Center

    Cipriano, Robert E.

    A sequential and developmental curriculum design is conceptualized, based on task analysis. Task analysis is a detailed inquiry into actions undertaken in performing specific tasks or jobs. Baseline data form a database on which education and training programs are designed, produced, and evaluated. The following are sources of information for task…

  1. Skill Components of Task Analysis

    ERIC Educational Resources Information Center

    Adams, Anne E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Some task analysis methods break down a task into a hierarchy of subgoals. Although an important tool of many fields of study, learning to create such a hierarchy (redescription) is not trivial. To further the understanding of what makes task analysis a skill, the present research examined novices' problems with learning Hierarchical Task…

  2. Task-Based Information Searching.

    ERIC Educational Resources Information Center

    Vakkari, Pertti

    2003-01-01

    Reviews studies on the relationship between task performance and information searching by end-users, focusing on information searching in electronic environments and information retrieval systems. Topics include task analysis; task characteristics; search goals; modeling information searching; modeling search goals; information seeking behavior;…

  3. Principles of Communicative Task Design.

    ERIC Educational Resources Information Center

    Nunan, David

    The use of the learning task as a basic planning and instructional tool for communicative second language instruction is discussed, and considerations and procedures for designing such tasks are outlined. A task is defined as a piece of classroom work that involves learners in comprehending, manipulating, producing, or interacting in the target…

  4. Word Fluency: A Task Analysis.

    ERIC Educational Resources Information Center

    Laine, Matti

    It is suggested that models of human problem solving are useful in the analysis of word fluency (WF) test performance. In problem-solving terms, WF tasks would require the subject to define and clarify the conditions of the task (task acquisition), select and employ appropriate strategies, and monitor one's performance. In modern neuropsychology,…

  5. Component Processes in Task Switching.

    ERIC Educational Resources Information Center

    Meiran, Nachshon; Chorev, Ziv; Sapir, Ayelet

    2000-01-01

    Studied task switching in 4 experiments involving 111 Israeli undergraduates. Results show the preparation for a task switch is not a by-product of general preparation by phasic alertness or predicting target onset and establish reconfiguration as a separate preparatory process. Suggests that there are at least three components of task switching…

  6. Collaborative Construction of Task Activity: Coordinating Multiple Resources in a High School Physics Lab.

    ERIC Educational Resources Information Center

    Ford, Cecilia E.

    1999-01-01

    Documents the collaborative coordination of multiple resources--talk, gesture, and writing--as represented in the interaction among three high school seniors working on a physics laboratory task. Through close analysis of the moment-to-moment construction of task, the study draws attention to complex yet taken-for-granted practices that are…

  7. Enhancing Reading Comprehension through Task-Based Writing Activities: An Experimental Study

    ERIC Educational Resources Information Center

    Tilfarlioglu, Filiz Yalcin; Basaran, Suleyman

    2007-01-01

    Task-based learning is a popular topic in ELT/EFL circles nowadays. It is accepted by its proponents as a flourishing method that may replace Communicative Language Learning. However, it can also be seen as an adventure just because there are almost no experimental studies to tackle questions concerning applicability of Task-based Learning. In…

  8. Elementary derivative tasks and neural net multiscale analysis of tasks.

    PubMed

    Giraud, B G; Touzeau, A

    2002-01-01

    Formal neurons implementing wavelets have been shown to build nets that are able to approximate any multidimensional task. In this paper, we use a finite number of formal neurons implementing elementary tasks such as "sombrero" responses or even simpler "window" responses, with adjustable widths. We show this to provide a reasonably efficient, practical and robust, multifrequency analysis of tasks. The translation degree of freedom of wavelets is shown to be unnecessary. A training algorithm, optimizing the output task with respect to the widths of the responses, reveals two distinct training modes. The first mode keeps the formal neurons distinct. The other mode induces some of the formal neurons to become identical, with output weights of equal strengths but opposite signs. Hence this latter mode promotes tasks that are derivatives of the elementary tasks with respect to the width parameter. Such results, obtained from optimizations with respect to a width parameter, can be generalized for any other parameters of the elementary tasks.

  9. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    NASA Technical Reports Server (NTRS)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  10. The effect of task-oriented training on the muscle activation of the upper extremity in chronic stroke patients

    PubMed Central

    Park, JuHyung

    2016-01-01

    [Purpose] The aim of this study was to determine the effects of task-oriented training on upper extremity muscle activation in daily activities performed by chronic stoke patients. [Subjects and Methods] In this research, task-oriented training was conducted by 2 chronic hemiplegic stroke patients. Task-oriented training was conducted 5 times a week, 30 minutes per day, for 2 weeks. Evaluation was conducted 3 times before and after the intervention. The Change of muscle activation in the upper extremity was measured using a BTS FreeEMG 300. [Results] The subjects’ root mean square values for agonistic muscles for the reaching activity increased after the intervention. All subjects’ co-coordination ratios decreased after the intervention in all movements of reaching activity. [Conclusion] Through this research, task-oriented training was proven to be effective in improving the muscle activation of the upper extremity in chronic hemiplegic stroke patients. PMID:27190488

  11. The effect of task-oriented training on the muscle activation of the upper extremity in chronic stroke patients.

    PubMed

    Park, JuHyung

    2016-04-01

    [Purpose] The aim of this study was to determine the effects of task-oriented training on upper extremity muscle activation in daily activities performed by chronic stoke patients. [Subjects and Methods] In this research, task-oriented training was conducted by 2 chronic hemiplegic stroke patients. Task-oriented training was conducted 5 times a week, 30 minutes per day, for 2 weeks. Evaluation was conducted 3 times before and after the intervention. The Change of muscle activation in the upper extremity was measured using a BTS FreeEMG 300. [Results] The subjects' root mean square values for agonistic muscles for the reaching activity increased after the intervention. All subjects' co-coordination ratios decreased after the intervention in all movements of reaching activity. [Conclusion] Through this research, task-oriented training was proven to be effective in improving the muscle activation of the upper extremity in chronic hemiplegic stroke patients. PMID:27190488

  12. Task Analysis Technologies at KSC

    NASA Technical Reports Server (NTRS)

    Carstens, Deborah S.

    2003-01-01

    Project objective: (1) Form an integrated team of NASA. USA, Boeing, and Dynacs researches. (2) Create a user friendly software prototype that assists an analyst in performing a human factors process failure modes and effects analysis (HF-PFMEA). (3)Perform four task analyses on center: cargo late access task analysis (NASA/Boeing team); payload test and verification system task analysis (NASA/Boeing team); slammer cover installation operations task analysis (NASA/USA team); ATDC LOX pump acceptance test procedure task analysis (NASA/Dynacs team).

  13. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    NASA Astrophysics Data System (ADS)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  14. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    PubMed Central

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-01-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals. PMID:26632763

  15. Chronic Low Back Pain in Women: Muscle Activation during Task Performance

    PubMed Central

    Santos, Fernanda G; Carmo, Carolina M; Fracini, América C; Pereira, Rita R P; Takara, Kelly S; Tanaka, Clarice

    2014-01-01

    [Purpose] The aim of this study was to compare the activities of the trunk and hip muscles in chronic low back pain (CLBP) women and asymptomatic subjects during the kneeling to half-kneeling task. [Subjects] Twenty-nine CLBP women and thirty asymptomatic subjects (C) participated in this study. [Methods] Electromyography activity (EMG) of the obliquus internus abdominis (OI), the lumbar erector spinae (LES) and the gluteus medius (GM) muscles was recorded bilaterally. The peak amplitude, the time of peak amplitude and the integrated linear envelope EMG for each muscle were obtained. [Results] The C group bilateral OI and GM muscles displayed higher peak amplitudes and earlier times of peak amplitude. They also had higher integrated linear envelope EMG values. The CLBP group bilateral LES muscles had higher peak amplitudes and earlier times of peak amplitude. They also showed an increased integrated linear envelope EMG values. [Conclusion] The CLBP women activate the LES muscles in the kneeling to half-kneeling task, showing different patterns of motor planning activity. PMID:24409022

  16. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    PubMed Central

    Gallardo-Moreno, Geisa B.; González-Garrido, Andrés A.; Gudayol-Ferré, Esteban; Guàrdia-Olmos, Joan

    2015-01-01

    In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D) on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects. PMID:26266268

  17. Neural Activation in Humans during a Simple Motor Task Differs between BDNF Polymorphisms

    PubMed Central

    Cárdenas-Morales, Lizbeth; Grön, Georg; Sim, Eun-Jin; Stingl, Julia C.; Kammer, Thomas

    2014-01-01

    The BDNF Val66Met polymorphism has been linked to decreased synaptic plasticity involved in motor learning tasks. We investigated whether individual differences in this polymorphism may promote differences in neural activity during a two-alternative forced-choice motor performance. In two separate sessions, the BOLD signal from 22 right-handed healthy men was measured during button presses with the left and right index finger upon visual presentation of an arrow. 11 men were Val66Val carriers (ValVal group), the other 11 men carried either the Val66Met or the Met66Met polymorphism (Non-ValVal group). Reaction times, resting and active motor thresholds did not differ between ValVal and Non-ValVal groups. Compared to the ValVal group the Non-ValVal group showed significantly higher BOLD signals in the right SMA and motor cingulate cortex during motor performance. This difference was highly consistent for both hands and across all four sessions. Our finding suggests that this BDNF polymorphism may not only influence complex performance during motor learning but is already associated with activation differences during rather simple motor tasks. The higher BOLD signal observed in Non-ValVal subjects suggests the presence of cumulative effects of the polymorphism on the motor system, and may reflect compensatory functional activation mediating equal behavioral performance between groups. PMID:24828051

  18. Age- and sex-related differences for electromyography gaps during daily activity and a discrete task.

    PubMed

    Harwood, B; Edwards, D L; Jakobi, J M

    2011-05-01

    Temporal patterns of quiescent electromyography termed 'gaps' were investigated in young and old men and women for a discrete task and daily activity. Gaps in women (1.3±3.2) and old adults (1.5±3.4) were fewer compared with men (4.7±6.7) and young adults (4.6±6.9) for the discrete task (p<0.001). Gap duration was shorter for women (0.1±0.2s) and old adults (0.1±0.3s) compared with men (0.2±0.3s) and young adults (0.2±0.2s) (p<0.01). For daily activity, gap number was similar with age, but gap duration and percentage of total time occupied by gaps were less in old compared with young adults (50%), and in women compared with men (43%) (p<0.001). Results suggest gap activity is sensitive to type and duration of activity and that old adults and women demonstrate less quiescent electromyography than young adults and men.

  19. The Effect of Hierarchical Task Representations on Task Selection in Voluntary Task Switching

    ERIC Educational Resources Information Center

    Weaver, Starla M.; Arrington, Catherine M.

    2013-01-01

    The current study explored the potential for hierarchical representations to influence action selection during voluntary task switching. Participants switched between 4 individual task elements. In Experiment 1, participants were encouraged to represent the task elements as grouped within a hierarchy based on experimental manipulations of varying…

  20. AMU NEXRAD Exploitation Task

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's NEXRAD Exploitation Task. The objectives of this task are to determine what radar signatures are present prior to and at the time of convection initiation, and to determine radar signatures which will help distinguish whether the ensuing convection will become severe. Radar data from the WSR-88D radar located at NWS Melbourne (WSR-88D/KMLB) were collected between June and September 1995, and 16 convective case studies were analyzed for which the radar was operating during the entire period of interest. All WSR-88D/KMLB products were scrutinized for their utility in detecting convection initiation and severe storm signatures. Through process of elimination, it was found that the 0.5 deg reflectivity product with the lowest reflectivity values displayed is the best product to monitor for convection initiation signatures. Seven meteorological features associated with the initiation of deep convection were identified: the Merritt Island and Indian River convergence zones, interlake convergence, horizontal convective rolls, the sea breeze, storm outflow boundaries, and fires. Their reflectivity values ranged from -5 to 20 dBZ. Of the three severe weather phenomena (winds greater than or equal to 50 kts, tornado, 3/4 inch hail), high wind events due to microbursts were most common in the data set. It was found that the values and trends of composite reflectivity, vertically integrated liquid, and core aspect ratio were key indicators of the potential of a cell to produce a microburst. The data were not analyzed for the other two severe weather phenomena because they rarely occurred during the data collection period. This report also includes suggestions for new WSR-88D products, summaries of ongoing research aimed at creating new products, and explicit recommended procedures for detecting convection initiation and severe storm signatures in the radar data using the currently available technology.

  1. Inter-rater reliability of cyclic and non-cyclic task assessment using the hand activity level in appliance manufacturing

    PubMed Central

    Paulsen, Robert; Schwatka, Natalie; Gober, Jennifer; Gilkey, David; Anton, Dan; Gerr, Fred; Rosecrance, John

    2015-01-01

    This study evaluated the inter-rater reliability of the American Conference of Governmental Industrial Hygienists (ACGIH®) hand activity level (HAL), an observational ergonomic assessment method used to estimate physical exposure to repetitive exertions during task performance. Video recordings of 858 cyclic and non-cyclic appliance manufacturing tasks were assessed by sixteen pairs of raters using the HAL visual-analog scale. A weighted Pearson Product Moment-Correlation Coefficient was used to evaluate the agreement between the HAL scores recorded by each rater pair, and the mean weighted correlation coefficients for cyclic and non-cyclic tasks were calculated. Results indicated that the HAL is a reliable exposure assessment method for cyclic (r̄-barw = 0.69) and non-cyclic work tasks (r̄-barw = 0.68). When the two reliability scores were compared using a two-sample Student's t-test, no significant difference in reliability (p = 0.63) between these work task categories was found. This study demonstrated that the HAL may be a useful measure of exposure to repetitive exertions during cyclic and non-cyclic tasks. Relevance to industry Exposure to hazardous levels of repetitive action during non-cyclic task completion has traditionally been difficult to assess using simple observational techniques. The present study suggests that ergonomists could use the HAL to reliably and easily evaluate exposures associated with some non-cyclic work tasks. PMID:26120222

  2. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    PubMed Central

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2015-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations. PMID:26793434

  3. Locomotion and task demands differentially modulate thalamic audiovisual processing during active search

    PubMed Central

    Williamson, Ross S.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Polley, Daniel B.

    2015-01-01

    SUMMARY Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or “top-down” weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state [1–9], though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear [4, 8–12]. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways. PMID:26119749

  4. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.

    PubMed

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2016-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations.

  5. Neural activity in monkey amygdala during performance of a multisensory operant task.

    PubMed

    Montes-Lourido, Pilar; Vicente, Ana F; Bermudez, Maria A; Gonzalez, Francisco

    2015-09-01

    In this paper, we study the potential involvement of monkey amygdala in the evaluation of value encoding of visual and auditive stimuli associated with reward or no reward. We recorded the activity of 93 extracellular neurons from the monkey right amygdala, while performing a multisensory operant task. The activity of 78 task-related neurons was studied. Of these, 13 neurons (16%) responded to the value of visual stimuli, 22 neurons (28%) responded after the presentation of visual stimuli, 22 neurons (28%) showed an inhibition around the lever-pressing and were classified as action related neurons and 22 neurons (28%) responded after reward delivery. These findings suggest that neurons in the amygdala play a role in encoding value and processing visual information, participate in motor regulation and are sensitive to reward. The activity of these neurons did not change in the evaluation of auditive stimuli. These data support the hypothesis that amygdala neurons are specific to each sensory modality and that different groups of amygdala neurons process visual and auditive information. PMID:26246438

  6. Congruency effects in the letter search task: semantic activation in the absence of priming.

    PubMed

    Hutchison, Keith A; Bosco, Frank A

    2007-04-01

    Semantic priming is typically eliminated when participants perform a letter search on the prime, suggesting that semantic activation is conditional upon one's attentional goals. However, in such studies, semantic activation (or the lack thereof) is not measured during the letter search task itself but, instead, is inferred on the basis of the responses given to a later target. In the present study, direct online evidence for semanticactivation was tested using words whose meaning should bias either a positive or a negative response (e.g.,present vs. absent). In Experiment 1, a semantic congruency effect was obtained, with faster responses when the word meaning matched the required response. Experiment 2 replicated the congruency effect while, simultaneously, showing the elimination of semantic priming. It is concluded that letter search does not affect the initiation of semantic activation. Possible accounts for the elimination of priming following letter search include activation-based suppression and transfer-inappropriate processing.

  7. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance.

  8. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance. PMID:23665138

  9. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load.

  10. Working memory activation of neural networks in the elderly as a function of information processing phase and task complexity.

    PubMed

    Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N

    2015-11-01

    Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. PMID:26456114

  11. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    PubMed

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system.

  12. Task Prioritization in Dual-Tasking: Instructions versus Preferences.

    PubMed

    Jansen, Reinier J; van Egmond, René; de Ridder, Huib

    2016-01-01

    The role of task prioritization in performance tradeoffs during multi-tasking has received widespread attention. However, little is known on whether people have preferences regarding tasks, and if so, whether these preferences conflict with priority instructions. Three experiments were conducted with a high-speed driving game and an auditory memory task. In Experiment 1, participants did not receive priority instructions. Participants performed different sequences of single-task and dual-task conditions. Task performance was evaluated according to participants' retrospective accounts on preferences. These preferences were reformulated as priority instructions in Experiments 2 and 3. The results showed that people differ in their preferences regarding task prioritization in an experimental setting, which can be overruled by priority instructions, but only after increased dual-task exposure. Additional measures of mental effort showed that performance tradeoffs had an impact on mental effort. The interpretation of these findings was used to explore an extension of Threaded Cognition Theory with Hockey's Compensatory Control Model. PMID:27391779

  13. Task Prioritization in Dual-Tasking: Instructions versus Preferences

    PubMed Central

    Jansen, Reinier J.; van Egmond, René; de Ridder, Huib

    2016-01-01

    The role of task prioritization in performance tradeoffs during multi-tasking has received widespread attention. However, little is known on whether people have preferences regarding tasks, and if so, whether these preferences conflict with priority instructions. Three experiments were conducted with a high-speed driving game and an auditory memory task. In Experiment 1, participants did not receive priority instructions. Participants performed different sequences of single-task and dual-task conditions. Task performance was evaluated according to participants’ retrospective accounts on preferences. These preferences were reformulated as priority instructions in Experiments 2 and 3. The results showed that people differ in their preferences regarding task prioritization in an experimental setting, which can be overruled by priority instructions, but only after increased dual-task exposure. Additional measures of mental effort showed that performance tradeoffs had an impact on mental effort. The interpretation of these findings was used to explore an extension of Threaded Cognition Theory with Hockey’s Compensatory Control Model. PMID:27391779

  14. Task Prioritization in Dual-Tasking: Instructions versus Preferences.

    PubMed

    Jansen, Reinier J; van Egmond, René; de Ridder, Huib

    2016-01-01

    The role of task prioritization in performance tradeoffs during multi-tasking has received widespread attention. However, little is known on whether people have preferences regarding tasks, and if so, whether these preferences conflict with priority instructions. Three experiments were conducted with a high-speed driving game and an auditory memory task. In Experiment 1, participants did not receive priority instructions. Participants performed different sequences of single-task and dual-task conditions. Task performance was evaluated according to participants' retrospective accounts on preferences. These preferences were reformulated as priority instructions in Experiments 2 and 3. The results showed that people differ in their preferences regarding task prioritization in an experimental setting, which can be overruled by priority instructions, but only after increased dual-task exposure. Additional measures of mental effort showed that performance tradeoffs had an impact on mental effort. The interpretation of these findings was used to explore an extension of Threaded Cognition Theory with Hockey's Compensatory Control Model.

  15. Comparison of active and purely visual performance in a multiple-string means-end task in infants.

    PubMed

    Rat-Fischer, Lauriane; O'Regan, J Kevin; Fagard, Jacqueline

    2014-10-01

    The aim of the present study was to understand what factors influence infants' problem-solving behaviours on the multiple-string task. The main question focused on why infants usually solve the single string-pulling task at 12months at the latest, whereas most 16-month-old infants still cannot solve the task when several strings are presented, only one of which is attached to the desired object. We investigated whether this difficulty is related to infants' ability to inhibit their spontaneous immediate actions by comparing active and purely visual performance in this task. During the first part of the experiment, we assessed the ability of infants aged 16-20months to solve the multiple-string task. The infants were then divided into three groups based on performance (a "failure" group, an "intermediate" group, and a "success" group). The results of this action task suggest that there were differences in infants' performance according to their level of inhibitory control of their preferred hand. In the second part of the experiment, the three groups' predictive looking strategies were compared when seeing an adult performing the task. We found that only infants who successfully performed the action task also visually anticipated which string the adult had to pull in the visual task. Our results suggests that inhibitory control was not the only factor influencing infants' performance on the task. Furthermore, the data support the direct matching hypothesis (Rizzolatti and Fadiga, 2005), according to which infants need to be able to perform actions themselves before being able to anticipate similar actions performed by others.

  16. Individual differences in oscillatory brain activity in response to varying attentional demands during a word recall and oculomotor dual task

    PubMed Central

    Kwon, Gusang; Lim, Sanghyun; Kim, Min-Young; Kwon, Hyukchan; Lee, Yong-Ho; Kim, Kiwoong; Lee, Eun-Ju; Suh, Minah

    2015-01-01

    Every day, we face situations that involve multi-tasking. How our brain utilizes cortical resources during multi-tasking is one of many interesting research topics. In this study, we tested whether a dual-task can be differentiated in the neural and behavioral responses of healthy subjects with varying degree of working memory capacity (WMC). We combined word recall and oculomotor tasks because they incorporate common neural networks including the fronto-parietal (FP) network. Three different types of oculomotor tasks (eye fixation, Fix-EM; predictive and random smooth pursuit eye movement, P-SPEM and R-SPEM) were combined with two memory load levels (low-load: five words, high-load: 10 words) for a word recall task. Each of those dual-task combinations was supposed to create varying cognitive loads on the FP network. We hypothesize that each dual-task requires different cognitive strategies for allocating the brain’s limited cortical resources and affects brain oscillation of the FP network. In addition, we hypothesized that groups with different WMC will show differential neural and behavioral responses. We measured oscillatory brain activity with simultaneous MEG and EEG recordings and behavioral performance by word recall. Prominent frontal midline (FM) theta (4–6 Hz) synchronization emerged in the EEG of the high-WMC group experiencing R-SPEM with high-load conditions during the early phase of the word maintenance period. Conversely, significant parietal upper alpha (10–12 Hz) desynchronization was observed in the EEG and MEG of the low-WMC group experiencing P-SPEM under high-load conditions during the same period. Different brain oscillatory patterns seem to depend on each individual’s WMC and varying attentional demands from different dual-task combinations. These findings suggest that specific brain oscillations may reflect different strategies for allocating cortical resources during combined word recall and oculomotor dual-tasks. PMID:26175681

  17. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm.

  18. Disentangling stereotype activation and stereotype application in the stereotype misperception task.

    PubMed

    Krieglmeyer, Regina; Sherman, Jeffrey W

    2012-08-01

    When forming impressions about other people, stereotypes about the individual's social group often influence the resulting impression. At least 2 distinguishable processes underlie stereotypic impression formation: stereotype activation and stereotype application. Most previous research has used implicit measures to assess stereotype activation and explicit measures to assess stereotype application, which has several disadvantages. The authors propose a measure of stereotypic impression formation, the stereotype misperception task (SMT), together with a multinomial model that quantitatively disentangles the contributions of stereotype activation and application to responses in the SMT. The validity of the SMT and of the multinomial model was confirmed in 5 studies. The authors hope to advance research on stereotyping by providing a measurement tool that separates multiple processes underlying impression formation. PMID:22663350

  19. Disentangling stereotype activation and stereotype application in the stereotype misperception task.

    PubMed

    Krieglmeyer, Regina; Sherman, Jeffrey W

    2012-08-01

    When forming impressions about other people, stereotypes about the individual's social group often influence the resulting impression. At least 2 distinguishable processes underlie stereotypic impression formation: stereotype activation and stereotype application. Most previous research has used implicit measures to assess stereotype activation and explicit measures to assess stereotype application, which has several disadvantages. The authors propose a measure of stereotypic impression formation, the stereotype misperception task (SMT), together with a multinomial model that quantitatively disentangles the contributions of stereotype activation and application to responses in the SMT. The validity of the SMT and of the multinomial model was confirmed in 5 studies. The authors hope to advance research on stereotyping by providing a measurement tool that separates multiple processes underlying impression formation.

  20. Effects of Hand Dominance and Postural Selection on Muscle Activities of Virtual Laparoscopic Surgical Training Tasks.

