Science.gov

Sample records for active tectonic deformation

  1. New constraints on the active tectonic deformation of the Aegean

    USGS Publications Warehouse

    Nyst, M.; Thatcher, W.

    2004-01-01

    revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.

  2. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  3. Deformation across the seismic cycle in tectonically active regions: Imaging, modeling, and interpretations

    NASA Astrophysics Data System (ADS)

    Barnhart, William Douglas

    Images of surface displacements in response to tectonic forces can provide independent, spatially dense observations that assist in understanding sub-surface processes. When considered independently or augmented with more traditional observations of active tectonics such as seismicity and ground mapping, these measurements provide constraints on spatially and temporally variable fault behavior across the seismic cycle. Models of fault behavior inferred from these observations in turn allow us to address topics in geologic hazards assessment, the long- and short-term character of strain in deforming regions, and the interactions between faults throughout the crust. In this dissertation, I use remotely sensed observations of ground displacements from interferometric synthetic aperture radar (InSAR) to approach several problems related to earthquake and aseismic fault slip. I establish image processing and inverse methods for better detailing subsurface fault slip and apply these to the 2010-2011 Canterbury, New Zealand sequence. Then, I focus on the active tectonics of the Zagros Mountains in southern Iran. There, I show through orogen-wide InSAR time series analysis that active strain is accommodated across the width of the mountain belt. I also use a combination of InSAR, local seismicity, and structural modeling to demonstrate that strain is vertically partitioned within the Zagros fold-and-thrust belt, with earthquakes controlling deformation in the underlying basement while the overlying sedimentary section shortens in transient, earthquake-triggered aseismic slip events. In certain examples, these aseismic slip events directly contribute to the growth of fault-bend folds. I use these inferences to explore a previously noted discrepancy between observed shortening and that which is expected from known earthquakes. I show that the earthquakes and short-term aseismic slip cannot account for this discrepancy, and that additional deformation mechanisms must be

  4. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  5. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  6. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  7. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  8. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  9. Active Deformation in the Zagros-Makran Transition Zone Inferred From GPS, Tectonic and Seismological Measurements

    NASA Astrophysics Data System (ADS)

    Bayer, R.; Shabanian, E.; Regard, V.; Yaminifard, F.; Vernant, P.; Nilforoushan, F.; Abbassi, M.; Chery, J.; Tatar, M.; Doerflinger, E.; Peyret, M.; Daignières, M.; Bellier, O.; Hatzfeld, D.; Mokhtari, M.

    2002-12-01

    The present-day N-S convergence between the Arabian and the Eurasian plates is accommodated in Southern Iran along the Zagros fold and thrust belt (with a shortening of ~8 mm/yr)and by the subduction of the Oman oceanic lithosphere beneath the Makran (with a rate of 18mm/yr). The Bandar Abbas-Strait of Hormuz zone is considered as a transition between the Zagros continental collision and the Makran oceanic subduction. In this area, the strain is mainly accommodated along the NNW-SSE trending reverse right lateral Minab-Zendan-Palami faults and along the N-S trending faults of Sarduiyeh, Jiroft and Sabzevaran. We used GPS network measurements (carried out in 2000 and 2002) to better understand how the deformation is distributed between between the Zagros continental collision and the Makran oceanic subduction. The analysis of the velocities (together with the measurements of the global network of Iran) leads to the following conclusions : - The rate of shortening in the Eastern Zagros is < 8mm/yr. It is < 5 mm/yr between the coast and the Main Zagros Thrust. - The horizontal residual velocities of the coastal sites in Zagros relative to Musandan are < 3mm/yr, evidencing for a small deformation in the Persian Gulf. - Across the Minab-Zendan-Palami faults system GPS measurements are consistent with a N-S trending reverse right lateral motion at rate of ~ 10 mm/yr. - West of the Lut block at the latitude of Khanuj, the N-S trending Sarduiyeh-Jiroft-Sabzevaran fault system is characterized by a 2 mm/yr right strike slip motion. Local seismicity is located at an unusual depth down to 35 km. Little is associated with the Minab-Zendan-Palami faults strike slip faults. They rather suggest that they are associated with a complex transition between the Zagros collision and the Makran subduction. Times delays also suggest a large heterogeneity in the crust across the fault system. These measurements support the model that the convergence from the collision to the subduction is

  10. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes

    NASA Astrophysics Data System (ADS)

    Rotevatn, Atle; Thorsheim, Elin; Bastesen, Eivind; Fossmark, Heidi S. S.; Torabi, Anita; Sælen, Gunnar

    2016-09-01

    Deformation bands in porous sandstones have been extensively studied for four decades, whereas comparatively less is known about deformation bands in porous carbonate rocks, particularly in extensional settings. Here, we investigate porous grainstones of the Globigerina Limestone Formation in Malta, which contain several types of deformation bands in the hangingwall of the Maghlaq Fault: (i) bed-parallel pure compaction bands (PCB); (ii) pressure solution-dominated compactive shear bands (SCSB) and iii) cataclasis-dominated compactive shear bands (CCSB). Geometric and kinematic analyses show that the bands formed sequentially in the hangingwall of the evolving Maghlaq growth fault. PCBs formed first due to fault-controlled subsidence and vertical loading; a (semi-)tectonic control on PCB formation is thus documented for the first time in an extensional setting. Pressure solution (dominating SCSBs) and cataclasis (dominating CCSBs) appear to have operated separately, and not in concert. Our findings therefore suggest that, in some carbonate rocks, cataclasis within deformation bands may develop irrespective of whether pressure solution processes are involved. We suggest this may be related to stress state, and that whereas pressure solution is a significant facilitator of grain size reduction in contractional settings, grain size reduction within deformation bands in extensional settings is less dependent on pressure solution processes.

  11. Global organization of tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-01-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the

  12. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

  13. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  14. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  15. A mechanism for tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1986-01-01

    In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.

  16. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  17. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  18. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  19. Active tectonics and human survival strategies

    NASA Astrophysics Data System (ADS)

    King, Geoffrey; Bailey, Geoffrey; Sturdy, Derek

    1994-10-01

    Tectonic movements continuously remould the surface of Earth in response to plate motion. Yet such deformation is rarely taken into account when assessing landscape change and its impact on human land use, except perhaps as an occasional hazard to human life or a temporary disruption in the longer term patterns of human history. However, active tectonics also create and sustain landscapes that can be beneficial to human survival, forming a complex topography of potentially fertile sedimentary basins enclosed by mountain barriers that can facilitate the control and explotation of food resources, especially animal prey. We discuss the tectonic history of northwest Greece and show how the Paleolithic sites of the region are located to take advantage of tectonically created features at both a local and a regional scale. We suggest that the association of significant concentrations of early Paleolithic sites with tectonically acitve regions is not coincidental and that on the longer time spans of human biological evolution, active tectonics has been an important selective agent contributing to the development of the human species as an intelligent predator.

  20. Plate-tectonic mechanism of Laramide deformation.

    USGS Publications Warehouse

    Hamilton, W.

    1981-01-01

    The Laramide compressive deformation of the craton was caused by a clockwise rotation of about 2-4o of the Colorado Plateau region relative to the continental interior, during late Late Cretaceous and early Tertiary time. Late Paleozoic and Neogene deformation of the craton also were produced by motion of a southwestern subplate relative to the continental interior. -from Author

  1. Geodetic monitoring of tectonic deformation: Toward a strategy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Issues of interest and importance to society and science are presented. The problems considered are of national concern; their solutions may contribute to a better understanding of tectonic deformation and earthquake hazards. The need for additional field data, the role of geodetic measurements, the importance of both ground and space techniques, and the need for advanced instrumentation development are discussed.

  2. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data

    NASA Astrophysics Data System (ADS)

    Tibor, Gideon; Niemi, Tina M.; Ben-Avraham, Zvi; Al-Zoubi, Abdallah; Sade, Ronnie A.; Hall, John K.; Hartman, Gal; Akawi, Emad; Abueladas, Abdelrahmem; Al-Ruzouq, Rami

    2010-12-01

    A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north-northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf-slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70-80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water

  3. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data

    NASA Astrophysics Data System (ADS)

    Tibor, Gideon; Niemi, Tina; Ben-Avraham, Zvi; Al-Zoubi, Abdallah; Sade, Ronnie; Hall, John; Hartman, Gal; Akawi, Emad; Abueladas, Abed; Al-Ruzouq, Rami

    2010-05-01

    A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat (gulf head). The gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi 'Arabah) and Yutim River to the north-northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault Zone to the west and the Ayla Fault Zone to the east. The shelf-slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70-80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar

  4. Active tectonics of the Andes

    NASA Astrophysics Data System (ADS)

    Dewey, J. F.; Lamb, S. H.

    1992-04-01

    Nearly 90 mm a -1 of relative plate convergence is absorbed in the Andean plate-boundary zone. The pattern of active tectonics shows remarkable variations in the way in which the plate slip vector is partitioned into displacement and strain and the ways in which compatibility between different segments is solved. Along any traverse across the plate-boundary zone, the sum of relative velocities between points must equal the relative plate motion. We have developed a kinematic synthesis of displacement and strain partitioning in the Andes from 47°S to 5°N relevant for the last 5 Ma based upon: (1) relative plate motion deduced from oceanic circuits giving a roughly constant azimuth between 075 and 080; (2) moment tensor solutions for over 120 crustal earthquakes since 1960; (3) structural studies of deformed Plio-Pleistocene rocks; (4) topographic/geomorphic studies; (5) palaeomagnetic data; and (6) geodetic data. We recognize four neotectonic zones, with subzones and boundary transfer zones, that are partitioned in different ways. These zones are not coincident with the 'classic' zones defined by the presence or absence of a volcanic chain or differences in finite displacements and strains and tectonic form; the long-term segmentation and finite evolution of the Andes may not occur in constantly defined segments in space and time. In Segment 1 (47°-39°S), the slip vector is partitioned into roughly orthogonal Benioff Zone slip with large magnitude/large slip-surface earthquakes and both distributed dextral shear giving clockwise rotations of up to 50° and dextral slip in the curved Liquine-Ofqui Fault System giving 5°-10° of anticlockwise fore-arc rotation. In Segment 2 (39°-20°S), the slip vector is partitioned into Benioff Zone slip roughly parallel with the slip vector, Andean crustal shortening and a very small component of dextral slip, including that on the Atacama Fault System. Between 39° and 34°S, a cross-strike dextral transfer, which deflects

  5. Fault-based PSHA of an active tectonic region characterized by low deformation rates: the case of the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Vleminckx, Bart; Camelbeeck, Thierry

    2016-04-01

    The Lower Rhine Graben (LRG) is one of the few regions in intraplate NW Europe where seismic activity can be linked to active faults, yet probabilistic seismic hazard assessments of this region have hitherto been based on area-source models, in which the LRG is modeled as a single or a small number of seismotectonic zones with uniform seismicity. While fault-based PSHA has become common practice in more active regions of the world (e.g., California, Japan, New Zealand, Italy), knowledge of active faults has been lagging behind in other regions, due to incomplete tectonic inventory, low level of seismicity, lack of systematic fault parameterization, or a combination thereof. The past few years, efforts are increasingly being directed to the inclusion of fault sources in PSHA in these regions as well, in order to predict hazard on a more physically sound basis. In Europe, the EC project SHARE ("Seismic Hazard Harmonization in Europe", http://www.share-eu.org/) represented an important step forward in this regard. In the frame of this project, we previously compiled the first parameterized fault model for the LRG that can be applied in PSHA. We defined 15 fault sources based on major stepovers, bifurcations, gaps, and important changes in strike, dip direction or slip rate. Based on the available data, we were able to place reasonable bounds on the parameters required for time-independent PSHA: length, width, strike, dip, rake, slip rate, and maximum magnitude. With long-term slip rates remaining below 0.1 mm/yr, the LRG can be classified as a low-deformation-rate structure. Information on recurrence interval and elapsed time since the last major earthquake is lacking for most faults, impeding time-dependent PSHA. We consider different models to construct the magnitude-frequency distribution (MFD) of each fault: a slip-rate constrained form of the classical truncated Gutenberg-Richter MFD (Anderson & Luco, 1983) versus a characteristic MFD following Youngs

  6. The Eurekan Orogeny: convergent intraplate deformation through accretionary tectonics?

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The Eurekan Orogeny, which created much of the high topography (~1-2km) of Ellesmere Island and adjacent Greenland, exhibits a crustal architecture linked to intraplate orogenesis in the Cenozoic. These features occurred as a result of mountain-building processes the dynamics of which are not well understood. It is generally considered that the rotation of Greenland in the Eocene (related to sedimentary basin formation in Baffin Bay) produced compressional tectonics between Greenland and Ellesmere Island. As part of this process, the Eurekan Orogeny formed away from a traditional convergent ocean-closure plate boundary, and may represent a style of intraplate deformation. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leave deformational `scars' in the crust and mantle lithosphere (specifically in the Ellesmere Island case through accretionary orogenesis in the Palaeozoic). This weakening of the lithosphere may produce episodic reactivation of faults within continental interiors. For example, lithospheric shortening at a time after continental collision could cause the previously deformed crust and mantle lithosphere to produce intraplate deformation. In this work, the geodynamic evolution of the Eurekan Orogeny and its relationship to the tectonics of the Canadian polar margin and northern Baffin Basin is explored using high-resolution thermal-mechanical numerical experiments with the modelling code SOPALE. The modelling of the High Arctic is constrained by the first-order crustal structure of the region (deduced by local gravity field and passive seismological data). Presented are suites of numerical experiments that investigate how the pre-existing lithospheric structures (both crustal and sub-crustal) control the evolution of the resulting intraplate orogen. The influence of other primary modelling parameters, such as crustal thickness and assumed rheology, is also explored. To highlight the role of surface processes on plate

  7. Reconstructing Drainage Evolution in Response to Tectonic Deformation Along an Active Rift Margin Using Cosmogenic Exposure Age Dating of Desert Pavements

    NASA Astrophysics Data System (ADS)

    Guralnik, B.; Matmon, A.; Avni, Y.; Zilberman, E.; Fink, D.

    2009-04-01

    Fragmentation and rearrangement of drainage basins, and stream reversal occur in response to tectonic forcing such as subsidence of continental rift valleys and uplift of rift shoulders. We present new cosmogenic data from the central Negev Desert, southern Israel, that sheds light on the relations between the tectonic history of the western margins of the southern Dead Sea Rift (DSR) and drainage basin evolution since the Pliocene. In the Pliocene a major north-oriented river system drained the Negev into the Dead Sea basin and collected tributaries that originated east of the DSR and flowed westward across the central Negev. Tectonic deformation along the western margin of the DSR that began in the Pliocene caused regional eastward tilting and reversal of these tributaries by the early Pleistocene. Zero regional gradients which prevailed during the reversal stage, were accompanied by the accumulation of red beds and lake deposits, currently found on progressively lower elevations towards the rift. The present elevations of these deposits record Quaternary subsidence. To constrain the breakdown history of the Pliocene drainage system and reconstruct Quaternary subsidence, we sampled mature desert pavement from 13 abandoned alluvial surfaces associated with the Plio-Pleistocene deposits. From each surface, hundreds of chert clasts were collected and amalgamated into a single sample. Seven samples were collected from the highest windgaps along major water divides, in which remnants of the early Pleistocene surface are preserved. Five of these samples yielded exposure ages that range between 1.9 Ma and 1.5 Ma. These ages bracket the collapse of the Pliocene drainage basin and suggest the eastward migration of this process. Six other samples which yielded ages that range between 1.3 Ma and 0.5 Ma were collected from alluvial terraces inset into the early Pleistocene surface. They indicate stages of incision of the present drainage system. Under conditions of long

  8. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  9. Plate tectonic models for Indian Ocean ``intraplate'' deformation

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas A.; Stein, Seth; Demets, Charles; Gordon, Richard G.; Stein, Carol

    1986-12-01

    The equatorial region of the conventionally defined Indo-Australian plate has long been recognized as containing a type example of intense "intraplate" deformation. We trace the development of tectonic models for the area to illustrate techniques for the analysis of such deformation. The identification of anomalous seismicity near the Ninetyeast and Chagos-Laccadive Ridges demonstrated the existence of the deformation. Focal mechanisms from recent and historic earthquakes showed strike-slip motion occurring along the Ninetyeast Ridge; seismic moment data allowed the rate to be estimated. Similar studies showed north-south tension in the Chagos Bank region and north-south compression in the region between the Ninetyeast and Chagos ridges. Global plate motion studies indicated non-closure of the Indian Ocean triple junction, suggesting the conventional plate geometry was inadequate for a rigid plate description of the area. Gravity and marine geophysical data indicated intense north-south compressional deformation south of the Bay of Bengal. These observations are reconciled by a plate motion model in which Australia and India lie on distinct plates divided by a boundary that intersects the Central Indian Ridge near the equator. In this model Arabia, usually considered a separate plate, has negligible motion relative to India. The resulting Euler vector for Australia relative to Indo-Arabia lies just east of the Central Indian Ridge, and predicts approximately 0.5-1.5 cm/yr compression in the Central Indian Basin and 1.5-2 cm/yr strike-slip motion along the northern Ninetyeast Ridge, consistent with the seismological and geophysical data. In contrast to conventional oceanic plate boundaries, the boundary deformation is distributed over a wide zone. This diffuse nature may reflect either the boundary's recent inception or slow rate of motion. Analysis of seismicity and deformation in the boundary zone should offer insights into the mechanics of its development and its

  10. Active tectonic studies in the United States, 1987-1990

    SciTech Connect

    Weldon, R.J., II )

    1991-01-01

    The techniques and instrumentation used in active tectonic studies are discussed, and recent results are reviewed. It is suggested that a critical mass of data on several particular regions has been accumulated, making possible critical debates and attempts to assess earthquake hazards. Particular attention is given to studies of the Pacific Northwest region, basin and range deformation studies, and distributed deformation and hidden earthquake sources. Also included is a comprehensive bibliography for the period.

  11. Northeast Basin and Range province active tectonics: An alternative view

    SciTech Connect

    Westaway, R. )

    1989-09-01

    Slip rates and slip vector azimuths on major active oblique normal faults are used to investigate whether circulation associated with the Yellowstone upwelling plume is driving tectonic deformation in the northeast Basin and Range province. Observed deformation is consistent with this suggestion; the plume is sheared to the southwest by motion of the North American plate. Testable predictions are made for structure and evolution of the region.

  12. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Lacan, Pierre; Tavera, Hernando; Bondoux, Francis

    2008-11-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw = 8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, at a longer time scale, a recurrent Quaternary transtensive tectonic activity of the CFS is expressed by offset river gullies and alluvial fans. The presence of such extensional fault systems trending orthogonal to the trench along the Coastal Cordillera in southern Peru is interpreted to reflect a strong coupling between the two plates. In this particular case, stress transfer to the upper plate, at least along the coastal fringe, appears to have induced crustal seismic events that were initiated mainly during and after the 2001 earthquake. The seafloor roughness of the subducting plate is usually thought to be a cause of segmentation along subduction zones. However, after comparing and discussing the role of inherited structures within the upper plate to the subduction zone segmentation in southern Peru, we suggest that the continental structure itself may exert some feedback control on the segmentation of the subduction zone and thus participate to define the rupture pattern of major subduction earthquakes along the southern Peru continental margin.

  13. Plains tectonism on Venus: The deformation belts of Lavinia Planitia

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Jankowski, David G.; Simons, Mark; Solomon, Sean C.; Hager, Bradford H.; Mcgill, George E.

    1993-01-01

    High-resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. A number of geologic units can be distinguished, including volcanic plains units with a range of ages. Transecting these plains over much of the Lavinia region are two types of generally orthogonal features that we interpret to be compressional wrinkle ridges and extensional grooves. The dominant tectonic features of Lavinia are broad elevated belts of intense deformation that transect the plains with complex geometry. They are many tens to a few hundred kilometers wide, as much as 1000 km long, and elevated hundreds of meters above the surrounding plains. Two classes of deformation belts are seen in the Lavinia region. 'Ridge belts' are composed of parallel ridges, each a few hundred meters in elevation, that we interpret to be folds. Typical fold spacings are 5-10 km. 'Fracture belts' are dominated instead by intense faulting, with faults in some instances paired to form narrow grabens. There is also some evidence for modest amounts of horizontal shear distributed across both ridge and fracture belts. Crosscutting relationships among the belts show there to be a range in belt ages. In western Lavinia, in particular, many ridge and fracture belts appear to bear a relationship to the much smaller wrinkle ridges and grooves on the surrounding plains: ridge morphology tends to dominate belts that lie more nearly parallel to local plains wrinkle ridges, and fracture morphology tends to dominate belts that lie more nearly parallel to local plains grooves. We use simple models to explore the formation of ridge and fracture belts. We show that convective motions in the mantle can couple to the crust to cause horizontal stresses of a magnitude sufficient to induce the formation of deformation belts like those observed in Lavinia. We also use the small-scale wavelengths of deformation observed within individual ridge belts to

  14. Geodetic measurement of tectonic deformation in the Santa Maria Fold and Thrust Belt, California

    NASA Technical Reports Server (NTRS)

    Feigl, Kurt L.; King, Robert W.; Jordan, Thomas H.

