Science.gov

Sample records for active tectonic deformation

  1. Modern Tectonic Deformation in the Active Basin-And Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, S.; Wen, X.

    2012-12-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the present tectonic deformation, the southeastern margin of the Datong-Yangyuan basin, the biggest graben basin of the active tectonic province, shows as a turning belt of the extensional rates, suggesting that relatively high tensile strain accumulation could exist there. (3)On the northeastern segment of the studied active basin-and-range province, both the Zhangjiakou-Yanhui graben basin and the Beijing graben basin have also been being in significant extensional and shear deformation. (4) The relocated hypocenter distribution have

  2. Modern Tectonic Deformation in the Active Basin-and-Range Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, Suting; Wen, Xueze

    2013-04-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the western and middle segments of the active basin and range province, most of the total horizontal extension and shear deformation happen in the width from the Huangqihai basin to the Datong-Yanggao basin , suggesting that some major faults in this width could have had relatively-high strain build-up. (3) It is possible that one or more basement detachment belts exist under the active basins, and it or they possibly dip(s) southeastern-ward. (4) The modern tectonic extensional rate is up to 2 to 3mm /yr in the study region. However

  3. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  4. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  5. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  6. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  7. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  8. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  9. Tectonic and gravity-induced deformation along the active Talas-Fergana Fault, Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Corazzato, C.; Rust, D.; Bonali, F. L.; Pasquarè Mariotto, F. A.; Korzhenkov, A. M.; Oppizzi, P.; Bonzanigo, L.

    2015-08-01

    This paper shows, by field palaeoseismological data, the Holocene activity of the central segment of the intracontinental Talas-Fergana Fault (TFF), and the relevance of possible future seismic shaking on slope stability around a large water reservoir. The fault, striking NW-SE, is marked by a continuous series of scarps, deflected streams and water divides, and prehistoric earthquakes that offset substrate and Holocene deposits. Fault movements are characterised by right-lateral strike-slip kinematics with a subordinate component of uplift of the NE block. Structural, geological and geomorphological field data indicate that shallow and deep landslides are aligned along the TFF, and some of them are active. Where the TFF runs close to the reservoir, the fault trace is obscured by a series of landslides, affecting rock and soil materials and ranging in size from small slope instabilities to deep-seated gravity-induced slope deformations (DGSDs). The largest of these, which does not show clear evidence of present-day activity, involves a volume of about 1 km3 and is associated with smaller but active landslides in its lower part, with volumes in the order of 2.5 × 104 m3 to 1 × 106 m3. Based on the spatial and temporal relations between landslides and faults, we argue that at least some of these slope failures may have a coseismic character. Stability analyses by means of limit equilibrium methods (LEMs), and stress-strain analysis by finite difference numerical modelling (FDM), were carried out to evaluate different hazard scenarios linked to these slope instabilities. The results indicate concern for the different threats posed, ranging from the possible disruption of the M-41 highway, the main transportation route in central Asia, to the possible collapse of huge rock masses into the reservoir, possibly generating a tsunami.

  10. Decadal to millennial deformation in the Pamir - Tian Shan collision zone, NW China and surface expression of active tectonics

    NASA Astrophysics Data System (ADS)

    Bufe, A.; Bookhagen, B.; Burbank, D. W.; Bekaert, D. P.; Hussain, E.

    2013-12-01

    The collision between the Pamir and the Tian Shan is a type example of intracontinental collision. GPS studies show that in Northwest China, at the junction between the Tarim basin, the Pamir and the Tian Shan, 7-9 mm/y of north-south shortening are presently accommodated across the boundary between the two orogens. Here, the deformation has mostly stepped out from the high mountain front into the foreland and has formed a complex array of compressional structures. We compare rates of decadal deformation in the area with 104- to 106-year estimates and investigate the extent to which stream profiles and topography reflect the active tectonics in this setting. A dataset of decadal deformation rates around the Tarim-Tian Shan-Pamir junction in Northwest China is obtained from Interferometric Synthetic Aperture Radar (InSAR) time-series analysis. We use the StaMPS/MTI package to combine small-baseline and persistent-scatterer techniques and obtain results that show no significant residual topographic phase correlation. Our data show that deformation has stepped away from the high mountain front and is concentrated on a few structures in the foreland of the Pamir and Tian Shan. Line-of-sight deformation of up to 2-4 mm/y on the Pamir Frontal Thrust (PFT) and the Kashi detachment anticline are observed. No significant displacement of the Main Pamir Thrust can be detected. Within error, the modern deformation rates agree with previously published millennial to million-year estimates along the PFT. However, decadal deformation rates deviate from million-year shortening and rock-uplift rates of anticlines in the foreland of the Tian Shan. It remains unclear whether the discrepancy arises from a recent change to a new persistent uplift rate, or merely from short timescale fluctuation of uplift rate, for example within an earthquake cycle. In an additional step, we extract stream profiles and normalized steepness index (ksn) values for rivers with drainage areas larger than 9

  11. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes

    NASA Astrophysics Data System (ADS)

    Rotevatn, Atle; Thorsheim, Elin; Bastesen, Eivind; Fossmark, Heidi S. S.; Torabi, Anita; Sælen, Gunnar

    2016-09-01

    Deformation bands in porous sandstones have been extensively studied for four decades, whereas comparatively less is known about deformation bands in porous carbonate rocks, particularly in extensional settings. Here, we investigate porous grainstones of the Globigerina Limestone Formation in Malta, which contain several types of deformation bands in the hangingwall of the Maghlaq Fault: (i) bed-parallel pure compaction bands (PCB); (ii) pressure solution-dominated compactive shear bands (SCSB) and iii) cataclasis-dominated compactive shear bands (CCSB). Geometric and kinematic analyses show that the bands formed sequentially in the hangingwall of the evolving Maghlaq growth fault. PCBs formed first due to fault-controlled subsidence and vertical loading; a (semi-)tectonic control on PCB formation is thus documented for the first time in an extensional setting. Pressure solution (dominating SCSBs) and cataclasis (dominating CCSBs) appear to have operated separately, and not in concert. Our findings therefore suggest that, in some carbonate rocks, cataclasis within deformation bands may develop irrespective of whether pressure solution processes are involved. We suggest this may be related to stress state, and that whereas pressure solution is a significant facilitator of grain size reduction in contractional settings, grain size reduction within deformation bands in extensional settings is less dependent on pressure solution processes.

  12. Global organization of tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-01-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the

  13. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  14. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  15. A mechanism for tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1986-01-01

    In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.

  16. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  17. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  18. Interactions between regional tectonics and volcanic deformations in the Azores

    NASA Astrophysics Data System (ADS)

    Okada, J.; Sigmundsson, F.; Ofeigsson, B.; Rodrigues, R.; Ferreira, T.

    2012-04-01

    The Azores archipelago is located in the plate triple junction of Eurasia, Nubia, and North American. With this geologically peculiar location on the earth it represents intense seismic activities and active volcanisms. Space geodesy techniques such as GNSS, DORIS, SLR, and VLBI enable direct measurements of the current tectonic plate motions besides detecting local crustal deformation episodes in the volcanic fields. In this study, we report the recent new results of continuous GPS measurements in the Azores Triple Junction region. In the scope of monitoring both tectonic and volcanic activities, CVARG (Center for Volcanology and Geological Risk Assessment, University of Azores) has been operating 11 continuous GPS stations. All available data sets including the Azores government GNSS network and IGS (International GNSS Service) permanent network have been simultaneously processed using Bernese software v5.0. The site velocities are determined in ITRF2005 geodetic reference frame from the time series analysis for the period of 2008-2010. Estimated velocities are compared with tectonic plate motion models. Our results roughly agree with the previous geodetic studies by showing the following evidences; (1) the different opening velocities at MAR result in differential shear along Terceira Ridge, (2) south and western side of Pico and southwest and central part of S. Miguel Islands mimic stable Nubia plate motion. The pattern of the residual velocities in S. Miguel changes between Fogo and Furnas volcanoes. In this area, significant earthquake swarm episodes (e.g. in 1989 and in 2005) have been repeated at least during last few decades and some minor seismic swarms have been still ongoing. Our GPS station has captured an episodic crustal deformation that was accompanied with seismic jumps between NE flank of Fogo and Furnas and was followed by intense swarm activities in the area on late 2008. This seismic and deformation significances can be interpreted by mutual

  19. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains

  20. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  1. Mobilization of evaporites in tectonically active terrains

    NASA Astrophysics Data System (ADS)

    Stiros, Stathis C.

    2015-04-01

    The role of evaporites, mostly halite, during seismic sequences is investigated using evidence from certain earthquakes with magnitude between approximately 6.0 and 7.2 which occurred in the last 60 years in the Zagros Mts. (Iran) and the Ionian Sea (Greece); i.e. two seismically active areas, characterized by evaporite-associated decollements and more shallow decollements combined with mature, along-thrusts intrusions. Studied earthquakes produced either large scale surface deformation, or were covered by high-resolution and accuracy GPS and INSAR data, permitting to fully recognize the deformation pattern. In all cases an "atypical", tectonic deformation pattern was observed, ranging from apparently "impossible" patterns (thrust and normal faults, sub-parallel and homothetic; 1953 Cephalonia earthquake, Greece) to rather diffuse tectonic patterns, even to "phantom" earthquakes (Zagros). Careful analysis and modeling of the surface deformation data, in combination with the available geological, geophysical and seismological data permits to recognize, and even to quantify differences between deformation observed, and that expected in ordinary environments. In particular, it was found that during earthquakes evaporites were mobilized, and this led either to a secondary deformation of the overburden, fully detached from the basement, or to significant aseismic (post-seismic) deformation. Anomalies in the distribution of seismic intensities due to evaporitic intrusions along faults were also observed. Apart from seismological implications (unpredictable post-seismic deformation, possibly also in the far-field), these results deriving from regions at different levels of evaporitic evolution, may prove useful to understand patterns of mobilization of evaporites during periods of tectonic activity.

  2. Active tectonics and human survival strategies

    NASA Astrophysics Data System (ADS)

    King, Geoffrey; Bailey, Geoffrey; Sturdy, Derek

    1994-10-01

    Tectonic movements continuously remould the surface of Earth in response to plate motion. Yet such deformation is rarely taken into account when assessing landscape change and its impact on human land use, except perhaps as an occasional hazard to human life or a temporary disruption in the longer term patterns of human history. However, active tectonics also create and sustain landscapes that can be beneficial to human survival, forming a complex topography of potentially fertile sedimentary basins enclosed by mountain barriers that can facilitate the control and explotation of food resources, especially animal prey. We discuss the tectonic history of northwest Greece and show how the Paleolithic sites of the region are located to take advantage of tectonically created features at both a local and a regional scale. We suggest that the association of significant concentrations of early Paleolithic sites with tectonically acitve regions is not coincidental and that on the longer time spans of human biological evolution, active tectonics has been an important selective agent contributing to the development of the human species as an intelligent predator.

  3. Plate-tectonic mechanism of Laramide deformation.

    USGS Publications Warehouse

    Hamilton, W.

    1981-01-01

    The Laramide compressive deformation of the craton was caused by a clockwise rotation of about 2-4o of the Colorado Plateau region relative to the continental interior, during late Late Cretaceous and early Tertiary time. Late Paleozoic and Neogene deformation of the craton also were produced by motion of a southwestern subplate relative to the continental interior. -from Author

  4. Geodetic monitoring of tectonic deformation: Toward a strategy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Issues of interest and importance to society and science are presented. The problems considered are of national concern; their solutions may contribute to a better understanding of tectonic deformation and earthquake hazards. The need for additional field data, the role of geodetic measurements, the importance of both ground and space techniques, and the need for advanced instrumentation development are discussed.

  5. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data

    NASA Astrophysics Data System (ADS)

    Tibor, Gideon; Niemi, Tina M.; Ben-Avraham, Zvi; Al-Zoubi, Abdallah; Sade, Ronnie A.; Hall, John K.; Hartman, Gal; Akawi, Emad; Abueladas, Abdelrahmem; Al-Ruzouq, Rami

    2010-12-01

    A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north-northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf-slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70-80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water

  6. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data

    NASA Astrophysics Data System (ADS)

    Tibor, Gideon; Niemi, Tina; Ben-Avraham, Zvi; Al-Zoubi, Abdallah; Sade, Ronnie; Hall, John; Hartman, Gal; Akawi, Emad; Abueladas, Abed; Al-Ruzouq, Rami

    2010-05-01

    A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat (gulf head). The gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi 'Arabah) and Yutim River to the north-northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault Zone to the west and the Ayla Fault Zone to the east. The shelf-slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70-80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar

  7. Active tectonics of the Andes

    NASA Astrophysics Data System (ADS)

    Dewey, J. F.; Lamb, S. H.

    1992-04-01

    Nearly 90 mm a -1 of relative plate convergence is absorbed in the Andean plate-boundary zone. The pattern of active tectonics shows remarkable variations in the way in which the plate slip vector is partitioned into displacement and strain and the ways in which compatibility between different segments is solved. Along any traverse across the plate-boundary zone, the sum of relative velocities between points must equal the relative plate motion. We have developed a kinematic synthesis of displacement and strain partitioning in the Andes from 47°S to 5°N relevant for the last 5 Ma based upon: (1) relative plate motion deduced from oceanic circuits giving a roughly constant azimuth between 075 and 080; (2) moment tensor solutions for over 120 crustal earthquakes since 1960; (3) structural studies of deformed Plio-Pleistocene rocks; (4) topographic/geomorphic studies; (5) palaeomagnetic data; and (6) geodetic data. We recognize four neotectonic zones, with subzones and boundary transfer zones, that are partitioned in different ways. These zones are not coincident with the 'classic' zones defined by the presence or absence of a volcanic chain or differences in finite displacements and strains and tectonic form; the long-term segmentation and finite evolution of the Andes may not occur in constantly defined segments in space and time. In Segment 1 (47°-39°S), the slip vector is partitioned into roughly orthogonal Benioff Zone slip with large magnitude/large slip-surface earthquakes and both distributed dextral shear giving clockwise rotations of up to 50° and dextral slip in the curved Liquine-Ofqui Fault System giving 5°-10° of anticlockwise fore-arc rotation. In Segment 2 (39°-20°S), the slip vector is partitioned into Benioff Zone slip roughly parallel with the slip vector, Andean crustal shortening and a very small component of dextral slip, including that on the Atacama Fault System. Between 39° and 34°S, a cross-strike dextral transfer, which deflects

  8. Tectonic signatures on active margins

    NASA Astrophysics Data System (ADS)

    Hogarth, Leah Jolynn

    High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the

  9. Fault-based PSHA of an active tectonic region characterized by low deformation rates: the case of the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Vleminckx, Bart; Camelbeeck, Thierry

    2016-04-01

    The Lower Rhine Graben (LRG) is one of the few regions in intraplate NW Europe where seismic activity can be linked to active faults, yet probabilistic seismic hazard assessments of this region have hitherto been based on area-source models, in which the LRG is modeled as a single or a small number of seismotectonic zones with uniform seismicity. While fault-based PSHA has become common practice in more active regions of the world (e.g., California, Japan, New Zealand, Italy), knowledge of active faults has been lagging behind in other regions, due to incomplete tectonic inventory, low level of seismicity, lack of systematic fault parameterization, or a combination thereof. The past few years, efforts are increasingly being directed to the inclusion of fault sources in PSHA in these regions as well, in order to predict hazard on a more physically sound basis. In Europe, the EC project SHARE ("Seismic Hazard Harmonization in Europe", http://www.share-eu.org/) represented an important step forward in this regard. In the frame of this project, we previously compiled the first parameterized fault model for the LRG that can be applied in PSHA. We defined 15 fault sources based on major stepovers, bifurcations, gaps, and important changes in strike, dip direction or slip rate. Based on the available data, we were able to place reasonable bounds on the parameters required for time-independent PSHA: length, width, strike, dip, rake, slip rate, and maximum magnitude. With long-term slip rates remaining below 0.1 mm/yr, the LRG can be classified as a low-deformation-rate structure. Information on recurrence interval and elapsed time since the last major earthquake is lacking for most faults, impeding time-dependent PSHA. We consider different models to construct the magnitude-frequency distribution (MFD) of each fault: a slip-rate constrained form of the classical truncated Gutenberg-Richter MFD (Anderson & Luco, 1983) versus a characteristic MFD following Youngs

  10. The Eurekan Orogeny: convergent intraplate deformation through accretionary tectonics?

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The Eurekan Orogeny, which created much of the high topography (~1-2km) of Ellesmere Island and adjacent Greenland, exhibits a crustal architecture linked to intraplate orogenesis in the Cenozoic. These features occurred as a result of mountain-building processes the dynamics of which are not well understood. It is generally considered that the rotation of Greenland in the Eocene (related to sedimentary basin formation in Baffin Bay) produced compressional tectonics between Greenland and Ellesmere Island. As part of this process, the Eurekan Orogeny formed away from a traditional convergent ocean-closure plate boundary, and may represent a style of intraplate deformation. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leave deformational `scars' in the crust and mantle lithosphere (specifically in the Ellesmere Island case through accretionary orogenesis in the Palaeozoic). This weakening of the lithosphere may produce episodic reactivation of faults within continental interiors. For example, lithospheric shortening at a time after continental collision could cause the previously deformed crust and mantle lithosphere to produce intraplate deformation. In this work, the geodynamic evolution of the Eurekan Orogeny and its relationship to the tectonics of the Canadian polar margin and northern Baffin Basin is explored using high-resolution thermal-mechanical numerical experiments with the modelling code SOPALE. The modelling of the High Arctic is constrained by the first-order crustal structure of the region (deduced by local gravity field and passive seismological data). Presented are suites of numerical experiments that investigate how the pre-existing lithospheric structures (both crustal and sub-crustal) control the evolution of the resulting intraplate orogen. The influence of other primary modelling parameters, such as crustal thickness and assumed rheology, is also explored. To highlight the role of surface processes on plate

  11. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  12. Active tectonic studies in the United States, 1987-1990

    SciTech Connect

    Weldon, R.J., II )

    1991-01-01

    The techniques and instrumentation used in active tectonic studies are discussed, and recent results are reviewed. It is suggested that a critical mass of data on several particular regions has been accumulated, making possible critical debates and attempts to assess earthquake hazards. Particular attention is given to studies of the Pacific Northwest region, basin and range deformation studies, and distributed deformation and hidden earthquake sources. Also included is a comprehensive bibliography for the period.

  13. Northeast Basin and Range province active tectonics: An alternative view

    SciTech Connect

    Westaway, R. )

    1989-09-01

    Slip rates and slip vector azimuths on major active oblique normal faults are used to investigate whether circulation associated with the Yellowstone upwelling plume is driving tectonic deformation in the northeast Basin and Range province. Observed deformation is consistent with this suggestion; the plume is sheared to the southwest by motion of the North American plate. Testable predictions are made for structure and evolution of the region.

  14. Active tectonics in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Sébrier, Michel; Siame, Lionel; Zouine, El Mostafa; Winter, Thierry; Missenard, Yves; Leturmy, Pascale

    2006-01-01

    Review of seismological and structural data coupled with new data on topographical, geomorphology, and Quaternary geology allows delineating the major active faults of the High Atlas. These are the North and South border faults of which fault segmentations correspond to Mw ranging between 6.1 and 6.4. Detail active tectonics analyses were performed on the South Atlas Fault Zone in the Souss and Ouarzazate basins, where deformed Quaternary levels permit to estimate slip rates on individual faults in the order of 0.1 mm yr -1. Such low slip rates imply that large observational time-window is needed to analyze active deformation in low-seismicity regions. However, the complex 3D geometry of reverse or thrust faults may cause difficulty to relate surface observations with the deeper faults that have the potential to nucleate big earthquakes. Further studies are necessary to interpret the Anti Atlas seismicity. To cite this article: M. Sebrier et al., C. R. Geoscience 338 (2006).

  15. Prediction of tectonically deformed coal based on lithologic seismic information

    NASA Astrophysics Data System (ADS)

    Li, Juanjuan; Pan, Dongming; Cui, Ruofei; Ding, Enjie; Zhang, Wei; Hu, Mingshun

    2016-02-01

    Owing to the differences in physical properties between tectonically deformed coal (TDC) and primary coal, lithologic seismic inversion methods were adopted to identify the coal structure type, including probabilistic neural network (PNN) inversion, elastic impedance (EI) inversion and simultaneous inversion methods. Based on poststack and prestack gathers, the inversion methods were applied to calculate lithologic seismic information, which included porosity, acoustic impedance, elastic impedance, λ × ρ and μ × ρ data. The inversion results were then analysed to evaluate the development potential of TDC. The research showed that the lithology inversion results, which indicated the potential zone of development areas of the coal, were all basically identical and a comprehensive prediction factor (the linear lithologic information combination) was proposed to effectively predict the development potential. Therefore, the prediction of TDC by lithologic seismic information could provide a scientific basis for both coal mining safety and the development potential of large-scale coalbed methane resources.

  16. Plains tectonism on Venus: The deformation belts of Lavinia Planitia

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Jankowski, David G.; Simons, Mark; Solomon, Sean C.; Hager, Bradford H.; Mcgill, George E.

    1993-01-01

    High-resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. A number of geologic units can be distinguished, including volcanic plains units with a range of ages. Transecting these plains over much of the Lavinia region are two types of generally orthogonal features that we interpret to be compressional wrinkle ridges and extensional grooves. The dominant tectonic features of Lavinia are broad elevated belts of intense deformation that transect the plains with complex geometry. They are many tens to a few hundred kilometers wide, as much as 1000 km long, and elevated hundreds of meters above the surrounding plains. Two classes of deformation belts are seen in the Lavinia region. 'Ridge belts' are composed of parallel ridges, each a few hundred meters in elevation, that we interpret to be folds. Typical fold spacings are 5-10 km. 'Fracture belts' are dominated instead by intense faulting, with faults in some instances paired to form narrow grabens. There is also some evidence for modest amounts of horizontal shear distributed across both ridge and fracture belts. Crosscutting relationships among the belts show there to be a range in belt ages. In western Lavinia, in particular, many ridge and fracture belts appear to bear a relationship to the much smaller wrinkle ridges and grooves on the surrounding plains: ridge morphology tends to dominate belts that lie more nearly parallel to local plains wrinkle ridges, and fracture morphology tends to dominate belts that lie more nearly parallel to local plains grooves. We use simple models to explore the formation of ridge and fracture belts. We show that convective motions in the mantle can couple to the crust to cause horizontal stresses of a magnitude sufficient to induce the formation of deformation belts like those observed in Lavinia. We also use the small-scale wavelengths of deformation observed within individual ridge belts to

  17. Multiphase salt tectonic evolution in NW Germany: seismic interpretation and retro-deformation

    NASA Astrophysics Data System (ADS)

    Mohr, M.; Kukla, P. A.; Urai, J. L.; Bresser, G.

    2005-12-01

    The Central European Basin is a classic area of salt tectonics, characterized by heterogeneous structural evolution and complex salt movement history. We studied an area on its SW margin, based on prestack depth-migrated 2D and 3D seismic data. We use seismic interpretation and retro-deformation to obtain a better understanding of salt tectonics, structural control, and sedimentary response in this region. The first phase of salt tectonic evolution started with two main events of NW-SE extension and rafting in the Triassic before the Upper Bunter and before the Upper Muschelkalk. Rafting was accompanied by first salt diapirism and an increased sedimentary thickness adjacent to the salt structure. After salt supply ceased updip to the salt structure, a mini-basin grew in the intra-raft area. This sedimentary differential loading caused salt movement and growth of a pillow structure basinward. The second phase of salt movement was initiated by the formation of a NNW-SSE striking basement graben in the Middle Keuper that triggered reactive diapirism, the breakthrough of the pillow’s roof and salt extrusion. The following downbuilding process was characterized by sedimentary wedges with basal unconformities, onlap structures and salt extrusions that ceased in the Jurassic. The third and latest phase of salt tectonic evolution was activated in the Late Cretaceous to Lower Tertiary by compressional tectonics indicated by salt rise and a small horizontal shortening of the diapir. The interpreted salt tectonic processes and the resulting geometries can now be better tied in with the regional heterogeneous framework of the basin.

  18. Modelling continental deformation within global plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, S.; Whittaker, J.; Heine, C.; Müller, P.

    2010-12-01

    A limitation of regional and global plate tectonic models is the way continental deformation is represented. Continental blocks are typically represented as rigid polygons - overlaps or gaps between adjacent continental blocks represent extension or compression respectively. Full-fit reconstructions of major ocean basins result in large overlaps between the conjugate continental plates, on the basis that the continental margins are highly extended compared to their pre-rift state. A fundamental challenge in generating more robust global-scale plate reconstructions is the incorporation of a more quantitative description of the kinematics within extended passive margins, based on observations. We have used the conjugate Southern Australia and Wilkes Land, Antarctica margins as a case study, and as part of this work have generated revised sediment thickness maps for these margins. These datasets are used to test different approaches for generating full-fit reconstructions in order to create a framework of methodologies that is globally applicable. One approach is to restore two conjugate continent-ocean boundaries (COBs) to their pre-rift configuration and then use the geometric fitting method of Hellinger (1981) and Royer and Chang (1991), used to generate fits of seafloor isochrons, to generate a “full-fit” Euler pole. To quantitatively restore the COBs to their palinspastic pre-rift configuration we integrate estimates of crustal thickness along small circle paths, defined by an initial estimate of the Euler stage pole describing plate motions during continental rifting. We then use the conjugate sets of restored COB’s as inputs to the geometric fitting method, treating them as isochrons, and so generate poles of rotation for the plate configuration prior to rifting. Two potential shortcomings of this methodology are that (1) the conjugate margins are treated independently, whereas in reality they were actually one continuous continental basin during rifting

  19. Tectonic deformations of the NW Novaya Zemlya Archipelago

    NASA Astrophysics Data System (ADS)

    Prokopiev, Andrei; Ershova, Victoria; Khudoley, Andrey; Sobolev, Nikolay; Petrov, Eugeniy

    2016-04-01

    The Novaya Zemlya archipelago comprises two main islands (Northern and Southern). Structural studies were conducted in the northwestern part of Northern Island, composed mainly of Upper Proterozoic-Carboniferous rocks. The structural style is dominated by NW-striking folds, clearly recognized on geological maps. The folds are typically overturned to the northwest. Southeast-dipping axial-plane cleavage is widely distributed. Tectonic transportation in Mesozoic time was directed from southeast to northwest. The bedding-cleavage intersection lineation plunges to southeast and southwest, parallel to the axes of large and small folds. The dip angle of the lineation is high, ranging up to 30o or, rarely even more. Dip angle of the intersection lineation is highly variable over a short distance, pointing to occurrence of several stages of deformation. The intersection lineation plunge angels are likely close to dip angles of bedding on the early-stage fold limbs, most of which were gentle to open ones. The early folding is presumably related to Caledonian or Ellesmerian orogenies.

  20. Geodetic imaging of tectonic deformation with InSAR

    NASA Astrophysics Data System (ADS)

    Fattahi, Heresh

    Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and

  1. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  2. Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz

    NASA Astrophysics Data System (ADS)

    Hamers, M. F.; Drury, M. R.

    2011-12-01

    Planar deformation features (PDFs) in quartz are essential proof for the correct identification of meteorite impact structures and related ejecta layers, but can be confused with tectonic deformation lamellae. The only completely reliable method to demonstrate the shock origin of suspected (sub-) planar microstructures, transmission electron microscope (TEM) observations, is costly and time consuming. We have used a cathodoluminescence (CL) detector attached to a scanning electron microscope (SEM) to image both PDFs and tectonic deformation lamellae in quartz to demonstrate the potential of a simple method to identify PDFs and define characteristics that allow their distinction from tectonic deformation lamellae. In both limited wavelength grayscale and composite color SEM-CL images, PDFs are easily identified. They are straight, narrow, well-defined features, whereas tectonic deformation lamellae are thicker, slightly curved, and there is often no clear boundary between lamella and host quartz. Composite color images reveal two types of CL behavior in PDFs: either they emit a red to infrared CL signal or they are nonluminescent. The color of the CL signal emitted by tectonic deformation lamellae ranges from blue to red. For comparison, we also imaged several shocked quartz grains at cryogenic temperature. In most cases, the PDF characteristics in cryo-CL images do not differ significantly from those in images recorded at room temperature. We conclude that SEM-CL imaging, especially when color composites are used, provides a promising, practical, low cost, and nondestructive method to distinguish between PDFs and tectonic lamellae, even when the simplest CL techniques available are used.

  3. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  4. Holocene intracontinental deformation of the northern North China Plain: Evidence of tectonic ground fissures

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Li, Sanzhong; Cao, Xianzhi; Somerville, I. D.; Suo, Yanhui; Liu, Xin; Dai, Liming; Zhao, Shujuan; Guo, Lingli; Wang, Pengcheng; Cao, Huahua

    2016-04-01

    Following the collecting and analyzing of field data on the geometry and kinematics characteristics of ground fissures in the northern North China Plain (NNCP), this paper shows that en échelon ground fissures or tectonic ground fissures with a length of several meters to tens of kilometers extending along active faults are possibly controlled by underlying active faults. There are two groups of tectonic ground fissures developed in the NNCP. One group consists of ENE-trending "right-stepping" ground fissures, some of which have a component of sinistral motion. The other group is NNE-trending "left-stepping" ground fissures with dextral motion. A large amount of data from trenches, boreholes and seismic exploration reflect that they are active-faulting-related. The NNW-trending regional extensional stress field and the reactivation of pre-existing faults are the major factors controlling ground fissures. Data from the Quaternary sedimentary records, deep incised valleys, the distribution of earthquakes and ground fissures, and our field work show that the Holocene intracontinental deformation of the NNCP is characterized by intense faulting and northwestward tilting, which may be related to a NNW-SSE-oriented tensional stress field in the shallow crust and asthenospheric upwelling in the mantle.

  5. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  6. Tectonic deformations of the New Siberian Islands (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Prokopiev, Andrei; Ershova, Victoria; Khudoley, Andrei; Sobolev, Nikolay; Petrov, Eugeniy; Vasiliev, Dmitry

    2014-05-01

    South of Bel'kovsky Is. Devonian-Permian rocks are deformed into open, and cylindrical folds of NW strike. Discrete NW-striking cleavage dips to SW in the southeast of the island and to NW in the southwest. Intersection lineation of cleavage and bedding has NW strike. Reverse faults have E-SE vergence. N- and W-trending dextral and sinistral strike-slip faults are present. Normal faults have NW to WNW trends. From stress restoration, compression occurred in NE-SW direction, orthogonally to major folds strike in the region. NW Kotel'nyi Is. Carboniferous-Permian rocks have monoclinal bedding, with beds dipping to N-NE. There are rare open folds. Cleavage is absent. W-NW and NE-trending strike-slip faults and shear zones have been observed. According to stress restoration, compression axis had E-SE direction. Middle Devonian limestones are deformed into small concentric and cylindrical folds, often overturned to SW. Hinges dip gently to SE. Cleavage is absent. There are SW-verging thrusts. SW Kotel'nyi Is. Upper Devonian rocks are deformed. Deformation occurred in 2 stages. Rocks have submonoclinal bedding, dipping to W, and are cut by cleavage. Folds of second generation deform both the bedding and first generation cleavage. Intersection lineation of bedding and first generation cleavage is also deformed. Present are strike-slips and ductile-brittle shear zones of NW strike associated with second-stage deformations. West of Bol. Lyakhov Is. Upper Jurassic rocks are deformed into concentric and cylindrical folds overturned to N. Hinges dip gently to W and E. Cleavage is absent. Folds are associated with reverse faults. Rare NW-striking strike slip faults cut major folds. South of Jeannette Is. Volcanogenic-sedimentary rocks generally dip to E-NE. Common are similar folds accompanied by cleavage and W-vergent thrusts. Hinges and intersection lineation of cleavage and bedding dip to N. There are normal faults with fault planes inclined to E. Intruding dolerite dikes

  7. Modeling the Philippine Mobile Belt: Tectonic blocks in a deforming plate boundary zone

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Hamburger, M. W.; McCaffrey, R.; Bacolcol, T. C.; Aurelio, M. A.

    2007-12-01

    The Philippine Mobile Belt, a seismically active, rapidly deforming plate boundary zone situated along the convergent Philippine Sea/Eurasian plate boundary, is examined using geodetic and seismological data. Oblique convergence between the Philippine Sea Plate and the Eurasian plate is accommodated by nearly orthogonal subduction along the Philippine Trench and the Manila Trench, as well as by strike-slip faulting along the Philippine Fault system. We develop a model of active plate boundary deformation in this region, using elastic block models constrained by known fault geometries, published GPS observations and focal mechanism solutions. We then present an estimate of block rotations, fault coupling, and intra-block deformation, based on the best-fit model that minimizes the misfit between observed and predicted geodetic vectors and earthquake slip vectors. Slip rates along the Philippine fault vary from ~22 - 36 mm/yr in the Central Visayas and about 10 to 40 mm/yr in Luzon, trending almost parallel to the fault trace. In northern Luzon, Philippine Fault splays accommodate transpressional strain. The Central Visayas block experiences convergence with the Sundaland block along the Negros Trench and the Mindoro-Palawan collision zone. On the eastern side of Central Visayas, sinistral strike-slip faulting occurs along the NNW-SSE-trending Philippine Fault. Mindanao Island in southern Philippines is dominated by east-verging subduction along the Cotabato Trench, and strain partitioning (strike- slip faulting with west-verging subduction) in eastern Mindanao along the southern Philippine Fault and Philippine Trench, respectively. Oblique active sinistral strike slip faults in Central and Eastern Mindanao that were hypothesized to be responsible for basin formation are obvious boundaries for tectonic blocks. Located south of Mindanao Island we define an adjoining oceanic block defined by the N-S trending complex dual subduction zone of Sangihe and Halmahera

  8. Beyond plate tectonics - Looking at plate deformation with space geodesy

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  9. Exploring Active Tectonics in the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Carbó-Gorosabel, A.; Córdoba-Barba, D.; Martín-Dívila, J.; Granja-Bruña, J. L.; Llanes Estrada, P.; Muñoz-Martín, A.; ten Brink, U. S.

    2010-07-01

    The devastating 12 January 2010 Haiti earthquake (M = 7.0), which killed an estimated 230,000 people and caused extensive damage to homes and buildings, drew attention to the crucial need for improved knowledge of the active tectonics of the Caribbean region. But even before this disastrous event, interest in understanding the active and complex northeastern Caribbean plate boundary had been increasing, because this region has experienced significant seismic activity during the past century and has an extensively documented record of historical seismicity and tsunamis. Moreover, this is an easily accessible region in which to study the continuity of seismic faults offshore and to try to understand the transitions between strike-slip and convergent tectonic regimes. Interest in the region has led to several studies that have improved scientists' knowledge of subduction zone tectonics and earthquake and tsunami hazard assessments 005BMann et al., 2002; ten Brink et al., 2006, 2009; Grindlay et al., 2005; Manaker et al., 2008; Granja Bruña et al., 2009; Mondziel et al., 2010].

  10. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  11. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  12. Global positioning system reoccupation of early triangulation sites - Tectonic deformation of the Southern Coast Ranges

    NASA Technical Reports Server (NTRS)

    Shen, Zheng-Kang; Jackson, David D.

    1993-01-01

    We study tectonic deformation in the Southern Coast Range, California. We use triangulation and astronomic azimuth data collected since 1875, trilateration since 1970, and global positioning system data collected from 1986 to 1987. Two modeling techniques have been used. An elastic block-fault model is applied to study the tectonic motion of the San Andreas Fault and the San Gregorio-Hosgri Fault. Station velocities are modeled to study regional deformations. Results show that the regional deformation is predominantly controlled by deep strike-slip motion along the San Andreas Fault, at a rate of 33 +/- 2 mm/yr. Deep slip along the San Gregorio-Hosgri Fault is about 0-4 mm/yr, assuming a locked suit to a depth of 20 km. Convergence normal to the San Andreas Fault in the Southern Coast Ranges is not greater than 0.02 microrad/yr.

  13. Tectonic motion and deformation from satellite laser ranging to Lageos

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Kolenkiewicz, Ronald; Dunn, Peter J.; Robbins, John W.; Torrence, Mark H.; Klosko, Steve M.; Williamson, Ronald G.; Pavlis, Erricos C.; Douglas, Nancy B.

    1990-01-01

    Data on satellite laser ranging (SLR) to Lageos aquired during the period 1978-1988 are analyzed on the basis of the precise modeling of the orbit dynamics of Lageos, producing estimates of tectonic motion for 22 sites located on seven major plates. It was estimated that intraplate motion within northern Europe is below the 2 mm/yr level in absolute rate, in agreement with conclusions of Zoback et al. (1989) regarding the stress across the region. A comparison of SLR geodesic rates with those from NUVEL-1 and AMO-2 models showed high correlations between tracking sites that are well within plate interiors, but displayed small but significant departures from unity in slope which are attributed to the possibility of recent changes in relative velocities or geologic time scale uncertainties. For lines crossing the Nnorth Atlantic, the San Andreas fault, and within the Basin and Range province, the geodesic rates determined by SLR are in good agreement with those determined by VLBI.

  14. Inter-relationships between deformation partitioning, metamorphism and tectonism

    NASA Astrophysics Data System (ADS)

    Bell, T. H.; Rieuwers, M. T.; Cihan, M.; Evans, T. P.; Ham, A. P.; Welch, P. W.

    2013-03-01

    Thrusting from the east loaded the thick Pomfret dome stratigraphic sequence in Vermont to such an extent that by the time the first schistosity had formed it was 20 km deep. This occurred without garnet growth even though rock compositions were ideal for this phase to grow before they reached this depth. The rocks remained at this depth until garnet growth ceased ~ 50 million years later after 5 periods of FIA development (foliation intersection/inflection axes preserved within porphyroblasts). The first phase of the garnet growth in each sample from the Pomfret dome was overstepped in pressure, nucleating well above the incoming phase boundary for this phase at ~7 kbar for whatever FIA set was the first to develop. This was not the case 45 km S in the Chester dome where a thin stratigraphic sequence overlay a basement high of gneiss. Lateral ramping against this basement thinned the thrust sheet preventing overstepping. Frontal ramping to the WNW had the same effect. The pressure did not increase in both regions to ~ 7 kbars until FIA 2. Approximately 50% of the rocks sampled around the Pomfret dome did not grow garnet during FIA 0. PT pseudosections and overstepped garnet phase boundaries indicate that all would have grown garnet if the bulk composition and PT were the only controlling factors. If metastability alone was a factor the other 50% should have grown garnet during the development of FIA 1. They did not, and this pattern was repeated for FIAs 2 and 3. Why, where and when garnet first grew in this PT overstepped environment was recorded by the inclusion trail geometries in each sample; all grew at the start of crenulation-producing events. The variable partitioning of a succession of differently oriented crenulation deformations through the region from FIA to FIA controlled where garnet growth first occurred. Successive FIAs shifted the bulk shortening direction relative to competent rocks, deforming sites previously protected and protecting others. The

  15. Landscape response to recent tectonic deformation in the SW Pannonian Basin: Evidence from DEM-based morphometric analysis of the Bilogora Mt. area, NE Croatia

    NASA Astrophysics Data System (ADS)

    Matoš, Bojan; Pérez-Peña, José Vicente; Tomljenović, Bruno

    2016-06-01

    Bilogora Mt. area is a transpressional structure located in the NE of Croatia, linked with the tectonic evolution of the Drava Depression. The structure formed during Pliocene and Quaternary from the inversion of NW-striking Drava Depression Boundary Fault, which originated as a normal fault and was reactivated as a dextral strike-slip fault. During Pliocene and Quaternary time, Bilogora Mt. area underwent more than 400 m of differential uplift, while still ongoing tectonic deformation is documented by historical and instrumental seismicity (3.5 ≤ ML ≤ 5.6). In this geomorphic study, the recent deformation in the Bilogora Mt. area, although obscured by landscape evolution variables, was assessed using DEM-based landscape morphometry and a set of morphometric indexes. Local relief and slope angle variability distributions were combined with morphometric indexes computed at the scale of the drainage basin. We analyzed hypsometric curves with the hypsometric integral (HI), basin asymmetry (AF) and parameters of longitudinal stream profiles (Cf, Cmax, Δl/L, θ, and ksn). Analyzed morphometric parameters were combined into a cumulative index of relative tectonic activity (RTA). This index summarizes drainage basin response to the possible recent tectonic activity. Results suggest that most of the tectonic activity is probably located along the NE front of the Bilogora Mt. area, in its NW and central part. This activity could be likely related to recent tectonic activity along the Kalnik Mt. Fault zone and Drava Depression Boundary Fault zones, respectively. A subordinate area characterized by recent tectonic activity could be suggested within the southernmost part of the study area. Quaternary activity in this area is probably related to NE-striking faults in vicinity of the town Daruvar that continue towards the northeast into the study area. Though methodology presented here represents a good identification tool of possible ongoing deformation, this study will be

  16. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  17. Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field

    NASA Astrophysics Data System (ADS)

    Bos, Annemarie G.; Spakman, Wim; Nyst, Marleen C. J.

    2003-10-01

    We have determined the present-day surface deformation of Taiwan by computing the velocity gradient field and fault slip from 143 GPS velocity vectors. In southern Taiwan the derived strain and rotation rates and fault slips are indicative of lateral extrusion toward the south. In northern Taiwan we infer the onset of gravitational collapse which is induced by the on-land extension of the Okinawa Trough. In the eastern Central Range the observed inverted NW-SE extension is consistent with geological observations and high heat flow measurements. This could be the result of exhumation of crustal material. The model further shows a significant decrease in slip rate northward along the Longitudinal Valley fault at 23.7°N. The northern Coastal Range shows high strain rates and two oppositely rotating blocks. By combining the surface deformation model with seismicity data and seismic tomography we are able to propose a coherent model for the present-day tectonic activity. Both seismicity and tomography show further evidence for active, southward propagating exhumation of a crustal slice in the eastern Central Range. Offshore east Taiwan we deduce strong evidence of a southward propagating crustal tear fault, accommodating most of the Philippine Sea Plate-Eurasian Plate convergence. The tear is the crustal response to incipient northwestward subduction of the Philippine Sea Plate. Thus the Ryukyu Trench is bending southward becoming almost perpendicular to the convergence direction, while subduction of the Philippine Sea Plate continues. In this setting a sudden rapid southward propagation of the afore mentioned tear is conceivable.

  18. Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Rassios, Anne E.; Dilek, Yildirim

    2009-03-01

    The Jurassic Pindos and Vourinos ophiolites in the Western Hellenides of Greece are part of the Mesohellenic mafic-ultramafic slab underlying the Eocene-Miocene sedimentary basin (Mesohellenic Trough). The tectonic incorporation of this oceanic slab into the western edge of the Pelagonian subcontinent occurred via trench - passive margin collision in the late Jurassic. Much of the tectonic architecture of these ophiolites, particularly Vourinos, was acquired during progressive inhomogeneous deformation associated with the initial displacement of the Jurassic oceanic crust from its original igneous environment of formation, and its subsequent tectonic emplacement eastward onto the Pelagonian margin. The heterogeneous deformation in the mantle and crustal sequences of the Pindos-Vourinos ophiolites occurred in ductile, ductile-brittle, and brittle fields synchronously, as the Jurassic oceanic lithosphere was translated eastward; it also resulted in differential horizontal rotations within the displaced oceanic slab. Areas retaining high-temperature (diapiric) mantle fabric appear to have been "passively" translated by lower temperature ductile shearing, commonly along mylonite zones. Individual dunite bodies in the harzburgite tectonites indicate movement distances of at least kilometer scale. Pervasively mylonitic domains within the upper mantle peridotites suggest elongation on the order of five to ten times in the direction of ophiolite emplacement. Seafloor-spreading related, high-temperature mantle structures within the Pindos and Vourinos ophiolites are sub-parallel. Imprinted ductile kinematic indicators and ductile shear zones pervasive to the mantle and lower crustal sections in both ophiolites are also sub-parallel, consistent with the direction of tectonic vergence, and appear traceable across the sedimentary overburden of the Mesohellenic Trough. These geometric relations imply that the Pindos-Vourinos ophiolites retain their relative orientations from

  19. Multiple deformation mechanisms operating at seismogenic depths: Tectonic pseudotachylyte and associated deformation from the central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Prante, M. R.; Evans, J. P.

    2012-12-01

    Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite

  20. The structure and tectonics of the intraplate deformation area in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Neprochnov, Yuri P.; Levchenko, Oleg V.; Merklin, Lev R.; Sedov, Vladimir V.