    PubMed

    Huang, Chun-Kai; Boman, Ashley; White, Anthony; Oleynikov, Dmitry; Siu, Ka-Chun

    2016-01-01

    This study investigated how the ergonomic factors, such as hand dominance and postural selection, influenced on surgical performance regarding the changes of muscle activity. Twenty novices performed two virtual laparoscopic surgical training tasks and five target muscle activities were measured. Compared with using dominant hand, surgical skills performance using non-dominant hand increased muscle activities. Muscle fatigue is more likely induced in standing position than sitting position during practice. This study suggests an emerging need to focus on hand dominance during laparoscopic surgical training to address the impact of hand discrepancy on bimanual coordination. It is also important to pay attention on postural selection during training to reduce muscle fatigue, which possibly leads to injuries. PMID:27046567

  1. Classroom-based high-intensity interval activity improves off-task behaviour in primary school students.

    PubMed

    Ma, Jasmin K; Le Mare, Lucy; Gurd, Brendon J

    2014-12-01

    This study examined the effects of an acute bout of brief, high-intensity interval exercise on off-task classroom behaviour in primary school students. A grade 4 class (n = 24) and a grade 2 class (n = 20) were exposed to either a no-activity break or an active break that consisted of "FUNtervals", a high-intensity interval protocol, on alternating days for 3 weeks. No-activity days consisted of a 10-min inactive break while FUNterval days consisted of a 4-min FUNterval completed within a 10-min break from regular class activities. Off-task behaviour was observed for 50 min after each no-activity/FUNterval break, with the amount of time students spent off-task (motor, passive, and verbal behaviour) being recorded. When comparing no-activity breaks with FUNtervals the grade 4 class demonstrated reductions in both passive (no activity = 29% ± 13% vs. FUNterval = 25% ± 13%, p < 0.05, effect size (ES) = 0.31) and motor (no activity = 31% ± 16% vs. FUNterval = 24% ± 13%, p < 0.01, ES = 0.48) off-task behaviour following FUNtervals. Similarly, in the grade 2 class, passive (no activity = 23% ± 14% vs. FUNterval = 14% ± 10%, p < 0.01, ES = 0.74), verbal (no activity = 8% ± 8% vs. FUNterval = 5% ± 5%, p < 0.05, ES = 0.45), and motor (no activity = 29% ± 17% vs. FUNterval = 14% ± 10%, p < 0.01, ES = 1.076) off-task behaviours were reduced following FUNtervals. In both classrooms the effects of physical activity were greatest in those students demonstrating the highest rates of off-task behaviour on no-activity days. These data demonstrate that very brief high-intensity bouts of exercise can improve off-task behaviour in grade 2 and 4 students, particularly in students with high rates of such behaviour.

  2. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    SciTech Connect

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  3. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.

    1987-01-01

    The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.

  4. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  5. Aberrant Oscillatory Activity during Simple Movement in Task-Specific Focal Hand Dystonia

    PubMed Central

    Hinkley, Leighton B. N.; Dolberg, Rebecca; Honma, Susanne; Findlay, Anne; Byl, Nancy N.; Nagarajan, Srikantan S.

    2012-01-01

    In task-specific focal hand dystonia (tspFHD), the temporal dynamics of cortical activity in the motor system and how these processes are related to impairments in sensory and motor function are poorly understood. Here, we use time-frequency reconstructions of magnetoencephalographic (MEG) data to elaborate the temporal and spatial characteristics of cortical activity during movement. A self-paced finger tapping task during MEG recording was performed by 11 patients with tspFHD and 11 matched healthy controls. In both groups robust changes in beta (12–30 Hz) and high gamma (65–90 Hz) oscillatory activity were identified over sensory and motor cortices during button press. A significant decrease [p < 0.05, 1% False Discovery Rate (FDR) corrected] in high gamma power during movements of the affected hand was identified over ipsilateral sensorimotor cortex in the period prior to (−575 ms) and following (725 ms) button press. Furthermore, an increase (p < 0.05, 1% FDR corrected) in beta power suppression following movement of the affected hand was identified over visual cortex in patients with tspFHD. For movements of the unaffected hand, a significant (p < 0.05, 1% FDR corrected) increase in beta power suppression was identified over secondary somatosensory cortex (S2) in the period following button press in patients with tspFHD. Oscillatory activity within in the tspFHD group was however not correlated with clinical measures. Understanding these aberrant oscillatory dynamics can provide the groundwork for interventions that focus on modulating the timing of this activity. PMID:23226140

  6. Observations of Children’s Interactions with Teachers, Peers, and Tasks across Preschool Classroom Activity Settings

    PubMed Central

    Booren, Leslie M.; Downer, Jason T.; Vitiello, Virginia E.

    2014-01-01

    This descriptive study examined classroom activity settings in relation to children’s observed behavior during classroom interactions, child gender, and basic teacher behavior within the preschool classroom. 145 children were observed for an average of 80 minutes during 8 occasions across 2 days using the inCLASS, an observational measure that conceptualizes behavior into teacher, peer, task, and conflict interactions. Findings indicated that on average children’s interactions with teachers were higher in teacher-structured settings, such as large group. On average, children’s interactions with peers and tasks were more positive in child-directed settings, such as free choice. Children experienced more conflict during recess and routines/transitions. Finally, gender differences were observed within small group and meals. The implications of these findings might encourage teachers to be thoughtful and intentional about what types of support and resources are provided so children can successfully navigate the demands of particular settings. These findings are not meant to discourage certain teacher behaviors or imply value of certain classroom settings; instead, by providing an evidenced-based picture of the conditions under which children display the most positive interactions, teachers can be more aware of choices within these settings and have a powerful way to assist in professional development and interventions. PMID:25717282

  7. Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    PubMed Central

    McKay, J. Lucas; Ting, Lena H.

    2012-01-01

    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control

  8. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.

    PubMed

    McKay, J Lucas; Ting, Lena H

    2012-01-01

    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control

  9. Task-dependent color discrimination

    NASA Technical Reports Server (NTRS)

    Poirson, Allen B.; Wandell, Brian A.

    1990-01-01

    When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. Color-discrimination threshold are compared by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.

  10. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  11. Abnormal functional activation during a simple word repetition task: A PET study of adult dyslexics.

    PubMed

    McCrory, E; Frith, U; Brunswick, N; Price, C

    2000-09-01

    Eight dyslexic subjects, impaired on a range of tasks requiring phonological processing, were matched for age and general ability with six control subjects. Participants were scanned using positron emission tomography (PET) during three conditions: repeating real words, repeating pseudowords, and rest. In both groups, speech repetition relative to rest elicited widespread bilateral activation in areas associated with auditory processing of speech; there were no significant differences between words and pseudowords. However, irrespective of word type, the dyslexic group showed less activation than the control group in the right superior temporal and right post-central gyri and also in the left cerebellum. Notably, the right anterior superior temporal cortex (Brodmann's area 22 [BA 22]) was less activated in each of the eight dyslexic subjects, compared to each of the six control subjects. This deficit appears to be specific to auditory repetition as it was not detected in a previous study of reading which used the same sets of stimuli (Brunswick, N., McCrory, E., Price, C., Frith, C.D., & Frith, U. [1999]. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain, 122, 1901-1917). This implies that the observed neural manifestation of developmental dyslexia is task-specific (i.e., functional rather than structural). Other studies of normal subjects indicate that attending to the phonetic structure of speech leads to a decrease in right-hemisphere processing. Lower right hemisphere activation in the dyslexic group may therefore indicate less processing of non-phonetic aspects of speech, allowing greater salience to be accorded to phonological aspects of attended speech. PMID:11054918

  12. Effects of Type A Personality and Task Labels (Work vs. Leisure) on Task Preference.

    ERIC Educational Resources Information Center

    Tang, Thomas Li-Ping

    1986-01-01

    Three groups of subjects (Type A, intermediate, and Type B) were presented an identical problem-solving task labeled as work-related or as leisure-oriented and then given free choice of other activities. The subjects' task preference in the free-choice time was examined as a function of Type A personality and task labels. (MT)

  13. Modeling Task Switching without Switching Tasks: A Short-Term Priming Account of Explicitly Cued Performance

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Logan, Gordon D.

    2005-01-01

    Switch costs in task switching are commonly attributed to an executive control process of task-set reconfiguration, particularly in studies involving the explicit task-cuing procedure. The authors propose an alternative account of explicitly cued performance that is based on 2 mechanisms: priming of cue encoding from residual activation of cues in…

  14. Correlates of academic procrastination: discomfort, task aversiveness, and task capability.

    PubMed

    Milgram, N; Marshevsky, S; Sadeh, C

    1995-03-01

    The relationships among five aspects of academic procrastination--behavioral delay, personal upset about the delay, task aversiveness, task capability, and the desire to reduce behavioral delay--were investigated in 10th-grade Israeli students (N = 195). Upset about delay was weakly related to delay itself, and--unlike delay--was strongly related to perceived capability to perform academic tasks and to the desire to change delaying behavior. Students delayed more on academic tasks labeled unpleasant than pleasant, were neutral in between, and were correspondingly more upset about the former than the latter. They more frequently acknowledged reasons for academic procrastination that were less threatening to their self-image (e.g., problems in time management) than reasons that were more threatening (e.g., lack of ability). Interest in reducing delay is related more to self-perceived ability to handle tasks than to time spent procrastinating or reasons given for procrastinating.

  15. Adolescents’ fMRI Activation to a Response Inhibition Task Predicts Future Substance Use

    PubMed Central

    Mahmood, O.M.; Goldenberg, D.; Thayer, R.; Migliorini, R.; Simmons, A.N.; Tapert, S.F.

    2012-01-01

    Background Deficient behavioral regulation may be a risk factor for substance use disorders in adolescents. Abnormalities in brain regions critical to cognitive control have been linked to more intense and problematic future substance use (e.g., (Durazzo, Gazdzinski, Mon, & Meyerhoff, 2010; Falk, Berkman, Whalen, & Lieberman, 2011; Paulus, Tapert, & Schuckit, 2005). The goal of this study was to examine the degree to which brain response to an inhibition task measured in mid-adolescence can predict substance use 18 months later. Method Adolescents aged 16–19 (N=80) performed a go/no-go response inhibition task during fMRI at project baseline, and were followed 18 months later with a detailed interview on substance use and dependence symptoms. Participants were 39 high frequency users and 41 demographically similar low frequency users (458 versus 2 average lifetime drug use occasions at baseline, respectively). Results Across all subjects, no-go trials produced significant increases in neural response in the ventromedial prefrontal cortex and a region including the left angular and supramarginal gyri (p(FWE)<.01, cluster threshold ≥30 voxels). Less ventromedial prefrontal activation but more left angular gyrus activation predicted higher levels of substance use and dependence symptoms in the following 18 months, particularly for those who were high frequency users in mid-adolescence (p<.05). Conclusions These findings are consistent with studies showing that impairments in cognitive control have strong associations with substance use. We found a predictive relationship between atypical activation patterns at baseline and substance use behavior 18 months later, particularly among adolescents with histories of previous heavy use. PMID:23006248

  16. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study.

    PubMed

    Neale, Chris; Johnston, Patrick; Hughes, Matthew; Scholey, Andrew

    2015-01-01

    The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts. PMID:26488289

  17. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.

  18. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study

    PubMed Central

    Neale, Chris; Johnston, Patrick; Hughes, Matthew; Scholey, Andrew

    2015-01-01

    The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts. PMID:26488289

  19. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects. PMID:17875609

  20. Performance of a 6-Degree-of-Freedom Active Microsurgical Manipulator in Handheld Tasks

    PubMed Central

    Yang, Sungwook; Wells, Trent S.; MacLachlan, Robert A.; Riviere, Cameron N.

    2013-01-01

    This paper presents the first experimental results from human users of a new 6-degree-of-freedom handheld micromanipulator. This is the latest prototype of a fully-handheld system, known as “Micron,” which performs active compensation of hand tremor for microsurgery. The manipulator is a miniature Gough-Stewart platform incorporating linear ultrasonic motors that provide a cylindrical workspace 4 mm long and 4 mm wide. In addition, the platform allows the possibility of imposing a remote center of motion for controlling motion not only at the tip but also at the entry point in the sclera of the eye. We demonstrate hand tremor reduction in both static and dynamic micromanipulation tasks on a rubber pad. The handheld performance is also evaluated in an artificial eye model while imposing a remote center of motion. In all cases, hand tremor is significantly reduced. PMID:24111024

  1. Early planning activity in frontal and parietal cortex in a simplified task

    PubMed Central

    Andersen, Richard A.

    2015-01-01

    Cortical planning activity has traditionally been probed with visual targets. However, external sensory signals might obscure early correlates of internally generated plans. We devised a nonspatial decision-making task in which the monkey is encouraged to decide randomly whether to reach or saccade in the absence of sensory stimuli. Neurons in frontal and parietal planning areas (in and around the arcuate and intraparietal sulci) showed responses predictive of the monkey's upcoming movement at early stages during the planning process. Neurons predicted the animal's future movements several seconds beforehand, sometimes before the trial even began. These data cast new light on the role of the cerebral cortex in the action planning process, when the animal is free to decide on his own actions in the absence of extraneous sensory cues. PMID:25761951

  2. Task Models in the Digital Ocean

    ERIC Educational Resources Information Center

    DiCerbo, Kristen E.

    2014-01-01

    The Task Model is a description of each task in a workflow. It defines attributes associated with that task. The creation of task models becomes increasingly important as the assessment tasks become more complex. Explicitly delineating the impact of task variables on the ability to collect evidence and make inferences demands thoughtfulness from…

  3. Students' Engagement in Literacy Tasks

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Malloy, Jacquelynn A.; Parsons, Allison Ward; Burrowbridge, Sarah Cohen

    2015-01-01

    This article offers insight into what makes literacy tasks engaging or disengaging based on observations of and interviews with students. In a yearlong study of a sixth-grade classroom in a Title I school, students engaged in integrated literacy-social studies instruction. Researchers studied the degree of task openness and the degree to which…

  4. Maximize Student Time on Task

    ERIC Educational Resources Information Center

    Peters, Erin

    2004-01-01

    Student time on task is the most influential factor in student achievement. High motivation and engagement in learning have consistently been linked to increased levels of student success. At the same time, a lack of interest in schoolwork becomes increasingly common in more and more middle school students. To maximize time on task, teachers need…

  5. Creativity, Overinclusion, and Everyday Tasks

    ERIC Educational Resources Information Center

    Ottemiller, Dylan D.; Elliott, Colette Seter; Giovannetti, Tania

    2014-01-01

    This study examined relations between creative thinking and performance on routine, everyday tasks. Results were considered in light of past research on the putative relation between creativity and schizophrenia/psychotic thinking. Thirty healthy undergraduates completed the Alternative Uses Task, a measure of divergent thinking, and the 2 × 3…

  6. Cosmetology Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for three occupations in the cosmetology series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to provide…

  7. Teachers' Aides: Tasks and Concerns

    ERIC Educational Resources Information Center

    Balderson, James H.; Nixon, Mary

    1976-01-01

    Addresses three questions: (1) What tasks do aides perform? (2) Does training make a difference in the type of tasks aides perform? (3) What are the concerns of aides? (Available from the Department of Educational Administration, The University of Alberta, Edmonton, Alberta, Canada T6G 2G5; $0.50, single copy.) (Author/IRT)

  8. Science 102: This Month's Task

    ERIC Educational Resources Information Center

    Robertson, Bill

    2015-01-01

    This task asks readers to figure out why when you stir a cup of hot liquid and tap on the side of the cup with a spoon, the pitch of sound starts low and ends up high. The solution to last month's tasks relating to the circumference of the Earth and how many stars are in the (visible) sky is also presented.

  9. Drafting Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in drafting. The tasks required to perform the duties of seven types of drafters (i.e., general, architectural, electronic, civil, structural, mechanical, and process pipe drafters) and technical illustrators are outlined. The following are among the duties…

  10. Receptionist: Task List Competency Record.

    ERIC Educational Resources Information Center

    Minnesota Instructional Materials Center, White Bear Lake.

    One of a series of 12 in the secretarial/clerical area, this booklet for the vocational instructor contains a job description for the receptionist, a task list of areas of competency, an occupational tasks competency record (suggested as replacement for the traditional report card), a list of industry representatives and educators involved in…

  11. TASK: Anarchy in the Artroom

    ERIC Educational Resources Information Center

    Schubert, Cynthia; Van Patten, Kelda

    2012-01-01

    Most teenagers do not really like to be told what to do. For that matter, most adults don't either. This article discusses contemporary artist Oliver Herring's TASK, which is an opportunity for participants to bend or define the rules on their own terms. It is about choice, and, for many, it is a dream come true. TASK is controlled chaos that can…

  12. What Makes a Rich Task?

    ERIC Educational Resources Information Center

    Griffin, Pete

    2009-01-01

    A common view seems to be emerging in the mathematics education world at the moment that the development and use of "rich tasks" is a good thing; a "right thing" to do. There are many examples of these "rich tasks" and teachers are encouraged to use them whenever they can. Professional learners don't just accept this uncritically, but question…

  13. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  14. Task Switching: A PDP Model

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Shallice, Tim

    2002-01-01

    When subjects switch between a pair of stimulus-response tasks, reaction time is slower on trial N if a different task was performed on trial N--1. We present a parallel distributed processing (PDP) model that simulates this effect when subjects switch between word reading and color naming in response to Stroop stimuli. Reaction time on "switch…

  15. Electricity Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in electricity. The guide outlines the tasks entailed in 10 different duties typically required of employees in the following occupations: residential electrician apprentice, material handler/supply clerk, maintenance electrician apprentice,…

  16. Welding Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for six occupations in the welding series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to provide space for…

  17. Horticulture Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for 9 occupations in the horticulture series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to provide space…

  18. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.

  19. Watching TV news as a memory task -- brain activation and age effects

    PubMed Central

    2010-01-01

    Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years). We contrasted brain responses during natural stimulation (TV news video clips) with a control condition (scrambled versions of the same clips with reversed audio tracks). After scanning, free recall performance was assessed. Results The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex. Conclusion We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging. PMID:20738888

  20. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task.

    PubMed

    Cousin, Emilie; Peyrin, Carole; Pichat, Cédric; Lamalle, Laurent; Le Bas, Jean-François; Baciu, Monica

    2007-08-01

    This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ("flip" method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language. PMID:17339089

  1. Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: a near-infrared spectroscopy.

    PubMed

    Azechi, Michiyo; Iwase, Masao; Ikezawa, Koji; Takahashi, Hidetoshi; Canuet, Leonides; Kurimoto, Ryu; Nakahachi, Takayuki; Ishii, Ryouhei; Fukumoto, Motoyuki; Ohi, Kazutaka; Yasuda, Yuka; Kazui, Hiroaki; Hashimoto, Ryota; Takeda, Masatoshi

    2010-03-01

    While psychiatric disorders such as schizophrenia are largely diagnosed on symptomatology, several studies have attempted to determine which biomarkers can discriminate schizophrenia patients from non-patients with schizophrenia. The objective of this study is to assess whether near-infrared spectroscopy (NIRS) measurement can distinguish schizophrenia patients from healthy subjects. Sixty patients with schizophrenia and sixty age- and gender-matched healthy controls were divided into two sequential groups. The concentration change in oxygenated hemoglobin (Delta[oxy-Hb]) was measured in the bilateral prefrontal areas (Fp1-F7 and Fp2-F8) during the Verbal Fluency Test (VFT) letter version and category version, Tower of Hanoi (TOH), Sternberg's (SBT) and Stroop Tasks. In the first group, schizophrenia patients showed poorer task performance on all tasks and less prefrontal cortex activation during all but the Stroop Task compared to healthy subjects. In the second group, schizophrenia patients showed poorer task performance and less prefrontal cortex activation during VFTs and TOH tasks than healthy subjects. We then performed discriminant analysis by a stepwise method using Delta[oxy-Hb] and task performance measures as independent variables. The discriminant analysis in the first group included task performance of TOH, VFT letter and VFT category and Delta[oxy-Hb] of VFT letter. As a result, 88.3% of the participants were correctly classified as being schizophrenic or healthy subjects in the first analysis. The discriminant function derived from the first group correctly assigned 75% of the subjects in the second group. Our findings suggest that NIRS measurement could be applied to differentiate patients with schizophrenia from healthy subjects. PMID:19896332

  2. Cardiovascular activity during laboratory tasks in women with high and low worry.

    PubMed

    Knepp, Michael M; Friedman, Bruce H

    2008-12-01

    Worry has been related to delayed stress recovery and cardiovascular disease risk. Cardiovascular responses to a range of laboratory tasks were examined in this study of high and low worriers. Undergraduate women were recruited with the Penn State Worry Questionnaire to form low (n=19) and high (n=22) worry groups. These individuals engaged in six laboratory tasks (orthostatic stress, supine rest, hand cold pressor, mental arithmetic, and worry and relaxation imagery) while heart rate (HR), HR spectral analysis, impedance cardiography, and blood pressure were acquired. The only significant group difference found was a consistently greater HR across tasks in high worriers (p<.05). No group by condition interactions emerged. High trait worry in healthy young women appears to be marked by elevated HR in the absence of autonomic abnormalities. These findings are discussed relative to the literature on worry, with particular reference to its health implications. PMID:18706472

  3. Task Attention Facilitates Learning of Task-Irrelevant Stimuli

    PubMed Central

    Huang, Tsung-Ren; Watanabe, Takeo

    2012-01-01

    Attention plays a fundamental role in visual learning and memory. One highly established principle of visual attention is that the harder a central task is, the more attentional resources are used to perform the task and the smaller amount of attention is allocated to peripheral processing because of limited attention capacity. Here we show that this principle holds true in a dual-task setting but not in a paradigm of task-irrelevant perceptual learning. In Experiment 1, eight participants were asked to identify either bright or dim number targets at the screen center and to remember concurrently presented scene backgrounds. Their recognition performances for scenes paired with dim/hard targets were worse than those for scenes paired with bright/easy targets. In Experiment 2, eight participants were asked to identify either bright or dim letter targets at the screen center while a task-irrelevant coherent motion was concurrently presented in the background. After five days of training on letter identification, participants improved their motion sensitivity to the direction paired with hard/dim targets improved but not to the direction paired with easy/bright targets. Taken together, these results suggest that task-irrelevant stimuli are not subject to the attentional control mechanisms that task-relevant stimuli abide. PMID:22563424

  4. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  5. Comparison of continuously acquired resting state and extracted analogues from active tasks

    PubMed Central

    Ganger, Sebastian; Hahn, Andreas; Küblböck, Martin; Kranz, Georg S.; Spies, Marie; Vanicek, Thomas; Seiger, René; Sladky, Ronald; Windischberger, Christian; Kasper, Siegfried

    2015-01-01

    Abstract Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting‐state data, the application to task‐specific fMRI has received growing attention. Three major methods for extraction of resting‐state data from task‐related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in‐between task blocks. Despite widespread application in current research, consensus on which method best resembles resting‐state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting‐state, two different task paradigms were assessed (emotion discrimination and right finger‐tapping) and five well‐described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting‐state (Dice, Intraclass correlation coefficient (ICC), R 2) showed that regression against task effects yields functional connectivity networks most alike to resting‐state. However, all methods exhibited significant differences when compared to continuous resting‐state and similarity metrics were lower than test‐retest of two resting‐state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting‐state when extracting signals from task designs, although functional connectivity computed from task‐specific data may indeed yield interesting information. Hum Brain Mapp 36:4053–4063, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals

  6. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity.

    PubMed

    Tompuri, Tuomo T

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor.

  7. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    PubMed Central

    Tompuri, Tuomo T.

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor. PMID:26321958

  8. Mental addition in bilinguals: an FMRI study of task-related and performance-related activation.

    PubMed

    Lin, Jo-Fu Lotus; Imada, Toshiaki; Kuhl, Patricia K

    2012-08-01

    Behavioral studies show that bilinguals are slower and less accurate when performing mental calculation in their nondominant (second; L2) language than in their dominant (first; L1) language. However, little is known about the neural correlates associated with the performance differences observed between bilinguals' 2 languages during arithmetic processing. To address the cortical activation differences between languages, the current study examined task-related and performance-related brain activation during mental addition when problems were presented auditorily in participants' L1 and L2. Eleven Chinese-English bilinguals heard 2-digit addition problems that required exact or approximate calculations. Functional magnetic resonance imaging results showed that auditorily presented multidigit addition in bilinguals activates bilateral inferior parietal and inferior frontal regions in both L1 and L2. Language differences were observed in the form of greater activation for L2 exact addition in the left inferior frontal area. A negative correlation between brain activation and behavioral performance during mental addition in L2 was observed in the left inferior parietal area. Current results provide further evidence for the effects of language-specific experience on arithmetic processing in bilinguals at the cortical level.

  9. Greater Impulsivity is Associated with Decreased Brain Activation in Obese Women during a Delay Discounting Task

    PubMed Central

    Stoeckel, Luke E.; Murdaugh, Donna L.; Cox, James E.; Cook, Edwin W.; Weller, Rosalyn E.

    2012-01-01

    Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD) or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual’s ‘indifference point’, or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain. PMID:22948956

  10. Task-dependent and polarity-specific effects of prefrontal transcranial direct current stimulation on cortical activation during word fluency.

    PubMed

    Ehlis, Ann-Christine; Haeussinger, Florian B; Gastel, Alex; Fallgatter, Andreas J; Plewnia, Christian

    2016-10-15

    Targeted modulation of cortical functions by non-invasive brain stimulation is widely used for the investigation of the neurophysiological signatures of executive functions and put forward as a potential specific treatment for its disorders. To further investigate the underlying mechanisms, we performed two experiments involving 46 subjects that performed a semantic and a phonological verbal fluency task (VFT) as well as a simple speech-production task after application of 1mA anodal or cathodal transcranial direct current stimulation (tDCS) to the left inferior frontal gyrus (IFG). Brain activation was measured by functional near-infrared spectroscopy (fNIRS) during task performance. Neither preceding anodal nor cathodal tDCS was found to modulate VFT performance of either difficulty. However, preconditioning with anodal tDCS increased brain activity during the VFT whereas a trendwise decrease of activation was found after cathodal stimulation. Notably, this difference was not found with simple speech production. These findings support the notion of a polarity-specific malleability of neuronal network activity underlying speech production by tDCS. Most importantly, the task-specificity of the modulatory effect observed after the end of stimulation demonstrates lasting neurophysiological effects of tDCS that are reflected in modifications of cortical excitability by challenging cognitive tasks. PMID:26748077

  11. Covert motor activity on NoGo trials in a task sharing paradigm: evidence from the lateralized readiness potential.

    PubMed

    Holländer, Antje; Jung, Christina; Prinz, Wolfgang

    2011-06-01

    Previous studies on task sharing propose that a representation of the co-actor's task share is generated when two actors share a common task. An important function of co-representation seems to lie in the anticipation of others' upcoming actions, which is essential for one's own action planning, as it enables the rapid selection of an appropriate response. We utilized measures of lateralized motor activation, the lateralized readiness potential (LRP), in a task sharing paradigm to address the questions (1) whether the generation of a co-representation involves motor activity in the non-acting person when it is other agent's turn to respond, and (2) whether co-representation of the other's task share is generated from one's own egocentric perspective or from the perspective of the actor (allocentric). Results showed that although it was the other agent's turn to respond, the motor system of the non-acting person was activated prior to the other's response. Furthermore, motor activity was based on egocentric spatial properties. The findings support the tight functional coupling between one's own actions and actions produced by others, suggesting that the involvement of the motor system is crucial for social interaction.