    1990-01-01

    Geodetic observations taken over the last 100 years were analyzed to quantify active tectonic deformations in the Santa Maria Fold and Thrust Belt (SMFTB), California. Three different types of data were combined to estimate two-dimensioanl station positions and strain rate parameters simultaneously: (1) historical triangulation from the 1880s, 1920s, and 1950s; (2) electronic distance measurement trilateration from 1971 and 1985; and (3) GPS observations from 1986 and 1987. Results imply that the SMFTB is the primary active element in transforming motion from the Coast Ranges to the western Transverse Ranges and the Santa Barbara Channel.

  15. Modelling continental deformation within global plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, S.; Whittaker, J.; Heine, C.; Müller, P.

    2010-12-01

    A limitation of regional and global plate tectonic models is the way continental deformation is represented. Continental blocks are typically represented as rigid polygons - overlaps or gaps between adjacent continental blocks represent extension or compression respectively. Full-fit reconstructions of major ocean basins result in large overlaps between the conjugate continental plates, on the basis that the continental margins are highly extended compared to their pre-rift state. A fundamental challenge in generating more robust global-scale plate reconstructions is the incorporation of a more quantitative description of the kinematics within extended passive margins, based on observations. We have used the conjugate Southern Australia and Wilkes Land, Antarctica margins as a case study, and as part of this work have generated revised sediment thickness maps for these margins. These datasets are used to test different approaches for generating full-fit reconstructions in order to create a framework of methodologies that is globally applicable. One approach is to restore two conjugate continent-ocean boundaries (COBs) to their pre-rift configuration and then use the geometric fitting method of Hellinger (1981) and Royer and Chang (1991), used to generate fits of seafloor isochrons, to generate a “full-fit” Euler pole. To quantitatively restore the COBs to their palinspastic pre-rift configuration we integrate estimates of crustal thickness along small circle paths, defined by an initial estimate of the Euler stage pole describing plate motions during continental rifting. We then use the conjugate sets of restored COB’s as inputs to the geometric fitting method, treating them as isochrons, and so generate poles of rotation for the plate configuration prior to rifting. Two potential shortcomings of this methodology are that (1) the conjugate margins are treated independently, whereas in reality they were actually one continuous continental basin during rifting

  16. Tectonic deformations of the NW Novaya Zemlya Archipelago

    NASA Astrophysics Data System (ADS)

    Prokopiev, Andrei; Ershova, Victoria; Khudoley, Andrey; Sobolev, Nikolay; Petrov, Eugeniy

    2016-04-01

    The Novaya Zemlya archipelago comprises two main islands (Northern and Southern). Structural studies were conducted in the northwestern part of Northern Island, composed mainly of Upper Proterozoic-Carboniferous rocks. The structural style is dominated by NW-striking folds, clearly recognized on geological maps. The folds are typically overturned to the northwest. Southeast-dipping axial-plane cleavage is widely distributed. Tectonic transportation in Mesozoic time was directed from southeast to northwest. The bedding-cleavage intersection lineation plunges to southeast and southwest, parallel to the axes of large and small folds. The dip angle of the lineation is high, ranging up to 30o or, rarely even more. Dip angle of the intersection lineation is highly variable over a short distance, pointing to occurrence of several stages of deformation. The intersection lineation plunge angels are likely close to dip angles of bedding on the early-stage fold limbs, most of which were gentle to open ones. The early folding is presumably related to Caledonian or Ellesmerian orogenies.

  17. Tectonic Escape and Present-Day Crustal Deformation in Northernmost Longitudinal Valley, Hualien Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Chen, C. Y.; Chen, Y. G.; Chen, R. F.; Chen, H. Y.

    2014-12-01

    The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007-2014 and 10 continuous GPS single-frequency stations recorded in 2011-2014, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a clockwise rotation at a rate of 33° M/yr and an eastward tectonic escape in the small Hualien City block (HUAL) area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block (~ 100 x 100 km) defined by previous studies. Combining the levelling data that indicated the Coastal Range is going down toward the north, we interpret the tectonic escape of the northernmost Longitudinal Valley as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault), which needs further investigation.

  18. GPS Measurement of Tectonic Deformation and Isostatic Rebound in Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Luyendyk, B. P.

    2001-12-01

    The Ross embayment and western Marie Byrd Land are part of the West Antarctic rift system. The region is undergoing active deformation, but the rates and causes of deformation are essentially unknown. In December 1998 we installed three continuous and autonomous global positioning system (GPS) stations on outcrops in western Marie Byrd Land, with baselines between stations of about 100 kilometers. We recovered data for the sites in Marie Byrd Land during the 1998--1999 season and additional data in November 1999, November 2000, and January 2001. Results from three years of data collection indicate essentially no extension between McMurdo station (MBL4) and the network. The results show an overall length rate of -0.7+/- 3.5~mm/yr between MCM4 and the wMBL network. With additional years of measurements we should be able to discriminate whether this rate is near zero or not to about 1~mm/yr. We also expect to detect strain gradients within wMBL. The network also suggests a dome of uplift centered near the Rockefeller Mountains, with the maximum rate being in the Rockefeller Mountains of 12+/- 8~mm/yr. This is consistent with proposed post-glacial rebound for the region. The strain data from wMBL and the Transantarctic Mountains will enable us to construct models for tectonic extension and glacial rebound in the West Antarctic rift. The results will help determine whether active tectonic deformation is occurring in the Ross embayment. Crustal uplift could be occurring in western Marie Byrd Land due to isostatic rebound following the last glacial age. Tectonic extension, occurring in the embayment, could greatly influence global plate circuit calculations and constrain our understanding of the history of extension in the embayment and the consequent uplift history of the Transantarctic Mountains.

  19. Geodetic imaging of tectonic deformation with InSAR

    NASA Astrophysics Data System (ADS)

    Fattahi, Heresh

    Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and

  20. The tectonics of Tachira: Insight into North Andean deformation

    SciTech Connect

    Laubscher, H.P. ); Meier, B.P.; Schwander, M.M.

    1993-02-01

    Tachira forms the connecting link between the Merida Andes of Venezuela, and Cordillera Oriental of Colombia, and the Santander massifs. On the basis of surface mapping and subsurface data, its structural style and kinematics are discussed. Tachira is a pronounced structural depression relative to the Andean branches it connects. It comprises a bewildering network of structures, containing all the elements of the surrounding Andean branches. The structural relief as well as the adjacent foredeep were mainly formed during Neogene deformation. The Tachira depression is composed of a system of southwestward plunging inverted Early Cretaceous troughs and a tectonic block mosaic, with mostly transpressive block boundaries; dextral for the northeast-trending, sinistral for the southeast-trending zones of motion. The complex combinations of folding and thrusting with steep faults in transpressive zones are interpreted as [open quotes]flower structures.[close quotes] The structural pattern is supplemented by the more purely compressive north-south trends, revealing large-scale thrusting and disharmonic fault-bend folding, and by east-west trending transfer zones of dextral shear. Uplift of the Cordillera Oriental against the Tachira depression was established by movement in a sinistral transpressive zone (Bramon fault), coupled with thrusting towards the Llanos foredeep. The structural patterns of the Tachira depression fit a kinematic scheme of east-west compression. The compressional shortening, apparently not exceeding 10 km, and 60 km of distributed strike-slip movement, similar to the displacement along the Bocono fault at the northeast end of the Merida Andes, appears compatible with the Neogene block movement of northern South America.

  1. Overview of Recent Coastal Tectonic Deformation in the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramírez-Herrera, M. Teresa; Kostoglodov, Vladimir; Urrutia-Fucugauchi, Jaime

    2011-08-01

    Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7-0.9 m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3 ± 0.5 m/ka. In contrast, steady rates of uplift (ca. 0.5-1.0 m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7 m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6 ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.

  2. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation

    NASA Astrophysics Data System (ADS)

    Burke, Kevin

    Thirty years ago, the interior of Asia was inaccessible to most Earth scientists, as was much of the relevant literature. Students of continental evolution were frustrated. We knew that Asia, nearly alone among the Earth's continents, had been assembled in relatively recent geological times, but we could only speculate about the processes that led to its assembly. In the past 27 years, Asian and international researchers have improved our understanding. Ideas about continental evolution as diverse as modeling the deforming lithosphere as a thin, viscous sheet; tectonic escape; Altaid style assembly; crustal doubling; orogenic collapse; delamination; the role of ultra-high pressure metamorphism; the role of localized erosion and active deformation on local and continental scales are all being tested in Asia. There is no consensus yet, but the Asian natural laboratory is being used well. We may soon come to know which ideas we should abandon.

  3. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  4. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  5. The resilience of river valleys to deformation in experiments: competition between tectonic advection and channel dynamics

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Dominguez, Stéphane; Castelltort, Sébastien; Malavielle, Jacques

    2015-04-01

    In oblique collision settings, parallel and perpendicular components of the relative plate motion can be partitioned into different structures of deformation and may be localized close to the plate boundary, or distributed on a wider region. In the Southern Alps of New Zealand, it has been proposed that two-third of the regional convergence was accommodated by the Alpine Fault, while the remaining motion was distributed in a broad area along the Southern Alps orogenic wedge. To better document and understand the regional dynamics of such systems, reliable markers of the horizontal tectonic motion over geological time scales are needed. In numerical models, it has been shown that river networks are able to record a large amount of distributed strain, and that they can thus be used to reconstruct the mode and rate of distribution away from major active structures (Castelltort et al, NGeo, 2012). In order to explore the controls on river resilience to deformation in a less constrained system, we developed an experimental model to investigate river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a rain-fall system to activate erosion, sediment transport and river development on the model surface. The evolution of the wedge is fully recorded through space and time so we are able to follow the drainage geometry deformation. These experiments confirm that rivers record the distribution of motion along the wedge. Image analysis of channel time-space evolution shows how the fault-parallel and fault-perpendicular components of motion decrease toward the fault and impose rotation to the main trunk valleys. However, the capacity of rivers to act as passive markers of deformation competes with the natural lateral channel dynamics and hillslope-channel couplings which both modify the valleys boundaries. In this sense rivers are dynamic markers, which write both a story of passive rotation imposed by the tectonic velocity

  6. Holocene intracontinental deformation of the northern North China Plain: Evidence of tectonic ground fissures

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Li, Sanzhong; Cao, Xianzhi; Somerville, I. D.; Suo, Yanhui; Liu, Xin; Dai, Liming; Zhao, Shujuan; Guo, Lingli; Wang, Pengcheng; Cao, Huahua

    2016-04-01

    Following the collecting and analyzing of field data on the geometry and kinematics characteristics of ground fissures in the northern North China Plain (NNCP), this paper shows that en échelon ground fissures or tectonic ground fissures with a length of several meters to tens of kilometers extending along active faults are possibly controlled by underlying active faults. There are two groups of tectonic ground fissures developed in the NNCP. One group consists of ENE-trending "right-stepping" ground fissures, some of which have a component of sinistral motion. The other group is NNE-trending "left-stepping" ground fissures with dextral motion. A large amount of data from trenches, boreholes and seismic exploration reflect that they are active-faulting-related. The NNW-trending regional extensional stress field and the reactivation of pre-existing faults are the major factors controlling ground fissures. Data from the Quaternary sedimentary records, deep incised valleys, the distribution of earthquakes and ground fissures, and our field work show that the Holocene intracontinental deformation of the NNCP is characterized by intense faulting and northwestward tilting, which may be related to a NNW-SSE-oriented tensional stress field in the shallow crust and asthenospheric upwelling in the mantle.

  7. Hillslope development in areas of active tectonics

    NASA Astrophysics Data System (ADS)

    Arrowsmith, J. Ramón; Pollard, David D.; Rhodes, Dallas D.

    1996-03-01

    Tectonic and geomorphic displacements of the Earth's surface control topographic profile development; therefore, their analysis should be combined. In the model presented here, transient finite difference solutions to the continuity equation for material transport determine geomorphic displacements. The material transport rate is a function of distance from the divide to the power m, local slope to the power n, and a rate constant. Values of m and n may be adjusted to simulate processes varying from rainsplash and soil creep (i.e., diffusive; m = 0, n = 1) to slope wash and river flow (m > 0, n > 0). The actual geomorphic displacements may be transport or weathering-limited, depending on soil profile development. Superimposed edge dislocations in an elastic half-plane are used to model tectonic displacements. Slip along a normal or reverse fault of any dip, depth and down-dip length may be incremental (earthquake) or continuous (aseismic creep). Considering climate and material properties constant, the ratio of the transport capacity rate constant to the fault slip rate roughly determines form. This model extends existing morphologic diffusion erosion analyses to include other geomorphic conditions and processes (transport- or weathering-limited conditions, material flux boundary conditions, and the development of gullies and knickpoints) and more heterogeneous spatial and temporal distributions of tectonic displacement (such as those due to slip along buried thrust faults). We advocate calibration of these parameters and processes to provide a quantitative approach to modeling landform development, determining deformation rates, and inferring earthquake hazards.

  8. Active Tectonics: Part 2: Epeirogenic and intraplate movements

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Reilinger, R. E.

    The major deformations of the Earth's surface are largely consistent with the tenets of plate tectonics, which predict that such activity should be focused at the various boundaries along which massive lithospheric plates collide, pull apart, or slide past one another. Yet crustal deformations also occur well into the interior of these plates. Some may represent the distributed effects of distant plate boundaries, as, for example, the earthquakes of the intermontane western United States. Some, such as the geodetically observed uplift over a deep magma chamber in the Rio Grande rift of New Mexico, may correspond to incipient foundation of a new plate boundary. Others, like the subtle, broad uplifts and subsidences in the nominally stable cratonic interiors, are much more puzzling. Such motions often appear estranged, if not divorced, from accepted plate-tectonic processes. Postglacial rebound, a well-known phenomenon in portions of North America and Europe, also appears to be an inadequate explanation for many observations. Understanding contemporary motions of plate interiors is often hindered by the paucity and uncertain accuracy of relevant geophysical and geodetic observations. Yet intraplate tectonics constitutes more than a scientific enigma. Even seemingly slow vertical motions may threaten river courses or seafront properties on socially relevant time scales, and the subtle strain accumulating elsewhere may portend future earthquakes or volcanoes in the least predictable places.

  9. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  10. Beyond plate tectonics - Looking at plate deformation with space geodesy

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  11. Active tectonics coupled to fluvial erosion in the NW Himalaya

    NASA Astrophysics Data System (ADS)

    Vannay, J.-C.; Grasemann, B.; Rahn, M.; Frank, W.; Carter, A.

    2003-04-01

    Both syntaxial extremities of the Himalaya show a spatial correlation between active exhumation of deep crustal rocks and the presence of powerful rivers, the Indus and the Tsangpo-Brahmaputra, cutting across the range two of the deepest gorges on Earth. These features strongly suggests that vigorous fluvial erosion can locally enhance isostatic and tectonic uplift, which in turn contributes to heat advection and weakening of the crust, as well as to maintain steep topographic gradients [Zeitler et al., 2001]. In order to test this positive feedback model, we combined structural and geochronological data to constrain the tectono-thermal evolution along the Sutlej (NW India), the third largest river cross-cutting entirely the Himalaya. The Himalayan crystalline core zone exposed along the Sutlej Valley is composed of two gneiss sheets, that were successively underthrusted and tectonically extruded as a consequence of the foreland-directed propagation of deformation in the Indian plate margin. During Early to Middle Miocene, combined thrusting along the Main Central Thrust (MCT) and extension along the Sangla Detachment induced the rapid exhumation and cooling of the amphibolite facies to migmatitic High Himalayan Crystalline Sequence [Vannay &Grasemann, 2001]. Underthrusting beneath the MCT led to the creation of the amphibolite facies Lesser Himalayan Crystalline Sequence (LHCS). The LHCS cooled rapidly from Late Miocene to Pleistocene, as a consequence of tectonic extrusion controlled by thrusting along the Munsiari Thrust, and extension in the MCT hanging wall. This phase is still active, as indicated by: (1) cooling rates in excess of 100^oC/Myr during the past ˜3 Myr in the LHCS; (2) Holocene neo-tectonic activity; (3) present-day hydrothermal activity testifying to elevated near-surface geothermal gradients; and (4) seismic activity along the Munsiari Thrust. Modelling of fluvial erosion in the Himalaya indicate that the Sutlej Valley corresponds to the main

  12. Exploring Active Tectonics in the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Carbó-Gorosabel, A.; Córdoba-Barba, D.; Martín-Dívila, J.; Granja-Bruña, J. L.; Llanes Estrada, P.; Muñoz-Martín, A.; ten Brink, U. S.

    2010-07-01

    The devastating 12 January 2010 Haiti earthquake (M = 7.0), which killed an estimated 230,000 people and caused extensive damage to homes and buildings, drew attention to the crucial need for improved knowledge of the active tectonics of the Caribbean region. But even before this disastrous event, interest in understanding the active and complex northeastern Caribbean plate boundary had been increasing, because this region has experienced significant seismic activity during the past century and has an extensively documented record of historical seismicity and tsunamis. Moreover, this is an easily accessible region in which to study the continuity of seismic faults offshore and to try to understand the transitions between strike-slip and convergent tectonic regimes. Interest in the region has led to several studies that have improved scientists' knowledge of subduction zone tectonics and earthquake and tsunami hazard assessments 005BMann et al., 2002; ten Brink et al., 2006, 2009; Grindlay et al., 2005; Manaker et al., 2008; Granja Bruña et al., 2009; Mondziel et al., 2010].

  13. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  14. Global positioning system reoccupation of early triangulation sites - Tectonic deformation of the Southern Coast Ranges

    NASA Astrophysics Data System (ADS)

    Shen, Zheng-Kang; Jackson, David D.

    1993-06-01

    We study tectonic deformation in the Southern Coast Range, California. We use triangulation and astronomic azimuth data collected since 1875, trilateration since 1970, and global positioning system data collected from 1986 to 1987. Two modeling techniques have been used. An elastic block-fault model is applied to study the tectonic motion of the San Andreas Fault and the San Gregorio-Hosgri Fault. Station velocities are modeled to study regional deformations. Results show that the regional deformation is predominantly controlled by deep strike-slip motion along the San Andreas Fault, at a rate of 33 +/- 2 mm/yr. Deep slip along the San Gregorio-Hosgri Fault is about 0-4 mm/yr, assuming a locked suit to a depth of 20 km. Convergence normal to the San Andreas Fault in the Southern Coast Ranges is not greater than 0.02 microrad/yr.

  15. Global positioning system reoccupation of early triangulation sites - Tectonic deformation of the Southern Coast Ranges

    NASA Technical Reports Server (NTRS)

    Shen, Zheng-Kang; Jackson, David D.

    1993-01-01

    We study tectonic deformation in the Southern Coast Range, California. We use triangulation and astronomic azimuth data collected since 1875, trilateration since 1970, and global positioning system data collected from 1986 to 1987. Two modeling techniques have been used. An elastic block-fault model is applied to study the tectonic motion of the San Andreas Fault and the San Gregorio-Hosgri Fault. Station velocities are modeled to study regional deformations. Results show that the regional deformation is predominantly controlled by deep strike-slip motion along the San Andreas Fault, at a rate of 33 +/- 2 mm/yr. Deep slip along the San Gregorio-Hosgri Fault is about 0-4 mm/yr, assuming a locked suit to a depth of 20 km. Convergence normal to the San Andreas Fault in the Southern Coast Ranges is not greater than 0.02 microrad/yr.

  16. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  17. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, S. N.

    1986-01-01

    Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.

  18. Tectonic motion and deformation from satellite laser ranging to Lageos

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Kolenkiewicz, Ronald; Dunn, Peter J.; Robbins, John W.; Torrence, Mark H.; Klosko, Steve M.; Williamson, Ronald G.; Pavlis, Erricos C.; Douglas, Nancy B.

    1990-01-01

    Data on satellite laser ranging (SLR) to Lageos aquired during the period 1978-1988 are analyzed on the basis of the precise modeling of the orbit dynamics of Lageos, producing estimates of tectonic motion for 22 sites located on seven major plates. It was estimated that intraplate motion within northern Europe is below the 2 mm/yr level in absolute rate, in agreement with conclusions of Zoback et al. (1989) regarding the stress across the region. A comparison of SLR geodesic rates with those from NUVEL-1 and AMO-2 models showed high correlations between tracking sites that are well within plate interiors, but displayed small but significant departures from unity in slope which are attributed to the possibility of recent changes in relative velocities or geologic time scale uncertainties. For lines crossing the Nnorth Atlantic, the San Andreas fault, and within the Basin and Range province, the geodesic rates determined by SLR are in good agreement with those determined by VLBI.

  19. Inter-relationships between deformation partitioning, metamorphism and tectonism

    NASA Astrophysics Data System (ADS)

    Bell, T. H.; Rieuwers, M. T.; Cihan, M.; Evans, T. P.; Ham, A. P.; Welch, P. W.