    1988-12-01

    Intense tectonic deformations of sediments and basement unusual for the interior of the oceanic lithosphere plates can be seen on seismic reflection profiles from the northern Central Indian Basin. 10,000-mile long CSP profiles collected by the P.P. Shirshov Institute of Oceanology of the USSR Academy of Sciences allow delineation of a NE-trending area of these deformations. The intraplate deformation area has a complicated tectonic framework, formed by a mosaic of crustal blocks which have been severely deformed or tilted alternating with less deformed parts of the sea floor. The results of a detailed CSP grid survey reveal that these uplifted faulted blocks are bounded by tectonic faults of two genetic types: old nearly meridional fracture zones, and young NE-striking faults. The seismic refraction results indicate an anomalous structure of the crust and upper mantle within these blocks. Seismological observations from Ocean Bottom Seismographs have proved that there is high-level intraplate seismicity in the northern Central Indian Basin. The intraplate deformation area is supposed to correspond to a large-scale zone of shearing strains that formed as a result of the stress difference in the Indo-Australian plate due to the continued collision of the continents of India and Asia along with spreading in the Central Indian Ridge and normal subduction in the Sunda Island Arc. This continental collision led to an increase in compressional stress in the northernmost part of the plate, while its southern part continuously subducted beneath the Sunda Trench. In the complicated transitional zone between these parts of the plate, NE-SW trending shearing stress abated, apparently in the Late Miocene, as a result of folding and faulting of the sediments and basement, observed on seismic reflection profiles. NE-SW trending wrench-fault tectonics affected the system of ancient failures in the spreading oceanic crust (near-meridional transform faults and, perhaps, near

  1. Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Gao, Rui; Li, Sanzhong; Xu, Xiao; Huang, Xingfu; Wang, Haiyan; Li, Wenhui; Zhao, Shujuan; Li, Xiyao

    2016-09-01

    GPS measurements indicate rapid lateral extrusion of the NE Tibetan Plateau, which causes active NE-directed crustal shortening and has initiated oblique shearing along the margins of NE Tibet. However, the Tibetan highlands terminate around 103°E longitude and topographic relief disappears to the northeast. The exact reasons for this drop in elevation remain obscure due to widespread Tertiary sediments and Quaternary loess, which obscure details of the lithospheric structure. This study describes a new 310 km-long deep seismic reflection line striking NE-SW across the interior of NE Tibet. Integrating its data with a previously described 165 km-long deep seismic profile of the Tibet-Ordos transition zone together, these datasets provide a complete picture of the crustal architecture of the north-easternmost Tibetan Plateau. Gravity anomaly and previous geological evidence also help constrain complex deformation pattern in the region. Interpretations of these patterns indicate the importance of the large-scale sinistral Haiyuan fault zone and inherited vertical variation in mechanical properties of the lithosphere in the overall tectonic evolution of the NE Tibetan Plateau. The overall crustal architecture obtained in this study provides spatial context for the neotectonic evolution of NE Tibet and helps constrain the interplay of geologic and geodynamic processes affecting NE Tibet and adjacent regions.

  2. The effects of tectonic deformation and sediment allocation on shelf habitats and megabenthic distribution and diversity in southern California

    NASA Astrophysics Data System (ADS)

    Switzer, Ryan D.; Parnell, P. Ed; Leichter, James L.; Driscoll, Neal W.

    2016-02-01

    Landscape and seascape structures are typically complex and manifest as patch mosaics within characteristic biomes, bordering one another in gradual or abrupt ecotones. The underlying patch structure in coastal shelf ecosystems is driven by the interaction of tectonic, sedimentary, and sea level dynamic processes. Animals and plants occupy and interact within these mosaics. Terrestrial landscape ecological studies have shown that patch structure is important for ecological processes such as foraging, connectivity, predation, and species dynamics. The importance of patch structure for marine systems is less clear because far fewer pattern-process studies have been conducted in these systems. For many coastal shelf systems, there is a paucity of information on how species occupy shelf seascapes, particularly for seascapes imbued with complex patch structure and ecotones that are common globally due to tectonic activity. Here, we present the results of a study conducted along a myriameter-scale gradient of bottom and sub-bottom geological forcing altered by tectonic deformation, sea level transgression and sediment allocation. The resulting seascape is dominated by unconsolidated sediments throughout, but also exhibits increasing density and size of outcropping patches along a habitat patch gradient forced by the erosion of a sea level transgressive surface that has been deformed and tilted by tectonic forcing. A combination of sub-bottom profiling, multibeam bathymetry, and ROV surveys of the habitats and the demersal megafauna occupying the habitats indicate (1) significant beta diversity along this gradient, (2) biological diversity does not scale with habitat diversity, and (3) species occupy the patches disproportionately (non-linearly) with regard to the proportional availability of their preferred habitats. These results indicate that shelf habitat patch structure modulates species specific processes and interactions with other species. Further studies are

  3. Tectonic and hydrological controls on multiscale deformations in the Levant: numerical modeling and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi

    2016-04-01

    Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.

  4. Caloris basin, Mercury: History of deformation from an analysis of tectonic landforms

    NASA Astrophysics Data System (ADS)

    Cunje, Alister B.; Ghent, Rebecca R.

    2016-04-01

    The 1640 km diameter Caloris basin is the largest impact basin on Mercury and hosts three distinct suites of tectonic structures in its substantially deformed smooth plains, indicative of the basin's complex history. These structures, i.e. radial graben comprising Pantheon Fossae, concentric graben/troughs arranged in an irregular pattern, and wrinkle ridges, are found at various regions throughout the basin and occasionally interact. We document the locations, orientations, and cross-cutting relationships of these structures using high-resolution MESSENGER images. We suggest that Caloris shows a history of continuous deformation, resulting from the contemporaneous formation of sets of strain compatible tectonic structures, rather than discrete stages of deformation producing each suite independently in temporal sequence. We propose that radial graben formed continuously in the basin's early deformational history, following initial wrinkle ridge formation possibly representative of a multi-ring basin structure, overlapping with continued wrinkle ridge formation, and persisting with the formation of concentric graben after contraction ceased.

  5. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and

  6. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  7. Dedolomitization in tectonic veins and stylolites: evidence for rapid fluid migration during deformation

    SciTech Connect

    Budai, J.M.

    1984-04-01

    Jurassic through Tertiary thrust-belt deformation of the Mississippian Madison Group has introduced complex fracturing, stylolitization, and carbonate vein mineralization. Host rocks are dominantly dolostone and dolomitic limestone. Tectonic veins are mineralized first by dolomite and then by multiple calcite phases. Dolomite and some generations of calcite which line veins are highly luminescent, while host-rock dolomite have been corroded and replaced by subsequent generations of calcite mineralization. These textural relationships suggest that fluids associated with thrust-belt deformation were in part extraformational and had not equilibrated with host-rock dolomite. Because thrust-belt deformation moved from west to east with time, the isotopic composition (/sup 18/O, /sup 13/O) of vein and stylolite mineralization can be used to evaluate fluid migration during deformation. In three sections located along an east-west transect in the southern overthrust belt, calcite vein mineralization displays a wide range of isotopic compositions that are distinctly depleted relative to the host-rock composition. These vein-lining exhibit systematic compositional changes with both time of deformation and with geographic position relative to major thrust faults. These isotopic changes in vein mineralization and pressure-solution products, together with the textural evidence for calcitization of host-rock and vein dolomite, suggest that these rocks were open to allochthonous fluid migration during deformation.

  8. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  9. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton

    NASA Astrophysics Data System (ADS)

    Yengkhom, Kesorjit S.; Lee, Byung Choon; Oh, Chang Whan; Yi, Kee Wook; Kang, Ji Hoon

    2015-04-01

    EG but not in the EGC. The D1deformation occurred during M1 metamorphism, and then the M2 metamorphism and 1867-1881 Ma igneous activities could have occurred together during post-collision tectonic stage. The M1 metamorphism and ca. 1867-1881 Ma post collision magmatism in the study area are well matched with the collision related metamorphism at ca. 1.90-1.93 Ga and post-collision igneous activities at ca.1.80-1.86 Ga along the Jiao-Liao-Ji belt in the North China Craton suggesting that M1 metamorphism could have caused by the collision along the Jiao-Liao-Ji belt. The M3 metamorphism occurred at ca.230-260 Ma and its peak metamorphic conditions were 720-730°C/13-14.5 kbar. The D2 deformation and the M3 intermediate-P/T metamorphism occurred during the Permo-Triassic collision event between the North China Craton and South China Craton. The study area might have located in the peripheral areas of the collision belt during the Paleoproterozoic and the Permo-Triassic time. The D3 deformation occurred at a time gap between the Permo-Triassic collision and the subduction related Jurassic intrusion in the Korean Peninsula.

  10. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  11. Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, Surendra S.; Kothyari, Girish Ch.

    2015-06-01

    We present the results of integrated studies of geomorphic indices of drainage networks and landforms developed across the mountain front along the Himalayan Frontal Thrust (HFT) between the Dabka and Baur rivers, Kumaun Himalaya. The HFT is a morphogenic structure in nature, creating a 100-m-high E-W trending escarpment that extends ~ 21 km. Geomorphological evidence indicates ~ 10.5 km westward migration of the Dabka River and ~ 5.2 km eastward migration of the Baur River. These migrations are a result of uplift of the hanging wall along the HFT. The HFT is offset by a transverse fault, which suggests that the latter postdates the reactivation of the HFT between 500 and 100 ka. Presence of different levels of strath terraces along the mountain front suggests the active nature of the HFT. To assess the relative tectonic activity, morphometric indices such as stream-gradient (SL) index, mountain front sinuosity (Smf) index, and ratio of valley floor width to valley height (Vf) have been analyzed. Results of the former two are consistent with the tectonic landforms developed in thrust zones. Paleochannels of the Dabka and Baur rivers are characterized by high Vf values while other valleys show low Vf values. Quaternary alluvial sediments have been deformed along the Pawalgarth Thrust, a splay of the HFT. Deformation has resulted in the formation of the Pawalgarh Anticline, a thrust-related asymmetric fold.

  12. Expulsion tectonics and return flow during continental subduction: P-T-deformation constraints from Oman.

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Searle, Mike; Alsop, Ian; Dubacq, Benoit

    2010-05-01

    The northeastern continental margin of Oman in the Saih Hatat region is characterised by high-pressure (HP) chloritoid- or carpholite-bearing meta-sediments and highly deformed mafic eclogites and blueschists in a series of tectonic units bounded by high-strain ductile shear zones. New data on the upper, carpholite-bearing cover units of this HP nappe stack indicate that all of them underwent similar P conditions to the underlying Hulw structural unit (with a cooler exhumation P-T path). Early SSW-directed crustal thickening during ophiolite emplacement created recumbent folds and strong schistose fabrics in these Permian-Mesozoic shelf carbonates and was followed by later NNE-dipping normal sense shear zones (namely the Hulw, Al Wudya, Yenkit, Al Hamriyah shear zones) and normal faults. In particular, the Mayh unit shows high strain in a 15-25 km long sheath fold that likely formed at carpholite grade pressures of 8-10 kbar and depths of ~30 km. We show that there are no significant P differences across the Hulw shear zone (‘upper plate - lower plate discontinuity') or the overlying Mayh, Yenkit-Yiti and Ruwi units, nor between them. Post-peak metamorphic exhumation of the HP rocks was therefore accomplished by bottom-to-SSW (rather than top-to-NNE) active footwall extrusion beneath a fixed, static, passive hanging-wall. Footwall uplift beneath these passive roof faults resulted in progressive expulsion of the HP rocks from depths of ~80-90 km (eclogites) and mainly 30-35 km (blueschists and chloritoid/carpholite-bearing units) during the Campanian - Early Maastrichtian. Oman thus provides a detailed record of how continental material (thick platform shelf carbonates) progressively jammed a subduction zone and emphasizes the contrasting behaviour between cover units and their underlying basement. HP ductile shear zones evolved into brittle normal faults with time during exhumation towards the surface.

  13. Crustal stacking and expulsion tectonics during continental subduction: P-T deformation constraints from Oman

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Searle, Michael P.; Alsop, G. Ian; Dubacq, B.

    2010-10-01

    The northeastern continental margin of Oman in the Saih Hatat region is characterized by high-pressure (HP) chloritoid- or carpholite-bearing metasediments and highly deformed mafic eclogites and blueschists in a series of tectonic units bounded by high-strain ductile shear zones. New data on the upper cover units of this HP nappe stack indicate that all of them underwent similar P conditions to the underlying Hulw structural unit (with a cooler exhumation pressure-temperature path). Early SSW directed crustal thickening during ophiolite emplacement created recumbent folds and strong schistose fabrics in these Permian-Mesozoic shelf carbonates and was followed by later NNE dipping normal sense shear zones and normal faults. The Mayh unit shows high strain in a 15-25 km long sheath fold that likely formed at carpholite grade pressures of 8-10 kbar. We show that there are no significant P differences across the Hulw shear zone (upper plate-lower plate discontinuity) or between the overlying Mayh, Yenkit-Yiti, and Ruwi units. Postpeak metamorphic exhumation of the HP rocks was therefore accomplished by bottom-to-SSW (rather than top-to-NNE) active footwall extrusion beneath a fixed, static, passive hanging wall. Footwall uplift beneath these passive roof faults resulted in progressive expulsion of the HP rocks from depths of ˜80-90 km (eclogites) and mainly 30-35 km (blueschists and chloritoid-/carpholite-bearing units) during the Campanian-Early Maastrichtian. Oman thus provides a detailed record of how continental material (thick platform shelf carbonates) progressively jammed a subduction zone and emphasizes the contrasting behavior between cover units and their underlying basement.

  14. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the

  15. Tectonics

    NASA Astrophysics Data System (ADS)

    John Dewey will complete his term as editor-in-chief of Tectonics at the end of 1984. Clark Burchfiel's term as North American Editor will also end. Tectonics is published jointly with the European Geophysical Society. This newest of AGU's journals has already established itself as an important journal bridging the concerns of geophysics and geology.James A. Van Allen, president of AGU, has appointed a committee to recommend candidates for both editor-in-chief and North American editor for the 1985-1987 term.

  16. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  17. Lithosphere-asthenosphere Structure and Active Tectonics In Central Italy

    NASA Astrophysics Data System (ADS)

    Chimera, G.; Aoudia, A.; Saraò, A.; Panza, G. F.

    We investigate the lithosphere-asthenosphere structure and the active tectonics along a stripe from the Tyrrhenian to the Adriatic with emphasis on the Umbria-Marche area by means of surface-wave tomography, and inversion studies for structure and seismic moment tensor retrieval. The data include seismic waveforms, a large compilation of local group velocities (0.8-4s) and regional phase and group velocity (10-100s) measurements. The local group velocity maps cover the area reactivated by the 1997 Umbria-Marche earthquake sequence. These maps suggest a relation between the lat- eral heterogeneity and distribution of the active faults and related basins. Such relation is confirmed by the non-linear inversion of the local dispersion curves. To image the deeper structure from the Tyrrhenian to the Adriatic coast, we fix the uppermost part of the crust using the Umbria-Marche models along with the CROP03 profile and related shear wave velocity, and invert the additional long period dispersion measure- ments. The results of the inversion show the geometry and lateral heterogeneity of the lithosphere-asthenosphere system. The retrieved models for the Umbria-Marche up- per crust reveal the importance of the inherited compression on the ongoing extension and related seismic activity. The reactivated 1997 normal fault zone displays a thrust fault geometry as evidenced by the lateral extent of the faulted Late Triassic evap- orites that did not yet balance the cumulative normal faulting deformation attesting therefore recent extensional tectonics within the thrust belt. Our data are in favor of a listric geometry of faulting at depth. Source inversion studies of the two main crustal events of September 26 and October 14, 1997 show the dominance of normal faulting mechanisms, whereas selected aftershocks between the reactivated fault segments re- veal that the prevailing deformation at the step-over is of strike-slip faulting type. The rupture of the three distinct and

  18. Active compressive intraoceanic deformation: early stages of ophiolites emplacement?

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, Nicolas; Delescluse, Matthias; Montési, Laurent

    2010-05-01

    Oceanic lithosphere is strong and continental lithosphere is weak. As a result, there is relatively little deformation in the oceanic domain away from plate boundaries. However, the interior of oceanic lithosphere does deform when highly stressed. We review here places where intraoceanic compression is at work. In the more than 30 years since the first observations of active compressive intraplate deformation in the Central Indian Ocean through seismic profiling (Eittreim et al., 1972), compressive deformation has been identified in a variety of other oceanic tectonic settings: as a result of small differential motion between large plates (between North America and South America in the Central Atlantic; between Eurasia and Nubia offshore Gibraltar; between Macquarie and Australia plates in the Southern Ocean), within back-arcs (northwest Celebes Sea, Okushiri Ridge in the Japan Sea, on the eastern border of the Caroline plate), and ahead of subduction (Zenisu Ridge off Nankai Trough). Deformation appears to be more diffuse when larger plates are involved, and more localized for younger plates, perhaps in relation with the increasing rigidity of oceanic plates with age. The best example of diffuse deformation studied so far remains the Central Indian Ocean. Numerous marine data have been collected in this area, including shallow and deep seismic, heat flow measurements, multibeam bathymetry. The present-day deformation field has been modeled using GPS and earthquakes as far field and near field constraints respectively. Reactivation of the oceanic fabric (including for portions of the Indo-Australian plate which are now in subduction as evidenced by the September 2009 Padang earthquake), selective fault abandonment (Delescluse et al., 2008) and serpentinization (Delescluse and Chamot-Rooke, 2008) are some of the important processes that shape the present-day pattern of deformation. These rare intraplate deformation areas constitute excellent natural laboratories to

  19. Deformation near the Coyote Creek fault, Imperial County, California: Tectonic or groundwater-related?

    NASA Astrophysics Data System (ADS)

    Mellors, Robert J.; Boisvert, Alex

    2003-02-01

    Interferometric synthetic aperture radar (InSAR) measurements show a consistent, 40-km2 wedge-shaped area of deformation partially bounded by a branch of the Coyote Creek fault (a southern extension of the San Jacinto fault) in Imperial County, California, west of the Salton Sea. The deformation is centered at 33.1 N latitude, 116.0 W longitude. 18 ERS-1 and ERS-2 (descending) interferograms falling within 1992 to 2000 are analyzed. An average line-of-sight range change over the area of 6 ± 3 mm per year away from the satellite is observed with peak values up to 12 ± 3 mm per year. The southwestern edge of the deformation is partially bounded by a fault segment that ruptured in the 1968 Mw 6.5 Borrego Mountain earthquake and which also showed triggered slip after the 1987 Superstition Hills earthquakes. The southeastern edge of the deformation also coincides with a mapped fault. The deformation is centered on a farming area that has pumped approximately 5.8 × 10-6 m3 per year of groundwater from 5 wells on the property and which shows declining water levels of 1.4 m per year. The area of highest change appears to be centered on location of the wells and away from the faults. The aquifer is at a depth of roughly 100 to 200 m and consists of sands with interbedded clays. It appears that the most likely explanation is subsidence due to groundwater withdrawal in a fault-bounded aquifer rather than tectonic slip.

  20. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992-2012): Tectonic implications

    NASA Astrophysics Data System (ADS)

    Lagios, E.; Sakkas, V.; Novali, F.; Bellotti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V.

    2013-05-01

    The Santorini Volcanic Complex (SVC) has been in a dormant state for the last 60 years until January 2011 when upward influx of magma reawakened the volcano with intense radial ground deformation and inter-caldera seismicity that lasted until January 2012 but declined afterwards. This paper aims to study the ground deformation and the inferred tectonic implications of the SVC for the period 1992-2012 mainly based on the SqueeSAR™ technique and DGPS campaign results of our local network which incorporates available data on Internet from several continuous GPS stations established on the island. The spatial deformation of the SVC during the quiet period 1992-2010 was deduced by joint analysis of ERS1 and 2 and ENVISAT. It was found that the intra caldera Palaea Kammeni shield volcano was being uplifted (2-3 mm/yr) with increasing rate, whilst the adjacent Nea Kammeni shield volcano was being subsided (up to 6 mm/yr) with increasing rate. The rest of the SVC showed a velocity field varying from - 1 to + 2 mm/yr, indicating a rather linear deformation during that period. The results from the GPS network are in full agreement with the SqueeSAR results. Based on the results of SqueeSAR analysis of 12 ENVISAT images, and DGPS/CGPS data to end 2012, the deformation for the unrest period 2011-2012 was non-linear being characterized by strong radial deformation in the northern part of the caldera (50-120 mm/yr), and accelerating values (> 130 mm/yr2). Combined GPS/SqueeSAR Mogi modeling indicated a source located north of Nea Kammeni at a shallow depth. However, a progressively decreasing rate in deformation was noted at most GPS/CGPS station components after January 2012, indicating magma settlement consistent with the constantly decreasing rate of the inter-caldera seismicity. The faulting features seem to have a key role in the evolution of the deformation, which continues up the end 2012, but at a very low level.

  1. Unhinging an indenter: A new tectonic model for the internal deformation of Panama

    NASA Astrophysics Data System (ADS)

    Rockwell, Thomas K.; Bennett, Richard A.; Gath, Eldon; Franceschi, Pastora

    2010-08-01

    New paleoseismic results from Panama, conducted as part of the seismic hazard assessment for the expansion of the Panama Canal, have led to a reevaluation of the tectonic framework and geologic history of the isthmus of Central America. We propose a soft block indenter model wherein the collision of Central America and South America has resulted in significant internal deformation of the isthmus. Deformation is accommodated by both rapid slip on conjugate strike-slip faults within the isthmus, as well as the generally assumed flexure and northward buckling of Panama. The model is kinematically self-consistent in that there are little or no space problems created with 3 Ma of retrodeformation. Sparse GPS velocity data are consistent to within uncertainties with the new geologically constrained block model, supporting the rapid and extensive internal deformation of Panama. Together, the paleoseismologic and geodetic data suggest that central Panama is an area of high risk due to earthquakes, which is consistent with the historical occurrence of several moderate to large earthquakes in this region. However, this is generally counter to the current perception in central Panama where most people live and where there have been no large, damaging earthquakes for over 100 years.

  2. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  3. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): Seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-06-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading-edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time series have allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm/yr) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesise a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterised by inter-seismic periods possibly dominated by aseismic creep.

  4. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  5. Global tectonic activity map with orbital photographic supplement

    SciTech Connect

    Lowman, P.D. Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  6. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  7. Seperating Long-term Hydrological Loading and Tectonic Deformation Observed with Multi-temporal SAR Interferometry and GPS in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    LI, G.; Lin, H.

    2014-12-01

    From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most

  8. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  9. Long-term tectonic segmentation along the Chilean marine forearc and its implications for the short-term deformation process

    NASA Astrophysics Data System (ADS)

    Maksymowicz, Andrei

    2016-04-01

    The latitudinal variation of the parameters, derived by the use of the Non-Cohesive Coulomb wedge theory, reveals a long-term tectonic segmentation of the Chilean offshore subduction zone. At large scale, the results shows a general increase of the slope angle, a decrease of the effective basal friction coefficient, and an increase of the fluid pressure inside the continental wedge to the north of 33°S. This general behavior is interpreted as a result of a more pervasive fracturing at the base and within of the continental wedge in the zone where the Nazca-South America subduction zone is characterized by tectonic erosion. Analyzing the results on a smaller scale, it is possible to observe a sequence of segments with different basal effective friction coefficient and/or internal fluid pressure conditions, which are limited by the presence of bathymetric oceanic highs, fracture zones and peninsulas. This second order tectonic segmentation shows a spatial correlation with the distribution of the rupture areas of large historical earthquakes in the Chilean margin and, in the case of 2010 Maule and 1960 Valdivia mega-earthquakes, a relation between zones of high slip and segments of low basal friction coefficient. This correlation supports the concept that segments with different long-term evolution can have different stress states during the seismic cycle, affecting the complex sequence of seismic activation and also the location of inhomogeneities during large coseismic ruptures. The results motivate multiscale studies of the deformation processes and highlight the relevance of a detailed characterization of oceanic and continental crustal inhomogeneities around the interplate contact to a better understanding of the seimotectonic process.

  10. Large-scale distributed deformation controlled topography along the western Africa-Eurasia limit: Tectonic constraints

    NASA Astrophysics Data System (ADS)

    de Vicente, G.; Vegas, R.

    2009-09-01

    In the interior of the Iberian Peninsula, the main geomorphic features, mountain ranges and basins, seems to be arranged in several directions whose origin can be related to the N-S plate convergence which occurred along the Cantabro-Pyrenean border during the Eocene-Lower Miocene time span. The Iberian Variscan basement accommodated part of this plate convergence in three E-W trending crustal folds as well as in the reactivation of two left-lateral NNE-SSW strike-slip belts. The rest of the convergence was assumed through the inversion of the Iberian Mesozoic Rift to form the Iberian Chain. This inversion gave rise to a process of oblique crustal shortening involving the development of two right lateral NW-SE shear zones. Crustal folds, strike-slip corridors and one inverted rift compose a tectonic mechanism of pure shear in which the shortening is solved vertically by the development of mountain ranges and related sedimentary basins. This model can be expanded to NW Africa, up to the Atlasic System, where N-S plate convergence seems also to be accommodated in several basement uplifts, Anti-Atlas and Meseta, and through the inversion of two Mesozoic rifts, High and Middle Atlas. In this tectonic situation, the microcontinent Iberia used to be firmly attached to Africa during most part of the Tertiary, in such a way that N-S compressive stresses could be transmitted from the collision of the Pyrenean boundary. This tectonic scenario implies that most part of the Tertiary Eurasia-Africa convergence was not accommodated along the Iberia-Africa interface, but in the Pyrenean plateboundary. A broad zone of distributed deformation resulted from the transmission of compressive stresses from the collision at the Pyrenean border. This distributed, intraplate deformation, can be easily related to the topographic pattern of the Africa-Eurasia interface at the longitude of the Iberian Peninsula. Shortening in the Rif-Betics external zones - and their related topographic

  11. Tectonic Activity during the Harappan Civilization

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Nur, A.

    2001-12-01

    The Harappan civilization in South Asia existed between 3,300 and 1,900 BC. Extensive remnants from this era are found in Pakistan and northwestern India. The region is far from plate boundaries and, until recently, has been considered tectonically inactive. A combination of data from current and historic seismicity, marine seismic surveys, and prevalent geologic and tectonic features with archeological findings, historical and scriptural records, and GIS mapping of large scale areas shows: \\begin{enumerate} Occurrence of earthquakes starting from the 26th January, 2001 event to as far back as 2500 BC Existence of an ancient river, Saraswati corroborated with historical records, GIS mapping, marine seismic surveys Sea level changes from archeological excavations of variations in fauna. We show how a cross-disciplinary study can provide ways of filling information gaps and providing new insights. A comparison between isoseismal lines from the Magnitude 8 event of 26th January, 2001 with location of Harappan cities shows that most cities would have been obliterated by such an event. >http://pangea.stanford.edu/ ~manika/harappa.html

  12. Northwest Basin and Range tectonic deformation observed with the Global Positioning System, 1999-2003

    USGS Publications Warehouse

    Hammond, W.C.; Thatcher, W.

    2005-01-01

    We use geodetic velocities obtained with the Global Positioning System (GPS) to quantify tectonic deformation of the northwest Basin and Range province of the western United States. The results are based on GPS data collected in 1999 and 2003 across five new quasi-linear networks in northern Nevada, northeast California, and southeast Oregon. The velocities show ???3 mm/yr westward movement of northern Nevada with respect to stable North America. West of longitude 119??W the velocities increase and turn northwest, parallel to Sierra Nevada/Great Valley microplate motion, and similar to velocities previously obtained to the south. The observations are explained by a kinematic model with three domains that rotate around Euler poles in eastern Oregon and western Idaho. Northeast California experiences internal dextral shear deformation (11.2 ?? 3.6 nstrain/yr) subparallel to Pacific/North America motion. Relative motions of the domains imply 2-5 mm/yr approximately east-west extension in northwest Nevada and 1-4 mm/yr approximately north-south contraction near the California/Oregon border. The northward decreasing approximately east-west extension in northwest Nevada is consistent with the northern termination of Basin and Range deformation, faulting and characteristic topography. No significant extension is detected in the Oregon Basin and Range. The Oregon Cascade arc moves north at ???3.5 mm/yr and is possibly influenced by the approximately eastward motion of the Juan de Fuca plate. These results disagree with secular northwest trenchward motion of the Oregon forearc inferred from paleomagnetic rotations. South of latitude 43??, however, trenchward motion exists and is consistent with block rotations, approximately east-west Basin and Range extension, and northwest Sierra Nevada translation. Copyright 2005 by the American Geophysical Union.

  13. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Sun, Min; Schulmann, Karel; Zhao, Guochun; Wu, Qihang; Jiang, Yingde; Guy, Alexandra; Wang, Yuejun

    2015-04-01

    The Chinese Altai, a key component of the western Central Asian Orogenic Belt, is considered to be formed through multiple accretions of different terranes. However, the deformational histories of each terrane (tectonic domain), i.e. structural records before and after the accretion, are rarely studied, which has hindered our understanding of the accretionary processes. To fill the gap, a systematic macro- and microscopic structural analysis was carried out on two contrasting litho-tectonic units, i.e. the early Paleozoic low-grade Alegedayi Ophiolitic Complex (AOC) juxtaposed to the high grade Tarlang Granitic Massif (TGM). Selected rock samples were analyzed using zircon U-Pb isotopic dating to constrain the timing of polyphase deformation. Our structural and geochronological data suggest that the two litho-tectonic units were initially detached and located in different crustal levels and experienced distinct phases of deformation under contrasting P-T conditions. They were mutually accreted with each other in the early Devonian and jointly underwent a WNW-ESE-directed shortening deformational event (D1) at ∼390 Ma. The change of tectonic regime was further enhanced by a subsequent NNE-SSW-directed shortening deformation (D2) after ∼ 380 Ma. The shortening process ended before the crustal-scale sinistral strike-slip shearing deformation along the Erqis fault zone at 290 - 240 Ma. Results of this study provide solid field-based evidence for a model that the Chinese Altai initially underwent a nearly E-W-oriented subduction-accretional event in the middle Paleozoic, before it was reoriented to a nearly N-S-oriented convergence.

  14. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  15. Pleistocene deformation and landscape evolution in the Tehran plain: results from tectonic geomorphology and TCN-dating

    NASA Astrophysics Data System (ADS)

    Landgraf, Angela; Benedetti, Lucilla; Braucher, Regis; Bourles, Didier; Ballato, Paolo; Strecker, Manfred R.; Friedrich, Anke M.; Tabatabaei, Saeid H.; Shahpasandzadeh, Majid

    2010-05-01

    terraces. These terraces and the associated deformation pattern are reminiscent of a transpressional foreberg structure, with part of the deformation occurring on a blind fault. The age of these terraces, however, is uncertain. Chi²-fitting of a TCN depth profile reveals that the second-highest terrace level is in steady-state, yielding an effective age of ~195ka, hence indicating a Pleistocene deformation age. In contrast to these environments, the eastern footwall of the NTF is affected by left-transtension, possibly related to either the left-bending of the NTF or a horsetail-termination of eastern NTF strike-slip faulting. The topography reflects the geometry of a relay ramp with an elevated footwall, which progressively decreases towards west and terraces which become increasingly abandoned westward. The second highest terrace level of this ramp-structure is ~195-ky-old, as independently determined by Chi²-fitting of 10Be- and 36Cl-depth-profiles, indicating activity at least since the middle Pleistocene. Where the eastern NTF bounds this structure, a channel is currently incising a dioritic sill, forming a pronounced knickpoint and leaving behind two abandoned narrow bedrock channels at 5m and 1.70m above the recent channel. 36Cl dating of these paleo-channels resulted in 3290 +/- 408 and 1591+/-223 years, respectively. This could indicate pulsed incision (~ 1.5 and 1.1 mm/a, respectively) related to dip-slip motion of the NTF. In contrast, farther downstream and south of the ramp structure, another fluvial terrace (81m above the Jajrud channel), dated by Chi²-fitting of 10Be- and 36Cl depth profiles, reveals an age of ~ 46ka, corresponding to an incision rate of ~1.8mm/a. Thus, the incision observed at the NTF might just mimic the change in base level, caused by the Jajrud incision downstream and may thus not reflect pulsed tectonic activity during late Holocene time. In any case, although the manifestations of ongoing deformation along the NTF are scarce

  16. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    USGS Publications Warehouse

    Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger

    2013-01-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  17. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  18. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  19. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  20. Deformation of the overriding slab during incipient subduction in centrifuge modeling and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Mart, Yossi; Goren, Liran; Koyi, Hemin

    2015-04-01

    Analog models of subduction-related structural deformation emphasize the significance of differences in density and friction between the adjacent plates on the distortion of the overriding slab and its possible effect on the subduction procedure. Centrifuge experiments juxtaposed miniaturized lighter and denser lithospheres, which were floating on denser but less viscous asthenosphere. The lithosphere in the tests comprised brittle and ductile strata, which showed diversified styles of deformation, while factors of equivocal tectonic significance, such as lateral push or negative buoyancy, were not introduced into the experiments. The tests show that the juxtaposition of lighter and denser lithospheres would suffice to drive the denser lithosphere as a wedge between the asthenosphere and the lighter lithosphere, and that the rate of the process would depend on the rate of friction between the slabs, as well as on differential viscosity. It seems that the reduced friction in Nature was derived from the generation of serpentinites, which could be the main agent of lubrication. The underthrusting of the denser lithosphere leads to the uplift and collapse of the edge of the lighter slab, where extension, thinning, normal faulting and rifting took place, and diapiric ascent of parts of the ductile layer of the lighter slab occurred along several rifts. The analog experiments were carried out only to the stage where the denser slab was thrust under the lighter one, but the penetration of the lithosphere into the asthenosphere was not achieved. It seems plausible therefore, that only after eclogitization, and the upward motion of serpentinites, increased the density of the underthrust slab, would it dive and penetrate into the asthenosphere. The experiments indicate the plausibility of the constraints imposed on the subduction process by the deformation of the overthrust slab. The normal faults and rifts in the overthrust block could serve as conduits for the ascent of

  1. Applications of Morphochronology to the Active Tectonics of Tibet

    SciTech Connect

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  2. UAV's for active tectonics : case example from the Longitudinal Valley and the Chishan Faults (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2015-04-01

    Taiwan is a case example to study active tectonics due to the active NW-SE collision of the Philippine and Eurasian Sea Plates as the whole convergence reaches 10cm/y. In order to decipher the structural active tectonics geometry, we used herein UAV's to get high resolution Digital Terrain Model (DTM) in local active tectonics key areas. Classical photo-interpretation where then developped in order to structurally interprete these data, confirmed by field studies. Two location had first been choosen in order to highlight the contribution of such high resolution DTM in SW Taiwan on the Longitudinal Valley Fault (SE Taiwan) on its southern branch from Pinting to Luyeh terraces (Pinanshan) where UAV's lead to better interprete the location of the outcropping active deformations. Combined with available GPS data and PALSAR interferometry (Deffontaines et Champenois et al., submitted) it is then possible to reconstruct the way of the present deformation in this local area. In the Pinting terraces, If the western branch of the fault correspond to an outcroping thrust fault, the eastern branch act as a a growing active anticline that may be characterized and quantified independantly. The interpretation of the UAV's high resolution DTM data on the Chishan Fault (SW Taiwan) reveals also the geometry of the outcropping active faults complex structural behaviour. If the Chishan Fault act as a thrusting in its northern tip (close to Chishan city), it acts as a right lateral strike-slip fault north of Chaoshan (Kaohsiung city) as described by Deffontaines et al. 2014. Therefore UAV's are a so useful tool to get very high resolution topographic data in Taiwan that are of great help to get the geometry of the active neotectonic structures in Taiwan.

  3. Igneous activity, metamorphism, and deformation in the Mount Rogers area of SW Virginia and NW North Carolina: A geologic record of Precambrian tectonic evolution of the southern Blue Ridge Province

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Mundil, Roland; Southworth, C. Scott; Cosca, Michael A.; Rankin, Douglas W.; Rubin, Allison E.; Kentner, Adrienne; Parendo, Christopher A.; Ray, Molly S.

    2012-01-01

    Mesoproterozoic basement in the vicinity of Mount Rogers is characterized by considerable lithologic variability, including major map units composed of gneiss, amphibolite, migmatite, meta-quartz monzodiorite and various types of granitoid. SHRIMP U-Pb geochronology and field mapping indicate that basement units define four types of occurrences, including (1) xenoliths of ca. 1.33 to ≥1.18 Ga age, (2) an early magmatic suite including meta-granitoids of ca. 1185–1140 Ma age that enclose or locally intrude the xenoliths, (3) metasedimentary rocks represented by layered granofels and biotite schist whose protoliths were likely deposited on the older meta-granitoids, and (4) a late magmatic suite composed of younger, ca. 1075–1030 Ma intrusive rocks of variable chemical composition that intruded the older rocks. The magmatic protolith of granofels constituting part of a layered, map-scale xenolith crystallized at ca. 1327 Ma, indicating that the lithology represents the oldest, intact crust presently recognized in the southern Appalachians. SHRIMP U-Pb data indicate that periods of regional Mesoproterozoic metamorphism occurred at 1170–1140 and 1070–1020 Ma. The near synchroneity in timing of regional metamorphism and magmatism suggests that magmas were emplaced into crust that was likely at near-solidus temperatures and that melts might have contributed to the regional heat budget. Much of the area is cut by numerous, generally east- to northeast-striking Paleozoic fault zones characterized by variable degrees of ductile deformation and recrystallization. These high-strain fault zones dismember the terrane, resulting in juxtaposition of units and transformation of basement lithologies to quartz- and mica-rich tectonites with protomylonitic and mylonitic textures. Mineral assemblages developed within such zones indicate that deformation and recrystallization likely occurred at greenschist-facies conditions at ca. 340 Ma.

  4. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: Significance for the evolution of paleo-uplifts and tectonic geography during deformation

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Yang, Haijun; Liu, Jingyan; Rui, Zhifeng; Cai, Zhenzhong; Zhu, Yongfeng

    2012-03-01

    The distribution and erosional features of the Paleozoic major tectonic unconformities in the Tarim Basin, and their genetic relation to the development of paleo-uplifts as well as the evolution of geodynamic settings, are documented in this paper based on the integral analysis of seismic, drilling, and outcrop data. During the Paleozoic, the Tarim Basin underwent three major tectonic deformation stages, which resulted in three angular unconformities and in significant changes in basin geomorphology and paleogeography. The tectonic deformation at the end of the Middle Ordovician was characterized by development of the southern central paleo-uplift, the northern depression, and the southeastern Tangguzibasi depression in the basin. The thickest denudation belts of the unconformity (Tg5-2) are distributed mainly along the thrust structural highs. A stronger deformation event took place at the end of the Late Ordovician and formed a huge uplift along the southwestern and southeastern basin margins and the western part of the Tabei uplift along the northern basin margin, producing an extensive angular unconformity (Tg5) with maximum erosion thickness of 1500-2000 m. This tectonic event resulted in an abrupt change in overall geography of the basin, from a deepwater marine environment at the late stages of the Late Ordovician to a littoral and neritic basin in the Early Silurian. The deformation that occurred at the end of the Middle Devonian was the strongest in the Paleozoic. It generated the most widespread angular unconformity (Tg3) within the basin and led to extensive erosion, with maximum denudation thickness of 3000-5000 m in the northern and northeastern parts of the basin. The topography of the basin during the late Devonian was characterized by a high in the northeast and a low in the southwest, forming an embayment basin opening to the southwest during the Early Devonian to Carboniferous. The transgression in general from southwest to northeast deposited

  5. Three sets of fine extinction bands in a tectonically deformed vein-quartz single crystal

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Van der Donck, Tom; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2014-05-01

    Intracrystalline fine extinction bands (FEBs) in quartz, are narrow (less than 5µm thick), planar microstructures with a misorientation up to 5° with respect to the host crystal, occurring in closely spaced sets (spacing of 4-5μm). FEBs have been commonly attributed to a large range of brittle and/or crystal-plastic mechanisms, revealing considerable disagreement on the responsible crystal-plastic slip systems and the ambient conditions. Another question that arises, is whether or not the FEBs rotate from a basal plane orientation to orientations ranging between the basal and prism planes. Usually only one set of FEBs occurs in a single crystal, though two sets are observed, in particular with increasing strain. Tentatively, a maximum of two sets of sub-basal FEBs has been postulated to develop in a single quartz crystal in a tectonic context. However, we identified several crystals in naturally deformed vein-quartz containing three sets of FEBs. The vein-quartz has been deformed under sub-greenschist metamorphic conditions, during the late Palaeozoic Variscan orogeny, in the High-Ardenne slate belt (Belgium). The vein-quartz has been subjected to bulging dynamic recrystallisation and shows a high degree of undulatory extinction, abundant subgrains and wide extinction bands sub-parallel to the c-axis. We attempted to characterise these three sets of FEBs by means of light microscopy, EBSD-OIM and universal stage microscopy. In both cases studied the c-axis is inclined less than 8° with respect to the thin-section plane. The different sets of FEBs show a consistent orientation with respect to the c-axis. One set of FEBs deviates maximum 10° from the basal plane. The other two sets deviate between 15 and 35° from a basal plane orientation. Corresponding FEBs, at the same angle with respect to the c-axis, have similar morphologies. In relative EBSD orientation maps FEBs show a maximum misorientation of 3°, and have a lower pattern quality than the host crystal

  6. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  7. Study provides data on active plate tectonics in southeast Asia region

    NASA Astrophysics Data System (ADS)

    Wilson, P.; Rais, J.; Reigber, Ch.; Reinhart, E.; Ambrosius, B. A. C.; Le Pichon, X.; Kasser, M.; Suharto, P.; Majid, Dato'Abdul; Yaakub, Dato'Paduka Awang Haji Othman Bin Haji; Almeda, R.; Boonphakdee, C.

    A major geodynamic study has provided significant new information about the location of active plate boundaries in and around Southeast Asia, as well as deformation processes in the Sulawesi region of Indonesia and tectonic activity in the Philippine archipelago. Results also have confirmed the existence of the so-called Sunda Block, which appears to be rotating with respect to adjacent plates.The study, known as the Geodynamics of South and South-East Asia (GEODYSSEA) project, has been a joint venture of the European Commission and the Association of South- East Asian Nations. It began in 1991 and involved a large team of European and Asian scientists and technicians studying the complex geodynamic processes and natural hazards of the region from the Southeast Asia mainland to the Philippines to northern Australia. Earthquakes, volcanic eruptions, tsunamis, and tectonically induced landslides endanger the lives of millions of people in the region, and the tectonic activity behind these natural hazards results from the convergence and collision of the Eurasian, Philippine, and Indo-Australian Plates at relative velocities of up to 10 cm per year.

  8. Regional uplift and local tectonic deformation recorded by the Quaternary marine terraces on the Ionian coast of northern Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Cucci, Luigi; Cinti, Francesca R.

    1998-06-01

    The setting of a flight of marine terraces along a 65-km-long section of the Ionian coast of northern Calabria is the result of the interaction between interglacial sea levels, regional uplift, and local fault-related elevation changes. Seven terraces with corresponding palaeoshoreline angles at elevations ranging from 12 m to ˜420 m were recognised by aerial photo interpretation and field surveying. The terraces were correlated to the oxygen isotope stages 1, 5a, 5c, 5e, 7, 9, 15, which correspond to the 7, 81, 102, 124, 215, 330 and ˜600 ka highstands of the palaeosea-level curve. The ˜600-ka-long regional ascent of the terraces took place at an average uplift rate of 0.67 mm/yr; this value slightly but progressively increases southward along the coastline. The elevation of the strandlines is related to the activity of tectonic structures. Three cases were analysed, allowing us: (1) to recognise the height anomalies of the terraces on the Sibari plain as the result of cumulated coseismic deformation caused by the normal Castrovillari fault, and on this basis calculate a minimum slip rate and a mean recurrence time for a single event of deformation; (2) to exclude the presence of significant vertical deformations and consequently activity on the easternmost section of the normal Pollino fault; and (3) to hypothesise the presence of an hitherto unknown active fault responsible for the strong vertical displacements of the flight of terraces near the river Avena. Finally, we find the ratio of the rate of regional uplift to the average rates of local tectonic deformation to be 2 to 3 : 1.

  9. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  10. Tectonic Map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland and the Queen Elizabeth Islands (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Piepjohn, Karsten; von Gosen, Werner; Tessensohn, Franz; Reinhardt, Lutz; McClelland, William C.; Dallmann, Winfried; Gaedicke, Christoph; Harrison, Christopher

    2016-04-01

    The tectonic map presented here shows the distribution of the major post-Ellesmerian and pre-Eurekan sedimentary basins, parts of the Caledonian Orogen, the Ellesmerian Fold-and-Thrust Belt, structures of the Cenozoic Eurekan deformation, and areas affected by the Eurekan overprint. The present continental margin of North America towards the Arctic Ocean between the Queen Elizabeth Islands and Northeast Greenland and the present west margin of the Barents Shelf are characterized by the Paleozoic Ellesmerian Fold-and-Thrust Belt, the Cenozoic Eurekan deformation, and, in parts, the Caledonian Orogen. In many areas, the structural trends of the Ellesmerian and Eurekan deformations are more or less parallel, and often, structures of the Ellesmerian Orogeny are affected or reactivated by the Eurekan deformation. While the Ellesmerian Fold-and-Thrust Belt is dominated by orthogonal compression and the formation of wide fold-and-thrust zones on Ellesmere Island, North Greenland and Spitsbergen, the Eurekan deformation is characterized by a complex network of regional fold-and-thrust belts (Spitsbergen, central Ellesmere Island), large distinct thrust zones (Ellesmere Island, North Greenland) and a great number of strike-slip faults (Spitsbergen, Ellesmere Island). The Ellesmerian Fold-and-Thrust Belt was most probably related to the approach and docking of the Pearya Terrane (northernmost part of Ellesmere Island) and Spitsbergen against the north margin of Laurasia (Ellesmere Island/North Greenland) in the earliest Carboniferous. The Eurekan deformation was related to plate tectonic movements during the final break-up of Laurasia and the opening of Labrador Sea/Baffin Bay west, the Eurasian Basin north, and the Norwegian/Greenland seas east of Greenland. The tectonic map presented here shows the German contribution to the Tectonic Map of the Arctic 1:5,000,000 (TeMAr) as part of the international project "Atlas of geological maps of Circumpolar Arctic at 1

  11. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Wagner, Lara S.; Fischer, Karen M.; Hawman, Robert B.