  12. Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data.

    PubMed

    Ding, Xiaoyu; Lee, Jong-Hwan; Lee, Seong-Whan

    2013-04-01

    Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.

  13. The Development of Creativity in Preschoolers' Drawings through Task-Oriented Activities

    ERIC Educational Resources Information Center

    Dulama, Maria Eliza; Iovu, Mihai-Bogdan; Vanea, Cornelia

    2011-01-01

    The goal of this paper is to plan working task for preschool children in order to deliver original and creative outputs. The theoretical background of the paper is set in defining creativity as "the capacity to create something new, original, and adequate to reality" (Roco, 2004; Jaoui, 1975; Rosca, 1981; Boden, 1992). The research…

  14. Subjective Task Value in Physical Activity Participation: The Perspective of Hong Kong Schoolchildren

    ERIC Educational Resources Information Center

    Pang, Bonnie; Ha, Amy Sau Ching

    2010-01-01

    Subjective Task Value (STV) is a multidimensional construct of values predominantly used to examine western culture (Eccles et al., 1983); it is influential in motivating individuals to make choices and display long-lasting behaviours. While existing studies were conducted with western populations, the manifestation of value has yet to be…

  15. Decreased Functional Brain Activation in Friedreich Ataxia Using the Simon Effect Task

    ERIC Educational Resources Information Center

    Georgiou-Karistianis, N.; Akhlaghi, H.; Corben, L. A.; Delatycki, M. B.; Storey, E.; Bradshaw, J. L.; Egan, G. F.

    2012-01-01

    The present study applied the Simon effect task to examine the pattern of functional brain reorganization in individuals with Friedreich ataxia (FRDA), using functional magnetic resonance imaging (fMRI). Thirteen individuals with FRDA and 14 age and sex matched controls participated, and were required to respond to either congruent or incongruent…

  16. ECoG Gamma Activity during a Language Task: Differentiating Expressive and Receptive Speech Areas

    ERIC Educational Resources Information Center

    Towle, Vernon L.; Yoon, Hyun-Ah; Castelle, Michael; Edgar, J. Christopher; Biassou, Nadia M.; Frim, David M.; Spire, Jean-Paul; Kohrman, Michael H.

    2008-01-01

    Electrocorticographic (ECoG) spectral patterns obtained during language tasks from 12 epilepsy patients (age: 12-44 years) were analyzed in order to identify and characterize cortical language areas. ECoG from 63 subdural electrodes (500 Hz/channel) chronically implanted over frontal, parietal and temporal lobes were examined. Two language tasks…

  17. Dissociating Linguistic and Task-Related Activity in the Left Inferior Frontal Gyrus

    ERIC Educational Resources Information Center

    Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Tyler, Lorraine K.

    2011-01-01

    The left inferior frontal gyrus (LIFG) has long been claimed to play a key role in language function. However, there is considerable controversy as to whether regions within LIFG have specific linguistic or domain-general functions. Using fMRI, we contrasted linguistic and task-related effects by presenting simple and morphologically complex words…

  18. Report on the activities of the PSN/NASA Task Group

    NASA Technical Reports Server (NTRS)

    Loria, Alberto; Harrison, James K.

    1988-01-01

    Since July '86 the PSN/NASA Task Group for Tether Flight Demonstrations has been working to find applications of tethers in space, the development of which might be of mutual interest to the two agencies. Seven projects have so far been identified and some more will probably be added. A technical evaluation and a managerial plan have been outlined for each.

  19. Amplitude and timing of somatosensory cortex activity in Task Specific Focal Hand Dystonia

    PubMed Central

    Dolberg, Rebecca; Hinkley, Leighton B. N.; Honma, Susanne; Zhu, Zhao; Findlay, Anne M.; Byl, Nancy N.; Nagarjan, Srikantan S.

    2011-01-01

    Objective Task-specific focal hand dystonia (tspFHD) is a movement disorder diagnosed in individuals performing repetitive hand behaviors. The extent to which processing anomalies in primary sensory cortex extend to other regions or across the two hemispheres is presently unclear. Methods In response to low/high rate and novel tactile stimuli on the affected and unaffected hands, magnetoencephalography (MEG) was used to elaborate activity timing and amplitude in the primary somatosensory (S1) and secondary somatosensory/parietal ventral (S2/PV) cortices. MEG and clinical performance measures were collected from thirteen patients and matched controls. Results Compared to controls, subjects with tspFHD had increased response amplitude in S2/PV bilaterally in response to high rate and novel stimuli. Subjects with tspFHD also showed increased response latency (low rate, novel) of the affected digits in contralateral S1. For high rate, subjects with tspFHD showed increased response latency in ipsilateral S1 and S2/PV bilaterally. Activation differences correlated with functional sensory deficits (predicting a latency shift in S1), motor speed and muscle strength. Conclusions There are objective differences in the amplitude and timing of activity for both hands across contralateral and ipsilateral somatosensory cortex in patients with tspFHD. Significance Knowledge of cortical processing abnormalities across S1 and S2/PV in dystonia should be applied towards the development of learning based sensorimotor interventions. PMID:21802357

  20. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    PubMed Central

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840

  1. Multiple paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene; Wiegand, Thomas; Mark, Gloria

    1987-01-01

    The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.

  2. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis

    PubMed Central

    Gonzalez-Castillo, Javier; Saad, Ziad S.; Handwerker, Daniel A.; Inati, Souheil J.; Brenowitz, Noah; Bandettini, Peter A.

    2012-01-01

    The brain is the body's largest energy consumer, even in the absence of demanding tasks. Electrophysiologists report on-going neuronal firing during stimulation or task in regions beyond those of primary relationship to the perturbation. Although the biological origin of consciousness remains elusive, it is argued that it emerges from complex, continuous whole-brain neuronal collaboration. Despite converging evidence suggesting the whole brain is continuously working and adapting to anticipate and actuate in response to the environment, over the last 20 y, task-based functional MRI (fMRI) have emphasized a localizationist view of brain function, with fMRI showing only a handful of activated regions in response to task/stimulation. Here, we challenge that view with evidence that under optimal noise conditions, fMRI activations extend well beyond areas of primary relationship to the task; and blood-oxygen level-dependent signal changes correlated with task-timing appear in over 95% of the brain for a simple visual stimulation plus attention control task. Moreover, we show that response shape varies substantially across regions, and that whole-brain parcellations based on those differences produce distributed clusters that are anatomically and functionally meaningful, symmetrical across hemispheres, and reproducible across subjects. These findings highlight the exquisite detail lying in fMRI signals beyond what is normally examined, and emphasize both the pervasiveness of false negatives, and how the sparseness of fMRI maps is not a result of localized brain function, but a consequence of high noise and overly strict predictive response models. PMID:22431587

  3. The Positive Impact of Creative Activity: Effects of Creative Task Engagement and Motivational Focus on College Students' Learning.

    ERIC Educational Resources Information Center

    Conti, Regina; And Others

    1995-01-01

    Assessed effectiveness of engaging students in a creative activity on a topic as a means of encouraging an active cognitive set toward learning that topic area. Creative task engagement was found to be an effective means of enhancing creativity (in the absence of evaluation expectation), intrinsic motivation, and long-term retention. (JBJ)

  4. Effects of active pause pattern of surface electromyographic activity among subjects performing monotonous tasks: A systematic review.

    PubMed

    Januario, Leticia Bergamin; Moreira, Roberta de Fátima Carreira; Cid, Marina Machado; Samani, Afshin; Madeleine, Pascal; Oliveira, Ana Beatriz

    2016-10-01

    Active pauses have shown potentially beneficial effects to increase the variability of the electrical activation pattern of muscles. However, there is a lack of consensus as to how to design and implement those pauses and the processing methods of surface electromyography (EMG) data when evaluating low-level monotonous tasks. The aim of this systematic review was to synthesize the evidences regarding the way which active pauses have been applied, and the methods used to investigate the related EMG changes. PubMed-MEDLINE, Embase, Web of Science, Lilacs, Ebsco, and Scopus databases were searched. Two authors independently extracted data from the primary studies. The methodological quality was assessed using a list from van der Windt et al. (2000), and the level of evidence was synthesized through GRADE. The ISEK guideline for reporting EMG data was also applied as a checklist. Fifteen studies were included - 14 with high methodological quality. In general, active pauses were able to change the level of EMG activity in monotonous tasks. The level of evidence through GRADE was very low for all EMG processing methods, except RMS which was low. A vast heterogeneity concerning the methods applied to analyze EMG data contributed to decrease the quality of evidence synthesis, and the findings need to be carefully considered. The GRADE approach and the ISEK guideline contributed to identify important flaws in the literature. Future studies investigating active pauses in longitudinal studies and following the standard for recording and reporting EMG data care are warranted.

  5. Activation and tremor of the shoulder muscles to the demands of an archery task.

    PubMed

    Lin, Jiu-Jenq; Hung, Cheng-Ju; Yang, Ching-Ching; Chen, Hsing-Yu; Chou, Feng-Ching; Lu, Tung-Wu

    2010-02-01

    Physiological tremor and strength during the maintenance of shoulder position occur during a precision aiming task, such as archery. It is unclear how positions for precision demands affect physiological tremor and associated muscular activities. The purpose of this study was to assess the tremor amplitude and muscular activities of the shoulder between the various positions for precision demands. Ten males (age 21.9 +/- 2.0 years) participated in the study. Electromyography (EMG) was quantified on eight humeral/scapular muscles. The tremor was measured by the acceleration component of a motion tracking sensor in the 3-7 Hz and 8-12 Hz frequency bands. Participants simulated six preparatory archery shooting positions (3 arm angles x 2 arm draw positions) and performed isometric contractions. The relative root mean square (RMS) amplitudes of the shoulder muscles were significantly greater for the full drawing position compared with the partial position (humeral muscles: P = 0.011; scapular muscles: P = 0.026). In the full drawing position, increased humeral/scapular muscle EMG amplitude was moderately associated with an increased power spectrum of 8-12/3-7 Hz tremor in humerus/scapula motion (R = 0.43-0.57). To minimize fluctuations in high strength muscle performance, 90 degrees of elevation in the full drawing position may be a suitable position for demands in archery. In addition, scapular muscle amplitude is important for stability to reduce humerus tremor during archery performance. PMID:20432134

  6. Relationship between simulated extravehicular activity tasks and measurements of physical performance.

    PubMed

    Ade, C J; Broxterman, R M; Craig, J C; Schlup, S J; Wilcox, S L; Barstow, T J

    2014-11-01

    The purpose was to evaluate the relationships between tests of fitness and two activities that simulate components of Lunar- and Martian-based extravehicular activities (EVA). Seventy-one subjects completed two field tests: a physical abilities test and a 10km Walkback test. The relationships between test times and the following parameters were determined: running V˙O2max, gas exchange threshold (GET), speed at V˙O2max (s-V˙O2max), highest sustainable rate of aerobic metabolism [critical speed (CS)], and the finite distance that could be covered above CS (D'): arm cranking V˙O2peak, GET, critical power (CP), and the finite work that can be performed above CP (W'). CS, running V˙O2max, s-V˙O2max, and arm cranking V˙O2peak had the highest correlations with the physical abilities field test (r=0.66-0.82, P<0.001). For the 10km Walkback, CS, s-V˙O2max, and running V˙O2max were significant predictors (r=0.64-0.85, P<0.001). CS and to a lesser extent V˙O2max are most strongly associated with tasks that simulate aspects of EVA performance, highlighting CS as a method for evaluating astronaut physical capacity.

  7. Relative contributions of task-relevant and task-irrelevant dimensions in priming of pop-out.

    PubMed

    Michal, Audrey L; Lleras, Alejandro; Beck, Diane M

    2014-01-01

    Intertrial effects such as priming of pop-out (PoP) often occur for task-irrelevant dimensions as well as task-relevant dimensions, though to a weaker extent. Here we test the hypothesis that increased priming for task-relevant dimensions is due to greater passive build-up of priming for the task-relevant dimension rather than to an active filtering of task-irrelevant dimensions; if this is the case, then we should observe a positive correlation between the magnitude of task-relevant and task-irrelevant priming. We tested this hypothesis using a pop-out search task in which the task-relevant dimension was orientation and the task-irrelevant dimension was color. We found a strong, positive association between task-relevant and task-irrelevant priming across a large group of participants (N = 100); additionally, we observed increased priming over consecutive repetitions for the task-relevant dimension, whereas task-irrelevant priming was constant across multiple repetitions. As further evidence against an active filtering account, task-irrelevant priming showed no systematic relationship with visual short-term memory capacity, which has been shown to correlate with filtering ability. Together, our results suggest that task-irrelevant dimensions are co-selected rather than filtered out during target search. Further, increased task-relevant priming may reflect an enhanced representation of the task-relevant dimension that is reinforced over consecutive repetitions. PMID:25311302

  8. Quantum tasks in Minkowski space

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2012-11-01

    The fundamental properties of quantum information and its applications to computing and cryptography have been greatly illuminated by considering information-theoretic tasks that are provably possible or impossible within non-relativistic quantum mechanics. I describe here a general framework for defining tasks within (special) relativistic quantum theory and illustrate it with examples from relativistic quantum cryptography and relativistic distributed quantum computation. The framework gives a unified description of all tasks previously considered and also defines a large class of new questions about the properties of quantum information in relation to Minkowski causality. It offers a way of exploring interesting new fundamental tasks and applications, and also highlights the scope for a more systematic understanding of the fundamental information-theoretic properties of relativistic quantum theory.

  9. Promoting Physical Activity in Hong Kong Chinese Young People: Factors Influencing Their Subjective Task Values and Expectancy Beliefs in Physical Activity

    ERIC Educational Resources Information Center

    Pang, Bonnie

    2014-01-01

    According to Eccles et al.'s (1983) Expectancy Value Model, the two major constructs that influence young people's activity choice are subjective task value and expectancy beliefs (Eccles et al., 1983). Eccles et al. (1983) conceptually distinguished four dimensions of subjective task value: attainment value, intrinsic value, utility…

  10. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  11. TASK-SPECIFIC STABILITY IN MUSCLE ACTIVATION SPACE DURING UNINTENTIONAL MOVEMENTS

    PubMed Central

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L.

    2014-01-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multi-dimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back towards the initial position. Inter-trial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two sub-spaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former sub-space in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  12. Correlation between prefrontal cortex activity during working memory tasks and natural mood independent of personality effects: an optical topography study.

    PubMed

    Aoki, Ryuta; Sato, Hiroki; Katura, Takusige; Matsuda, Ryoichi; Koizumi, Hideaki

    2013-04-30

    Interactions between mood and cognition have drawn much attention in the fields of psychology and neuroscience. Recent neuroimaging studies have examined a neural basis of the mood-cognition interaction that which emphasize the role of the prefrontal cortex (PFC). Although these studies have shown that natural mood variations among participants are correlated with PFC activity during cognitive tasks, they did not control for personality differences. Our aim in this study was to clarify the relationship between natural mood and PFC activity by partialling out the effects of personality. Forty healthy adults completed self-report questionnaires assessing natural mood (the Profile of Mood States) and personality (the NEO Five-Factor Inventory and the Behavioral Inhibition/Activation Systems scales). They performed verbal and spatial working memory (WM) tasks while their PFC activity was measured using optical topography, a non-invasive, low-constraint neuroimaging tool. Correlation analysis showed that the level of negative mood was inversely associated with PFC activity during the verbal WM task, which replicated our previous findings. Furthermore, the negative correlation between negative mood and PFC activity remained significant after controlling for participants' personality traits, suggesting that natural mood is an independent contributing factor of PFC activity during verbal WM tasks.

  13. A preliminary fMRI study of a novel self-paced written fluency task: observation of left-hemispheric activation, and increased frontal activation in late vs. early task phases

    PubMed Central

    Golestanirad, Laleh; Das, Sunit; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI) is of significant interest—but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s). As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consistent with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s) of written phonemic fluency was significantly less (p < 0.05) than the number produced in the early phase (first 30 s). Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among these areas, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9) and cingulate gyrus (BA 24, 32) likely as part of the initiation, maintenance, and shifting of attentional resources. Consistent with previous pertinent fMRI literature involving overt and covert verbal responses, these findings highlight

  14. A preliminary fMRI study of a novel self-paced written fluency task: observation of left-hemispheric activation, and increased frontal activation in late vs. early task phases.

    PubMed

    Golestanirad, Laleh; Das, Sunit; Schweizer, Tom A; Graham, Simon J

    2015-01-01

    Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI) is of significant interest-but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s). As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consistent with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s) of written phonemic fluency was significantly less (p < 0.05) than the number produced in the early phase (first 30 s). Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among these areas, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9) and cingulate gyrus (BA 24, 32) likely as part of the initiation, maintenance, and shifting of attentional resources. Consistent with previous pertinent fMRI literature involving overt and covert verbal responses, these findings highlight the

  15. Utilizing Electroencephalography Measurements for Comparison of Task-Specific Neural Efficiencies: Spatial Intelligence Tasks.

    PubMed

    Call, Benjamin J; Goodridge, Wade; Villanueva, Idalis; Wan, Nicholas; Jordan, Kerry

    2016-01-01

    Spatial intelligence is often linked to success in engineering education and engineering professions. The use of electroencephalography enables comparative calculation of individuals' neural efficiency as they perform successive tasks requiring spatial ability to derive solutions. Neural efficiency here is defined as having less beta activation, and therefore expending fewer neural resources, to perform a task in comparison to other groups or other tasks. For inter-task comparisons of tasks with similar durations, these measurements may enable a comparison of task type difficulty. For intra-participant and inter-participant comparisons, these measurements provide potential insight into the participant's level of spatial ability and different engineering problem solving tasks. Performance on the selected tasks can be analyzed and correlated with beta activities. This work presents a detailed research protocol studying the neural efficiency of students engaged in the solving of typical spatial ability and Statics problems. Students completed problems specific to the Mental Cutting Test (MCT), Purdue Spatial Visualization test of Rotations (PSVT:R), and Statics. While engaged in solving these problems, participants' brain waves were measured with EEG allowing data to be collected regarding alpha and beta brain wave activation and use. The work looks to correlate functional performance on pure spatial tasks with spatially intensive engineering tasks to identify the pathways to successful performance in engineering and the resulting improvements in engineering education that may follow. PMID:27584838

  16. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    PubMed

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  17. Prediction of human actions: expertise and task-related effects on neural activation of the action observation network.

    PubMed

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Stark, Rudolf; Bischoff, Matthias; Zentgraf, Karen; Williams, Andrew Mark; Munzert, Jörn

    2014-08-01

    The action observation network (AON) is supposed to play a crucial role when athletes anticipate the effect of others' actions in sports such as tennis. We used functional magnetic resonance imaging to explore whether motor expertise leads to a differential activation pattern within the AON during effect anticipation and whether spatial and motor anticipation tasks are associated with a differential activation pattern within the AON depending on participant expertise level. Expert (N=16) and novice (N=16) tennis players observed video clips depicting forehand strokes with the instruction to either indicate the predicted direction of ball flight (spatial anticipation) or to decide on an appropriate response to the observed action (motor anticipation). The experts performed better than novices on both tennis anticipation tasks, with the experts showing stronger neural activation in areas of the AON, namely, the superior parietal lobe, the intraparietal sulcus, the inferior frontal gyrus, and the cerebellum. When novices were contrasted with experts, motor anticipation resulted in stronger activation of the ventral premotor cortex, the supplementary motor area, and the superior parietal lobe than spatial anticipation task did. In experts, the comparison of motor and spatial anticipation revealed no increased activation. We suggest that the stronger activation of areas in the AON during the anticipation of action effects in experts reflects their use of the more fine-tuned motor representations they have acquired and improved during years of training. Furthermore, results suggest that the neural processing of different anticipation tasks depends on the expertise level.

  18. Brain Activity toward Gaming-Related Cues in Internet Gaming Disorder during an Addiction Stroop Task

    PubMed Central

    Zhang, Yifen; Lin, Xiao; Zhou, Hongli; Xu, Jiaojing; Du, Xiaoxia; Dong, Guangheng

    2016-01-01

    Background and Aims: Attentional bias for drug-related stimuli is a key characteristic for drug addiction. Characterizing the relationship between attentional bias and brain reactivity to Internet gaming-related stimuli may help in identifying the neural substrates that critical to Internet gaming disorder (IGD). Methods: 19 IGD and 21 healthy control (HC) subjects were scanned with functional magnetic resonance imaging while they were performing an addiction Stroop task. Results: Compared with HC group, IGD subjects showed higher activations when facing Internet gaming-related stimuli in regions including the inferior parietal lobule, the middle occipital gyrus and the dorsolateral prefrontal cortex. These brain areas were thought to be involved in selective attention, visual processing, working memory and cognitive control. Discussion and Conclusions: The results demonstrated that compared with HC group, IGD subjects show impairment in both visual and cognitive control ability while dealing with gaming-related words. This finding might be helpful in understanding the underlying neural basis of IGD. PMID:27242623

  19. Voluntary Task Switching: Chasing the Elusive Homunculus

    ERIC Educational Resources Information Center

    Arrington, Catherine M.; Logan, Gordon D.

    2005-01-01

    In the voluntary task switching procedure, subjects choose the task to perform on a series of bivalent stimuli, requiring top-down control of task switching. Experiments 1-3 contrasted voluntary task switching and explicit task cuing. Choice behavior showed small, inconsistent effects of external stimulus characteristics, supporting the assumption…

  20. The activation of semantic memory: effects of prime exposure, prime-target relationship, and task demands.

    PubMed

    Bueno, Steve; Frenck-Mestre, Cheryl

    2008-06-01

    Priming facilitation was examined under conditions of brief incremental prime exposures (28, 43, 71, and 199 msec) under masked conditions for two types of lexical relationships (associative-semantic pairs, such as "wolf-fox," and semantic-feature pairs, such as "whale-dolphin") and in two tasks (primed lexical decision and semantic categorization). The results of eight experiments revealed, first, that priming elicits faster response times for semantic-feature pairs. The associative-semantic pairs produced priming only at the longer prime exposures. Second, priming was observed earlier for semantic categorization than for the lexical decision task, in which priming was observed only at the longer stimulus onset asynchronies. Finally, our results allowed us to discredit the congruency hypothesis, according to which priming is due to a common categorical response for the prime and target words. The implications of these results for current theories of semantic priming are discussed.

  1. On the Need of Objective Vigilance Monitoring: Effects of Sleep Loss on Target Detection and Task-Negative Activity Using Combined EEG/fMRI

    PubMed Central

    Czisch, Michael; Wehrle, Renate; Harsay, Helga A.; Wetter, Thomas C.; Holsboer, Florian; Sämann, Philipp G.; Drummond, Sean P. A.

    2012-01-01

    Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation (SD) are not fully understood. Previous neuroimaging studies of SD have not been able to separate the effects of reduced arousal from the effects of SD on cerebral responses to cognitive challenges. Here, we used a simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) approach to study the effects of 36 h of total sleep deprivation (TSD). Specifically, we focused on changes in selective attention processes as induced by an active acoustic oddball task, with the ability to isolate runs with objective EEG signs of high (SDalert) or reduced (SDsleepy) vigilance. In the SDalert condition, oddball task-related activity appears to be sustained by compensatory co-activation of insular regions, but task-negative activity in the right posterior node of the default mode network is altered following TSD. In the SDsleepy condition, oddball task-positive activity was massively impaired, but task-negative activation was showing levels comparable with the control condition after a well-rested night. Our results suggest that loss of strict negative correlation between oddball task-positive and task-negative activation reflects the effects of TSD, while the actual state of vigilance during task performance can affects either task-related or task-negative activity, depending on the exact vigilance level. PMID:22557992

  2. Pre- and postnatally administered ACTH, Organon 2766 and CRF facilitate or inhibit active avoidance task performance in young adult mice.

    PubMed

    Honour, L C; White, M H

    1988-01-01

    This study investigated the effect of learning/memory-related neuropeptides on behavioral task performance in later life. A 1 mg/kg dosage of adrenocorticotropic hormone 4-9, Organon 2766, ACTH/MSH 4-10, ACTH 1-24, CRF, or diluent was subcutaneously injected into either pregnant females or into newborn pups during specific neural developmental windows. Each of the progeny was trained in an active-avoidance task and tested for acquisition on postpartum days 35-37. The mice were then tested for memory task performance and reacquisition on days 42-44 postpartum using the identical experimental paradigm as that used in the training sessions. Prenatal treatment with these memory-related neuropeptides resulted in significant facilitation of learning/memory task performance in male and female mice treated with Organon 2766 (p less than 0.001), and a significant inhibition of learning/memory task performance in males and females treated with ACTH 1-24 (p less than 0.01). Additional sex-specific performance facilitations and inhibitions resulted from the pre- or postnatal administration of the various neuropeptides used in this study. These results suggest that neuropeptides, when available in increased amounts during specific neural developmental windows, can significantly improve or suppress related behavioral performance capability in later life.