    2013-03-01

    Thrusting from the east loaded the thick Pomfret dome stratigraphic sequence in Vermont to such an extent that by the time the first schistosity had formed it was 20 km deep. This occurred without garnet growth even though rock compositions were ideal for this phase to grow before they reached this depth. The rocks remained at this depth until garnet growth ceased ~ 50 million years later after 5 periods of FIA development (foliation intersection/inflection axes preserved within porphyroblasts). The first phase of the garnet growth in each sample from the Pomfret dome was overstepped in pressure, nucleating well above the incoming phase boundary for this phase at ~7 kbar for whatever FIA set was the first to develop. This was not the case 45 km S in the Chester dome where a thin stratigraphic sequence overlay a basement high of gneiss. Lateral ramping against this basement thinned the thrust sheet preventing overstepping. Frontal ramping to the WNW had the same effect. The pressure did not increase in both regions to ~ 7 kbars until FIA 2. Approximately 50% of the rocks sampled around the Pomfret dome did not grow garnet during FIA 0. PT pseudosections and overstepped garnet phase boundaries indicate that all would have grown garnet if the bulk composition and PT were the only controlling factors. If metastability alone was a factor the other 50% should have grown garnet during the development of FIA 1. They did not, and this pattern was repeated for FIAs 2 and 3. Why, where and when garnet first grew in this PT overstepped environment was recorded by the inclusion trail geometries in each sample; all grew at the start of crenulation-producing events. The variable partitioning of a succession of differently oriented crenulation deformations through the region from FIA to FIA controlled where garnet growth first occurred. Successive FIAs shifted the bulk shortening direction relative to competent rocks, deforming sites previously protected and protecting others. The

  20. Landscape response to recent tectonic deformation in the SW Pannonian Basin: Evidence from DEM-based morphometric analysis of the Bilogora Mt. area, NE Croatia

    NASA Astrophysics Data System (ADS)

    Matoš, Bojan; Pérez-Peña, José Vicente; Tomljenović, Bruno

    2016-06-01

    Bilogora Mt. area is a transpressional structure located in the NE of Croatia, linked with the tectonic evolution of the Drava Depression. The structure formed during Pliocene and Quaternary from the inversion of NW-striking Drava Depression Boundary Fault, which originated as a normal fault and was reactivated as a dextral strike-slip fault. During Pliocene and Quaternary time, Bilogora Mt. area underwent more than 400 m of differential uplift, while still ongoing tectonic deformation is documented by historical and instrumental seismicity (3.5 ≤ ML ≤ 5.6). In this geomorphic study, the recent deformation in the Bilogora Mt. area, although obscured by landscape evolution variables, was assessed using DEM-based landscape morphometry and a set of morphometric indexes. Local relief and slope angle variability distributions were combined with morphometric indexes computed at the scale of the drainage basin. We analyzed hypsometric curves with the hypsometric integral (HI), basin asymmetry (AF) and parameters of longitudinal stream profiles (Cf, Cmax, Δl/L, θ, and ksn). Analyzed morphometric parameters were combined into a cumulative index of relative tectonic activity (RTA). This index summarizes drainage basin response to the possible recent tectonic activity. Results suggest that most of the tectonic activity is probably located along the NE front of the Bilogora Mt. area, in its NW and central part. This activity could be likely related to recent tectonic activity along the Kalnik Mt. Fault zone and Drava Depression Boundary Fault zones, respectively. A subordinate area characterized by recent tectonic activity could be suggested within the southernmost part of the study area. Quaternary activity in this area is probably related to NE-striking faults in vicinity of the town Daruvar that continue towards the northeast into the study area. Though methodology presented here represents a good identification tool of possible ongoing deformation, this study will be

  1. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  2. Multiple deformation mechanisms operating at seismogenic depths: Tectonic pseudotachylyte and associated deformation from the central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Prante, M. R.; Evans, J. P.

    2012-12-01

    Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite

  3. Estimation of transient deformation on cGPS measurements at Taiwan region: Implications for tectonic and surface processes

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Chan, Y. C.

    2015-12-01

    Transient deformation on geodetic time series is usually caused by the tectonic or surface processes. Surface processes include multiple durations that could be trapped or ignored using general time series analysis. We first recognize overall transient signals in Taiwan region recorded by continuous GPS (cGPS) networks. Sparse estimation techniques and Bi-splines function are used to detect the signals on cGPS time series then estimate the parameters. Our study analyzes the transient deformation by using a multi-dataset of the cGPS, seismogram, digital terrain model (DTM), and rainfall gauges. We establish a systematic classification by weighting both the empirical trigger factors and regional criterion to classify the signals into seven types. Spatial and temporal characteristics of transient deformation show three major contributions in Taiwan region including the seismic-related, landslides-related, and slow-slip transients. The cGPS networks in Taiwan region show long-term transient deformation at rates 2-68 mm/yr, ~14%-75% of their tectonic interseismic velocities. Tectonic and surface processes involve ~38%-85% and ~15%-62%, respectively, in the transient deformation under different geological units of Taiwan region. The lack of consideration for the transient deformation in surface processes would underestimate their biases on tectonic interseismic velocity. Statistical linking between cGPS transient deformation, tectonic and surface processes of Taiwan indicate that earthquake, typhoon, and topography play important roles in the occurrence of transient deformation.

  4. The effects of tectonic deformation and sediment allocation on shelf habitats and megabenthic distribution and diversity in southern California

    NASA Astrophysics Data System (ADS)

    Switzer, Ryan D.; Parnell, P. Ed; Leichter, James L.; Driscoll, Neal W.

    2016-02-01

    Landscape and seascape structures are typically complex and manifest as patch mosaics within characteristic biomes, bordering one another in gradual or abrupt ecotones. The underlying patch structure in coastal shelf ecosystems is driven by the interaction of tectonic, sedimentary, and sea level dynamic processes. Animals and plants occupy and interact within these mosaics. Terrestrial landscape ecological studies have shown that patch structure is important for ecological processes such as foraging, connectivity, predation, and species dynamics. The importance of patch structure for marine systems is less clear because far fewer pattern-process studies have been conducted in these systems. For many coastal shelf systems, there is a paucity of information on how species occupy shelf seascapes, particularly for seascapes imbued with complex patch structure and ecotones that are common globally due to tectonic activity. Here, we present the results of a study conducted along a myriameter-scale gradient of bottom and sub-bottom geological forcing altered by tectonic deformation, sea level transgression and sediment allocation. The resulting seascape is dominated by unconsolidated sediments throughout, but also exhibits increasing density and size of outcropping patches along a habitat patch gradient forced by the erosion of a sea level transgressive surface that has been deformed and tilted by tectonic forcing. A combination of sub-bottom profiling, multibeam bathymetry, and ROV surveys of the habitats and the demersal megafauna occupying the habitats indicate (1) significant beta diversity along this gradient, (2) biological diversity does not scale with habitat diversity, and (3) species occupy the patches disproportionately (non-linearly) with regard to the proportional availability of their preferred habitats. These results indicate that shelf habitat patch structure modulates species specific processes and interactions with other species. Further studies are

  5. Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Gao, Rui; Li, Sanzhong; Xu, Xiao; Huang, Xingfu; Wang, Haiyan; Li, Wenhui; Zhao, Shujuan; Li, Xiyao

    2016-09-01

    GPS measurements indicate rapid lateral extrusion of the NE Tibetan Plateau, which causes active NE-directed crustal shortening and has initiated oblique shearing along the margins of NE Tibet. However, the Tibetan highlands terminate around 103°E longitude and topographic relief disappears to the northeast. The exact reasons for this drop in elevation remain obscure due to widespread Tertiary sediments and Quaternary loess, which obscure details of the lithospheric structure. This study describes a new 310 km-long deep seismic reflection line striking NE-SW across the interior of NE Tibet. Integrating its data with a previously described 165 km-long deep seismic profile of the Tibet-Ordos transition zone together, these datasets provide a complete picture of the crustal architecture of the north-easternmost Tibetan Plateau. Gravity anomaly and previous geological evidence also help constrain complex deformation pattern in the region. Interpretations of these patterns indicate the importance of the large-scale sinistral Haiyuan fault zone and inherited vertical variation in mechanical properties of the lithosphere in the overall tectonic evolution of the NE Tibetan Plateau. The overall crustal architecture obtained in this study provides spatial context for the neotectonic evolution of NE Tibet and helps constrain the interplay of geologic and geodynamic processes affecting NE Tibet and adjacent regions.

  6. Tectonic and hydrological controls on multiscale deformations in the Levant: numerical modeling and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi

    2016-04-01

    Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.

  7. Dedolomitization in tectonic veins and stylolites: evidence for rapid fluid migration during deformation

    SciTech Connect

    Budai, J.M.

    1984-04-01

    Jurassic through Tertiary thrust-belt deformation of the Mississippian Madison Group has introduced complex fracturing, stylolitization, and carbonate vein mineralization. Host rocks are dominantly dolostone and dolomitic limestone. Tectonic veins are mineralized first by dolomite and then by multiple calcite phases. Dolomite and some generations of calcite which line veins are highly luminescent, while host-rock dolomite have been corroded and replaced by subsequent generations of calcite mineralization. These textural relationships suggest that fluids associated with thrust-belt deformation were in part extraformational and had not equilibrated with host-rock dolomite. Because thrust-belt deformation moved from west to east with time, the isotopic composition (/sup 18/O, /sup 13/O) of vein and stylolite mineralization can be used to evaluate fluid migration during deformation. In three sections located along an east-west transect in the southern overthrust belt, calcite vein mineralization displays a wide range of isotopic compositions that are distinctly depleted relative to the host-rock composition. These vein-lining exhibit systematic compositional changes with both time of deformation and with geographic position relative to major thrust faults. These isotopic changes in vein mineralization and pressure-solution products, together with the textural evidence for calcitization of host-rock and vein dolomite, suggest that these rocks were open to allochthonous fluid migration during deformation.

  8. Generating topography through tectonic deformation of ice lithospheres: Simulating the formation of Ganymede's grooves

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.

    2010-12-01

    Ganymede’s iconic topography offers clues to both the satellite’s thermal evolution, and the mechanics of tectonic deformation on icy satellites. Much of Ganymede’s surface consists of bright, young terrain, with a characteristic morphology dubbed “groove terrain”. As reviewed in Pappalardo et al. (2004), in Jupiter - The Planet, Satellites, and Magnetosphere (CUP), grooved terrain consists of sets of quasi-parallel, periodically-spaced, ridges and troughs. Peak-to-trough groove amplitudes are ~500 m, with low topographic slopes (~5°). Groove spacing is strongly periodic within a single groove set, ranging from 3-17 km; shorter wavelength deformation is also apparent in high-resolution images. Grooved terrain likely formed via unstable extension of Ganymede’s ice lithosphere, which was deformed into periodically-spaced pinches and swells, and accommodated by tilt-block normal faulting. Analytical models of unstable extension support this formation mechanism [Dombard and McKinnon 2001, Icarus 154], but initial numerical models of extending ice lithospheres struggled to produce large-amplitude, groove-like deformation [Bland and Showman 2007, Icarus 189]. Here we present simulations that reproduce many of the characteristics of Ganymede’s grooves [Bland et al. 2010, Icarus in press]. By more realistically simulating the decrease in material strength after initial fault development, our model allows strain to become readily localized into discrete zones. Such strain localization leads to the formation of periodic structures with amplitudes of 200-500 m, and wavelengths of 3-20 km. The morphology of the deformation depends on both the lithospheric thermal gradient, and the rate at which material strength decreases with increasing plastic strain. Large-amplitude, graben-like structures form when material weakening occurs rapidly with increasing strain, while lower-amplitude, periodic structures form when the ice retains its strength. Thus, extension can

  9. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  10. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton

    NASA Astrophysics Data System (ADS)

    Yengkhom, Kesorjit S.; Lee, Byung Choon; Oh, Chang Whan; Yi, Kee Wook; Kang, Ji Hoon

    2015-04-01

    EG but not in the EGC. The D1deformation occurred during M1 metamorphism, and then the M2 metamorphism and 1867-1881 Ma igneous activities could have occurred together during post-collision tectonic stage. The M1 metamorphism and ca. 1867-1881 Ma post collision magmatism in the study area are well matched with the collision related metamorphism at ca. 1.90-1.93 Ga and post-collision igneous activities at ca.1.80-1.86 Ga along the Jiao-Liao-Ji belt in the North China Craton suggesting that M1 metamorphism could have caused by the collision along the Jiao-Liao-Ji belt. The M3 metamorphism occurred at ca.230-260 Ma and its peak metamorphic conditions were 720-730°C/13-14.5 kbar. The D2 deformation and the M3 intermediate-P/T metamorphism occurred during the Permo-Triassic collision event between the North China Craton and South China Craton. The study area might have located in the peripheral areas of the collision belt during the Paleoproterozoic and the Permo-Triassic time. The D3 deformation occurred at a time gap between the Permo-Triassic collision and the subduction related Jurassic intrusion in the Korean Peninsula.

  11. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  12. Morphological expression of active tectonics in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan

    2015-04-01

    Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion

  13. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  14. Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, Surendra S.; Kothyari, Girish Ch.

    2015-06-01

    We present the results of integrated studies of geomorphic indices of drainage networks and landforms developed across the mountain front along the Himalayan Frontal Thrust (HFT) between the Dabka and Baur rivers, Kumaun Himalaya. The HFT is a morphogenic structure in nature, creating a 100-m-high E-W trending escarpment that extends ~ 21 km. Geomorphological evidence indicates ~ 10.5 km westward migration of the Dabka River and ~ 5.2 km eastward migration of the Baur River. These migrations are a result of uplift of the hanging wall along the HFT. The HFT is offset by a transverse fault, which suggests that the latter postdates the reactivation of the HFT between 500 and 100 ka. Presence of different levels of strath terraces along the mountain front suggests the active nature of the HFT. To assess the relative tectonic activity, morphometric indices such as stream-gradient (SL) index, mountain front sinuosity (Smf) index, and ratio of valley floor width to valley height (Vf) have been analyzed. Results of the former two are consistent with the tectonic landforms developed in thrust zones. Paleochannels of the Dabka and Baur rivers are characterized by high Vf values while other valleys show low Vf values. Quaternary alluvial sediments have been deformed along the Pawalgarth Thrust, a splay of the HFT. Deformation has resulted in the formation of the Pawalgarh Anticline, a thrust-related asymmetric fold.

  15. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the

  16. New constraints of subducted mantle lithosphere on plate-tectonic reconstructions of deformed continental blocks

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Wu, J.; Kanda, R. V. S.; Lu, R.; Lin, C. D. J.

    2012-04-01

    Global seismic tomography and earthquake locations are now sufficiently good that many subducted slabs can be mapped in 3D, unfolded and restored to the surface of the Earth, thereby providing important new quantitative constraints on plate-tectonic reconstructions. The size, shape, present horizontal and vertical positions and seismic velocities of subducted slabs provide rich data constraints on plate-tectonic reconstructions of past plate networks into which the deformed continental regions such as Eurasia and SE Asia must fit. Commonly, we find that well-imaged and restored slabs of mantle lithosphere fit together along their edges in approximate "picture-puzzle" fashion, within seismic resolution. The slab edges correspond to plate transforms, slab tears, initial positions of trenches and edges of slab windows. This use of subducted slabs provides for more data-rich reconstructions of lost ocean basins such as those consumed between India and Eurasia and between Southeast Asia and Australia, and thereby constrains deformation of the adjacent continents. We describe our methodologies for mapping and unfolding slabs in Gocad, and using these restored slabs in GPlates. Examples are shown from Taiwan, the India-Asia collision, Southeast Asia, and Greater northeast Australia.

  17. Tectonics

    NASA Astrophysics Data System (ADS)

    John Dewey will complete his term as editor-in-chief of Tectonics at the end of 1984. Clark Burchfiel's term as North American Editor will also end. Tectonics is published jointly with the European Geophysical Society. This newest of AGU's journals has already established itself as an important journal bridging the concerns of geophysics and geology.James A. Van Allen, president of AGU, has appointed a committee to recommend candidates for both editor-in-chief and North American editor for the 1985-1987 term.

  18. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  19. Lithosphere-asthenosphere Structure and Active Tectonics In Central Italy

    NASA Astrophysics Data System (ADS)

    Chimera, G.; Aoudia, A.; Saraò, A.; Panza, G. F.

    We investigate the lithosphere-asthenosphere structure and the active tectonics along a stripe from the Tyrrhenian to the Adriatic with emphasis on the Umbria-Marche area by means of surface-wave tomography, and inversion studies for structure and seismic moment tensor retrieval. The data include seismic waveforms, a large compilation of local group velocities (0.8-4s) and regional phase and group velocity (10-100s) measurements. The local group velocity maps cover the area reactivated by the 1997 Umbria-Marche earthquake sequence. These maps suggest a relation between the lat- eral heterogeneity and distribution of the active faults and related basins. Such relation is confirmed by the non-linear inversion of the local dispersion curves. To image the deeper structure from the Tyrrhenian to the Adriatic coast, we fix the uppermost part of the crust using the Umbria-Marche models along with the CROP03 profile and related shear wave velocity, and invert the additional long period dispersion measure- ments. The results of the inversion show the geometry and lateral heterogeneity of the lithosphere-asthenosphere system. The retrieved models for the Umbria-Marche up- per crust reveal the importance of the inherited compression on the ongoing extension and related seismic activity. The reactivated 1997 normal fault zone displays a thrust fault geometry as evidenced by the lateral extent of the faulted Late Triassic evap- orites that did not yet balance the cumulative normal faulting deformation attesting therefore recent extensional tectonics within the thrust belt. Our data are in favor of a listric geometry of faulting at depth. Source inversion studies of the two main crustal events of September 26 and October 14, 1997 show the dominance of normal faulting mechanisms, whereas selected aftershocks between the reactivated fault segments re- veal that the prevailing deformation at the step-over is of strike-slip faulting type. The rupture of the three distinct and

  20. Active compressive intraoceanic deformation: early stages of ophiolites emplacement?

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, Nicolas; Delescluse, Matthias; Montési, Laurent

    2010-05-01

    Oceanic lithosphere is strong and continental lithosphere is weak. As a result, there is relatively little deformation in the oceanic domain away from plate boundaries. However, the interior of oceanic lithosphere does deform when highly stressed. We review here places where intraoceanic compression is at work. In the more than 30 years since the first observations of active compressive intraplate deformation in the Central Indian Ocean through seismic profiling (Eittreim et al., 1972), compressive deformation has been identified in a variety of other oceanic tectonic settings: as a result of small differential motion between large plates (between North America and South America in the Central Atlantic; between Eurasia and Nubia offshore Gibraltar; between Macquarie and Australia plates in the Southern Ocean), within back-arcs (northwest Celebes Sea, Okushiri Ridge in the Japan Sea, on the eastern border of the Caroline plate), and ahead of subduction (Zenisu Ridge off Nankai Trough). Deformation appears to be more diffuse when larger plates are involved, and more localized for younger plates, perhaps in relation with the increasing rigidity of oceanic plates with age. The best example of diffuse deformation studied so far remains the Central Indian Ocean. Numerous marine data have been collected in this area, including shallow and deep seismic, heat flow measurements, multibeam bathymetry. The present-day deformation field has been modeled using GPS and earthquakes as far field and near field constraints respectively. Reactivation of the oceanic fabric (including for portions of the Indo-Australian plate which are now in subduction as evidenced by the September 2009 Padang earthquake), selective fault abandonment (Delescluse et al., 2008) and serpentinization (Delescluse and Chamot-Rooke, 2008) are some of the important processes that shape the present-day pattern of deformation. These rare intraplate deformation areas constitute excellent natural laboratories to

  1. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992-2012): Tectonic implications

    NASA Astrophysics Data System (ADS)

    Lagios, E.; Sakkas, V.; Novali, F.; Bellotti, F.; Ferretti, A.; Vlachou, K.; Dietrich, V.

    2013-05-01

    The Santorini Volcanic Complex (SVC) has been in a dormant state for the last 60 years until January 2011 when upward influx of magma reawakened the volcano with intense radial ground deformation and inter-caldera seismicity that lasted until January 2012 but declined afterwards. This paper aims to study the ground deformation and the inferred tectonic implications of the SVC for the period 1992-2012 mainly based on the SqueeSAR™ technique and DGPS campaign results of our local network which incorporates available data on Internet from several continuous GPS stations established on the island. The spatial deformation of the SVC during the quiet period 1992-2010 was deduced by joint analysis of ERS1 and 2 and ENVISAT. It was found that the intra caldera Palaea Kammeni shield volcano was being uplifted (2-3 mm/yr) with increasing rate, whilst the adjacent Nea Kammeni shield volcano was being subsided (up to 6 mm/yr) with increasing rate. The rest of the SVC showed a velocity field varying from - 1 to + 2 mm/yr, indicating a rather linear deformation during that period. The results from the GPS network are in full agreement with the SqueeSAR results. Based on the results of SqueeSAR analysis of 12 ENVISAT images, and DGPS/CGPS data to end 2012, the deformation for the unrest period 2011-2012 was non-linear being characterized by strong radial deformation in the northern part of the caldera (50-120 mm/yr), and accelerating values (> 130 mm/yr2). Combined GPS/SqueeSAR Mogi modeling indicated a source located north of Nea Kammeni at a shallow depth. However, a progressively decreasing rate in deformation was noted at most GPS/CGPS station components after January 2012, indicating magma settlement consistent with the constantly decreasing rate of the inter-caldera seismicity. The faulting features seem to have a key role in the evolution of the deformation, which continues up the end 2012, but at a very low level.