    2016-05-01

    The lithospheric structure of the Southeastern United States is a product of earlier episodes of continental collision and breakup. The region is located in the interior of the North American Plate, away from active plate margins. However, there is ongoing tectonism in the region with multiple zones of seismicity, uplifting arches, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the state of stress remain enigmatic. Two important factors are plate strength and preexisting, inherited structures. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Examples include the relatively thick lithospheric mantle of stable North America that abruptly thins beneath the Paleozoic Appalachian orogeny, and the slow upper mantle of the Proterozoic Reelfoot rift. Our results also indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. This provides a viable explanation for seismicity, uplifting, and young intraplate volcanism. We postulate that not only tectonic inheritance but also continuing lithospheric foundering may control the ongoing activity of the region long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  12. Impact of the Yakutat indentor corner on present-day tectonics and fault activity in SE Alaska - SW Yukon

    NASA Astrophysics Data System (ADS)

    Mazzotti, S.; Marechal, A.; Ritz, J. F.; Ferry, M. A.

    2015-12-01

    We present an active tectonic model of the SE Alaska - SW Yukon region based principally on the integration of recent GPS velocity data and new fault-slip rates derived from geomorphology. In this region, the Yakutat collision results in complex tectonics with patterns of strain localization and strain partitioning that strongly vary across the various mountain ranges and active faults. We propose that deformation and fault activity in the St. Elias and Chugach Mountains are primarily controlled by the eastern syntaxis of the Yakutat collision, which produces a semi-radial tectonic pattern: Velocities, principal horizontal shortening rates, and maximum horizontal stress orientations rotate by 60 - 80 ° around the syntaxis, from roughly parallel to the relative Pacific - North America motion at the front of the collision to roughly orthogonal southeast of the syntaxis. The interaction between this strain pattern and major inherited tectonic structures inland of the collision zone (i.e., Denali and Duke River Faults) results in various reactivation modes of these structures. Specifically, the Denali Fault shows a very pronounced lateral variations of activity from ~12 mm/a of dextral slip rate in its central section to ~1 mm/a of mostly shortening slip rate along its southern section. This marked change of activity is associated with a possible relay system where the Duke River and Totschunda Faults accommodate a major part (8 - 12 mm/a) of the inland strain transfer directly in front of the syntaxis. This new tectonic model retains some questions, in particular regarding the mechanisms of deformation and strain transfer (1) from the syntaxis to the Duke River - Totschunda system and (2) at the junction between Totschunda and Denali Faults. Numerical models of present-day deformation may help address these issues and provide information about relative strength of the various crustal and inherited fault elements of this system.

  13. High-Temperature Deformation of Dry Diabase with Application to Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Mackwell, S. J.; Zimmerman, M. E.; Kohlstedt, D. L.

    1998-01-01

    We have performed an experimental study to quantify the high-temperature creep behavior of natural diabase rocks under dry deformation conditions. Samples of both Maryland diabase and Columbia diabase were investigated to measure the effects of temperature, oxygen fugacity, and plagioclase-to-pyroxene ratio on creep strength. Flow laws determined for creep of these diabases were characterized by an activation energy of Q = 485 +/- 30 kJ/mol and a stress exponent of n = 4.7 +/- 0.6, indicative of deformation dominated by dislocation creep processes. Although n and Q are the same for the two rocks within experimental error, the Maryland diabase, which has the lower plagioclase content, is significantly stronger than the Columbia diabase. Thus the modal abundance of the various minerals plays an important role in defining rock strength. Within the s ample-to-sample variation, no clear influence of oxygen fugacity on creep strength could be discerned for either rock. The dry creep strengths of both rocks are significantly greater than values previously measured on diabase under "as-received" or wet conditions. Application of these results to the present conditions in the lithosphere on Venus predicts a high viscosity crust with strong dynamic coupling between mantle convection and crustal deformation, consistent with measurements of topography and gravity for that planet.

  14. Tectonic deformation in the Tyrrhenian: A novel statistical approach to infer the role of the Calabrian Arc complex

    NASA Astrophysics Data System (ADS)

    Splendore, Raffaele; Marotta, Anna Maria; Barzaghi, Riccardo

    2015-11-01

    A thermomechanical model is used to analyze the strain pattern due to the Africa-Eurasia convergence in the area that extends from the Calabrian Arc to the Alpine domain and the role that is played by the Calabrian Arc complex in controlling the northward propagation of the tectonic stress. After a preliminary analysis to eliminate GPS stations that are not representative of the main regional tectonic process, the predicted deformation is compared to that based on GPS observations by using a novel χ2 test in which both data and model uncertainties are taken into account. A large amount of the tectonic force (at least 75%) that is associated with the Africa-Eurasia convergence is accommodated by the Calabrian Arc complex, which plays a crucial role in controlling the intraplate propagation of the stress in the south Tyrrhenian area. Furthermore, a strong lithosphere, which is characterized by a granite-type upper crust, diabase-type lower crust, and peridotite-type lithosphere mantle, must pave the south Tyrrhenian; and a soft lithosphere, which is characterized by a granite-type upper crust, granulite-type lower crust, and peridotite-type lithospheric mantle, must pave the surrounding area to reproduce the expected regional compression in the SE-NW direction and extension in the perpendicular direction. Finally, the local deformation at high latitudes is not sensitive to variations in the boundary conditions along a limited portion of the Calabrian Arc.

  15. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  16. Late Cenozoic tectonics of the Middle Atlas Mountains, Morocco: Continental deformation in the diffuse western Mediterranean plate boundary

    NASA Astrophysics Data System (ADS)

    Gomez, Francisco Gustavo

    The Atlas Mountains of North Africa, located in the African foreland of the Alpine mountain belts, comprise a 2,000 km long Cenozoic mountain chain whose development was guided by older Mesozoic rift structures. This dissertation examines one component, the Middle Atlas Mountains of Morocco, using geological and geophysical data to constrain the tectonic development of the mountain chain. These results are then placed in the broader context of regional deformation. The NE-SW trending Middle Atlas Mountains are obliquely oriented within the late Cenozoic regional stress field, resulting in deformation partitioned into strike-slip faulting and thrust-related folding. Kinematic analyses of fault-slip data and earthquake focal mechanisms demonstrate that compressional deformation dominates the Folded Middle Atlas, whereas strike-slip faulting, with possible horizontal extension, predominates in the Tabular Middle Atlas. Geological field observations, digital topography, LANDSAT imagery, and seismicity provide evidence for recent tectonics in the Middle Atlas. In the central Middle Atlas, cross-section balancing across the 20 km wide fold belt demonstrates about 4.7 km of Cenozoic horizontal shortening producing 800 m of structural relief. Other constraints on crustal thickening suggest a discrepancy between contraction and thickening. One possible explanation involves partitioning crustal deformation with depth: The upper crust shortens by thickening (faulting and folding), whereas the lower crust deforms laterally. At the northern extent of the mountain chain, the Guercif Basin developed where the Middle Atlas abut the Rif thrust belt. Similar timing of extensional deformation and proximity with the Rif, suggest that the Guercif Basin has been influenced by Rif tectonics. Stratal relations demonstrate that uplift of the Middle Atlas is a late Cenozoic phenomenon. In Morocco, shortening of the High and Middle Atlas Mountains accommodated 20--45% of the total African

  17. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east

  18. Deep seismic structure and tectonics of northern Alaska: Crustal-scale duplexing with deformation extending into the upper mantle

    USGS Publications Warehouse

    Fuis, G.S.; Murphy, J.M.; Lutter, W.J.; Moore, T.E.; Bird, K.J.; Christensen, N.I.

    1997-01-01

    Seismic reflection and refraction and laboratory velocity data collected along a transect of northern Alaska (including the east edge of the Koyukuk basin, the Brooks Range, and the North Slope) yield a composite picture of the crustal and upper mantle structure of this Mesozoic and Cenozoic compressional orogen. The following observations are made: (1) Northern Alaska is underlain by nested tectonic wedges, most with northward vergence (i.e., with their tips pointed north). (2) High reflectivity throughout the crust above a basal decollement, which deepens southward from about 10 km depth beneath the northern front of the Brooks Range to about 30 km depth beneath the southern Brooks Range, is interpreted as structural complexity due to the presence of these tectonic wedges, or duplexes. (3) Low reflectivity throughout the crust below the decollement is interpreted as minimal deformation, which appears to involve chiefly bending of a relatively rigid plate consisting of the parautochthonous North Slope crust and a 10- to 15-km-thick section of mantle material. (4) This plate is interpreted as a southward verging tectonic wedge, with its tip in the lower crust or at the Moho beneath the southern Brooks Range. In this interpretation the middle and upper crust, or all of the crust, is detached in the southern Brooks Range by the tectonic wedge, or indentor: as a result, crust is uplifted and deformed above the wedge, and mantle is depressed and underthrust beneath this wedge. (5) Underthrusting has juxtaposed mantle of two different origins (and seismic velocities), giving rise to a prominent sub-Moho reflector. Copyright 1997 by the American Geophysical Union.

  19. Study on Seismogenic Tectonic based on InSAR Measurement of Long-term fault Deformation and Co-seismic Deformation in Dangxiong, Tibet

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, J.; Liu, B.; Hu, L.

    2010-12-01

    There are some earthquakes in Oct 2008 and May 2010 in Dangxiong, Tibet(Tab1); their epicenters were quite near and all located on Yadong-Gulou fault belt,which is a significant boundary between eastern and western geological structure and physiognomy of Tibet plates. The structural belt is normal strike-skip fault, and has experienced strong tectonic activity. The development of Yadong-Yangbajing-Gulou graben system is dominated by Yadong-Gulou fault belt, which is the main dominating boundary fault of graben system, and also is a famous extensional crustal structural system of Late Cenozoic. The Yadong-Gulou fault belt can be divided into three parts. The northern part is nearly SN striking. The middle part is NE striking, which is named Dangxiong-Yangbajing fault. And the southern part is nearly SN striking, which is named Yangbajing-Nimu fault. The epicenter of Ms6.6 earthquake is located on Yangbajing-Nimu fault, where an M8.0 strong earthquake took place in 1411. The two epicenters were just twenty kilometers away. So we can see the area is affected greatly by Yadong-Gulou fault belt. We have focused our InSAR study on this area ever since 2001 and ordered ENVISAT ASAR data continuously between 2003 and 2010 under Dragon Programme (ESA/NRSCC Cooperation Programme). Also we have begun to order TerraSAR-X spotlight and strimap model data since Mar. 2010. Acquisitions of ASAR differential modes are collected, including WS and IM(I2) of ascending and descending orbits. Though most of them have different track ,even polarization and long space baseline, time interval, there are many data for our InSAR process.We obtained time serial deformation before and after those earthquakes using PS and SBAS InSAR technique (data: IM model, track 176,nearly 50 scenes ), and Co-seismic Deformation of M6.6 earthquake(data: IM model,track 176/448;WS model, track 441). We have carried on field investigation separately at 2007,2009 and 2010. The movement mechanism of the fault is

  20. Synsedimentary-tectonic, soft-sediment deformation and volcanism in the rifted Tethyan margin from the Upper Triassic-Middle Jurassic deep-water carbonates in Central Sicily

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Lena, Gabriele; Gasparo-Morticelli, Maurizio

    2014-07-01

    The Pizzo Lupo section (Sicanian Mts, central Sicily) is an Upper Triassic-Lower Jurassic condensed deep-water succession, where the relationships among synsedimentary tectonic, soft-sediment deformations, volcanism and lithological changes reflect the evolution of a rift-basin. The morphostructural setting of the studied basin appears as a gently dipping slope where a fault-delimited area (graben to halfgraben) was developed. The instability of the sea floor, related to the seismic shocks, was the cause of the gravity-driven deformational sedimentary structures (slumping, breccia channelized bodies). The partly stratified basaltic rocks, with disorganized and chaotic stratification, suggest the occurrence of a volcanic complex located in neighbouring areas. A regional comparison with the tectono-sedimentary evolution of the pelagic drowning platform succession (i.e. Trapanese domain Auct.), outcropping in adjacent areas, suggests that these different domains were close to each other during the studied period forming a stepped margin platform-to-basin system. The environmental changes, synsedimentary tectonic activity and gravity-driven phenomena were the result of repeated events occurred during a long time interval, spanning from Late Triassic to Early Jurassic.

  1. Shells on a Sphere: Tectonic Plate Motion and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Apel, Edwin Victor, III

    Plate motion models have matured from being based only on geology and seismicity to incorporating space-based geodetic methods like GPS. I use a block modeling approach to incorporate both rigid block rotation and near-boundary elastic strain accumulation effects in a formal inversion of GPS velocities. Independent Okhotsk and Amurian microplate motions are tested using GPS velocities that constrain the plate kinematics of northeast Asia. Modeling favors scenarios with independent OKH and AMU motion, based on the application of F-test statistics. The plate-motion parameters of the independent plates are consistent with the kinematics inferred from earthquake focal mechanism solutions along their boundaries. GPS-measured velocities (15 from continuously recording stations within the stable India plate interior) geodetically constrain India plate motion, intraplate strain, and plate boundary deformation around the India plate. Dense station coverage from previously published studies allows rigorous testing of boundary parameterizations. I develop robust India plate motion parameters and see good agreement between predicted plate directions from the preferred model and the seismological data. Available GPS data in and around the Aegean region is combined and used to evaluate plate motion models, elastic plate boundary deformation and its relationship to seismogenic coupling along the Hellenic subduction zone. The A.D. 365 M ˜8.4, the A.D. 1303 M˜8 Crete suggest that portions of the plate interface must be locked. The primary focus of this study is to examine potential upper plate deformation resulting from a locked subduction interface, active hanging-wall extension, or both. I consider multiple model scenarios in an attempt to interpret the both the horizontal and vertical geodetic signals in the region and its implications for earthquake hazard assessment.

  2. Identification of tectonic deformations on the south polar surface of the moon

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saumitra; Singh, Priyadarshini

    2015-07-01

    Recent extensional and contractional tectonic features present globally over the lunar surface have been studied to infer lunar crustal tectonism. Investigation of indicators of recent crustal tectonics, such as fault lines, thrust fault scarps, and dislocation of debris along the identified fault planes, primarily using data from the miniature-synthetic aperture radar (mini-SAR) aboard CHANDRAYAAN-1 mission and Narrow angle camera (NAC) images, are the focus of this study. Spatial orientation of these tectonic features helps to elucidate the change in the interior geological dynamics of any planetary body with time. The ability of microwave sensors to penetrate the lunar regolith, along with application of m-χ decomposition method on Mini-SAR data has been used to reveal unique features indicative of hidden tectonics. The m-χ decomposition derived radar images expose hidden lineaments and lobate scarps present within shadowed crater floors as well as over the illuminated regions of the lunar surface. The area around and within Cabeus B crater in the South Polar Region contains lobate scarps, hidden lineaments and debris avalanches (associated with the identified lineaments) indicative of relatively recent crustal tectonism.

  3. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  4. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  5. Crustal structure and active tectonics in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Brückl, E.; Behm, M.; Decker, K.; Grad, M.; Guterch, A.; Keller, G. R.; Thybo, H.

    2010-04-01

    During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south and underthusting of AD mantle below PA from southwest to northeast. The Moho fragmentation correlates well with major upper crustal structures and is supported by gravity, seismic, and geodetic data. An analysis of crustal thickening suggests that active convergence is associated with continued thrusting and lateral extrusion in the central Eastern Alps and thickening of the Adriatic indenter under the Southern Alps. According to the velocity relations at the triple junction, PA moves relative to EU and AD along ENE and SE striking faults, mainly by strike slip. An eastward directed extensional component is compensated by the lateral extrusion of the central Eastern Alps. The Periadriatic (Insubric) line east of the triple junction and the mid-Hungarian fault zone have relatively recently lost their role as first-order active structures. We favor the idea that the Pannonian fragment and the TISZA block merged to a "soft" microplate surrounded by the Eastern and Southern Alpine, Carpathian, and Dinaric orogens.

  6. Active tectonics and Quaternary landscape evolution across the western Panama block, Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey Scott

    Three aspects of active tectonism are examined across central Costa Rica: (1) fault kinematics; (2) volcanic arc retreat; and (3) spatially variable coastal uplift. Diffuse faulting along the Central Costa Rica Deformed Belt (CCRDB) defines the western margin of the Panama block and aligns with the rough-smooth boundary (RSB) on the subducting Cocos plate. Sub-horizontal subduction of rough, hotspot thickened crust (Cocos Ridge and seamounts) shifts active shortening into the volcanic arc along the CCRDB. Mesoscale faults express variable kinematics across three domains: transtension in the forearc, transcurrent motion across the volcanic arc, and transpression in the back arc. Fault kinematics agree with seismicity and GPS data, and isotopic ages confirm that faulting postdates the late Neogene onset of shallow subduction. Stratigraphic correlation augmented by 40Ar/39Ar dating constrain the timing of Quaternary arc migration from the Neogene Aguacate range to the modern Cordillera Central. The Valle Central basin, between the cordilleras, filled with thick sequences of lavas, pyroclastic flows, and lahars. Middle Pleistocene drainage capture across the Aguacate arc linked the Valle Central with the Pacific slope and ash flows descended onto the coastal Orotina debris fan. Arc retreat reflects slab shallowing and enhanced tectonic erosion as rough crust entered the subduction zone. Differing subduction parameters across the RSB (crustal age, slab dip, roughness) produce marked contrasts in coastal tectonism. Varying uplift rates across coastal faults reflect sub-horizontal subduction of seamount roughness. Three groups (I--III) of fluvial terraces are correlated along the coast by isotopic ages and geomorphic characteristics. Base level fluctuations and terrace genesis reflect interaction between eustatic sea level and spatially variable rock uplift. Low uplift rates (north of RSB), yield one surface per terrace group, whereas moderate rates (south of RSB

  7. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  8. Reciprocating motion of active deformable particles

    NASA Astrophysics Data System (ADS)

    Tarama, M.; Ohta, T.

    2016-05-01

    Reciprocating motion of an active deformable particle in a homogeneous medium is studied theoretically. For generality, we employ a simple model derived from symmetry considerations for the center-of-mass velocity and elliptical and triangular deformations in two dimensions. We carry out, for the first time, a systematic investigation of the reciprocating motion of a self-propelled particle. It is clarified that spontaneous breaking of the front-rear asymmetry is essential for the reciprocating motion. Moreover, two routes are found for the formation of the reciprocating motion. One is a bifurcation from a motionless stationary state. The other is destabilisation of an oscillatory rectilinear motion.

  9. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  10. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western

  11. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  12. Tectonic geomorphology, deformation history, and slip-rate estimate along the Palos Verdes Fault, offshore Southern California

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Conrad, J. E.; Maier, K. L.; Paull, C. K.; McGann, M.

    2014-12-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. Despite its proximity to metropolitan Los Angeles, the recent activity and earthquake hazards associated with the PVF are poorly constrained. To characterize the near seafloor fault morphology, Late Pleistocene-Holocene slip-rate and tectonic influences on slope sedimentary processes, a grid of high-resolution multibeam bathymetry and chirp sub-bottom profiles were acquired with the Monterey Bay Aquarium Research Institute's (MBARI) Autonomous Underwater Vehicle (AUV). The AUV surveys were focused along the continental slope ~25 km south of Long Beach in water depths between 250 and 600 m, where the PVF crosses the slope. AUV multibeam bathymetry data gridded at 2-m resolution and chirp profiles are merged with 25-m resolution ship-based multibeam bathymetry and seismic-reflection profiles. Vibracores collected with the MBARI Remotely Operated Vehicle (ROV) and ship-based USGS gravity cores provided radiocarbon dates for stratigraphic horizons offset by the PVF. Recent deformation is expressed as a well-defined seafloor lineation and offset Late Pleistocene-Holocene sub-bottom reflections. Curvilinear scarps associated with an upper submarine landslide (~450 m water depth), a buried slump block, and a lower submarine landslide (~525 m water depth) have been right-laterally offset by 55±3, 55±5, and 40±5 meters, respectively. The age of the upper scarp is bracketed between 23-31 kyr BP, which yields an average slip rate across the PVF of 1.6-2.4 mm/yr. However, our best estimate for the age of the upper landslide is ~ 31 kyr BP, which yields a right-lateral slip-rate of 1.8 mm/yr. Vertical growth faulting observed along a subtle transtensional fault-bend suggests that at least two surface ruptures occurred during the Holocene. In summary, these results indicate that the offshore

  13. Geomorphic signature of active tectonics in the southern Abruzzi Periadriatic hilly belt (Central Italy)

    NASA Astrophysics Data System (ADS)

    Racano, Simone; Fubelli, Giandomenico; Centamore, Ernesto; Dramis, Francesco

    2016-04-01

    The geo-structural setting of the southern Abruzzi hilly belt that stretches from the northeastern front of the Maiella Massif to the Adriatic coast is characterized by deep-seated northeast verging thrusts masked by a thick cover of Late Pliocene-Middle Pleistocene marine deposits. Most authors consider this area tectonically inactive while only few of them support the hypothesis of its recent activity from the analysis of the river network pattern. Geological and geomorphological investigations carried out in the area have clearly shown the occurrence of surface deformations resulting from the continued activity of compressive tectonics up to recent times. The analysis of the study area by of a 10 m resolution DTM (using the open-source QGIS software) confirmed and supplemented field observations. Particularly significant in this context is the topographic setting of the alluvial strath terraces in the river valleys that develop transversally to the buried thrusts. In correspondence of these structures, topographic highs have grown up displacing the middle-Pleistocene planation surface developed on top of the hilly belt, from the Maiella piedmont to the coastal zone, and diverting laterally the river courses uphill. In the same places, as along the Alento and Foro rivers that cross by antecedence the grown up topographic highs, the long profiles of terraces bend eastward and the height difference between the terrace orders, essentially related all around the area to the Quaternary regional uplift, strongly increases. In some cases, surficial faults have lowered the terraces into graben troughs or have displaced them until assuming an uphill trend. This recent tectonic activity should be taken in account in assessing the seismic hazard of the study area.

  14. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  15. Effects of tectonic deformation and sea level on river path selection: Theory and application to the Ganges-Brahmaputra-Meghna River Delta

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith D.; Pickering, Jennifer L.; Goodbred, Steven L.; Paola, Chris; Steckler, Michael S.; Seeber, Leonardo; Akhter, Syed H.

    2015-04-01

    The set of active rivers of the Ganges-Brahmaputra-Meghna (GBM) Delta in Bangladesh overlies an active plate boundary that continually modifies the landscape of the delta by deformation. The response of rivers to spatially variable subsidence, from tectonic tilting or other causes, has been thought to include preferred occupation of regions of higher subsidence. In this paper, we develop further the theoretical framework for analysis of the interplay of tectonics and river dynamics, and apply this model to conditions in the GBM Delta. First, we examine the overall competition between variable subsidence and channel dynamics, and find that tilting in Bangladesh should be strong enough to influence river path selection. We then present new theory for the effect of subsidence that is spatially (not temporally) variable. We find a constant residence timescale on different parts of the delta, and differing frequencies of avulsion to these locations, and describe the effects of incision or floodplain deposition on these quantities. We present estimates of the channel residence timescale of the Jamuna (Brahmaputra) River reconstructed from the lithology, provenance, and dating of sediment cores. We apply our framework to a map of regional subsidence to predict the effects on avulsion for the Jamuna River. Comparison between our predicted (2150 years) and our stratigraphically based estimates of avulsion timescale (1800 years) shows encouraging consistency.

  16. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Goswami, Chandreyee; Mukhopadhyay, Dhruba; Poddar, Bikash Chandra

    2012-03-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River. Two distinct E-Wlineaments passing through this area had been identified by Nakata (1972, 1989) as active faults. The northern lineament manifested as Matiali scarp and the southern one manifested as Chalsa scarp represent the ramp anticlines over two blind faults, probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT), respectively. The fan surface is folded into two antiforms with a synform in between. These folds are interpreted as fault propagation folds over the two north dipping blind thrusts. Two lineaments trending NNE-SSW and nearly N-S, respectively, are identified, and parts of present day courses of the Murti and Neora Rivers follow them. These lineaments are named as Murti and Neora lineaments and are interpreted to represent a conjugate set of normal faults. The rivers have changed their courses by the influence of these normal faults along the Murti and Neora lineaments and their profiles show knick points where they cross E-W thrusts. The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults. The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults. Four major terraces and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers. The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above. But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  17. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  18. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history

    USGS Publications Warehouse

    Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, Jiawen

    2003-01-01

    The Qinling orogen preserves a record of late mid-Proterozoic to Cenozoic tectonism in central China. High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) assembled the Yangtze craton, including the lower Qinling unit, into Rodinia during the ???1.0 Ga Grenvillian orogeny. The lower Qinling unit then rifted from the Yangtze craton at ???0.7 Ga. Subsequent intra-oceanic arc formation at ???470-490 Ma was followed by accretion of the lower Qinling unit first to the intra-oceanic arc and then to the Sino-Korea craton. Subduction then imprinted a ???400 Ma Andean-type magmatic arc onto all units north of the northern Liuling unit. Oblique subduction created Silurian-Devonian WNW-trending, sinistral transpressive wrench zones (e.g., Lo-Nan, Shang-Dan), and Late Permian-Early Triassic subduction reactivated them in dextral transpression (Lo-Nan, Shang-Xiang, Shang-Dan) and subducted the northern edge of the Yangtze craton. Exhumation of the cratonal edge formed the Wudang metamorphic core complex during dominantly pure shear crustal extension at ???230-235 Ma. Post-collisional south-directed shortening continued through the Early Jurassic. Cretaceous reactivation of the Qinling orogen started with NW-SE sinistral transtension, coeval with large-scale Early Cretaceous crustal extension and sinistral transtension in the northern Dabie Shan; it presumably resulted from the combined effects of the Siberia-Mongolia-Sino-Korean and Lhasa-West Burma-Qiangtang-Indochina collisions and Pacific subduction. Regional dextral wrenching was active within a NE-SW extensional regime between ???60 and 100 Ma. An Early Cretaceous Andean-type continental magmatic arc, with widespread Early Cretaceous magmatism and back-arc extension, was overprinted by shortening related to the collision of Yangtze-Indochina Block with the West Philippines Block. Strike-slip and normal faults associated with Eocene half-graben basins record Paleogene NNE-SSW contraction and WNW

  19. Location and mechanism of the 1933 Diexi earthquake and its association with the regional tectonic deformation prior to the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Wang, K.; Shen, Z.

    2010-12-01

    The east margin of the Tibetan plateau is composed of the Longmenshan and Minjiang-Huya fault systems, which are tectonically active and produced the 1933 M7.5 Diexi, 1976 M7.2 Songpan doublelet, and 2008 M7.9 Wenchuan earthquakes. Among all the large events the 1933 Diexi earthquake is the least known, and its location and mechanism, despite of the importance in understanding the regional tectonic process and assessing the seismic hazards, have been subject to controversy. We collect worldwide seismic records of this earthquake, among which some polarities of the first arrival phases were picked, and use the data to relocate this earthquake and obtain the fault plane solution. The relocated epicenter is at (31.9°E, 103.6°N) and one of the nodal planes trends NNW, with the azimuth ranging N5~30°W. Taking this as the rupture plane of the Diexi earthquake, we conclude that the seismogenic structure was the southern segment of the Minjiang fault, which was dominated mainly by sinistral slip with a minor thrust component. Present day GPS velocity profile across the Minshan Mountains indicates that the Huya fault absorbs ~2 mm/yr crustal shortening, associated with the rapid uplift of the Minshan Mountains since Quaternary. A discrepancy between the focal mechanism solution of the 1933 Diexi earthquake and the GPS determined present sense of motion across the Minjiang fault may be attributed to the crustal deformation processes of the Longmenshan and Minjiang-Huya fault systems and their earthquake cycles, particularly the role that the Longmen shan fault system played in altering the regional deformation field late into the earthquake cycle prior to the 2008 great Wenchuan earthquake. We are using a visco-elastic FEM code to simulate the process taking into account of the layering and lateral change of the crustal and mantle materials. A 3-D evolution of the deformation field will be evaluated, and its temporal change due to crustal and mantle rheology across the

  20. The Mexican Ridges Fold Belt, Gulf of Mexico: Deformation, Dynamics of Deposition of Growth Strata, and the Delay of Sedimentary Response to Tectonic Forcing

    NASA Astrophysics Data System (ADS)

    Yarbuh Lugo, U. I.; Contreras, J.

    2014-12-01

    Deformation of the Mexican Ridges fold belt (MRFB), western Gulf of Mexico, initiated in the Late Neogene in response to normal faulting along the Quetzalcoatl Extensional System offshore Veracruz. Previous authors analyzed stacking patterns of growth strata concluding deformation occurred in two stages: the western section of the fold belt developed during the Upper Miocene whereas the eastern part became active during the Lower Pliocene. Here we analyze a regional seismic line to determine whether deformation migrated progressively eastward. In contrast to previous studies we do not use stacking patterns but excess area. This parameter provides direct information of both linear shortening, and superficial mass transport. We construct excess-area plots for each of the folds comprising the MRFB; from them we estimate the shortening and the degradation path of the seafloor deformed by folding. Moreover, by assuming denudation is in steady state, we are able to differentiate sediments derived locally from sediments transported from distant sources. Results show tectonic transport in the MRFB is 11.8 km; shortening of individual folds ranges 3-16%, with an average strain for the entire MRFB of ~10%; structures grew at a mean uplift rate of 0.2 mm/yr. We estimate the constant of mass diffusivity, which controls the rate of degradation, has a mean value of 0.27 m2/yr. This value is characteristic of rapid, episodic mass movements. Finally, the sedimentation rate is ~0.2 mm/yr. Those parameters, however, are not constant; they decrease toward the deepwater portion of the fold belt. The structures proximal to the continental shelf are rising rapidly and are being degraded more intensely than those in the distal part of the fold belt. Our results reveal that deformation started synchronously throughout the MRFB during the Late Miocene and not in two episodes as previously reported. The reason for the seeming discrepancy is due to the copious sedimentation in the eastern

  1. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  2. Paleomagnetic evidence of earliest Paleocene deformation in Calama (˜22°S), northern Chile: Andean-type or ridge-collision tectonics?

    NASA Astrophysics Data System (ADS)

    Somoza, R.; Tomlinson, A. J.; Caffe, P. J.; Vilas, J. F.

    2012-08-01

    A paleomagnetic study from the earliest Paleocene Cerros de Montecristo Quartz Monzonite and its Jurassic to uppermost Cretaceous host rock (northern Chile, ˜22°S) provided high-temperature, high-coercivity magnetizations of dominantly reversed polarity. The remanences of the tilted host rock gave a negative fold-test and are indistinguishable from the remanences found in the pluton, indicating that the uppermost Cretaceous rocks underwent deformation before intrusion of the earliest Paleocene pluton, thus documenting a K-T deformation at the locality. Although this deformation may be another product of typical subduction-related noncollisional tectonics in the Central Andes, an alternative hypothesis, permitted by plate reconstructions, is that the event was associated with collision of an oceanic plate boundary. This latter hypothesis may also provide a context for several other tectonic events from northern Chile to the Patagonian Andes, wherein deformation would the consequence of a southward migrating triple junction between the latest Maastrichtian and Early Eocene.

  3. Active tectonics along the Nebrodi-Peloritani boundary in northeastern Sicily (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Pavano, F.; Romagnoli, G.; Tortorici, G.; Catalano, S.

    2015-09-01

    In the epicentral area of the seismic swarm of the June-September 2011, at southern edge of the Calabrian arc in NE Sicily, very recent extensional motions remobilised two main NW-SE dextral faults. The extensional reactivation of strike-slip faults responded to a new regional dynamic, also evidenced by GPS and seismological data. The inverted structures are aligned at the margin of a wide crustal block that is moving apart from the rest of the island and is uplifting faster than the adjacent regions. The active faults terminate to the northwest at the intersection with a prominent NNE trending fault that represents the western boundary of the mobile block. The vertical displacement along this border exactly matches the difference in elevation of the marine terraces resting inside and outside the block, respectively. On the contrary, only part of differential displacement of the marine terraces was actually accommodated as cumulative motion along the two NW oriented inverted faults, across the southwestern boundary of the block. Amounts of the vertical displacement were distributed on distinct fault planes of the previous dextral shear belts. The widespread fracturing is also the best explanation for the seismic swarm of the 2011, whose epicenters spread on a discrete rock volume rather than concentrated along a single fault plane. The diffuse fracturing seems to represent a peculiar style of deformation, connected to the tectonic inversion of previous strike-slip shear zones. Seismic swarm also affects the northern termination of the Calabrian arc where active extensional deformation reactivated previous strike-slip faults. The similarity of the two regions suggests that seismic swarm can be peculiar of extensional belts developed on previous strike-slip shear zones, along which the pre-existing geometry favours the dispersion of the tectonic motion on a network of small linked fault planes.

  4. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  5. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    releasing and restraining bends, fault-bounded uplifts and basins, growth folds and angular unconformities. Numerous fault “sections” can be defined based on mapping of strands, structural style, and geomorphology, but the tectonic and hazard significance of these sections and their boundaries is not clear. Depth of the shelf break provides an important datum and locally indicates more than 10 m of latest Pleistocene to Holocene vertical slip. Stratigraphic sequences recording one to two sea-level cycles locally occur west of the Hosgri fault zone on the outer shelf and upper slope, and likewise have the potential to constrain rates of vertical deformation. Development and preservation of the stratigraphic sequences appears to be related to sediment supply (thickness and distribution), largely controlled by the complex fault-related geomorphology on the shelf and along the Hosgri fault zone. Northwest-trending faults on the shelf are more difficult to image with our new seismic data because of shallower, non-reflective basement, but ongoing analysis of high-resolution bathymetry, submerged wave-cut platforms, incised lowstand fluvial channels, and marine magnetic data should provide information on their geometry and recent deformation.

  6. Early Miocene Tectonic Activity in the western Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; Geletti, R.; De Santis, L.

    2012-12-01

    In the framework of the Rossmap Italian PNRA work objectives to compile extended and revised digital maps of the main unconformities in Ross Sea, Antarctica, much additional seismic reflection data, that were not available to previous ANTOSTRAT compilation, were incorporated into a new ROSSMAP interpretation. The correlation across almost all of Ross Sea, from DSDP Site 270 and Site 272 in Eastern Basin to northern Victoria Land Basin, of additional early Miocene and late Oligocene horizons that were not part of ANTOSTRAT allows interpretations to be made of fault activity and glacial erosion or deposition at a finer time resolution. New conclusions include that extensional or transtensional fault activity within the zone between Victoria Land Basin and Northern Basin, initiated by 23 Ma or earlier, and continued after 18 Ma. Steep parallel-striking faults in southern Victoria Land Basin display both reverse and normal separation of 17.5 Ma (from Cape Roberts Program-core 1) and post-16 Ma horizons, suggesting an important strike-slip component. This result may be compared with published papers that proposed post-17 Ma extension in southern Victoria Land Basin, 16-17 Ma extension in the AdareTrough, north of the Ross Sea continental shelf, but no Miocene extension affecting the Northern Basin (Granot et al., 2010). Thus, our evidence for extension through the early Miocene is significant to post-spreading tectonic models. Reference Granot R., Cande S. C., Stock J. M., Davey F. J. and Clayton R. W. (2010) Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences. Geochem. Geophys. Geosyst., 8, Q08005, doi:10.1029/2010GC003105.

  7. Beyond surface heat flow: An example from a tectonically active sedimentary basin

    NASA Astrophysics Data System (ADS)

    Armstrong, Phillip A.; Chapman, David S.

    1998-02-01

    Thermal anomalies that have important geodynamic implications may not always be recognizable in present-day surface heat-flow patterns. The masking occurs because surface heat flow responds to mantle heat, crustal radioactivity, magmatism, crustal deformation, burial and/or exhumation, and fluid movement, any of which may offset the thermal effects of the others. Sedimentary basins are particularly suited to partitioning heat flow into its various components. We use Taranaki basin, New Zealand, as an example. It has a relatively undeformed (since the Miocene) western region that is used as a control against which the tectonically active eastern region can be compared. Although surface heat flow is roughly constant across Taranaki basin, basal heat flow modeled at lower crustal upper mantle depths varies by a factor of two or more. A combination of low heat-producing crust and the heat sink effects of crustal thickening in the eastern region can account for the basal heat-flow anomalies. The tectonic thermal anomaly would have gone unnoticed without the aid of detailed basin analysis and thermal modeling.

  8. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  9. Tectonic Deformation Associated with the 1964 Alaska Earthquake: The earthquake of 27 March 1964 resulted in observable crustal deformation of unprecedented areal extent.

    PubMed

    Plafker, G

    1965-06-25

    Alaska's Good Friday earthquake of 27 March 1964 was accompanied by vertical tectonic deformation over an area of 170,000 to 200,000 square kilometers in south-central Alaska. The deformation included two major northeast-trending zones of uplift and subsidence situated between the Aleutian Trench and the Aleutian Volcanic Arc; together they are 700 to 800 kilometers long and from 150 to 250 kilometers wide. The seaward zone is one in which uplift of as much as 10 meters on land and 15 meters on the sea floor has occurred as a result of both crustal warping and local faulting. Submarine uplift within this zone generated a train of seismic sea waves with half-wave amplitudes of more than 7 meters along the coast near the source. The adjacent zone to the northwest is one of subsidence that averages about 1 meter and attains a measured maximum of 2.3 meters. A second zone of slight uplift may exist along all or part of the Aleutian and Alaska ranges northwest of the zone of subsidence. PMID:17819412

  10. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  11. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    SciTech Connect

    Zilberman, E.; Wachs, D. )

    1988-02-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.

  12. Tectonic Geomorphology in the Laboratory: Evolution of landscape along an active thrust, normal and strike-slip fault

    NASA Astrophysics Data System (ADS)

    Graveleau, Fabien; Strak, Vincent; Dominguez, Stéphane; Malavieille, Jacques; Chatton, Marina; Manighetti, Isabelle; Petit, Carole

    2015-04-01

    Tectonically controlled landforms develop morphologic features that provide useful markers to investigate crustal deformation and relief growth dynamics. We present here results of morphotectonic experiments obtained with an innovative approach combining tectonic and surface processes (erosion, transport and sedimentation), coupled with accurate model monitoring techniques. This approach allows for a qualitative and quantitative analysis of landscape evolution in response to active deformation in the three end-member geological settings: compression, extension and strike-slip. Experimental results outline first that experimental morphologies evolve significantly at a short timescale. Numerous morphologic markers form continuously, but their lifetime is generally short because erosion and sedimentation processes tend to destroy or bury them. For the compressional setting, the formation of terraces above an active thrust appears mainly controlled by narrowing and incision of the main channel through the uplifting hanging-wall and by avulsion of deposits on fan-like bodies. Terrace formation is irregular even under steady tectonic rates and erosional conditions. Terrace deformation analysis allows retrieving the growth history of the structure and the fault slip rate evolution. For the extensional setting, the dynamics of hanging-wall sedimentary filling appears to control the position of the base level, which in turn controls footwall erosion. Two phases of relief evolution can be evidenced: the first is a phase of relief growth and the second is a phase of upstream propagation of topographic equilibrium that is reached first in the sedimentary basin. During the phase of relief growth, the formation of triangular facets occurs by degradation of the fault scarp and their geometry (height) becomes stationary during the phase of upstream propagation of the topographic equilibrium. For the strike-slip setting, the complex morphology of the wrench zone, composed of

  13. Neotectonic deformation in the western sector of tectonic escape in Anatolia: palaeomagnetic study of the Afyon region, central Turkey

    NASA Astrophysics Data System (ADS)

    Gürsoy, H.; Piper, J. D. A.; Tatar, O.

    2003-10-01

    Following final closure of the Neotethyan Ocean during the late Miocene, deformation in central Turkey has led to crustal thickening and uplift to produce the Anatolian Plateau followed by westward extrusion of terranes by strike-slip. Widespread volcanism has accompanied this latter (neotectonic) phase, and palaeomagnetic study of the volcanism shows a coherent record of differential block rotations, indicating that the Anatolian region is not a plate (or 'platelet') sensu stricto but is undergoing distributed internal deformation. To evaluate the scale of neotectonic rotations in the transition zone near the western limit of tectonic escape and the border of the extensional domain in central-west Turkey, we have studied the palaeomagnetism at 82 sites in volcanic suites distributed along a ˜140-km lineament with north-south trend and ranging in age from 18 to 8 Ma. Comparable deflection of magnetic remanence from the present field direction is identified along the full length of the lineament. A mean clockwise rotation of 12.3±4.2° is determined for this western sector of the Anatolian strike-slip province. Since similar rotations are observed in the youngest and oldest units, this cumulative rotation occurred after the late Miocene. When interpreted together with results elsewhere in Anatolia, it is inferred that the rotation is later than crustal thickening and uplift of the Anatolian Plateau and entirely a facet of the tectonic escape. Inclinations are mostly ˜10° shallower than the predicted Miocene field and are considered to reflect the presence of a persistent inclination anomaly in the Mediterranean region. Larger rotations departing from the regional trend are also observed within the study region, but are confined to the vicinity of major faults, notably those bounding the Afyon-Akşehir Graben. The pattern of neotectonic declinations across Anatolia identifies strong anticlockwise rotation in the east near the Arabian pincer with progressive

  14. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean.

    PubMed

    Zhu, Hejun; Tromp, Jeroen

    2013-08-23

    We constructed a three-dimensional azimuthally anisotropic model of Europe and the North Atlantic Ocean based on adjoint seismic tomography. Several features are well correlated with historical tectonic events in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean, and counterclockwise rotation of the Anatolian Plate. Beneath northeastern Europe, the direction of the fast anisotropic axis follows trends of ancient rift systems older than 350 million years, suggesting "frozen-in" anisotropy related to the formation of the craton. Local anisotropic strength profiles identify the brittle-ductile transitions in lithospheric strength. In continental regions, these profiles also identify the lower crust, characterized by ductile flow. The observed anisotropic fabric is generally consistent with the current surface strain rate measured by geodetic surveys. PMID:23929947

  15. Geomorphological features of active tectonics and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Pathak, Vivekanand; Pant, Charu C.; Darmwal, Gopal Singh

    2015-08-01

    The northeastern part of Kumaun Lesser Himalaya, Uttarakhand, India, lying between the rupture zones of 1905, Kangra and 1934, Bihar-Nepal earthquakes and known as `central seismic gap' is a segment of an active fault known to produce significant earthquakes and has not slipped in an unusually long time when compared to other segments. The studied section forms a part of this seismic gap and is seismically an active segment of the Himalayan arc, as compared to the remaining part of the Kumaun Lesser Himalaya and it is evident by active geomorphological features and seismicity data. The geomorphological features of various river valley transects suggest that the region had a history of tectonic rejuvenation which is testified by the deposition of various levels of terraces and their relative uplift, shifting and ponding of river channels, uplifted potholes, triangular facets on fault planes, fault scarps, etc. Further, the seismic data of five-station digital telemetered seismic network along with two stand alone systems show the distribution of earthquakes in or along the analyzed fault transects. It is observed that the microseismic earthquakes (magnitude 1.0-3.0) frequently occur in the region and hypocenters of these earthquakes are confined to shallow depths (10-20 km), with low stress drop values (1.0-10 bar) and higher peak ground velocity (PGV). The cluster of events is observed in the region, sandwiched between the Berinag Thrust (BT) in south and Main Central Thrust (MCT) in north. The occurrences of shallow focus earthquakes and the surface deformational features in the different river valley transect indicates that the region is undergoing neotectonic rejuvenation. In absence of chronology of the deposits it is difficult to relate it with extant seismicity, but from the geomorphic and seismic observations it may be concluded that the region is still tectonically active. The information would be very important in identifying the areas of hazard prone and

  16. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    SciTech Connect

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  17. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  18. Earthquake mechanisms and active tectonics of the Hellenic subduction zone

    NASA Astrophysics Data System (ADS)

    Shaw, Beth; Jackson, James

    2010-05-01

    We use improved focal mechanisms and centroid depth estimates of earthquakes, combined with GPS velocities, to examine the tectonics of the Hellenic subduction zone, and in particular the processes occurring at both ends of the Hellenic Arc. Nubia-Aegean convergence is accommodated by shallowly dipping thrust-faulting along the subduction-zone interface, as well as by steeper splay faults in the overriding material. From a comparison of observed and expected seismic moment release over the last 100 yr, combined with existing knowledge of the longer-term documented historical record, we confirm earlier suggestions that most (80 per cent) of this convergence is accommodated aseismically, that is, that the subduction zone is uncoupled. This conclusion is robust, even allowing for rare very large earthquakes on splay faults, such as that of AD 365, and also allowing for the contribution of small earthquakes. The downgoing Nubian plate deforms by arc-parallel contraction at all depths, from 200 km seaward of Crete to at least 100 km within the subducting slab. Extensional (T) axes of earthquakes are aligned downdip within the descending slab suggesting that, even if the aseismic prolongation of the slab has reached the 670 km mantle discontinuity, it does not transmit stresses to shallower depths. Shallow thrust-faulting earthquakes on the subduction interface show a divergence of slip vectors round the arc, and GPS measurements show that this is accommodated mainly by E-W extension on normal faults in the overriding Aegean material. The eastern end of the subduction zone, south of Rhodes, displays distributed deformation in the overriding material, including a mixture of strike-slip and splay-thrust faulting, and probably involves rotations about a vertical axes. Here slip on the interface itself is by thrust faulting with slip vectors oblique to the arc but parallel to the overall Nubia-Aegean convergence: there is no evidence for slip-partitioning in the traditional

  19. Exploration of the topographic effects on surface deformation due to magmatic and tectonic processes

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Acocella, Valerio

    2013-04-01

    The induced deformation and stress field by faults and magma bodies such as dikes and sills is influenced by topography. The effect is particularly more significant for shallow sources and steep topography. However, the analytic deformation models in an elastic half-space, cannot account for these topographic effects. To include these "topographic effects", we use the triangular dislocation elements (TDE) which are very flexible during discretization of the complex dislocation surfaces. Here we solve the problem of singularities along the sides or beneath the vertices of TDEs, and then apply them to develop a boundary element method (BEM). Since the TDEs applied in the BEM code are free from artifact singularities everywhere in the space, we are able to simulate open and closed surfaces with any complex geometry. We first validate the results of our method by comparing them to a few well-known analytical solutions in either full-space or simple half-space. Then we apply this code to study topographic effects on the displacements' signal of dikes and faults as well as spherical and ellipsoidal magma chambers, under complex topography. After some synthetic tests, we couple this code with a genetic algorithm (GA) code in a fully numerical optimization approach for modeling of real volcano deformation observed by InSAR technique. We show that topographic effects along with the sources which are located inside the body of a volcano, are strongly dependent on the local topography, and cannot be resolved with the existing approximate solutions which account for these effects.