  3. Increased brain cortical activity during parabolic flights has no influence on a motor tracking task.

    PubMed

    Schneider, Stefan; Brümmer, Vera; Mierau, Andreas; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K

    2008-03-01

    Previous studies showed that changing forces of gravity as they typically occur during parabolic flights might be responsible for adaptional processes of the CNS. However, until now it has not been differentiated between primary influences of weightlessness and secondary influences due to psycho-physiological factors (e.g., physical or mental strain). With the aim of detecting parabolic flight related changes in central cortical activity, a resting EEG was deduced in 16 subjects before, during and after parabolic flights. After subdividing EEG into alpha-, beta-,delta- and theta-wave bands, an increase in beta-power was noticeable inflight, whereas alpha(1)-power was increased postflight. No changes could be observed for the control group. To control possible effects of cortical activation, a manual tracking task with mirror inversion was performed during either the phase of weightlessness or during the normal gravity phase of a parabolic flight. No differences in performance nor in adaptation could be observed between both groups. A third group, performing under normal and stress-free conditions in a lab showed similar tracking values. We assume that the specific increase in brain activity is a sign of an increase in arousal inflight. This does support previous assumptions of non-specific stressors during parabolic flights and has to be considered as a relevant factor for experiments on central nerve adaptation. Although no influences of stress and/or weightlessness on motor performance and adaptation could be observed, we suggest that an "inflight" control group seems to be more adequate than a laboratory control group to investigate gravity-dependent changes in motor control.

  4. Jogging improved performance of a behavioral branching task: implications for prefrontal activation.

    PubMed

    Harada, Taeko; Okagawa, Satoru; Kubota, Kisou

    2004-07-01

    We studied the effect of habitual jogging on the performance of a frontal lobe functioning test. Fourteen subjects were divided into a jogging trained group (TG) or a jogging untrained group (NG). The TG jogged for 12 weeks, for 30 min, 2.6 times per week, while the NG did not. We administered a prefrontal branching task (BR) combining a Spatial Delayed-Response Test (DR) and a Go/No-Go Test (GNG). Each test alone and a Simple Reaction Time Test (SR) were given as controls. All tests were given three times at 6 week intervals over 12 weeks in both groups. In the TG, the tests were given two times after termination of the jogging. The maximal oxygen uptake (VO2max) was measured in the TG during the 12 weeks. After 12 weeks, the correct performance rates in the BR task were more improved in the TG than in the NG. The control and reaction time tests were unchanged in both groups. The improved performance in the BR task in the TG decreased after stopping the jogging. The VO2max increased significantly during the 12 weeks of jogging in the TG. Thus, the habitual jogging improved performance in a prefrontal BR.

  5. Tonic and phasic activation and arousal effects as a function of feedback in repetitive-choice reaction time tasks.

    PubMed

    De Brabander, Bert; Declerck, Carolyn H; Boone, Christophe

    2002-06-01

    This study examines the effects of positive and negative feedback on performance during choice reaction time tasks to assess whether they differentially affect phasic arousal and tonic activation. Participants (N = 96) received either no feedback or signals of reward, punishment, or both during a semantic and a visuospatial repetitive-choice reaction time task. The number of errors made was analyzed both on a trial-by-trial basis and over a continuous series of 80 trials (assessing phasic and tonic feedback effects, respectively). The results show that punishment and reward have different phasic and tonic effects on performance. The data further show that feedback effects interact with the task characteristics: semantic versus visuospatial, and reaction stimulus preceded by a warning signal versus an irrelevant signal. The interaction effects appear to be consistent with the proposed neurological model.

  6. Effects of task-oriented training on upper extremity function and performance of daily activities by chronic stroke patients

    PubMed Central

    Park, JuHyung; Yoo, Chanuk

    2015-01-01

    [Purpose] The aim of this study was to determine the effects that task-oriented training has on upper extremity function and performance of daily activities by chronic stroke patients. [Subjects and Methods] Task-oriented training was applied to two chronic hemiplegic patients in this research. The training was provided to each patient for 30 minutes a day, five times a week for two weeks. The treatment program included six different types of training that could be performed by the patients themselves. Evaluation was performed four times, that is, once a week for three weeks before the intervention and once after the intervention. The change in upper extremity function was measured with the Manual Function Test, and the change in performance of daily activity was measured with the Functional Independence Measure. [Results] The upper extremity function of both subjects was improved after application of task-oriented training. However, in the performance of daily activities, subject one showed improvement compared to with before the intervention, whereas subject two showed the same results. [Conclusion] This research confirmed that two weeks of task-oriented training for chronic stroke patients is effective for improvement of upper extremity function and performance of daily activities by chronic stroke patients. PMID:26355425

  7. Comparison of brain activation patterns during executive function tasks in hoarding disorder and non-hoarding OCD.

    PubMed

    Hough, Christina M; Luks, Tracy L; Lai, Karen; Vigil, Ofilio; Guillory, Sylvia; Nongpiur, Arvind; Fekri, Shiva M; Kupferman, Eve; Mathalon, Daniel H; Mathews, Carol A

    2016-09-30

    We examined differences in regional brain activation during tests of executive function in individuals with Hoarding Disorder (HD), Obsessive Compulsive Disorder (OCD), and healthy controls (HC) using functional magnetic resonance imaging (fMRI). Participants completed computerized versions of the Stroop and Go/No-Go task. We found that during the conflict monitoring and response inhibition condition in the Go/No-Go task, individuals with HD had significantly greater activity than controls in the anterior cingulate cortex (ACC) and right dorsolateral prefrontal cortex (DLPFC). HD also exhibited significantly greater right DLPFC activity than OCD. We also observed significant differences in activity between HD and HC and between HD and OCD in regions (ACC, anterior insula, orbitofrontal cortex, and striatum) involved in evaluating stimulus-response-reward associations, or the personal and task-relevant value of stimuli and behavioral responses to stimuli. These results support the hypothesis that individuals with HD have difficulty deciding on the value or task relevance of stimuli, and may perceive an abnormally high risk of negative feedback for difficult or erroneous cognitive behavior. PMID:27522332

  8. Active Tasks to Change the Use of Class Time within an Outcomes Based Approach to Curriculum Design

    ERIC Educational Resources Information Center

    Salter, Diane; Pang, Marco Y. C.; Sharma, Piyush

    2009-01-01

    This paper describes how new roles for instructors and learners can be integrated into course design and delivery by rethinking course design as part of a process-based staff development program. The goal of incorporating online learning tasks was to engage students with course resources prior to class time through active learning. The staff…

  9. Brain Activity in Adults Who Stutter: Similarities across Speaking Tasks and Correlations with Stuttering Frequency and Speaking Rate

    ERIC Educational Resources Information Center

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent…

  10. The Effects of Preferred Activities during Academic Work Breaks on Task Engagement and Negatively Reinforced Destructive Behavior.

    ERIC Educational Resources Information Center

    McComas, Jennifer J.; Goddard, Carol; Hoch, Hannah

    2002-01-01

    Destructive behavior of 9-year-old with learning disabilities was evaluated in a functional analysis. The effects of extinction, negative reinforcement, and negative reinforcement combined with access to preferred activities were compared on behavior and task engagement. Engagement occurred most and destructive behavior occurred least when…

  11. 3-D Art Tasks.

    ERIC Educational Resources Information Center

    Niswander, Virginia

    1983-01-01

    Perceptual motor dysfunctions may not allow children with learning and behavior problems to perform as most children do. A successful art activity for these children is construction using wood scraps. (SR)

  12. Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas.

    PubMed

    Andoh, Jamila; Paus, Tomás

    2011-02-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word recognition tasks. To investigate the neural substrate of these behavioral effects, off-line rTMS was combined with fMRI acquired during the performance of a word recognition task. Twenty right-handed healthy men underwent fMRI scans before and after a session of 10-Hz rTMS applied outside the magnetic resonance scanner. Functional magnetic resonance images were acquired during the performance of a word recognition task that used English or foreign-language words. rTMS was applied over the LTMP in one group of 10 participants (LTMP group), whereas the homologue region in the right hemisphere was stimulated in another group of 10 participants (RTMP group). Changes in task-related fMRI response (English minus foreign languages) and task performances (response time and accuracy) were measured in both groups and compared between pre-rTMS and post-rTMS. Our results showed that rTMS increased task-related fMRI response in the homologue areas contralateral to the stimulated sites. We also found an effect of rTMS on response time for the LTMP group only. These findings provide insights into changes in neural activity in cortical regions connected to the stimulated site and are consistent with a hypothesis raised in a previous review about the role of the homologue areas in the contralateral hemisphere for preserving behavior after neural interference.

  13. A neural measure of behavioral engagement: task-residual low-frequency blood oxygenation level-dependent activity in the precuneus.

    PubMed

    Zhang, Sheng; Li, Chiang-Shan Ray

    2010-01-15

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low-frequency blood oxygenation level-dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit - including the precuneus and medial prefrontal cortex (mPFC) - showing greater activation during resting as compared to task residuals in 33 individuals. Time series correlations with the posterior cingulate cortex as the seed region showed that connectivity with the precuneus was significantly stronger during resting as compared to task residuals. We hypothesized that if the task-residual BOLD activity in the precuneus reflects engagement, it should account for a certain amount of variance in task-related regional brain activation. In an additional experiment of 59 individuals performing a stop signal task, we observed that the fractional amplitude of low-frequency fluctuation (fALFF) of the precuneus but not the mPFC accounted for approximately 10% of the variance in prefrontal activation related to attentional monitoring and response inhibition. Taken together, these results suggest that task-residual fALFF in the precuneus may be a potential indicator of task engagement. This measurement may serve as a useful covariate in identifying motivation-independent neural processes that underlie the pathogenesis of a psychiatric or neurological condition.

  14. Differences in cortical activity between methamphetamine-dependent and healthy individuals performing a facial affect matching task.

    PubMed

    Payer, Doris E; Lieberman, Matthew D; Monterosso, John R; Xu, Jiansong; Fong, Timothy W; London, Edythe D

    2008-01-11

    As individuals who abuse methamphetamine (MA) often exhibit socially maladaptive behaviors such as violence and aggression, it is possible that they respond abnormally to social cues. To investigate this issue, we exposed 12 MA-dependent participants (abstinent 5-16 days) and 12 healthy comparison participants to fearful and angry faces while they performed an affect matching task during functional magnetic resonance imaging (fMRI). Although the groups did not differ in task performance, the healthy participants showed more task-related activity than the MA-dependent participants in a set of cortical regions consisting of the ventrolateral prefrontal cortex (VLPFC), temporoparietal junction (TPJ), anterior and posterior temporal cortex, and fusiform gyrus in the right hemisphere, and the cuneus in the left hemisphere. In contrast, the MA-dependent participants showed more task-related activity than the healthy participants in the dorsal anterior cingulate cortex (dACC). As expected, the task elicited activation of the amygdala in both groups; however, contrary to expectation, we found no difference between groups in this activation. Dorsal ACC hyperactivity, along with high self-ratings of hostility and interpersonal sensitivity in the MA-dependent group, suggest a hyper-sensitivity to socially threatening cues in the MA-dependent participants, while lower VLPFC activation could point to a deficit in integrating socio-emotional information and/or regulating this limbic hyperactivity. Additional activation differences in neural circuitry related to social cognition (TPJ, anterior, and posterior temporal cortex) suggest further socio-emotional deficits. Together, the results point to cortical abnormalities that could underlie the socially inappropriate behaviors often shown by individuals who abuse MA. PMID:17964741

  15. Task-induced brain activity in aphasic stroke patients: what is driving recovery?

    PubMed

    Geranmayeh, Fatemeh; Brownsett, Sonia L E; Wise, Richard J S

    2014-10-01

    attributed to activity in 'language networks' occupying sites not observed in healthy participants. In this review we will argue that much of the distribution of what has often been interpreted as language-specific activity, particularly in midline and contralateral cortical regions, is an upregulation of activity in intact domain-general systems for cognitive control and attention, responding in a task-dependent manner to the increased 'effort' when damaged downstream domain-specific language networks are impaired. We further propose that it is an inability fully to activate these systems that may result in sub optimal recovery in some patients. Interpretation of the data in terms of activity in domain-general networks affords insights into novel approaches to rehabilitation.

  16. Task-Oriented Evaluation.

    ERIC Educational Resources Information Center

    Kanis, Ira B.

    1992-01-01

    In 1985, participants in the Second International Science Study developed and evaluated hands-on problem-solving activities and gave students the opportunity to demonstrate mastery of science process skills. Six evaluation stations for fifth and sixth graders are presented: Blowing in a Liquid, Compare and Contrast, Electrical Circuit, Hot and…

  17. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C. (Editor)

    1978-01-01

    A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.

  18. Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system

    NASA Astrophysics Data System (ADS)

    Atsumori, Hirokazu; Kiguchi, Masashi; Katura, Takusige; Funane, Tsukasa; Obata, Akiko; Sato, Hiroki; Manaka, Takaaki; Iwamoto, Mitsumasa; Maki, Atsushi; Koizumi, Hideaki; Kubota, Kisou

    2010-07-01

    Optical topography (OT) based on near-infrared spectroscopy is a noninvasive technique for mapping the relative concentration changes in oxygenated and deoxygenated hemoglobin (oxy- and deoxy-Hb, respectively) in the human cerebral cortex. In our previous study, we developed a small and light wearable optical topography (WOT) system that covers the entire forehead for monitoring prefrontal activation. In the present study, we examine whether the WOT system is applicable to OT measurement while walking, which has been difficult with conventional OT systems. We conduct OT measurements while subjects perform an attention-demanding (AD) task of balancing a ping-pong ball on a small card while walking. The measured time course and power spectra of the relative concentration changes in oxy- and deoxy-Hb show that the step-related changes in the oxy- and deoxy-Hb signals are negligible compared to the task-related changes. Statistical assessment of the task-related changes in the oxy-Hb signals show that the dorsolateral prefrontal cortex and rostral prefrontal area are significantly activated during the AD task. These results suggest that our functional imaging technique with the WOT system is applicable to OT measurement while walking, and will be a powerful tool for evaluating brain activation in a natural environment.

  19. Reduced task-induced variations in the distribution of activity across back muscle regions in individuals with low back pain.

    PubMed

    Falla, Deborah; Gizzi, Leonardo; Tschapek, Marika; Erlenwein, Joachim; Petzke, Frank

    2014-05-01

    This study investigated change in the distribution of lumbar erector spinae muscle activity and pressure pain sensitivity across the low back in individuals with low back pain (LBP) and healthy controls. Surface electromyographic (EMG) signals were recorded from multiple locations over the lumbar erector spinae muscle with a 13×5 grid of electrodes from 19 people with chronic nonspecific LBP and 17 control subjects as they performed a repetitive lifting task. The EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution. Pressure pain thresholds (PPT) were recorded before and after the lifting task over a similar area of the back. For the control subjects, the EMG RMS progressively increased more in the caudal region of the lumbar erector spinae during the repetitive task, resulting in a shift in the distribution of muscle activity. In contrast, the distribution of muscle activity remained unaltered in the LBP group despite an overall increase in EMG amplitude. PPT was lower in the LBP group after completion of the repetitive task compared to baseline (average across all locations: pre: 268.0±165.9 kPa; post: 242.0±166.7 kPa), whereas no change in PPT over time was observed for the control group (320.1±162.1 kPa; post: 322.0±179.5 kPa). The results demonstrate that LBP alters the normal adaptation of lumbar erector spinae muscle activity to exercise, which occurs in the presence of exercise-induced hyperalgesia. Reduced variability of muscle activity may have important implications for the provocation and recurrence of LBP due to repetitive tasks.

  20. Brain oscillatory signatures of motor tasks.

    PubMed

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  1. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  2. Brain Activation and Deactivation during Location and Color Working Memory Tasks in 11-13-Year-Old Children

    ERIC Educational Resources Information Center

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove

    2009-01-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…

  3. Differences in Induced Brain Activity during the Performance of Learning and Working-Memory Tasks Related to Intelligence

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2004-01-01

    Thirteen high intelligent (H-IQ) and 13 low intelligent (L-IQ) individuals solved two figural working-memory (WM) tasks and two figural learning tasks while their EEG was recorded. For the WM tasks, only in the theta band group related differences in induced event-related desynchronization/synchronization (ERD/ERS) were observed. L-IQ individuals…

  4. Characterization of task-free and task-performance brain states via functional connectome patterns.

    PubMed

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain.

  5. Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns

    PubMed Central

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2014-01-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590

  6. Cortical activity of skilled performance in a complex sports related motor task.

    PubMed

    Baumeister, Jochen; Reinecke, Kirsten; Liesen, Heinz; Weiss, Michael

    2008-11-01

    A skilled player in goal-directed sports performance has the ability to process internal and external information in an effective manner and decide which pieces of information are important and which are irrelevant. Focused attention and somatosensory information processing play a crucial role in this process. Electroencephalographic (EEG) recordings are able to demonstrate cortical changes in conjunction with this concept and were examined during a golf putting performance in an expert-novice paradigm. The success in putting (score) and performance-related cortical activity were recorded with an EEG during a 5 x 4 min putting series. Subjects were asked to putt balls for four min at their own pace. The EEG data was divided into different frequencies: Theta (4.75-6.75 Hz), Alpha-1 (7-9.5 Hz), Alpha-2 (9.75-12.5 Hz) and Beta-1 (12.75-18.5 Hz) and performance related power values were calculated. Statistical analysis shows significant better performance in the expert golfers (P < 0.001). This was associated with higher fronto-midline Theta power (P < 0.05) and higher parietal Alpha-2 power values (P < 0.05) compared to the novices in golf putting. Frontal Theta and parietal Alpha-2 spectral power in the ongoing EEG demonstrate differences due to skill level. Furthermore the findings suggest that with increasing skill level, golfers have developed task solving strategies including focussed attention and an economy in parietal sensory information processing which lead to more successful performance. In a theoretical framework both cortical parameters may play a role in the concept of the working memory. PMID:18607621

  7. Comparison of functional magnetic resonance imaging in cerebral activation between normal Uygur and Mandarin participants in semantic identification task

    PubMed Central

    Xi, Yan-Ling; Tian, Qing; Tuerxun, Tuerhong; Kaheman, Kuerbannaimu; Jiang, Chun-Hui; Huang, Hai-Xia; Wang, Bao-Lan

    2015-01-01

    Purpose: This study utilized blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) technology to study the activated cerebral regions in normal participants whose native language was Uyghur or Chinese. Methods: We collected the fMRI data from 15 Uyghur-speaking volunteers and 15 Mandarin-speaking volunteers when executing the semantic identification task and compared the results of two groups. Results: Statistically significant difference of brain activation was found primarily in the left anterior cingulate gyrus (BA23) and the midline precuneus (P<0.05). When performing the semantic identification task, the Uyghur group exhibited significant activation in these two regions, whereas the Chinese group demonstrated relatively weak activation in these areas. Conclusion: The cerebral regions activated by Uyghur and Chinese semantic identification are not identical, the dominant hemisphere for both languages is the left cerebral hemisphere. The left anterior cingulate gyrus might have a language function in Uyghur semantic processing. PMID:26550318

  8. Comparison of Lower Extremity Kinematics and Hip Muscle Activation During Rehabilitation Tasks Between Sexes

    PubMed Central

    Dwyer, Maureen K.; Boudreau, Samantha N.; Mattacola, Carl G.; Uhl, Timothy L.; Lattermann, Christian

    2010-01-01

    Abstract Context: Closed kinetic chain exercises are an integral part of rehabilitation programs after lower extremity injury. Sex differences in lower extremity kinematics have been reported during landing and cutting; however, less is known about sex differences in movement patterns and activation of the hip musculature during common lower extremity rehabilitation exercises. Objective: To determine whether lower extremity kinematics and muscle activation levels differ between sexes during closed kinetic chain rehabilitation exercises. Design: Cross-sectional with 1 between-subjects factor (sex) and 1 within-subjects factor (exercise). Setting: Research laboratory. Patients or Other Participants: Participants included 21 women (age  =  23 ± 5.8 years, height  =  167.6 ± 5.1 cm, mass  =  63.7 ± 5.9 kg) and 21 men (age  =  23 ± 4.0 years, height  =  181.4 ± 7.4 cm, mass  =  85.6 ± 16.5 kg). Intervention(s): In 1 testing session, participants performed 3 trials each of single-leg squat, lunge, and step-up-and-over exercises. Main Outcome Measure(s): We recorded the peak joint angles (degrees) of knee flexion and valgus and hip flexion, extension, adduction, and external rotation for each exercise. We also recorded the electromyographic activity of the gluteus maximus, rectus femoris, adductor longus, and bilateral gluteus medius muscles for the concentric and eccentric phases of each exercise. Results: Peak knee flexion angles were smaller and peak hip extension angles were larger for women than for men across all tasks. Peak hip flexion angles during the single-leg squat were smaller for women than for men. Mean root-mean-square amplitudes for the gluteus maximus and rectus femoris muscles in both the concentric and eccentric phases of the 3 exercises were greater for women than for men. Conclusions: Sex differences were observed in sagittal-plane movement patterns during the rehabilitation exercises. Because of the sex differences

  9. Of "what" and "where" in a natural search task: Active object handling supports object location memory beyond the object's identity.

    PubMed

    Draschkow, Dejan; Võ, Melissa L-H

    2016-08-01

    Looking for as well as actively manipulating objects that are relevant to ongoing behavioral goals are intricate parts of natural behavior. It is, however, not clear to what degree these two forms of interaction with our visual environment differ with regard to their memory representations. In a real-world paradigm, we investigated if physically engaging with objects as part of a search task influences identity and position memory differently for task-relevant versus irrelevant objects. Participants equipped with a mobile eye tracker either searched for cued objects without object interaction (Find condition) or actively collected the objects they found (Handle condition). In the following free-recall task, identity memory was assessed, demonstrating superior memory for relevant compared to irrelevant objects, but no difference between the Handle and Find conditions. Subsequently, location memory was inferred via times to first fixation in a final object search task. Active object manipulation and task-relevance interacted in that location memory for relevant objects was superior to irrelevant ones only in the Handle condition. Including previous object recall performance as a covariate in the linear mixed-model analysis of times to first fixation allowed us to explore the interaction between remembered/forgotten object identities and the execution of location memory. Identity memory performance predicted location memory in the Find but not the Handle condition, suggesting that active object handling leads to strong spatial representations independent of object identity memory. We argue that object handling facilitates the prioritization of relevant location information, but this might come at the cost of deprioritizing irrelevant information. PMID:27165170

  10. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    NASA Technical Reports Server (NTRS)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  11. Effects of Selected Task Performance Criteria at Initiating Adaptive Task Real locations

    NASA Technical Reports Server (NTRS)

    Montgomery, Demaris A.

    2001-01-01

    In the current report various performance assessment methods used to initiate mode transfers between manual control and automation for adaptive task reallocation were tested. Participants monitored two secondary tasks for critical events while actively controlling a process in a fictional system. One of the secondary monitoring tasks could be automated whenever operators' performance was below acceptable levels. Automation of the secondary task and transfer of the secondary task back to manual control were either human- or machine-initiated. Human-initiated transfers were based on the operator's assessment of the current task demands while machine-initiated transfers were based on the operators' performance. Different performance assessment methods were tested in two separate experiments.

  12. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  13. Authentic Tasks Online: A Synergy among Learner, Task, and Technology

    ERIC Educational Resources Information Center

    Herrington, Jan; Reeves, Thomas C.; Oliver, Ron

    2006-01-01

    Fostering synergies amongst "learner," "task," and "technology" to create innovative and immersive distance learning environments runs counter to the widespread practice of incorporating traditional classroom pedagogical strategies into Web-based delivery of courses. The most widely accepted model of online higher education appears to be one of…

  14. Task Lists for Industrial Occupations. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Dimmlich, David

    These cluster matrices provide duties and tasks that form the basis of instructional content for secondary, postsecondary, and adult occupational training programs for industrial occupations. Duties and skills are presented for the following: (1) electric home appliance and power tool repairers; (2) office machine/cash register repairer; (3)…

  15. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    SciTech Connect

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  16. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics

    PubMed Central

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  17. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics.

    PubMed

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  18. Working Memory, Task Switching, and Executive Control in the Task Span Procedure

    ERIC Educational Resources Information Center

    Logan, Gordon D.

    2004-01-01

    Four experiments explored the task span procedure: Subjects received lists of 1-10 task names to remember and then lists of 1-10 stimuli on which to perform the tasks. Task span is the number of tasks performed in order perfectly. Experiment 1 compared the task span with the traditional memory span in 6 practiced subjects and found little…

  19. Quantifying familial influences on brain activation during the monetary incentive delay task: An adolescent monozygotic twin study

    PubMed Central

    Silverman, Merav H.; Krueger, Robert F.; Iacono, William G.; Malone, Stephen M.; Hunt, Ruskin H.; Thomas, Kathleen M.

    2014-01-01

    Although altered brain activation during reward tasks has been found in a number of heritable psychiatric disorders and health outcomes, the familial nature of reward-related brain activation remains unexplored. In this study, we investigated the degree to which the magnitude of mesocorticolimbic reward system signal intensities in anticipation of reward during the monetary incentive delay (MID) task was similar within forty-six pairs of adolescent, monozygotic twins. Significant within-pair correlations in brain activation during anticipation of gain were found in one third of the 18 reward-related regions investigated. These regions were the right nucleus accumbens, left and right posterior caudate, right anterior caudate, left insula, and anterior cingulate cortex. This serves as evidence for a shared familial contribution to individual differences in reward related brain activity in certain key reward processing regions. PMID:25101864

  20. Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance.