  2. Unhinging an indenter: A new tectonic model for the internal deformation of Panama

    NASA Astrophysics Data System (ADS)

    Rockwell, Thomas K.; Bennett, Richard A.; Gath, Eldon; Franceschi, Pastora

    2010-08-01

    New paleoseismic results from Panama, conducted as part of the seismic hazard assessment for the expansion of the Panama Canal, have led to a reevaluation of the tectonic framework and geologic history of the isthmus of Central America. We propose a soft block indenter model wherein the collision of Central America and South America has resulted in significant internal deformation of the isthmus. Deformation is accommodated by both rapid slip on conjugate strike-slip faults within the isthmus, as well as the generally assumed flexure and northward buckling of Panama. The model is kinematically self-consistent in that there are little or no space problems created with 3 Ma of retrodeformation. Sparse GPS velocity data are consistent to within uncertainties with the new geologically constrained block model, supporting the rapid and extensive internal deformation of Panama. Together, the paleoseismologic and geodetic data suggest that central Panama is an area of high risk due to earthquakes, which is consistent with the historical occurrence of several moderate to large earthquakes in this region. However, this is generally counter to the current perception in central Panama where most people live and where there have been no large, damaging earthquakes for over 100 years.

  3. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  4. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  5. Long-term tectonic segmentation along the Chilean marine forearc and its implications for the short-term deformation process

    NASA Astrophysics Data System (ADS)

    Maksymowicz, Andrei

    2016-04-01

    The latitudinal variation of the parameters, derived by the use of the Non-Cohesive Coulomb wedge theory, reveals a long-term tectonic segmentation of the Chilean offshore subduction zone. At large scale, the results shows a general increase of the slope angle, a decrease of the effective basal friction coefficient, and an increase of the fluid pressure inside the continental wedge to the north of 33°S. This general behavior is interpreted as a result of a more pervasive fracturing at the base and within of the continental wedge in the zone where the Nazca-South America subduction zone is characterized by tectonic erosion. Analyzing the results on a smaller scale, it is possible to observe a sequence of segments with different basal effective friction coefficient and/or internal fluid pressure conditions, which are limited by the presence of bathymetric oceanic highs, fracture zones and peninsulas. This second order tectonic segmentation shows a spatial correlation with the distribution of the rupture areas of large historical earthquakes in the Chilean margin and, in the case of 2010 Maule and 1960 Valdivia mega-earthquakes, a relation between zones of high slip and segments of low basal friction coefficient. This correlation supports the concept that segments with different long-term evolution can have different stress states during the seismic cycle, affecting the complex sequence of seismic activation and also the location of inhomogeneities during large coseismic ruptures. The results motivate multiscale studies of the deformation processes and highlight the relevance of a detailed characterization of oceanic and continental crustal inhomogeneities around the interplate contact to a better understanding of the seimotectonic process.

  6. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  7. Global tectonic activity map with orbital photographic supplement

    SciTech Connect

    Lowman, P.D. Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  8. Offshore-onshore recent tectonic deformations in the eastern Rif and its foreland (Alhoceima-Nador, Morocco)

    NASA Astrophysics Data System (ADS)

    Ruano, Patricia; Galindo-Zaldívar, Jesús; Comas, Menchu; Chalouan, Ahmed; Azzouz, Omar; Jesús Román-Alpiste, Manuel; Pedrera, Antonio; Sanz de Galdeano, Carlos; López-Garrido, Ángel Carlos; Benmakhlouf, Mohamed; Roldán-García, Francisco Javier; Anahnah, Farida; González-Castillo, Lourdes

    2014-05-01

    The Rif Cordillera is formed by the southwestwards emplacement of the internal zones on the African foreland in the western Alboran Sea. However, the recent deformations are driven also by interaction with the NW-SE convergence of the Eurasian and African plates. The eastern Rif and its foreland constitute a key region to study the variability in structure and stresses related to a lateral boundary of this Alpine Cordillera. The continental crust of the Rif thinned toward Alboran Sea. The onshore and offshore area nearby the coast line, between Al Hoceima and Nador are suitable for recent tectonics studies due to the presence of wide Neogene and Quaternary basins that contribute to record the activity of recent structures. Multichannel seismic reflection data obtained along the coast during the GASALB cruise in November 2011, together with available data, allows to characterize the differences of the Rif and forleland Neogene-Quaternary basins. Offshore results are compared with field observations, that detailed cover several areas. In the Rif Cordillera (Al Hoceima area), recent basins open towards the Alboran Sea are formed by the active roughly N-S oriented faults in this seismogenic area. They are mainly normal in onshore area and becomes strike-slip offshore connecting with sinistral Al-Idrisi fault zone. In contrast, in the foreland represented by the Trois Fourches area, onshore N-S faults are inactive and are developed above a very well exposed folded detachment. Paleostress data in this area support the activity of the exhumed low-angle faults with NE-SW extension and a late radial extension. These new data allows underline the different stresses and age of deformation in the Rif and its foreland and support a westward displacement of deformation along recent time. Then, the most active and hence higher seismic hazard along Moroccan coast, also related to possible tsunamogenic faults, are located offshore Alhoceima area.

  9. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  10. Regional tectonic deformation in Southern California, inferred from terrestrial geodesy and the global positioning system

    NASA Astrophysics Data System (ADS)

    Shen, Zhengkang

    Tectonic deformation in two regions in Southern California, the Southern Coast Ranges and the Los Angeles Basin, was studied. Results show that in the Southern Coast Ranges, regional deformation is predominantly controlled by deep strike slip motion along the San Andreas Fault, at a rate of 32 plus or minus 2 mm/yr. The deep slip along the San Gregorio-Hosgri Fault is about 1-3 mm/yr, assuming a locked fault depth of 20 km. Convergence normal to the San Andreas Fault in the Southern Coast ranges is not significantly different from zero. About 5 mm/yr convergence is detected from the Santa Maria Basin. In the Los Angeles Basin area, this study demonstrates about 10 mm/yr relative motion trending northwest from San Pedro Hill to the San Gabriel Mountains. The direction of motion closely parallels to the trend of the frontal fault system at the southern margin of the San Gabriel Mountains. The basin suffers from north-south convergence and east-west extension, at a rate of about 0.07 mu rad/yr for either components. The convergence rate normal to the San Andreas across the basin is 4 plus or minus 3 mm/yr, implying smaller compression than previous estimates (e.g., Cline et al. 1984).

  11. Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Murchie, Scott L.; Robinson, Mark S.; Solomon, Sean C.; Denevi, Brett W.; André, Sarah L.; Head, James W.

    2009-08-01

    MESSENGER's first flyby of Mercury provided the first complete view of the Caloris basin and its interior smooth plains. Multispectral imaging shows that the interior plains are spectrally distinct from surrounding terrain, with a reflectance about 15-20% higher and a steeper spectral slope than the global average. The Caloris basin rim massifs and hummocky material, in contrast, have lower reflectance and a shallower spectral slope than the global average and extend around the entire basin. Isolated, relatively red patches along the margins of Caloris each surround irregularly shaped, scalloped-edged, rimless depressions that are interpreted to be volcanic vents, some with associated pyroclastic deposits. A nearly continuous annulus of smooth plains exterior to the basin displays spectral characteristics that contrast sharply with those of the basin-interior smooth plains. The exterior smooth plains are lower in reflectance and spectrally similar to the Caloris rim massifs and the hummocky materials. The rims and floors of larger impact craters in the interior plains expose low-reflectance material. There is widespread evidence of contractional and extensional tectonic deformation of the Caloris interior smooth plains. A set of linear radial graben, Pantheon Fossae, radiates outward from a zone near the basin center, and some of these graben extend to and intersect a set of generally basin-concentric graben distributed along the outer margin of the Caloris basin floor. The average areal extensional strain expressed by the mapped system of graben is ~ 0.08%. Wrinkle ridges also deform the interior smooth plains and predate both basin-radial and basin-concentric graben. The average areal contractional strain expressed by the mapped wrinkle ridges is ~ 0.07%. The density of wrinkle ridges on the western interior smooth plains is less than on the eastern interior plains, in contrast to the more even distribution of graben. A similar difference is seen between the

  12. Deformation geometry and timing of theWupoer thrust belt in the NE Pamir and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaogan; Chen, Hanlin; Lin, Xiubin; Yang, Shufeng; Chen, Shenqiang; Zhang, Fenfen; Li, Kang; Liu, Zelin

    2016-09-01

    The Pamir region, located to the northwest of the Tibetan Plateau, provides important information that can aid the understanding of the plateau's tectonic evolution. Here we present new findings on the deformation geometry and timing of the Wupoer thrust belt at the northeastern margin of Pamir. Field investigations and interpretations of seismic profiles indicate that the eastern portion of the Wupoer thrust belt is dominated by an underlying foreland basin and an overlying piggy-back basin. A regional unconformity occurs between the Pliocene (N2) and the underlying Miocene (N1) or Paleogene (Pg) strata associated with two other local unconformities between Lower Pleistocene (Q1) and N2 and between Middle Pleistocene (Q2-4) and Q1 strata. Results of structural restorations suggest that compressional deformation was initiated during the latest Miocene to earliest Pliocene, contributing a total shortening magnitude of 48.6 km with a total shortening rate of 48.12%, most of which occurred in the period from the latest Miocene to earliest Pliocene. These results, combined with previous studies on the Kongur and Tarshkorgan extensional system, suggest an interesting picture of strong piedmont compressional thrusting activity concurrent with interorogen extensional rifting. Combining these results with previously published work on the lithospheric architecture of the Pamir, we propose that gravitational collapse drove the formation of simultaneous extensional and compressional structures with a weak, ductile middle crustal layer acting as a décollement along which both the extensional and compressional faults merged.

  13. Northwest Basin and Range tectonic deformation observed with the Global Positioning System, 1999-2003

    USGS Publications Warehouse

    Hammond, W.C.; Thatcher, W.

    2005-01-01

    We use geodetic velocities obtained with the Global Positioning System (GPS) to quantify tectonic deformation of the northwest Basin and Range province of the western United States. The results are based on GPS data collected in 1999 and 2003 across five new quasi-linear networks in northern Nevada, northeast California, and southeast Oregon. The velocities show ???3 mm/yr westward movement of northern Nevada with respect to stable North America. West of longitude 119??W the velocities increase and turn northwest, parallel to Sierra Nevada/Great Valley microplate motion, and similar to velocities previously obtained to the south. The observations are explained by a kinematic model with three domains that rotate around Euler poles in eastern Oregon and western Idaho. Northeast California experiences internal dextral shear deformation (11.2 ?? 3.6 nstrain/yr) subparallel to Pacific/North America motion. Relative motions of the domains imply 2-5 mm/yr approximately east-west extension in northwest Nevada and 1-4 mm/yr approximately north-south contraction near the California/Oregon border. The northward decreasing approximately east-west extension in northwest Nevada is consistent with the northern termination of Basin and Range deformation, faulting and characteristic topography. No significant extension is detected in the Oregon Basin and Range. The Oregon Cascade arc moves north at ???3.5 mm/yr and is possibly influenced by the approximately eastward motion of the Juan de Fuca plate. These results disagree with secular northwest trenchward motion of the Oregon forearc inferred from paleomagnetic rotations. South of latitude 43??, however, trenchward motion exists and is consistent with block rotations, approximately east-west Basin and Range extension, and northwest Sierra Nevada translation. Copyright 2005 by the American Geophysical Union.

  14. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Sun, Min; Schulmann, Karel; Zhao, Guochun; Wu, Qihang; Jiang, Yingde; Guy, Alexandra; Wang, Yuejun

    2015-04-01

    The Chinese Altai, a key component of the western Central Asian Orogenic Belt, is considered to be formed through multiple accretions of different terranes. However, the deformational histories of each terrane (tectonic domain), i.e. structural records before and after the accretion, are rarely studied, which has hindered our understanding of the accretionary processes. To fill the gap, a systematic macro- and microscopic structural analysis was carried out on two contrasting litho-tectonic units, i.e. the early Paleozoic low-grade Alegedayi Ophiolitic Complex (AOC) juxtaposed to the high grade Tarlang Granitic Massif (TGM). Selected rock samples were analyzed using zircon U-Pb isotopic dating to constrain the timing of polyphase deformation. Our structural and geochronological data suggest that the two litho-tectonic units were initially detached and located in different crustal levels and experienced distinct phases of deformation under contrasting P-T conditions. They were mutually accreted with each other in the early Devonian and jointly underwent a WNW-ESE-directed shortening deformational event (D1) at ∼390 Ma. The change of tectonic regime was further enhanced by a subsequent NNE-SSW-directed shortening deformation (D2) after ∼ 380 Ma. The shortening process ended before the crustal-scale sinistral strike-slip shearing deformation along the Erqis fault zone at 290 - 240 Ma. Results of this study provide solid field-based evidence for a model that the Chinese Altai initially underwent a nearly E-W-oriented subduction-accretional event in the middle Paleozoic, before it was reoriented to a nearly N-S-oriented convergence.

  15. Past and present active sedimentation and tectonics in the South Alboran Sea

    NASA Astrophysics Data System (ADS)

    d'Acremont, E.; Gorini, C.; El Abbassi, M.; Farran, M.; Leroy, S.; Mercier de Lépinay, B.; Migeon, S.; Poort, J.; Ammar, A.; Smit, J.; Do Couto, D.; Ercilla, G.; Alonso, B.

    2012-04-01

    Since the Tortonian, the thinned continental crust and the overlying sedimentary cover of the Alboran Sea are submitted to tectonic inversion due to the convergence between Eurasia and Africa. The past and present deformation is significant along the Moroccan margin where the MARLBORO-1 cruise in 2011, acquired 1100 km of mid-resolution seismic reflection along 20 profiles perpendicular and parallel to the margin, off Al Hoceima, to latitude 36°N. The study area located on the Xauen/Tofino banks and the South Alboran ridge off Morocco, shows signs of both past and present strong tectonic deformation, mass-movement deposits (mostly slides and mass flow deposits), and contourites. The lateral and longitudinal evolution of contourites and mass movement deposits and the geometric relationships between those deposits and active tectonic structures have been studied. In the distal margin, contourites and gravitational instabilities are the depositional systems that best record the tectonic signal of the area since at least the Messinian. On the two flanks of the Xauen/Tofino and South Alboran ridge, the sedimentary register affected by growth-faults is mainly composed of contourites. Internal strata pattern, spatial and temporal distribution of thickness and depocenters, and discontinuities help to infer sedimentary processes and their interaction with tectonics. In the southern Alboran Sea where the bathymetry shows abrupt slopes, the recurrent seismic activity seems to be the main factor triggering mass wasting as witnessed by the Mass transport complexes (MTCs). Recent MTCs originate from escarpments on the edge of the contourites. However, in most cases the seismic reflection data show the depositional bodies of numerous slides linked to the activity of growth-faults and thrusts observed on the Xauen and Tofino Bank's north flanks. Tectonic inversion is recorded since the late Miocene with an acceleration of the uplift and compressional activity evidenced during

  16. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  17. Lineaments on Ganymede: New evidence for late tectonic activity

    NASA Astrophysics Data System (ADS)

    Croft, S. K.

    1985-04-01

    Families of lineaments in the Gilomesh and Ninki basins of Ganymede imply post impact tectonic activity. The grooves, previously considered the youngest tectonic features, are estimated to have formed between 3.8 and 3.1 Gyr ago. One rayed crater however, is probably less than 1 Gyr old, implying tectonic activity on Ganymede has extended nearly to the present. Like the grooves, the lineaments appear to be extensional. The parallel trends and nearly contiguous associations of the lineaments with the grooves imply that both are products of the same stress systems. The young inferred age of the lineaments implies that they (and presumably also the grooves) are not associated with stresses in the cooling of fresh deposits of bright terrain, but are probably associated with underlying convective stress patterns, the long implied duration of an extensional stress regime in Ganymede's lithosphere is consistent with the stress models of derived assuming a differentiated interior.

  18. Lineaments on Ganymede: New Evidence for Late Tectonic Activity

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    Families of lineaments in the Gilomesh and Ninki basins of Ganymede imply post impact tectonic activity. The grooves, previously considered the youngest tectonic features, are estimated to have formed between 3.8 and 3.1 Gyr ago. One rayed crater however, is probably less than 1 Gyr old, implying tectonic activity on Ganymede has extended nearly to the present. Like the grooves, the lineaments appear to be extensional. The parallel trends and nearly contiguous associations of the lineaments with the grooves imply that both are products of the same stress systems. The young inferred age of the lineaments implies that they (and presumably also the grooves) are not associated with stresses in the cooling of fresh deposits of bright terrain, but are probably associated with underlying convective stress patterns, the long implied duration of an extensional stress regime in Ganymede's lithosphere is consistent with the stress models of derived assuming a differentiated interior.

  19. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    USGS Publications Warehouse

    Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger

    2013-01-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  20. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Reece, Robert S.; Gulick, Sean P. S.; Christeson, Gail L.; Horton, Brian K.; Avendonk, Harm; Barth, Ginger

    2013-05-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terrane maintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a > 200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  1. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  2. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  3. Deformation of the overriding slab during incipient subduction in centrifuge modeling and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Mart, Yossi; Goren, Liran; Koyi, Hemin

    2015-04-01

    Analog models of subduction-related structural deformation emphasize the significance of differences in density and friction between the adjacent plates on the distortion of the overriding slab and its possible effect on the subduction procedure. Centrifuge experiments juxtaposed miniaturized lighter and denser lithospheres, which were floating on denser but less viscous asthenosphere. The lithosphere in the tests comprised brittle and ductile strata, which showed diversified styles of deformation, while factors of equivocal tectonic significance, such as lateral push or negative buoyancy, were not introduced into the experiments. The tests show that the juxtaposition of lighter and denser lithospheres would suffice to drive the denser lithosphere as a wedge between the asthenosphere and the lighter lithosphere, and that the rate of the process would depend on the rate of friction between the slabs, as well as on differential viscosity. It seems that the reduced friction in Nature was derived from the generation of serpentinites, which could be the main agent of lubrication. The underthrusting of the denser lithosphere leads to the uplift and collapse of the edge of the lighter slab, where extension, thinning, normal faulting and rifting took place, and diapiric ascent of parts of the ductile layer of the lighter slab occurred along several rifts. The analog experiments were carried out only to the stage where the denser slab was thrust under the lighter one, but the penetration of the lithosphere into the asthenosphere was not achieved. It seems plausible therefore, that only after eclogitization, and the upward motion of serpentinites, increased the density of the underthrust slab, would it dive and penetrate into the asthenosphere. The experiments indicate the plausibility of the constraints imposed on the subduction process by the deformation of the overthrust slab. The normal faults and rifts in the overthrust block could serve as conduits for the ascent of

  4. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  5. Interaction between crustal tectonics and salt deformation in the Eastern Sardinian margin, Western Tyrrhenian Sea: seismic data and analogue modelling

    NASA Astrophysics Data System (ADS)

    Vendeville, Bruno; Lymer, Gael; Gaullier, Virginie; Chanier, Frank; Maillard, Agnes; Sage, Françoise; Lofi, Johanna; Thinon, Isabelle

    2014-05-01

    The Tyrrhenian Basin opened by eastward migration of the Apennine subduction system. Rifting along the Eastern Sardinian margin started during the middle to late Miocene times and hence this timing partly overlapped the Messinian Salinity Crisis. The two "METYSS" cruises were conducted to use the deformation of the Messinian salt and its Plio-Quaternary overburden as a proxy for better delineating the tectonic history of the sub-salt basement. Many parts of the study area contain two of the most typical Messinian series of the Western Mediterranean: the Mobile Unit (MU; salt, mainly halite), overlain by the more competent Upper Unit (UU: alternating dolomitic marls and anhydrite). The brittle Plio-Quaternary cover overlies the UU. Usually, the presence of mobile salt is viewed as a nuisance for understanding crustal tectonics because salt's ability to act as a structural buffer between the basement and the cover. However, we illustrate, using examples from the Cornaglia Terrace, how we can use thin-skinned salt tectonics as indicators of vertical movements in the sub-salt, pre-Messinian basement. There, slip along N-S-trending crustal normal faults bounding basement troughs has been recorded by salt and overburden in two different manners: - First, post-salt basement faulting (typically after deposition of the Upper Unit and the early Pliocene), and some crustal-scale southward tilting, triggered along-strike (southward) thin-skinned, gliding of salt and overburden recorded by upslope extension and downslope shortening. - Second, and less obvious at first glance, there was some crustal activity along another basement trough, located East of the Baronie Ridge after deposition of the Messinian salt. This trough is narrow, trends N-S and is bounded by crustal faults. The narrow width of the trough allowed for only minor across-strike (E-W) gliding. The resulting geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed

  6. Applications of Morphochronology to the Active Tectonics of Tibet

    SciTech Connect

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  7. UAV's for active tectonics : case example from the Longitudinal Valley and the Chishan Faults (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2015-04-01

    Taiwan is a case example to study active tectonics due to the active NW-SE collision of the Philippine and Eurasian Sea Plates as the whole convergence reaches 10cm/y. In order to decipher the structural active tectonics geometry, we used herein UAV's to get high resolution Digital Terrain Model (DTM) in local active tectonics key areas. Classical photo-interpretation where then developped in order to structurally interprete these data, confirmed by field studies. Two location had first been choosen in order to highlight the contribution of such high resolution DTM in SW Taiwan on the Longitudinal Valley Fault (SE Taiwan) on its southern branch from Pinting to Luyeh terraces (Pinanshan) where UAV's lead to better interprete the location of the outcropping active deformations. Combined with available GPS data and PALSAR interferometry (Deffontaines et Champenois et al., submitted) it is then possible to reconstruct the way of the present deformation in this local area. In the Pinting terraces, If the western branch of the fault correspond to an outcroping thrust fault, the eastern branch act as a a growing active anticline that may be characterized and quantified independantly. The interpretation of the UAV's high resolution DTM data on the Chishan Fault (SW Taiwan) reveals also the geometry of the outcropping active faults complex structural behaviour. If the Chishan Fault act as a thrusting in its northern tip (close to Chishan city), it acts as a right lateral strike-slip fault north of Chaoshan (Kaohsiung city) as described by Deffontaines et al. 2014. Therefore UAV's are a so useful tool to get very high resolution topographic data in Taiwan that are of great help to get the geometry of the active neotectonic structures in Taiwan.