  20. Devonian-Carboniferous tectonics and basin deformation in the Cabot Strait Area, eastern Canada

    SciTech Connect

    Langdon, G.S.; Hall, J.

    1994-11-01

    The Magdalen Basin, in the Cabot Strait-Bay St. George area, was a major depocenter for Devonian-Carboniferous sediments in eastern Canada. Structure within the basin is complex and is characterized by northeast- and east-trending, mainly dextral strike-slip faults associated with the bend in the Appalachian orogenic belt known as the St. Lawrence Promontory. Under the Cabot Strait two linear grabens parallel the major fault trends and preserve up to 6 km of Devonian-Carboniferous sedimentary rocks, comprising mainly coarse-grained terrigenous clastics with a Lower Carboniferous transgressive episode recorded by marine carbonates, evaporites, and fine-grained clastics. Several unconformities within the sedimentary succession record deformation associated with movement along the regional strike-slip faults. Minor local unconformities are interpreted within the upper Horton (early Visean), upper Barachois (late Westphalian), and post-Pennsylvanian successions. A major unconformity cuts out most of the Namurian and Westphalian section in the study area and can be correlated on a regional scale. Kinematic strain partitioning along the master Cabot fault led to the development of doubly vergent compressional structures within a wrench borderland. This was complicated by transpressive deformation at a restraining bend in the master fault, and by deformation associated with over-stepped ends of splays of the regional fault system. The Magdalen Basin probably formed in an early phase of post-Acadian extension, and was later reactivated by regional strike-slip faults. The presence of thick source and reservoir rocks, as well as diverse trapping possibilities and a favorable burial and maturation history, indicate that the Cabot Strait area has good potential for accumulating and preserving petroleum.

  1. Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Montone, Paola; Pirro, Mario; Boschi, Enzo

    2004-04-01

    In this paper we describe evidence of strong tectonic deformation affecting two aqueducts of Roman age (II-III century A.D.). The channels are located approximately 20 km northeast of Rome along the ancient Via Tiburtina. Brittle and ductile deformation affects these two structures, including extensional joint systems, NE-oriented faults, and horizontal distortion. This deformation is consistent with right-lateral movement on major N-striking faults, and represents the first evidence that tectonic deformation took place in historical times in the vicinity of Rome, with local strike-slip movement superimposed on a regional extensional fault system.

  2. Docking of the Western Carpathians to stable Europe: time relation of tectonic deformation and rotation as evidenced by paleomagnetic vectors and AMS lineations

    NASA Astrophysics Data System (ADS)

    Márton, Emö

    2013-04-01

    Western Carpathian front was NW-SE striking and did not change between the late Cretaceous and the Miocene. Compressional deformation predated the en bloc CCW rotation of the Western Carpathians. Concerning subordinate relative rotations within the orogen, oroclinal bending may be partly responsible for the arcuate shape, but bending must have taken place before the Oligocene. In the western segment of the Outer Carpathians the declinations are somewhat more CCW rotated than in the central and eastern segment, probably due to tectonic activity within a left lateral wrench corridor. Acknowledgement: Financial support by the Hungarian Scientific Research Fund (project no. OTKA K 105245) is acknowledged.

  3. Versatile Membrane Deformation Potential of Activated Pacsin

    PubMed Central

    Byrnes, Laura J.; Sondermann, Holger

    2012-01-01

    Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties. PMID:23236520

  4. Salt tectonics and gravity driven deformation: Structural guidelines for exploration in passive margin

    SciTech Connect

    Mauduit, T.; Gwenael G.; Brun, J.P.

    1995-08-01

    The West African Margin, (Gulf of Guinea) presents spectacular examples of gravity driven deformation above a salt decollement (i.e. growth faulting, rafts, diapirs and contractional structures) which have been documented by numerous Oil and Gas investigations. Seismic data demonstrate that the variation of deformation styles in space and time appear to be function of: regional geometry of the margin (i.e. value of basal slope and presence/absence of residual reliefs below the salt layers) and, mode, rate and repartition of sedimentation. The role and effects of the above parameters were analyzed using laboratory modeling investigation based on basic structural patterns identified through seismic data. Models are built with sand and silicone putty, that respectively represent the frictional behavior of upper Cretaceous-Cenozoic cover and the viscous behavior of the upper Aptian salt. They are scaled to fit observed natural configurations. Results are compared with examples from the Gulf of Guinea on the basis of seismic data. This approach allowed to better understand the evolution of the margin and therefore the reservoir distributions and traps geometries.

  5. Microseismicity and active deformation of Messinia, SW Greece

    NASA Astrophysics Data System (ADS)

    Papoulia, J.; Makris, J.

    By deploying a 30 3-component digital seismic array in the Messiniakos gulf and the surrounding region, we recorded for a period of 45 days the microseismic activity. With a minimum of six records per event, we located 1121 earthquakes corresponding to an average of 20 events per day. For the hypocenter location we used a local velocity model adopted to two controlled source seismic experiments. Within the array, traveltime residuals were within ± 0.2 s and the epicentral accuracy in the order of ± 2 km, while the hypocentral one is twice this value. Correlation of the seismicity with the tectonic elements indicated that most of the NW-SE oriented faults are active with strike-slip movement along this orientation and extension perpendicular to it. The neogene basins of Messini, Meligalas and Megalopolis are seismically very active and their eastern flanks are delineated by higher seismic activity than their western ones. This indicates that the basins are asymmetric with master faults defining their eastern-northeastern flanks. This hypothesis is supported by the asymmetric structure mapped at the offshore Messiniakos basin as densely spaced high resolution reflection seismic profiles have revealed. The western margins of the basins are less deformed and the seismic activity is dispersed over several minor NW-SE faults. Since the NW-SE striking faults onshore are truncated by major NE-SW oriented ones, their overall length is shortened, reducing their seismic potential and capacity to store large stresses that could produce events above Ms6.1. Offshore western Messinia, in the Ionian Sea, the size and activity of the faults is significantly larger and prone to develop events of larger magnitudes. Subcrustal seismicity indicates a deepening of the foci to the east-northeast.

  6. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  7. Volcanism and tectonics in action along the Southern Andes: space-time analysis of current deformation recorded by GNSS and seismicity

    NASA Astrophysics Data System (ADS)

    Tassara, Andres; Giorgis, Scott; Yáñez, Vicente; Garcia, Francisco; Baez, Juan Carlos; Lara, Luis

    2016-04-01

    The Southern Andean margin is perhaps the best natural laboratory on Earth to study the relationship between volcanism and active tectonics. Convergence between Nazca and Southamerican plates along the Southern Andes is relatively rapid (66 mm/yr) and slightly oblique (15-20°) with respect to the continental margin. The trench-normal component of convergence is mainly released along the megathrust fault by great subduction earthquakes. At the time scale of millions of years, the trench-parallel component has been mostly released by dextral strike-slip along the Liquiñe-Ofqui Fault Zone (LOFZ), a long-lived (Eocene-Recent) crustal-scale structure more than 1000 km long which is intimately related to the Southern Volcanic Zone (SVZ) of the Andes. Volcanic systems of the SVZ are clustered near intersections of the LOFZ with oblique and inherited basement structures. In contrast with this clear relationship between crustal tectonics and volcanism at long time-scales, little is still known (here and elsewhere) at the time scale of earthquakes and eruptions about the mechanisms by which they actually interact to create the observed long-term relationship. Into this framework, we are taking advantage of the largely unpublished and very unique geodetic and seismic database that is available for us via the project Active Tectonics and Volcanism at the Southern Andes (ACT&VO-SA) in order to gain understanding about the physical link between contemporary tectono-volcanic processes occurred recently along the southern Andean margin and the long-term construction of the LOFZ-SVZ. We will present a characterization of the current surface velocity field along this region deduced from a kinematic analysis of a network of continuous GNSS stations operating since 2007 and relate this with the spatio-temporal evolution of crustal seismicity recorded by seismic networks maintained by Chilean institutions in order to analyze the possible connection between crustal deformation and

  8. Extensional deformation of the Guadalquivir Basin: rate of WSW-ward tectonic displacement from Upper Tortonian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Roldán, Francisco J.; Azañón, Jose Miguel; Rodríguez-Fernández, Jose; María Mateos, Rosa

    2016-04-01

    The Guadalquivir Basin (Upper Tortonian-Quaternary sedimentary infilling) has been considered the foreland basin of the Betic Orogen built up during its collision with the Sudiberian margin. The basin is currently restricted to its westernmost sector, in the Cadiz Gulf, because the Neogene-Quaternary uplift of the Betic Cordillera has produced the emersion of their central and eastern parts. The upper Tortonian chronostratigraphic unit is the oldest one and it was indistinctly deposited on the South Iberian paleomargin and the External units from the Betic Cordillera. However, these rocks are undeformed on the Sudiberian paleomargin while they are deeply affected by brittle deformation on the External Betic Zone. Outcrops of Upper Tortonian sedimentary rocks on External Betic Zone are severely fragmented showing allocthonous characters with regard to those located on the Sudiberian paleomargin. This post- Upper Tortonian deformation is not well known in the External Zones of the Cordillera where the most prominent feature is the ubiquity of a highly deformed tecto-sedimentary unit outcropping at the basement of the Guadalquivir sedimentary infilling. This tecto-sedimentary unit belongs to the Mass Wasting Extensional Complex (Rodríguez-Fernández, 2014) formed during the collision and westward migration of the Internal Zone of the Betic Cordillera (15-8,5 Ma). In the present work, we show an ensemble of tectonic, geophysical and cartographic data in order to characterize the post-Upper Tortonian deformation. For this, seismic reflection profiles have been interpreted with the help of hidrocarbon boreholes to define the thickness of the Upper Tortonian sedimentary sequence. All these data provide an estimation of the geometrical and kinematic characteristics of the extensional faults, direction of movement and rate of displacement of these rocks during Messinian/Pliocene times. References Rodríguez-Fernández, J., Roldan, F. J., J.M. Azañón y Garcia-Cortes, A

  9. Plains Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; McGill, G. E.; Zuber, M. T.

    1996-01-01

    Tectonic deformation in the plains of Venus is pervasive, with virtually every area of the planet showing evidence for faulting or fracturing. This deformation can be classified into three general categories, defined by the intensity and areal extent of the surface deformation: distributed deformation, concentrated deformation, and local fracture patterns.

  10. Tectonic deformation in western Washington state from global positioning system measurements

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi

    Western Washington state is adjacent to the Cascadia Subduction Zone (CSZ), which stretches from northern California to southern British Columbia. More than three years of continuous and "campaign" style GPS measurements in western Washington indicate that the direction of the observed horizontal velocities is roughly parallel to the direction of relative plate convergence of the Juan de Fuca (JDF) and North America (NA) plates and that the relative plate convergence and velocities decrease away from the deformation front. The average maximum principal strain rate for the entire study area calculated from the GPS velocities indicates compression of 0.05 +/- 0.01 m strain/yr in the direction N75°E. Most of the observed velocities can be attributed to locking of the CSZ thrust interface causing the accumulation elastic strain as the next great subduction earthquake approaches. Three-dimensional elastic dislocation modeling results suggest that the seismogenic zone along the Washington section of the CSZ is ˜10% wider than the earlier published values of 90 km; this can theoretically cause higher levels of ground shaking in the densely populated Puget basin of western Washington. Although the subduction related signal dominates the observed GPS velocity field, there is also evidence for an additional north-south oriented compression. To isolate this signal from the subduction related signal the dislocation model predictions must be subtracted from the observed velocities, yielding a "residual" velocity field that suggests the presence of N-S oriented compression at a rate of ˜4 mm/yr over a N-S distance of approximately 250 km. This signal presumably represents a more long-term deformation pattern than the periodic accumulation and release of elastic strain connected with subduction earthquakes and most likely is related to the occurrence of shallow earthquakes in western Washington, which are characterized by predominantly north-south oriented maximum principal

  11. The relationships between volcanism, tectonism and hydrothermal activity on the Mid-Atlantic Ridge south of the equator

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; German, C. R.; Haase, K. M.; Lackschewitz, K. S.; Melchert, B.; Connelly, D.; Parson, L. M.

    2009-04-01

    Using data from the complete bathymetric and side-scan (TOBI) coverage of the Mid-Atlantic Ridge 2-14 °S collected since 2004 in conjunction with the results of extensive prospecting for hydrothermal systems in this area we attempt to formulate a general model for the interplay between volcanism, tectonics and hydrothermalism on a slow-spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) A deep, tectonically-dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults (b) a shallower, segment-centre bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis and (c) a very shallow, inflated axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

  12. InSAR Measurements of Non-Tectonic Deformation Patterns in the Western Transverse Ranges, CA

    NASA Astrophysics Data System (ADS)

    Phillips, J. R., III; Marshall, S. T.; Funning, G.

    2014-12-01

    We present results from analysis of twenty-two scenes from the Envisat satellite dated between February 2005 and September 2010 along track 213 frames 2907 and 2925 in the Western Transverse Ranges, CA. Persistent Scatterer InSAR (PSI) analysis of interferograms was performed using the StaMPS software package resulting in approximately 2 million PSI points with their associated line-of-sight velocities and time series. These data outline several zones of anthropogenic motion likely due to groundwater usage and oil extraction. We identify two instances of highly localized subsidence due to oil extraction: one of up to 6 mm/yr across a 3x5 km wide oval-shaped zone along the Ventura Ave anticline and another of up to 12 mm/yr across a 3x15 km region near Maricopa. Both of these features are observed in regions of known oil extraction, and the subsidence zones parallel the local fold axes, suggesting that these observed features are real and not merely a product of noise. We also observe several features potentially related to groundwater extraction. The groundwater-related signals tend to be less localized than the oil extraction signals and typically are centered around urban or agricultural areas. The PSI data show a broad zone of subsidence in the greater Oxnard region (10 mm/yr maximum), and more localized zones of subsidence centered in the cities of Carpenteria (4 mm/yr), Ojai (4 mm/yr), and Santa Clarita (5 mm/yr). Several additional regions of potentially anthropogenic motion are also present in the PSI data to which the root cause is unclear. For example, we observe localized uplift of 5 mm/yr centered in the Stevenson Ranch housing development, 8 mm/yr of subsidence centered about 5 km NW of Moorpark near a large agricultural nursery, and a potentially tectonic broad pattern of 4 mm/yr of uplift in the mountains of Los Padres National Forest near Frasier Mountain.

  13. One Century of Tectonic Deformation Along the Sumatran Fault from Triangulation and GPS Surveys

    NASA Technical Reports Server (NTRS)

    Prawirodirdjo, L.; Bock, Y.; Genrich, J. F.; Puntodewo, S. S. O.; Rais, J.; Subarya, C.; Sutisna, S.

    2000-01-01

    An analysis combining historical triangulation and recent Global Positioning System (GPS) survey measurements in West and North Sumatra, Indonesia, reveals a detailed slip history along the central part of the Sumatran Fault. The arc-parallel components of the combined velocity field are consistent with slip rates inferred from GPS data, ranging from 23 to 24 mm/yr. Between 1.0 S and 1.3 N the Sumatran Fault appears to be characterized by deep locking depths, on the order of 20 km, and the occurrence of large (M (sub w) approximately 7) earthquakes. The long-term (1883-1993) strains show simple right-lateral shear, with rates similar to GPS-measured, 1989-1993 strain rates. Coseismic deformation due to the 1892 Tapanuli and 1926 Padang Panjang earthquakes, estimated from triangulation measurements taken before and after the events, indicate that the main shocks were significantly larger than previously reported. The 1892 earthquake had a likely magnitude of M (sub w) approximately equal to 7.6, while the 1926 events appear to be comparable in size to the subsequent (M approximately 7) 1943 events, and an order of magnitude higher than previously reported.

  14. Structural evolution of the Rieserferner Pluton: insight into the localization of deformation and regional tectonics implications

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio

    2016-04-01

    The Rieserferner pluton (RFP, Eastern Alps, 32.2±0.4 Ma, Romer et al. 2003) represents a relatively deep intrusion (12-15 km; Cesare, 1994) among Periadriatic plutons. The central portion of the RFP consists of dominant tonalites and granodiorites that show a sequence of solid-state deformation structures developed during pluton cooling and exhumation. This sequence includes: (1) quartz veins, filling two set of steeply-dipping joints trending respectively E-W and NW-SE, commonly showing a millimetric grain size and associated with strike-slip displacement. (2) Quartz- and locally epidote-filled shallowly E-dipping joint set, commonly exploited as discrete derived from both the quartz veins and the host tonalite. These mylonites show a composite sense of shear with a first stage of left-lateral strike-slip followed by a top-to-E dip-slip (normal) movement. The synmylonitic assemblage includes biotite + plagioclase + white mica + epidote ± sphene ± garnet. (3) Set of N-S-trending steeply-dipping joints. These joints are concentrated in zones 1-2 m wide, separated by otherwise un-jointed domains a few tens to hundred meters wide, and are commonly exploited as brittle-ductile faults with dominant dip-slip (normal) kinematics. The mineral assemblage of fault rocks includes white mica + calcite ± chlorite ± quartz. The joints/faults are locally involved in folding. (4) Mafic dikes, dated at 26.3±3 Ma (Steenken et al., 2000), locally injecting the N-S trending set of joints. (5) Cataclasite- and pseudotachylyte-bearing faults also forming a set of steeply-dipping N-S-trending structures. These faults are commonly associated with epidote veins surrounded by bleaching haloes. (6) Zeolite-bearing faults marked by whitish cataclasites, fault gouges and mirror-like surfaces. These faults have a complex oblique- to strike-slip kinematics with an overall N-S trending lineation. As observed in other plutons (e.g. Adamello; Pennacchioni et al., 2006), the network of

  15. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, P.J.; Bruhn, R.L.; Pratt, T.L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6-7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  16. Geodetic evidence for tectonic activity on the Strymon Fault System (NE Greece)

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, Vasiliki; Gianniou, Michail; Saltogianni, Vasso; Stiros, Stathis

    2014-05-01

    Geological, seismological and geodetic data have provided so far limited evidence of crustal deformation in northeast Greece (Thrace and East Macedonia); hence, the active tectonics of this area remains largely unknown. Here, we use monthly GPS solutions from 21 permanent stations of the Hellenic GPS Network (HEPOS) to shed light in the kinematics of NE Greece. Analysis of our dataset, that collectively spans a period of five years, shows that displacement vectors that derive from either side of the natural depression of the Strymon (Struma) Valley differ significantly in orientation and magnitude. The latter testify to a clear left-lateral displacement along the Strymon Fault System (SFS) with a mean fault displacement rate of ~3.7 mm/yr, while the area west of it behaves like a quasi-rigid tectonic block. The polarity of shear along the SFS appears to have changed, from right-lateral to left-lateral, during the last ~5 Ma, a period that coincides with the onset of faulting along the prolongation of the fast-moving (>20 mm/yr) North Anatolian Fault into the north Aegean. Thus, left-lateral slip along the SFS may occur in conjunction with, and in response to, right-lateral oblique slip along the North Aegean Trough, indicating that faulting in north Aegean is intimately linked in space and time. If the interseismic strain stored currently across the SFS (~3.7 mm/yr) is released seismically through large magnitude earthquakes, it may have serious implications in the seismic hazard of this densely populated region, which also accommodates important civil infrastructure.

  17. Cenozoic to active deformation in Western Yunnan (Myanmar China border)

    NASA Astrophysics Data System (ADS)

    Socquet, A.; Pubellier, M.

    2003-04-01

    accepted that all of this motion is accommodated onto a single fault: the Sagaing fault in Myanmar. However, geodetic results show that, out of the 35 mm/yr of India versus Sundaland rate, only 18 mm / yr are accommodated by the Sagaing fault. Part of the remaining motion might be accommodated in western Yunnan. The present system might have been active since the Pliocene. We regard it as a combination of the right-lateral Sagaing Fault / Gaoligong, which propagates toward the north as a horsetail, and the circum syntaxis fault system. The state of stress, in Western Yunnan, is a WNW extension inferred from both focal mechanisms and recent fault-slip data analysis. The tectonic features are influenced by both the clockwise flow around the Eastern Himalayan Syntaxis, and the northern extension along splays of the Sagaing fault. Deformation is then distributed between strike-slip and normal faulting. We propose that this interaction is accommodated by clockwise rotations of blocks.

  18. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  19. Tectonics of a Lateral Transition Between Subduction and Collision: The Zagros-Makran Transfer Deformation Zone (SE Iran)

    NASA Astrophysics Data System (ADS)

    Regard, V.; Bellier, O.; Thomas, J.-C.; Abbassi, M. R.; Mercier, J. L.; Bonnet, S.; Bourlès, D. L.; Braucher, R.; Martinod, J.; Iiees Tectonic Team

    2003-04-01

    Iran coincides with the interaction zone between the Arabian and Eurasian plates that currently converge at about 30 mm/yr. To the West, a continental collision accommodating about 10 mm/yr shortening results in the formation of the Zagros fold and thrust belt. To the East, the Makran is the emerged accretionary prism resulting from the subduction of the Oman oceanic lithosphere beneath the Iranian platelet. A NW-striking deformation zone, the Zendan-Minab fault system, connects the Western Makran and the Eastern Zagros deformation domains. Structural and geomorphic field observations, complemented with SPOT satellite images and aerial photographs analyses have been performed to evaluate the active deformation pattern and to localize the high seismic potential zones. This analysis shows a Zagros-Makran transfer zone characterized by a distributed deformation covering a wide domain: at least three NNW-trending major faults have been identified, the Minab, Zendan and Palami faults; and two N-trending major faults: Sabzevaran and Jiroft faults. Fault slip-vector analyses indicate that the current stress of state is transpressional associated with NE-trending compression. Thanks to offsets, escarpments and uplifted terraces, these faults show geomorphic evidence for Late Quaternary reverse right-lateral slip, that seems relevant for the present-day activity of the Minab deformation domain. Offset measurements associated with 10Be ages indicate that the right lateral displacement rate throughout the entire zone is about 20 mm/yr while maximal fault segment length of about 40 km indicates that the expected maximum earthquake magnitude should be of about Mw=7, in a context of low historical seismicity.

  20. The Fatigue of Water Ice: Insight into the Tectonic Resurfacing of Tidally Deformed Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hammond, N. P.; Barr, A. C.; Hirth, G.; Cooper, R. F.

    2015-12-01

    Fatigue is a process that causes materials to weaken during cyclic loading and experience brittle failure at much lower applied stresses. We perform laboratory experiments to study the fatigue behavior of water ice at conditions relevant to the surfaces of icy satellites, to test the hypothesis that the lithospheres of some icy satellites are weakened by fatigue. Many icy moons of the outer solar system, such as Europa and Enceladus, experience cyclic stresses driven by tidal forces from their parent planet. Stresses generated by tides and other physical processes, such as solid-state convection of the ice shell, are weak compared to laboratory derived yield stress values of ice. The surface geology on many icy moons, however, suggests that these processes are capable of deforming the surface, suggesting that their surfaces may have been weakened. During fatigue, microcracks slowly grow under the action of cyclic loads. Cracks grow until the stress intensity reaches a critical value and the sample fractures. The rate of microcrack growth varies with material, temperature, and loading frequency, but under most conditions the growth rate can be characterized by Paris' Law. We use a servo-hydraulic loading machine to perform cyclic 4-point bending tests on polycrystalline ice samples to measure the rate of fatigue crack growth. Ice samples are formed using the standard ice method in a sample mold with dimensions of 10x4x2 cm with an average grain size of 1.2 mm. An initial flaw is cut into the sample and loaded such that the flaw experiences the maximum tensile stress in the sample. Our initial experiments were performed at T=223 K, loading frequencies of 0.5 Hz, and stress intensities ranging from 0.3 to 0.8 of the plane-strain fracture toughness. Sample compliance is used to estimate crack length according to analytical solutions [1]. Experiments show an increase in compliance with time, consistent with substantial subcritical crack growth. Future experiments will

  1. Collapse of the Cretaceous Helvetiafjellet Formation due to tectonic activity at Kvalvågen, eastern Spitsbergen

    NASA Astrophysics Data System (ADS)

    Onderdonk, N.; Midtkandal, I.; Ahokas, J.

    2008-12-01

    A variety of features recording disturbance of Mid-Cretaceous sediments are exposed in coastal cliffs at Kvalvågen, east Spitsbergen. The most striking of these features are large displaced blocks of Helvetiafjellet Formation sandstone (ranging from 5 to 25 meters across) that were dropped down into underlying shale- dominated sediments along normal faults. In addition to the displaced blocks much of the sandstone unit is missing along a 2 km stretch of coastal exposure and must have been slipped out of the plane of exposure. Several hypotheses have been proposed to explain the style and cause of the Cretaceous collapse at Kvalvågen including delta front collapse (Nemec et al., 1988), landslides into a submarine canyon (Steel et al., 2001), and collapse related to magmatic activity (Midtkandal et al., 2007). New structural data and field observations show that the orientations and style of deformation are not entirely consistent with the previous hypotheses and are better explained as the direct result of tectonically produced topography (i.e., a fault scarp). The deformation at Kvalvågen is the result of west-side-down displacement along a north-striking fault that crops out at the southern end of the cliff exposure. Tectonic disturbance in the area began in Hauterivian time and was over by the early Aptian. These outcrops are the only evidence of tectonic activity in the area during the Mid-Cretaceous and may be the result of displacement along a previously unrecognized extension of the Lomfjorden fault zone or related to regional stresses imposed by extensive sill intrusions during the formation of the High Arctic Large Igneous Province.

  2. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus

    NASA Astrophysics Data System (ADS)

    Petterson, M. G.; Neal, C. R.; Mahoney, J. J.; Kroenke, L. W.; Saunders, A. D.; Babbs, T. L.; Duncan, R. A.; Tolia, D.; McGrail, B.

    1997-12-01

    The island of Malaita, Solomon Islands, represents the obducted southern margin of the Ontong Java Plateau (OJP). The basement of Malaita formed during the first and possibly largest plateau-building magmatic event at ˜122 ± 3 Ma. It subsequently drifted passively northwards amassing a 1-2 km thickness of pelagic sediment overburden. A major change in OJP tectonics occurred during the Eocene, possibly initiated by the OJP passing over the Samoan or Raratongan hotspot. Extension facilitated increased sedimentation and basin formation (e.g., the Faufaumela basin) and provided readily available deep-crustal pathways for alkali basalt and subsequent Oligocene alnöite magmas, with related hydrothermal activity producing limited Ag + Pb mineralisation. Eocene to Mid-Miocene sediments record the input of arc-derived turbiditic volcaniclastic sediment indicating the relative closeness of the OJP to the Solomon arc. The initial collision of the OJP and Solomon arc at 25-20 Ma was of a 'soft docking' variety and did not result in major compressive deformation on Malaita. South-directed subduction of the Pacific Plate briefly ceased at this time but resumed intermittently on a local scale from ˜15 Ma. Subduction of the Australian Plate beneath the Solomon arc commenced at ˜8-7 Ma. Increased coupling between the Solomon arc and the OJP led to the gradual emergence of the OJP at 6-5 through to 4 Ma. The most intense period of compressive to transpressive deformation recorded on Malaita is stratigraphically bracketed at between 4 and 2 Ma, resulting in estimated crustal shortening of between 24 and 46%, and the inclusion of between 1 and 4 km of basement OJP basalts within the larger anticlines. Basement and cover sequences are deformed together in a coherent geometry and there are no major decollement surfaces; the large asymmetrical fold structures of Malaita are likely to be the tip regions of blind thrusts with detachment surfaces between 1 and 4 km beneath the cover

  3. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1991-01-01

    Very Long Baseline Interferometry (VLBI) now has the capacity to monitor geodetic positions with precisions of a few 1 mm over continental baselines. For tectonic applications, one of the major products of the VLBI program is the determination of the rate of change of station locations. Vector site velocities are now routinely produced. One of the novel techniques, VLBI Euler poles, is discussed.

  4. Gravity driven and tectonic post-seismic deformation of the April 6 2009 L'Aquila Earthquake detected by Cosmo-SkyMed DInSAR

    NASA Astrophysics Data System (ADS)

    Moro, M.; Albano, M.; Bignami, C.; Malvarosa, F.; Costantini, M.; Saroli, M.; Barba, S.; Falco, S.; Stramondo, S.

    2014-12-01

    The present work focuses on the analysis of post-seismic surface deformation detected in the area of L'Aquila, Central Italy, after the strong earthquake that hit the city and the surrounding villages on April 6th, 2009. The analysis has been carried out thanks to a new dataset of SAR COSMO-SkyMed images covering a time span of 480 days after the mainshock, with the adoption of the Persistent Scatterer Pairs (PSP) approach. This method allows the estimation of surface deformations by exploiting the SAR images at full resolution. In the investigated area two patterns of subsidence have been identified reaching a maximum value of 45 mm in the northeast area of the L'Aquila town. Here the subsidence is mainly ascribable to the post seismic slip release of the Paganica fault and it does not coincide with the maximum measured coseismic subsidence. The time series of the ground deformations also reveal that a large amount of deformation is released in the first three months after the main shock. The second pattern of deformation is centered on the Mt. Ocre ridge, where a detailed photogeological analysis allowed us to identify widespread evidence of morphological elements associated with Deep-seated gravitational slope deformation (DGSD). In particular geomorphologic analyses show evidences of lateral spread DGSD-type features, characterized by the tectonic superimposition of carbonatic sequences and transitional pelagic deposits. In this sector, the observed deformation is ascribable not only to the afterslip of the Paganica fault, but also to a gravitative cause. In order to confirm or reject such hypothesis a 2D numerical finite element models considering two cross sections over the Mt. Ocre ridge has been performed. The coseismic and postseimic deformations have been simulated numerically, considering an elastic-perfectly plastic rheology for the constituent rocks. First results show that most of the postseismic deformation is ascribable to the plastic deformation

  5. New evidence for active tectonics at the boundary of the Kashi Depression, China, from time series InSAR observations

    NASA Astrophysics Data System (ADS)

    He, Ping; Wen, Yangmao; Xu, Caijun; Liu, Yang; Fok, H. S.

    2015-06-01

    Kashi Depression is one of the most complex active tectonic areas in the southern flank of Tianshan, China. Due to the lack of ground observations, the boundary of basin mountain transition zone and the interseismic activity of the Tianshan have not been clearly determined. In this study, 48 Envisat Advanced Synthetic Aperture Radar (ASAR) imagery acquired from 2003 to 2010 are used to construct interferograms for measuring high-resolution interseismic deformation in the Kashi Depression area. A global atmospheric model ERA-Interim provided by the European Center for Medium Range Weather Forecast (ECMWF) and a global network orbital correction are applied to remove atmospheric effect, and the long-wavelength orbital errors, respectively, for the interferograms. Interferometric SAR time series with Atmospheric Estimation Model (InSAR TS + AEM) are then used to obtain a deformation rate map for the Kashi Depression area. The InSAR rate map indicates that the north part of South Atushi Fault has ~ 3 mm/year uplift relative to that of the south part. This result manifests the main tectonic deformation potentially occurs along the Southern Atushi Fault. Based on a simple edge dislocation model, the dip angle of 31 ± 0.6°, slip rate of 2.3 ± 0.1 mm/year, and locking depth of 10.6 ± 0.4 km for the Southern Atushi Fault between Tianshan Orogenic Belt and the Kashi Depression are obtained. This modeling result shows in good agreement with the InSAR derived rates. Our results show that the Southern Atushi Fault is the main active fault in block boundary region between the south of Tianshan and the Tarim Basin.

  6. Late Quaternary tectonic activity and crustal shortening rate of the Bogda mountain area, eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong; Wu, Guodong; Shen, Jun; Dai, Xunye; Chen, Jianbo; Song, Heping

    2016-04-01

    The Bogda mountain range is the highest range among the northern Tian Shan mountains. Based on geologic and geomorphologic field surveys, trench excavation and optically stimulated luminescence (OSL) dating, we targeted the active Fukang fault along the Bogda mountain range and identified the late Quaternary deformation characteristics of this area. We found that the Fukang fault dislocated different geomorphic surfaces of the northern Bogda piedmont. The vertical fault displacement corresponds to the topographic relief of the Bogda over long time scales. Since the late Quaternary, the crustal shortening rate was estimated to be 0.90 ± 0.20 mm/yr, which is less than that of the western segment of the northern Tian Shan. We interpret the Bogda fold and thrust belt to be a thick-skinned structure, since a high angle thrust fault bounds the Bogda mountain range and the foreland basin. The deformation characteristics of this region have been dominated by vertical uplift, and the component of propagation toward the basin has been very limited. This tectonic deformation is evidenced as vertical growth. Although the deformation rate is small, the uplift amplitude is very significant in this region.

  7. The River Network, Active Tectonics and the Mexican Subduction Zone, Southwest Mexico

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.; Kostoglodov, V.; Basili, R.

    2014-12-01

    Rivers, their profiles and network reflect the integration of multiple processes and forces that are part of the fundamental controls on the relief structure of mountain belts. The motivation of this study is to understand active tectonic processes in the forearc region of subduction zones, by distinguishing evidence of active deformation using the river network and topography. To this end, morphotectonic and structural studies have been conducted on fifteen drainage basins on the mountain front, parallel to the Mexican subduction zone, where the Cocos plate underthrusts the North American plate. The southwest - northeast Cocos plate subduction stress regime initiated ca. 20 MA. NE-SW to NNE-SSW normal faults as well as sub-latitudinal to NW-SE strike-slip faults (both dextral and sinistral) constitute the majority of mesofaults recorded in the field within the studied drainage basins. Occasionally dextral N-S strike-slip faults also occur. The stress tensor reconstruction suggests two main evolution stages of these faults: 1) the older is dominated by a NW-SE to WNW-ESE extensional regime and 2) the younger is a transcurrent regime, with NNE-SSW σ1 axis. The drainage pattern is strongly controlled by tectonic features, whereas lithology is only a subordinate factor, with only one exception (Petatlán river). Generally, major rivers flow from north to south mainly through NE-SW and NNE-SSW normal faults, and/or sub-longitudinal dextral (also locally sinistral) strike-slip faults. In the central and eastern part of the studied area, rivers also follow NW-SE structures, which are generally normal or sinistral strike-slip faults (rarely reverse). In most cases, local deflections of the river main courses are related to sub-latitudinal strike-slip faults, both dextral and sinistral. Within the current stress field related to the active Cocos subduction, both normal and strike-slip fault sets could be reactivated. Our analysis suggests that strike-slip faults, mainly

  8. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  9. Active Tectonics in the Ohrid Basin (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Reicherter, K.; Hoffmann, N.; Fernández-Steeger, T.

    2009-04-01

    (Aliaj et al., 2004). The Ohrid Basin meets all criteria of an active, seismogenic landscape: linear step-like fault scarps in the landscape and under water in the lake. Post-glacial (or Late Pleistocene) bedrock fault scarps at Lake Ohrid are long-lived expressions of repeated surface faulting in tectonically active regions, where erosion cannot outpace the fault slip. Other morphotectonic features are wineglass-shaped valleys and triangular facets, which are well preserved. Generally, the faults and fault scarps are getting younger towards the basin center, as depicted on seismic and hydroacoustic profiles. Additionally, mass movement bodies within the lake and also onshore (rockfalls, landslides, sub-aqueous slides, homogenites, turbidites) are likely to be seismically triggered, eventually damming the outflow of Lake Ohrid temporarily. References: Aliaj, S, Adams, J, Halchuk, S, Sulstarova, E, Peci, V, Muco, B, 2004. Probabilistic seismic hazard maps for Albania. 13th World Conf. Earthquake Engineering, Vancouver, B.C., Canada, paper no. 2469, 14 pp. Muço, B, 1998. Catalogue of ML 3,0 earthquakes in Albania from 1976 to 1995 and distribution of seismic energy released. Tectonophysics, 292, 311-319.

  10. Deformation of the Calabrian Arc subduction complex and its relation to STEP activity at depth.

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Wortel, Rinus; Nijholt, Nicolai; Govers, Rob; Torelli, Luigi

    2015-04-01

    Propagating tear faults at the edge of subducted slabs ("Subduction transform edge propagator", STEP) are an intrinsic part of lithospheric plate dynamics. The surface expression of a STEP is generally not known yet, and is expected to vary significantly from one region to the other. We choose the Sicily -Calabria-Ionian Sea region, of which the lithosphere-upper mantle structure has the characteristics of a STEP zone, as a study area. The area has a very prominent accretionary wedge, the formation and subsequent deformation of which presumably were affected by the STEP activity at depth. In this contribution, we use seismic data on the near surface structure and deformation in combination with numerical model results to investigate the relation between deep STEP activity and near surface expression. Prominent features in the surface tectonics are the Malta escarpment (with predominantly normal faulting), the newly identified Ionian Fault and Alfeo-Etna fault system, and a distinct longitudinal division of the wedge into a western and an eastern lobe (Polonia et al., Tectonics, 2011). The two lobes are characterized by different structural style, deformation rates and basal detachment depths. Numerical model results indicate that the regional lithospheric structure, such as the orientation of the eastern passive (albeit subsequently activated) margin of Sicily relative to the Calabrian subduction zone, has a profound effect on possible fault activity along the Malta escarpment. Fault activity along the above primary fault structures may have varied in time, implying the possibility of intermittent activity. Interpreting seismicity in the context of a possible STEP, and the accompanying deformation zone at or near the surface, is not (yet) straightforward. Although direct evidence for recognizing all aspects of STEP activity is - as usual - lacking, a comparison with two well-known STEP regions, the northern part of the Tonga subduction zone and southern part of the

  11. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  12. Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Feng; He, Honglin; Densmore, Alexander L.; Li, An; Yang, Xiaoping; Xu, Xiwei

    2016-04-01

    The ongoing convergence between India and Eurasia apparently is accommodated not merely by crustal shortening in Tibet, instead also by motions along strike slip faults which are usually boundaries between tectonic blocks, especially in the Tibetan Plateau. Quantification of this strike slip faulting is fundamental for understanding the collision between India and Eurasia. Here, we use a variety of geomorphic observations to place constraints on the late Quaternary kinematics and slip rates of the Ganzi-Yushu fault, one of the significant strike-slip faults in eastern Tibet. The Ganzi-Yushu fault is an active, dominantly left-lateral strike-slip structure that can be traced continuously for up to 500 km along the northern boundary of the clockwise-rotating southeastern block of the Tibetan Plateau. We analyse geomorphic evidence for deformation, and calculate the late Quaternary slip rates at four sites along the eastern portion of the fault trace. The latest Quaternary apparent throw rates are variable along strike but are typically ~ 1 mm/a. Rates of strike-slip displacement are likely to be an order of magnitude higher, 8-11 mm/a. Trenching at two locations suggests that the active fault behaviour is dominated by strike-slip faulting and reveals several earthquake events with refined information of timing. The 2010 Mw 6.9 Yushu earthquake, which occurred on the northwestern segment of the Ganzi-Yushu fault zone, provides additional evidence for fault activity. These observations agree with GPS-derived estimates, and show that late Quaternary slip rates on the Ganzi-Yushu fault are comparable to those on other major active strike-slip faults in the eastern Tibetan Plateau.

  13. Active deformation processes of the Northern Caucasus deduced from the GPS observations

    NASA Astrophysics Data System (ADS)

    Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury

    2015-04-01

    The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of

  14. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  15. Geomorphic assessment of the tectonic activity of Qiulitagh fold-belt, Kuqa foreland basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Saint Carlier, Dimitri; Graveleau, Fabien; Delcaillau, Bernard; Hurtrez, Jean-Emmanuel; Vendeville, Bruno

    2014-05-01

    significantly along-strike, which allows to divide the fold belt into several morphologic structures. These morphologic structures are suspected to be developing under variable uplift rates due to partitioning of deformation. In addition, the observation of very regular landscapes that become more complex along-strike allows investigating relief evolution mechanisms from transient to steady-state. Finally, our morphometric analysis suggests some new insights on the topographic growth of Qiulitagh folds in relation with the growth of sub-surface structures and the accommodation of convergence in Kuqa foreland basin. References : Chen, J., Heermance, R., Burbank, D. W., Scharer, K. M., Miao, J., and Wang, C., 2007, Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan: Journal of Geophysical Research, v. 112, no. B03S16, p. doi:10.1029/2006JB004345. Hubert-Ferrari, A., Suppe, J., Gonzalez-Mieres, R., and Wang, X., 2007, Mechanisms of active folding of the landscape (southern Tian Shan, China): Journal of Geophysical Research, v. 112, B03S09, doi:10.1029/2006JB004362. Li, S., Wang, X., and Suppe, J., 2012, Compressional salt tectonics and synkinematic strata of the western Kuqa foreland basin, southern Tian Shan, China: Basin Research, v. 23, p. 1-23. Wang, X., Suppe, J., Guan, S., Hubert-Ferrari, A., Gonzalez- Mieres, R., and Jia, C., 2011, Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China, in McClay, K., Shaw, J. H., and Suppe, J., eds., Thrust-Fault Related folding, Volume 94, American Association of Petroleum Geologists Memoir, p. 1-29.

  16. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of ~500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from ~600 to ~900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  17. Glacio-tectonic thrust and deformation structures in the Vejle Fjord, Denmark revealed by high-resolution subbottom-profile data

    NASA Astrophysics Data System (ADS)

    Andresen, Katrine Juul; Boldreel, Lars Ole; Bak Wahlgreen, Katrine; Seidenkrantz, Marit-Solveig; Røy, Hans; Nørmark, Egon; Brandbyge Ernstsen, Verner

    2016-04-01

    Surface geomorphological features and partial cliff exposures up till now represent the predominant source of information of glaciation related deformation in Denmark. In this study we apply high-resolution marine reflection seismic data from the Vejle Fjord area, supported by gravity and Rumohr coring, to document intense glacio-tectonic deformation in the shallow subsurface of Denmark. The subbottom profiler seismic data have a peak frequency around 13 kHz and a vertical resolution in the order of 10-20 cm. The data reveal several variations of glacio-tectonic deformation structures, primarily observed near the edges of the fjord where coarse-grained and sandy deposits are present. These sediments allows for an exceptionally good and high-resolution imaging of the marine shallow subsurface. Within the central regions of the fjord, widespread shallow gas accumulations probably generated from biodegradation of post glacial organic-rich fine-grained marine gytja and clay deposits, effectively blank and absorb the seismic signal. This leads to a very poor imaging of the subsurface within the deeper parts of the fjord. Glacio-tectonic deformation is observed at both the northern and southern edge of the fjord. To the north, the deformation is expressed by complex internal reflection patterns within discrete sedimentary units including faults and smaller thrust-structures and associated small-scale folding. Channel incisions and clear reflection relations (i.e. truncations, onlaps and downlaps) reveal more decollement surfaces and furthermore constrain the timing of deformation. At least three episodes of deformation can be recognized at the northern edge of the fjord. To the south, a large thrusted fold belt (c. 3 km long and up to 10 m high) with faults, folds and thrust sheets is observed indicating severe deformation which most likely reflects ice progression from a southerly direction; for instance by the Young Baltic Ice Stream c. 19-17 ka. A thick and

  18. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  19. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  20. Analysis of Landsat TM data for active tectonics: the case of the Big Chino Fault, Arizona

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano

    1994-12-01

    The Big Chino Valley is a 50 km-long tectonic depression of the Basin and Range province of the South- western United States. It is bordered on the NE side by an important normal fault, the Big Chino Fault. The activity of the latter has been hypothesised on the basis of the presence of a 20 m-high fault scarp and on local geomorphological studies. Moreover, a magnitude 4.9 earthquake occurred in southern Arizona in 1976 has been attributed to this fault. The climate in the Big Chino Valley is semi-arid with average rainfall of about 400 mm per year; a very sparse vegetation cover is present, yielding a good possibility for the geo-lithologic application of remote sensing data. The analysis of the TM spectral bands shows, in the short wave infrared, a clear variation in the reflected radiance across the fault scarp. Also the available radar (SLAR) images show a marked difference in response between the two sides of the fault. An explanation of this phenomena has been found in the interaction between the geomorphic evolution, the pedological composition, and the periodic occurrence of coseismic deformation along the fault. Other effects of the latter process have been investigated on colour D- stretched images whose interpretation allowed to detect two paleoseismic events of the Big Chino Fault. This work demonstrates that important information on the seismological parameters of active faults in arid and semiarid climates can be extracted from the analysis of satellite spectral data in the visible and near -infrared.