    PubMed

    Coste, Clio P; Sadaghiani, Sepideh; Friston, Karl J; Kleinschmidt, Andreas

    2011-11-01

    Recent studies have established a relation between ongoing brain activity fluctuations and intertrial variability in evoked neural responses, perception, and motor performance. Here, we extended these investigations into the domain of cognitive control. Using functional neuroimaging and a sparse event-related design (with long and unpredictable intervals), we measured ongoing activity fluctuations and evoked responses in volunteers performing a Stroop task with color-word interference. Across trials, prestimulus activity of several regions predicted subsequent response speed and across subjects this effect scaled with the Stroop effect size, being significant only in subjects manifesting behavioral interference. These effects occurred only in task relevant as the dorsal anterior cingulate and dorsolateral prefrontal cortex as well as ventral visual areas sensitive to color and visual words. Crucially, in subjects showing a Stroop effect, reaction times were faster when prestimulus activity was higher in task-relevant (color) regions and slower when activity was higher in irrelevant (word form) regions. These findings suggest that intrinsic brain activity fluctuations modulate neural mechanisms underpinning selective voluntary attention and cognitive control. Rephrased in terms of predictive coding models, ongoing activity can hence be considered a proxy of the precision (gain) with which prediction error signals are transmitted upon sensory stimulation.

  1. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    PubMed Central

    Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949

  2. A synthesized heuristic task scheduling algorithm.

    PubMed

    Dai, Yanyan; Zhang, Xiangli

    2014-01-01

    Aiming at the static task scheduling problems in heterogeneous environment, a heuristic task scheduling algorithm named HCPPEFT is proposed. In task prioritizing phase, there are three levels of priority in the algorithm to choose task. First, the critical tasks have the highest priority, secondly the tasks with longer path to exit task will be selected, and then algorithm will choose tasks with less predecessors to schedule. In resource selection phase, the algorithm is selected task duplication to reduce the interresource communication cost, besides forecasting the impact of an assignment for all children of the current task permits better decisions to be made in selecting resources. The algorithm proposed is compared with STDH, PEFT, and HEFT algorithms through randomly generated graphs and sets of task graphs. The experimental results show that the new algorithm can achieve better scheduling performance.

  3. Cortical subnetwork dynamics during human language tasks.

    PubMed

    Collard, Maxwell J; Fifer, Matthew S; Benz, Heather L; McMullen, David P; Wang, Yujing; Milsap, Griffin W; Korzeniewska, Anna; Crone, Nathan E

    2016-07-15

    Language tasks require the coordinated activation of multiple subnetworks-groups of related cortical interactions involved in specific components of task processing. Although electrocorticography (ECoG) has sufficient temporal and spatial resolution to capture the dynamics of event-related interactions between cortical sites, it is difficult to decompose these complex spatiotemporal patterns into functionally discrete subnetworks without explicit knowledge of each subnetwork's timing. We hypothesized that subnetworks corresponding to distinct components of task-related processing could be identified as groups of interactions with co-varying strengths. In this study, five subjects implanted with ECoG grids over language areas performed word repetition and picture naming. We estimated the interaction strength between each pair of electrodes during each task using a time-varying dynamic Bayesian network (tvDBN) model constructed from the power of high gamma (70-110Hz) activity, a surrogate for population firing rates. We then reduced the dimensionality of this model using principal component analysis (PCA) to identify groups of interactions with co-varying strengths, which we term functional network components (FNCs). This data-driven technique estimates both the weight of each interaction's contribution to a particular subnetwork, and the temporal profile of each subnetwork's activation during the task. We found FNCs with temporal and anatomical features consistent with articulatory preparation in both tasks, and with auditory and visual processing in the word repetition and picture naming tasks, respectively. These FNCs were highly consistent between subjects with similar electrode placement, and were robust enough to be characterized in single trials. Furthermore, the interaction patterns uncovered by FNC analysis correlated well with recent literature suggesting important functional-anatomical distinctions between processing external and self-produced speech. Our

  4. ASPEN PLUS modeling of the SRC-I Demonstration Plant. Task 19: modeling support activities report

    SciTech Connect

    Not Available

    1984-09-28

    The APCI version of ASPEN PLUS was maintained and enhanced in order to support the requirements of the simulation effort described in the earlier tasks. The support effort is conveniently divided into systems support and technical support in the areas of flowsheeting and thermophysical properties. Systems support required installation of the fourth release of ASPEN PLUS, installation of AspenTech's updates to correct program errors, and several general maintenance tasks unique to the APCI version of ASPEN PLUS. Technical support in the area of flowsheeting consisted of the organization of training courses, consultation in solving simulation problems, and identifying and resolving problems resulting from bugs in ASPEN PLUS. Thermodynamic technical support consisted of developing a few new models, implementing the coal-fluid thermophysical models into ASPEN PLUS, providing convenient access to the physical properties through INSERTs, and consultation to resolve simulation problems resulting from the nonideality of the properties. All software enhancements to ASPEN PLUS have been described and delivered so that APCI's version of the program may be duplicated and maintained at other sites. 16 references.

  5. Automatic activation of phonological information in reading: evidence from the semantic relatedness decision task.

    PubMed

    Luo, C R; Johnson, R A; Gallo, D A

    1998-07-01

    A semantic relatedness decision task was used to investigate whether phonological recording occurs automatically and whether it mediates lexical access in visual word recognition and reading. In this task, subjects read a pair of words and decided whether they were related or unrelated in meaning. In Experiment 1, unrelated word-homophone pairs (e.g., LION-BARE) and their visual controls (e.g., LION-BEAN) as well as related word pairs (e.g., FISH-NET) were presented. Homophone pairs were more likely to be judged as related or more slowly rejected as unrelated than their control pairs, suggesting phonological access of word meanings. In Experiment 2, word-pseudohomophone pairs (e.g., TABLE-CHARE) and their visual controls (e.g., TABLE-CHARK) as well as related and unrelated word pairs were presented. Pseudohomophone pairs were more likely to be judged as related or more slowly rejected as unrelated than their control pairs, again suggesting automatic phonological recording in reading. PMID:9701974

  6. Task Selection, Task Switching and Multitasking during Computer-Based Independent Study

    ERIC Educational Resources Information Center

    Judd, Terry

    2015-01-01

    Detailed logs of students' computer use, during independent study sessions, were captured in an open-access computer laboratory. Each log consisted of a chronological sequence of tasks representing either the application or the Internet domain displayed in the workstation's active window. Each task was classified using a three-tier schema…

  7. Task Descriptions in Diagnostic Radiology. Research Report No. 7. Volume 2, Radiologic Technologist Tasks Dealing with Patient Procedures. Part I: Tasks 7 through 386.

    ERIC Educational Resources Information Center

    Gilpatrick, Eleanor

    Part I of the second of four volumes in Research Report No. 7 of the Health Services Mobility Study (HSMS), this book contains 76 task descriptions covering most of the medical activities carried out by radiologic technologists. Chapter I of this volume defines "tasks" and tells how the descriptions were developed. Chapter 2 lists the tasks by…

  8. Task-Based Writing Instruction

    ERIC Educational Resources Information Center

    Bantis, Alexandros

    2010-01-01

    The purpose of this study was to investigate the impact of task-based writing instruction, a communicative language-teaching method, on second language acquisition and differentiation of instruction for English language learners during the independent work time instructional component of the Open Court Reading program. Through student-teacher…

  9. Dimensions of Organizational Task Environments.

    ERIC Educational Resources Information Center

    Dess, Gregory G.; Beard, Donald W.

    1984-01-01

    Reducing Aldrich's codification of organizational task environments from six to three dimensions--munificence (capacity), complexity (homogeneity-heterogeneity, concentration-dispersion), and dynamism (stability-instability, turbulence), the authors use interim and factor analytical techniques to explore each dimension's viability and draw…

  10. American Indian Task Force Report.

    ERIC Educational Resources Information Center

    Mackey, John E., Ed.

    Assuming that the client is central to any service program, the American Indian Task Force examined a national sample of "grass roots" social service organizations and/or individuals and schools of social work to determine the capability of providing relevant social work education to American Indians. Accordingly, the highest priorities…

  11. Tasks Ahead for Indian Education.

    ERIC Educational Resources Information Center

    Yadav, R. K.

    1980-01-01

    Reviews past accomplishments and remaining tasks in Indian education with particular emphasis on the production of technical and professional personnel to match the nation's labor needs and the spread of education to three previously disadvantaged groups: rural populations, women, and the scheduled castes and tribes. (SJL)

  12. Incidental Learning and Task Boundaries

    ERIC Educational Resources Information Center

    Freedberg, Michael; Wagschal, Tana T.; Hazeltine, Eliot

    2014-01-01

    For skill learning processes to be effective, they must encode associations that are inherent to the current task and avoid those that are spurious or particular to training conditions so that learning can transfer to novel situations. Some everyday contexts even require grouped responding to simultaneously presented stimuli. Here we test whether…

  13. Task-driven dictionary learning.

    PubMed

    Mairal, Julien; Bach, Francis; Ponce, Jean

    2012-04-01

    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations. PMID:21808090

  14. Task Group 9 Update (Presentation)

    SciTech Connect

    Bosco, N.

    2014-04-01

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  15. A Population of Assessment Tasks

    ERIC Educational Resources Information Center

    Daro, Phil; Burkhardt, Hugh

    2012-01-01

    We propose the development of a "population" of high-quality assessment tasks that cover the performance goals set out in the "Common Core State Standards for Mathematics." The population will be published. Tests are drawn from this population as a structured random sample guided by a "balancing algorithm."

  16. Inhibition in Prolonged Work Tasks.

    ERIC Educational Resources Information Center

    van der Ven, A. H. G. S.; And Others

    1989-01-01

    A new model is presented that explains reaction time fluctuations in prolonged work tasks. The model extends the so-called Poisson-Erlang model and accounts for long-term trend effects in the reaction time curve. The model is consistent with Spearman's hypothesis that inhibition increases during work and decreases during rest. (TJH)

  17. TASK ANALYSIS AND TRAINING DESIGN.

    ERIC Educational Resources Information Center

    ANNETT, J.; DUNCAN, K.D.

    PERHAPS THE MAJOR PROBLEM IN TASK ANALYSIS FOR INDUSTRIAL TRAINING IS TO DETERMINE WHAT TO DESCRIBE AND ON WHAT LEVEL OF DETAIL. MANY DIFFERENT LEVELS OF DESCRIPTION MAY BE NEEDED TO ESTIMATE THE COST OF INADEQUATE PERFORMANCE TO A SYSTEM AND THE PROBABILITY OF ADEQUATE PERFORMANCE WITHOUT TRAINING--THE PROBLEM OF IDENTIFYING DIFFICULT COMPONENTS…

  18. Supporting Task-Focused Communication.

    ERIC Educational Resources Information Center

    Lipinski, Hubert; And Others

    The extension of computer based communication to the more task-focused communication required by groups involved in joint problem solving is discussed in this paper. Specifically, it addresses three areas: (1) the aspects of the joint problem solving that are most suited to computer based communication support, (2) the computer based communication…

  19. Upper Secondary Students' Task Reasoning

    ERIC Educational Resources Information Center

    Bergqvist, T.; Lithner, J.; Sumpter, L.

    2008-01-01

    Upper secondary students' task solving reasoning was analysed, with a focus on grounds for different strategy choices and implementations. The results indicate that mathematically well-founded considerations were rare. The dominating reasoning types were algorithmic reasoning, where students tried to remember a suitable algorithm, sometimes in a…

  20. Timing Tasks Synchronize Cerebellar and Frontal Ramping Activity and Theta Oscillations: Implications for Cerebellar Stimulation in Diseases of Impaired Cognition

    PubMed Central

    Parker, Krystal L.

    2016-01-01

    Timing is a fundamental and highly conserved mammalian capability, yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning, which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here, we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. Lastly, we hypothesize that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. This hypothesis could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic potential of

  1. Relation Between Prefrontal Cortex Activity and Respiratory Rate During Mental Stress Tasks: A Near-Infrared Spectroscopic Study.

    PubMed

    Murayama, Yuta; Hu, Lizhen; Sakatani, Kaoru

    2016-01-01

    In order to clarify the central mechanism controlling respiratory rate during mental stress, we examined the relation between prefrontal cortex (PFC) activity and respiratory rate during mental arithmetic (MA) tasks. Employing two-channel near-infrared spectroscopy (NIRS), we measured hemoglobin (Hb) concentration changes in the bilateral PFC during MA tasks in normal adults. To evaluate asymmetry of the PFC activity, we calculated the laterality index (LI); (R-L)/(R + L) of oxy-Hb concentration changes (R = right, L = left); positive LI scores indicate right-dominant activity, while negative scores indicate left-dominant activity. For measurements of respiratory rate, we employed a Kinect motion sensor (Microsoft). The MA tasks increased both oxy-Hb in the bilateral PFC and respiratory rate (p < 0.001). In addition, there was a significant correlation between LI and respiratory rate (r = 0.582, p < 0.02). These results indicate that the MA-induced activity in the right PFC was greater than that in the left PFC in subjects with large increases of respiratory rate, suggesting that the right PFC has a greater role in cerebral regulation of respiratory rate during mental stress. PMID:27526145

  2. Cosmetology: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    These task analyses are designed to be used in combination with the "Trade and Industrial Education Service Area Resource" in order to implement competency-based education in the cosmetology program in Virginia. The task analysis document contains the task inventory, suggested task sequence lists, and content outlines for the secondary courses…

  3. An architecture for intelligent task interruption

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Narayan, Srini

    1990-01-01

    In the design of real time systems the capability for task interruption is often considered essential. The problem of task interruption in knowledge-based domains is examined. It is proposed that task interruption can be often avoided by using appropriate functional architectures and knowledge engineering principles. Situations for which task interruption is indispensable, a preliminary architecture based on priority hierarchies is described.

  4. Tasks for Easily Modifiable Virtual Environments

    ERIC Educational Resources Information Center

    Swier, Robert

    2014-01-01

    Recent studies of learner interaction in virtual worlds have tended to select basic tasks involving open-ended communication. There is evidence that such tasks are supportive of language acquisition, however it may also be beneficial to consider more complex tasks. Research in task-based learning has identified features such as non-linguistic…

  5. PRESCHOOL CHILDREN'S WILLINGNESS TO TRY DIFFICULT TASKS.

    ERIC Educational Resources Information Center

    STARKWEATHER, ELIZABETH K.

    INSTRUMENTS WERE ADMINISTERED TO PRESCHOOL CHILDREN TO MEASURE THEIR PERFORMANCE ON VARIOUS TASKS. THE INSTRUMENTS WERE (1) A BUTTONING TASK FOR FINE MOTOR COORDINATION, (2) A PUZZLE TASK FOR VISUAL DISCRIMINATION, AND (3) A TARGET GAME FOR GROSS MOTOR COORDINATION. EACH INSTRUMENT CONSISTED OF FIVE TASKS GRADED IN DIFFICULTY, ADJUSTED TO THE…

  6. Cross-language activation of morphological relatives in cognates: the role of orthographic overlap and task-related processing.

    PubMed

    Mulder, Kimberley; Dijkstra, Ton; Baayen, R Harald

    2015-01-01

    We considered the role of orthography and task-related processing mechanisms in the activation of morphologically related complex words during bilingual word processing. So far, it has only been shown that such morphologically related words (i.e., morphological family members) are activated through the semantic and morphological overlap they share with the target word. In this study, we investigated family size effects in Dutch-English identical cognates (e.g., tent in both languages), non-identical cognates (e.g., pil and pill, in English and Dutch, respectively), and non-cognates (e.g., chicken in English). Because of their cross-linguistic overlap in orthography, reading a cognate can result in activation of family members both languages. Cognates are therefore well-suited for studying mechanisms underlying bilingual activation of morphologically complex words. We investigated family size effects in an English lexical decision task and a Dutch-English language decision task, both performed by Dutch-English bilinguals. English lexical decision showed a facilitatory effect of English and Dutch family size on the processing of English-Dutch cognates relative to English non-cognates. These family size effects were not dependent on cognate type. In contrast, for language decision, in which a bilingual context is created, Dutch and English family size effects were inhibitory. Here, the combined family size of both languages turned out to better predict reaction time than the separate family size in Dutch or English. Moreover, the combined family size interacted with cognate type: the response to identical cognates was slowed by morphological family members in both languages. We conclude that (1) family size effects are sensitive to the task performed on the lexical items, and (2) depend on both semantic and formal aspects of bilingual word processing. We discuss various mechanisms that can explain the observed family size effects in a spreading activation framework.

  7. Crossing the virtual boundary: the effect of task-irrelevant environmental cues on task implementation.

    PubMed

    Zhao, Min; Lee, Leonard; Soman, Dilip

    2012-10-01

    Task-oriented activities often involve a certain degree of waiting before the actual activities commence. We suggest that seemingly irrelevant situational cues in the task environment, such as queue guides, area carpets, or the location of another person, can serve as virtual boundaries that divide the task system into two categories: inside the system versus outside the system. Results from two laboratory and two field studies show that in-system individuals (i.e., those who have crossed the virtual boundary demarcated by these cues) are more likely than out-system individuals to adopt an implemental mind-set, as manifested by increased immediacy of action initiation, increased persistence in task-oriented behavior, and increased optimism. Further, these effects are attenuated when people are given sufficient extrinsic incentives to fulfill the task.

  8. Associations between depressive symptoms and fronto-temporal activities during a verbal fluency task in patients with schizophrenia

    PubMed Central

    Pu, Shenghong; Nakagome, Kazuyuki; Miura, Akihiko; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi

    2016-01-01

    Though depressive symptoms are common in patients with schizophrenia, they are often left untreated and are associated with a high relapse rate, suicidal ideation, increased mortality, reduced social adjustment, and poor quality of life. The present study aims to elucidate the association between depressive symptoms and fronto-temporal activities during a cognitive task in patients with schizophrenia. The fronto-temporal activities of 41 Japanese patients with schizophrenia was evaluated during a verbal fluency task using 52-channel near-infrared spectroscopy (NIRS). Depressive symptoms were assessed using the depression/anxiety component of the Positive and Negative Syndrome Scale (PANSS) five-factor model. The depression/anxiety component of the PANSS five-factor model was negatively correlated with activities of the ventrolateral prefrontal cortex (PFC), right dorsolateral PFC, and left temporal regions. Our findings suggest that reduced fronto-temporal activities on NIRS during a verbal fluency task is related to depressive symptom severity in patients with schizophrenia. PMID:27465466

  9. Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study

    NASA Astrophysics Data System (ADS)

    Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele

    2013-02-01

    The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.

  10. Inhibition of propofol on single neuron and neuronal ensemble activity in prefrontal cortex of rats during working memory task.

    PubMed

    Xu, Xinyu; Tian, Yu; Wang, Guolin; Tian, Xin

    2014-08-15

    Working memory (WM) refers to the temporary storage and manipulation of information necessary for performance of complex cognitive tasks. There is a growing interest in whether and how propofol anesthesia inhibits WM function. The aim of this study is to investigate the possible inhibition mechanism of propofol anesthesia from the view of single neuron and neuronal ensemble activities. Adult SD rats were randomly divided into two groups: propofol group (0.9 mg kg(-1)min(-1), 2h via a tail vein catheter) and control group. All the rats were tested for working memory performances in a Y-maze-rewarded alternation task (a task of delayed non-matched-to-sample) at 24, 48, 72 h after propofol anesthesia, and the behavior results of WM tasks were recorded at the same time. Spatio-temporal trains of action potentials were obtained from the original signals. Single neuron activity was characterized by peri-event time histograms analysis and neuron ensemble activities were characterized by Granger causality to describe the interactions within the neuron ensemble. The results show that: comparing with the control group, the percentage of neurons excited and related to WM was significantly decreased (p<0.01 in 24h, p<0.05 in 48 h); the interactions within neuron ensemble were significantly weakened (p<0.01 in 24h, p<0.05 in 48 h), whereas no significant difference in 72 h (p>0.05), which were consistent with the behavior results. These findings could lead to improved understanding of the mechanism of anesthesia inhibition on WM functions from the view of single neuron activity and neuron ensemble interactions.

  11. Similar ventral occipito-temporal cortex activations in literate and illiterate adults during the Chinese character matching task: an fMRI study.

    PubMed

    Qi, Geqi; Li, Xiujun; Yan, Tianyi; Wang, Bin; Yang, Jiajia; Wu, Jinglong; Guo, Qiyong

    2014-04-30

    Visual word expertise is typically associated with enhanced ventral occipito-temporal (vOT) cortex activation in response to written words. Previous study utilized a passive viewing task and found that vOT response to written words was significantly stronger in literate compared to the illiterate subjects. However, recent neuroimaging findings have suggested that vOT response properties are highly dependent upon the task demand. Thus, it is unknown whether literate adults would show stronger vOT response to written words compared to illiterate adults during other cognitive tasks, such as perceptual matching. We addressed this issue by comparing vOT activations between literate and illiterate adults during a Chinese character and simple figure matching task. Unlike passive viewing, a perceptual matching task requires active shape comparison, therefore minimizing automatic word processing bias. We found that although the literate group performed better at Chinese character matching task, the two subject groups showed similar strong vOT responses during this task. Overall, the findings indicate that the vOT response to written words is not affected by expertise during a perceptual matching task, suggesting that the association between visual word expertise and vOT response may depend on the task demand. PMID:24582905

  12. Event-related oscillations (ERO) during an active discrimination task: Effects of lesions of the nucleus basalis magnocellularis.

    PubMed

    Sanchez-Alavez, Manuel; Ehlers, Cindy L

    2016-05-01

    The cholinergic system in the brain is involved in attentional processes that are engaged for the identification and selection of relevant information in the environment and the formation of new stimulus associations. In the present study we determined the effects of cholinergic lesions of nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs) generated in an auditory active discrimination task in rats. Rats were trained to press a lever to begin a series of 1kHz tones and to release the lever upon hearing a 2kHz tone. A time-frequency based representation was used to determine ERO energy and phase synchronization (phase lock index, PLI) across trials, recorded within frontal cortical structures. Lesions in NBM produced by an infusion of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) resulted in (1) a reduction of the number of correct behavioral responses in the active discrimination task, (2) an increase in ERO energy in the delta frequency bands, (3) an increase in theta, alpha and beta ERO energy in the N1, P3a and P3b regions of interest (ROI), and (4) an increase in PLI in the theta frequency band in the N1 ROIs. These studies suggest that the NBM cholinergic system is involved in maintaining the synchronization/phase resetting of oscillations in different frequencies in response to the presentation of the target stimuli in an active discrimination task. PMID:25660307

  13. No difference in frontal cortical activity during an executive functioning task after acute doses of aripiprazole and haloperidol

    PubMed Central

    Bolstad, Ingeborg; Andreassen, Ole A.; Groote, Inge R.; Haatveit, Beathe; Server, Andres; Jensen, Jimmy

    2015-01-01

    Background: Aripiprazole is an atypical antipsychotic drug that is characterized by partial dopamine D2 receptor agonism. Its pharmacodynamic profile is proposed to be beneficial in the treatment of cognitive impairment, which is prevalent in psychotic disorders. This study compared brain activation characteristics produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist, during a task targeting executive functioning. Methods: Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo before performing an executive functioning task while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. Results: There was a tendency towards reduced performance in the aripiprazole group compared to the two other groups. The image analysis yielded a strong task-related BOLD-fMRI response within each group. An uncorrected between-group analysis showed that aripiprazole challenge resulted in stronger activation in the frontal and temporal gyri and the putamen compared with haloperidol challenge, but after correcting for multiple testing there was no significant group difference. Conclusion: No significant group differences between aripiprazole and haloperidol in frontal cortical activation were obtained when corrected for multiple comparisons. This study is registered in ClinicalTrials.gov (identifier: 2009-016222-14).1 PMID:26074803

  14. Bilateral injection of fasciculin into the amygdala of rats: effects on two avoidance tasks, acetylcholinesterase activity, and cholinergic muscarinic receptors.

    PubMed

    Quillfeldt, J; Raskovsky, S; Dalmaz, C; Dias, M; Huang, C; Netto, C A; Schneider, F; Izquierdo, I; Medina, J H; Silveira, R

    1990-11-01

    These experiments examined the effects of the bilateral injection of fasciculin-2 (FAS), a natural acetylcholinesterase (AChE) inhibitory peptide, into the amygdala of rats on acquisition and retention of two avoidance behaviors. Intraamygdala injection of FAS (150 ng/amygdala) produced a pronounced and long-lasting inhibition of AChE activity: 85% and 74% on day 2 and day 5, respectively. After 48 hr, FAS-treated animals showed no changes in training or test session performance in a step-down inhibitory avoidance task (training-test interval was 24 hr). In a 2-way shuttle avoidance task, intraamygdala FAS slightly reduced retention test performance without modifying training session scores. Two and five days after FAS injections into the amygdala, the density of muscarinic receptor decreased about 50% as measured by the specific bindings of 3H-quinuclidinyl benzilate and 3H-oxotremorine. No alterations were observed in the apparent dissociation constants. On the other hand, the central-type benzodiazepine receptor population of the amygdala remained unchanged, suggesting that FAS microinjection did not produce damage to neuronal components of these nuclei. In conclusion, the results presented have indicated that a clear-cut and long-lasting inhibition of AChE activity in the amygdala is not accompanied by a facilitation of learning and memory of two different avoidance tasks. Compensation of the increased cholinergic activity by a down-regulation of muscarinic receptors could account for these findings.