  8. Igneous activity, metamorphism, and deformation in the Mount Rogers area of SW Virginia and NW North Carolina: A geologic record of Precambrian tectonic evolution of the southern Blue Ridge Province

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Mundil, Roland; Southworth, C. Scott; Cosca, Michael A.; Rankin, Douglas W.; Rubin, Allison E.; Kentner, Adrienne; Parendo, Christopher A.; Ray, Molly S.

    2012-01-01

    Mesoproterozoic basement in the vicinity of Mount Rogers is characterized by considerable lithologic variability, including major map units composed of gneiss, amphibolite, migmatite, meta-quartz monzodiorite and various types of granitoid. SHRIMP U-Pb geochronology and field mapping indicate that basement units define four types of occurrences, including (1) xenoliths of ca. 1.33 to ≥1.18 Ga age, (2) an early magmatic suite including meta-granitoids of ca. 1185–1140 Ma age that enclose or locally intrude the xenoliths, (3) metasedimentary rocks represented by layered granofels and biotite schist whose protoliths were likely deposited on the older meta-granitoids, and (4) a late magmatic suite composed of younger, ca. 1075–1030 Ma intrusive rocks of variable chemical composition that intruded the older rocks. The magmatic protolith of granofels constituting part of a layered, map-scale xenolith crystallized at ca. 1327 Ma, indicating that the lithology represents the oldest, intact crust presently recognized in the southern Appalachians. SHRIMP U-Pb data indicate that periods of regional Mesoproterozoic metamorphism occurred at 1170–1140 and 1070–1020 Ma. The near synchroneity in timing of regional metamorphism and magmatism suggests that magmas were emplaced into crust that was likely at near-solidus temperatures and that melts might have contributed to the regional heat budget. Much of the area is cut by numerous, generally east- to northeast-striking Paleozoic fault zones characterized by variable degrees of ductile deformation and recrystallization. These high-strain fault zones dismember the terrane, resulting in juxtaposition of units and transformation of basement lithologies to quartz- and mica-rich tectonites with protomylonitic and mylonitic textures. Mineral assemblages developed within such zones indicate that deformation and recrystallization likely occurred at greenschist-facies conditions at ca. 340 Ma.

  9. Three sets of fine extinction bands in a tectonically deformed vein-quartz single crystal

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Van der Donck, Tom; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2014-05-01

    Intracrystalline fine extinction bands (FEBs) in quartz, are narrow (less than 5µm thick), planar microstructures with a misorientation up to 5° with respect to the host crystal, occurring in closely spaced sets (spacing of 4-5μm). FEBs have been commonly attributed to a large range of brittle and/or crystal-plastic mechanisms, revealing considerable disagreement on the responsible crystal-plastic slip systems and the ambient conditions. Another question that arises, is whether or not the FEBs rotate from a basal plane orientation to orientations ranging between the basal and prism planes. Usually only one set of FEBs occurs in a single crystal, though two sets are observed, in particular with increasing strain. Tentatively, a maximum of two sets of sub-basal FEBs has been postulated to develop in a single quartz crystal in a tectonic context. However, we identified several crystals in naturally deformed vein-quartz containing three sets of FEBs. The vein-quartz has been deformed under sub-greenschist metamorphic conditions, during the late Palaeozoic Variscan orogeny, in the High-Ardenne slate belt (Belgium). The vein-quartz has been subjected to bulging dynamic recrystallisation and shows a high degree of undulatory extinction, abundant subgrains and wide extinction bands sub-parallel to the c-axis. We attempted to characterise these three sets of FEBs by means of light microscopy, EBSD-OIM and universal stage microscopy. In both cases studied the c-axis is inclined less than 8° with respect to the thin-section plane. The different sets of FEBs show a consistent orientation with respect to the c-axis. One set of FEBs deviates maximum 10° from the basal plane. The other two sets deviate between 15 and 35° from a basal plane orientation. Corresponding FEBs, at the same angle with respect to the c-axis, have similar morphologies. In relative EBSD orientation maps FEBs show a maximum misorientation of 3°, and have a lower pattern quality than the host crystal

  10. Regional uplift and local tectonic deformation recorded by the Quaternary marine terraces on the Ionian coast of northern Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Cucci, Luigi; Cinti, Francesca R.

    1998-06-01

    The setting of a flight of marine terraces along a 65-km-long section of the Ionian coast of northern Calabria is the result of the interaction between interglacial sea levels, regional uplift, and local fault-related elevation changes. Seven terraces with corresponding palaeoshoreline angles at elevations ranging from 12 m to ˜420 m were recognised by aerial photo interpretation and field surveying. The terraces were correlated to the oxygen isotope stages 1, 5a, 5c, 5e, 7, 9, 15, which correspond to the 7, 81, 102, 124, 215, 330 and ˜600 ka highstands of the palaeosea-level curve. The ˜600-ka-long regional ascent of the terraces took place at an average uplift rate of 0.67 mm/yr; this value slightly but progressively increases southward along the coastline. The elevation of the strandlines is related to the activity of tectonic structures. Three cases were analysed, allowing us: (1) to recognise the height anomalies of the terraces on the Sibari plain as the result of cumulated coseismic deformation caused by the normal Castrovillari fault, and on this basis calculate a minimum slip rate and a mean recurrence time for a single event of deformation; (2) to exclude the presence of significant vertical deformations and consequently activity on the easternmost section of the normal Pollino fault; and (3) to hypothesise the presence of an hitherto unknown active fault responsible for the strong vertical displacements of the flight of terraces near the river Avena. Finally, we find the ratio of the rate of regional uplift to the average rates of local tectonic deformation to be 2 to 3 : 1.

  11. Tectonic Map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland and the Queen Elizabeth Islands (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Piepjohn, Karsten; von Gosen, Werner; Tessensohn, Franz; Reinhardt, Lutz; McClelland, William C.; Dallmann, Winfried; Gaedicke, Christoph; Harrison, Christopher

    2016-04-01

    The tectonic map presented here shows the distribution of the major post-Ellesmerian and pre-Eurekan sedimentary basins, parts of the Caledonian Orogen, the Ellesmerian Fold-and-Thrust Belt, structures of the Cenozoic Eurekan deformation, and areas affected by the Eurekan overprint. The present continental margin of North America towards the Arctic Ocean between the Queen Elizabeth Islands and Northeast Greenland and the present west margin of the Barents Shelf are characterized by the Paleozoic Ellesmerian Fold-and-Thrust Belt, the Cenozoic Eurekan deformation, and, in parts, the Caledonian Orogen. In many areas, the structural trends of the Ellesmerian and Eurekan deformations are more or less parallel, and often, structures of the Ellesmerian Orogeny are affected or reactivated by the Eurekan deformation. While the Ellesmerian Fold-and-Thrust Belt is dominated by orthogonal compression and the formation of wide fold-and-thrust zones on Ellesmere Island, North Greenland and Spitsbergen, the Eurekan deformation is characterized by a complex network of regional fold-and-thrust belts (Spitsbergen, central Ellesmere Island), large distinct thrust zones (Ellesmere Island, North Greenland) and a great number of strike-slip faults (Spitsbergen, Ellesmere Island). The Ellesmerian Fold-and-Thrust Belt was most probably related to the approach and docking of the Pearya Terrane (northernmost part of Ellesmere Island) and Spitsbergen against the north margin of Laurasia (Ellesmere Island/North Greenland) in the earliest Carboniferous. The Eurekan deformation was related to plate tectonic movements during the final break-up of Laurasia and the opening of Labrador Sea/Baffin Bay west, the Eurasian Basin north, and the Norwegian/Greenland seas east of Greenland. The tectonic map presented here shows the German contribution to the Tectonic Map of the Arctic 1:5,000,000 (TeMAr) as part of the international project "Atlas of geological maps of Circumpolar Arctic at 1

  12. Study provides data on active plate tectonics in southeast Asia region

    NASA Astrophysics Data System (ADS)

    Wilson, P.; Rais, J.; Reigber, Ch.; Reinhart, E.; Ambrosius, B. A. C.; Le Pichon, X.; Kasser, M.; Suharto, P.; Majid, Dato'Abdul; Yaakub, Dato'Paduka Awang Haji Othman Bin Haji; Almeda, R.; Boonphakdee, C.

    A major geodynamic study has provided significant new information about the location of active plate boundaries in and around Southeast Asia, as well as deformation processes in the Sulawesi region of Indonesia and tectonic activity in the Philippine archipelago. Results also have confirmed the existence of the so-called Sunda Block, which appears to be rotating with respect to adjacent plates.The study, known as the Geodynamics of South and South-East Asia (GEODYSSEA) project, has been a joint venture of the European Commission and the Association of South- East Asian Nations. It began in 1991 and involved a large team of European and Asian scientists and technicians studying the complex geodynamic processes and natural hazards of the region from the Southeast Asia mainland to the Philippines to northern Australia. Earthquakes, volcanic eruptions, tsunamis, and tectonically induced landslides endanger the lives of millions of people in the region, and the tectonic activity behind these natural hazards results from the convergence and collision of the Eurasian, Philippine, and Indo-Australian Plates at relative velocities of up to 10 cm per year.

  13. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  14. High-Temperature Deformation of Dry Diabase with Application to Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Mackwell, S. J.; Zimmerman, M. E.; Kohlstedt, D. L.

    1998-01-01

    We have performed an experimental study to quantify the high-temperature creep behavior of natural diabase rocks under dry deformation conditions. Samples of both Maryland diabase and Columbia diabase were investigated to measure the effects of temperature, oxygen fugacity, and plagioclase-to-pyroxene ratio on creep strength. Flow laws determined for creep of these diabases were characterized by an activation energy of Q = 485 +/- 30 kJ/mol and a stress exponent of n = 4.7 +/- 0.6, indicative of deformation dominated by dislocation creep processes. Although n and Q are the same for the two rocks within experimental error, the Maryland diabase, which has the lower plagioclase content, is significantly stronger than the Columbia diabase. Thus the modal abundance of the various minerals plays an important role in defining rock strength. Within the s ample-to-sample variation, no clear influence of oxygen fugacity on creep strength could be discerned for either rock. The dry creep strengths of both rocks are significantly greater than values previously measured on diabase under "as-received" or wet conditions. Application of these results to the present conditions in the lithosphere on Venus predicts a high viscosity crust with strong dynamic coupling between mantle convection and crustal deformation, consistent with measurements of topography and gravity for that planet.

  15. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Wagner, Lara S.; Fischer, Karen M.; Hawman, Robert B.

    2016-05-01

    The lithospheric structure of the Southeastern United States is a product of earlier episodes of continental collision and breakup. The region is located in the interior of the North American Plate, away from active plate margins. However, there is ongoing tectonism in the region with multiple zones of seismicity, uplifting arches, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the state of stress remain enigmatic. Two important factors are plate strength and preexisting, inherited structures. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Examples include the relatively thick lithospheric mantle of stable North America that abruptly thins beneath the Paleozoic Appalachian orogeny, and the slow upper mantle of the Proterozoic Reelfoot rift. Our results also indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. This provides a viable explanation for seismicity, uplifting, and young intraplate volcanism. We postulate that not only tectonic inheritance but also continuing lithospheric foundering may control the ongoing activity of the region long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  16. Impact of the Yakutat indentor corner on present-day tectonics and fault activity in SE Alaska - SW Yukon

    NASA Astrophysics Data System (ADS)

    Mazzotti, S.; Marechal, A.; Ritz, J. F.; Ferry, M. A.

    2015-12-01

    We present an active tectonic model of the SE Alaska - SW Yukon region based principally on the integration of recent GPS velocity data and new fault-slip rates derived from geomorphology. In this region, the Yakutat collision results in complex tectonics with patterns of strain localization and strain partitioning that strongly vary across the various mountain ranges and active faults. We propose that deformation and fault activity in the St. Elias and Chugach Mountains are primarily controlled by the eastern syntaxis of the Yakutat collision, which produces a semi-radial tectonic pattern: Velocities, principal horizontal shortening rates, and maximum horizontal stress orientations rotate by 60 - 80 ° around the syntaxis, from roughly parallel to the relative Pacific - North America motion at the front of the collision to roughly orthogonal southeast of the syntaxis. The interaction between this strain pattern and major inherited tectonic structures inland of the collision zone (i.e., Denali and Duke River Faults) results in various reactivation modes of these structures. Specifically, the Denali Fault shows a very pronounced lateral variations of activity from ~12 mm/a of dextral slip rate in its central section to ~1 mm/a of mostly shortening slip rate along its southern section. This marked change of activity is associated with a possible relay system where the Duke River and Totschunda Faults accommodate a major part (8 - 12 mm/a) of the inland strain transfer directly in front of the syntaxis. This new tectonic model retains some questions, in particular regarding the mechanisms of deformation and strain transfer (1) from the syntaxis to the Duke River - Totschunda system and (2) at the junction between Totschunda and Denali Faults. Numerical models of present-day deformation may help address these issues and provide information about relative strength of the various crustal and inherited fault elements of this system.

  17. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  18. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east

  19. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  20. Deep seismic structure and tectonics of northern Alaska: Crustal-scale duplexing with deformation extending into the upper mantle

    USGS Publications Warehouse

    Fuis, G.S.; Murphy, J.M.; Lutter, W.J.; Moore, T.E.; Bird, K.J.; Christensen, N.I.

    1997-01-01

    Seismic reflection and refraction and laboratory velocity data collected along a transect of northern Alaska (including the east edge of the Koyukuk basin, the Brooks Range, and the North Slope) yield a composite picture of the crustal and upper mantle structure of this Mesozoic and Cenozoic compressional orogen. The following observations are made: (1) Northern Alaska is underlain by nested tectonic wedges, most with northward vergence (i.e., with their tips pointed north). (2) High reflectivity throughout the crust above a basal decollement, which deepens southward from about 10 km depth beneath the northern front of the Brooks Range to about 30 km depth beneath the southern Brooks Range, is interpreted as structural complexity due to the presence of these tectonic wedges, or duplexes. (3) Low reflectivity throughout the crust below the decollement is interpreted as minimal deformation, which appears to involve chiefly bending of a relatively rigid plate consisting of the parautochthonous North Slope crust and a 10- to 15-km-thick section of mantle material. (4) This plate is interpreted as a southward verging tectonic wedge, with its tip in the lower crust or at the Moho beneath the southern Brooks Range. In this interpretation the middle and upper crust, or all of the crust, is detached in the southern Brooks Range by the tectonic wedge, or indentor: as a result, crust is uplifted and deformed above the wedge, and mantle is depressed and underthrust beneath this wedge. (5) Underthrusting has juxtaposed mantle of two different origins (and seismic velocities), giving rise to a prominent sub-Moho reflector. Copyright 1997 by the American Geophysical Union.

  1. Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Kang, Chu-Chun; Chang, Chung-Pai; Siame, Lionel; Lee, Jian-Cheng

    2015-06-01

    Taiwan's mountain belt is an ideal location to address major questions regarding mechanisms of lithospheric deformation in convergent settings, mountain building processes from oceanic subduction to continental subduction, and post orogenic extension. In the northeast of this belt, the Ilan Plain is a triangular, deltaic plain characterized by a flat topography close to the sea level, and surrounded by the high mountains of the Hsuehshan Range to the northwest, and the Central Range to the southeast. Its eastern coast faces the western tip of the Okinawa Trough, the back-arc basin of the Ryukyu subduction zone. In this study, we analyzed the present-day surface deformation of the Ilan Plain, aiming at deciphering its relationships with basement faults and the regional geodynamic setting. Our approach is mainly based on surface vertical displacements revealed by Persistent Scatterer Interferometry Synthetic Aperture Radar (PSI), which indicate that there is an area of active subsidence (∼18 mm/yr) located in the southern part of the plain in probable connection with active basement faults and in agreement with previous geodetic measurements and existing geophysical data. Our PSI results also suggest that the subsidence occurring in the Ilan Plain has moved from north to south during Quaternary in relation with extrusion of the belt due to the westward propagation of the Okinawa Trough through the Taiwan Mountains.

  2. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  3. Tectonic stress field of brittle deformation within 2000 m of the main borehole of Chinese Continental Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Cui, J.; Li, P.; Wang, L.

    2004-12-01

    Four phases of tectonic stress fields: There exist a complex brittle fracture system and a tectonic stress field within 2000 m of the main hole. According to the features of its fillings, three different types of brittle strain phenomena may distinguished; they are microfractures filled by quartz, calcite, chlorite and other minerals, microfractures with films of minerals such as quartz and calcite or with striation lineation, and microfractures with neither mineral filling nor mineral films. They represent the early, middle and late phases and deep, middle and shallow tectonic levels of brittle deformation, respectively. Preliminary analysis indicates that four phases of tectonic stress fields, i.e. dominantly ESE and WNW compression, NE-SW regional compression, N-S compression and vertical extension, occur in the stage of brittle deformation. The modern tectonic stress field on the eastern side of the Tanlu fault is regionally very stable. In the brittle and brittle-ductile transition belts, the dominant mode of stress action constraining the emplacement of the Sulu high-pressure and ultrahigh-pressure metamorphic belt is ESE-WNW compression, which shows certain stability in time and space. The determination of in-situ stress from wellbore breakouts: The breakouts began to occur under the depth of 1200m in the main borehole of Chinese Continental Scientific Drilling (CCSD), 82 breakout images are collected from acoustic borehole televiewer data between 1200m and 2010 m. The averaged orientation of breakouts is 324.8¡a¡A3.3¡a. The averaged orientation of maximum horizontal stress is 54.8¡a¡A3.3¡a. Using parameters measured from breakouts (depth and width of breakout) and rock cohesive strength determined from triaxial rock compression and deformation test, the magnitudes of principal stress are calculated at 16 different depths of 1269m, 1500m, 2000m and so on. Overburden stress is calculated using the density logging data. According to the orientations and

  4. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  5. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  6. Reciprocating motion of active deformable particles

    NASA Astrophysics Data System (ADS)

    Tarama, M.; Ohta, T.

    2016-05-01

    Reciprocating motion of an active deformable particle in a homogeneous medium is studied theoretically. For generality, we employ a simple model derived from symmetry considerations for the center-of-mass velocity and elliptical and triangular deformations in two dimensions. We carry out, for the first time, a systematic investigation of the reciprocating motion of a self-propelled particle. It is clarified that spontaneous breaking of the front-rear asymmetry is essential for the reciprocating motion. Moreover, two routes are found for the formation of the reciprocating motion. One is a bifurcation from a motionless stationary state. The other is destabilisation of an oscillatory rectilinear motion.

  7. Active tectonics and Quaternary landscape evolution across the western Panama block, Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey Scott

    Three aspects of active tectonism are examined across central Costa Rica: (1) fault kinematics; (2) volcanic arc retreat; and (3) spatially variable coastal uplift. Diffuse faulting along the Central Costa Rica Deformed Belt (CCRDB) defines the western margin of the Panama block and aligns with the rough-smooth boundary (RSB) on the subducting Cocos plate. Sub-horizontal subduction of rough, hotspot thickened crust (Cocos Ridge and seamounts) shifts active shortening into the volcanic arc along the CCRDB. Mesoscale faults express variable kinematics across three domains: transtension in the forearc, transcurrent motion across the volcanic arc, and transpression in the back arc. Fault kinematics agree with seismicity and GPS data, and isotopic ages confirm that faulting postdates the late Neogene onset of shallow subduction. Stratigraphic correlation augmented by 40Ar/39Ar dating constrain the timing of Quaternary arc migration from the Neogene Aguacate range to the modern Cordillera Central. The Valle Central basin, between the cordilleras, filled with thick sequences of lavas, pyroclastic flows, and lahars. Middle Pleistocene drainage capture across the Aguacate arc linked the Valle Central with the Pacific slope and ash flows descended onto the coastal Orotina debris fan. Arc retreat reflects slab shallowing and enhanced tectonic erosion as rough crust entered the subduction zone. Differing subduction parameters across the RSB (crustal age, slab dip, roughness) produce marked contrasts in coastal tectonism. Varying uplift rates across coastal faults reflect sub-horizontal subduction of seamount roughness. Three groups (I--III) of fluvial terraces are correlated along the coast by isotopic ages and geomorphic characteristics. Base level fluctuations and terrace genesis reflect interaction between eustatic sea level and spatially variable rock uplift. Low uplift rates (north of RSB), yield one surface per terrace group, whereas moderate rates (south of RSB

  8. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western

  9. Crustal structure and active tectonics in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Brückl, E.; Behm, M.; Decker, K.; Grad, M.; Guterch, A.; Keller, G. R.; Thybo, H.