  1. Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2013-11-01

    Morphometric analysis of hierarchical arrangement of drainage networks allows to evaluate the effects of external controls especially tectonics on basin development. In this study, a quantitative method for calculation of stream's hierarchical anomaly number is introduced. Morphometric parameters such as hierarchal anomaly index (∆a), percent of asymmetry factor (PAF), basin Shape (Bs), basin length to mean width ratio (Bl/Bmw), stream's bifurcation ratio (Rb), bifurcation index (R), drainage density (Dd), drainage frequency (Df) and anticline's hinge spacing (Hs) of 15 basins in Zagros Mountains were examined. Results show that the strong correlations exist between pairs ∆a-PAF (r = 0.844), ∆a-Bs (r = 0.732), ∆a-Bl/Bmw (r = 0.775), ∆a-R (r = 0.517), PAF-Bl/Bmw (r = 0.519), Bs-R (r = 0.659), Bl/Bmw-R (r = 0.703), Hs-∆a (r = - 0.708), Hs-PAF (r = - 0.529) and Hs-Bs (r = - 0.516). The variations in trend of anticlines control the shape of basins so that where anticlines hinges become closer to each other in the downstream direction, basin become narrower downward and hence the ∆a increases. The more uplifted northeastern anticlines cause the trunk river of the basins to migrate toward the younger anticlines in southwest and hence ∆a increases because the trunk river receives a lot of first order streams. Data reveal that the rate of ∆a is higher in elongated synclinal basins. Due to the decrease in the intensity of deformation from northeast toward southwest of Zagros, the hinge spacing of anticlines increases southwestwards. Data reveal that the variation in hinge spacing of anticlines strongly controls the basin's shape and tilting as well as the hierarchical anomaly of drainage system. Since the elongation and tilting of basins are associated with the variations in rates of folding, uplift and hinge spacing of anticlines, it can be concluded that the hierarchical anomaly of drainages in studied basins is controlled by the intensity of Zagros

  2. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  3. Tectonic, Seasonal, and Anthropogenic Deformation Rates in the Western Transverse Ranges, California from the San Andreas to the Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Marshall, S. T.; Funning, G. J.; Owen, S. E.

    2011-12-01

    Geodetic data from the Plate Boundary Observatory (PBO) provide a complex and evolving picture of current deformation rates in the western Transverse Ranges of southern California. We combine data from 52 continuous GPS sites in the PBO network with InSAR time series formed from ENVISAT ASAR scenes to determine the rates of seasonal, anthropogenic, and tectonic deformation. To characterize seasonal motions we independently estimate phases and amplitudes of annual and semiannual motions for each GPS time series. Once these seasonal terms are removed from the data, the resultant time series are dominantly linear suggesting that seasonal motions have been successfully removed. To determine if any of the remaining motions are non-tectonic in origin, we use a persistent scatterer InSAR (PSI) data set comprised of 20 ENVISAT scenes. The PSI data show potential anthropogenic subsidence in the Oxnard/Ventura area as well as at a location just south of the Oak Ridge; however, no GPS sites are situated in locations that are likely to be contaminated by these non-tectonic motions. The relative lack of significant anthropogenic motions in the western Transverse Ranges is in stark contrast to the nearby Los Angeles basin where anthropogenic motions can exceed 40 mm/yr. To determine the local deformation rates, we remove strain associated with the nearby San Andreas fault using a rectangular dislocation model. The resultant velocity field shows dominantly north-northwest directed contraction. The central Ventura basin shows the fastest contraction rates with approximately 6 mm/yr of shortening. To the east, approaching the San Andreas fault, contraction rates slow to about 2 mm/yr Contraction rates across the Santa Barbara Channel appear to monotonically decrease westward from approximately 6 mm/yr near at the longitude of Anacapa Island to 2 mm/yr at the longitude of San Miguel Island. To model the interseismic deformation and determine the likely fault slip rates, we use a

  4. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Yangli; Wang, Xin; Rao, Gang; Wang, Renfu

    2016-06-01

    The recognition of paleo-strike-slip faulting is often difficult, particularly when the associated structures are presently inactive and covered by thick sediments. Fortunately, high-resolution 3D seismic reflection data can provide a powerful tool to solve this problem. In this study, we focus on the structural features and tectonic evolution of Hong-Che fault system, a paleo-strike-slip fault zone recognized in the NW margin of Junggar Basin by using the 2D and 3D seismic data. The results of our analysis demonstrate that: 1) The Middle Triassic to Jurassic dextral transpressional structures were developed along Hong-Che fault zone, which are characterized by the restraining bend on the southern segment, the highly localized shearing deformation on the central segment, and the horsetail splay faulting of a fault tip zone on the northern segment; 2) The Hong-Che fault zone had also experienced the Early Permian rifting and the Late Permian-Early Triassic tectonic inversion, which probably played important roles in controlling the subsequent tectonic deformation; and 3) The demonstrated dextral strike-slip faulting is consistent with the Middle Triassic-Jurassic deformation in the Ke-Bai, Wu-Xia, and Irtysh fault zones, and therefore supports the counterclockwise rotation of Junggar Basin, which might be the far-field effect of the collision between Qiangtang block and Songpan-Ganzi terrane in the Triassic. The results of this study also prove that high-resolution seismic reflection data can serve as a useful tool for investigating the buried paleo-structures.

  5. Topographic Expression of Active Tectonics in the Absence of Physical Erosion in the External Dinarides of Croatia

    NASA Astrophysics Data System (ADS)

    Casale, G.; Paulson, K.; Salamonsen, E.; Bennett, R. A.; Surkovic, M.

    2010-12-01

    The Dinarides of Croatia and Bosnia-Herzegovina form part of the actively deforming Adria-Eurasia boundary, but their topography differs greatly from similar sized active orogens such as the neighboring Northern Apennines. The Dinarides include two distinct regions with contrasting surface drainage patterns: the surface drainage of the External Dinarides is a series of disconnected internally drained basins, whereas the Internal Dinarides much more closely resemble the Northern Apennines with well connected basins and waterways. We used SRTM DEMs to characterize surface drainage in the Dinarides and found a strong correlation between mapped rock-type and surface connectivity. Specifically, disconnected internally drained basins are restricted to carbonate lithologies prevelant in the External Dinarides, which are often susceptible to chemical dissolution, whereas heterogenous rock types found in the Internal Dinarides are associated with typical dendritic drainages. The extent of the carbonate-dominated topography characterizing the External Dinarides is further divided into areas of distinctly higher (300-700 m) and (<100 m) lower relief despite the inability of the low topography of the Dinarides to concentrate precipitation and thus chemical erosion. Therefore, the topographic variation between these two areas is either controlled by the contrasting solubility of various carbonate lithologies, or active tectonics. To test for contrasting solubility, we analyzed a suite of samples from both ridge and valley forming sites using a microprobe and ICP-MS. We found that the weight percent Ca was indistinguishable between our samples and that of pure calcite. We then expanded our investigation by incorporating spectral analysis of ASTER imagery across the entire external Dinarides, with similar results. We conclude that the large scale topography of the External Dinarides is not the result of lithologic heterogeneity, and is instead controlled by tectonics. Our

  6. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  7. Study of cataclastic deformation in compressive tectonic regime of a sandstone from south central Pyrenees, Spain: Timing of deformation bands occurrence during burial history and comparison with geomechanical models.

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie

    2016-04-01

    In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally planar structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone maastrichtian formation localized on the front of the Boixols thrust, on the southern side of the San Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations and 3) take oriented cores in order to study the magnetic fabric giving information on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the

  8. Analogue experiments applied to active tectonics studies: the case of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Seno, S.; Bonini, L.; Toscani, G.

    2010-12-01

    Lithosphere can be divided into three main zones as a function of increasing depth: an aseismic updip zone, the seismogenic zone and a deep aseismic zone. Identifying the location of these zones is a key goal to understand how a specific seismogenic fault works. The evaluation of the seismogenic structures potential in tectonically active regions needs an accurate knowledge of the geometries and kinematic of the faults. In many cases, large seismogenic faults are not clearly and unambiguously expressed at the surface, whereas in other regions with higher deformation rates a clear geological surface evidence is often associated with large earthquakes. Therefore, the characterization of the seismogenic faults and of their mutual interactions it is not always straightforward; in this case, analogue modeling can provide an independent and useful tool for the interpretation of the surface geological data. Analogue modeling applied to earthquake geology is a quite innovative technique: when combined with other datasets (e.g.: seismic tomography, seismic profiles, well-logging data, field geology, morphotectonic and palaeo-seismological data) it can provide significant insights on the long term (i.e. Quaternary) evolution of a seismogenic fault. We carried out a set of analogue models at 1 : 100,000 scale that reproduce in 2D a normal fault with a relatively low dip angle (45°-50°). In our experimental approach different materials have been used to simulate the three main zones in which the lithosphere is separated. Dry sand and wet clay simulate different mechanical behaviour of rocks during seismic cycle. The dry sand, with its negligible cohesion and ductility, represents brittle rocks that deformed by localized faulting during earthquakes. Wet clay, with its slightly greater cohesion and ductility, mimics aseismic updip zone. Glass microbeads simulate aseismic plastic zone. Preliminary results are highlighting a mutual control among the three analogue materials

  9. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    NASA Astrophysics Data System (ADS)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the

  10. Salts as indicators of tectonic activity along Nesson anticline, North Dakota

    SciTech Connect

    Lefever, J.A.; Lefever, R.D.; Anderson, S.B.

    1988-07-01

    The Nesson anticline is the major north-south-trending structure in the North Dakota portion of the Williston basin. The trace of the anticline is marked by nearly continuous production for 110 mi (175 km) from the Canadian border south to Dunn County; production is from 13 different stratigraphic zones. Previous studies have shown that the central and southern parts of the anticline, from Beaver Lodge field south to Rattlesnake Point field, consist of at least nine structurally independent areas, each of which has an individual tectonic history. Isopach patterns indicate that most of the areas underwent their greatest tectonic activity during the Devonian and Early Mississippian, although a few areas were active during the early Mesozoic as well. Ten traceable salts are present along the anticline in the Prairie (Devonian), Charles (Mississippian), Opeche (Permian), Spearfish (Triassic), and Pipe Formations (Jurassic). The isopach patterns of the individual salts indicate contemporaneous tectonic activity through thickening or thinning of the salt. Postdepositional activity is indicated by the absence of a salt; the timing of the activity may be estimated from the presence of compensating section above the level of the salt. Their results indicate that, in addition to the times given above, significant tectonic activity took place along the anticline during the Late Mississippian, late Jurassic, and Early Cretaceous.

  11. Preliminary study on hydrogeology in tectonically active areas.

    SciTech Connect

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  12. Crustal-scale active deformation along the Ecuadorian Andes using Persistent Scatterers SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Champenois, J.; Baize, S.; Audin, L.; Pinel, V.; Alvarado, A.; Jomard, H.; Yepes, H. A.

    2013-12-01

    Located in the Northern Andes along the active subduction zone of the Nazca plate beneath the South American continent, Ecuador is highly exposed to seismic hazard. For the last ten years, numerous multidisciplinary studies focused on major seismicity related to the subduction, whereas few investigations concentrated on M>7 crustal seismicity in the upper plate (like 1797 Riobamba earthquake, ML 8.3, 12.000 deaths). The active faults producing these earthquakes are poorly known in term of slip rate and for some cases are even not identified yet. Additionnally, Ecuador is one of the most active volcanic areas of the northern Andean volcanic zone. Three among the nine active volcanoes are actually erupting (Reventador, Tungurahua, and Sangay). For the last 5 years, geodetic networks have been deployed in Ecuador to enhance crustal deformation monitoring, but these point-wise techniques cannot provide spatially dense maps of ground deformation and are quite expensive methods. To address this issue, we applied the Persistent Scatterers SAR Interferometry technique (StaMPS/MTI freeware developed by A. Hooper) to ENVISAT SAR data between 2003 and 2009. Using these cost-effective techniques, we are able to investigate both tectonic and volcanic surface deformations with an unprecedented spatial density of measurements. This study presents new PS-InSAR results along the Ecuadorian Andes, close to the area of Riobamba. We generated average velocity maps and consistent time-series of displacements measured along the radar line of sight. These results evidence large scale deformation localized on the Pallatanga fault system (locked fault) compatible with a model of locked strike slip fault. Moreover, these results show an important growth of the Tungurahua volcanic complex (maximum rate about 9 mm/yr) with a rapid uplift prior and post 2006 explosive eruption. We investigate the time-series of displacement for 22 images. Our results permitted to propose two crustal source

  13. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  14. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  15. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential

  16. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Francois, Michaud; Noël, Proust Jean; Alexandre, Dano; Yves, Collot Jean; Daniella, Guiyeligou Grâce; José, Hernández Salazar María; Gueorgui, Ratzov; Carlos, Martillo; Hugo, Pouderoux; Laure, Schenini; Frederic, Lebrun Jean; Glenda, Loayza

    2016-01-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  17. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  18. Climatic and tectonic feedbacks and implications on sedimentation, tectonic deformation, and erosion circa 3.1 Ma in the Qaidam Basin, China: Evidence from magnetostratigaphy, geochemistry, and stratigraphic analysis

    NASA Astrophysics Data System (ADS)

    Heermance, R.; Pullen, A.; Kapp, P. A.; Song, P.

    2011-12-01

    Understanding the feedbacks between tectonic deformation and climate change have been the focus of recent research in the earth sciences, especially related to development of the Tibetan-Qinghai plateau. Differentiating between the causal effect of climate change or tectonic deformation on one another, however, has been hindered by the lack of detailed chronology of either mechanism at any one location. The Qaidam Basin is an internally drained basin located in the NE corner of the Tibet-Qinghai Plateau, and provides an ideal setting to interpret both the effects of climate and tectonics within inverted basin strata. Today over 50% of the basin floor is deformed by folding and faulting, and has exposed thick (>1 km) sections of pre-and-syn-tectonic Plio-Quaternary strata. We present new magnetostratigraphy from the Pliocene Shizigou and Pleistocene Qigequan Formations along the southwestern flank of an intra-basin fold and combine our new data with detailed stratigraphic and geochemical (δ18O, δ13C) analyses. Strata are characterized by shallow-lacustrine, marginal-lacustrine, and deltaic sediments that contain meter-scale, climatically controlled parasequences. Paleocurrents within the strata shift from easterly at the base to southwest for the majority of the section, but abruptly shift towards the south in the upper 200 m. Twenty-two magnetozones constrain deposition between 5.3 Ma and ~0.5 Ma and reveal that sedimentation rates were fairly constant (450±50 mm/yr) from 5.3 to 3.0 Ma, after which time rates abruptly decrease to 170±30 mm/yr. The δ18O values shift from relatively constant (avg. -6.8, range -9.6 to -4.5 VPDB) values to less negative values (avg. -1.2, range -1.2 to -2.7 VPDB) between 3.1-2.6 Ma and to widely scattered values (avg. -2.9, range -8.3 to 4.0) after ~2.6 Ma. The δ13C values remain relatively constant (avg. -4.0, range -5.7 to -1.0) until ~0.9 Ma, when the values increase to -0.3 (range -1.0 to 1.5) VPDB. The appearance of growth

  19. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  20. Impact of lithosphere rheology and pre-existing tectonic stress field on surface topography, crustal and mantle deformation during plume-lithosphere interactions in continents: insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Gerya, Taras

    2014-05-01

    We implement high-resolution 3D thermo-mechanical numerical models to elucidate the impact of realistically implemented rheological structure of continental lithosphere and of far-field tectonic stress/strain field on the localization and style of deformation during the emplacement of a mantle plume at the bottom of continental lithosphere. Numerical models demonstrate strong dependence of crustal strain distributions and surface topography on the rheological composition of the lower crust and the initial thermal structure of the lithosphere. In contrast to the usual inferences from passive rifting models, distributed wide rifting takes place in case of cold (500° C at Moho depth) initial isotherm and mafic composition of the lower crust, whereas hotter geotherms and weaker (wet quartzite) lower crustal rheology lead to strong localization of rifting. Moreover, it appears that the prerequisite of strongly anisotropic strain localization (linear rift structures) refers to simultaneous presence of an active mantle plume and of some, even very weak, slow (< 3 mm/y) passive horizontal extension produced by far-field tectonic forces. Higher (than 1.5-3 mm/y) velocities of supplementary far-field extension expectedly lead to enlargement of the active fault zone for the same lapse of time. Yet, simultaneous rise of the lithospheric geotherm associated with active rifting has an opposite effect leading to the narrowing of the rift zone. Consequently, interplays between active and passive rifting result in highly varying rifts styles hence breaking common rift-style classifications. The importance of the rheological properties of the continental crust for deformation regime is demonstrated not only by considerable difference in surface morphology and crustal strain patterns between the models with different lower crustal rheology, but also by a noticeable distinction in deep distribution of the plume head material, with consequent effect for magmatic processes and mantle

  1. The interplay between deformation and volcanic activity: new data from the central sector of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Sabatino, Ciarcia; Enrico, Iannuzzi; Ernesto, Prinzi; D'Assisi, Tramparulo Francesco; Stefano, Vitale

    2016-04-01

    The new excavation of a tunnel in the central sector of the Campi Flegrei caldera allowed us to collect new stratigraphic and structural data shedding light on the volcano-tectonic evolution of the last 10 ka. The analyzed sequences are composed by an alternation of volcanic, lacustrine, fluvial and marine sediments hosting several deformation structures such as faults, sedimentary dykes and fractures. A review of available well log togheter with the new data were used to perform a 3D reconstruction of paleo-surfaces resulted after the main volcanic and deformation episodes. Results show as the paleo-morphology was strictly controlled by faults and fractures that formed meso-scale channels and depressions subsequently filled by tephra and volcanoclastic sediments. The measured structures indicate an extensional deformation accompanying the ground uplift occurred in various stages of the caldera evolution. Stratigraphic relationships between structures and volcanic deposits further constrain the timing of the deformation phases. Presently an unrest phase of the Campi Flegrei caldera is marked by variations of different parameters such as ground deformation activities well recorded by GPS data, topographic leveling and satellite surveys. The results of this study provide further insight into the long term deformation pattern of the caldera and provide a key to interpret the ground deformation scenarios accompanying a possible resumption of volcanism.

  2. Seismological characteristics of the 2011 unrest in Santorini caldera: Implications for observed deformation and volcano-tectonics

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos; Evangelidis, Christos; Melis, Nikolaos; Liang, Wen-Tzong

    2013-04-01

    Santorini caldera has experienced several explosive eruptions in the past, the most well-known of these being the Late Bronze Age (ca. 1628 BC) eruption that may have been responsible for the demise of the Minoan civilization. Since the early 1950's the volcano has been dormant without exhibiting any significant activity except from discharge of low-temperature hydrothermal fluids. In January 2011 both deformation and seismic activity increased considerably signaling a period of unrest which however, did not result in an eruption. One permanent and seven temporary seismic stations equipped with three-component sensors were deployed by the National Observatory of Athens. These were combined with seismic stations from the University of Thessaloniki, seven with only a vertical component and four with three-component sensors and all operated under the Hellenic Unified Seismic Network, thus densely monitoring the Santorini Volcano. These seismic stations have recorded the seismic activity from its start up to now. About 290 micro-earthquakes recorded by at least 5 stations were analyzed for the purpose of obtaining accurate epicentral and hypocentral locations using both catalog and differential travel times from waveform cross-correlation. All of these events exhibit clear P- and S-phases indicating that they resulted from shear failure of rock rather than fluid-flow within volcanic conduits. Results show two well-defined clusters in Palea and Nea Kameni islands within the caldera with hypocentral depths ranging between 5-10 km. Interestingly, one more cluster of events with depths between 15-19 km appears near the area of Cape Coloumbo and developed almost simultaneously with the clusters within the caldera. The Mogi source depth inferred from geodetic observations previously is shallower (~4 km) and does not coincide spatially with the clusters within the caldera. This points to the possibility that seismicity and deformation may be excited by deeper pressure changes

  3. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  4. Late Quaternary deformation of the Longquan anticline in the Longmenshan thrust belt, eastern Tibet, and its tectonic implication

    NASA Astrophysics Data System (ADS)

    Li, Kang; Xu, Xi-Wei; Tan, Xi-Bin; Chen, Gui-Hua; Xu, Chong; Kang, Wen-Jun

    2015-11-01

    The 2008 Mw 7.9 Wenchuan earthquake and 2013 Mw 6.6 Lushan earthquake are a consequence of ongoing India-Tibet collision and reflect the growth of the Longmenshan thrust belt (LSTB). Assessing seismic hazards associated with the Longquan anticline and its contribution to crustal shortening of the LSTB requires understanding of its fold structure and activity. To address this, the geometry of fluvial terraces across the anticline was surveyed and measured by real-time kinematic (RTK), and these terraces were dated by using radiocarbon with accelerator mass spectrometry (AMS) and optical stimulated luminescence (OSL) methods. Interpretation of seismic reflection profiles suggest that the Longquan anticline grows laterally through kink-band migration and a total cumulative shortening is about 1.13 km in NW-SE direction. Combining with previous studies of depth of decollement, this yields a crustal shortening rate of ∼1.47 mm/yr in NW-SE direction and constrains the time of initiation of the Longquan anticline deformation to 1-2 Ma in the late Pliocene. Obviously, our result indicate that the Longquan anticline is active and potentially seismogenic, and that it should be incorporated into current regional seismic hazard models for the highly populated area of Sichuan basin.

  5. Intraoceanic Arc Tectonic and Sedimentary Processes: Translation from Modern Activity to Ancient Records

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Clift, P. D.

    2013-12-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are used to reconstruct paleogeography, plate motion, collision and accretion events, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records after arc-continent collision is complicated by preservation of evidence for some processes and loss of evidence for others. We examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of oceanic subduction zones. Composition of accreted arc terranes differs as a function of arc-continent collision geometry. ';Forward-facing' collision can accrete an oceanic arc onto either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In ';backward-facing' collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern oceanic subduction zones implies that valuable records of arc processes are commonly destroyed even before collision with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of

  6. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  7. Geodetic constraints on vertical tectonic deformation in the Coachella and San Bernardino Valleys from InSAR and well level data

    NASA Astrophysics Data System (ADS)

    Wisely, B. A.; Schmidt, D.

    2006-12-01

    We investigate the relationship of InSAR observations and groundwater levels for the Coachella and San Bernardino Valleys, CA. Surface deformation in both valleys is induced by seasonal and long-term changes in groundwater levels such that tectonic signals are largely obscured. Our objective is to identify and remove any seasonal and anthropogenic signals from the InSAR data set at selected sites, thereby revealing the tectonic signal related to interseismic strain accumulation. Interferograms from 1993 to 2000 are produced from ERS1/2. We also present preliminary ENVISAT interferograms from 2003-2006. InSAR and well level data sets are compared to demonstrate where seasonal and long-term signals are induced by groundwater fluctuations. Where data sets are consistent, we invert for the elastic coefficient and vertical tectonic deformation rates at the well locations. We explore the vertical uplift rates within the basins and fault junctions based on simple elastic dislocation models. In the Coachella Valley we observe long-term residual subsidence with a stack of 23 interferograms from 1993-2000, chosen for their minimal atmospheric contamination. Near Indio, a maximum vertical subsidence rate of 9 mm/yr is observed during this seven year period. We produce an InSAR timeseries with the same set of interferograms, in which we observe a maximum annual seasonal oscillation up to 21 mm. Generally, surface elevation inferred from InSAR correlates with groundwater levels. However, we occasionally observe discrepancies in the data sets for several locations. We investigate potential causes for these discrepancies including temporary increase in artificial and natural recharge, aquifer partitioning, and tectonic events. In the San Bernardino Valley, long-term uplift on the order of 4 mm/yr from 1995-2000 is observed with a stack of 30 interferograms. The InSAR timeseries reveals a maximum annual seasonal oscillation for this period up to 10.5 mm. Our investigation of the

  8. Coseismic deformations of the 2015 MW 7.8 Gorkha earthquake and interseismic strain accumulation in the Himalayan tectonic belt and Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wu, Yanqiang; Jiang, Zaisen; Liang, Hongbao; Chang, Liu; Chen, Changyun; Zhu, Shuang; Zhao, Jingyang; Du, Jiliang

    2016-02-01

    The principal strain rate, derived from GPS velocities from the Tibetan Plateau and the India Plate, shows that the Himalayan tectonic belt exhibits compression deformation in a NE-NS-NE direction from the west to the east. The GPS velocity profiles reflect that the distribution of strain accumulation is uneven: there is a 17.1 mm/yr. compressive deformation distributed over 400 km along 85° E longitude, a 20.9-22.2 mm/yr. compressive deformation dispersed across 400-500 km along 79° E longitude, and a 15.3-16.9 mm/yr. compressive deformation spread across 500-600 km along 91° E longitude. The MW 7.8 Gorkha earthquake occurred at the edge of an intense compression deformation zone of about 6.0 × 10- 8/yr. in a north-south direction, and an about 90% compressive strain is absorbed in the 300 km region near the Main Frontal Thrust (MFT). Coseismic displacements, larger than three standard deviations (3SD), are mainly concentrated within 360 km from the epicenter. The nodal plane of the main shock divides the areas where tensile strain release in an exponential attenuation pattern is dominant to the north, and where compressive strain with upward movement is dominant to the south. The results inversed by the SDM program reveal that the maximal slip of the Gorkha earthquake is 5.33 m, and its moment magnitude is MW 7.85, and the largest stress drop is 4.21 Mpa. Slips larger than 0.5 m are mainly distributed in a region approximately 135 km × 105 km, which show that the rupture of the Gorkha earthquake does not reach the surface. Finally, we estimate that the recurrence period of this earthquake is about 166 ± 20 years according to the strain accumulation before the earthquake and the coseismic release feature.

  9. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  10. Change in biochemical and morphological characteristics of Lonicera caerulea in tectonically active zone of the Dzhazator River Valley (Altai Mountains)

    NASA Astrophysics Data System (ADS)

    Boyarskikh, I. G.; Khudyaev, S. A.; Platonova, S. G.; Kolotukhin, S. P.; Shitov, A. V.; Kukushkina, T. A.; Chankina, O. V.

    2012-12-01

    Local geophysical and geochemical anomalies affect the polymorphism of taste variations, berry shape, and content of some biologically active substances in Lonicera caerulea leaves in the tectonically active Altai Mountains (Dzhazator River basin).

  11. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    the sediments continue in the ENE- WSW direction along the faults shown by Okamura (2007b). In addition, other flexures in Holocene that had not been known up to now were found along the coastline of northwestern side of Noto Peninsula in shallower sea area. The deformation has been growing by displacements of an underlying active fault but does not cut the reflections. The vertical offset of the flexure on the LGM erosion surface is larger than those on the reflections in the sediments covering the erosinal surface and the offset decrease upward. The sea bottom topography deformed by tectonic activities is maintained in offshore area. These tectonic activity periods are uncertain because sediments are thin, however, it is presumed that there were several activities in the past. These observations indicate that the fault slipped several times during the last 20,000 years. Okamura, 2007a, AFRC News, No66, pp1-3 (in Japanese) Okamura, 2007b, Geological Map West of Noto Peninsula. Marine Geology Map Series, no. 61, GSJ, AIST.

  12. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  13. Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Gao, Rui; Guo, Xiaoyu

    2016-04-01

    The eastern Tibetan plateau has been getting more and more attention because it combines active faults, uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus, a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative (THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks, including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the Songpan-Garze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion, which is coincident with the flowing direction indicated from the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.

  14. Control of tectonic setting and large-scale faults on the basin-scale distribution of deformation bands in porous sandstone (Provence, France)

    NASA Astrophysics Data System (ADS)

    Ballas, G.; Soliva, R.; Benedicto, A.; Sizun, J.

    2013-12-01

    From outcrops located in Provence (South-East France), we describe the distribution, the microstructures, and the petrophysical properties of deformation bands networks related to different tectonic events. In contractional setting, pervasively distributed networks of reverse-sense compactional-shear bands are observed in all the folded-sand units of the foreland, whereas localized networks of clustered reverse-sense shear bands are only observed close to a large-scale thrust. In extensional setting, networks of clustered normal-sense shear bands are generally observed adjacent to large-scale faults, although few and randomly distributed bands are also observed between these faults. Normal-sense cataclastic faults are also observed restricted to sand units, suggesting that faults can initiate in the sands in extension, which is not observed in contraction. Shear bands and faults show cataclastic microstructures of low-permeability whereas compactional-shear bands show crush microbreccia or protocataclastic microstructures of moderate permeability. This basin-scale analysis underlines the major role of tectonic settings (thrust-fault versus normal-fault andersonian-stress regime) and the influence of inherited large-scale faults on the formation of low-permeability shear bands. We also provide a geometrical analysis of the band network properties (spacing, thickness, shear/compaction ratio, degree of cataclasis, petrophysical properties) with respect to the host sand granulometry. This analysis suggests that granulometry, although less important than tectonic setting and the presence of large-scale faults, has however a non-negligible effect on the band networks geometry.

  15. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Zhang, Yueqiao; Zhao, Guochun; Johnston, Stephen T.; Cui, Jianjun; Xin, Yujia

    2016-04-01

    The central Jiangnan Orogen, genetically formed by the Proterozoic Yangtze-Cathaysia collision, presents as a composite structural feature in the Phanerozoic with multiple ductile and brittle fabrics whose geometries, kinematics, and ages are crucial to decipher the tectonic evolution of south China. New structural observations coupled with thermochronological and geochronological studies of these fabrics document four main stages of deformation. The earliest stage in early Paleozoic time (460-420 Ma) corresponds to combined E-trending dextral and northwest directed thrust shearing that was variably partitioned in anastomosing high-strain zones under greenschist-facies conditions (~400-500°C), related to the continued Yangtze-Cathaysia convergence externally driven by the suturing of south China with Australia. This event was heterogeneously overprinted by the second stage characterized by ~E-oriented folding in middle Triassic time, geodynamically resulting from the continental collision of south China with Indochina and North China. The third stage was locally developed by northwest and southeast vergent thrusts that truncated ~E-oriented folds in the Late Jurassic, due to northwestward subduction of the Paleo-Pacific plate. The latest stage involved normal faulting and tectonic unroofing in Cretaceous time, which resulted in basin opening and reset footwall 40Ar/39Ar ages in proximity to the Hengshan detachment fault, associated with roll-back of the subducting Paleo-Pacific plate.

  16. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  17. Fluid seepage, Deformation, Tectonics and Accretionary Prism Formation in Two Different Settings of the Nankai Accretionary Prism- Dive Results of YK05-08 Leg 2

    NASA Astrophysics Data System (ADS)

    Ogawa, Y. F.; Kawamura, K.; Anma, R.; Yokoyama, S.; Kawakami, S.; Moore, G. F.; Dilek, Y.; S. Y.

    2005-12-01

    Fluid seepages recognized by the presence of bacterial mats, chemosynthetic biocommunities, and carbonate deposits were critically analyzed in relation to large to small scale deformation features in two different settings of the Nankai accretionary prism by the manned submersible Shinkai 6500 during JAMSTEC cruise YK05-08 Leg 2. We present dive profiles in the Shionomisaki and Tenryu submarine canyons that form a 3D transect extending from the outer-arc ridge formed by out-of-sequence thrusts (OOST ridge) to the prism toe. Ten dives in addition to six previous dives (including three unmanned ROV Kaiko dives) verified that Shionomisaki Canyon exposes typical accretionary prism features, including regular repetition of offscraping and underplating structure, whereas Tenryu Canyon shows highly modified structures caused by the collisional subduction of the Paleo-Zenisu ridge of the Izu island arc. The fluid seepages were observed in three different settings: (1) just beneath large thrust faults which demarcate the sharp ridge foot; (2) the open fractured crests of the thrust-anticline folds; and (3) the conspicuous circular expression on the OOST ridge top. The last case and previously known examples in the forearc basin setting are both examples of large scale seepage that might be due to intermittent, sometimes explosive methane seepage, whereas the first two cases are of constant flow rate of smaller magnitude. Such differences may be due to differences in the tectonic setting between the two; the large flow rate example is due to open or strike-slip regime tectonics where large amount of seepage occurs along the high permeability zones. In contrast, the small flow rate example is seepage along a thrust, with rather constant (although intermittent during co-seismic stage) flow rate along thrust faults which are of relatively lower permeability. In addition, we verified some carbonate veins in fractured or sheared rocks along faults, and the various deformation

  18. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  19. Measurement of short-base deformations in one of the regions of active fracturing in the Hanoi depression (the Socialist Republic of Vietnam)

    NASA Astrophysics Data System (ADS)

    Karmaleeva, R. M.; Yem, Nguyen Trong; Tu, Nguyen Dinh; Quoc, Le Minh; Chan Quoc, Hung

    1992-02-01

    Observations of deformation processes were carried out in one of the regions of active fracturing in the territory of the Hanoi depression, with the purpose of determining the rates of recent crustal movements during time intervals of about 1 yr to several years. The measurements were conducted with deformometers and hydrostatic levellers installed in a 5 m deep trench. The observation data for the 1985-1988 period indicate a high tectonic activity in the region studied. The horizontal deformation rates are (1-10) 10 -5/yr, and the vertical rates are 10 -4-10 -3/yr. Spectral characteristics of recorded processes have been obtained as well as meteorological effects.

  20. Tectonics on Triton

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    Tectonic features on Triton have been mapped as part of a larger study of the geology of Triton. Few purely tectonic structures are found on Triton: some grabens and possibly some compressive ridges. However, most of the other structures seen (primarily cryovolcanic in origin) exhibit tectonic control. A regional tectonic network has the following dominant orientations: N-S, E-W, NE-SW, and NW-SE. Most of the orientations are consistent with tidal deformations related to Triton's decreasing orbital radius. Localized quasi-concentric patterns may be due to interior processes such as mantle plumes.

  1. Lasting mantle scars lead to perennial plate tectonics

    PubMed Central

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  2. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon. PMID:27282541

  3. Lasting mantle scars lead to perennial plate tectonics

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  4. Active deformation in the inner western Alps inferred from comparison between 1972-classical and 1996-GPS geodetic surveys

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Martinod, Joseph; Tricart, Pierre; Thouvenot, François; Gamond, Jean-François; Fréchet, Julien; Marinier, Delphine; Glot, Jean-Paul; Grasso, Jean-Robert

    2000-04-01

    Eighteen geodetic points surveyed in 1972 by the French National Geographic Institute (IGN) were remeasured by GPS in 1996 in the Briançonnais and Piémont Zones, east of the Pelvoux massif (French Western Alps). A displacement vector set was determined for the two surveys' common points. Calculations of the strain-rate tensors associated with 15 triangular cells of the network have been performed. Only four of them show a strain rate significant at a 95% level of confidence. These data suggest an E-W extension of about 2-4 mm/yr between the western and eastern part of the network (Pelvoux external crystalline massif and Queyras blueschists, respectively) associated with N-S shortening. This active deformation agrees with neotectonic and seismotectonic data. The measured tectonic motion seems to be distributed throughout the central part of the Briançonnais zone, where the seismic activity is concentrated. The local seismicity has been precisely surveyed since 1989. It is moderate ( Ml<4.7) and no larger earthquake occured in the 1972-1989 period. The seismic deformation of the 1972-1996 period, extrapolated from the 1989-1996 local seismicity, accounts for less than 10% of the geodetic deformation. Thus, aseismic processes accommodated more than 90% of the observed deformation during this period. This could correspond to accumulation of elastic strain on locked faults, creep on faults or plastic deformation in a large crustal volume.

  5. Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Pondrelli, Silvia; Salimbeni, Simone; Cavaliere, Adriano; Serpelloni, Enrico; Danecek, Peter; Lovati, Sara; Massa, Marco

    2015-06-01

    The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~ 1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~ NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms < 0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds > 0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.

  6. Input of UAV, DTM photo-interpretation and SAR interferometry on active tectonics applied on the Southern Coastal Range (SE Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Magalhaes, Samuel; Serries, Gregory

    2016-04-01

    Taiwan is an excellent geomorphic laboratory where both extreme climatic events and high active tectonics compete. Moreover many Earth Sciences and Environmental data bases exist nowadays that help to better constrain both structural geology and active deformations. The latter unfortunately is still poorly known in the Cosatal Range of E.Taiwan in terms of geology due to access difficulties, high relief, paucity of roads, tropical vegetation and high climatic events (typhoons and heavy rainfall) and so on. Indirect methods such as photogrammetric survey using UAV's helps a lot to get high resolution topographic DEM and DTM, better than 10cm in planimetry, that helps a lot to get through careful photo-interpretation, a bird's eye view of the geology. Therefore we were able to much update the famous pre-existing geological maps (Wang and Chen, 1993). Moreover, by combining our high resolution topographic results with those of SAR interferometry (database of Champenois et al, EPSL, 2012), we were able to identify, characterise and quantify the differential active features toward the LOS of the Coastal Range (eastern Taiwan). In order to synthetise and to model the deformation of that famous place, we herein constructed more than 500 parallel projected profiles in order to locate, characterize and quantify the active tectonic features and compare them to the topography and the updated photo-interpreted geology (this work). We then were able to reconstruct the structural geometry of the Coastal Range and the Longitudinal Valley in SE Taiwan. Among our results, we reveal and prove : 1. the whole 2cm differential surrection of the Coastal Range ; 2. the differential displacement between both Central and Coastal Ranges ; 3. we explain the location of the Pinantashi river situated within the Lichi melange that correspond to the maximum surrection of the Coastal Range ; 4. we reveal the different units and their relative displacement within the Coastal Range itself ; 5. we

  7. Feedback between erosion and active deformation: geomorphic constraints from the frontal Jura fold-and-thrust belt (eastern France)

    NASA Astrophysics Data System (ADS)

    Madritsch, Herfried; Fabbri, Olivier; Hagedorn, Eva-Marie; Preusser, Frank; Schmid, Stefan M.; Ziegler, Peter A.

    2010-10-01

    A regional tectono-geomorphic analysis indicates a Pliocene to recent rock uplift of the outermost segment of the Jura fold-and-thrust belt, which spatially coincides with the intra-continental Rhine-Bresse Transfer Zone. Elevated remnants of the partly eroded Middle Pliocene Sundgau-Forêt de Chaux Gravels identified by heavy mineral analyses allow for a paleo-topographic reconstruction that yields minimum regional Latest Pliocene to recent rock uplift rates of 0.05 ± 0.02 mm/year. This uplift also affected the Pleistocene evolution of the Ognon and Doubs drainage basins and is interpreted as being tectonically controlled. While the Ognon River was deflected from the uplifted region the Doubs deeply incised into it. Focused incision of the Doubs possibly sustained ongoing deformation along anticlines which were initiated during the Neogene evolution of the thin-skinned Jura fold-and-thrust belt. At present, this erosion-related active deformation is taking place synchronously with thick-skinned tectonics, controlling the inversion of the Rhine-Bresse Transfer Zone. This suggests local decoupling between seismogenic basement faulting and erosion-related deformation of the Mesozoic cover sequences.

  8. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  9. Active deformation of the Congo intracratonic basin and its eastern margin

    NASA Astrophysics Data System (ADS)

    Everaerts, Michel; Delvaux, Damien; Beoka, Ateba

    2015-04-01

    The Congo basin, one of the largest intracontinental sedimentary basin in the world, developed in Central Africa since the early Neoproterozoic during successive tectonically controlled stages. It formed over an heterogeneous basement as highlighted by aeromagnetic data, composed of Archean cores welded by Proterozoic mobile belts. It contains an average of 4 km and locally up to 8 km of Neoproterozoic to Mesozoic sediments. Since late Mesozoic (Cenomanian), it was submitted to intraplate stresses due to the action of ridge-push forces related to the spreading of the South Atlantic. As a result, most part of the basin entered in an erosional stage while only a small part is still accumulating sediments. Active deformation of this vast region (5°N-11°S and 12-27°E) is indicated by a certain level of seismic activity, with about 270 earthquakes instrumentally recorded with magnitudes ranging from 2.2 to 5.5 inside the basin and up to up to 6.3 along its NW (Gabon) and NW (Katanga) margins. The dozen available focal mechanisms indicate that the basin is under ENE-WSW horizontal compression, under a compressional regime in its center and strike-slip regime along its northern and western margins. Low-angle slickensided fault planes are observed in the Samba cored well, constraining the onset of the recent compressional setting in the late Albian, at a time when South America was already separated from Africa and the South Atlantic Ridge was already functioning. Although subtle, recent tectonic deformations (faulting and buckling undulations) can also be inferred from the reflection seismic profiles and the topography and river network. The overall neotectonic picture is inferred as reflecting the development of compressional tectonic instabilities in the basin fill and its margins under the action of intraplate stress field and the control of the basement heterogeneity. This is a contribution to preparation of the Seismotectonic Map of Africa by the working group of

  10. Volcano-tectonic deformation at Mount Shasta and Medicine Lake volcanoes, northern California, from GPS: 1996-2004

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Poland, M.; Dzurisin, D.; Owen, S.

    2004-12-01

    Mount Shasta and Medicine Lake volcanoes are two of the three Cascade volcanoes targeted for dense GPS and strainmeter deployments by the magmatic systems component of Earthscope's Plate Boundary Observatory (PBO). Leveling surveys indicate an average subsidence rate of ˜9 mm/yr at Medicine Lake volcano since at least 1954, which could result from draining of a magma reservoir, cooling/crystallization of a subsurface body of magma or hot rock, loading by the volcano and dense intrusions, crustal thinning due to regional extension, or some combination of these mechanisms. Displacements from GPS surveys in 1996 and 1999 revealed regional block rotation and contraction across the summit of the volcano, but the time interval was too short to distinguish between possible mechanisms. On Mount Shasta, a 21-line, 12-km aperture EDM network was measured in 1981, 1982, and 1984 with no significant deformation detected, nor was there significant length change in three EDM lines recovered with GPS in 2000. We present results from GPS surveys completed in June and July 2004 of the region surrounding both Mount Shasta and Medicine Lake volcanoes. We find regional deformation to be dominated by a block rotation about a pole in southeast Oregon, similar to but generally south of poles determined by other workers using GPS in western Oregon and Washington. No significant residual deformation remains in the four GPS stations located on Mount Shasta, which were previously measured in 2000. In contrast, GPS results from six stations on the upper flanks of Medicine Lake volcano confirm the known subsidence and are consistent with elastic half-space models of volume loss that fit the leveling data. No significant residual regional strain was detected. As a result, we believe that subsidence at Medicine Lake does not likely result from crustal thinning due to regional extension. A more detailed examination of Medicine Lake subsidence sources, Mount Shasta edifice deformation, and

  11. Active deformation in the northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Ortiz, Gustavo; Alvarado, Patricia; Fosdick, Julie C.; Perucca, Laura; Saez, Mauro; Venerdini, Agostina

    2015-12-01

    The Western Sierras Pampeanas region in the San Juan Province is characterized by thick-skinned deformation with approximately N-S trending ranges of average heights of 2500 m and a high frequency occurrence of seismic activity. Its location to the east of the mainly thin-skinned tectonics of the Argentine Precordillera fold-and-thrust belt suggests that at 30°S, deformation is concentrated in a narrow zone involving these two morphostructural units. In this paper, we present new apatite (U-Th)/He results (AHe) across the northern part of the Sierra de Valle Fértil (around 30°S) and analyze them in a framework of thermochronologic available datasets. We found Pliocene AHe results for Carboniferous and Triassic strata in the northern Sierra de Valle Fértil consistent with the hypothesis of recent cooling and inferred erosional denudation concentrated along the northern end of this mountain range. Our analysis shows that this northern region may have evolved under different conditions than the central part of the Sierra de Valle Fértil. Previous studies have observed AHe ages consistent with Permian through Cretaceous cooling, indicating the middle part of the Sierra de Valle Fértil remained near surface before the Pampean slab subduction flattening process. Those studies also obtained ˜5 My cooling ages in the southern part of the Sierra de Valle Fértil, which are similar to our results in the northern end of the range. Taken together, these results suggest a pattern of young deformation in the northern and southern low elevation ends of the Sierra de Valle Fértil consistent with regions of high seismic activity, and Quaternary active faulting along the western-bounding thrust fault of the Sierra de Valle Fértil.