  15. Serpentine Robots for Inspection Tasks

    SciTech Connect

    Choset, Howie

    2003-09-11

    Serpentine robots are snake like devices that can use their internal degrees of freedom to thread through tightly packed volumes accessing locations that people or conventional machinery cannot. These devices are ideally suited for minimally invasive inspection tasks where the surrounding areas do not have to be disturbed. Applications for these devices are therefore inspection of underground tanks and other storage facilities for classification purposes. This work deals with the design, construction, and control of a serpentine robot. The challenges lie in developing a device that can lift itself in three dimensions, which is necessary for the inspection tasks. The other challenge in control deals with coordinating all of the internal degrees of freedom to exact purposeful motion.

  16. Task-oriented situation recognition

    NASA Astrophysics Data System (ADS)

    Bauer, Alexander; Fischer, Yvonne

    2010-04-01

    From the advances in computer vision methods for the detection, tracking and recognition of objects in video streams, new opportunities for video surveillance arise: In the future, automated video surveillance systems will be able to detect critical situations early enough to enable an operator to take preventive actions, instead of using video material merely for forensic investigations. However, problems such as limited computational resources, privacy regulations and a constant change in potential threads have to be addressed by a practical automated video surveillance system. In this paper, we show how these problems can be addressed using a task-oriented approach. The system architecture of the task-oriented video surveillance system NEST and an algorithm for the detection of abnormal behavior as part of the system are presented and illustrated for the surveillance of guests inside a video-monitored building.

  17. Investigating the Cost to Ongoing Tasks Not Associated with Prospective Memory Task Requirements

    PubMed Central

    Smith, Rebekah E.; Loft, Shayne

    2014-01-01

    The purpose of the current study was to investigate the relationship between prospective memory (PM) and consciousness by examining cost to ongoing activities, with cost assumed to reflect a direction of conscious resources away from the ongoing task in service of the PM task. Ongoing task blocks in which the PM task was relevant or irrelevant were alternated to achieve three aims: determine if cost would persist in irrelevant blocks when relevant and irrelevant blocks were clearly demarcated and irrelevant stimuli were incompatible with the PM task; investigate if costs would be greatest at the start of irrelevant blocks; and determine whether costs would occur when the irrelevant block preceded any relevant blocks. Costs were found in irrelevant blocks and greater cost at the start of the irrelevant blocks suggest the cost may be due in part to participants making decisions about the engagement of conscious resources at transition points. PMID:24780347

  18. Materials processing in space tasks. WBS task 5.4: Generic tasks

    NASA Technical Reports Server (NTRS)

    Crull, Robert

    1994-01-01

    This task encompassed a wide range of activities related to materials processing in space. For example, all aspects of the space station's flight and ground based systems design were assessed for the Office of Advanced Concepts and Technology (OACT) Space Processing Division Office. Activities for that organization also included the consolidation of space processing payload requirements for the space station and the development of an OACT payload operations plan. Similar duties were performed for the MSFC Payload Project Office. The SPACECOM database was used to conduct preliminary design studies for microgravity payload carriers and to conduct assessments of materials processing technology. Concepts for the Advanced Protein Crystal Growth Facility (APCGF) were developed. Materials processing vent products were analyzed and a furnace facility filter concept was developed using those studies. A preliminary design for a space station aluminum payload rack was developed. Analysis was conducted to characterize the acceleration environment onboard the space shuttle. Equipment for two fluid experiment apparatus was designed and manufactured for the Space Science Laboratory. The Fluids and Materials Experiments (FAME) data base was expanded. Also, Mir payload integration, technology transfer, and spacelab-to-space station transition studies were conducted.

  19. Fuel oil quality task force

    SciTech Connect

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  20. The SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current activities and future key tasks

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.; Lamoureux, S. F.; Decaulne, A.

    2012-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G./A.I.G.)SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Saemundsson (Iceland), Jeff Warburton (UK), Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (2004-2006), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available resources, but typically represent interdisciplinary collaborations of

  1. Drug polyconsumption is associated with increased synchronization of brain electrical-activity at rest and in a counting task.

    PubMed

    Coullaut-Valera, R; Arbaiza, I; Bajo, R; Arrúe, R; López, M E; Coullaut-Valera, J; Correas, A; López-Sanz, D; Maestu, F; Papo, D

    2014-02-01

    Drug abusers typically consume not just one but several types of drugs, starting from alcohol and marijuana consumption, and then dramatically lapsing into addiction to harder drugs, such as cocaine, heroin, or amphetamine. The brain of drug abusers presents various structural and neurophysiological abnormalities, some of which may predate drug consumption onset. However, how these changes translate into modifications in functional brain connectivity is still poorly understood. To characterize functional connectivity patterns, we recorded Electroencephalogram (EEG) activity from 21 detoxified drug abusers and 20 age-matched control subjects performing a simple counting task and at rest activity. To evaluate the cortical brain connectivity network we applied the Synchronization Likelihood algorithm. The results showed that drug abusers had higher synchronization levels at low frequencies, mainly in the θ band (4-8 Hz) between frontal and posterior cortical regions. During the counting task, patients showed increased synchronization in the β (14-35 Hz), and γ (35-45 Hz) frequency bands, in fronto-posterior and interhemispheric temporal regions. Taken together 'slow-down' at rest and task-related 'over-exertion' could indicate that the brain of drug abusers is suffering from a premature form of ageing. Future studies will clarify whether this condition can be reversed following prolonged periods of abstinence.

  2. Impaired regional hemodynamic response in schizophrenia during multiple prefrontal activation tasks: a two-channel near-infrared spectroscopy study.

    PubMed

    Ikezawa, Koji; Iwase, Masao; Ishii, Ryouhei; Azechi, Michiyo; Canuet, Leonides; Ohi, Kazutaka; Yasuda, Yuka; Iike, Naomi; Kurimoto, Ryu; Takahashi, Hidetoshi; Nakahachi, Takayuki; Sekiyama, Ryuji; Yoshida, Tetsuhiko; Kazui, Hiroaki; Hashimoto, Ryota; Takeda, Masatoshi

    2009-03-01

    In schizophrenia, dysfunction of the prefrontal cortex (PFC), regarded as a core feature of the disease, has been investigated by different neuroimaging methods. Near infrared spectroscopy (NIRS), a novel neurophysiological method, is being increasingly used in the investigation of frontal dysfunction in schizophrenia. However, NIRS measurements during multiple frontal activation tasks have been rarely reported. The purpose of this study was to compare hemodynamic changes in the PFC between patients with schizophrenia and healthy controls during four different types of frontal lobe tasks using a 2-channel NIRS system. Thirty patients with schizophrenia and thirty age- and gender-matched healthy controls were enrolled in this study. In both groups, changes in oxygenated hemoglobin concentration (Delta[oxyHb]) at the bilateral forehead were measured during Verbal fluency test letter version (VFT-letter), VFT category version, Tower of Hanoi (TOH), the Sternberg and Stroop tasks. Regarding Delta[oxyHb] in PFC, a diagnosis group effect was found for VFT-letter and TOH. Significant negative correlation was found between left Delta[oxyHb] during TOH and negative and cognitive symptom scores in schizophrenia patients. Right Delta[oxyHb] during TOH also showed significant negative correlation with cognitive symptoms scores. No significant correlation between Delta[oxyHb] and clinical characteristics were observed during VFT-letter. These findings suggest that among a battery of frontal lobe tasks administered to schizophrenia patients, VFT-letter and TOH are more sensitive to detect PFC activation, as indicated by Delta[oxyHb] using a 2-channel NIRS. Taken together, these findings and those of previous neuroimaging studies suggest that VFT-letter and TOH might represent possible candidate physiological markers of prefrontal dysfunction in schizophrenia, though extensive testing in clinical settings will be necessary. PMID:19157786

  3. Updating Sensory "versus" Task Representations during Task-Switching: Insights from Cognitive Brain Potentials in Humans

    ERIC Educational Resources Information Center

    Perianez, Jose A.; Barcelo, Francisco

    2009-01-01

    Task-cueing studies suggest that the updating of sensory and task representations both contribute to behavioral task-switch costs [Forstmann, B. U., Brass, M., & Koch, I. (2007). "Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure." "Psychological Research, 71"(4),…

  4. Learner-Learner Interaction during Collaborative Pragmatic Tasks: The Role of Cognitive and Pragmatic Task Demands

    ERIC Educational Resources Information Center

    Kim, YouJin; Taguchi, Naoko

    2016-01-01

    Previous task complexity studies have suggested that learners produce more negotiation of meaning opportunities during complex tasks than simple tasks (Robinson, 2011). The present study builds on the existing task complexity literature by examining the impact of task complexity and pragmatic situational demands on the number of learning…

  5. Investigating Perfect Timesharing: The Relationship between IM-Compatible Tasks and Dual-Task Performance

    ERIC Educational Resources Information Center

    Halvorson, Kimberly M.; Ebner, Herschel; Hazeltine, Eliot

    2013-01-01

    Why are dual-task costs reduced with ideomotor (IM) compatible tasks (Greenwald & Shulman, 1973; Lien, Proctor & Allen, 2002)? In the present experiments, we first examine three different measures of single-task performance (pure single-task blocks, mixed blocks, and long stimulus onset asynchrony [SOA] trials in dual-task blocks) and two measures…

  6. The Shielding Function of Task Sets and Its Relaxation during Task Switching

    ERIC Educational Resources Information Center

    Dreisbach, Gesine; Wenke, Dorit

    2011-01-01

    The goal of the presented experiments was to investigate the dynamic interplay of task shielding and its relaxation during task switching. Task shielding refers to the finding that single task sets in terms of 2-choice categorization rules help shielding against distraction from irrelevant stimulus attributes. During task switching, this shielding…

  7. Querying and tasking in sensor networks

    NASA Astrophysics Data System (ADS)

    Jaikaeo, Chaiporn; Srisathapornphat, Chavalit; Shen, Chien-Chung

    2000-08-01

    With the advancement of hardware technology, it becomes feasible to develop a networked system of pervasive computing platforms that combine programmable general purpose computers with multiple sensing and wireless communication capability. This networked system of programmable sensor nodes, together called a sensor network, poses unique challenges on how information collected by and stored within the sensor network should be queried and accessed, and how concurrent sensing tasks should be programmed from external clients. In this paper, we describe an architecture that facilitates querying and tasking of sensor networks. The key idea to the architecture lies in the development of the Sensor Querying and Tasking Language (SQTL) and the corresponding Sensor Execution Environment (SEE). We model a sensor network as a distributed set of collaborating nodes that carry out querying and tasking activities programmed in SQTL. A frontend node injects a message, that encapsulates an SQTL program, into a sensor node and starts a diffusion computation. A sensor node may diffuse the encapsulated SQTL program to other nodes as dictated by its logic and collaborately perform the specified querying or tasking activity. We will present the SQTL language and demonstrate its applicability using a maximum temperature querying application and a vehicle tracking application.

  8. Task appraisals, emotions, and performance goal orientation.

    PubMed

    Fisher, Cynthia D; Minbashian, Amirali; Beckmann, Nadin; Wood, Robert E

    2013-03-01

    We predict real-time fluctuations in employees' positive and negative emotions from concurrent appraisals of the immediate task situation and individual differences in performance goal orientation. Task confidence, task importance, positive emotions, and negative emotions were assessed 5 times per day for 3 weeks in an experience sampling study of 135 managers. At the within-person level, appraisals of task confidence, task importance, and their interaction predicted momentary positive and negative emotions as hypothesized. Dispositional performance goal orientation was expected to moderate emotional reactivity to appraisals of task confidence and task importance. The hypothesized relationships were significant in the case of appraisals of task importance. Those high on performance goal orientation reacted to appraisals of task importance with stronger negative and weaker positive emotions than those low on performance goal orientation. PMID:23276116

  9. The effects of stimulus modality and task integrality: Predicting dual-task performance and workload from single-task levels

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.

    1986-01-01

    The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.

  10. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  11. Language-related activations in the left prefrontal regions are differentially modulated by age, proficiency, and task demands.

    PubMed

    Tatsuno, Yoshinori; Sakai, Kuniyoshi L

    2005-02-16

    It remains to be elucidated how cortical activations are modulated by factors of age, proficiency, and language task demands when mastering first language (L1) and a second language (L2). Using functional magnetic resonance imaging, we tested subjects aged 13 (the age 13 group) and 19 (the age 19 group), thereby comparing the cortical activations involved in past-tense verb identification with those involved in verb matching. We found that the activation in the dorsal triangular part of the left inferior frontal gyrus (IFG) was lower, corresponding to a higher proficiency in English (L2) in the older subjects, suggesting that the proficiency level plays a major role in the activation of this region during L2 acquisition. Moreover, the lower activation in the triangular and orbital parts of the left IFG (F3t/F3O) for the irregular past tense corresponding to a higher proficiency in L2, together with the nonsignificant activation for the regular past tense when its performance almost reached perfection for age 19, suggests that the modulation of the left F3t/F3O activation reflects language task demands for identifying correct past-tense forms. On the other hand, the left F3t/F3O activation in Japanese (L1) for age 13 was significantly greater than that for age 19, despite the matched performances in L1. These results suggest that the left IFG subserves language-specific functions that are critically required when mastering any language.

  12. Development and Validation of Career Development Guidelines by Task/Activity Analysis of Occupational Safety and Health Professions: Industrial Hygiene and Safety Professional. Final Report. Technical Report XII.

    ERIC Educational Resources Information Center

    Vernon, Ralph J.; And Others

    This report summarizes research findings which resulted in development of curricula for occupational safety and health professions based on task/activity analyses and related performance objectives. The first seven chapters focus on the seven objectives. Chapter 1, Literature Review and Selection of Employers, concerns tasks required for…

  13. Understanding of Student Task Interpretation, Design Planning, and Cognitive Strategies during Engineering Design Activities in Grades 9-12. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Lawanto, Oenardi

    2011-01-01

    The objective of this study was to describe the task interpretation of students engaged in a design activity and determine the extent to which students translate their understanding of their design task to their planning and cognitive strategies. Twenty-nine students at one Colorado high school participated in this study. Students worked…

  14. Language-specific cortical activation patterns for verbal fluency tasks in Japanese as assessed by multichannel functional near-infrared spectroscopy.

    PubMed

    Dan, Haruka; Dan, Ippeita; Sano, Toshifumi; Kyutoku, Yasushi; Oguro, Keiji; Yokota, Hidenori; Tsuzuki, Daisuke; Watanabe, Eiju

    2013-08-01

    In Japan, verbal fluency tasks are commonly utilized as a standard paradigm for neuropsychological testing of cognitive and linguistic abilities. The Japanese "letter fluency task" is a mora/letter fluency task based on the phonological and orthographical characteristics of the Japanese language. Whether there are similar activation patterns across languages or a Japanese-specific mora/letter fluency pattern is not certain. We investigated the neural correlates of overt mora/letter and category fluency tasks in healthy Japanese. The category fluency task activated the bilateral fronto-temporal language-related regions with left-superior lateralization, while the mora/letter fluency task led to wider activation including the inferior parietal regions (left and right supramarginal gyrus). Specific bilateral supramarginal activation during the mora/letter fluency task in Japanese was distinct from that of similar letter fluency tasks in syllable-alphabet-based languages: this might be due to the requirement of additional phonological processing and working memory, or due to increased cognitive load in general.

  15. Orexin receptor activity in the basal forebrain alters performance on an olfactory discrimination task.

    PubMed

    Piantadosi, Patrick T; Holmes, Ashley; Roberts, Bradley M; Bailey, Aileen M

    2015-01-12

    Cholinergic innervation of the prefrontal cortex is critical for various forms of cognition, although the efferent modulators contributing to acetylcholine (ACh) release are not well understood. The main source of cortical ACh, the basal forebrain, receives projections from lateral and perifornical hypothalamic neurons releasing the peptides orexin (orexin A; OxA, and orexin B; OxB), of which OxA is hypothesized to play a role in various cognitive functions. We sought to assess one such function known to be susceptible to basal forebrain cholinergic manipulation, olfactory discrimination acquisition, and reversal learning, in rats following intra-basal forebrain infusion of OxA or the orexin 1 receptor (OxR1) antagonist SB-334867. OxA administration facilitated, while OxR1 antagonism impaired performance on both the acquisition and reversal portions of the task. These data suggest that orexin acting in the basal forebrain may be important for cortical-dependant executive functions, possibly through the stimulation of cortical ACh release.

  16. Teacher management behaviors and pupil task involvement during small group laboratory activities

    NASA Astrophysics Data System (ADS)

    Beasley, Warren

    A major concern of many beginning and experienced teachers is that of classroom management and control. This article describes recent research into defining classroom management procedures that are used by high school science teachers and their relationship to pupil ontaskness. The classroom is conceptualized as a manipulable behavioral system. This construct arises directly from Barker's (1968) ecological psychology, the classroom and its occupants being conceptualized as a behavior setting. The behaviors of the teacher and the pupils are an integral part of the unit (behavior setting), which in turn coerces certain behaviors from its participants. Thus settings, and, in particular, subsettings, are seen as more important determiners of social behavior than the personality of individual teacher or pupil. The methodology employed in this research has involved the extensive use of video in naturalistic science classrooms. Tapes of both teacher and pupil behaviors were continuously and independently recorded. Intensive analysis using electronic recording instruments interfaced with the computer has allowed the collection and sophisticated analysis of the observational data. Data relating to teacher management behavior in small group settings have been analyzed and the relationships to pupil task involvement have been explored.

  17. International Space Station ECLSS Technical Task Agreement Summary Report

    NASA Technical Reports Server (NTRS)

    Minton-Summers, S.; Ray, C. D.

    1996-01-01

    A summary of work accomplished under Technical Task Agreement by the Marshall Space Flight Center (MSFC) documents activities regarding the Environmental Control and Life Support Systems (ECLSS) of the International Space Station (ISS) program. These MSFC activities were in-line to the designing, the development, the testing, and the flight of ECLSS equipment. MSFC's unique capabilities for performing integrated system testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs are the basis for the Technical Task Agreement activities. Tasks were completed in the Water Recovery Systems, Air Revitalization Systems, and microbiology areas. The results of each task is described in this summary report.

  18. Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task

    PubMed Central

    Janitzky, Kathrin; Lippert, Michael T.; Engelhorn, Achim; Tegtmeier, Jennifer; Goldschmidt, Jürgen; Heinze, Hans-Jochen; Ohl, Frank W.

    2015-01-01

    The locus coeruleus (LC) is the sole source of noradrenergic projections to the cortex and essential for attention-dependent cognitive processes. In this study we used unilateral optogenetic silencing of the LC in an attentional set-shifting task (ASST) to evaluate the influence of the LC on prefrontal cortex-dependent functions in mice. We expressed the halorhodopsin eNpHR 3.0 to reversibly silence LC activity during task performance, and found that silencing selectively impaired learning of those parts of the ASST that most strongly rely on cognitive flexibility. In particular, extra-dimensional set-shifting (EDS) and reversal learning was impaired, suggesting an involvement of the medial prefrontal cortex (mPFC) and the orbitofrontal cortex. In contrast, those parts of the task that are less dependent on cognitive flexibility, i.e., compound discrimination (CD) and the intra-dimensional shifts (IDS) were not affected. Furthermore, attentional set formation was unaffected by LC silencing. Our results therefore suggest a modulatory influence of the LC on cognitive flexibility, mediated by different frontal networks. PMID:26582980

  19. The effect of number of kanji radical companions in character activation with a multi-radical-display task.

    PubMed

    Saito, Hirofumi; Yamazaki, Osamu; Masuda, Hisashi

    2002-01-01

    The majority of Japanese complex kanji consist of two subword units (radicals), and each radical is differentiated according to its combinability. Radical-type frequency is defined as the number of radical companions (NC) functioning as the number of characters containing that radical. The current study is intended to address the question of whether the NC plays a role in kanji character activation under a multi-radical-display (MRD) instead of a tachistoscopic display. An MRD task was used in which the NC was manipulated and the frequency of use of the whole characters was matched on average across the experimental conditions. Participants were divided into two groups (good knowledge vs poor knowledge) according to the score of a kanji completion task. The participants' task was to select an appropriate combination of radicals to compose a legitimate character under the MRD condition. The poor-knowledge group yielded relatively more errors than did the good-knowledge group in the low-NC condition, whereas the good-knowledge group yielded more errors in the high-NC condition than in the low-NC condition. These results demonstrate the different influences of NC as metaknowledge (tacit knowledge of radical productivity) in both good and poor readers. PMID:12081417

  20. A task control theory of mirror-touch synesthesia.

    PubMed

    Heyes, Cecilia; Catmur, Caroline

    2015-01-01

    Ward and Banissy's illuminating discussion of mirror-touch synesthesia (MTS) encourages research testing two alternatives to Threshold Theory: Their own Self-Other Theory, and "Task Control Theory". MTS may be due to abnormal mirror activity plus a domain-general, rather than a specifically social, impairment in the ability to privilege processing of task-relevant over task-irrelevant information.

  1. Task Engagement: A Turning Point in Foreign Language Development.

    ERIC Educational Resources Information Center

    Platt, Elizabeth J.; Brooks, Frank B.

    2002-01-01

    Uses a sociocultural framework to suggest task engagement as a viable construct in second language learning research. Examines second language learner data to identify task engagement as it emerges, unfolds in dialogic activity, and becomes associated with he transformation of task, self, and group. (Author/VWL)

  2. Solar Energy Task Force Report: Technical Training Guidelines.

    ERIC Educational Resources Information Center

    O'Connor, Kevin

    This task force report offers guidelines and information for the development of vocational education programs oriented to the commercial application of solar energy in water and space heating. After Section I introduces the Solar Energy Task Force and its activities, Section II outlines the task force's objectives and raises several issues and…

  3. Heimdall System for MSSS Sensor Tasking

    NASA Astrophysics Data System (ADS)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day's scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes). Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest. The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.

  4. Task-related oxygen uptake and symptoms during activities of daily life in CHF patients and healthy subjects.

    PubMed

    Spruit, Martijn A; Wouters, Emiel F M; Eterman, Rose-Mieke A; Meijer, Kenneth; Wagers, Scott S; Stakenborg, Koen H P; Uszko-Lencer, Nicole H M K

    2011-08-01

    Patients with chronic heart failure (CHF) have a significantly lower peak aerobic capacity compared to healthy subjects, and, may therefore experience more inconvenience during the performance of domestic activities of daily life (ADLs). To date, the extent to which task-related oxygen uptake, heart rate, ventilation and symptoms during the performance of ADLs in CHF patients is different than in healthy subjects remains uncertain. General demographics, pulmonary function, body composition and peak aerobic capacity were assessed in 23 CHF outpatients and 20 healthy peers. In addition, the metabolic requirement of five simple self-paced domestic ADLs was assessed using a mobile oxycon. Task-related oxygen uptake (ml/min) was similar or lower in CHF patients compared to healthy subjects. In contrast, patients with CHF performing ADLs consumed oxygen at a higher proportion of their peak aerobic capacity than healthy subjects (p < 0.05). For example, getting dressed resulted in a mean task-related oxygen uptake of 49% of peak aerobic capacity, while sweeping the floor resulted in a mean task-related oxygen uptake of 52% of peak aerobic capacity, accompanied by significantly higher Borg symptom scores for dyspnea and fatigue (p < 0.05). Patients with CHF experience use a higher proportion of their peak aerobic capacity, peak ventilation and peak heart rate during the performance of simple self-paced domestic ADL than their healthy peers. These findings represent a necessary step in improving our understanding of improving what troubles patients the most-not being able to do the things that they could when they were healthy.

  5. ERP Components Activated by the "GO!" and "WITHHOLD!" Conflict in the Random Sustained Attention to Response Task

    ERIC Educational Resources Information Center

    Zordan, Lara; Sarlo, Michela; Stablum, Franca

    2008-01-01

    The present study investigates the event related potential (ERP) components associated with the random version of the Sustained Attention to Response Task (SART). The random SART is a Go/No-Go task in which the No-Go target appears unpredictably and rarely. In the present experiment, the EEG was recorded from 58 electrodes with mastoids as…

  6. Age-Related Differences in Cortical Activity during a Visuo-Spatial Working Memory Task with Facial Stimuli

    PubMed Central

    Belham, Flávia Schechtman; Satler, Corina; Garcia, Ana; Tomaz, Carlos; Gasbarri, Antonella; Rego, Artur; Tavares, Maria Clotilde H.

    2013-01-01

    Emotion, importantly displayed by facial expressions, is one of the most significant memory modulators. The interaction between memory and the different emotional valences change across lifespan, while young adults (YA) are expected to better recall negative events (Negativity Bias Hypothesis), older adults (OA) tend to focus on positive stimuli (Positivity Effect Hypothesis). This research work aims at verifying whether cortical electrical activity of these two age groups would also be differently influenced by emotional valences in a visuo-spatial working memory task. 27 YA (13 males) and 25 OA (14 males), all healthy volunteers, underwent electroencephalographic recordings (21 scalp electrodes montage), while performing the Spatial Delayed Recognition Span Task using a touch screen with different stimuli categories: neutral, positive and negative faces and geometric pictures. YA obtained higher scores than OA, and showed higher activation of theta and alpha bands in the frontal and midline regions, besides a more evident right-hemispheric asymmetry on alpha band when compared to OA. For both age groups, performance in the task was worse for positive faces than to negative and to neutral faces. Facial stimuli induced a better performance and higher alpha activation on the pre-frontal region for YA, and on the midline, occipital and left temporal regions for OA when compared to geometric figures. The superior performance of YA was expected due to the natural cognitive deficits connected to ageing, as was a better performance with facial stimuli due to the evolutionary importance of faces. These results were related to cortical activity on areas of importance for action-planning, decision making and sustained attention. Taken together, they are in accordance with the Negativity Bias but do not support the Positivity Effect. The methodology used was able to identify age-related differences in cortical activity during emotional mnemonic processing and may be

  7. fMRI brain activation during a delay discounting task in HIV-positive adults with and without cocaine dependence

    PubMed Central

    Meade, Christina S.; Lowen, Steven B.; MacLean, Robert R.; Key, Mary D.; Lukas, Scott E.