    2010-04-01

    During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south and underthusting of AD mantle below PA from southwest to northeast. The Moho fragmentation correlates well with major upper crustal structures and is supported by gravity, seismic, and geodetic data. An analysis of crustal thickening suggests that active convergence is associated with continued thrusting and lateral extrusion in the central Eastern Alps and thickening of the Adriatic indenter under the Southern Alps. According to the velocity relations at the triple junction, PA moves relative to EU and AD along ENE and SE striking faults, mainly by strike slip. An eastward directed extensional component is compensated by the lateral extrusion of the central Eastern Alps. The Periadriatic (Insubric) line east of the triple junction and the mid-Hungarian fault zone have relatively recently lost their role as first-order active structures. We favor the idea that the Pannonian fragment and the TISZA block merged to a "soft" microplate surrounded by the Eastern and Southern Alpine, Carpathian, and Dinaric orogens.

  10. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  11. Tectonic geomorphology, deformation history, and slip-rate estimate along the Palos Verdes Fault, offshore Southern California

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Conrad, J. E.; Maier, K. L.; Paull, C. K.; McGann, M.

    2014-12-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. Despite its proximity to metropolitan Los Angeles, the recent activity and earthquake hazards associated with the PVF are poorly constrained. To characterize the near seafloor fault morphology, Late Pleistocene-Holocene slip-rate and tectonic influences on slope sedimentary processes, a grid of high-resolution multibeam bathymetry and chirp sub-bottom profiles were acquired with the Monterey Bay Aquarium Research Institute's (MBARI) Autonomous Underwater Vehicle (AUV). The AUV surveys were focused along the continental slope ~25 km south of Long Beach in water depths between 250 and 600 m, where the PVF crosses the slope. AUV multibeam bathymetry data gridded at 2-m resolution and chirp profiles are merged with 25-m resolution ship-based multibeam bathymetry and seismic-reflection profiles. Vibracores collected with the MBARI Remotely Operated Vehicle (ROV) and ship-based USGS gravity cores provided radiocarbon dates for stratigraphic horizons offset by the PVF. Recent deformation is expressed as a well-defined seafloor lineation and offset Late Pleistocene-Holocene sub-bottom reflections. Curvilinear scarps associated with an upper submarine landslide (~450 m water depth), a buried slump block, and a lower submarine landslide (~525 m water depth) have been right-laterally offset by 55±3, 55±5, and 40±5 meters, respectively. The age of the upper scarp is bracketed between 23-31 kyr BP, which yields an average slip rate across the PVF of 1.6-2.4 mm/yr. However, our best estimate for the age of the upper landslide is ~ 31 kyr BP, which yields a right-lateral slip-rate of 1.8 mm/yr. Vertical growth faulting observed along a subtle transtensional fault-bend suggests that at least two surface ruptures occurred during the Holocene. In summary, these results indicate that the offshore

  12. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  13. Effects of tectonic deformation and sea level on river path selection: Theory and application to the Ganges-Brahmaputra-Meghna River Delta

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith D.; Pickering, Jennifer L.; Goodbred, Steven L.; Paola, Chris; Steckler, Michael S.; Seeber, Leonardo; Akhter, Syed H.

    2015-04-01

    The set of active rivers of the Ganges-Brahmaputra-Meghna (GBM) Delta in Bangladesh overlies an active plate boundary that continually modifies the landscape of the delta by deformation. The response of rivers to spatially variable subsidence, from tectonic tilting or other causes, has been thought to include preferred occupation of regions of higher subsidence. In this paper, we develop further the theoretical framework for analysis of the interplay of tectonics and river dynamics, and apply this model to conditions in the GBM Delta. First, we examine the overall competition between variable subsidence and channel dynamics, and find that tilting in Bangladesh should be strong enough to influence river path selection. We then present new theory for the effect of subsidence that is spatially (not temporally) variable. We find a constant residence timescale on different parts of the delta, and differing frequencies of avulsion to these locations, and describe the effects of incision or floodplain deposition on these quantities. We present estimates of the channel residence timescale of the Jamuna (Brahmaputra) River reconstructed from the lithology, provenance, and dating of sediment cores. We apply our framework to a map of regional subsidence to predict the effects on avulsion for the Jamuna River. Comparison between our predicted (2150 years) and our stratigraphically based estimates of avulsion timescale (1800 years) shows encouraging consistency.

  14. Geomorphic signature of active tectonics in the southern Abruzzi Periadriatic hilly belt (Central Italy)

    NASA Astrophysics Data System (ADS)

    Racano, Simone; Fubelli, Giandomenico; Centamore, Ernesto; Dramis, Francesco

    2016-04-01

    The geo-structural setting of the southern Abruzzi hilly belt that stretches from the northeastern front of the Maiella Massif to the Adriatic coast is characterized by deep-seated northeast verging thrusts masked by a thick cover of Late Pliocene-Middle Pleistocene marine deposits. Most authors consider this area tectonically inactive while only few of them support the hypothesis of its recent activity from the analysis of the river network pattern. Geological and geomorphological investigations carried out in the area have clearly shown the occurrence of surface deformations resulting from the continued activity of compressive tectonics up to recent times. The analysis of the study area by of a 10 m resolution DTM (using the open-source QGIS software) confirmed and supplemented field observations. Particularly significant in this context is the topographic setting of the alluvial strath terraces in the river valleys that develop transversally to the buried thrusts. In correspondence of these structures, topographic highs have grown up displacing the middle-Pleistocene planation surface developed on top of the hilly belt, from the Maiella piedmont to the coastal zone, and diverting laterally the river courses uphill. In the same places, as along the Alento and Foro rivers that cross by antecedence the grown up topographic highs, the long profiles of terraces bend eastward and the height difference between the terrace orders, essentially related all around the area to the Quaternary regional uplift, strongly increases. In some cases, surficial faults have lowered the terraces into graben troughs or have displaced them until assuming an uphill trend. This recent tectonic activity should be taken in account in assessing the seismic hazard of the study area.

  15. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history

    USGS Publications Warehouse

    Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, Jiawen

    2003-01-01

    The Qinling orogen preserves a record of late mid-Proterozoic to Cenozoic tectonism in central China. High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) assembled the Yangtze craton, including the lower Qinling unit, into Rodinia during the ???1.0 Ga Grenvillian orogeny. The lower Qinling unit then rifted from the Yangtze craton at ???0.7 Ga. Subsequent intra-oceanic arc formation at ???470-490 Ma was followed by accretion of the lower Qinling unit first to the intra-oceanic arc and then to the Sino-Korea craton. Subduction then imprinted a ???400 Ma Andean-type magmatic arc onto all units north of the northern Liuling unit. Oblique subduction created Silurian-Devonian WNW-trending, sinistral transpressive wrench zones (e.g., Lo-Nan, Shang-Dan), and Late Permian-Early Triassic subduction reactivated them in dextral transpression (Lo-Nan, Shang-Xiang, Shang-Dan) and subducted the northern edge of the Yangtze craton. Exhumation of the cratonal edge formed the Wudang metamorphic core complex during dominantly pure shear crustal extension at ???230-235 Ma. Post-collisional south-directed shortening continued through the Early Jurassic. Cretaceous reactivation of the Qinling orogen started with NW-SE sinistral transtension, coeval with large-scale Early Cretaceous crustal extension and sinistral transtension in the northern Dabie Shan; it presumably resulted from the combined effects of the Siberia-Mongolia-Sino-Korean and Lhasa-West Burma-Qiangtang-Indochina collisions and Pacific subduction. Regional dextral wrenching was active within a NE-SW extensional regime between ???60 and 100 Ma. An Early Cretaceous Andean-type continental magmatic arc, with widespread Early Cretaceous magmatism and back-arc extension, was overprinted by shortening related to the collision of Yangtze-Indochina Block with the West Philippines Block. Strike-slip and normal faults associated with Eocene half-graben basins record Paleogene NNE-SSW contraction and WNW

  16. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  17. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Goswami, Chandreyee; Mukhopadhyay, Dhruba; Poddar, Bikash Chandra

    2012-03-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River. Two distinct E-Wlineaments passing through this area had been identified by Nakata (1972, 1989) as active faults. The northern lineament manifested as Matiali scarp and the southern one manifested as Chalsa scarp represent the ramp anticlines over two blind faults, probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT), respectively. The fan surface is folded into two antiforms with a synform in between. These folds are interpreted as fault propagation folds over the two north dipping blind thrusts. Two lineaments trending NNE-SSW and nearly N-S, respectively, are identified, and parts of present day courses of the Murti and Neora Rivers follow them. These lineaments are named as Murti and Neora lineaments and are interpreted to represent a conjugate set of normal faults. The rivers have changed their courses by the influence of these normal faults along the Murti and Neora lineaments and their profiles show knick points where they cross E-W thrusts. The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults. The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults. Four major terraces and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers. The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above. But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  18. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  19. Paleomagnetic evidence of earliest Paleocene deformation in Calama (˜22°S), northern Chile: Andean-type or ridge-collision tectonics?

    NASA Astrophysics Data System (ADS)

    Somoza, R.; Tomlinson, A. J.; Caffe, P. J.; Vilas, J. F.

    2012-08-01

    A paleomagnetic study from the earliest Paleocene Cerros de Montecristo Quartz Monzonite and its Jurassic to uppermost Cretaceous host rock (northern Chile, ˜22°S) provided high-temperature, high-coercivity magnetizations of dominantly reversed polarity. The remanences of the tilted host rock gave a negative fold-test and are indistinguishable from the remanences found in the pluton, indicating that the uppermost Cretaceous rocks underwent deformation before intrusion of the earliest Paleocene pluton, thus documenting a K-T deformation at the locality. Although this deformation may be another product of typical subduction-related noncollisional tectonics in the Central Andes, an alternative hypothesis, permitted by plate reconstructions, is that the event was associated with collision of an oceanic plate boundary. This latter hypothesis may also provide a context for several other tectonic events from northern Chile to the Patagonian Andes, wherein deformation would the consequence of a southward migrating triple junction between the latest Maastrichtian and Early Eocene.

  20. Tectonic evolution of the Lachlan Fold Belt, southeastern Australia: constraints from coupled numerical models of crustal deformation and surface erosion driven by subduction of the underlying mantle

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Pauselli, Cristina

    2004-04-01

    We have used a coupled thermo-mechanical finite-element (FE) model of crustal deformation driven by mantle/oceanic subduction to demonstrate that the tectonic evolution of the Lachlan Fold Belt (LFB) during the Mid-Palaeozoic (Late Ordovician to Early Carboniferous) can be linked to continuous subduction along a single subduction zone. This contrasts with most models proposed to date which assume that separate subduction zones were active beneath the western, central and eastern sections of the Lachlan Orogen. We demonstrate how the existing data on the structural, volcanic and erosional evolution of the Lachlan Fold Belt can be accounted for by our model. We focus particularly on the timing of fault movement in the various sectors of the orogen. We demonstrate that the presence of the weak basal decollement on which most of the Lachlan Fold Belt is constructed effectively decouples crustal structures from those in the underlying mantle. The patterns of faulting in the upper crust appears therefore to be controlled by lateral strength contrasts inherited from previous orogenic events rather than the location of one or several subduction zones. The model also predicts that the uplift and deep exhumation of the Wagga-Omeo Metamorphic Belt (WOMB) is associated with the advection of this terrane above the subduction point and is the only tectonic event that gives us direct constraints on the location of the subduction zone. We also discuss the implications of our model for the nature of the basement underlying the present-day orogen.

  1. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  2. Structural deformation pattern within the NW Qaidam Basin in the Cenozoic era and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Mao, Liguang; Xiao, Ancheng; Zhang, Hongwei; Wu, Zhankui; Wang, Liqun; Shen, Ya; Wu, Lei

    2016-09-01

    The Qaidam Basin is located in the northeastern Tibetan Plateau and provides an excellent field laboratory in understanding the history and mechanism of the plateau growth. It deformed widely over the northwest during the Cenozoic but with little thrust loading along the margins, where no foreland depression is observed. Based on satellite images, seismic and borehole data, we investigated the structural deformation pattern (including the structural style and timing of deformation) and its formation mechanism within the northwestern Qaidam Basin during the Cenozoic era. Mapping of surface geology shows that the modern Qaidam Basin is characterized by five SE-trending anticlinal belts. Each belt consists of several right-step en echelon anticlines with plenty of normal and strike-slip faults crossing the crests. Those anticlines are generally dominated by double fault systems at different depths: an upper thrust fault system, controlling the anticlines identified on the surface and a lower dextral transpressional fault system characterized by typical flower structures. They are separated by weak layers in the upper Xiaganchaigou or the Shangganchaigou formations. The upper system yields shortening strain 2-5 times larger than that of the lower system and the additional strain is interpreted to be accommodated by hinge-parallel elongation in the upper system. Growth strata indicate that deformation within the Qaidam Basin initiated in the middle Miocene ( 15 Ma) and accelerated in the late Miocene ( 8 Ma). A simple Riedel-P-Shear model is used to explain the deformation mechanism within the northwestern Qaidam Basin.

  3. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  4. Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Piazolo, Sandra; Güngör, Talip; Ring, Uwe; Kröner, Alfred; Passchier, Cees

    Deformation fabrics in Proterozoic/Cambrian granitic rocks of the Çine nappe, and mid-Triassic granites of the Bozdag nappe constrain aspects of the tectonometamorphic evolution of the Menderes nappes of southwest Turkey. Based on intrusive contacts and structural criteria, the Proterozoic/Cambrian granitic rocks of the Çine nappe are subdivided into older orthogneisses and younger metagranites. The deformation history of the granitic rocks documents two major deformation events. An early, pre-Alpine deformation event (DPA) during amphibolite-facies metamorphism affected only the orthogneisses and produced predominantly top-to-NE shear-sense indicators associated with a NE-trending stretching lineation. The younger metagranites are deformed both by isolated shear zones, and by a major shear zone along the southern boundary of the Çine submassif. We refer to this Alpine deformation event as DA3. DA3 shear zones are associated with a N-trending stretching lineation, which formed during greenschist-facies metamorphism. Kinematic indicators associated with this stretching lineation reveal a top-to-south sense of shear. The greenschist-facies shear zones cut the amphibolite-facies structures in the orthogneisses. 207Pb/206Pb dating of magmatic zircons from a metagranite, which crosscuts orthogneiss containing amphibolite-facies top-to-NE shear-sense indicators, shows that DPA occurred before 547.2+/-1.0 Ma. Such an age is corroborated by the observation that mid-Triassic granites of the Çine and Bozdag nappes lack DPA structures. The younger, top-to-south fabrics formed most likely as a result of top-to-south Alpine nappe stacking during the collision of the Sakarya continent with Anatolia in the Eocene.

  5. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  6. Active tectonics of the eastern Sunda and Banda arcs

    NASA Astrophysics Data System (ADS)

    McCaffrey, Robert

    1988-12-01

    The mechanism of collision of the Australian continent with the East Sunda and Banda island arcs is examined. Depths and fault plane solutions of large earthquakes are estimated and are used to constrain the active, shallow tectonics of the collision zone. The convergence of the Australian continent with eastern Indonesia is accommodated to some degree by N-S crustal shortening throughout the forearc, arc, and back arc regions. Within the back arc (the Banda Basin), strike-slip and thrust faulting reveal convergence between Timor and Seram. Back arc thrusting plays an important role in the convergence across the collision zone. The Banda Basin probably formed as slices of northern New Guinea were transported westward with the Pacific plate and collided with an island arc in eastern Sulawesi.

  7. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    releasing and restraining bends, fault-bounded uplifts and basins, growth folds and angular unconformities. Numerous fault “sections” can be defined based on mapping of strands, structural style, and geomorphology, but the tectonic and hazard significance of these sections and their boundaries is not clear. Depth of the shelf break provides an important datum and locally indicates more than 10 m of latest Pleistocene to Holocene vertical slip. Stratigraphic sequences recording one to two sea-level cycles locally occur west of the Hosgri fault zone on the outer shelf and upper slope, and likewise have the potential to constrain rates of vertical deformation. Development and preservation of the stratigraphic sequences appears to be related to sediment supply (thickness and distribution), largely controlled by the complex fault-related geomorphology on the shelf and along the Hosgri fault zone. Northwest-trending faults on the shelf are more difficult to image with our new seismic data because of shallower, non-reflective basement, but ongoing analysis of high-resolution bathymetry, submerged wave-cut platforms, incised lowstand fluvial channels, and marine magnetic data should provide information on their geometry and recent deformation.

  8. Lake Clark fault, assessment of tectonic activity based on reconnaissance mapping of glacial deposits, northwestern Cook Inlet Alaska

    NASA Astrophysics Data System (ADS)

    Reger, R. D.; Koehler, R. D.

    2009-12-01

    The Lake Clark fault extends ~247 km from the vicinity of Lake Clark in the Alaska-Aleutian Range batholith northeastward to the Castle Mountain fault along the northern margin of Cook Inlet. Documented Tertiary deformation along the fault includes dextral offsets (5-26 km) and north-side-up reverse displacements (500-1,000 m). The fault is along strike with the Holocene-active Castle Mountain fault and adjacent to the active northern Cook Inlet fold belt. As part of the STATEMAP program, the State of Alaska has begun a 2-year geologic mapping project in the vicinity of the Lake Clark fault, including assessment of Quaternary fault activity and its role in accommodating deformation in the Aleutian forearc. Here we present preliminary Quaternary mapping and tectonic geomorphic observations aimed at assessing the fault activity. Between the Beluga and Chakachatna rivers, large lateral moraines of the late Wisconsinan Naptowne glaciation cross the fault and are not displaced. In the vicinity of Lone Ridge, the fault is expressed as a ~25-m southeast-facing scarp in bedrock associated with springs and vertically offset Stage 4 or 6 moraines. In the Chuitna River drainage basin beyond the Naptowne ice limit, the fault extends across a fairly flat plateau with drumlins and ice-stagnation deposits related to Stage 4 or 6 glaciation. There the fault is expressed by subtle vegetation and tonal lineaments on air photos; however, scarps and lateral offsets were not observed. Stream profiles perpendicular to the fault along the Chuitna River and Chuitna Creek have convex profiles that could be related to tectonic folding. Our observations indicate that this part of the Lake Clark fault may be Quaternary active, but has been relatively quiescent in the late Pleistocene. Thus, blind thrust faults associated with the northern Cook Inlet fold belt may accommodate the majority of the tectonic deformation in this part of the Aleutian forearc. This information is applicable to

  9. Transpressional tectonics vs. superposed deformation in the Rengali Province, eastern Indian shield

    NASA Astrophysics Data System (ADS)

    Gupta, Saibal; Misra, Surajit

    2014-05-01

    A primary concern in ancient transpressional shear zones is to demonstrate that the shortening and strike-slip components of deformation operated simultaneously. In the eastern Indian shield, ultrahigh grade granulite terrane of the Eastern Ghats Belt collided with the Archaean Indian craton around ~ 1 Ga. Subsequently, the northern boundary of the granulite belt was affected by a dextral strike-slip system that juxtaposed it against the Singhbhum Province. The strike-slip system is characterized by two WNW-ESE trending strands that enclose a multiply deformed (D1 to D3) intervening domain that is referred to as the Rengali Province. D1 and D2 represent a deformation continuum that operated under granulite / amphibolite facies conditions. Available zircon ages from amphibolite facies gneisses within the province indicate a late Archaean age for the D1-D2 deformation. In a granulite lens in the central part of the province, an early fabric-forming deformation (Dgr) is represented by cylindrical D1-D2 folding. D3 shortening was superimposed on D1-D2 folds in the surrounding lithologies of the province, generating complex non-cylindrical geometries. However, there is no evidence of D3 shortening strain within the granulites. Microstructures in the province-bounding D3 strike-slip shear zones indicate that mylonitization and dynamic recrystallization was associated with greenschist facies metamorphism. In quartzite bands within these shear zones, syn-D3 folds can be correlated with rotation of D1-D2 structures through the shortening zone of bounding dextral shears. Strain analyses and Anisotropy of Magnetic Susceptibility studies in these quartzites indicate that post-D2 strain ellipsoids are characterized by sub-vertical axial planes and extrusion directions consistent with crustal shortening. Samples from high D3 strain zones are associated with sub-horizontal extrusion parallel to the inferred direction of strike-slip shearing, and have kinematic vorticity numbers

  10. Characteristics of the Cenozoic crustal deformations in SE Korea and its vicinity due to major tectonic events

    NASA Astrophysics Data System (ADS)

    Son, M.; Kim, J.; Song, C.; Sohn, Y.; Kim, I.

    2010-12-01

    The southeastern Korean Peninsula has experienced multiple crustal deformations according to changes of global tectonic setting during the Cenozoic. Characteristics of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50 ~ 43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm pervasively. (2) Opening of the East Sea (25 ~ 16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. At that time, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting, and the eastward propagating rifting also occurred. At about 17 Ma, the Yeonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (16~15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Islands. The

  11. Neotectonic deformation in the western sector of tectonic escape in Anatolia: palaeomagnetic study of the Afyon region, central Turkey

    NASA Astrophysics Data System (ADS)

    Gürsoy, H.; Piper, J. D. A.; Tatar, O.