  12. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    SciTech Connect

    Mentes, Gy.

    2010-07-15

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093{+-}0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  13. Shear zones developed between extensional and compressional tectonic regimes: recent deformation of the Burdur Fethiye Shear Zone as a case study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Aktuǧ, Bahadır

    2016-04-01

    The southwestern Turkey is one of the most tectonically active areas of the eastern Mediterranean and therefore is a controversial region from the geodynamic point of view. This complex tectonic regime is dominated by the westward escape of Anatolia related to North Anatolian Fault, Aegean back-arc extension regime due to roll-back of Hellenic Arc, the subduction transform edge propagator (STEP) fault zone related to the motion of Hellenic and Cyprus arcs and compressional regime of Tauride Mountains. In addition to that, an active subduction and seamounts moving towards the north determine the tectonic frame of the Eastern Mediterranean. Many researchers suggest either the existence of a single left lateral fault or the nonexistence of a fault zone between Western Anatolia and Western Taurides. According to the integration of digital elevation data, non-commercial GoogleEarth satellite images and field studies, a 300 km-long 75-90 km-wide NE-SW-trending left lateral shear zone, the Burdur-Fethiye Shear Zone, is located among these tectonic structures. By using GPS velocities and focal mechanism solutions of earthquakes, it is understood that most of the previous studies turn a blind eye to the hundreds of faults related to a left-lateral shear zone which will have an important role in the Mediterrenean tectonics. The Burdur-Fethiye Shear Zone is like a zipper driven by the relative velocity differences due to the Aegean back-arc extensional system and Western Taurides compressional region and presents a high seismic activity. The GPS vectors reflect remarkable velocity differences on land and relatedly the significant topographic differences can be clearly observed. According to the GPS vectors, the Aegean region moves 4-12 mm/yr faster than the wesward escape of the Anatolia towards southwest and the velocities are low in the Western Taurides. The left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3-4 mm/yr in the north side to 8

  14. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System

    USGS Publications Warehouse

    Hammond, W.C.; Thatcher, W.

    2004-01-01

    We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ???39?? north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ?? 1.0 mm/yr, and motion normal to this small circle is 3.9 ?? 0.9 mm/yr compared to the east end of our network. On the Colorado Plateau the east end of our network moves by ???1-2 mm/yr westerly with respect to North America. Transitions in strain rates delimit six major tectonic domains within the province. These deformation zones coincide with areas of modern seismicity and are, from east to west, (1) east-west extension in the Wasatch Fault zone, (2) low rate east-west extension centered near the Nevada-Utah border, (3) low rate east-west contraction between 114.7??W and 117.9??W, (4) extension normal to and strike-slip motion across the N10??E striking Central Nevada Seismic Zone, (5) right lateral simple shear oriented N13??W inside the Walker Lane Belt, and (6) shear plus extension near the Sierra Nevada frontal faults. Concentration of shear and dilatational deformation across the three westernmost zones suggests that the Walker Lane Belt lithosphere is rheologically weak. However, we show that linear gradients in viscosity and gravitational potential energy can also effectively concentrate deformation. In the Basin and Range, gradients in gravitational potential are spatially anticorrelated with dilatational strain rates, consistent with the presence of horizontal variations in viscosity of the lithosphere.

  15. New constraints on the Pan-African tectonics and the role of the Mwembeshi Zone in Central Zambia: Deformation style and timing of two orthogonal shortening events

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Lehmann, Jeremie; Saalmann, Kerstin; Milani, Lorenzo; Kinnaird, Judith; Charlesworth, Guy; Rankin, William; Frei, Dirk

    2014-05-01

    dextral strike-slip zones. East of the granite, D2 resulted in E-W trending open folds that refolded the D1 structures. This folding becomes more intense and the folds are tighter when approaching the MwZ to the south. Along the MwZ, the molasse rocks, deposited after D1 (post ~528 Ma, based on new detrital-zircon ages), recorded high-strain greenschist facies coaxial deformation and the formation of E-W trending isoclinal folds with a steep south-dipping axial planar cleavage. This study shows that the area north of the MwZ is characterised by two orthogonal contraction events. The newly described D1 event of E-W shortening in the Hook area cannot be correlated with any of the published Pan-African tectonic models for the Lufilian Arc and Zambezi Belt. The D2 event of N-S shortening affected the region in response to the final docking between the Lufilian Arc and the Zambezi Belt. The strongest effect of this event was observed along the MwZ, which, during this stage, was a zone of intense coaxial deformation.

  16. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  17. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  18. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  19. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  20. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  1. Active intraplate deformation as geodynamic responses to oblique shallow subduction of a flat slab: example from central and southwest Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi

    2015-04-01

    Subduction of a flat slab has been recognized as one of the primary driving mechanism of wide intracontinental subsidence farther away from the subduction leading edge in many subduction margins. In most cases, however, quantitative and qualitative limitations on chronological constraints prevent comprehensive understanding of these geodynamic linkages. In this study, we show distinct, geologic and seismic evidence for spatial and temporal correlation between plate subduction and intercontinental deformation, mainly driven by dynamic interaction between subducting Philippine Sea (PHS) plate and overriding continental crusts of central and southwest Japan (Eurasian plate) along the Nankai-Tonankai subduction zone since Pliocene. Based on analyses of Pliocene to Pleistocene tectonic histories by use of rich dataset of Neogene stratigraphy, drainage network evolution, and shallow to deep seismic reflection profiles, depocenters of wide sedimentary basins and active thrusting have migrated northward since ca. 5 Ma to present from forearc to backarc of the southwest Japan arc. Median tectonic line, active dextral strike-slip fault as a forearc sliver along the Nankai, is located north of the upward extension of the downdip limit of the interseismic locked zone. Southwest Japan north of the MTL, underlain by the subducting slab with steady state slip (Nakanishi et al., 2002; Kodaira et al., 2004), appears tectonically less inactive than central Japan and has behaved as a less deformed rigid block. Contrastingly, Quaternary active intraplate deformation has been prominent north of the inactive MTL above a shallow flat segment of the PHS plate along the Tonankai. Deep seismic reflection profile images upward corrugated very shallow PHS slab being contact with continental lower crust beneath actively deforming area. We interpreted temporal and spatial correlation of oblique subduction of the shallow and flat, corrugated PHS slab as an essential mechanical role to enhance

  2. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  3. Modelling of The Deep Gravity-movement of Niscemi (caltanisetta, Sicily, Italy): The Decisive Role of Tectonic Deformation.

    NASA Astrophysics Data System (ADS)

    Rizzo, V.; Toni, G.; Fragale, F.; Rijillo, R.

    The Niscemi slide occurred on 12.10.1997 at the end of a dry season, and two days after very heavy rainfall (218 mm). This movement remobilised an ancient landslide, historically documented on 19.3.1791, with the same kinematic features but with less steps. The mass consists mainly of overconsolidated clays, sometimes overlapped with sands. Seismic reflection, partly carried out by AGIP, has allowed isopach recon- struction of the postorogenic-sedimentary cover (Gela nappe). This deep geological structure seems to control the slide shape with back-thrusts and discontinuities, usu- ally present in a geological medium, that behave as natural barriers against tectonic stresses. In geotechnics, we can say also that from a brittle stress-strain behaviour, it is possible to pass on to a ductile one, following phenomenons of hardening. The subse- quent formation of zones with different shape and thickness of materials in the plastic state is responsible for the upsetting of superficial masses, that does not lead to the usual wedge shaped slide as an accumulation zone. Finally, further superficial move- ments might be stimulated by exceptional rainy events, able to give an high hydrostatic pressure along main trenches and to modify the efficacy of mobilizing friction

  4. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  5. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  6. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  7. Identifying active structures in the Kayak Island and Pamplona Zones: Implications for offshore tectonics of the Yakutat Microplate, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.

    Within the northern Gulf of Alaska, the Yakutat (YAK) microplate obliquely collides with and subducts beneath the North American (NA) continent at near-Pacific plate velocities. We investigate the extent that thin-skinned deformation on offshore structures located within the western portion of the unsubducted YAK block accommodates YAK-NA convergence. We compare faulting and folding observed on high-resolution and basin-scale multichannel seismic (MCS) reflection data with earthquake locations and surface ruptures observed on high-resolution bathymetric data. Holocene sediments overlying the Kayak Island fault zone (KIZ), previously interpreted as a region of active contraction, are relatively flat-lying, suggesting that active convergence within the KIZ is waning. Seismic reflection profiles east of KIZ show up to ˜200 m of undisturbed sediments overlying older folds in the Bering Trough, indicating that this area has been tectonically inactive since at least the last ˜1.3 Ma. Farther east, MCS profiles image active deformation in surface sediments along the eastern edge of the Pamplona zone (PZ) fold-and-thrust belt, that are collocated with a concentration of earthquake events that continues southwest to Khitrov Ridge and onshore through Icy Bay. These observations suggest that during the late Quaternary offshore shallow deformation style changed from distributed across the western Yakutat block to localized at the eastern edge of the PZ with extrusion of sediments southwest through the Khitrov Ridge area to the Aleutian Trench. This shallow deformation is interpreted as deformation of an accretionary complex above a shallow decollement.

  8. Growth of a tectonic ridge

    SciTech Connect

    Fleming, R.W.; Messerich, J.A.; Johnson, A.M.

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  9. Magnetic fabric study of rock deformation during alpine tectonic evolution on a cross section through the Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Gruber, K.; Scholger, R.; Pueyo, E. L.

    2010-05-01

    Measurements of anisotropy of magnetic susceptibility (AMS) were carried out on samples from more than seventy sites collected in the Eastern Alps. The sites were taken alongside a North-South transect (about 15°30` East Longitude) from Scheibbs in the North to Kapfenberg in the South, comprising most of the Northern Calcareous Alps (NCA) nappes, Helvetic and Penninic Flysh units as well as the greywacke zone. Samples were taken in detail mostly in Mesozoic rocks of the NCA, from North to South: Bajuvaric (Frankenfels, Lunz, Sulzbach and Reisalpen nappes), Tirolic (Ötscher, Göller, Rotwald-Gindelstein nappes) and Juvavic (Mürzalpen nappe) system. Two to six sites per thrust sheet or nappe were analysed for a structural investigation of the relationship between magnetic fabric and tectonic strain. Standard paleomagnetic drill cores were taken. All measurements were performed in the Petrophysics and Paleomagnetic laboratories of the University of Leoben using AGICO MFK1-Kappabridge susceptibility system and a 2-G cryogenic magnetometer. Statistical evaluation of the AMS data was perfomed using the software package AGICO ANISOFT 4.2. (Chadima et al., 2009). Throughout the Eastern Alps transect distinct changes of the magnetic fabric are observed. Primary sedimentary fabrics and very low susceptibility values are dominant in most cases in the northernmost and southernmost part of the transect. Some inverse fabrics were found in few sites of the nappes and the percentage increases towards the south which might be related to tectonic events. Contrastingly, isotropic fabrics dominate in the middle part. The Helvetic and Penninic Flysh units yield in general weak oblate fabrics. A few sites show a tendency to inverse fabrics which indicate the presence of a certain amount of strain within this unit. The oblate fabrics of the Helvetic and Flysh units show either shallow NE dipping or slightly steeper SW dipping k1-axis orientation. Within the inverse fabrics, even

  10. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    NASA Astrophysics Data System (ADS)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  11. Mega-Network GPS Solutions: Producing a Consistent, Global-Scale, and High-Resolution View of Plate Tectonic Stability, Rotation, and Deformation.

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C.

    2007-12-01

    We present a single self-consistent GPS solution for over 2000 stations with ambiguity resolution applied for the period 1994--2007. Here we demonstrate that such `mega-network' GPS solutions provide a consistent, global- scale, and high-resolution view of plate tectonics in action. Specifically our solution is used to investigate the stability of the North American plate, its rotation, intra-plate deformation, and deformation in the Pacific-North America Plate boundary zone. A significant improvement in precision and accuracy attributable to ambiguity resolution is quantified by (1) the reduction of variance of station position time series (`repeatability'), (2) the reduction of variance in motions between stations within stable plate interiors, and (3) the relative smoothness of the velocity field in the Great Basin of western North America. The software developed to produce this solution, AMBIZAP Version 2.0 (ftp://gneiss.nbmg.unr.edu/ambizap) was made publicly available in August 2007. The method builds seamlessly on the precise point positioning (PPP) method invented by Zumberge et al. in 1997, additionally providing improved accuracy at a fraction of the original computational cost. Like PPP, the computation time of AMBIZAP (including network adjustment) is linear with number of stations N, unlike previous algorithms that exhibit power-law behavior, which presents a barrier to processing N >> 100. The longer-term significance of this development is the ease with which the software could be applied to N ~ 10000 GPS networks worldwide within the foreseeable future, including the N > 1000 Plate Boundary Observatory, which is already nearing completion.

  12. Style of Alpine tectonic deformation in the Castellane fold-and-thrust belt, (SW Alps, France): Insights from balanced cross-sections

    NASA Astrophysics Data System (ADS)

    Jourdon, Anthony; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    This study proposes a reappraisal of the role of the basement tectonics in the structuration of the Alpine foreland, across the Castellane fold-and-thrust belt located in southwestern Alps. We construct three 30 km length N-S balanced cross-sections across the entire fold-and-thrust belt, in order to quantify the amount of horizontal shortening due to the Pyrenean and Alpine deformations. We then assess the role of the basement inherited structures during the compressional phases which resulted in the exhumation of the Argentera-Mercantour External crystalline massif and the Barrot Dome. The construction of these balanced cross-sections suggests a dominant thick-skinned deformation style, which includes the reactivation of inherited Permian and Early Cretaceous basement normal faults. We reconstructed three restoration stages: the oldest one highlights the geometry of Permian and Early Cretaceous extensional structures; the intermediate one after the Late Cretaceous evidences a first compressional episode linked to the Pyrenean compression; the latest one in the Oligocene shows the first Alpine folds resulting from the southward thrusting of the internal units over the external ones along of the Penninic Frontal Thrust. Balanced cross-sections suggest very moderate crystalline basement - sedimentary cover decoupling. On the western and central cross-sections, the estimated amount of shortening ranges from 9.5 to 10 km (21%) whereas on the easternmost one shows ~5 km of shortening (9%). These shortening values are consistent with previously published estimates in the surrounding foreland subalpine chains. They highlight a decreasing value of Pyrenean shortening towards the east, while the Alpine shortening dominates and amplifies this first phase in a similar direction. We interpret this dominantly thick-skinned structural style as a possible consequence of the Neogene thermal weakening in the European passive margin above the Ligurian slab rollback.

  13. Project REPONS: Offshore Faults, Tectonic Deformation and Turbidite Record in Response to the January 12 2010 Earthquake, Haiti

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Gulick, S. P.; Cormier, M.; Dieudonne, N.; Diebold, J. B.; Douilly, R.; Hornbach, M.; Johnson, H. E.; Mishkin, K.; Seeber, L.; Sorlien, C. C.; Steckler, M. S.; Symithe, S. J.

    2010-12-01

    As part of an NSF RAPID response to the January 12, 2010 earthquake, we mapped the underwater continuation of the Enriquillo-Plantain Garden fault zone (EPGF) west of Léogâne. Multibeam bathymetry, sidescan sonar, chirp subbottom profiler, sediment sampling and CTD measurements were conducted in water depths of 2 m to 1750 m from the R/V Endeavor and from a small inflatable boat. The offshore segment of the EPGF is manifested by two steep, 50-80 m high linear ridges and at least two subsurface faults. The submarine EPGF is part of a transition from releasing to restraining segment. To the east, it joins its onshore trace in a releasing bend and continues to the west in a restraining bend that perhaps caused the Tapion ridge. Within the Baies de Petit and Grand Goâve, river outlets are correlated with lateral spreading and/or subsidence where we observed increased local damage to structures. Lateral spreading and/or subsidence appears to have increased tsunami effects locally. Coral uplift NE and SW of offshore fault traces offer evidence of the January 12, 2010 surface deformation. While a seafloor rupture is not evident from the data collected we do image deformation within the upper 20 m in both bays. Mass wasting and gravity flow deposits from the last and older earthquakes were tracked from the Léogâne delta and along the coast to the deepest depocenter. Th-234 and Be-7 with half-lives of 24 and 53 days, respectively verified the January 12 turbidite and indicated an influx of terrigenous sediment mixed with marine sources. Coral debris was sampled in the shelf and upper slope (100-300 m) near the EPGF; basalt sand derived from the highlands and wood fragments at intermediate water depths (1000-1100 m); lastly an ~0.03 km3 and >1 m thick turbidite was deposited over 50 km2 in the Canal du Sud depocenter (1750 m). The sandy parts of all cores recovered from Canal du Sud depocenter have alternate episodes of traction deposition and erosion that reflect

  14. Tectonic evolution of the Irtysh collision belt: New zircon U-Pb ages of deformed and collisional granitoids in the Kalaxiangar area, NW China

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Jun, Gao; Xingwang, Xu; Klemd, Reiner

    2016-04-01

    The CAOB is thought to have formed by multiple accretion and collision of various microcontinents, island arcs, oceanic plateaus and accretionary wedges due to the closure of the Paleo-Asia Ocean [1, 2, 3]. The Irtysh collision belt is located at the middle-western part of the CAOB and generally thought to be the result of the collision of the Sawuer Island arc and the Altay Terrane, subsequent to the consumption of the Early Paleozoic Junggar Ocean, a branch of Paleo-Asia Ocean. Therefore, the exact timing of the Irtysh collision belt is crucial for a better understanding of the tectonic evolution of this collision belt and will provide constraints on the evolution of the CAOB. Recently, we discovered various collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh collision belt. In this contribution, we report new geochemical whole-rock, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our new results reveal that 1) the arc-related granodioritic porphyries formed at ca. 374 Ma. Furthermore, recrystallized zircons from the granodioritic mylonite and ultramylonite of the Laoshankou ductile deformation zone have a similar U-Pb age of ca. 360 Ma; 2) the syn-collisional granodioritic porphyries, which distribute along cleavege, were emplaced at ca. 355 Ma; 3) the post-collisional A-type granodioritic porphyry, which cuts the NW-NNW trending schistosity at a low angle, has an age of ca. 323 Ma, ɛHf(t) values from + 7.5 to + 14.4, and young Hf model ages between 387 and 658 Ma; 4) the post-collisional A-type granite dykes, which are exposed along strike-slip faults, have ages between 282.5 and 279.2Ma, ɛHf(t) values from + 4.8 to + 12.6, and Hf model ages between 436 and 729 Ma; 5) the A-type biotite granite dykes that intruded along conjugate tension joints have ages between 273.9 and 271.4 Ma, ɛHf(t) values from + 1.1 to + 12.8, and Hf model ages between 393 and 979 Ma. In

  15. Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Han, Wenxia; Fang, Xiaomin; Zhang, Weilin; Song, Chunhui; Yan, Maodu

    2016-02-01

    As the tectonical and geographical northern edge of the Tibetan Plateau, the evolution of the Altyn Tagh range has attracted wide attention. Precise dating of its activities is believed essential for understanding the possible mechanisms of the Tibetan Plateau uplift and its effects on climate changes. Under the framework of basin-mountain coupling, both magnetic susceptibility and rock magnetic researches were carried out in this study on the Late Cenozoic sediments of the Honggouzi (HGZ) section (ca. 17-5 Ma) in the western Qaidam Basin to explore the tectonic and climatic evolution as well as their interactions of the Altyn Tagh range. The obtained magnetic susceptibility record in the HGZ section displayed a two-step variation, which kept relatively low and stable values for sediments from the stratigraphic levels of 120-596 m (ca. 17-10 Ma) (stage I), but increased rapidly from 596 to 1014 m (ca. 10-5 Ma) (stage II). The rock magnetic results revealed that paramagnetic minerals or clay minerals, maghemite and hematite are dominant in stage I, which were replaced by magnetite and maghemite in stage II. A detailed comparison of magnetic susceptibility record in the HGZ section with regional tectonic and climate records was carried out. Combined with sedimentary facies, lithology and angular unconformity in the sequence, as well as seismostratigraphy data, paleocurrent and provenance analyses, the possible mechanisms for the magnetic susceptibility variation were explored. The results indicated a direct link between magnetic susceptibility change and the uplift of the Altyn Tagh range at ca. 10 Ma.

  16. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin

    NASA Astrophysics Data System (ADS)

    Rougier, Géraldine; Ford, Mary; Christophoul, Frédéric; Bader, Anne-Gaëlle

    2016-03-01

    The central North-Pyrenean retrowedge developed on a thinned lithosphere, rich in Keuper evaporites. The behavior of this retro-foreland system is studied using subsidence analyses and a sequentially restored cross-section (120 km, Saint-Gaudens to Castelsarrasin) constrained by new chrono- and lithostratigraphy, surface and subsurface data. During the Late Cretaceous, a first episode of foreland subsidence (E1) produced a narrow marine depocenter (Comminges Basin, 30 km wide), supplied from the east. A synchronous early deformation involved inversion of basement faults and gentle shortening (4.5 km) of the Mesozoic strata above a Keuper decoupling layer. A tectonically quiet period (Q, Paleocene), characterized by a condensed succession (marine and continental), was followed by a second episode of subsidence (E2), basin migration and gentle thick- and thin-skinned shortening (8 km). Continental sedimentation, supplied by the uplifting orogen, first filled a narrow flexural basin (E2, M-L Eocene), then expanded across the Aquitaine Platform (E3, Oligocene-Miocene).

  17. Seismic evidence of divergent rifting and subsequent deformation in the southern Japan Sea, and a Cenozoic tectonic synthesis of the eastern Eurasian margin

    NASA Astrophysics Data System (ADS)

    Itoh, Yasuto; Uno, Koji; Arato, Hiroyuki

    2006-10-01

    Neogene rift system configuration for the back-arc of southwest Japan, southern rim of the Japan Sea, is argued on the basis of reflection seismic interpretation. Divergent rifting and subsequent contraction provoked by an arc-arc collisional event are manifested by the formation of faulted grabens and their inverted deformation, respectively. We identified the following four Cenozoic tectonic epochs as a decomposition process of the eastern Eurasian margin based on reliable paleomagnetic data: (1) Plate margin rearrangement on a regional left-lateral fault through southwest Japan and Sikhote Alin, which constituted a continuous geologic province before the early Tertiary differential motion; (2) Early Tertiary clockwise rotation (>20°) of the east Tan-Lu block relative to the North China block; (3) Oligocene to early Miocene divergent rifting and spreading of the Japan Sea, which divided southwest Japan from the east Tan-Lu block; (4) Middle Miocene bending and back-arc inversion of southwest Japan caused by collision with the Izu-Bonin arc. According to the estimation of relative motions during these events, a paleogeographic reconstruction is presented through Cenozoic time.

  18. The role of the Montello hill in the seismicity and active deformation of Southern Alps

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Serpelloni, E.; Danesi, S.; Lovati, S.; Massa, M.; Mastrolembo Ventura, B.; Danecek, P.; Cavaliere, A.; Salimbeni, S.

    2013-12-01

    The most remarkable geomorphological feature of the eastern Southern Alps (northern Italy) is the Montello anticline, a ~15km long SSW-NNE elongated hill, sited ~40km north of Venice, and offset of ~15 km to the south from the main pede-Alpine thrust front. It has been generated by the uplift and the deformation produced by a S-verging blind thrust, constrained by morphotectonic analyses of uplifted river terraces and sub-surface data. Despite it is presently considered as one of the main S-verging seismogenic segments of the tectonically active Southern Alps thrust front, its real seismogenic potential is still matter of debate. Although the area has been hit in 1695 by a Mw 6.5 earthquake, the Montello is currently characterized by slower seismicity activity than its confining segments and geodetic deformation rates are at the mm/yr level. In order to study the present day crustal deformation at the fault-scale and to improve the detection of background seismicity associated to the 'seismically silent' Montello thrust and to understand its interseismic behavior, we have installed a temporary multi-parametric geophysical network, which integrates space geodetic (GPS) and seismological observations during the 2010-2011 time-interval, running semi-continuous GPS experiments from 2009 to 2013. We recorded 142 local events (compared to the 43 events located by the Italian Seismic Network), located with good reliability (rms < 0.5) with Ml between 1.5 and 3.5. The available continuous and semi-continuous GPS data show that ~2 mm/yr of N-S convergence are accommodated across this sector of the Southern Alps, but the deformation signal appears more complex than what expected by a single thrust fault. GPS, although preliminary and not sampling optimally possible lateral variations of the strain-rate field, show a remarkable change of the kinematics across the external Montello thrust front. The GPS and seismological data collected during the experiment suggest that the

  19. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  20. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China

    NASA Astrophysics Data System (ADS)

    Zhongyuan, Yu; Peizhen, Zhang; Wei, Min; Qinghai, Wei; Limei, Wang; Bin, Zhao; Shuang, Liu; Jian, Kang

    2015-08-01

    The Da'an-Dedu Fault Zone is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Five earthquakes with magnitudes over 5 that occurred during the past 30 years suggest the fault zone is a seismogenic structure with future seismic potential. The structural pattern, tectonic history, Quaternary activity and seismic potential have previously been unknown due to the Quaternary sedimentary coverage and lack of large historic earthquakes (M > 7). In this paper, we use seismic reflection profiles and drilling from petroleum explorations and shallow-depth seismic reflections to study those problems. The total length of the Da'an-Dedu Fault Zone is more than 400 km; modern seismicity delineates it into 4 segments each with a length of 90-100 km. In cross-section view, the folds and associated faults form a complex structural belt with a width of more than 10 km. Shallow-level seismic reflection across the Da'an-Dedu Fault Zone reveals that the Late Quaternary sediments were folded and faulted, indicating its present tectonic activity. The Da'an-Dedu Fault Zone and Songliao Basin have been subjected to three stages of tectonic evolution: a rifting stage characterized by normal faulting and extension (∼145-112 Ma), a prolonged stage of thermal subsidence (∼112-65 Ma), and a tectonic reversal that has been taking place since ∼65 Ma. Our shallow-level reflection profiles show that the folding and reverse faulting have influenced the Late Quaternary sediments. The seismicity and moderate earthquakes suggest that the tectonic activity persists today. The deformation rate across the Da'an-Dedu Fault Zone, however, is measured to be very slow. In conjunction with the inference that most deformation in NE China may be taken up by the Yilan-Yitong Fault Zone bounding the Songliao Basin to the east, we suggest moderate earthquake potential and thus moderate seismic hazards along the Da'an-Dedu Fault Zone. The geological structures, which

  1. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2004-05-01

    Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S-C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.

  2. Active deformation of the northern front of the Eastern Great Caucasus

    NASA Astrophysics Data System (ADS)

    Niviere, Bertrand; Gagala, Lukasz; Callot, Jean-Paul; Regard, Vincent; Ringenbach, Jean-Claude

    2016-04-01

    The Arabia-Eurasia collision involved a mosaic of island arcs and microcontinents. Their accretion to the complex paleogeographic margin of Neotethys was marked by numerous collisional events. The Greater Caucasus constitute the northernmost tectonic element of this tectonic collage, developed as a back arc extensional zone now inverted, which relationships to the onset of Arabia-Eurasia continental collision and/or to the reorganization of the Arabia-Eurasia plate boundary at ˜5 Ma remain controversial. Structurally, the Greater Caucasus are a former continental back arc rift, now the locus of ongoing continental shortening. Modern geodetic observations suggest that in the west, the strain north of the Armenian Plateau is accommodated almost exclusively along the margins of the Greater Caucasus. This differs from regions further east where strain accommodation is distributed across both the Lesser and Greater Caucasus, and within the Greater Caucasus range, with a unique southward vergence. We question here the amount and mechanisms by which the Eastern Greater Caucasus accommodate part of the Arabia-Eurasia convergence. Morphostructural analysis of the folded late Pleistocene marine terrace along the northern slope of the Eastern Greater Caucasus evidences an on going tectonic activity in the area where GPS measurements record no motion. Most of the recent foreland deformation is accommodated by south-vergent folds and thrust, i. e. opposite to the vergence of the Caucasus frontal northern thrust. A progressive unconformity in the folded beds shows that it was already active during the late Pliocene. Cosmogenic dating of the terrace and kinematic restoration of the remnant terrace, linked to the subsurface geology allows for the estimation of a shortening rate ranging from a few mm/yr to 1 cm/yr over the last 5 Myr along the greater Caucasus northern front. Thus more than one third of the shortening between the Kura block / Lesser Caucasus domain and the Stable

  3. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    NASA Astrophysics Data System (ADS)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion

  4. The Large Scale Tectonic Framework of SE Asia and the Deformation of the lithosphere Beneath Tibet and SW China (Invited)

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Huang, H.; Yao, H.

    2010-12-01

    delineate the 3-D anisotropic structure of the crust and lithospheric mantle at length scales as small as 100 km beneath SE Asia. These inversions revealed (i) the presence of intra-crustal low velocity zones (perhaps bounded by major faults), (ii) a strong correlation between these low velocity zones and radial anisotropy (Vsh faster than Vsv), and (iii) that the pattern of crustal (azimuthal) anisotropy is quite different from that in the deep crust and mantle lithosphere. Furthermore, the spatial relationship with high heat flow, high (electrical) conductivity, and high Poisson’s ratio’s suggests that the crustal zones of low shear velocity are mechanically weak. Collectively, these inferences suggest that deformation is generally not vertically coherent and that (horizontal) ductile flow occurs (at least locally) in the deep crust of SE Tibet. Deformation of the lithosphere in SE Tibet may thus occur through interaction of geological units with and without crustal flow that are separated by major faults.

  5. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter

    2016-04-01

    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  6. Basin development and compressional deformation in the central High Atlas Mountains northwest of Errachidia (Morocco) - rejuvenated tectonics

    SciTech Connect

    Brede, R.

    1988-08-01

    The development of the central High Atlas Mountains from the Triassic until today was controlled by a set of pre-existent basement faults which were reactivated in various manners. During the Triassic a graben began to subside at the northwestern border of the African craton. The graben's development was at least temporarily linked to the opening of the Atlantic Ocean. The growing basin was filled by red detrital material from the adjacent elevated regions. Evaporites were only locally formed. Mostly the red beds show an intercalation of basic volcanics. During the early and middle Liassic, a shallow shelf with reefs existed at the southern rim of the Atlas-Gulf, from which much carbonate material was delivered into the basin. This deposition is proved by turbiditic limestones of considerable thickness in the Pliensbachian. After a further deepening of the Atlas-Gulf in the late Liassic and the early Dogger, a trend toward shallowing began in the Bajocian, enabling reefs to grow from the south into the basin. Toward the end of the middle Dogger, the trough began to fill with red detrital material. This period of red-bed sedimentation lasted until the early part of the late Cretaceous and had abundant intercalation of gypsum near the top of the sequence. Due to a transgression a short marine period followed, documented by the Cenomanian-Turonian limestones. This marine period was succeeded again by the deposition of red beds in the middle of late Cretaceous. The Jurassic sediments are sometimes penetrated by small doleritic dikes. The development of the basin was controlled by east-northeast-striking faults. During compression in the Tertiary, the /sigma//sub 3/ direction (north-northwest) of the Mesozoic basin development changed into the /sigma//sub 1/ direction of compressional deformation and the synsedimentary normal faults were reactivated as upthrusts.

  7. Deformation in a hyperslow oceanic rift: Insights from the tectonics of the São Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.; Boulesteix, T.; Costa, A. C. G.; Catalão, J.

    2016-02-01

    The evolution of hyperslow oceanic rifts, like the Terceira Rift (TR) in the Azores, is still poorly understood. Here we examine the distribution of strain and magmatism in the portion of the TR making up the Nubia-Eurasia plate boundary. We use São Miguel Island because it stretches most of the TR width, which allows to investigate the TR's architecture and shedding light on TR's age and mode of deformation. From topography and structural analysis, and new measurements of 380 faults and dikes, we show that (1) São Miguel has two main structural directions, N150 and N110, mostly concentrated in the eastern part of the island as an onshore continuation of the faults observed offshore in the NE (N110 faults) and SW (N140) TR walls; (2) a new N50-N80 fault system is identified in São Miguel; (3) fault and dike geometries indicate that eastern São Miguel comprises the TR's northern boundary, and the lack of major faults in central and western São Miguel indicates that rifting is mostly concentrated at master faults bounding the TR. Based on TR's geometry, structural observations and plate kinematics, we estimate that the TR initiated between 1.4 and 2.7 Ma ago and that there is no appreciable seafloor spreading associated with rifting. Based on plate kinematics, on the new structural data, and on São Miguel's structural and volcanic trends, we propose that the eastern two thirds of São Miguel lie along a main TR-related transform fault striking N70-N80, which connects two widely separated N130-N150 TR-trending segments.

  8. Long- and short-term deformation along the active northern margin of the hyblean plateau (se sicily) from multidisciplinary data: evidence for a new potential seismogenic source

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Catalano, Stefano; Maniscalco, Rosanna; Pavano, Francesco; Romagnoli, Gino; Sturiale, Giovanni; Tortorici, Giuseppe

    2014-05-01

    A geologic and geodetic integrated analysis of the northern margin of the Hyblean Plateau (SE Sicily) has been carried out in order to test the relation of the active deformation, recorded by GPS data, and the long-term tectonic evolution, recorded by structural and morphological data, with potential seismogenic sources of the region, where high level (MCS I0 = X - XI) historical seismicity occurred. To date, seismotectonic models have alternatively related the main seismogenic sources to the incipient rifting that reactivated the Malta Escarpment in the Ionian off-shore or to the still active NW-SE trending Nubia-Eurasia convergence, that remobilized the northern tectonic boundary of the Hyblean Plateau. In this region, the new data reveal that the active deformation can be framed in the flexural tectonics developed during the late stages of the Nubia-Eurasia plate convergence. Geodetic and geological data provide a coherent kinematic picture that is compatible with the occurrence of a blind ramp thrust along the NW margin of the Hyblean Plateau. This study demonstrates that the onshore seismicity of the Hyblean region can be confidently referred to active compressional dynamics. Additionally, our data candidate the inferred blind thrust, located to the south of the Scordia-Lentini graben, as a major potential seismogenic source that might be considered in interpreting the historical seismicity of the region.

  9. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  10. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    NASA Astrophysics Data System (ADS)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  11. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  12. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  13. Tertiary Tectonics of the West Qinling Fault Zone : evidence from deformation, sedimentation, and magneto-stratigraphy in associated basins in the NE Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Brian, H.; Lease, R. O.; Garzione, C. N.; Zhang, P.

    2012-12-01

    The West Qinling fault zone (WQFZ) is one of the important NWW-trending faults in the northeastern margin of the Tibetan plateau. Field work in Longxi and Wushan region of the east Gansu province indicates that thrust faulting predominated the history of the fault belt in Cenozoic time, while strike-slip movement probably did not appear until the middle Miocene. We argue here that WQFZ has been so sensitive a structure that its Cenozoic activities may be related to the collision between India and Eurasia and the rising of the Tibetan plateau. Reverse faulting and associated mountain uplift along WQFZ at ˜45-50 Ma has been inferred with thermo-chronological dating in its west segment. According to our research, about 30% shortening occurred during the late Paleogene deformation in the Tange basin south of the WQFZ, while significant shortening for regions north of the WQFZ occurred no earlier than the middle Miocene. This shows that the WQFZ became the early northern boundary of the Tibetan Plateau during the late Paleogene. Basin geometry, magnetostratigraphy, sedimentation characteristics and the early syn-depositional deformation indicates that the Wushan basin with ~1700 m of sedimentary rocks generated in association with transpressional deformation along the WQFZ since ~16 Ma when another pulse of uplift and/or deformation began across the north and east margin of the Tibetan plateau. Furthermore, the WQFZ may have played an important role in the process of basin segmentation initiated since ~22 Ma in the region from the Qinghai lake to the east part of Gansu province. We suggest that the middle Miocene (~16 Ma) may represent a change in kinematics and deformation style in the region along and to the south of the WQFZ. At this time, there was a transition from NNE-SSW compressional deformation that dominated the region since the late Paleogene to the development of WNW-ESE and/or E-W trending strike-slip movement and associated transpressional and

  14. Understanding the Tectonic Deformation of Turkish Blocks since Mesozoic; A Paleomagnetic study on the Nigde-Kirsehir Massif and the Taurides

    NASA Astrophysics Data System (ADS)

    Mualla, Cinku; Mumtaz, Hisarli; Ulker, Beyza; Kaya, Nurcan; Oksum, Erdinc; Yilmaz, Yucel; Orbay, Naci

    2015-04-01

    It is reported that the Nigde-Kirsehir massif which constitutes the main fragment of Anatolia is rifted from the Taurides-Anatolides in Mesozoic and that the Intra-Tauride ocean exist between these blocks. Another group of researchers believed that the Intra Tauride ocean did not exist. They assumed that the Nigde-Kirsehir massif existed as a promotory of the Taurides. In this sense, both the Nigde-Kirsehir massif and the Taurides experienced several deformation phases due to the consumption of the oceanic strand (s) and the amalgamation of the Anatolian blocks after collision in the end of the paleotectonic time, whereas in the neotectonic time the traces of the westwards excursion of Anatolia was effective. Previous paleomagnetic studies showed that the Nigde-Kirsehir massif rotated 90° anticlockwise during Jurassic to Eocene time and other studies showed that the collision between the Nigde-Kirsehir massif and the Pontides resulted by deformation which was accomodated by regional faults. In the south of the Nigde-Kirsehir massif, it was proposed that all the rocks in Carboniferous to Eosen were remagnetized due to nap emplacement in Eocene. Because of several alternative interpretations about the tectonic deformation of the Nigde-Kirsehir massif in relation between the Taurides and the Pontides, we report new paleomagnetic results from Late Jurassic to Miocene rocks in the Nigde-Kirsehir massif and its surrounding. A total of 138 different sites were sampled from Jurassic to Miocene rocks in the south of the Nigde-Kirsehir massif around Ki ri kkale, Tuzgölü, Uluki şla and Kayseri, whereas in the Central Taurides Late Jurassic- Lower Cretaceous platform type carbonates and ophiolitic rocks from Mersin and Pozanti were collected. Paleomagnetic results evaluated together with previous paleomagnetic data indicate that all the studied rocks carry a magnetization before folding according to positive incremental fold tests. It has been shown that in the SE/E (SE

  15. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  16. Archaeological evidences of the tectonic activity of Shueib Structure (NW Jordan)

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, Mohammad; Azañón, J. Miguel; Pérez-Peña, J. Vicente; Booth-Rea, Gillermo

    2014-05-01

    Archaeological damage in buried ruins often offers an excellent record of recent tectonic activity. The lower Jordan valley has experienced a continuous occupation in the last 5000 year, being frequent archaeological remains of human settlements along the valley. In this work we studied the Early Neolithic-to-Middle Islamic Periods archaeological site of Tall al-Hammam (Arabic name, ¨Hill of Baths¨). This ruin is located 27 km southwest of Amman city and it constitutes the largest Bronze Age archaeological site in Jordan. It consists of two main parts; the Upper Tall and the Lower Tall. This ruin lies within the southwestern termination of the Shueib structure (SHS); a Cretaceous fold-bend fault structure thought inactive through the entire Cenozoic. The relics, in the lower Tall, show clear fault-related damage in some walls. Two Middle Bronze Age (MBA) walls are displaced 26 and 20 cm respectively, according with a NNE-SSW fault plane. Apart of wall displacements, hundreds of joints and cracks in boulders of the walls are present. They strike generally NW-SE and NE-SW. Both archaeological evidences, boulder fractures and walls distortion, are coherent with the present-day tectonic setting of the Dead Sea Transform Fault in the region, and suggest a Quaternary reactivation of the SHS.

  17. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  18. The tectonics of intraplate regions: Quantifying stress and surface deformation in the central and eastern U.S. and planetary analogs on Mercury and the Moon

    NASA Astrophysics Data System (ADS)

    Walsh, Lisa Schleicher

    Occurring ~ 1 year apart, the magnitude 3.4 Germantown, Maryland, (16 July 2010) and magnitude 5.8 Mineral, Virginia, (23 August 2011) earthquakes rocked the U.S. national capital region, drawing renewed attention to the occurrence of seismicity within continental interiors. While the majority of earthquakes concentrate at tectonic plate boundaries, the processes that promote spatially diffuse zones of seismicity in intraplate regions are not well understood. The Mineral earthquake was one of the largest earthquakes to occur east of the Rocky Mountains in the past century and offers a rare opportunity to examine the role of stress transfer, long-distance triggering, and aftershock decay within an intraplate region. Stress transfer from the Mineral and Germantown earthquakes relieved stress on the majority of Cenozoic faults in the Mid-Atlantic region, moving these faults further away from future failure. The Everona fault and southern portion of the Mountain Run fault zone were the only locations (except in the aftershock region) that were loaded from the Mineral earthquake, although by only ~1 mbar. Accumulation of stress over time is required in order to significantly affect regional seismicity. There is no evidence of remote triggering due to the passage of seismic waves in any of the major seismic zones in the central and eastern U.S. However, the slow decay rate of aftershocks suggests seismicity in the epicentral region might continue for a decade or longer. Aftershocks triggered by stress imparted by the mainshock imply that Coulomb stress transfer plays an important role in earthquake triggering processes within intraplate regions. Processes in the aftershock zone likely have the greatest influence on seismic hazard. New imagery and altimetry data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft provide new insight into processes driving intraplate tectonic

  19. Mid-crustal emplacement and deformation of plutons in an Andean-style continental arc along the northern margin of the North China Block and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan-Hong; Zhao, Yue

    2013-11-01

    Outcrop mapping and thermobarometrical, thermochronological and microstructural analyses in five Late Carboniferous-Early Permian arc plutons in the northern North China Block (NCB) indicate a transition of tectonic regime from arc-perpendicular contraction to transpression and successive uplift and exhumation of the crustal rocks during magma emplacement and construction of the continental arc system. The early emplaced Daguangding and Boluonuo plutons (324-302 Ma) display well-developed, penetrative, moderately to steeply dipping magmatic foliations and high-temperature sub-solidus foliations that are parallel to host rock foliation near the contact. Widespread high-temperature sub-solidus foliations in these plutons indicate that they are syn-tectonic with N-S, arc-perpendicular shortening and record arc construction at a convergent continental margin. However, the late emplaced Tianqiao and Xianghuangqi-Wudaoyingzi plutons (288-274 Ma) display relatively weak magmatic fabrics at their margins and lack sub-solidus foliations and pluton-related ductile deformation of the contact host rocks. These structural differences likely reflect a kinematic transition from early arc-perpendicular contraction to late sinistral transpression during continental arc formation. Aluminum-in-hornblende barometry shows that their estimated emplacement depths decrease gradually from the Late Carboniferous (18.7 ± 0.8 km) to Early Permian (13.8 ± 0.9 km), indicating successive exhumation of the crustal rocks at an average rate of ca. 123 mm/ka over 40 million years of arc formation. 40Ar/39Ar thermochronological results show that cooling of the continental crust was very slow (4.9 °C/Ma) during arc construction in the Late Carboniferous-Late Permian but increased significantly during the Late Permian-Middle Triassic after arc termination. The mid-crust of the northern NCB remained very hot (> 530 °C) during arc construction and emplacement of the arc batholiths. Combined with

  20. Discontinuous fluidization transition in dense suspensions of actively deforming particles

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    Collective dynamics of self-propelled particles at high density have been shown to display a glass-like transition with a critical slowing down of 2 to 4 orders of magnitude. In this talk, we propose a new mechanism of injecting energy or activity via volume fluctuations. We show that the behaviour of actively deforming particles is strikingly different from that of self-propelled particles. In particular, we find a discontinuous non-equilibrium phase transition from a flowing state to an arrested state. Our minimal model might also explain the collective dynamics in epithelial tissues. In particular, without needing self-propulsion or cell-cell adhesion, volume fluctuations of individual cells alone might be sufficient to give rise to an active fluidization and collective dynamics in densely packed tissues.

  1. Earthquake Cycle Deformation and GPS: A Quantitative Computer-Based Activity for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Marshall, S. T.

    2012-12-01

    Earthquake cycle deformation and geodetic measurements of tectonic strain are well represented in recent peer-reviewed literature; however, because of the quantitative nature of these topics, students are often given only a conceptual description of these processes and techniques at the undergraduate level. Here, I present a computer-based assignment appropriate for Sophomore-level undergraduate students in either a structural geology, tectonics, or geophysics course. The assignment introduces students to the classic analytical earthquake cycle equations for a vertical strike-slip fault. While the equations alone are relatively non-intuitive for understanding earthquake cycle deformation, modern computer applications (e.g Maple, Excel, Matlab, Mathematica, etc…) can be used to easily produce graphs of the equations that are much more meaningful for understanding tectonics. The advantage of having students create their own plots is that once the plots have been created, students can tweak model parameters (locking depth and slip rate) to see how the resultant deformation would change. Thus, the students can effectively create their own earthquake cycle deformation tool that can be tweaked to fit real or hypothetical data. The assignment ends by having students determine the interseismic slip rate and locking depth on the San Andreas fault given actual Plate Boundary Observatory Data that is provided to them. The overarching goals of the assignment are to encourage students to make their own tools and graphics for learning new concepts and to encourage the next generation of geologists to pursue quantitative tectonic studies in their academic and/or professional futures.