    2011-01-01

    Cocaine use is associated with poorer HIV clinical outcomes and may contribute to neurobiological impairments associated with impulsive decision making. This study examined the effect of cocaine dependence on brain activation during a delay discounting task involving choices between smaller immediate rewards and larger delayed ones. Participants were 39 HIV-positive adults on antiretroviral therapy who had current cocaine dependence (“active,” n=15), past cocaine dependence (“recovered,” n=13), or no lifetime substance dependence (“naïve,” n=11). Based on responses on a traditional delay discounting task, three types of choices were individualized for presentation during fMRI scanning: hard (similarly valued), easy (disparately valued), and no (single option). Active participants had significantly smaller increases in activation than naïve participants during hard versus easy choices bilaterally in the precentral gyrus and anterior cingulate cortex and in the right frontal pole (including dorsolateral, ventrolateral, and orbitofrontal cortex). During hard and easy choices relative to no choices, active participants had smaller increases in activation compared to naïve participants in frontoparietal cortical regions. These deficits in the executive network during delay discounting choices may contribute to impulsive decision making among HIV-positive cocaine users, with implications for risk behaviors associated with disease transmission and progression. PMID:21546221

  8. 80 FR 27688 - Make-Up Meetings of the Community Preventive Services Task Force (Task Force)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-05-14

    ... of systematic reviews on existing research, and issues recommendations. Task Force recommendations... jurisdictions and constituents. The Task Force's recommendations, along with the systematic reviews of the... Force to consider the findings of systematic reviews and issue findings and recommendations. Task...

  9. Changes in focal interictal epileptiform activity during and after the performance of verbal and visuospatial tasks in a patient with intractable partial seizures.

    PubMed Central

    Boniface, S J; Kennett, R P; Oxbury, J M; Oxbury, S M

    1994-01-01

    An 18-year-old male with intractable complex partial seizures is described in whom localised epileptiform discharges in the EEG were influenced in a specific manner by different cognitive tasks. The patient had impaired verbal skills but above average visuospatial ability, and seizures probably arising in the left temporal lobe. Comparison of verbal and visuospatial tasks showed that focal epileptiform activity was suppressed or enhanced depending on the nature of the immediate and preceding cognitive tasks. The finding of particular interest was the activity of a posterior temporal spike focus only during rest periods after verbal tasks, by contrast with an independent mid-to-anterior temporal focus that was suppressed during verbal tasks. PMID:8126513

  10. Electroencephalographic monitoring of complex mental tasks

    NASA Technical Reports Server (NTRS)

    Guisado, Raul; Montgomery, Richard; Montgomery, Leslie; Hickey, Chris

    1992-01-01

    Outlined here is the development of neurophysiological procedures to monitor operators during the performance of cognitive tasks. Our approach included the use of electroencepalographic (EEG) and rheoencephalographic (REG) techniques to determine changes in cortical function associated with cognition in the operator's state. A two channel tetrapolar REG, a single channel forearm impedance plethysmograph, a Lead I electrocardiogram (ECG) and a 21 channel EEG were used to measure subject responses to various visual-motor cognitive tasks. Testing, analytical, and display procedures for EEG and REG monitoring were developed that extend the state of the art and provide a valuable tool for the study of cerebral circulatory and neural activity during cognition.

  11. AGENDA: A task organizer and scheduler

    NASA Technical Reports Server (NTRS)

    Fratter, Isabelle

    1993-01-01

    AGENDA will be the main tool used in running the SPOT 4 Earth Observation Satellite's Operational Control Center. It will reduce the operator's work load and make the task easier. AGENDA sets up the work plan for a day of operations, automatically puts the day's tasks into sequence and monitors their progress in real time. Monitoring is centralized, and the tasks are run on different computers in the Center. Once informed of any problems, the operator can intervene at any time while an activity is taking place. To carry out the various functions, the operator has an advanced, efficient, ergonomic graphic interface based on X11 and OSF/MOTIF. Since AGENDA is the heart of the Center, it has to satisfy several constraints that have been taken into account during the various development phases. AGENDA is currently in its final development stages.

  12. The BOLD Response during Stroop Task-Like Inhibition Paradigms: Effects of Task Difficulty and Task-Relevant Modality

    ERIC Educational Resources Information Center

    Mitchell, Rachel L. C.

    2005-01-01

    Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD…

  13. What Matters in Implicit Task Sequence Learning: Perceptual Stimulus Features, Task Sets, or Correlated Streams of Information?

    ERIC Educational Resources Information Center

    Weiermann, Brigitte; Cock, Josephine; Meier, Beat

    2010-01-01

    Implicit task sequence learning may be attributed to learning the order of perceptual stimulus features associated with the task sequence, learning a series of automatic task set activations, or learning an integrated sequence that derives from 2 correlated streams of information. In the present study, our purpose was to distinguish among these 3…

  14. The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity.

    PubMed

    Steffener, Jason; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can

  15. The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity

    PubMed Central

    Steffener, Jason; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can

  16. Active ocular vergence improves postural control in elderly as close viewing distance with or without a single cognitive task.

    PubMed

    Matheron, Eric; Yang, Qing; Delpit-Baraut, Vincent; Dailly, Olivier; Kapoula, Zoï

    2016-01-01

    Performance of the vestibular, visual, and somatosensory systems decreases with age, reducing the capacity of postural control, and increasing the risk of falling. The purpose of this study is to measure the effects of vision, active vergence eye movements, viewing distance/vergence angle and a simple cognitive task on postural control during an upright stance, in completely autonomous elderly individuals. Participated in the study, 23 elderly subjects (73.4 ± 6.8 years) who were enrolled in a center dedicated to the prevention of falling. Their body oscillations were measured with the DynaPort(®) device, with three accelerometers, placed at the lumbosacral level, near the center of mass. The conditions were the following: eyes open fixating on LED at 20 cm or 150 cm (vergence angle 17.0° and 2.3° respectively) with or without additional cognitive tasks (counting down from one hundred), performing active vergence by alternating the fixation between the far and the near LED (convergence and divergence), eyes closed after having fixated the far LED. The results showed that the postural stability significantly decreased when fixating on the LED at a far distance (weak convergence angle) with or without cognitive tasks; active convergence-divergence between the LEDs improved the postural stability while eye closure decreased it. The privilege of proximity (with increased convergence at near), previously established with foot posturography, is shown here to be valid for accelerometry with the center of mass in elderly. Another major result is the beneficial contribution of active vergence eye movements to better postural stability. The results bring new perspectives for the role of eye movement training to preserve postural control and autonomy in elderly.

  17. Task-dependent activity of motor unit populations in feline ankle extensor muscles.

    PubMed

    Hodson-Tole, Emma F; Pantall, Annette; Maas, Huub; Farrell, Brad; Gregor, Robert J; Prilutsky, Boris I

    2012-11-01

    Understanding the functional significance of the morphological diversity of mammalian skeletal muscles is limited by technical difficulties of estimating the contribution of motor units with different properties to unconstrained motor behaviours. Recently developed wavelet and principal components analysis of intramuscular myoelectric signals has linked signals with lower and higher frequency contents to the use of slower and faster motor unit populations. In this study we estimated the relative contributions of lower and higher frequency signals of cat ankle extensors (soleus, medial and lateral gastrocnemii, plantaris) during level, downslope and upslope walking and the paw-shake response. This was done using the first two myoelectric signal principal components (PCI, PCII), explaining over 90% of the signal, and an angle θ, a function of PCI/PCII, indicating the relative contribution of slower and faster motor unit populations. Mean myoelectric frequencies in all walking conditions were lowest for slow soleus (234 Hz) and highest for fast gastrocnemii (307 and 330 Hz) muscles. Motor unit populations within and across the studied muscles that demonstrated lower myoelectric frequency (suggesting slower populations) were recruited during tasks and movement phases with lower mechanical demands on the ankle extensors--during downslope and level walking and in early walking stance and paw-shake phases. With increasing mechanical demands (upslope walking, mid-phase of paw-shake cycles), motor unit populations generating higher frequency signals (suggesting faster populations) contributed progressively more. We conclude that the myoelectric frequency contents within and between feline ankle extensors vary across studied motor behaviours, with patterns that are generally consistent with muscle fibre-type composition.

  18. Task variation versus task repetition for people with profound developmental disabilities: an assessment of preferences.

    PubMed

    Lancioni, G E; O'Reilly, M F; Campodonico, F; Mantini, M

    1998-01-01

    An assessment of preferences between task variation and task repetition with four adults with profound developmental disabilities was implemented. After participants were exposed to both task variation and task repetition conditions, they were allowed to choose between them. Results showed that all participants had strong preferences; three preferred task variation and one task repetition. Aspects of the assessment and use of assessment data for planning daily work conditions were discussed.

  19. Antenna pattern study, task 2

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1989-01-01

    Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.

  20. General Aviation Task Force report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    General aviation is officially defined as all aviation except scheduled airlines and the military. It is the only air transportation to many communities throughout the world. In order to reverse the recent decline in general aviation aircraft produced in the United States, the Task Force recommends that NASA provide the expertise and facilities such as wind tunnels and computer codes for aircraft design. General aviation manufacturers are receptive to NASA's innovations and technological leadership and are expected to be effective users of NASA-generated technologies.

  1. Directory of Task Inventories: Volume 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The directory of task inventories (listings of activities performed by workers on their jobs) contains bibliographic entries for 171 documents published by State educational and employment service agencies, occupational curriculum laboratories and research coordinating units, branches of the Armed Forces, selected private research and development…

  2. A Task-Centered Instructional Strategy

    ERIC Educational Resources Information Center

    Merrill, M. David

    2007-01-01

    Based on a review of instructional design models, previous papers identified first principles of instruction. These principles prescribe a cycle of instruction consisting of activation, demonstration, application, and integration. These instructional phases are best implemented in the context of real-world tasks. A Pebble-in-the-Pond approach to…

  3. The Predictive Evaluation of Language Learning Tasks

    ERIC Educational Resources Information Center

    Vasiljevic, Zorana

    2011-01-01

    Teachers are often faced with difficulty in choosing appropriate teaching activities for use in their classroom. In selecting suitable materials for their learners, teachers need to be able to analyze any tasks (i.e., their objectives, procedures and intended outcomes) before they are applied in the classroom. This paper will attempt to outline a…

  4. Task Based Language Teaching: Development of CALL

    ERIC Educational Resources Information Center

    Anwar, Khoirul; Arifani, Yudhi

    2016-01-01

    The dominant complexities of English teaching in Indonesia are about limited development of teaching methods and materials which still cannot optimally reflect students' needs (in particular of how to acquire knowledge and select the most effective learning models). This research is to develop materials with complete task-based activities by using…

  5. Environmental Educational Youth Action Task Program

    ERIC Educational Resources Information Center

    Ab Rahman, Nik Norulaini Nik; Omar, Fatehah Mohd; Kalia, Noorliza; Hasmi, Mohammad

    2008-01-01

    An educational environmental youth camp was held comprising of fifty one 16-year old secondary students and facilitated by volunteers from the university and Friends of the Earth, a non profit organization in Penang. A weekend camp on youth action task program was held at an isolated beach packed with activities that were structured towards…

  6. Evaluating Signal-Correlated Noise as a Control Task with Language-Related Gamma Activity on Electrocorticography

    PubMed Central

    Brown, Erik C.; Muzik, Otto; Rothermel, Robert; Juhász, Csaba; Shah, Aashit K.; Fuerst, Darren; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi

    2014-01-01

    Objective Our recent electrocorticography (ECoG) study suggested reverse speech, a widely used control task, to be a poor control for non-language-related auditory activity. We hypothesized that this may be due to retained perception as a human voice. We report a follow-up ECoG study in which we contrast forward and reverse speech with a signal-correlated noise (SCN) control task that cannot be perceived as a human voice. Methods Ten patients were presented 90 audible stimuli, including 30 each of corresponding forward speech, reverse speech, and SCN trials, during ECoG recording with evaluation of gamma activity between 50–150 Hz. Results Sites of the lateral temporal gyri activated throughout speech stimuli were generally less activated by SCN, while some temporal sites seemed to process both human and non-human sounds. Reverse speech trials were associated with activities across the temporal lobe similar to those associated with forward speech. Conclusions Findings herein externally validate functional neuroimaging studies utilizing SCN as a control for non-language-specific auditory function. Our findings are consistent with the notion that stimuli perceived as originating from a human voice are poor controls for non-language auditory function. Significance Our findings have implications in functional neuroimaging research as well as improved clinical mapping of auditory functions. PMID:24412331

  7. U.S. Preventive Services Task Force

    MedlinePlus

    ... USPSTF Our Members Conflict of Interest Disclosures Task Force 101 Resources Our Partners Reports to Congress Contact ... effort to make the U.S. Preventive Services Task Force (USPSTF) recommendations clearer and its processes more transparent, ...

  8. Fault-tolerant dynamic task graph scheduling

    SciTech Connect

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  9. Increase or Decrease of fMRI Activity in Adult Attention Deficit/ Hyperactivity Disorder: Does It Depend on Task Difficulty?

    PubMed Central

    Merz, Christian J.; Dresler, Thomas; Heupel, Julia; Reichert, Susanne; Jacob, Christian P.; Deckert, Jürgen; Herrmann, Martin J.

    2016-01-01

    Background: Attention deficit/hyperactivity disorder has been shown to affect working memory, and fMRI studies in children and adolescents with attention deficit/hyperactivity disorder report hypoactivation in task-related attentional networks. However, studies with adult attention deficit/hyperactivity disorder patients addressing this issue as well as the effects of clinically valid methylphenidate treatment are scarce. This study contributes to closing this gap. Methods: Thirty-five adult patients were randomized to 6 weeks of double-blind placebo or methylphenidate treatment. Patients completed an fMRI n-back working memory task both before and after the assigned treatment, and matched healthy controls were tested and compared to the untreated patients. Results: There were no whole-brain differences between any of the groups. However, when specified regions of interest were investigated, the patient group showed enhanced BOLD responses in dorsal and ventral areas before treatment. This increase was correlated with performance across all participants and with attention deficit/hyperactivity disorder symptoms in the patient group. Furthermore, we found an effect of treatment in the right superior frontal gyrus, with methylphenidate-treated patients exhibiting increased activation, which was absent in the placebo-treated patients. Conclusions: Our results indicate distinct activation differences between untreated adult attention deficit/hyperactivity disorder patients and matched healthy controls during a working memory task. These differences might reflect compensatory efforts by the patients, who are performing at the same level as the healthy controls. We furthermore found a positive effect of methylphenidate on the activation of a frontal region of interest. These observations contribute to a more thorough understanding of adult attention deficit/hyperactivity disorder and provide impulses for the evaluation of therapy-related changes. PMID:27207920

  10. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks

    PubMed Central

    Feingold, Joseph; Gibson, Daniel J.; DePasquale, Brian; Graybiel, Ann M.

    2015-01-01

    Studies of neural oscillations in the beta band (13–30 Hz) have demonstrated modulations in beta-band power associated with sensory and motor events on time scales of 1 s or more, and have shown that these are exaggerated in Parkinson’s disease. However, even early reports of beta activity noted extremely fleeting episodes of beta-band oscillation lasting <150 ms. Because the interpretation of possible functions for beta-band oscillations depends strongly on the time scale over which they occur, and because of these oscillations’ potential importance in Parkinson’s disease and related disorders, we analyzed in detail the distributions of duration and power for beta-band activity in a large dataset recorded in the striatum and motor-premotor cortex of macaque monkeys performing reaching tasks. Both regions exhibited typical beta-band suppression during movement and postmovement rebounds of up to 3 s as viewed in data averaged across trials, but single-trial analysis showed that most beta oscillations occurred in brief bursts, commonly 90–115 ms long. In the motor cortex, the burst probabilities peaked following the last movement, but in the striatum, the burst probabilities peaked at task end, after reward, and continued through the postperformance period. Thus, what appear to be extended periods of postperformance beta-band synchronization reflect primarily the modulated densities of short bursts of synchrony occurring in region-specific and task-time-specific patterns. We suggest that these short-time-scale events likely underlie the functions of most beta-band activity, so that prolongation of these beta episodes, as observed in Parkinson’s disease, could produce deleterious network-level signaling. PMID:26460033

  11. Managing Multiple Tasks in Complex, Dynamic Environments

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Sketchy planners are designed to achieve goals in realistically complex, time-pressured, and uncertain task environments. However, the ability to manage multiple, potentially interacting tasks in such environments requires extensions to the functionality these systems typically provide. This paper identifies a number of factors affecting how interacting tasks should be prioritized, interrupted, and resumed, and then describes a sketchy planner called APEX that takes account of these factors when managing multiple tasks.

  12. An overview of task order 10

    SciTech Connect

    Rousculp, Christopher L

    2011-01-12

    Task Order 10 formalizes a collaboration in high explosive pulsed power (HEPP) experiments between LANL and VNIIEF. The focus is the VNIIEF disk explosive magnetic generator (DEMG) technology. The task order outlines a sequence of tasks and deliverables culminating in an experiment which takes place in the US utilizing US explosives and a Russian DEMG. This talk summarizes task order 10. It gives a brief history and present status in terms of the proposed high pressure EOS experiment (ALT-3).

  13. Task Variables in Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Goldin, Gerald A., Ed.; McClintock, C. Edwin, Ed.

    A framework for research in problem solving is provided by categorizing and defining variables describing problem tasks. A model is presented in an article by Kulm for the classification of task variables into broad categories. The model attempts to draw realtionships between these categories of task variables and the stages of problem solving…

  14. Task Analysis: A Top-Down Approach.

    ERIC Educational Resources Information Center

    Harmon, Paul

    1983-01-01

    This approach to task analysis includes descriptions of (1) inputs, outputs, and jobs; (2) flow of materials and decisions between jobs; (3) inputs, major tasks, and outputs of each job; (4) sequence of steps for major tasks; (5) heuristics/algorithms for each sequence step; and (6) information needed to use heuristics algorithms. (EAO)

  15. Task Difficulty in Oral Speech Act Production

    ERIC Educational Resources Information Center

    Taguchi, Naoko

    2007-01-01

    This study took a pragmatic approach to examining the effects of task difficulty on L2 oral output. Twenty native English speakers and 59 Japanese students of English at two different proficiency levels produced speech acts of requests and refusals in a role play task. The task had two situation types based on three social variables:…

  16. Mathematics and Science Task Force Report.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Green Bay. Inst. for Learning Partnership.

    This document presents a report from the Mathematics and Science Task Force. The Task Force held its initial meeting on January 27, 1999 to develop essential competencies in content knowledge and pedagogy in four areas: (1) elementary mathematics; (2) secondary mathematics; (3) elementary science; and (4) secondary science. Initially Task Force…

  17. Emergency Medical Technician Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for 12 duties in the occupation of emergency medical technician. Each duty is divided into a number of tasks. A separate page for each duty lists the task with its code number and columns to indicate whether that particular duty has been taught and to provide space for comments. The 12 duties…

  18. Task Switching Effects in Anticipation Timing

    ERIC Educational Resources Information Center

    Fairbrother, Jeffrey T.; Brueckner, Sebastian

    2008-01-01

    To understand how task switching affects human performance, there is a need to investigate how it influences the performance of tasks other than those involving bivalent stimulus categorization. The purpose of this study, therefore, was to investigate the effects of task switching on anticipation timing performance, which typically requires…

  19. Working Memory Costs of Task Switching

    ERIC Educational Resources Information Center

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, Andre; Camos, Valerie

    2008-01-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks…

  20. Linking Task Analysis with Student Learning.

    ERIC Educational Resources Information Center

    Sherman, Thomas M.; Wildman, Terry M.

    An examination of task analysis from several perspectives in order to identify some of its purposes and advantages reveals that, as the interest in learning theory has shifted from a predominately behavioral perspective to a more cognitive orientation, the purpose of task analysis has also shifted. Formerly the purpose of task analysis was to aid…

  1. Human Performance on the Temporal Bisection Task

    ERIC Educational Resources Information Center

    Kopec, Charles D.; Brody, Carlos D.

    2010-01-01

    The perception and processing of temporal information are tasks the brain must continuously perform. These include measuring the duration of stimuli, storing duration information in memory, recalling such memories, and comparing two durations. How the brain accomplishes these tasks, however, is still open for debate. The temporal bisection task,…

  2. Task Proficiency and L1 Private Speech

    ERIC Educational Resources Information Center

    Yamada, Minako

    2005-01-01

    There is a growing volume of research on task-based language use; however, the nature of "task proficiency" has not yet been clearly defined. In order to gain new insights, this study examines the relationship between the process of communication in an L2 and a task outcome by analysing lexical density, as obtained from the pattern of a…

  3. Critical Issues in Telecollaborative Task Design

    ERIC Educational Resources Information Center

    O'Dowd, R.; Waire, P.

    2009-01-01

    In this article we examine how instructors make decisions about task design in telecollaboration and the factors that influence these decisions during the actual implementation of the tasks. We begin with a review of the recent literature of online intercultural exchanges to identify and describe a typology of 12 different types of tasks and task…

  4. The Potential of Statement-Posing Tasks

    ERIC Educational Resources Information Center

    Yang, Kai-Lin

    2010-01-01

    This communication aims at revealing the potential of statement-posing tasks to facilitate students' thinking and strategies of understanding proof. Besides outlining the background of statement-posing tasks, four points were advanced as potential benefits of the tasks: (1) focusing on the logic of arguments in addition to the meaning of…

  5. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    PubMed

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory.

  6. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    PubMed

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp. PMID:26702397

  7. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    PubMed

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.

  8. Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI.

    PubMed

    Mildner, Toralf; Zysset, Stefan; Trampel, Robert; Driesel, Wolfgang; Möller, Harald E

    2005-10-01

    Multi-slice perfusion-based functional magnetic resonance imaging (p-fMRI) is demonstrated with a color-word Stroop task as an established cognitive paradigm. Continuous arterial spin labeling (CASL) of the blood in the left common carotid artery was applied for all repetitions of the functional run in a quasi-continuous fashion, i.e., it was interrupted only during image acquisition. For comparison, blood oxygen level dependent (BOLD) contrast was detected using conventional gradient-recalled echo (GE) echo planar imaging (EPI). Positive activations in BOLD imaging appeared in p-fMRI as negative signal changes corresponding to an enhanced transport of inverted water spins into the region of interest, i.e., increased cerebral blood flow (CBF). Regional differences between the localization of activations and the sensitivity of p-fMRI and BOLD-fMRI were observed as, for example, in the inferior frontal sulcus and in the intraparietal sulcus. Quantification of CBF changes during cognitive task activation was performed on a multi-subject basis and yielded CBF increases of the order of 20-30%.

  9. A preliminary study of functional brain activation among marijuana users during performance of a virtual water maze task.

    PubMed

    Sneider, Jennifer Tropp; Gruber, Staci A; Rogowska, Jadwiga; Silveri, Marisa M; Yurgelun-Todd, Deborah A

    2013-01-01

    Numerous studies have reported neurocognitive impairments associated with chronic marijuana use. Given that the hippocampus contains a high density of cannabinoid receptors, hippocampal-mediated cognitive functions, including visuospatial memory, may have increased vulnerability to chronic marijuana use. Thus, the current study examined brain activation during the performance of a virtual analogue of the classic Morris water maze task in 10 chronic marijuana (MJ) users compared to 18 non-using (NU) comparison subjects. Imaging data were acquired using blood oxygen-level dependent (BOLD) functional MRI at 3.0 Tesla during retrieval (hidden platform) and motor control (visible platform) conditions. While task performance on learning trials was similar between groups, MJ users demonstrated a deficit in memory retrieval. For BOLD fMRI data, NU subjects exhibited greater activation in the right parahippocampal gyrus and cingulate gyrus compared to the MJ group for the Retrieval - Motor control contrast (NU > MJ). These findings suggest that hypoactivation in MJ users may be due to differences in the efficient utilization of neuronal resources during the retrieval of memory. Given the paucity of data on visuospatial memory function in MJ users, these findings may help elucidate the neurobiological effects of marijuana on brain activation during memory retrieval. PMID:23951549

  10. Pattern of brain activation during social cognitive tasks is related to social competence in siblings discordant for schizophrenia.