    2003-10-01

    Following final closure of the Neotethyan Ocean during the late Miocene, deformation in central Turkey has led to crustal thickening and uplift to produce the Anatolian Plateau followed by westward extrusion of terranes by strike-slip. Widespread volcanism has accompanied this latter (neotectonic) phase, and palaeomagnetic study of the volcanism shows a coherent record of differential block rotations, indicating that the Anatolian region is not a plate (or 'platelet') sensu stricto but is undergoing distributed internal deformation. To evaluate the scale of neotectonic rotations in the transition zone near the western limit of tectonic escape and the border of the extensional domain in central-west Turkey, we have studied the palaeomagnetism at 82 sites in volcanic suites distributed along a ˜140-km lineament with north-south trend and ranging in age from 18 to 8 Ma. Comparable deflection of magnetic remanence from the present field direction is identified along the full length of the lineament. A mean clockwise rotation of 12.3±4.2° is determined for this western sector of the Anatolian strike-slip province. Since similar rotations are observed in the youngest and oldest units, this cumulative rotation occurred after the late Miocene. When interpreted together with results elsewhere in Anatolia, it is inferred that the rotation is later than crustal thickening and uplift of the Anatolian Plateau and entirely a facet of the tectonic escape. Inclinations are mostly ˜10° shallower than the predicted Miocene field and are considered to reflect the presence of a persistent inclination anomaly in the Mediterranean region. Larger rotations departing from the regional trend are also observed within the study region, but are confined to the vicinity of major faults, notably those bounding the Afyon-Akşehir Graben. The pattern of neotectonic declinations across Anatolia identifies strong anticlockwise rotation in the east near the Arabian pincer with progressive

  12. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean.

    PubMed

    Zhu, Hejun; Tromp, Jeroen

    2013-08-23

    We constructed a three-dimensional azimuthally anisotropic model of Europe and the North Atlantic Ocean based on adjoint seismic tomography. Several features are well correlated with historical tectonic events in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean, and counterclockwise rotation of the Anatolian Plate. Beneath northeastern Europe, the direction of the fast anisotropic axis follows trends of ancient rift systems older than 350 million years, suggesting "frozen-in" anisotropy related to the formation of the craton. Local anisotropic strength profiles identify the brittle-ductile transitions in lithospheric strength. In continental regions, these profiles also identify the lower crust, characterized by ductile flow. The observed anisotropic fabric is generally consistent with the current surface strain rate measured by geodetic surveys. PMID:23929947

  13. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  14. Evidence for Cambrian deformation in the Ellsworth-Whitmore Mountains terrane, Antarctica: Stratigraphic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Duebendorfer, Ernest M.; Rees, Margaret N.

    1998-01-01

    The Ellsworth-Whitmore Mountains terrane is a large geologically and geophysically defined crustal block that lies between the Transantarctic Mountains and West Antarctica. The Cambrian position of the terrane is controversial, with many workers placing it between East Antarctica and southern Africa and distant from Cambrian orogenic belts. We present structural and stratigraphic evidence for Cambrian deformation in the Heritage Range, Ellsworth Mountains. From our revised stratigraphy and structural history of the Heritage Range, we propose that the Ellsworth-Whitmore Mountains block was located within the belt of Pan-African deformation, within the Late Cambrian continental arc, and was part of a collage of allochthonous terranes that included the Queen Maud terrane and probably the Bowers terrane of Antarctica. These terranes were situated outboard of Coats Land in the Cambrian and were subsequently translated and accreted to East Antarctica, probably during early Paleozoic time.

  15. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    SciTech Connect

    Zilberman, E.; Wachs, D. )

    1988-02-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.

  16. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  17. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    SciTech Connect

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  18. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  19. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    NASA Astrophysics Data System (ADS)

    Ryan, H. F.; Parsons, T.; Sliter, R. W.

    2008-10-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3 mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15 cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6 cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5 km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  20. Exploration of the topographic effects on surface deformation due to magmatic and tectonic processes

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Acocella, Valerio

    2013-04-01

    The induced deformation and stress field by faults and magma bodies such as dikes and sills is influenced by topography. The effect is particularly more significant for shallow sources and steep topography. However, the analytic deformation models in an elastic half-space, cannot account for these topographic effects. To include these "topographic effects", we use the triangular dislocation elements (TDE) which are very flexible during discretization of the complex dislocation surfaces. Here we solve the problem of singularities along the sides or beneath the vertices of TDEs, and then apply them to develop a boundary element method (BEM). Since the TDEs applied in the BEM code are free from artifact singularities everywhere in the space, we are able to simulate open and closed surfaces with any complex geometry. We first validate the results of our method by comparing them to a few well-known analytical solutions in either full-space or simple half-space. Then we apply this code to study topographic effects on the displacements' signal of dikes and faults as well as spherical and ellipsoidal magma chambers, under complex topography. After some synthetic tests, we couple this code with a genetic algorithm (GA) code in a fully numerical optimization approach for modeling of real volcano deformation observed by InSAR technique. We show that topographic effects along with the sources which are located inside the body of a volcano, are strongly dependent on the local topography, and cannot be resolved with the existing approximate solutions which account for these effects.

  1. Devonian-Carboniferous tectonics and basin deformation in the Cabot Strait Area, eastern Canada

    SciTech Connect

    Langdon, G.S.; Hall, J.

    1994-11-01

    The Magdalen Basin, in the Cabot Strait-Bay St. George area, was a major depocenter for Devonian-Carboniferous sediments in eastern Canada. Structure within the basin is complex and is characterized by northeast- and east-trending, mainly dextral strike-slip faults associated with the bend in the Appalachian orogenic belt known as the St. Lawrence Promontory. Under the Cabot Strait two linear grabens parallel the major fault trends and preserve up to 6 km of Devonian-Carboniferous sedimentary rocks, comprising mainly coarse-grained terrigenous clastics with a Lower Carboniferous transgressive episode recorded by marine carbonates, evaporites, and fine-grained clastics. Several unconformities within the sedimentary succession record deformation associated with movement along the regional strike-slip faults. Minor local unconformities are interpreted within the upper Horton (early Visean), upper Barachois (late Westphalian), and post-Pennsylvanian successions. A major unconformity cuts out most of the Namurian and Westphalian section in the study area and can be correlated on a regional scale. Kinematic strain partitioning along the master Cabot fault led to the development of doubly vergent compressional structures within a wrench borderland. This was complicated by transpressive deformation at a restraining bend in the master fault, and by deformation associated with over-stepped ends of splays of the regional fault system. The Magdalen Basin probably formed in an early phase of post-Acadian extension, and was later reactivated by regional strike-slip faults. The presence of thick source and reservoir rocks, as well as diverse trapping possibilities and a favorable burial and maturation history, indicate that the Cabot Strait area has good potential for accumulating and preserving petroleum.

  2. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  3. Docking of the Western Carpathians to stable Europe: time relation of tectonic deformation and rotation as evidenced by paleomagnetic vectors and AMS lineations

    NASA Astrophysics Data System (ADS)

    Márton, Emö

    2013-04-01

    Western Carpathian front was NW-SE striking and did not change between the late Cretaceous and the Miocene. Compressional deformation predated the en bloc CCW rotation of the Western Carpathians. Concerning subordinate relative rotations within the orogen, oroclinal bending may be partly responsible for the arcuate shape, but bending must have taken place before the Oligocene. In the western segment of the Outer Carpathians the declinations are somewhat more CCW rotated than in the central and eastern segment, probably due to tectonic activity within a left lateral wrench corridor. Acknowledgement: Financial support by the Hungarian Scientific Research Fund (project no. OTKA K 105245) is acknowledged.

  4. Compressional deformation and tectonic evolution of the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Watters, T. R.

    The Tharsis region of Mars is dominated by volcanic and tectonic features. The major structural features observed throughout the region are ridges and faults. The Tharsis ridges are morphologically similar to ridges observed on the Moon, Mercury and the Columbia Plateau on Earth. The interpretation of the Columbia Plateau ridges as anticlinal folds forms a strong basis for the interpretation of the Tharsis ridges as compressional folds. The Tharsis ridge system is, to a first approximation, circumferentially oriented around the regional topographic high of northern Syria Planum. Ridge-fault crosscutting relations on the ridged plains indicate that the major ridge forming events in the Tharsis region were coincident with, and in many cases, prior to the extensional events that generated the faulting of the Tempe, Coprates and Memnonia regions and the rifting of Valles Marineris. Based on superposition relations, the compressional events that generated the ridges occurred after the emplacement of the ridged plains volcanic units and did not extend beyond the emplacement of the Syria Planum Formation or Tharsis Formation volcanic units.

  5. Salt tectonics and gravity driven deformation: Structural guidelines for exploration in passive margin

    SciTech Connect

    Mauduit, T.; Gwenael G.; Brun, J.P.

    1995-08-01

    The West African Margin, (Gulf of Guinea) presents spectacular examples of gravity driven deformation above a salt decollement (i.e. growth faulting, rafts, diapirs and contractional structures) which have been documented by numerous Oil and Gas investigations. Seismic data demonstrate that the variation of deformation styles in space and time appear to be function of: regional geometry of the margin (i.e. value of basal slope and presence/absence of residual reliefs below the salt layers) and, mode, rate and repartition of sedimentation. The role and effects of the above parameters were analyzed using laboratory modeling investigation based on basic structural patterns identified through seismic data. Models are built with sand and silicone putty, that respectively represent the frictional behavior of upper Cretaceous-Cenozoic cover and the viscous behavior of the upper Aptian salt. They are scaled to fit observed natural configurations. Results are compared with examples from the Gulf of Guinea on the basis of seismic data. This approach allowed to better understand the evolution of the margin and therefore the reservoir distributions and traps geometries.

  6. Venus: further evidence of impact cratering and tectonic activity from radar observations.

    PubMed

    Campbell, D B; Burns, B A; Boriakoff, V

    1979-06-29

    Earth-based radar images at a resolution of 10 kilometers show a diverse surface terrain on Venus, probably produced by both impact events and tectonic activity. Only a small number of craters of apparent impact origin are seen. Large-scale features show lineaments and parallel ridges suggesting tectonic origins.

  7. Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Montone, Paola; Pirro, Mario; Boschi, Enzo

    2004-04-01

    In this paper we describe evidence of strong tectonic deformation affecting two aqueducts of Roman age (II-III century A.D.). The channels are located approximately 20 km northeast of Rome along the ancient Via Tiburtina. Brittle and ductile deformation affects these two structures, including extensional joint systems, NE-oriented faults, and horizontal distortion. This deformation is consistent with right-lateral movement on major N-striking faults, and represents the first evidence that tectonic deformation took place in historical times in the vicinity of Rome, with local strike-slip movement superimposed on a regional extensional fault system.

  8. Extensional deformation of the Guadalquivir Basin: rate of WSW-ward tectonic displacement from Upper Tortonian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Roldán, Francisco J.; Azañón, Jose Miguel; Rodríguez-Fernández, Jose; María Mateos, Rosa

    2016-04-01

    The Guadalquivir Basin (Upper Tortonian-Quaternary sedimentary infilling) has been considered the foreland basin of the Betic Orogen built up during its collision with the Sudiberian margin. The basin is currently restricted to its westernmost sector, in the Cadiz Gulf, because the Neogene-Quaternary uplift of the Betic Cordillera has produced the emersion of their central and eastern parts. The upper Tortonian chronostratigraphic unit is the oldest one and it was indistinctly deposited on the South Iberian paleomargin and the External units from the Betic Cordillera. However, these rocks are undeformed on the Sudiberian paleomargin while they are deeply affected by brittle deformation on the External Betic Zone. Outcrops of Upper Tortonian sedimentary rocks on External Betic Zone are severely fragmented showing allocthonous characters with regard to those located on the Sudiberian paleomargin. This post- Upper Tortonian deformation is not well known in the External Zones of the Cordillera where the most prominent feature is the ubiquity of a highly deformed tecto-sedimentary unit outcropping at the basement of the Guadalquivir sedimentary infilling. This tecto-sedimentary unit belongs to the Mass Wasting Extensional Complex (Rodríguez-Fernández, 2014) formed during the collision and westward migration of the Internal Zone of the Betic Cordillera (15-8,5 Ma). In the present work, we show an ensemble of tectonic, geophysical and cartographic data in order to characterize the post-Upper Tortonian deformation. For this, seismic reflection profiles have been interpreted with the help of hidrocarbon boreholes to define the thickness of the Upper Tortonian sedimentary sequence. All these data provide an estimation of the geometrical and kinematic characteristics of the extensional faults, direction of movement and rate of displacement of these rocks during Messinian/Pliocene times. References Rodríguez-Fernández, J., Roldan, F. J., J.M. Azañón y Garcia-Cortes, A

  9. Tectonic activity on Pluto after the Charon-forming impact

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Collins, Geoffrey C.

    2015-01-01

    The Pluto-Charon system, likely formed from an impact, has reached the endpoint of its tidal evolution. During its evolution into the dual-synchronous state, the equilibrium tidal figures of Pluto and Charon would have also evolved as angular momentum was transferred from Pluto's spin to Charon's orbit. The rate of tidal evolution is controlled by Pluto's interior physical and thermal state. We examine three interior models for Pluto: an undifferentiated rock/ice mixture, differentiated with ice above rock, and differentiated with an ocean. For the undifferentiated case without an ocean, the Pluto-Charon binary does not evolve to its current state unless its internal temperature Ti > 200K , which would likely lead to strong tidal heating, melting, and differentiation. Without an ocean, Pluto's interior temperature must be higher than 240 K for Charon to evolve on a time scale less than the age of the Solar System. Further tidal heating would likely create an ocean. If New Horizons finds evidence of ancient tidally-driven tectonic activity on either body, the most likely explanation is that Pluto had an internal ocean during Charon's orbital evolution.

  10. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  11. Active tectonics in Central Italy: constraints from surface wave tomography and source moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Chimera, G.; Aoudia, A.; Saraò, A.; Panza, G. F.

    2003-08-01

    We investigate the lithosphere-asthenosphere structure and active tectonics of Central Italy, with emphasis on the Umbria-Marche area, by means of surface wave tomography and seismic moment tensor inversion. The data include: a large number of short period local and regional group velocity measurements sampling the Umbria-Marche Apennines and the Adria margin, respectively; incorporation of published phase velocity measurements sampling Italy and surroundings; results from deep seismic soundings which go through the Umbria-Marche area. The local group velocity maps, covering the area reactivated by the 1997-1998 Umbria-Marche earthquake sequence, suggest an intimate relationship between the lateral earth structure variations and the distribution of the active fault systems and related sedimentary basins. The upper crustal models reveal the importance of inherited compressional tectonics on the recent extensional deformation and associated seismic activity. Source inversion studies of the main events of the 1997 earthquake sequence show the dominance of normal faulting mechanisms, whereas selected aftershocks between the fault segments, at the step-over, reveal that the prevailing deformation is of strike-slip faulting type. At the regional scale, the crust exhibits clear layering and varies in thickness from about 25 km below the Tuscan Metamorphic Complex (TMC), to about 30 km below the Val Tiberina extensional thick sedimentary basin and reaches about 35 km below the Umbria-Marche geological domain (UMD). The lithospheric mantle (lid) is thin (about 30 km) below TMC, while it is about 70 km thick below UMD. A lithospheric root about 120 km wide, between the TMC and UMD, reaches a depth of at least 130 km. A low-velocity zone, defined mantle wedge ( VS less than 4.2 km/s) in the uppermost mantle overlying the high velocity lid is detached. This wedge is about 20 km thick and decouples the underlying lid from the crust. The retrieved crust and upper mantle

  12. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, P.J.; Bruhn, R.L.; Pratt, T.L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6-7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  13. Tectonic stresses in the lithosphere: constraints provided by the experimental deformation of rocks.

    USGS Publications Warehouse

    Kirby, S.H.

    1980-01-01

    The strengths of rocks clearly place an upper limit on the stress that can be sustained by the upper half of the lithosphere. Laboratory data on rock rheology are generally lacking at intermediate temperatures and pressures on the important rock types expected in the lithosphere, so a definitive accounting of the strength distribution with depth in the upper lithosphere is presently unattainable. Analogies are drawn between the fragmentary strength data on slicates at intermediate temperature and the more extensive experimental data on marble and limestone, and several tentative conclusions are drawn: First, brittle processes, such as faulting and cataclasis, are expected to control rock strength at low pressures and temperatures. The strengths associated with these brittle mechanisms increase rapidly with increasing effective pressure and are relatively insensitive to temperature and strain rate. Second, the transitions between brittle and ductile processes occur at critical values of the least principal stress sigma3. I suggest that the concept of the deformation mechanism map of Ashby (1972) be extended to brittle-ductile transitions by normalizing the applied differential stress sigma by sigma3, i.e., the transitions occur at critical values of sigma/sigma3. -from Author

  14. One Century of Tectonic Deformation Along the Sumatran Fault from Triangulation and GPS Surveys

    NASA Technical Reports Server (NTRS)

    Prawirodirdjo, L.; Bock, Y.; Genrich, J. F.; Puntodewo, S. S. O.; Rais, J.; Subarya, C.; Sutisna, S.

    2000-01-01

    An analysis combining historical triangulation and recent Global Positioning System (GPS) survey measurements in West and North Sumatra, Indonesia, reveals a detailed slip history along the central part of the Sumatran Fault. The arc-parallel components of the combined velocity field are consistent with slip rates inferred from GPS data, ranging from 23 to 24 mm/yr. Between 1.0 S and 1.3 N the Sumatran Fault appears to be characterized by deep locking depths, on the order of 20 km, and the occurrence of large (M (sub w) approximately 7) earthquakes. The long-term (1883-1993) strains show simple right-lateral shear, with rates similar to GPS-measured, 1989-1993 strain rates. Coseismic deformation due to the 1892 Tapanuli and 1926 Padang Panjang earthquakes, estimated from triangulation measurements taken before and after the events, indicate that the main shocks were significantly larger than previously reported. The 1892 earthquake had a likely magnitude of M (sub w) approximately equal to 7.6, while the 1926 events appear to be comparable in size to the subsequent (M approximately 7) 1943 events, and an order of magnitude higher than previously reported.

  15. Structural evolution of the Rieserferner Pluton: insight into the localization of deformation and regional tectonics implications

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio

    2016-04-01

    The Rieserferner pluton (RFP, Eastern Alps, 32.2±0.4 Ma, Romer et al. 2003) represents a relatively deep intrusion (12-15 km; Cesare, 1994) among Periadriatic plutons. The central portion of the RFP consists of dominant tonalites and granodiorites that show a sequence of solid-state deformation structures developed during pluton cooling and exhumation. This sequence includes: (1) quartz veins, filling two set of steeply-dipping joints trending respectively E-W and NW-SE, commonly showing a millimetric grain size and associated with strike-slip displacement. (2) Quartz- and locally epidote-filled shallowly E-dipping joint set, commonly exploited as discrete derived from both the quartz veins and the host tonalite. These mylonites show a composite sense of shear with a first stage of left-lateral strike-slip followed by a top-to-E dip-slip (normal) movement. The synmylonitic assemblage includes biotite + plagioclase + white mica + epidote ± sphene ± garnet. (3) Set of N-S-trending steeply-dipping joints. These joints are concentrated in zones 1-2 m wide, separated by otherwise un-jointed domains a few tens to hundred meters wide, and are commonly exploited as brittle-ductile faults with dominant dip-slip (normal) kinematics. The mineral assemblage of fault rocks includes white mica + calcite ± chlorite ± quartz. The joints/faults are locally involved in folding. (4) Mafic dikes, dated at 26.3±3 Ma (Steenken et al., 2000), locally injecting the N-S trending set of joints. (5) Cataclasite- and pseudotachylyte-bearing faults also forming a set of steeply-dipping N-S-trending structures. These faults are commonly associated with epidote veins surrounded by bleaching haloes. (6) Zeolite-bearing faults marked by whitish cataclasites, fault gouges and mirror-like surfaces. These faults have a complex oblique- to strike-slip kinematics with an overall N-S trending lineation. As observed in other plutons (e.g. Adamello; Pennacchioni et al., 2006), the network of

  16. One century of tectonic deformation along the Sumatran fault from triangulation and Global Positioning System surveys

    NASA Astrophysics Data System (ADS)

    Prawirodirdjo, L.; Bock, Y.; Genrich, J. F.; Puntodewo, S. S. O.; Rais, J.; Subarya, C.; Sutisna, S.

    2000-12-01

    An analysis combining historical triangulation and recent Global Positioning System (GPS) survey measurements in west and north Sumatra, Indonesia, reveals a detailed slip history along the central part of the Sumatran fault. The arc-parallel components of the combined velocity field are consistent with slip rates inferred from GPS data, ranging from 23 to 24 mm/yr. Between 1.0°S and 1.3°N the Sumatran fault appears to be characterized by deep locking depths, of the order of 20 km, and the occurrence of large (Mw ≈ 7) earthquakes. The long-term (1883-1993) strains show simple right-lateral shear, with rates similar to GPS-measured, 1989-1993 strain rates. Coseismic deformation due to the 1892 Tapanuli and 1926 Padang Panjang earthquakes, estimated from triangulation measurements taken before and after the events, indicates that the main shocks were significantly larger than previously reported. The 1892 earthquake had a likely magnitude of Mw ≈ 7.6, while the 1926 events appear to be comparable in size to the subsequent (M ˜ 7) 1943 events and an order of magnitude higher than previously reported.