  2. Using Digital Topography to Differentiate Erosionally Exhumed and Tectonically Active Mountains Fronts

    NASA Astrophysics Data System (ADS)

    Frankel, K. L.; Pazzaglia, F. J.

    2003-12-01

    Mountain ranges in the southern Rocky Mountains have departed on unique landscape evolutionary pathways in the late Cenozoic that are directly dependent upon the degree of post-orogenic tectonic activity they have experienced. The topography of Sierra Nacimiento, a Laramide uplift in west-central New Mexico lacking an active range-front fault, is shaped primarily by erosional exhumation that is continuous, but not steady, being driven by distal base level fall from Rio Grande incision and resultant south to north knickpoint migration. In contrast, the topography of the Taos Range, a rift flank uplift in north-central New Mexico is shaped by contrasting active stream incision and aggradation astride an active range front normal fault. The distinction between exhumation-dominated and tectonically-dominated mountain fronts is best quantified by analyses of a new metric we call the drainage basin volume to drainage basin area ratio (V-A ratio) as well as the gradients of first-order streams. Drainage basin volume and area are calculated by constructing topographic envelope maps from 10 m resolution digital elevation models (DEM). The envelope maps are pinned by the watershed divide and cover the maximum elevations in each drainage basin. Subtracting the original DEM from the maximum elevation envelope map produces a topographic residual map from which area and volume data can be obtained. The erosionally exhumed Sierra Nacimiento has a mean V-A ratio of 88 m while the tectonically active Taos Range has a mean V-A ratio of 140 m. Similarly, there are systematic differences in the gradients of first order streams measured both in the range block and approximately 5 km of adjacent piedmont. Streams were defined and subsequently Strahler ordered by a flow accumulation threshold of 250 water-equivalent grid cell units. First order stream channel long profiles were extracted from the DEM at 30 meter increments and gradients were calculated by a FORTRAN program. Gradients of

  3. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  4. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    earthquake activity shows that this region is tectonically still active (Mosar, 1999) with numerous earthquakes. The exposure ages imply that the rock failure occurred during the middle Holocene, a period of increased neotectonic activity in Eastern Alps suggested by Prager et al. (2007). This time period also coincides with notably wet climate, which has been suggested as an important trigger for landslides around this age across the Alps (Zerathe et al., 2014).

  5. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  6. Plate Tectonics: From Plate Boundary Zone Tectonics To Extensive Intraplate Tectonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.

    2004-12-01

    Plates makes up earth's surface, and tectonic activity is generally concentrated on plate boundary zones. In restrict meaning, plate tectonics of the earth is regarded as mixture of plate boundary zone tectonics and extensive intraplate tectonics. For example, the Asian continent never behaves as rigid plate that was deformed extensively when the Indian continent collided with it. I infer that extensive intraplate tectonics reflects rheological weakening of wet mantle. To demonstrate effect of H2O component on plate strength, one-dimensional rheological profiles of 100 km depth were constructed by assuming 20km thick upper crust and 20km thick lower crust. Temperature-depth profiles were calculated based on one-dimensional steady-state static heat transfer at given surface heat flows. Power law creep and Byerlee_fs law were used to estimate strength in ductile regime and brittle regime respectively. Creep strength for upper crust, lower crust, dry mantle and wet mantle were calculated using creep parameters of granite, granulite, dry dunite and wet dunite. The minimum value between power law creep strength and Byerlee_fs law strength gives the strength of the lithosphere. Strength profile at surface heat flow of 55mW/m2 (continental average is 56.5mW/m2) and strain rate of 10-15/s (intraplate deformation is about 10-15/s - 10-16/s in Asia) shows a significant difference in strength for using dry mantle and wet mantle. In case of dry mantle, the uppermost mantle is quite strong. However, if wet peridotite represent the upper mantle, there is very little strength in the uppermost mantle. The cumulative lithospheric strength, i.e. integral strength from surface to 100km depth, and the cumulative mantle strength, i.e. integral strength from 40km to 100km depth were calculated with changing strain rate. For example, to deform continental lithosphere at strain rate of 10-15/s, wet mantle has a cumulative strength of about 2x1012N/m whereas the cumulative strength of dry

  7. An attempt to monitor tectonic forces in the Vrancea active geodynamic zone: The Baspunar experiment

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita; Plopeanu, Marin

    2013-04-01

    (sparsely) run in the area, have provided inconsistent results on the PCF current dynamics. The Baspunar Geodynamic Observatory (BGO) has been designed and implemented by the Solid Earth Dynamics Department in the Institute of Geodynamics of the Romanian Academy in order to reveal and monitor eventual motions along PCF in the attempt to correlate variations in the slip rate with changes in the seismicity released within Vrancea zone. The first BGO records were strongly affected by changes in the atmospheric parameters. Consequently, technical measures and special corrections for the removal or at least mitigation of the effects created by changes in temperature, air pressure and humidity have been applied to the observations. In order to improve the signal to noise ratio, some mathematical filters have been applied too. The paper is aimed at revealing results of the geodetic observations along with preliminary geodynamic considerations. On the overall, after about two years of monitoring, PCF appears as an active tectonic contact. It mainly behaves as a left-lateral fault, but some short episodes with a reverse slip (dextral) were also pointed out. Correlations with crustal and intermediate-depth earthquakes occurring in both cases within the bending zone of East Carpathians are illustrated and discussed.

  8. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  9. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  10. Holocene canyon activity under a combination of tidal and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu; Micallef, Aaron; Stevens, Craig; Stirling, Mark

    2013-04-01

    The majority of submarine canyon systems that are active during sea level highstands are coupled to terrestrial or littoral sediment transport systems (e.g. high sediment-yield rivers, wave-base sediment disturbance). However, non-coupled canyon systems can also exhibit sedimentary activity. Characterising the nature, origin, and spatial and temporal influence of the processes responsible for this sedimentary activity is important to understand the extent of sediment and carbon transfer to the deep sea, the impact of sedimentary flows on biological colonisation and diversity, and the control of recent seafloor processes on canyon morphology. The Cook Strait canyon system, between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially-coupled system. Sediment transport on the continental shelf, associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data reveals a system where oceanographic (tidal) and tectonic (earthquake) processes are moving sediment from the continental shelf, through the upper canyon, and finally to the deep ocean. Sediment accumulation rates may reach several mm/yr in the upper canyons, with data suggesting minimum rates of 0.5 mm/yr. We demonstrate that tidal currents are sufficient to mobilise fine to medium sand around and within the upper canyon

  11. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  12. Active tectonic characteristics of river terraces along the Tianquan River, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Cai, Y. M.; Shyu, J. B. H.; Chang, C. P.

    2015-12-01

    The Longmenshan fold-and-thrust belt at the western edge of the Sichuan Basin has long been identified as an active tectonic belt. This has been clearly illustrated by the disastrous Wenchuan and Lushan earthquakes in the recent decade. The two earthquakes, however, have distinctive characters. In the north, the Wenchuan event occurred on major fault zones identified previously. But in the south, the Lushan event was not accompanied by surface ruptures, and the seismogenic structure is still under debate. In order to further understand the neotectonic characteristics of the Lushan earthquake region, we analyzed fluvial terraces, in the hope that such geomorphic features would provide information of active structures of the area. Along the Tianquan River, river terraces are particularly well developed near two cities, Tianquan and Shiyang. Since the terraces appear to be very wide and limited in these two basin-like areas, we suspected that they formed as filled-up lakes. However, after detailed field investigations, we found that underneath these terraces, early Tertiary bedrocks crop out below river sediments that are only several meters thick. This indicates that the Tianquan River has incised into bedrocks. The slope of the terrace surfaces is similar to that of the present-day riverbed, and the river sediments in the terrace outcrops have similar grain size distribution as current riverbed sediments. Therefore, we suggest that the terraces along the Tianquan River are not related to dammed lake, but were produced by tectonic uplift. Combining the age of terrace sediments dated by optically stimulated luminescence (OSL) and detailed topography of the terrace surfaces, we aim to establish a model for the formation mechanism of these two terrace groups. We hope the results of this study would provide more information of neotectonic characteristics of the southwestern Sichuan Basin, as well as future earthquake hazards in this densely populated region.

  13. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  14. Tectonic significance of serpentinites

    NASA Astrophysics Data System (ADS)

    Guillot, Stéphane; Schwartz, Stéphane; Reynard, Bruno; Agard, Philippe; Prigent, Cécile

    2015-04-01

    At plate boundaries, where deformation is localized along centimetre- to kilometre-scale shear zones, the influence of serpentinite on tectonic processes is linked to its unique rheological properties. In this paper we review the physical properties of serpentinites and their role in tectonic processes. At the ocean-continent transition, serpentinization weakens the upper mantle layer, promoting strain localization and allowing the normal faults in the distal margin to root at low angle. Similarly, at slow to ultra-slow spreading ridges, serpentinite is potentially very abundant at the seafloor and locally associated with domal structures. Extensional deformation is localized in a ~ 100 m thick shear zone at the footwall of detachment zones dominated by serpentine derived minerals. Within subduction zone, the depth of decoupling between the mantle wedge and the subducting slab corresponds to the stability depth of serpentine weak mineral. Dehydration of serpentine has also been hypothesized to play an important role in the origin of double seismic zones, however the exact mechanism through which dehydration promotes seismicity remains a matter of debate. During exhumation of high-pressure or ultrahigh-pressure rocks, the opposite trajectories of exhumation and subduction require a decoupling zone within the subducting slab. A serpentinized layer has the potential to become a decoupling zone between the oceanic crust and underlying lithosphere. The buoyancy of serpentinite also likely contributes to eclogite exhumation. Finally, along major strike-slip faults, serpentinites have been associated with fault creep, as well as low fault strength. The presence of serpentinite blocks along creeping segments of active faults worldwide is therefore likely to originate from fluids deriving from the progressive dehydration of the mantle wedge that move such bodies upward.

  15. Estimate of the post-Last Glacial Maximum tectonic subsidence and attempt to elucidate the subsurface geometry of the active Shanchiao Fault in the Taipei metropolis, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.; Teng, L. S.

    2011-12-01

    The Taipei Metropolis, home to some 10 million people, is subject to seismic hazard originated from not only ground shaking in thick alluvial deposits due to distant faults or sources scattered throughout the Taiwan region, but also active faulting directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Plio-Pleistocene arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for the areal extent and magnitude of its recent activity. Based on the growth faulting analysis in the Wuku profile in the central portion of the fault, one key horizon - the top of the Jingmei Conglomerate which was an alluvial fan formed rapidly when a major drainage reorganization occurred during the Last Glacial Maximum - serves to be the marker of tectonic subsidence since its inception around 23 ka. A determination and compilation of the depths of the Jingmei Conglomerate top horizon from nearly 500 borehole records within the Taipei Basin demonstrates that the hanging-wall deforms in a roll-over fashion and the offset is largest in the Wuku-Luzhou area in the central portion of the fault and decreases toward the southern tip of the fault. A geologic profile across the fault zone in the Luzhou area reveals the similar main-branch fault half-negative flower structural pattern observed in the Wuku profile, a phenomenon we interpreted to be originated from the geometry of the basin basement and the strong rheological contrast between unconsolidated basin sediments and basement rocks. We also attempt to resolve the poorly-known subsurface geometry of the Shanchiao Fault by simple elastic dislocation models. The surface deformation recorded by the above compilation is representative of the latest Quaternary period as it spans probably more than 10 earthquake

  16. Tectonics of the Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    McKinnon, W. B.; Collins, G. C.; Moore, J. M.; Nimmo, F.; Pappalardo, R. T.; Prockter, L. M.; Schenk, P. M.

    2010-01-01

    Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Io's surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax. Most satellites exhibit evidence for extensional deformation, and some exhibit strike-slip faulting, whereas contractional tectonism appears to be rare. Io s surface is unique, exhibiting huge isolated mountains that may be blocks of crust tilting and foundering into the rapidly emptying interior as the surface is constantly buried by deposits from hyperactive volcanoes. Of the satellites, diminutive Enceladus is spectacularly active; its south polar terrain is a site of young tectonism, copious heat flow, and tall plumes venting into space. Europa's surface is

  17. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  18. Tracing the evolution of crustal-scale, transient permeability in a tectonically active, mid-crustal, low-permeability environment by means of quartz veins

    NASA Astrophysics Data System (ADS)

    Sintubin, M.

    2013-12-01

    In mid-crustal, low-permeability environments pervasive fluid flow is primarily driven by the production of internally-derived metamorphic fluids, causing a near permanent state of near-lithostatic fluid-pressure conditions. In a tectonically active crust, these overpressured fluids will generate intermittently an enhanced permeability that will facilitate fluid flow through the crust. The High-Ardenne slate belt (Belgium, France, Germany) can be considered as a fossil (late Palaeozoic) analogue of such mid-crustal, low-permeability environment at the brittle-plastic transition (depth range from 7 to 15 km). Low-grade metamorphic (250°C-350°C), predominantly fine-grained, siliciclastic metasediments were affected by a contraction-dominated deformation, materialized by a pervasive slaty cleavage. Quartz veins, abundantly present in the slate belt, are used as a proxy for the enhanced permeability. Detailed structural, petrographical, mineralogical and geochemical studies of different quartz-vein occurrences has enabled to reconstruct the evolution of the crustal-scale permeability , as well as to constrain the coupled fluid-pressure and stress-state evolution throughout the orogenic history. Extensive veining on a regional scale seems confined to periods of tectonic stress inversion, both at the onset (compressional stress inversion) and in the final stages (extensional stress inversion) of orogeny. Firstly, compressional stress inversion is expressed by pre-orogenic bedding-normal extension veins, consistently arranged in parallel arrays, followed by early orogenic bedding-parallel hybrid veins. Fluid-inclusion studies demonstrate near-lithostatic to supralithostatic fluid pressures, respectively. Secondly, discordant veins, transecting the pre-existing cleavage fabric, are interpreted to be initiated shortly after the extensional stress inversion, reflecting the late-orogenic extensional destabilisation of the slate belt. Veining again occurred at high fluid

  19. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    PubMed

    Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  20. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  1. Fissured Rocks and Water Reservoirs in Eastern Thessaly Mountain Range, Greece (Olympus, Ossa, Maurovouni and Pelion): The Role of Tectonic Deformation

    NASA Astrophysics Data System (ADS)

    Papanikolaou, I.; Migiros, G.; Stamatis, G.; Yoxas, G.

    2009-04-01

    area of NE Pelion, 93 springs were recorded and 47 have been analyzed regarding their hydrochemical properties, whereas in the area of Ossa 126 springs have been recorded and 49 have been sampled. The large number of springs implies that water recharge and percolation occurs mainly via the fracture network, forming preferential flow paths. Tectonic deformation has proved to have a fundamental role in the hydrogeological pattern in both localities, because water flow either follows or is severely influenced by the major tectonic structures, such as mega-anticlines and faults. It is interesting to note that this fracturing pattern does vary spatially and in all scales, involving the microscopic (foliation, lineation), the mesoscopic (fractures) and the macroscopic scale (faults). In the microscopic scale the clay/platy minerals in the schists recrystalized perpendicular to the applied stresses, forming foliation features towards the NE, promoting flow parallel to foliation. In the mesoscopic scale, two main set of fractures were observed. The intrabedded longintudinal NE-SW fractures and the transverse NW-SE trending fractures, which are highly penetrative. In the macroscopic scale, faults are several km in length and dominate the groundwater flow, forming preferential pathways. Springs are aligned to the faults and in the area of Pelion, three dominant sets of faults are observed. Two of them are NE-SW trending (N 030o ± 10o and N 050o ± 10o), forming a 20o angle of tectonic wedge, whereas the third set is NW-SE trending (N 320o ± 5o). The geometry of faults in the area of Ossa (striking at N 035o ± 25o and N 325o ± 5o) is similar to the area of Pelion and exerts a similar influence to the distribution of springs. This should be the case in other domains of the Hellenic region with similar lithology that experienced the same deformation phase and features. In the area of Pelion the low conductivity values (90% of the springs display less than 300 µS/cm) and the

  2. North Chilean forearc tectonics and cenozoic plate kinematics

    NASA Astrophysics Data System (ADS)

    Buddin, Tim S.; Stimpson, Ian G.; Williams, Graham D.

    1993-04-01

    The continental forearc of northern Chile has been subjected to contemporaneous extension and compression. Here, cross-sections constructed across the forearc are presented which show that since initial shortening, deformation of the forearc has occurred in two tectonically distinct areas. These inner and outer forearc areas are separated by the strain discontinuity of the Atacama fault system and the tectonically neutral Central Depression. The outer forearc, the Coastal Cordillera, exhibits extensional tectonics, with large (up to 300 m) normal fault scarps preserved. These faults cut the earlier thrusts responsible for the elevation of Jurassic rocks at the coast above their regional elevation. The normal faults have been re-activated, displacing Quaternary salt deposits in the Salar Grande. This re-activation of the basement faults is probably due to the subduction of anomalously thick oceanic crust, producing an isostatic imbalance in the outer forearc. In the inner forearc, cross-sections through the Sierra del Medio and Cordillera de Domeyko show that structures of the Pre-Cordillera are best explained by a thick-skinned thrust system, with localized thin-skinned tectonics controlled by evaporite detachment horizons. Current forearc deformation features indicate a strong degree of correlation between subduction zone geometry and forearc tectonics. The timing of Cenozoic tectonism also fits well with established plate motion parameters, and the spatial and temporal variation in the state of stress of the forearc shows a close relationship throughout the Cenozoic to the plate kinematics and morphology of the subducting Nazca plate.

  3. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    PubMed Central

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  4. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  5. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  6. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir

    NASA Astrophysics Data System (ADS)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.

    2012-12-01

    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  7. Pore pressure sensitivities to dynamic strains: Observations in active tectonic regions

    NASA Astrophysics Data System (ADS)

    Barbour, Andrew J.

    2015-08-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydromechanical properties, but accurately assessing how pore fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 to 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas Fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends nonlinearly on the inverse fault-perpendicular distance, with the response decreasing toward the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto Fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the

  8. Active Deformation Along the Algerian Margin (MARADJA Cruise): Framework of the May 21, 2003, Mw-6.8 Boumerdes Earthquake

    NASA Astrophysics Data System (ADS)

    Deverchère, J.; Yelles, K.; Calais, E.

    2003-12-01

    The May 21, 2003, Mw=6.8 Boumerdes earthquake (Algeria) ruptured a ˜60 km long fault, previously unknown, located a few km off the coast of Algeria, causing major damage and casualties on land. The MARADJA cruise (Suroit R/V, Aug.-Sept. 2003), dedicated to a survey of the Algerian margin in order to determine its present-day tectonic regime and identify potentially active faults, allowed for a detailed study of the Boumerdes earthquake rupture area. From a high-resolution multibeam bathymetry and back-scattering data, 3.5 kHz profiles (Chirp), 6 and 24-channel seismic reflection lines, we produced the first detailed morpho-tectonic map of the central Algerian margin and deep basin. The margin and the proximal part of the deep basin show a series of north-verging reverse faults and folds, probably developping over south-dipping ramps. The northern front of this compressional deformation zone reaches ˜20 km into the deep basin, where it interacts with salt-related deformation of the Messinian evaporites, possibly gravity driven in part, widespread in the deep basin. In the area of the May 21, 2003, earthquake, we found active fault scarps delineating a ˜60 km long fault zone at the bottom of the continental slope and at midslope, ˜17 km offshore and roughly parallel to the coast. The fault consists of at least two major segments striking N65 and N71. It might represent the place of rupture of the Boumerdes earthquake. Its location is consistent with the aftershock distribution and with preliminary dislocation models based on GPS data and uplfit observations onland. The MARADJA Scientific Party: Bouillin J-P., Bracene R., Gaullier V., Kherroubi A., Mercier de Lepinay B., Le Roy P., Pauc H., Savoye B.

  9. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  10. Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: an overview ( USA).

    USGS Publications Warehouse

    Hill, D.P.; Bailey, R.A.; Ryall, A.S.

    1985-01-01

    Geological, chronological, and structural studies of the Long Valley-Mono/Inyo Craters area document a long history of related volcanic eruptions and earthquakes controlled by regional extensional tectonics of the Basin and Range province. This activity has persisted for hundreds of thousands of years and is likely to continue. The Long Valley magma chamber had a volume approaching 3000 km3 prior to its climatic caldera-forming eruption 0.7 ma but has been reduced to less than a third of this volume by cooling, eruption, and crystallization. Although current unrest is concentrated in the S moat of Long Valley caldera, the Inyo/Mono Craters probably hold a greater potential for producing an eruption in the foreseeable future. The Inyo/Mono Craters have erupted at 500-year intervals over the past 2000-3000 years, whereas the Long Valley magma chamber has erupted at about 200,000-year intervals over the past 700,000 years. In either case, a major earthquake near the caldera could strongly influence the course of volcanic activity.-from Authors

  11. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites

  12. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  13. Large historical earthquakes and tsunamis in a very active tectonic rift: the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioanna; Papadopoulos, Gerassimos

    2014-05-01

    The Gulf of Corinth is an active tectonic rift controlled by E-W trending normal faults with an uplifted footwall in the south and a subsiding hangingwall with antithetic faulting in the north. Regional geodetic extension rates up to about 1.5 cm/yr have been measured, which is one of the highest for tectonic rifts in the entire Earth, while seismic slip rates up to about 1 cm/yr were estimated. Large earthquakes with magnitudes, M, up to about 7 were historically documented and instrumentally recorded. In this paper we have compiled historical documentation of earthquake and tsunami events occurring in the Corinth Gulf from the antiquity up to the present. The completeness of the events reported improves with time particularly after the 15th century. The majority of tsunamis were caused by earthquake activity although the aseismic landsliding is a relatively frequent agent for tsunami generation in Corinth Gulf. We focus to better understand the process of tsunami generation from earthquakes. To this aim we have considered the elliptical rupture zones of all the strong (M≥ 6.0) historical and instrumental earthquakes known in the Corinth Gulf. We have taken into account rupture zones determined by previous authors. However, magnitudes, M, of historical earthquakes were recalculated from a set of empirical relationships between M and seismic intensity established for earthquakes occurring in Greece during the instrumental era of seismicity. For this application the macroseismic field of each one of the earthquakes was identified and seismic intensities were assigned. Another set of empirical relationships M/L and M/W for instrumentally recorded earthquakes in the Mediterranean region was applied to calculate rupture zone dimensions; where L=rupture zone length, W=rupture zone width. The rupture zones positions were decided on the basis of the localities of the highest seismic intensities and co-seismic ground failures, if any, while the orientation of the maximum

  14. Geomorphic impacts of active tectonics on a river course, the case of Klissoura gorge, central Greece.

    NASA Astrophysics Data System (ADS)

    Tsanakas, Konstantinos; Fubelli, Giandomenico; Karymbalis, Efthimios

    2014-05-01

    The delicate balance of the natural processes within the river systems can be easily tipped making them very sensitive to changes occurring on the earth surface. Fluvial systems are therefore profoundly influenced by endogenic processes such as active tectonics as well as global sea level fluctuations following the climatic variations during the Quaternary. This study deals with the geomorphological evolution of the broader area of the abandoned gorge of Klissoura which is located in central Greece. This 130 m deep and roughly 3 km long gorge is a characteristic example of an old drainage course preserved on the footwall blocks of two normal faults which confine both outlets of the deeply incised valley. The gorge has formed by a river that once had a N-S flow direction discharging into the Gulf of Patras. Acheloos River and the much smaller Ermitza Remma Stream are the two recent primary watercourses which drain the area close to the abandoned gorge. Both the dimensions and morphological characteristics of the abandoned deep valley indicate that the gorge has formed by a large river with high discharge in order to incise into the limestone bedrock. In order to investigate the tectonic constrains and determine the geomorphic and climatic processes that compelled the lower reaches of Acheloos River to abandon the gorge and find an outlet following its present course a GIS based analysis at a scale of 1:50.000 was applied in the drainage basin of Acheloos River. Additionally, to reconstruct the palaeolandscape and the earth surface processes, a detailed morphometric and geomorphic analysis of the abandoned gorge was also performed at a scale of 1:5.000 coupled with field observations and stratigraphic analysis of the deposits outcropping on the valley sides within the gorge as well as on both outlets. The geomorphic analysis led to the conclusion that the primary course of the gorge abandonment and diversion and reverse of the drainage is the uplift of the footwall

  15. Active Deformation along the Southern End of the Tosco-Abreojos Fault System: New Insights from Multibeam Swath Bathymetry

    NASA Astrophysics Data System (ADS)

    Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos

    2011-08-01

    The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.

  16. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Xu, Wen-Liang; Wang, Feng; Zhao, Shuo; Li, Yu

    2015-09-01

    This paper presents new zircon and sphene U-Pb ages, biotite and hornblende 40Ar/39Ar ages, Hf isotopic data, and geochemical data for five Mesozoic plutons in the Erguna Massif of NE China. These data are used to constrain the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. This new dating, when combined with previously published ages, indicates that the Late Jurassic-Early Cretaceous (J3-K1) intrusive rocks can be subdivided into three stages that represent periods of magmatism during the Late Jurassic (~ 155 Ma), early Early Cretaceous (~ 137 Ma), and late Early Cretaceous (~ 123 Ma). In addition, the rocks have undergone later deformation recorded by peak ages of ~ 137 and ~ 123 Ma. The Late Jurassic and early Early Cretaceous intrusive rocks in the study area are dominantly syenogranites and are either A-type granites or are classified as alkaline series, suggesting that they formed in an extensional environment. The late Early Cretaceous intrusive rocks in this area are generally monzogranitic and were emplaced as dikes in an extensional environment, along with coeval bimodal volcanics. These data, combined with the presence of regional unconformities in the northern part of Hebei Province and western part of Liaoning Province, and the spatial distribution of coeval volcanic rocks in NE China, suggest the Late Jurassic and early Early Cretaceous magmatisms and the early Early Cretaceous deformation in this area occurred in an extensional environment related to the delamination of a thickened part of the crust after closure of the Mongol-Okhotsk Ocean. In comparison, the late Early Cretaceous deformation and magmatism occurred in an extensional environment related to either delamination of the previously thickened crust related to the Mongol-Okhotsk tectonic regime or the subduction of the Paleo-Pacific Plate, or the combined influence of these two tectonic regimes.

  17. Active tectonics, paleoseismology and associated methodological challenges posed by the slow moving Alhama de Murcia fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas; Sharp, Warren D.; Arrowsmith, Ramon; Medialdea, Alicia; Rhodes, Edward

    2016-04-01

    The Alhama de Murcia fault (AMF) is a 87 km-long left-lateral slow moving fault and is responsible for the 5.1 Mw 2011 Lorca earthquake. The characterization of the seismic potential of seismogenic strike-slip slow moving faults is necessary but raises huge methodological challenges, as most paleoseismological and active tectonic techniques have been designed on and for fast moving faults. The AMF is used here as a pilot study area to adapt the traditional geomorphological and trenching analyses, especially concerning the precise quantification of offset channels. We: 1) adapted methodologies to slow moving faults, 2) obtained, for the first time, the slip rate of the AMF, and 3) updated its recurrence period and maximum expected magnitude. Morphotectonic studies aim to use the measured tectonic offset of surface channels to calculate seismic parameters. However, these studies lack a standard criterion to score the analysed features. We improved this by differentiating between subjective and objective qualities, and determining up to three objective parameters (lithological changes, associated morphotectonics and shape, and three shape sub-parameters; all ranging from 0 to 1). By applying this methodology to the AMF, we identified and characterized 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size) Digital Elevation Model (DEM) from a point cloud acquired in 2013 by airborne light detection and ranging (lidar). The identified offsets, together with the ongoing datings, are going to be used to calculate the lateral slip rate of the AMF. In three-dimensional trenches, we measured the offsets of a buried channel by projecting the far-field tendency of the channel onto the fault. This procedure is inspired by the widespread geomorphological procedure and aims to avoid the diffuse deformation in the fault zone associated with slow moving faults. The calculation of the 3D tendency of the channel and its projection onto the fault permitted

  18. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    could be possible to infer the genesis of the scarps as due to complex tectono-karstic phenomena. As for case (ii), our ongoing analyses are aimed to analyze the tectonic "significance" of some closed depressions, up to 4 km long and to 0,5-1 km large, that occur along the south-western slope of the Gran Sasso Range. All these small depression are NW-SE trending. As already described by Bosi et al. (1989), Galadini and Giuliani (1993), D'Agostino et al. (1998), Falcucci et al. (2015), these closed depressions are bounded by scarps carved onto the carbonate bedrock and, subordinately, onto early Quaternary slope deposits, reaching height of up to 5 m. These scarps are preferentially NE dipping, even if in few cases some SW dipping scarp are also present . The field work has permitted to attest that these scarps are related to shear planes that that displaced two subsequent of Early Pleistocene breccias formations (the Valle Valiano Fm. and Fonte Vedice Fm.; Bosi e Bertini, 1993; D'agostino et al., 1997). A paleoseismological trench was also performed across one of these scarps, attesting the activity of these shear planes also in recent times, providing indications result about the deformation style. Reference Bertini, T., & Bosi, C. (1993). La tettonica quaternaria della conca di Fossa (L'Aquila). Il Quaternario, 6(2), 293-314. Bertini, T., Bosi, C., & Galadini, F. (1989). La conca di Fossa-S. Demetrio dei Vestini. CNR, Centro di Studio per la Geologia Tecnica, ENEA, PAS in Elementi di tettonica pliocenicoquaternaria ed indizi di sismicita olocenica nell'Appennino laziale-abruzzese, Societa Geologica Italiana, L'Aquila, 26-58. Bosi, C., & Bertini, T. (1970). Geologia della media valle dell'Aterno. Memorie Società Geologica Italiana, 9(4), 719-777. D'Agostino, N., F. Speranza, & R. Funiciello., (1997) "Le Brecce Mortadella dell'Appennino Centrale: primi risultati di stratigrafia magnetica." Il Quaternario10.2: 385-388. D'Agostino, N., Chamot-Rooke, N., Funiciello, R

  19. Characterising Seismicity at Alutu, an Actively Deforming Volcano in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, M.; Nowacki, A.; Kendall, J. M.; Wookey, J. M.; Biggs, J.; Bastow, I. D.; Ayele, A.; Bedada, T.

    2013-12-01

    The Main Ethiopian Rift (MER) provides a unique example of the tectonic and volcanic processes occuring during the transition from continental rifting to oceanic spreading. Situated 100 km south of Addis Ababa along the eastern rift margin, Alutu is a silicic stratovolcano that geodetic measurements (InSAR and GPS) have shown is actively deforming. Though the volcano has received relatively little scientific attention it is also a site of economic significance as a geothermal power plant resides within the caldera. As part of ARGOS (Alutu Research Geophysical ObservationS), a multi-disciplinary project aiming to investigate the magmatic and hydrothermal processes occuring at Alutu, a seismic network of 12 broadband seismometers was deployed in January 2012. Other components of ARGOS include InSAR, GPS, geologic mapping and magnetotellurics. From the seismic dataset, P- and S-wave arrivals across the array were manually picked and used to locate events using a non-linear earthquake location algorithm (NonLinLoc) and a predefined 1D velocity model. Perturbations were later applied to this velocity model to investigate the sensitivity of the locations and evaluate the true uncertainties of the solutions. Over 1000 events were successfully located during 2012, where picks were possible at 4 or more stations. Seismicity clusters at both shallow depths (z<2 km) beneath the caldera and at deeper depths of 5-15 km. There is a significant increase in seismicity during the rainy months, suggesting the shallow events may be related to the hydrothermal system. We interpret the deeper events as being magmatic in origin. Events are also located along the eastern border faults that bound the outer edges of the MER and highlights that seismicity arises concurrently via tectonic processes. An adapted version of Richter's original local magnitude scale (ML) to account for attenuation within the MER (Keir et al., 2006) was then used to compute magnitudes for the best located events

  20. Teleseismic P and S Delay Times within Tectonically Active and Stable North America

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.

    2009-12-01

    We have measured teleseismic P and S relative delay times within 1) Stable North America (SNA) using waveforms from IRIS PASSCAL seismic arrays MOMA (Fischer et al., 1995), ABBA (Roecker and Beavan, 1995), Abitibi (Hearn and Mareschal, 1996), and FLED (Wysession and Fischer, 2001), and 2) Tectonically-active North America (TNA) using Earthscope's Transportable Array (TA). To study the contribution of mantle structure to these delays we subtracted delays predicted for topography and crustal structure, using CRUST 2.0 (Bassin et al., 2000). Preliminary analyses of delay times from earthquakes with Mw>=6.5 show surprising differences between the heterogeneity of the mantle beneath SNA and TNA. While the range of delay times is expectedly small for an intra-shield array such as Abitibi, the range of delay times from Proterozoic basement in the midwest to Paleozoic margin in New England is much larger and slightly exceeds that for the TA in TNA. This suggests that that the mantle of SNA is slightly more heterogeneous than TNA, despite there being relatively little surface expression of this heterogeneity. Patterns of P and S relative delay times measured in TNA correlate better with surface tectonics, suggesting that the mantle in TNA has a greater effect on the surface geology than in SNA. The central and southern Basin and Range are characterized by positive delays. As shown in previous studies, the Snake River Plain is also well delineated by positive delays. These delays exhibit a significant peak at station H17A in Yellowstone National Park. Teleseismic P and S waves arriving at stations in the Rocky Mountains are much faster, including in northern Idaho and western Washington, but not in western Oregon. For both SNA and TNA, the measured S and P delay times have a significant linear correlation, with S delays at approximately 3 times the P delays, which confirms the dominant effect of mantle temperature on mantle velocity structure. However, the slope of this

  1. Relative earthquake location for remote offshore and tectonically active continental regions using surface waves

    NASA Astrophysics Data System (ADS)

    Cleveland, M.; Ammon, C. J.; Vandemark, T. F.

    2015-12-01

    Earthquake locations are a fundamental parameter necessary for reliable seismic monitoring and seismic event characterization. Within dense continental seismic networks, event locations can be accurately and precisely estimated. However, for many regions of interest, existing catalog data and traditional location methods provide neither accurate nor precise hypocenters. In particular, for isolated continental and offshore areas, seismic event locations are estimated primarily using distant observations, often resulting in inaccurate and imprecise locations. The use of larger, moderate-size events is critical to the construction of useful travel-time corrections in regions of strong geologic heterogeneity. Double difference methods applied to cross-correlation measured Rayleigh and Love wave time shifts are an effective tool at providing improved epicentroid locations and relative origin-time shifts in these regions. Previous studies have applied correlation of R1 and G1 waveforms to moderate-magnitude vertical strike-slip transform-fault and normal faulting earthquakes from nearby ridges. In this study, we explore the utility of phase-match filtering techniques applied to surface waves to improve cross-correlation measurements, particularly for smaller magnitude seismic events. We also investigate the challenges associated with applying surface-wave location methods to shallow earthquakes in tectonically active continental regions.

  2. Interactions between recent tectonic activity and the evolution of mountain relief of the Inner Cottians Alps (Western Alps): preliminary morphotectonic map.

    NASA Astrophysics Data System (ADS)

    Bacenetti, Marco; Morelli, Michele; Cadoppi, Paola; Giardino, Marco; Perotti, Luigi; Perrone, Gianluigi

    2014-05-01

    Possible interactions between recent tectonic activity and the evolution of mountain relief have been investigated at the regional (1:50,000) and local (1:5,000) scale in the Germanasca Valley (Cottian Alps, NW-Italy) through an integrated, multidisciplinary approach combining Structural analysis, Quaternary Geology, Geomorphology and Geomatics. The inner edge of the Cottians Alps and the adjacent Po Plain are among the most densely populated portions of the Piemonte Region (NW-Italy). This area corresponds to the junction between the Alpine and Apennine chains and it is affected by a diffuse low- to moderate- seismicity (Ml<5) and hypocenters at a shallow crustal level (< 20 Km). Available apatite fission track data indicate that this sector reached shallow crustal levels, where brittle deformation mechanisms prevail since Late Oligocene times. Historical earthquakes (e.g. Prarostino's earthquakes, 1808 Ml=5.5; Cumiana's earthquakes, 1980 Ml=4.8) caused both material and social damage in the area. Since faults activity is often associated with characteristic geomorphological features, linear valleys, ridgelines, slope-breaks, steep slopes of uniform aspect, regional anisotropy and tilt of terrain, have been detected in the area. Analysis of digital elevation models, by means of numerical geomorphology, provides a tool to recognize linear features and characterizing the tectonics of an area in a quantitative way. Geomorphology and morphotectonic analyses have been performed using digital orthophotos (AGEA Orthophoto 2009), aerial stereo couples and DEMs (LiDAR5x5 meters, Regione Piemonte 2009). The morphotectonic lineament analysis was conducted using TerraExplorer® Software Systems, Inc. For the field mapping activities, it was used an application called "SRG2" (Support to Geological / Geomorphological Surveys), an extension for ArcPad (ESRI mobile GIS). Into ArcPad, the SRG2 application adds a toolbar made up of several functions for a useful mapping and

  3. Deep geometry and evolution of the northern part of Itoigwa-Shizuoka Tectonic Line active fault system, Central Japan, revealed by Seismic profiling

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeda, Y.; Iwasaki, T.; Matsuta, N.; Takeda, T.; Kawasaki, S.; Kozawa, T.; Elouai, D.; Hirata, N.; Kawanaka, T.

    2003-12-01

    The northern Fossa Magna (NFM) is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into SW and NE portions. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system showing the one of the largest slip rates in the Japanese islands. Based on the paleo-seismological data, the ISTL active fault system was evaluated to have the highest seismic risk among active faults within inland Japan. A quantitative understanding of active tectonic processes, including crustal deformation and related destructive earthquakes, is important in reducing seismic hazards through precise estimation of strong ground motions. The structure of the crust, especially the deep geometry of active fault systems, is the most important piece information required to construct such a dynamic model. In this context, the seismic reflection profiling was performed across the northern part of the ISTL active fault system by three seismic lines. Obtained seismic sections are interpreted based on the pattern of reflectors, surface geology and velocity model by refraction analysis, using the balanced cross section technique. The 68-km-long Itoshizu 2002 seismic section across the northern middle part of the ISTL active fault system suggest that the Miocene NFM basin was formed by an east dipping normal fault with shallow flat (6 km), deeper ramp (6 15 km) and deeper flat at 15 km in depth. This unique geometry is interpreted that this low-angle normal fault was produced by Miocene high thermal regime, estimated from the thick volcanic rocks at the base of the basin fill. Namely, the normal fault reflects the brittle-ductile boundary in Miocene. Consequently, since the Pliocene, the basin fill was strongly folded by the reverse faulting along the pre-existing normal faults in the Pre-Neogene rocks. The reverse faults in the basin fill produced fault

  4. Taiwan: a perfect field trip to study active tectonics and erosion processes

    NASA Astrophysics Data System (ADS)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  5. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  6. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  7. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  8. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  9. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  10. Erosional flux from tectonically active landscapes: Case studies from Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Allen, Philip; Gheorghiu, Delia; Rodes, Angel

    2016-04-01

    Erosion and sediment supply are fundamentally important controls on landscape evolution, governing the denudation of relief, the stratigraphy deposited in basins, and the ultimate destruction of orogens. However, quantifying the rates, timescales, and predominant processes of erosion remains a major challenge in many tectonically active areas. Here, we use Southern Italy as a case study to demonstrate how these challenges can be overcome. We present 15 new 10Be catchment-averaged erosion rates, for systems distributed along 5 active normal faults for which we have excellent constraints on throw rates along strike and uplift history. These footwall catchments have a total relief of up to 1800 m and throw rates up to 1.4 mm/yr. We show that sediment supply estimates based on the 10Be erosion rates agree well with sediment supply predictions based on the fault throw profiles. Our results suggest that about 80% of the material uplifted by the faults is being eroded at a similar magnitude to the fault throw rates, offering new insights into the topographic balance of uplift and erosion in this area. These findings imply that active normal faulting is the primary control on sediment supply in Southern Italy. Our field observations suggest that landslides are an important source of sediment in our study area, and are largely driven by incision in response to fault activity. Using a field-calibrated landslide inventory, we estimate landslide-derived sediment flux for our sampled catchments. These estimates correlate well with total sediment flux estimates, demonstrating quantitatively that landslides must be a major source of sediment. Their erosional signal is adequately captured by the 10Be analyses most likely because of the high frequency of small landslides and their high spatial density in these catchments (typically >10% of the total area), which ensures sufficient sediment mixing. Finally, we use our results to calibrate the BQART model of sediment supply, enabling

  11. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  12. Perennial plate tectonics with lasting mantle lithosphere scars

    NASA Astrophysics Data System (ADS)

    Heron, P.; Pysklywec, R. N.; Stephenson, R.

    2015-12-01

    Although the conventional theory of plate tectonics can explain non-rigid behaviour at plate boundaries, it cannot adequately explain the processes involved in deformation and seismicity within plate interiors. Here, we consider that the pre-existing deformation or "scarring" within the mantle lithosphere may have a very long lived presence that could incorporate deformation of the plate interior and plate boundary. Mantle lithosphere scars from continent-continent collisions could generate virtual plate boundaries that remain over long timescales, producing "perennial" plate tectonics. Local geophysical studies can map the crustal environment well, and global whole mantle tomography models are rapidly improving, yet high-resolution images of the mantle lithosphere are often not available in regions where scarring may be present. Where mantle lithosphere heterogeneities have been observed (usually interpreted simply as subduction scars), the same attention has not been afforded to them as, for example, re-activation of faults within the Earth's crust. In idealized numerical simulations, we compare how relic scarring at varying depths in the lithosphere affects patterns of deformation. High-resolution thermal-mechanical numerical experiments explore continental lithospheric deformation featuring a weakened crust and mantle lithosphere scars. Our models show that deep lithospheric scars can control the tectonic evolution of a region over shallow geological features, indicating the importance of mantle lithosphere heterogeneities. The Altyn Tagh Fault (ATF) in central China is an example of an ancient continental collision zone that undergoes periodic deformation during times of regional compression. We suggest that the ATF may be a locale where a long-lasting mantle lithosphere scar can control the subsequent crustal evolution and deformation, with ancient plate boundaries having a "perennial" plate tectonic presence.

  13. Earthquake Mechanisms of the Mediterranean Area (EMMA) version 3: an improved tool for characterizing the tectonic deformation styles in the Mediterranean.

    NASA Astrophysics Data System (ADS)

    Vannucci, G.; Imprescia, P.; Gasperini, P.

    2009-04-01

    EMMA (Earthquake Mechanisms of the Mediterranean Area) database contains available literature data with the goal of making them more usable and available. EMMA is continuously improving by the addition of further focal mechanisms found in literature. At the present time, EMMA pre-release 3 includes more than 12700 focal solutions, about twice of previous official release 2.2 (Vannucci and Gasperini, 2004). They cover a time window from 1905 to 2006. In the new release, many added solutions are in areas not much covered or completely uncovered in the previous one (e.g. Bulgaria, Germany, Anatolia). As in the previous versions (Vannucci and Gasperini, 2003 and 2004), we have uniformed the different formats and notations of the data available from different sources and we have tried to solve misprints, inaccuracies and inconsistencies that might make the data unusable for other investigations. By an automatic procedure based on several criteria, we have chosen the "most representative" (best) solution when more than one is available for the same earthquake. Thanks to this, we have obtained about 6000 best solutions. The end user can use the best solution obtained with our procedure or he can change criteria. The database allows to make selections and to export data files suitable to be handled by graphic software and user generated scripts. In the new version, still MS-ACCESS based, we have added geographic information to the display of the focal solution, as well as we have integrated the hypocentral and magnitude data found on the original papers with those reported by regional and local catalogs and bulletins. In order to make EMMA more accessible, a web version is currently in progress. Through an internet connection it will be possible data selection and export, without installation and configuration problems found in the past. EMMA was already used in the past and will be (hopefully) useful in the future to better characterize the tectonic deformation styles (e

  14. The variety of subaerial active salt deformations in the Kuqa fold-thrust belt (China) constrained by InSAR

    NASA Astrophysics Data System (ADS)

    Colón, Cindy; Webb, A. Alexander G.; Lasserre, Cécile; Doin, Marie-Pierre; Renard, François; Lohman, Rowena; Li, Jianghai; Baudoin, Patrick F.