    PubMed

    Villarreal, Mirta F; Drucaroff, Lucas J; Goldschmidt, Micaela G; de Achával, Delfina; Costanzo, Elsa Y; Castro, Mariana N; Ladrón-de-Guevara, M Soledad; Busatto Filho, Geraldo; Nemeroff, Charles B; Guinjoan, Salvador M

    2014-09-01

    Measures of social competence are closely related to actual community functioning in patients with schizophrenia. However, the neurobiological mechanisms underlying competence in schizophrenia are not fully understood. We hypothesized that social deficits in schizophrenia are explained, at least in part, by abnormally lateralized patterns of brain activation in response to tasks engaging social cognition, as compared to healthy individuals. We predicted such patterns would be partly heritable, and therefore affected in patients' nonpsychotic siblings as well. We used a functional magnetic resonance image paradigm to characterize brain activation induced by theory of mind tasks, and two tests of social competence, the Test of Adaptive Behavior in Schizophrenia (TABS), and the Social Skills Performance Assessment (SSPA) in siblings discordant for schizophrenia and comparable healthy controls (n = 14 per group). Healthy individuals showed the strongest correlation between social competence and activation of right hemisphere structures involved in social cognitive processing, whereas in patients, the correlation pattern was lateralized to left hemisphere areas. Unaffected siblings of patients exhibited a pattern intermediate between the other groups. These results support the hypothesis that schizophrenia may be characterized by an abnormal functioning of nondominant hemisphere structures involved in the processing of socially salient information. PMID:24927685

  11. The Keck Task Library (KTL)

    NASA Technical Reports Server (NTRS)

    Lupton, W. F.; Conrad, A. R.

    1992-01-01

    KTL is a set of routines which eases the job of writing applications which must interact with a variety of underlying sub-systems (known as services). A typical application is an X Window user interface coordinating telescope and instruments. In order to connect to a service, application code specifies a service name--typically an instrument name--and a style, which defines the way in which the application will interact with the service. Two styles are currently supported: keyword, where the application reads and writes named keywords and the resulting inter-task message traffic is hidden; and message, where the application deals directly with messages. The keyword style is intended mainly for user interfaces, and the message style is intended mainly for lower-level applications. KTL applications are event driven: a typical application first connects to all its desired services, then expresses interest in specified events. The application then enters an event dispatch loop in which it waits for events and calls the appropriate service's event-handling routine. Each event is associated with a call-back routine which is invoked when the event occurs. Call-back routines may (and typically do) interact with other sub-systems and KTL provides the means of doing so without blocking the application (vital for X Window user interfaces). This approach is a marriage of ideas culled from the X window, ADAM, Keck instrument, and Keck telescope control systems. A novel feature of KTL is that it knows nothing about any services or styles. Instead it defines a generic set of routines which must be implemented by all services and styles (essentially open(), ioctl(), read(), write(), event(), and close()) and activates sharable libraries at run-time. Services have been implemented (in both keyword and message styles) for HIRES (the Keck high resolution echelle spectrograph built by Lick Observatory), LWS (the Keck long wavelength spectrometer built by UC San Diego), and the Keck

  12. Integrated Task and Data Parallel Programming

    NASA Technical Reports Server (NTRS)

    Grimshaw, A. S.

    1998-01-01

    This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated

  13. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes.

    PubMed

    Rinné, Susanne; Kiper, Aytug K; Schlichthörl, Günter; Dittmann, Sven; Netter, Michael F; Limberg, Sven H; Silbernagel, Nicole; Zuzarte, Marylou; Moosdorf, Rainer; Wulf, Hinnerk; Schulze-Bahr, Eric; Rolfes, Caroline; Decher, Niels

    2015-04-01

    TASK-1 channels have emerged as promising drug targets against atrial fibrillation, the most common arrhythmia in the elderly. While TASK-3, the closest relative of TASK-1, was previously not described in cardiac tissue, we found a very prominent expression of TASK-3 in right human auricles. Immunocytochemistry experiments of human right auricular cardiomyocytes showed that TASK-3 is primarily localized at the plasma membrane. Single-channel recordings of right human auricles in the cell-attached mode, using divalent-cation-free solutions, revealed a TASK-1-like channel with a single-channel conductance of about 30pS. While homomeric TASK-3 channels were not found, we observed an intermediate single-channel conductance of about 55pS, possibly reflecting the heteromeric channel formed by TASK-1 and TASK-3. Subsequent experiments with TASK-1/TASK-3 tandem channels or with co-expressed TASK-1 and TASK-3 channels in HEK293 cells or Xenopus oocytes, supported that the 55pS channels observed in right auricles have electrophysiological characteristics of TASK-1/TASK-3 heteromers. In addition, co-expression experiments and single-channel recordings suggest that heteromeric TASK-1/TASK-3 channels have a predominant surface expression and a reduced affinity for TASK-1 blockers. In summary, the evidence for heteromeric TASK-1/TASK-3 channel complexes together with an altered pharmacologic response to TASK-1 blockers in vitro is likely to have further impact for studies isolating ITASK-1 from cardiomyocytes and for the development of drugs specifically targeting TASK-1 in atrial fibrillation treatment.

  14. Task Type E report for National Launch Demonstration Center (NLDC) (Task 32)

    NASA Astrophysics Data System (ADS)

    Elliot, G. E.

    1991-12-01

    The objective of this task was to define National Launch Demonstration Center (NLDC) requirements in support of National Launch System (NLS) Joint Program Office (JPO) Level 11 Task #32, NLDC Requirement Definition. The following document provided the basis for the study: Task authorization - Contract FO4701-88-C-0109, Modification P00025, SOW 3.2.11, Define NLDC Requirements. The Task was structured into the following series of activities: (1) identify NLS vehicle, operations, or information system requirements which could be demonstrated, integrated, validated, or verified using the NLDC; (2) establish groundrules and constraints for the NLDC; (3) develop a time phased approach for implementing the NLDC to match the NLS need dates and Spaceport Florida Authority/JPO funding availability; (4) support development of NLS JPO NLDC Plan; and (5) support development of NLS JPO NLDC Coordination Briefing.

  15. Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an index of effort during a two-choice serial reaction task.

    PubMed

    Van Boxtel, A; Jessurun, M

    1993-11-01

    In earlier studies, positive but inconsistent relationships have been reported between mental effort and electromyogram (EMG) amplitude in task-irrelevant limb muscles. In this study, we explored whether facial EMG activity would provide more consistent results. Tonic EMG activity of six different facial and jaw-elevator muscles was bilaterally recorded during a two-choice serial reaction task with paced presentation of auditory or visual signals. In Experiment 1, task load (signal presentation rate) was kept constant for 20 min at the level of the subject's maximal capacity. In Experiment 2, task load was increased in a stepwise fashion over six successive 2-min periods from sub- to supramaximal capacity levels. EMG amplitude and coherency between momentary bilateral amplitude fluctuations were measured. In Experiment 1, EMG amplitude of frontalis, corrugator supercilii, and orbicularis oris inferior showed a strong gradual increase throughout the task period, whereas taks performance remained fairly stable. Orbicularis oculi, zygomaticus major, and temporalis EMG showed a much smaller increase or no increase. In Experiment 2, the first three muscles showed a fairly consistent increase in EMG amplitude with increasing task load. Orbicularis oculi and zygomaticus major were not active until task load became supramaximal. Effects of stimulus modality or laterality were not found in any experiment. These results are consistent with the notion that EMG amplitude of frontalis, corrugator, and orbicularis oris provides a sensitive index of the degree of exerted mental effort. PMID:8248451

  16. Return to Flight Task Group

    NASA Technical Reports Server (NTRS)

    2005-01-01

    It has been 29 months since Columbia was lost over East Texas in February 2003. Seven months after the accident, the Columbia Accident Investigation Board (CAIB) released the first volume of its final report, citing a variety of technical, managerial, and cultural issues within NASA and the Space Shuttle Program. To their credit, NASA offered few excuses, embraced the report, and set about correcting the deficiencies noted by the accident board. Of the 29 recommendations issued by the CAIB, 15 were deemed critical enough that the accident board believed they should be implemented prior to returning the Space Shuttle to flight. Some of these recommendations were relatively easy, most were straightforward, a few bordered on the impossible, and others were largely overcome by events, particularly the decision by the President to retire the Space Shuttle by 2010. The Return to Flight Task Group (RTF TG, or simply, the Task Group) was chartered by the NASA Administrator in July 2003 to provide an independent assessment of the implementation of the 15 CAIB return-to-flight recommendations. An important observation must be stated up-front: neither the CAIB nor the RTF TG believes that all risk can be eliminated from Space Shuttle operations; nor do we believe that the Space Shuttle is inherently unsafe. What the CAIB and RTF TG do believe, however, is that NASA and the American public need to understand the risks associated with space travel, and that NASA must make every reasonable effort to minimize such risk. Since the release of the CAIB report, NASA and the Space Shuttle Program expended enormous effort and resources toward correcting the causes of the accident and preparing to fly again. Relative to the 15 specific recommendations that the CAIB indicated should be implemented prior to returning to flight, NASA has met or exceeded most of them the Task Group believes that NASA met the intent of the CAIB for 12 of these recommendations. The remaining three

  17. Effect of handedness on brain activity patterns and effective connectivity network during the semantic task of Chinese characters.

    PubMed

    Gao, Qing; Wang, Junping; Yu, Chunshui; Chen, Huafu

    2015-01-01

    Increasing efforts have been denoted to elucidating the effective connectivity (EC) among brain regions recruited by certain language task; however, it remains unclear the impact of handedness on the EC network underlying language processing. In particularly, this has not been investigated in Chinese language, which shows several differences from alphabetic language. This study thereby explored the functional activity patterns and the EC network during a Chinese semantic task based on functional MRI data of healthy left handers (LH) and right handers (RH). We found that RH presented a left lateralized activity pattern in cerebral cortex and a right lateralized pattern in cerebellum; while LH were less lateralized than RH in both cerebral and cerebellar areas. The conditional Granger causality method in deconvolved BOLD level further demonstrated more interhemispheric directional connections in LH than RH group, suggesting better bihemispheric coordination and increased interhemispheric communication in LH. Furthermore, we found significantly increased EC from right middle occipital gyrus to bilateral insula (INS) while decreased EC from left INS to left precentral gyrus in LH group comparing to RH group, implying that handedness may differentiate the causal relationship of information processing in integration of visual-spatial analysis and semantic word retrieval of Chinese characters. PMID:26666706

  18. Unintentional Activation of Translation Equivalents in Bilinguals Leads to Attention Capture in a Cross-Modal Visual Task

    PubMed Central

    Singh, Niharika; Mishra, Ramesh Kumar

    2015-01-01

    Using a variant of the visual world eye tracking paradigm, we examined if language non- selective activation of translation equivalents leads to attention capture and distraction in a visual task in bilinguals. High and low proficient Hindi-English speaking bilinguals were instructed to programme a saccade towards a line drawing which changed colour among other distractor objects. A spoken word, irrelevant to the main task, was presented before the colour change. On critical trials, one of the line drawings was a phonologically related word of the translation equivalent of the spoken word. Results showed that saccade latency was significantly higher towards the target in the presence of this cross-linguistic translation competitor compared to when the display contained completely unrelated objects. Participants were also slower when the display contained the referent of the spoken word among the distractors. However, the bilingual groups did not differ with regard to the interference effect observed. These findings suggest that spoken words activates translation equivalent which bias attention leading to interference in goal directed action in the visual domain. PMID:25775184

  19. Effect of handedness on brain activity patterns and effective connectivity network during the semantic task of Chinese characters

    PubMed Central

    Gao, Qing; Wang, Junping; Yu, Chunshui; Chen, Huafu

    2015-01-01

    Increasing efforts have been denoted to elucidating the effective connectivity (EC) among brain regions recruited by certain language task; however, it remains unclear the impact of handedness on the EC network underlying language processing. In particularly, this has not been investigated in Chinese language, which shows several differences from alphabetic language. This study thereby explored the functional activity patterns and the EC network during a Chinese semantic task based on functional MRI data of healthy left handers (LH) and right handers (RH). We found that RH presented a left lateralized activity pattern in cerebral cortex and a right lateralized pattern in cerebellum; while LH were less lateralized than RH in both cerebral and cerebellar areas. The conditional Granger causality method in deconvolved BOLD level further demonstrated more interhemispheric directional connections in LH than RH group, suggesting better bihemispheric coordination and increased interhemispheric communication in LH. Furthermore, we found significantly increased EC from right middle occipital gyrus to bilateral insula (INS) while decreased EC from left INS to left precentral gyrus in LH group comparing to RH group, implying that handedness may differentiate the causal relationship of information processing in integration of visual-spatial analysis and semantic word retrieval of Chinese characters. PMID:26666706

  20. Top-down control of MEG alpha-band activity in children performing Categorical N-Back Task.

    PubMed

    Ciesielski, Kristina T; Ahlfors, Seppo P; Bedrick, Edward J; Kerwin, Audra A; Hämäläinen, Matti S

    2010-10-01

    Top-down cognitive control has been associated in adults with the prefrontal-parietal network. In children the brain mechanisms of top-down control have rarely been studied. We examined developmental differences in top-down cognitive control by monitoring event-related desynchronization (ERD) and event-related synchronization (ERS) of alpha-band oscillatory activity (8-13 Hz) during anticipation, target detection and post-response stages of a visual working memory task. Magnetoencephalography (MEG) was used to record brain oscillatory activity from healthy 10-year-old children and young adults performing the Categorical N-Back Task (CNBT). Neuropsychological measures assessing frontal lobe networks were also acquired. Whereas adults showed a modulation of the ERD at the anticipatory stages of CNBT and ERS at the post-response stage, children displayed only some anticipatory modulation of ERD but no ERS at the post-response stage, with alpha-band remaining at a desynchronized state. Since neuropsychological and prior neuroimaging findings indicate that the prefrontal-parietal networks are not fully developed in 10-year olds, and since the children performed as well as the adults on CNBT and yet displayed different patterns of ERD/ERS, we suggest that children may be using different top-down cognitive strategies and, hence, different, developmentally apt neuronal networks. PMID:20713071

  1. Autonomous organization of grasping tasks

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Chang, Jeffrey

    1989-01-01

    This paper describes an architecture for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of Boolean rules and general planning operations. The implementation of the layer has to be consistent with the type of operation and its requirements for real time control. One implementation of the rule level, with a Boolean artificial neural network which would have a response time sufficient for producing reflex corrective action at the actuator level is presented.

  2. The numerical distance effect is task dependent.

    PubMed

    Goldfarb, Liat; Henik, Avishai; Rubinsten, Orly; Bloch-David, Yafit; Gertner, Limor

    2011-11-01

    Number comparison tasks produce a distance effect e.g., Moyer & Landauer (Nature 215: 1519-1520, 1967). It has been suggested that this effect supports the existence of semantic mental representations of numbers. In a matching task, a distance effect also appears, which suggests that the effect has an automatic semantic component. Recently, Cohen (Psychonomic Bulletin & Review 16: 332-336, 2009) suggested that in both automatic and intentional tasks, the distance effect might reflect not a semantic number representation, but a physical similarity between digits. The present article (1) compares the distance effect in the automatic matching task with that in the intentional number comparison task and suggests that, in the latter, the distance effect does include an additional semantic component; and (2) indicates that the distance effect in the standard automatic matching task is questionable and that its appearance in previous matching tasks was based on the specific analysis and design that were applied.

  3. Teachers' teaching practices and beliefs regarding context-based tasks and their relation with students' difficulties in solving these tasks

    NASA Astrophysics Data System (ADS)

    Wijaya, Ariyadi; van den Heuvel-Panhuizen, Marja; Doorman, Michiel

    2015-12-01

    In this study, we investigated teachers' teaching practices and their underlying beliefs regarding context-based tasks to find a possible explanation for students' difficulties with these tasks. The research started by surveying 27 Junior High School teachers from seven schools in Indonesia through a written questionnaire. Then, to further examine teachers' teaching practices related to context-based tasks, four teachers were observed and video recorded in two mathematics lessons in which they were asked to deal with context-based tasks. The questionnaire data revealed that the teachers had a tendency toward a view on teaching and learning mathematics which includes encouraging students to be actively involved in solving problems in various contexts. Although this finding suggests that the teachers may offer opportunities to learn context-based tasks to students, the questionnaire data also revealed that the teachers saw context-based tasks as plain word problems. Furthermore, the observations disclosed that their teaching was mainly teacher-centered and directive, which is not considered to be supportive for learning to solve context-based tasks. Combining the findings of this study with the results from our earlier study on Indonesian students' errors when solving context-based tasks, we found a relationship between how Indonesian teachers teach context-based tasks and the errors Indonesian students make in solving these tasks. These findings support the conclusion that insufficient opportunity-to-learn to solve context-based tasks offered by teachers is a possible explanation for students' difficulties in solving these tasks.

  4. Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity

    ERIC Educational Resources Information Center

    Sasayama, Shoko

    2016-01-01

    In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…

  5. Is Performance in Task-Cuing Experiments Mediated by Task Set Selection or Associative Compound Retrieval?

    ERIC Educational Resources Information Center

    Forrest, Charlotte L. D.; Monsell, Stephen; McLaren, Ian P. L.

    2014-01-01

    Task-cuing experiments are usually intended to explore control of task set. But when small stimulus sets are used, they plausibly afford learning of the response associated with a combination of cue and stimulus, without reference to tasks. In 3 experiments we presented the typical trials of a task-cuing experiment: a cue (colored shape) followed,…

  6. Task Results Processing for the Needs of Task-Oriented Design Environments

    ERIC Educational Resources Information Center

    Zheliazkova, Irina; Kolev, R.

    2008-01-01

    This paper presents learners' task results gathered by means of an example task-oriented environment for knowledge testing and processed by EXCEL. The processing is domain- and task-independent and includes automatic calculation of several important task and session's parameters, drawing specific graphics, generating tables, and analyzing the…

  7. The Effect of a Workload-Preview on Task-Prioritization and Task-Performance

    ERIC Educational Resources Information Center

    Minotra, Dev

    2012-01-01

    With increased volume and sophistication of cyber attacks in recent years, maintaining situation awareness and effective task-prioritization strategy is critical to the task of cybersecurity analysts. However, high levels of mental-workload associated with the task of cybersecurity analyst's limits their ability to prioritize tasks.…

  8. How to Correct a Task Error: Task-Switch Effects Following Different Types of Error Correction

    ERIC Educational Resources Information Center

    Steinhauser, Marco

    2010-01-01

    It has been proposed that switch costs in task switching reflect the strengthening of task-related associations and that strengthening is triggered by response execution. The present study tested the hypothesis that only task-related responses are able to trigger strengthening. Effects of task strengthening caused by error corrections were…

  9. Cue-Independent Task-Specific Representations in Task Switching: Evidence from Backward Inhibition

    ERIC Educational Resources Information Center

    Altmann, Erik M.

    2007-01-01

    The compound-cue model of cognitive control in task switching explains switch cost in terms of a switch of task cues rather than of a switch of tasks. The present study asked whether the model generalizes to Lag 2 repetition cost (also known as backward inhibition), a related effect in which the switch from B to A in ABA task sequences is costlier…

  10. Task failure during standing heel raises is associated with increased power from 13 to 50 Hz in the activation of triceps surae

    PubMed Central

    Pereira, Rafael; Schettino, Ludmila; Machado, Marco; Victor da Silva, Pierre Augusto; Neto, Osmar Pinto

    2010-01-01

    The goal of this paper was to investigate the amplitude and sub-100 Hz frequency content of surface electromyography (EMG) signals obtained from agonist, antagonist and synergist muscles during a heel-raise task sustained to failure. Twenty-two healthy adults, 14 men and 8 women participated in the study. Surface EMG data from the raising and lowering phases of the movement were studied in the time (EMG amplitude) and frequency (wavelet transform) domains. For the raising phase, we found a significant increase in the EMG amplitude of all muscles studied throughout the task (P < 0.02); however, for the lowering phase, we found a decrease in overall muscle activation for the medial gastrocnemius and tibialis anterior. Additionally, we found higher 13–30 and 30–50 Hz normalized power during the raising phase for the triceps surae prior to task failure and at task failure compared with the beginning and midway of the task (P < 0.05); during the lowering phase, however, we found higher normalized power from 30 to 50 Hz for the triceps surae (P < 0.01) and higher 13–30 Hz normalized power for the tibialis anterior (P < 0.01) at task failure compared with the beginning and midway of the task. Finally, we showed that a dynamic task performed until failure can induce different activation strategies for agonist, antagonist and synergist muscles, and that the frequency content below 100 Hz contains useful information about the neural activation of these muscles in relation to task failure that is not evident from the EMG amplitude. PMID:20455068

  11. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  12. Prefrontal Dynamics Underlying Rapid Instructed Task Learning Reverse with Practice

    PubMed Central

    Cole, Michael W.; Bagic, Anto; Kass, Robert; Schneider, Walter

    2011-01-01

    The ability to rapidly reconfigure our minds to perform novel tasks is important for adapting to an ever-changing world, yet little is understood about its basis in the brain. Furthermore, it is unclear how this kind of task preparation changes with practice. Previous research suggests that prefrontal cortex (PFC) is essential when preparing to perform either novel or practiced tasks. Building upon recent evidence that PFC is organized in an anterior-to-posterior hierarchy, we postulated that novel and practiced task preparation would differentiate hierarchically distinct regions within PFC across time. Specifically, we hypothesized and confirmed using functional magnetic resonance imaging and magnetoencephalography with humans that novel task preparation is a bottom-up process that involves lower-level rule representations in dorsolateral PFC (DLPFC) before a higher-level rule-integrating task representation in anterior PFC (aPFC). In contrast, we identified a complete reversal of this activity pattern during practiced task preparation. Specifically, we found that practiced task preparation is a top-down process that involves a higher-level rule-integrating task representation (recalled from long-term memory) in aPFC before lower-level rule representations in DLPFC. These findings reveal two distinct yet highly inter-related mechanisms for task preparation, one involving task set formation from instructions during rapid instructed task learning and the other involving task set retrieval from long-term memory to facilitate familiar task performance. These two mechanisms demonstrate the exceptional flexibility of human PFC as it rapidly reconfigures cognitive brain networks to implement a wide variety of possible tasks. PMID:20962245

  13. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    PubMed

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  14. Lucid Dreaming and Ventromedial versus Dorsolateral Prefrontal Task Performance

    PubMed Central

    Neider, Michelle; Pace-Schott, Edward F.; Forselius, Erica; Pittman, Brian; Morgan, Peter T.

    2010-01-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for one week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  15. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    PubMed

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function.

  16. Investigating perfect timesharing: the relationship between IM-compatible tasks and dual-task performance.

    PubMed

    Halvorson, Kimberly M; Ebner, Herschel; Hazeltine, Eliot

    2013-04-01

    Why are dual-task costs reduced with ideomotor (IM) compatible tasks (Greenwald & Shulman, 1973; Lien, Proctor & Allen, 2002)? In the present experiments, we first examine three different measures of single-task performance (pure single-task blocks, mixed blocks, and long stimulus onset asynchrony [SOA] trials in dual-task blocks) and two measures of dual-task performance (simultaneous stimulus presentation blocks and simultaneous stimulus presentation trials in blocks with mixed SOAs), and show that these different measures produce different estimates of the cost. Next we examine whether the near elimination of costs can be explained by assuming that one or both of the tasks bypasses capacity-limited central operations. The results indicate that both tasks must be IM-compatible to nearly eliminate the dual-task costs, suggesting that the relationship between the tasks plays a critical role in overlapping performance. PMID:22866763

  17. Early visual cortex reflects initiation and maintenance of task set.

    PubMed

    Elkhetali, Abdurahman S; Vaden, Ryan J; Pool, Sean M; Visscher, Kristina M

    2015-02-15

    The human brain is able to process information flexibly, depending on a person's task. The mechanisms underlying this ability to initiate and maintain a task set are not well understood, but they are important for understanding the flexibility of human behavior and developing therapies for disorders involving attention. Here we investigate the differential roles of early visual cortical areas in initiating and maintaining a task set. Using functional Magnetic Resonance Imaging (fMRI), we characterized three different components of task set-related, but trial-independent activity in retinotopically mapped areas of early visual cortex, while human participants performed attention demanding visual or auditory tasks. These trial-independent effects reflected: (1) maintenance of attention over a long duration, (2) orienting to a cue, and (3) initiation of a task set. Participants performed tasks that differed in the modality of stimulus to be attended (auditory or visual) and in whether there was a simultaneous distractor (auditory only, visual only, or simultaneous auditory and visual). We found that patterns of trial-independent activity in early visual areas (V1, V2, V3, hV4) depend on attended modality, but not on stimuli. Further, different early visual areas play distinct roles in the initiation of a task set. In addition, activity associated with maintaining a task set tracks with a participant's behavior. These results show that trial-independent activity in early visual cortex reflects initiation and maintenance of a person's task set.

  18. Report on the activities of the ESHRE Task Force on intracytoplasmic sperm injection. European Society of Human Reproduction and Embryology.

    PubMed

    Tarlatzis, B C

    1996-12-01

    The application of intracytoplasmic sperm injection (ICSI) is rapidly becoming more popular around the world. The European Society of Human Reproduction and Embryology (ESHRE) Task Force is aiming to collect annually the clinical results and the pregnancy outcomes of ICSI using ejaculated, epididymal and testicular spermatozoa to enable the provision of reliable information on the efficacy and safety of this novel technique. This review summarizes the activities of the ESHRE Task Force on ICSI during the last 2 years. The number of centres performing ICSI as well as the number of ICSI cycles increased significantly from 1993 to 1994. The incidence of oocytes damaged by the procedure was low (7.2-10.6%), whereas the fertilization rate achieved with ejaculated, epididymal and testicular spermatozoa was high (51.1-60.8%), even with extremely impaired semen quality. Thus, 89-93% of patients had an embryo transfer and 21-31% of them achieved a viable pregnancy, irrespective of the origin of the spermatozoon. ICSI results were similar in 1993 and 1994. The follow-up of children born after ICSI revealed no increase in the incidence of major congenital malformations or chromosomal aberrations. These findings are quite reassuring, although the numbers are still too few. Therefore, efforts need to be continued to enhance the database and thus provide a reliable assessment of this new treatment modality.

  19. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex

    PubMed Central

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences. PMID:25250778

  20. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    PubMed

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.