    2016-09-01

    Surface salt bodies in the western Kuqa fold-thrust belt of northwestern China allow study of subaerial salt kinematics and its possible correlations with weather variations. Ephemeral subaerial salt exposure during the evolution of a salt structure can greatly impact the subsequent development and deformation of its tectonic setting. Here, we present a quantitative time-lapse survey of surface salt deformation measured from interferometric synthetic aperture radar (InSAR) using Envisat radar imagery acquired between 2003 and 2010. Time series analysis and inspection of individual interferograms confirm that the majority of the salt bodies in western Kuqa are active, with significant InSAR observable displacements at 3 of 4 structures studied in the region. Subaerial salt motion toward and away from the satellite at rates up to 5 mm/yr with respect to local references. Rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) and temperature from a local weather station are used to test the relationship between seasonality and surface salt motion. We observe decoupling between surface salt motion and seasonality and interpret these observations to indicate that regional and local structural regimes exert primary control on surface salt displacement rates.

  15. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  16. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  17. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    Seychelles microcontinent from India, sedimentary basin development in western Rajasthan and the alkaline magmatism of Mundwara, Sarnu-Dandali and elsewhere are considered to be the products of Reunion plume activity in western India. However, basin development began in western Rajasthan in the Jurassic period and no plume has been suggested for this. The continual extensional tectonic regime caused deep fractures in the continental and oceanic lithosphere. The Cambay-Sanchor-Barmer rift developed in continental lithosphere. The Mundwara, Sarnu-Dandali and Barmer magmatism with nephelinite-carbonatite affinity at the basin margin represents a typical rift-tectonic setting. The tectonic setting and crustal development during the K-T period in western Rajasthan represents an extensional tectonic regime rather than the manifestation of Reunion plume activity.

  18. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  19. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  20. Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Schlindwein, V.; Schenke, H.-W.; Jokat, W.

    2011-03-01

    With its remote location in the ice-covered Fram Strait, Lena Trough is a poorly known segment of the global mid-ocean ridge system. It is a prominent member of the ultra-slow spreading mid-ocean ridges but its spreading mechanisms are not well understood. We relocalized teleseismically recorded earthquakes from the past five decades to identify tectonic processes in Lena Trough and the adjacent Spitsbergen Fracture Zone (FZ). During two cruises with RV Polarstern in 2008 and 2009 we deployed seismic arrays on ice floes to record the local seismicity of Lena Trough. We could identify and localize microseismic events which we assume to be present in the entire rift valley. In contrast, our relocalization of teleseismically recorded earthquakes shows an asymmetric epicentre distribution along Lena Trough with earthquakes occurring predominately along the western valley flanks of Lena Trough. In 2009 February/March, several high-magnitude earthquakes peaking in an Mb 6.6 event occurred in an outside-corner setting of the Spitsbergen FZ. This is the strongest earthquake which has ever been recorded in Fram Strait and its location at the outside-corner high of the ultra-slow spreading ridge is exceptional. Comparing the seismicity with the magnetic anomalies and high-resolution multibeam bathymetry, we divide Lena Trough in a symmetrically spreading northern part and an asymmetrically spreading southern part south of the South Lena FZ. We propose that a complex interaction between the former De Geer Megashear zone, which separated Greenland from Svalbard starting at Late Mesozoic/Early Cenozoic times, and the developing rift in the southern Lena Trough resulted an increasing eastward dislocation towards the Spitsbergen FZ between older spreading axes and the recent active spreading axis which we believe to be located west of the bathymetric rift valley flanks in a wide extensional plain.

  1. Active Tectonics of off-Hokuriku, Central Japan, by two ships seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Kato, Naoko; Sato, Hiroshi; Ishiyama, Tatsuya; Abe, Susumu; Shiraishi, Kazuya

    2015-04-01

    Along the southern to eastern margin of the Sea of Japan, active faults are densely distributed. These submarine active faults produced tsunami disasters, such as 1983 Nihonkai-chubu earthquake (M7.7) and 1993 Hokkaido Nansei-oki earthquake (M7.8). To estimate tsunami hazards, we performed deep seismic reflection profiling to obtain the information of tsunami source faults, off-Hokuriku area in the central part of Honshu, Japan. The survey is carried out as a part of research project named "the integrated research project on seismic and tsunami hazards around the Sea of Japan" funded by MEXT. To obtain long offset data in busy marine activity area, we used two vessels; a gun-ship with 3020 cu. inch air-gun and a cable-ship with a 2-km-long, streamer cable with 156 channels and 480 cu. inch air-gun. Common-midpoint reflection data were acquired using two ships at 4 km offset. The survey area consists of stretched continental crust associated with rifting and opening of the Sea of Japan in early Miocene and is marked by densely distributed syn-rift normal faults. Fault reactivation of normal faults as reverse faults is common. Two phases of fault reactivation are identified from the seismic sections after termination of opening of the Sea of Japan. One is the late Miocene NS trending shortening deformation. This is produced by NS-trending convergence of the Shikoku basin (15 Ma), which belongs to the Philippine Sea plate (PHS) to SW Japan at Nankai trough (Kimura et al., 2005). After the initiation of the subduction of PHS at Nankai trough, the strong shortening deformation is terminated and the fold-and-thrust belt was unconformably covered by sub-horizontal Pliocene sediments. Some horizons of unconformities represent multiple events of shortening driven from the subduction interface. Some normal faults reactivated as active strike-slip and reverse faults in Quaternary. Well observed example is the 2007 Noto peninsula earthquake (M6.8). The 2007 Noto peninsula

  2. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  3. A tectonic resurfacing model for Venus

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    Two remarkable aspects of the population of impact craters on Venus are that craters at all sizes are indistinguishable from a random population and that the vast majority of craters have not been significantly modified by tectonic strain or by volcanic flows external to the crater rim, despite evidence from Magellan images that volcanic and tectonic features are widespread on Venus. One interpretation of these observations is that most of the surface dates from the end of a catastrophic global resurfacing event that ceased about 500 My ago, and that the small fraction of craters volcanically embayed or modified by deformation indicates that volcanic and tectonic activity subsequent to that time has been at much lower levels. An alternative model, in which resurfacing occurs episodically in patches a few hundred kilometers in extent and there is a wider spectrum of surface ages, also appears to be consistent with the characteristics of impact craters on Venus. A number of potential mechanisms for catastrophic resurfacing of Venus have been proposed, ranging from geologically sudden convective destabilization of the global lithosphere to strongly time-dependent heat flux and melt generation in the underlying mantle. In most of these geophysical models, resurfacing occurs implicitly or explicitly by volcanism. We explore the hypothesis that, at least in the geologically recent history of Venus, the primary resurfacing mechanism has been tectonic deformation rather than volcanism. We show how such a hypothesis provides at least as good an explanation of a wide range of observations as do volcanic resurfacing models. Finally, we explore the implications of tectonic resurfacing hypothesis for the controversy over the recent resurfacing history of the planet.

  4. Differentiating tectonic from climatic factors in the evolution of alluvial fans

    SciTech Connect

    Wilson, D.S.; West, R.B. . Dept. of Geology)

    1993-04-01

    Alluvial fans are integral parts of landscapes of arid and semi-arid regions and are most commonly found along the flanks of tectonically active mountain ranges. Alluvial fans are sensitive indicators of tectonic and climatic activity through time. Three dimensional fan modelling has the potential to discriminate between these two forces and provide quantitative estimates of deformation of fan surfaces due to tilting, faulting, or folding. The model has tremendous potential for seismic hazard evaluation at both the reconnaissance and detailed level of investigation. The ability to recognize deformation of alluvial fans alleviates the need for postulation of complex interactions between climate and internal variables in the depositional system leading to present fan morphology. The greatest problems associated with fan modelling come from failure to identify individual segments. Inclusion of more than one segment can lead to poor model performance or, more likely, inaccurate results. The long term tectonic influence on a fan's evolution can be assessed from the differences in deformation of different segments. Reliable correlations of segments from different fans along the same mountain front can provide a means to asses regional deformation. Once tectonic effects are taken into account, then climatic effects can be evaluated. Previous fan models have failed to recognize areal limitations, failed to account for deformation, or assumed deformation geometry.

  5. Mechanics of dielectric elastomer-activated deformable transmission grating

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Zhou, Jinxiong; Sun, Wenjie; Wu, Xiaohong; Zhang, Ling

    2014-09-01

    Laminating a thin layer of elastomeric grating on the surface of a prestretched dielectric elastomer (DE) membrane forms a basic design of electrically tunable transmission grating. We analyze the inhomogeneous deformation of a circular multiple-region configuration. Variation of the geometric and material parameters, as well as of the critical condition determined by loss of tension instability, is probed to aid the design of a DE-based deformable grating. The predicted changes in the grating period agree substantially with the experimental results reported by Aschwanden et al (Aschwanden et al 2007 IEEE Photon. Technol. Lett. 19 1090).

  6. Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Bruhn, R. L.

    1984-01-01

    Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.

  7. Structural deformation and sedimentation in an active Caldera, Rabaul, Papua New Guinea

    USGS Publications Warehouse

    Greene, H. Gary; Tiffin, D.L.; McKee, C.O.

    1986-01-01

    Recent seismic and tectonic activity in Rabaul Caldera, Papua New Guinea, suggests that magma is accumulating at a shallow depth beneath this partially submerged structure and that a new volcano may be developing. Changes in onshore elevation since 1971 (as much as 2 m on south Matupit Island) indicate that rapid and large-scale uplifts have occurred on the seafloor near the center of the caldera. The frequency of seismic events within the caldera has also increased during this period. Earthquake locations define an elliptical ring surrounding the center of this uplift within the caldera. A marine geophysical survey in 1982 by the U.S. Geological Survey's R/V "S.P. Lee" in Rabaul Caldera shows the development of a bulge in the seafloor near the center of the caldera. High-resolution seismic reflection profiles show that this bulge consists of two domal uplifts bounded and separated by two major north-south-trending fault zones. Deformed sediments overlie these zones; a prominent slump flanks the area of the bulge. Five major acoustic units were identified in the seismic reflection profiles: an acoustic basement and four sedimentary units consisting of irregularly layered, cross-layered, contorted, and well-layered sequences. The acoustic basement is probably composed of crystalline volcanic rocks, and the layered acoustic units are probably sediments, primarily ash deposited in different environments. The cross-layered, irregularly layered, and contorted units appear to have been deposited in a dynamic environment subjected to strong currents, seismicity, and/or mass wasting, while the well-layered units were deposited in a low-energy environment. Locally, well-layered sequences interfinger with the other sedimentary units, indicating a transitional environment that alternated between high-energy and low-energy depositional processes. A submarine channel cuts most of the acoustic units and appears to be the conduit for sediment transport out of the caldera; it

  8. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; Cervelli; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  9. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  10. Deformation-induced diagenesis and microbial activity in the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Famin, V.; Andreani, M.; Boullier, A. M.; Raimbourg, H.; Magnin, V.

    2014-12-01

    We performed a microscopic and chemical study of diagenetic reactions in deformation microstructures within deep mud sediments from the Nankai accretionary prism (SW Japan) collected during IODP Expedition 315. Our study reveals that deformation microstructures localize the crystallization of pyrite, a diagenetic reaction also found in large megasplay faults of the prism. Textural observation shows that pyrite crystallization is synchronous of the sediment deformation. The framboidal shape of pyrite crystals, the barium depletion and the strong arsenic enrichment observed in deformation microstructures compared with the sediment matrix, suggest that pyrite crystallization is mediated by the proliferation of anoxic archae. During scientific drilling expeditions IODP 315, 316 and 319, microbial life has been evidenced at depths of up to 800 m below the sea floor by the presence of biogenic methane and sulfate reducers in sediments. We suggest that deformation structures localize microbial proliferation because the fracturing of silicate minerals produces hydrogen, a necessary compound for bacteria under anoxic conditions. Bacteria proliferate as long as active deformation supplies hydrogen, and vanish when the deformation stops. The development of bacteria in deformation structures impacts our mechanical understanding of fault zones in accretionary prisms: Firstly, bacterial activity converts carbon from organic matter and hydrogen into methane and/or water, which may alter the fluid budget of fault zones and the recurrence of dynamic ruptures in megathrusts. Secondly, the abundance of bacteria could be used to recognize active fault zones from inactive ones in drilling cores.

  11. Importance of active tectonics during karst formation. A Middle Eocene to Pleistocene example of the Lina Moutains (Irian Jaya, Indonesia)

    NASA Astrophysics Data System (ADS)

    Thery, J.-M.; Pubellier, M.; Thery, B.; Butterlin, J.; Blondeau, A.; Adams, C. G.

    1999-05-01

    The Lina Moutains show a typical example of karst formation associated to recent and active tectonics. The limestone samples were collected from giant potholes present beneath the heavy rainforest, during speleological expeditions to the Bird's Head of Irian-Jaya. Micropalaeontological data allow us to give a Middle Pleistocene age for the most recent karst formation. A detailed stratigraphy between the Upper Lutetian and the Middle Pleistocene was recorded, with tectonic events during the Oligocene and Pleistocene. The edge of the resurgence layer was also dated. We also conclude the probable existence of a subterraneous network downhill of the karst within the most recent levels of the Kais Limestone formation. We replace this formation within the tectonic evolution of this area between the Eocene and the Middle Pleistocene, in conjunction with the oblique convergence of the Pacific plate carrying volcanic arc fragments and the Australian margin, which resulted in folding, normal faulting associated with local extension, and wrench motion, which are settings capable of creating uplift of the carbonated platform.

  12. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  13. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  14. The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece

    NASA Astrophysics Data System (ADS)

    Kiratzi, A.; Sokos, E.; Ganas, A.; Tselentis, A.; Benetatos, C.; Roumelioti, Z.; Serpetsidaki, A.; Andriopoulos, G.; Galanis, O.; Petrou, P.

    2008-06-01

    We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW-ESE trend. The previous strong sequence close to Lake Trichonis occurred in June-December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW-SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW-SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E-W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW-SE normal fault that strikes at a ˜ 45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the

  15. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  16. Quaternary migration of active extension revealed by a syn-tectonic alluvial fan shift. A case study in the Northern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Mirabella, Francesco; Bucci, Francesco; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2016-04-01

    In areas characterized by the progressive migration of active extension through time, shifts in the position of the active depocenter occur. Such shifts through time produces peculiar geomorphological settings that are often characterized by wind gaps, abandoned valleys, streams captures and drainage inversions. These features provide the opportunity to investigate active areas by studying the recent-most geological history of the related nearby basins. We investigate this topic in a tectonically active area in the Northern Apennines of Italy, as indicated by both instrumental and historical seismicity (maximum epicentral intensity I0=VIII) and extension rates in the order of 2.5-2.7 mm/yr. In particular, we study the Montefalco ridge drainage inversion. Here, fluvial sands and imbricated conglomerates deposited in a lower Pleistocene depocenter constituted by an extensional subsiding basin, are presently uplifted more than 200 m above the present day alluvial plain. The Montefalco ridge drainage inversion, at about 400 m a.s.l., separates two valleys, the Gualdo Cattaneo - Bastardo valley to the West (300 m a.s.l.) and the Foligno present-day alluvial plain to the East (200 m a.s.l.). Seismic reflection data show that the maximum thickness of the continental sequence in the Foligno valley is in the order of 500 m. This valley is presently occupied by a 37 km2 alluvial fan produced by the Topino river flowing from NE to SW. To unravel the Quaternary tectonic evolution of the area, we integrate different data sets collected by field mapping, detailed photo-geological data, sediments provenance information, and subsurface data. We interpret the Montefalco ridge as a paleo-Foligno-like alluvial fan representing the evidence of the recent migration of the active extension to the East of around 7 km. Considering an age of deformation of 2.5 My, an extension rate of about 2.8 mm/yr is derived, which corresponds to the present-day geodetic rates. We stress the importance

  17. Magnetic fabric results in weakly deformed deposits from extensional and compressional domains of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Caricchi, Chiara; Cifelli, Francesca; Kissel, Catherine; Sagnotti, Leonardo; Mattei, Massimo

    2016-04-01

    Since 1960s the anisotropy of magnetic susceptibility (AMS) analysis has been used to reconstruct the deformation history of rocks, and many studies have been published regarding the relationships between magnetic fabric and tectonics. Nevertheless, an active scientific debate still exists on the tectonic or sedimentary origin of the magnetic fabric observed in sedimentary rocks in which visible evidence of deformation is lacking. In this work, we present results from AMS analyses carried out on weakly deformed fine-grained sediments from the Northern Apennines (Italy). We analyzed pre-, syn- and post- orogenic sequences, which differ in age, composition, depositional environment, degrees of deformation and tectonic regimes. The AMS fabric of these weakly deformed sediments is characterized by a magnetic foliation sub-parallel to the bedding plane, and a magnetic lineation well-defined in this plane. The sediments are characterized by strongly oblate magnetic susceptibility ellipsoids suggesting that magnetic fabric results from both compaction process and tectonic load during diagenesis and orogenic events. The orientation of the magnetic lineation with respect to the main tectonic elements depends on the regional tectonic context, and in particular it varies between extensional and compressional tectonic regimes. In the pre- and syn- orogenic deposits of the more internal arc of the Apennine chain, the lineation is mostly NNW-SSE, parallel to the main compressional structures (folds and thrusts), suggesting a tectonic origin of the magnetic lineation with an acquisition related to the Apennines compressional phases. Instead, in the post-orogenic deposits of the extensional basins developed along the Tuscan Tyrrhenian Margin, magnetic lineation is oriented ENE-WSW, almost perpendicular to the main extensional faults which represent the main deformation elements of the area. Our results indicate a distinctive linkage between the magnetic fabric and the local

  18. Long-lasting tectonic activities of the Lepontine Dome. New evidence from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Elfert, Simon; Reiter, Wolfgang; Spiegel, Cornelia

    2013-11-01

    To investigate the Neogene exhumation history of the central European Alps, we apply low-temperature thermochronology in combination with thermal history modelling. Fission track and (U-Th-Sm)/He ages on apatites from the central Lepontine Dome (Ticino, Switzerland) indicate higher exhumation rates in the centre of the dome and rather moderate exhumation at the northern and southern boundaries since Neogene times. We present a model for explaining the latest stage exhumation of the central Lepontine Dome and show that (I) both episodic and continuous exhumations are found on small-scale throughout the Neogene, (II) compressional tectonics control the exhumation until the Late Neogene, (III) the exhumation regime changes between 6 and 4 Ma and (IV) increasing hinterland exhumation rates at the Mio-Pliocene boundary cannot be related to tectonic structures of the dome and they are thus explained by climatic changes.

  19. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  20. Caribbean plate tectonics from seismic tomography

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Villasenor, A.

    2012-12-01

    New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.

  1. Active deformation in Western Turkey: new GPS observations and models

    NASA Astrophysics Data System (ADS)

    Nocquet, J.; Aktug, B.; Parsons, B.; Cingoz, A.; England, P.; Erkan, Y.; Soyer, N.; Akdeniz, H.; Kilicoglu, A.

    2007-12-01

    How the continents deform remains a matter of debate. One view postulates that continental deforming zones are comprised of a limited numbers of rigid (elastic) microplates. If true, the surface motion can then be described by the relative rotation of blocks, and strain should be localized along the major faults separating the blocks. An alternative view is that the deformation at depth is distributed over wide areas, can be modelled by a viscous flow responding to boundary conditions applied on it and gravitational potential energy gradients related to variations in topography, and the surface strain simply reflects this deformation. Western Turkey is a region of crustal extension, part of the Nubia/Eurasia plate boundary. Its kinematics is often modelled by the relative motion of a small number of rigid blocks (Nyst & Thatcher, 2005, Reilinger et al., 2006). However, until now, the limited number of GPS velocity vectors available has prevented a detailed examination of which is the more appropriate description. We present a new geodetic velocity field including ~100 sites from the longitude the Central Anatolian plateau to the Aegean coast, derived from a combination of campaigns carried out between 1997 and 2006, and continuous GPS operating since 2003, which we use to test the different models. While the kinematics of the area can be correctly modelled by a block model, a good fit to the velocity field requires blocks with sizes smaller than 100 km and still fails to adequately predict the strain rate observed within blocks . Alternatively, we test an approach where the lithosphere is modelled as a thin viscous sheet, responding to the gravitational potentiel energy contrast between the high plateau of eastern Turkey to the east and the subduction along the Hellenic trench in the southwest. The simplistic model has only one free parameter (the force applied by the subducting oceanic lithosphere on the Aegean ), but provides a good agreement with the observed

  2. Tectonic geomorphology of the northern Upper Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Peters, Gwendolyn; van Balen, Ronald T.

    2007-07-01

    This paper focuses on the northern Upper Rhine Graben (URG), which experienced low tectonic deformation and multiple climate changes during Quaternary times. Recently, human modifications have been high. The paper presents the results of a study into the effects of fault activity on the landscape evolution of the area. The study aims to detect active faults and to determine the last phase of tectonic activity. Information on the long-term tectonic activity is gained from the geological record (drainage system, sediment distributions, fluvial terraces, fault mapping). Previous studies are reviewed and supplemented with new data on tectonic activity. The compilation of all data is presented as a series of paleogeographic maps from Late Miocene to present. It is demonstrated that differential uplift of the western margin of the northern URG had significant impact on the drainage system, the formation of fluvial terraces and the landscape of the western graben shoulder. In a second part of the paper, the imprint of tectonics on the present-day landscape is investigated at the regional scale in order to determine the location of fault scarps and tectonically influenced parts of the drainage system. This study uses an integrated analysis of topography, drainage patterns and fault network. The comparison of features suggests a structural control by numerous NNE- and NNW-oriented intra-graben faults on the flow directions of streams in the Rhine Valley. Several scarps in the Rhine Valley are identified and interpreted to result from intra-graben faulting activity, which in turn controlled fluvial dissection. The third part of the paper presents quantitative measurements of the present-day landscape shape. Calculations of geomorphic indices are used to determine the balance between erosional and tectonic processes and to identify active fault segments. The mountain-front sinuosity and valley shape indices measured along the border faults and in the footwall area are used to

  3. Upper plate responses to active spreading ridge/transform subduction: The tectonics, basin evolution, and seismicity of the Taita area, Chile Triple Junction

    SciTech Connect

    Flint, S.; Prior, D. ); Styles, P.; Murdie, R. ); Agar, S.; Turner, P. )

    1993-02-01

    Integrated field geophysical, structural and stratigraphic studies are attempting to elucidate the mechanisms and consequences of the Late Miocene-present day subduction of the Chile Ridge triple junction system. Preliminary data indicate a shallow plane of seismicity at about 15 km to 20 km depth below the Taitao peninsula. The depths correspond to the predicted depth range of subducted upper ocean crust. The calculated Bouguer anomaly map cannot be explained by the upper plate geology, suggesting that gravity is influenced by heterogeneities in the subducting oceanic plate. Seismic data imply that a subducted transform system underlying the inner Taitao Peninsula is still an active structure. A series of Middle-Late Tertiary sedimentary basins lie inboard of the triple junction. Within the Cosmelli basin, abrupt marine to continental facies transitions give clear evidence of base level changes. The amount of basinward shift of facies across sequence boundaries gets progressively greater up stratigraphy, indicating progressively greater base level changes. The lower part of the basin fill is folded and then thrusted eastward as a series of imbricates, while the overlying, greater thickness of fluvial sediments are only gently tilted westwards. We provisionally interpret this geometry to indicate that the early basin fill was deforming due to contractional tectonics while the later basin fill was being deposited. This complex basin history may reflect initiation and development of triple junction subduction.

  4. Tectonic interpretation of the 13 february 2001, mw 6.6, El Salvador Earthquake: New evidences of coseismic surface rupture and paleoseismic activity.

    NASA Astrophysics Data System (ADS)

    Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.

    2009-04-01

    In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.

  5. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    could be possible to infer the genesis of the scarps as due to complex tectono-karstic phenomena. As for case (ii), our ongoing analyses are aimed to analyze the tectonic "significance" of some closed depressions, up to 4 km long and to 0,5-1 km large, that occur along the south-western slope of the Gran Sasso Range. All these small depression are NW-SE trending. As already described by Bosi et al. (1989), Galadini and Giuliani (1993), D'Agostino et al. (1998), Falcucci et al. (2015), these closed depressions are bounded by scarps carved onto the carbonate bedrock and, subordinately, onto early Quaternary slope deposits, reaching height of up to 5 m. These scarps are preferentially NE dipping, even if in few cases some SW dipping scarp are also present . The field work has permitted to attest that these scarps are related to shear planes that that displaced two subsequent of Early Pleistocene breccias formations (the Valle Valiano Fm. and Fonte Vedice Fm.; Bosi e Bertini, 1993; D'agostino et al., 1997). A paleoseismological trench was also performed across one of these scarps, attesting the activity of these shear planes also in recent times, providing indications result about the deformation style. Reference Bertini, T., & Bosi, C. (1993). La tettonica quaternaria della conca di Fossa (L'Aquila). Il Quaternario, 6(2), 293-314. Bertini, T., Bosi, C., & Galadini, F. (1989). La conca di Fossa-S. Demetrio dei Vestini. CNR, Centro di Studio per la Geologia Tecnica, ENEA, PAS in Elementi di tettonica pliocenicoquaternaria ed indizi di sismicita olocenica nell'Appennino laziale-abruzzese, Societa Geologica Italiana, L'Aquila, 26-58. Bosi, C., & Bertini, T. (1970). Geologia della media valle dell'Aterno. Memorie Società Geologica Italiana, 9(4), 719-777. D'Agostino, N., F. Speranza, & R. Funiciello., (1997) "Le Brecce Mortadella dell'Appennino Centrale: primi risultati di stratigrafia magnetica." Il Quaternario10.2: 385-388. D'Agostino, N., Chamot-Rooke, N., Funiciello, R

  6. Coseismic fault zone deformation caused by the 2014 Mw=6.2 Nagano-ken-hokubu, Japan, earthquake on the Itoigawa-Shizuoka Tectonic Line revealed with differential LiDAR

    NASA Astrophysics Data System (ADS)

    Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.

    2015-12-01

    The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.

  7. Early Cretaceous tectono-magmatic activity and tectonic implications along the Sulu Orogenic Belt - case study of the Dashan complex

    NASA Astrophysics Data System (ADS)

    Liu, Yanghe; Liu, Junlai; Shi, Xiaoxiao; Yuan, Fengjie; Ni, Jinlong; Wu, Wenbin; Chen, Xiaoyu

    2016-04-01

    The tectonic extension of the eastern Eurasian continent during the Early Cretaceous resulted in widespread occurrence of metamorphic core complexes, wide rifts and related magmatic emplacement, among which the Dashan complex of the Jiaonan orogenic belt is a typical example. The complex is a complex massif of several types of granitic rocks. The core of the complex is composed of massive porphry-bearing biotite-hornblende granitoid without any evidence of ductile deformation. Mylonitized augen quartz monzonite and granodiorite constitute the margin of the complex. A transition zone is composed of porphyritic biotite-hornblende monzonite with weakly orientated K-feldspar phenocryst and mafic microgranular enclave. The foliations along the northwestern margin of the complex dip to NW at with dip angles of about 38°, and along the southwestern and northeastern margins to SE with dip angles of about 45°. Stretching lineations are constantly plunging WNW-ESE with pitch angles between 10° and 40°, which is consistent with the orientation of lineations in the other regions in eastern China. The granites,porphyritic monzogranite and the mafic microgranular enclaves in monzogranite are dated of ca.126Ma. The similarities in ages of crystallization of the monzogranite and its MME's implies the existence of magmatic mixing processes. Meanwhile, the mylonitized augen quartz monzonite and granodiorite along the margins of the complex possess crystallization ages of 129.8±1.1Ma and 132.7±2.8Ma, respectively. The petrographical zonation , structural characteristics and the systematical zircon U-Pb geochronology of the granitic rocks may suggest that the Dashan complex has experienced multistage emplacement under the same tectonic extension setting. In despite of the location of the complex near the Tanlu fault zone, the remarkable consistency of the orientations of stretching lineation of the Dashan complex to those from the other parts of the eastern China area implies

  8. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).

    PubMed

    King, G; Soufleris, C; Berberian, M

    1981-03-01

    surface faulting. It h a s also been observed that high aftershock activity appears beneath gaps in the surface rupture system. The Carlisle earthquake (Force moment 9 times 10(23) dyne cm. Geometric moment 3 times 10(6) m(3) ) produced no surface ruptures. However, dislocation model-ling suggests that surface deformation will be visible on a first order levelling line which passes very close t o the epicentre. A well controlled fault plane solution, the first in the British Isles, derived from an aftershock study shows north-south compression. All three studied earthquakes occurred along major faults which had been reactivated in geological times. The fault on which the Tabas-e-Golshan earthquake occurred could have been identified a s active from evidence of Quaternary motion and previous smaller earthquakes. However, there were no perceptible events in the 12 months preceeding the catastrophic earthquake. In both Thessaloniki and Carlisle, significant foreshocks did occur within 6 months prior to the main shock* PMID:20958479

  9. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  10. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  11. Active Fibers: Matching Deformable Tract Templates to Diffusion Tensor Images

    PubMed Central

    Eckstein, Ilya; Shattuck, David W.; Stein, Jason L.; McMahon, Katie L.; de Zubicaray, Greig; Wright, Margaret J.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. PMID:19457360

  12. Permian to late Cenozoic evolution of northern Patagonia: Main tectonic events, magmatic activity, and depositional trends

    NASA Astrophysics Data System (ADS)

    Uliana, M. A.; Biddle, K. T.

    The late Paleozoic to late Cenozoic evolution of northern Patagonia was influenced significantly by events that occurred while the area was part of the South American sector of Gondwanaland. Late Paleozoic to Middle Triassic subduction along the edge of the supercontinent formed a broad convergent-margin system that is the underpinning of northern Patagonia. Deformation (Gondwanidian orogeny) associated with the subduction is recognized in both the forearc and the convergent backarc areas. Regional extension, accompanied by bimodal volcanism, began in the Late Triassic and led to the formation of a number of north-northwest trending rift basins in Patagonia, which generally followed the Gondwanidian basement grain. Continued extension in the Jurassic and Early Cretaceous led to the opening of the Rocas Verdes marginal basin in southern Chile and, ultimately, to the opening of the South Atlantic Ocean. Once oceanic crust began to form, faulting and volcanism declined in Patagonia. During the late Early Cretaceous to the Late Cretaceous, sags over the rift basins coalesced to form a broad backarc basin behind the volcanic arc to the west. These sags are suggestive of thermally driven subsidence. Subsidence of the evolving Atlantic margin allowed extensive marine transgressions to take place from the east. The stratigraphic record of northern Patagonia reflects these events. The upper Paleozoic to upper Mesozoic sedimentary sequences were deposited in basins directly associated with convergent activity along the margin of Gondwanaland or in rift basins created during its breakup. Even though the Tertiary evolution of Patagonia was dominated by events along the western margin of South America, the patterns of sediment transport, thickness, and general shoreline position were still influenced by the locations of the Mesozoic rifts formed during the breakup of Gondwanaland.

  13. Active tectonics and rheology of slow-moving thrusts in the Tibetan foreland of peninsular India

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, Alastair; Gaonkar, Sharad; Avouac, Jean-Philippe; Hollingsworth, James

    2016-04-01

    Peninsular India is cut by active thrust faults that break in earthquakes in response to the compressive force exerted between India and the Tibetan Plateau. The rate of deformation is low, with 2 +/- 1 mm/yr of shortening being accommodated over the entire N-S extent of the Indian sub-continent. However, the large seismogenic thickness in the region (40-50 km), and the long faults, mean that the rare earthquakes that do occur can have magnitudes up to at least 8. This contribution describes studies of two large Indian earthquakes, and their rheological and hazard implications, using a range of techniques. First, the Mw 7.6 Bhuj (Gujarat) earthquake of 2001 is examined using a combination of seismology, InSAR, and levelling data. A slip model for the earthquake will be presented, which allows the material properties of the fault plane to be examined. Second, a Holocene-age earthquake rupture from central India will be discussed. Geomorphic analysis of the scarps produced by the event suggest a magnitude of 7.6 - 8.4. Both of these earthquakes had unusually large stress-drops, amongst the largest recorded for shallow earthquakes. The information provided by these two events will be combined with calculations for the total compressive force being transmitted through the Indian peninsular in order to suggest that the faults are characterised by a low coefficient of friction (approximately 0.1), and that the stress-drops in the earthquakes are close to complete. In turn, these results imply that the majority of the force being transmitted through the Indian plate is supported by the brittle crust. Finally, the along-strike continuation of the faults will be described, with implications for hazard assessment and material properties throughout India.

  14. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Wang, Hai-hong; Luo, Zhi-cai; Ning, Jin-sheng; Liu, Hua-liang

    2015-03-01

    It is significant to identify urban active faults for human life and social sustainable development. The ordinary methods to detect active faults, such as geological survey, artificial seismic exploration, and electromagnetic exploration, are not convenient to be carried out in urban area with dense buildings. It is also difficult to supply information about vertical extension of the deeper faults by these methods. Gravity, reflecting the mass distribution of the Earth's interior, provides an alternative way to detect faults, which is more efficient and convenient for urban active fault detection than the aforementioned techniques. Based on the multi-scale decomposition of gravity anomalies, a novel method to invert multilayer horizontal tectonic stresses is proposed. The inverted multilayer stress fields are further used to infer the distribution and stability of the main faults. In order to validate our method, the multilayer stress fields in the Shenzhen fault zone are calculated as a case study. The calculated stress fields show that their distribution is controlled significantly by the strike of the main faults and can be used to derive depths of the faults. The main faults in Shenzhen may range from 4 km to 20 km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  15. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  16. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  17. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran

    NASA Astrophysics Data System (ADS)

    Javidfakhr, Bita; Bellier, Olivier; Shabanian, Esmaeil; Siame, Lionel; Léanni, Laëtitia; Bourlès, Didier; Ahmadian, Seiran

    2011-10-01

    The Alborz is a region of active deformation within the Arabia-Eurasia collision zone. The Abr and the Khij Faults are two NE-trending left-lateral strike-slip faults in the eastern Alborz that correspond to the Shahrud fault system extended through an area of about 95 km × 55 km. Tectonic landforms typically associated with active strike-slip faults, such as deflected stream channels, offset ridges and fault scarps are documented along the mentioned faults. Detailed analyses of satellite images and digital topographic data accompanied by field surveys allowed us to measure horizontal offsets of about 420 ± 50 m and 400 ± 50 m for the Abr and Khij Faults, respectively. A total of 8 quartz-rich samples were sampled and dated from two different fan surfaces using in situ-produced 10Be cosmogenic dating method. Minimum exposure ages for the abandonment of the alluvial fan surfaces of 115 ± 14 kyr along the Abr Fault and of 230 ± 16 kyr along the Khij Fault imply that both faults are active with slip rates of about 3-4 mm yr -1 and 1-3 mm yr -1, respectively. The results of our study provide the first direct quantitative geological estimates of slip rate along these two active faults and place a new constraint on slip distribution between the faults in the eastern Alborz. Fault kinematic studies (from fault slip data) indicate a N35°E-trending maximum stress axis comprising a dominant strike-slip regime in agreement with the geomorphological analyses. The left-lateral strike-slip faulting along the Abr and Khij Faults and their associated fault zones in the eastern Alborz can be due to the westward component of motion of the South Caspian Basin with respect to Eurasia and Central Iran.

  18. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  19. An Early, Transient, Impact-driven Tectonic Regime in the Hadean?

    NASA Astrophysics Data System (ADS)

    O'Neill, C.; Marchi, S.; Zhang, S.

    2015-12-01

    The earliest preserved crust formed in a tectonic regime that different from present in several significant ways. Earth was still losing a significant fraction of its primordial heat, and heat production was declining more rapidly than in any period subsequently. Additionally, a waning impact flux provided an important thermal - and mechanical - forcing on the early Earth. These factors affect tectonics in a number of ways - internal velocities are faster, and internal viscosities lower due to hotter internal temperatures. Previous modelling of the tectonic evolution of the Earth under these conditions suggests that the early Earth may have exhibited periods of hot stagnant-lid convection - where vigorous internal convection - and volcanic activity - occurred under a tectonically quiescent lid. As the Earth cooled the planet would have transited into an episodic regime - characterised by periods of tectonic quiescence interspersed by extreme tectonic activity. Such scenarios explain a number of facets of the early Earth, including its observed slow mixing rates, inefficient cooling, and its paleomagnetic and tectonic history. Here we expand these models to incorporate the effects of major impacts. We find tectonic forcing due to impacts to be a major dynamic driver during the Hadean, with major return flow driving horizontal surface deformation, and transient subduction events. Such events may be reflected in the Hadean zircon record. Post this impact-dominated phase, models suggest an over-heated Earth may have then experienced a long phase of stagnant-lid convection, lasting till the meso-Archaean.

  20. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  1. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stöckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc

  2. Deformation History Of Jabal Muqsim Ophiolitic Nappe And Environs, Allaqi District: Implications For The Tectonic Evolution Of The South Eastern Desert Tectonic Terrane In NE Nubian Shield Zakaria Hamimi*, Yahia El-Kazzaz** and Abdelhamid El-Fakharani* * Department of Structural Geology and Remote Sensing, Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, P.O.B 80206 ** Geology Department, Faculty of Science, Helwan University, Egypt

    NASA Astrophysics Data System (ADS)

    Hamimi, Z. E.

    2012-12-01

    The Neoproterozoic basement rocks exposed in Jabal Muqsim area and environs are discriminated, based on field relations and petrographic investigations, into three main tectono-stratigraphic units; dismembered ophiolitic suite, metavolcaniclastics and syn- to post-tectonic intrusives. The ophiolitic rocks comprise variably-sized slices of metaultramaifcs, amphibolites and metagabbros, thrusted from SE to NW over, and incorporated within, highly sheared metasediments. The metavolcaniclastics consist of clastic sequence varies from poorly sorted proximal to well developed laminated distal tuffs. These rocks suffered a prolonged history of deformation resulted in remarkable change in the clasts into NW-plunged oriented deformed pebbles. The intrusives embrace layered gabbros and syn- to post-tectonic granitoids. Structural analysis of mesoscopic structures indicated that the area has undergone a poly-phase deformation history involving three phases of deformation (D1-D3). D1 was a N-S to NNW-SSE shortening phase, led to the formation of tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and subhorizontal crenulation and mineral lineation (L1). D2 was a progressive phase of D1 and both of them were most probably the consequence of the accretion between the South Eastern Desert tectonic terrane and the Gabgaba tectonic terrane along the conspicuous Allaqi-Heiani Shear Zone. D2 dominated by S- to SSE-dipping imbricated thrusts and thrust duplexes, as well as N- to NNW-verging F2 thrust-related folds. D3 was an E-W to ENE-WSW shortening phase, accompanied with the later collision between East- and West-Gondwana blocks in the late Cryogenian-Ediacaran (650-542 Ma). It was responsible for the formation of F3 open folds and subvertical S3 foliation. Progressive convergence between East and West Gondwana was accommodated in the study area by distinct reverse displacements along S1.

  3. Tectonic History of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.

  4. Investigation of remnant versus active deformation in the lithosphere beneath south Africa from shear-wave splitting

    NASA Astrophysics Data System (ADS)

    emuh, M.; Nyblade, A.; Weeraratne, D. S.

    2012-12-01

    South Africa is comprised of several continental blocks formed during previous collisional events, which date back 2-3 Ga. The three main blocks known as the Pietersburg, Kimberley, and Witwatersrand blocks are delineated by ancient subduction boundaries such as the Colesberg lineament. We consider whether these continental blocks retain remnant deformation at lithospheric depths from ancient collisional events or are governed by stresses due to current plate motion and mantle flow. We use shear-wave splitting methods to study seismic anisotropy from teleseismic phases. Splitting measurements are obtained by minimizing the smallest eigenvalue, maximizing the ratio of the smallest and largest eigenvalues, and rotation correlation, using the graphical user interface Splitlab. We only consider results that show consistency between multiple methods. The seismic data was collected from a new deployment of AfricaArray stations in south Africa and consists of 28 earthquake events. Earthquakes used in this study have a good azimuthal distribution with the poorest coverage only in the NW and S directions. Stations located within the Witwatersrand block display consistent results with a NE fast direction and an average delay time of 1.01 +/- 0.4 s. One station west of the Colesberg lineament in the Kimberley block yields a NW-SE fast direction for all measurements and is nearly perpendicular to results from stations east of this boundary. Stations south of Kaapvaal craton show dependence on the back azimuth of earthquake arrivals. Paths which travel through the Namaqua-Natal fold belt all produce N-S fast directions with average delay times of 0.9 s. Raypaths that travel through the southern Saldania fold belt produce NW-SE fast directions. We suggest that seismic anisotropy in this region represents active deformation in the Witwatersrand block dictated by current tectonic stresses and absolute plate motion. Remnant fabric from ancient tectonic collisional events may still

  5. Late Quaternary tectonic deformation in the Cape Arago-Bandon region of coastal Oregon as deduced from wave-cut platforms

    SciTech Connect

    McInelly, G.W.; Kelsey, H.M. )

    1990-05-10

    The Cape Arago region of south central Oregon sits on the upper plate of the Cascadia subduction zone about 80 km east of the base of the continental slope. The style of late Pleistocene deformation along the Cascadia forearc near Cape Arago is well expressed by the altitudinal variation of a set of five uplifted wave-cut platforms. These platforms record open folding, with a half wavelength of about 6-7 km, as well as late Quaternary offset on flexural-slip reverse faults that parallel bedding in the underlying bedrock. The folds have produced both landward and seaward tilts to the uplifted wave-cut platforms. Because the folds cut obliquely across the coastline, the magnitude of coastal uplift is variable. In the case of the lowest, 80 ka wave-cut platform, this variable uplift has resulted in coastal deformation ranging from subsidence to a maximum uplift of 0.8 m/kyr. Quantitative analysis of the mechanism of flexural slip folding for the South Slough syncline near Cape Arago indicates that the late Quaternary strain rate has decreased in the last 200 kyr. Evidence of past great subduction-style earthquakes, such as regional uplift and regional landward tilting of wave-cut platforms, or regional submergence of coastlands, is lacking in the Cape Arago region. Instead, the deformational style is controlled by folding. Though localized folding is dominant, the occurrence of great subduction-style earthquakes is not precluded because localized folding could occur concurrently with regional coseismic deformation.

  6. Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2012-07-01

    The Noakoh anticline is located in Kermanshah province and is part of the Simply Folded Belt of Zagros. Boundaries of 97 triangular facets and 67 wine-glass (W-G) valleys, which formed on anticline limbs, were delineated using Quickbird satellite imagery. The strata dip (D), area (A), base length (BL), topographic slope (S) of facets, the maximum width (M), outlet width (O) and ratio of maximum width to outlet width (W index) of W-G valleys were analysed in detail. Noakoh anticline was subdivided into 9 tectonic zones on the basis of dip, topographic slopes and width of limbs. Results show that there are strong positive correlations between means of D-BL and S-BL pairs. Poor positive correlations exist between means of D-A and S-A pairs. Among W-G valley metrics, the W index has strong relations with D and S parameters. Based on the results, steep facets with long bases and well developed W-G valleys with narrow outlets and wide upper parts are associated with more rotated limbs having steep slopes. Facets on the northeastern slope have more forest cover, micro-organism activity, karstic features and soil cover, whereas facets on relatively drier southwestern slope are characterized by physical weathering processes and minor karstic landforms. This study demonstrates that, apart from tectonic activity as a major control on the morphometry of facets and valleys, climate and slope aspect have also acted as secondary factors on the development of the studied landforms.

  7. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413

  8. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  9. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  10. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  11. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  12. Statistical description of tectonic motions

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    1993-01-01

    This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system.

  13. Tectonic boundaries of the eastern Gulf Coast of North America

    SciTech Connect

    Leonard, C. Jr.; Phillips, R.R. )

    1993-09-01

    Two Precambrian extensional fault episodes, recorded in mapping from central Arkansas across Mississippi, central Alabama, southern Georgia, and into the Atlantic Ocean affected later Pennsylvanian and Triassic tectonics. This interpretation is from magnetic anomaly data and is supported by seismic, gravity, core, and well-log data. The fault system was first suspected from an anomalous magnetic high, representing a feature that affected tectonism during the Ouachita and the Alleghenian orogenies of the eastern Gulf Coast and southeastern United States. The northernmost upthrown block is considered part of an ancient passive continental margin developed during the late Precambrian. The southern downthrown block is deformed by left-lateral transverse faults active during the Ouachita Orogeny. The Ouachita Orogeny may have deformed terrain farther east than the Black Worrior basin. These transverse fault blocks were buttressed by the footwall of the extensional fault system. These left-lateral faults extending from Florida and Georgia into Alabama, Mississippi, and southern Arkansas.

  14. Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: The Alboran Sea, Western Mediterranean

    USGS Publications Warehouse

    Alvarez-Gomez, J. A.; Aniel-Quiroga, I.; Gonzalez, M.; Olabarrieta, M.; Carreno, E.

    2011-01-01

    The tsunami impact on the Spanish and North African coasts of the Alboran Sea generated by several reliable seismic tsunamigenic sources in this area was modeled. The tectonic setting is complex and a study of the potential sources from geological data is basic to obtain probable source characteristics. The tectonic structures considered in this study as potentially tsunamigenic are: the Alboran Ridge associated structures, the Carboneras Fault Zone and the Yusuf Fault Zone. We characterized 12 probable tsunamigenic seismic sources in the Alboran Basin based on the results of recent oceanographica