  17. Paleogene Alpine tectonics and Icelandic plume-related magmatism and deformation in Ireland: Evidence from the regional, high resolution Tellus geophysical survey

    NASA Astrophysics Data System (ADS)

    Cooper, Mark; Walsh, John; van Dam, Chris; Young, Michael; Earls, Garth; Anderson, Hugh; Adrian, Walker

    2010-05-01

    The Cenozoic tectonic history of NW Europe is generally attributed to some combination of three principal controlling factors: North Atlantic opening, Alpine collision and formation of the Icelandic mantle plume. Here we present the results of an interpretation of high resolution aeromagnetic imagery from the Tellus survey of Northern Ireland. This dataset distinguishes four distinct dyke swarms, which together with the known extrusive history of the Antrim Lava Group and intrusive history of the central igneous complexes, supports the concept that Paleocene plume activity was pulsed. Differential displacement of the dyke swarms and central igneous complexes by both sinistral and dextral strike-slip faults indicates, for the first time, that N-S Alpine compression, of Paleocene through to Oligocene age, temporally overlapped with plume-related intrusions. Whilst this evidence shows, for the first time, that N-S Alpine compression was periodically overwhelmed by the dynamic stresses and uplift associated with pulsed mantle plume-related deformation, related strike-slip faulting may have controlled the locus of volcanic activity and central igneous complexes, and the location of sedimentary depocentres.

  18. Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Mann, DöRte; Freymueller, Jeffrey

    2003-02-01

    GPS measurements on Unimak Island in the eastern Aleutian arc between 1998 and 2001 show deformation of Westdahl volcano and Fisher caldera. Westdahl is inflating, with the best fit point source located at 7.2-1.2+ 2.3 km depth and a volume change rate of 6.7-1.8+ 3.3 × 106 m3 yr-1. The GPS data indicate that inflation may have slowed down slightly compared with interferometric synthetic aperture radar (InSAR) observations between 1993 and 1998. The accumulated subsurface volume increase during the GPS and InSAR observation period (1993-2001), ˜70 × 106 m3, already accounts for at least 15% more than the erupted volume from the last eruption in 1991-1992. Fisher caldera shows subsidence and contraction across the caldera center. The data are fit best with a rectangular dislocation source at a shallow depth. It is 14 km long and 0.5 km wide, dips 80° to the NW, and strikes N35°E, with rather large uncertainties for most of these parameters. Its volume decrease is 2.0 × 106 m3yr-1. The main mechanisms to explain the subsidence and contraction are degassing and contractional cooling of a shallow magma body and depressurization of Fisher's hydrothermal system, possibly triggered by an earthquake in 1999. At the 95% confidence level, no significant strain accumulation due to subduction is observed across the entire island. The low coupling across the rupture zone of the 1946 earthquake is a strong argument for the idea that the earthquake and tsunami did not result from a purely double-couple (earthquake) source.

  19. Active deformation analysis and evaluation of earthquake hazard in Gafsa region (Southern Atlas of Tunisia)

    NASA Astrophysics Data System (ADS)

    Bahrouni, Nejib; Bouaziz, Samir; Soumaya, Abdelkader; Ben Ayed, Noureddine; Attafi, Khereddine

    2013-04-01

    The Southern Atlas of Tunisia constitutes the transition between Atlas fold and the Northern edge of the Saharan platform. The general direction is near to E-W deflected to N060 whose structural style and geometry of deformation still complex. This domain is Southern part of the seismic zone bordering the Northern African plate as indicated by the large seismic events that occurred periodically. The Gafsa area, more particularly concerned by seismic risk, is bordered to the North by the NW-SE trending "Gafsa Fault" and has significant seismic. The most active tectonic are related to the reactivating of pre-existing NW-SE and E-W trending strike-slip faulting. We will set up the network in the active zone of Gafsa surroundings, in order to cover the area of aftershocks (co-seismic surface rupture) of May 22, 1972 and December 27, 1985 (Ms=4.2) in Gafsa and November 7, 1989 (Ms=4.4) in Metlaoui, December 8, 2010 and in Sidi Aich (Ms=3.66). Paleostress and calculated focal mechanism solutions for the earthquakes show that the active stress field is a NW-SE trending compression. Damage and surface effects of land and urban areas caused by these events demonstrate the vulnerability of cities in the region of Gafsa to seismic activities. The analyses of recent and active deformation in this region has allowed the assessment of urban seismic hazard and take stock seismic zones embedded in a distorted geographic information system (GIS) in close relationship with the regional tectonic setting. This assessment has provided crucial information on the neotectonic deformation and seismotectonics of Gafsa region and its surrounding which affects remote orogenic dynamics and the current state of the North African margin. In particular, the comparison between the deformations and quantified seismic activity has also assessed the risk and the regional seismic hazard and develop a seismotectonic zoning.

  20. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  1. The Fatigue of Water Ice: Insight into the Tectonic Resurfacing of Tidally Deformed Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hammond, N. P.; Barr, A. C.; Hirth, G.; Cooper, R. F.

    2015-12-01

    Fatigue is a process that causes materials to weaken during cyclic loading and experience brittle failure at much lower applied stresses. We perform laboratory experiments to study the fatigue behavior of water ice at conditions relevant to the surfaces of icy satellites, to test the hypothesis that the lithospheres of some icy satellites are weakened by fatigue. Many icy moons of the outer solar system, such as Europa and Enceladus, experience cyclic stresses driven by tidal forces from their parent planet. Stresses generated by tides and other physical processes, such as solid-state convection of the ice shell, are weak compared to laboratory derived yield stress values of ice. The surface geology on many icy moons, however, suggests that these processes are capable of deforming the surface, suggesting that their surfaces may have been weakened. During fatigue, microcracks slowly grow under the action of cyclic loads. Cracks grow until the stress intensity reaches a critical value and the sample fractures. The rate of microcrack growth varies with material, temperature, and loading frequency, but under most conditions the growth rate can be characterized by Paris' Law. We use a servo-hydraulic loading machine to perform cyclic 4-point bending tests on polycrystalline ice samples to measure the rate of fatigue crack growth. Ice samples are formed using the standard ice method in a sample mold with dimensions of 10x4x2 cm with an average grain size of 1.2 mm. An initial flaw is cut into the sample and loaded such that the flaw experiences the maximum tensile stress in the sample. Our initial experiments were performed at T=223 K, loading frequencies of 0.5 Hz, and stress intensities ranging from 0.3 to 0.8 of the plane-strain fracture toughness. Sample compliance is used to estimate crack length according to analytical solutions [1]. Experiments show an increase in compliance with time, consistent with substantial subcritical crack growth. Future experiments will

  2. Scaled 3D modeling of poly-phase tectonic deformation: A new analogue material for basement rock, with controlled variable strength.

    NASA Astrophysics Data System (ADS)

    Nieuwland, D. A.; Koekoek, G.; van Mechelen, D.; Papo, M.

    2003-04-01

    A common process in tectonic faulting is that of poly-phase deformation. A majority of neo-tectonic structures is controlled by reactivated pre-existing faults in the underlying basement. A reliable interpretation of such neo-tectonic structures is only possible if the process of the poly-phase deformation can be described and understood in terms of the geomechanics. We have developed an analogue modelling approach to poly-phase deformation. The aim of the project was to construct analogue models with reliable scaling of strength, length, geometry and kinematics of poly-phase tectonic deformation in 3D. The natural process generally involves a faulted basement sequence of relatively strong rocks and a younger cover sequence of weaker rocks. The main problem here has always been to find a material to model the strong basement rocks. A good basement analogue needs to be strong enough to support fault reactivation without braking itself, however, it should brake when the stress conditions require. For example, compression perpendicular to a steep basement fault should break the basement. The weak cover can be modelled with dry sand, which is essentially cohesionless, but for the stronger basement a good analogue was not available (wooden blocks often used in analogue models are too strong). The orientation and geometry of faults and fault patterns is controlled by the internal friction angle (f) of the deformed rock. For the majority of brittle rocks f is of the order of 30o, for the sand that is used for analogue modelling f=32o. In order to model the basement rock a brittle material was needed that must be stronger that dry sand, strong enough to remain intact during fault reactivation, but weak enough to break when a fault is too steep to be reactivated in horizontal compression conditions. In the analogue modelling lab of the VU (TecLab) we have recently succeeded in forming such a basement material. The material can be made at any required strength to make

  3. New evidence for active tectonics at the boundary of the Kashi Depression, China, from time series InSAR observations

    NASA Astrophysics Data System (ADS)

    He, Ping; Wen, Yangmao; Xu, Caijun; Liu, Yang; Fok, H. S.

    2015-06-01

    Kashi Depression is one of the most complex active tectonic areas in the southern flank of Tianshan, China. Due to the lack of ground observations, the boundary of basin mountain transition zone and the interseismic activity of the Tianshan have not been clearly determined. In this study, 48 Envisat Advanced Synthetic Aperture Radar (ASAR) imagery acquired from 2003 to 2010 are used to construct interferograms for measuring high-resolution interseismic deformation in the Kashi Depression area. A global atmospheric model ERA-Interim provided by the European Center for Medium Range Weather Forecast (ECMWF) and a global network orbital correction are applied to remove atmospheric effect, and the long-wavelength orbital errors, respectively, for the interferograms. Interferometric SAR time series with Atmospheric Estimation Model (InSAR TS + AEM) are then used to obtain a deformation rate map for the Kashi Depression area. The InSAR rate map indicates that the north part of South Atushi Fault has ~ 3 mm/year uplift relative to that of the south part. This result manifests the main tectonic deformation potentially occurs along the Southern Atushi Fault. Based on a simple edge dislocation model, the dip angle of 31 ± 0.6°, slip rate of 2.3 ± 0.1 mm/year, and locking depth of 10.6 ± 0.4 km for the Southern Atushi Fault between Tianshan Orogenic Belt and the Kashi Depression are obtained. This modeling result shows in good agreement with the InSAR derived rates. Our results show that the Southern Atushi Fault is the main active fault in block boundary region between the south of Tianshan and the Tarim Basin.

  4. Late Quaternary tectonic activity and crustal shortening rate of the Bogda mountain area, eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong; Wu, Guodong; Shen, Jun; Dai, Xunye; Chen, Jianbo; Song, Heping

    2016-04-01

    The Bogda mountain range is the highest range among the northern Tian Shan mountains. Based on geologic and geomorphologic field surveys, trench excavation and optically stimulated luminescence (OSL) dating, we targeted the active Fukang fault along the Bogda mountain range and identified the late Quaternary deformation characteristics of this area. We found that the Fukang fault dislocated different geomorphic surfaces of the northern Bogda piedmont. The vertical fault displacement corresponds to the topographic relief of the Bogda over long time scales. Since the late Quaternary, the crustal shortening rate was estimated to be 0.90 ± 0.20 mm/yr, which is less than that of the western segment of the northern Tian Shan. We interpret the Bogda fold and thrust belt to be a thick-skinned structure, since a high angle thrust fault bounds the Bogda mountain range and the foreland basin. The deformation characteristics of this region have been dominated by vertical uplift, and the component of propagation toward the basin has been very limited. This tectonic deformation is evidenced as vertical growth. Although the deformation rate is small, the uplift amplitude is very significant in this region.

  5. The River Network, Active Tectonics and the Mexican Subduction Zone, Southwest Mexico

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.; Kostoglodov, V.; Basili, R.

    2014-12-01

    Rivers, their profiles and network reflect the integration of multiple processes and forces that are part of the fundamental controls on the relief structure of mountain belts. The motivation of this study is to understand active tectonic processes in the forearc region of subduction zones, by distinguishing evidence of active deformation using the river network and topography. To this end, morphotectonic and structural studies have been conducted on fifteen drainage basins on the mountain front, parallel to the Mexican subduction zone, where the Cocos plate underthrusts the North American plate. The southwest - northeast Cocos plate subduction stress regime initiated ca. 20 MA. NE-SW to NNE-SSW normal faults as well as sub-latitudinal to NW-SE strike-slip faults (both dextral and sinistral) constitute the majority of mesofaults recorded in the field within the studied drainage basins. Occasionally dextral N-S strike-slip faults also occur. The stress tensor reconstruction suggests two main evolution stages of these faults: 1) the older is dominated by a NW-SE to WNW-ESE extensional regime and 2) the younger is a transcurrent regime, with NNE-SSW σ1 axis. The drainage pattern is strongly controlled by tectonic features, whereas lithology is only a subordinate factor, with only one exception (Petatlán river). Generally, major rivers flow from north to south mainly through NE-SW and NNE-SSW normal faults, and/or sub-longitudinal dextral (also locally sinistral) strike-slip faults. In the central and eastern part of the studied area, rivers also follow NW-SE structures, which are generally normal or sinistral strike-slip faults (rarely reverse). In most cases, local deflections of the river main courses are related to sub-latitudinal strike-slip faults, both dextral and sinistral. Within the current stress field related to the active Cocos subduction, both normal and strike-slip fault sets could be reactivated. Our analysis suggests that strike-slip faults, mainly

  6. Deformation of the Calabrian Arc subduction complex and its relation to STEP activity at depth.

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Wortel, Rinus; Nijholt, Nicolai; Govers, Rob; Torelli, Luigi

    2015-04-01

    Propagating tear faults at the edge of subducted slabs ("Subduction transform edge propagator", STEP) are an intrinsic part of lithospheric plate dynamics. The surface expression of a STEP is generally not known yet, and is expected to vary significantly from one region to the other. We choose the Sicily -Calabria-Ionian Sea region, of which the lithosphere-upper mantle structure has the characteristics of a STEP zone, as a study area. The area has a very prominent accretionary wedge, the formation and subsequent deformation of which presumably were affected by the STEP activity at depth. In this contribution, we use seismic data on the near surface structure and deformation in combination with numerical model results to investigate the relation between deep STEP activity and near surface expression. Prominent features in the surface tectonics are the Malta escarpment (with predominantly normal faulting), the newly identified Ionian Fault and Alfeo-Etna fault system, and a distinct longitudinal division of the wedge into a western and an eastern lobe (Polonia et al., Tectonics, 2011). The two lobes are characterized by different structural style, deformation rates and basal detachment depths. Numerical model results indicate that the regional lithospheric structure, such as the orientation of the eastern passive (albeit subsequently activated) margin of Sicily relative to the Calabrian subduction zone, has a profound effect on possible fault activity along the Malta escarpment. Fault activity along the above primary fault structures may have varied in time, implying the possibility of intermittent activity. Interpreting seismicity in the context of a possible STEP, and the accompanying deformation zone at or near the surface, is not (yet) straightforward. Although direct evidence for recognizing all aspects of STEP activity is - as usual - lacking, a comparison with two well-known STEP regions, the northern part of the Tonga subduction zone and southern part of the

  7. New insights on the recent and current deformation in Central-Eastern Iran, derived from a combined tectonic and GPS analysis

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Manighetti, I.; Tavakoli, F.; Mousavi, Z.; Vergnolle, M.; Jadidi, A.; Hatzfeld, D.; Aghamohammadi, A.; Djamour, Y.; Nankali, H.; Sedighi, M.; Lutz, L.

    2012-04-01

    We have studied the recent to current deformation in Iran and especially Central-Eastern Iran by tightly combining tectonic and GPS analyses. Based on morphotectonic analyses of satellite images, we have identified and mapped the major active faults that dissect the entire ≈ 4500 km x 2500 km2 region that extends from Eastern Turkey to Western Afghanistan/Pakistan and hence encompasses Iran, emphasizing their large-scale organization and kinematic relationships. Doing so, we have identified the major fault systems that control the tectonics of Iran, especially in its central-eastern part. We have also analyzed the 11 years GPS record on the 92 stations deployed in central-eastern Iran in the framework of the Iranian-French collaboration. The GPS analysis reveals that all major faults identified as seismogenic in central-eastern Iran are indeed currently active and slipping at fast rates. The northerly-trending East Lut, West Lut, Kuhbanan, Anar and Deshir faults have a current right-lateral slip rate of 5.7 ± 0.9, 4.7 ± 1.7, 2.3 ± 1.9, 2.7 ± 1.3 and 0.5 ± 0.2 mm/yr, respectively, while the ≈ EW-trending Doruneh and Sedeh faults have a left-lateral current slip rate of 3.1 ± 1.8 and 1.7 ± 0.2 mm/yr, respectively. The large regions bounded by the northerly-striking faults behave as fairly rigid blocks that are all found to move towards both the N13°E ARA-EUR convergence direction and the WNW, at fast rates, in the range 6.5-12.5 and 1-5 mm/yr, respectively. Combined with the available data on the studied faults, our tectonic and geodetic results suggest that a bookshelf faulting strain transfer mechanism has been and is still operating in central-eastern Iran. The coeval dextral motion of the two major, overlapping, North Anatolian-Main Recent and Caucasus-Kopeh Dagh-Herat fault lines that embrace central-eastern Iran, induces a large-scale regional sinistral shear on either side of the region, which forces the northerly-trending right-lateral faults and

  8. Migration of the Ganga River and development of cliffs in the Varanasi region, India during the late Quaternary: Role of active tectonics

    NASA Astrophysics Data System (ADS)

    Shukla, U. K.; Srivastava, P.; Singh, I. B.

    2012-10-01

    The lithofacies constitution of unconsolidated sediments exposed in Ramnagar cliff indicates sedimentation in sinuous channels, associated flood plain areas and ponds that were developed within the Ganga River valley. The Khadar surface represents a raised river valley terrace into which the main river channel along with its narrow floodplain is incised. Ramnagar cliff section has revealed a variety of deformation structures that indicate repeated tectonic activity in the area. Important tectonic features exposed by the cliff section are reverse faults, folds, cracks filled with sparry calcite and soft sediment structures indicating liquefaction of sediments affected by faulting and folding. Optically stimulated luminescence (OSL) dating of sediments and field relationships of tectonic elements indicate that the Ganga River migrated near to Varanasi 40 ka following a tectonic event in the area. Since then, it meandered freely within its valley until 7 ka when another tectonic event took place and Ramnagar cliff was raised to its present heights. The cliff surface was degraded by gulling activity for about 4000 years before it was occupied by man at around 3000 years BP.

  9. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  10. Active faulting and tectonics of the Ningxia-Hui Autonomous Region, China

    NASA Astrophysics Data System (ADS)

    Qidong, Deng; Sung, Fengmin; Zhu, Shilong; Li, Mengluan; Wang, Tielin; Zhang, Weiqi; Burchfiel, B. C.; Molnar, Peter; Zhang, Peizhen

    1984-06-01

    Strike-slip, thrust, and normal faulting all seem to play an active role in the tectonics of Ningxia. In the southernmost part of the region a major left-lateral strike-slip fault enters the region from the neighboring Gansu province to the west and trends about S65°E. This fault is very clear on Landsat imagery and on aerial photos, and the portion in eastern Gansu and Ningxia broke in the Haiyuan earthquake of December 16, 1920. Displacements of 5-10 m caused by that earthquake are clear in numerous localities and accord with a revised value of the seismic moment of 1.2×1021N m. The eastern end of the Haiyuan fault terminates in a narrow south trending fold and thrust zone. Several other similar, north to northwest trending fold and thrust belts are present in the area about 50-200 km northeast of the Haiyuan fault and divide it into small, apparently relatively undeformed blocks 10-40 km in dimensions. The geometry of the structures in the fold and thrust zones and the apparently shallow depths at the time of deformation suggest that current deformation is similar to that that occurred in the fold and thrust belt of the Idaho-Wyoming Rocky Mountains. North of this area, both the Helan Shan (a horst) and the Yinchuan graben are bounded by clear, active northerly trending normal faults, in some cases with right-lateral strike-slip components. The overall deformation, hence, seems to include dominant components of east-west left-lateral strike-slip movement, northeast-southwest crustal shortening, and northwest-southeast extension. We interpret the extension as a response to a northeast directed force applied to the Ordos block and both this northeast directed force and the left-lateral slip on the Haiyuan fault to the eastward displacement of material on the northeast edge of the Tibetan plateau with respect to Eurasia north of it.

  11. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  12. Crustal deformation around the Kamishiro fault, northern Itoigawa-Shizuoka Tectonic Line and its relation to the 2014 Northern Nagano earthquake (Mw6.3)

    NASA Astrophysics Data System (ADS)

    Sagiya, T.; Teratani, N.; Matsuhiro, K.; Okuda, T.; Horikawa, S.; Matsuta, N.; Nishimura, T.; Yarai, H.; Suito, H.

    2015-12-01

    The Itoigawa-Shizuoka Tectonic Line (ISTL) is a major geologic boundary intersecting the Japanese mainland into the northeastern and the southwestern parts. It is also an active fault system that is supposed to have a high seismic potential. We have conducted dense GPS observation and identified a highly localized E-W contraction around the Kamishiro fault at the northern ISTL. Kinematic modeling of this deformation pattern suggests that the fault is shallowly dipping to the east and accommodating the E-W contraction by aseismic faulting below the depth of 2-4 km. This aseismic fault is consistent with the base of the Neogene basin fill, which has accommodated E-W shortening over 10km. On November 22, 2014, a Mw 6.3 earthquake occurred at the Kamishiro fault. The hypocenter is located at the 5km depth and a 9km long surface rupture appeared along the fault trace. GPS observation and InSAR analysis with ALOS-2 data revealed northwestward displacement and uplift (max. 90cm) on the east, and southeastward displacement with subsidence (max. 30cm) on the west, indicating a rupture of the Kamishiro fault. The coseismic crustal deformation pattern is modeled by a faulting on a high-angle reverse fault from the surface to 7km depth, extending ~20km along the fault trace. A large fault slip is estimated at the shallowest (depth<2km) part corresponding to the surface rupture. The geodetic fault model is also consistent with the aftershock distribution. On the other hand, the source fault implies a rupture of the pre-Neogene basement below the basin fill, not the shallow-dipping fault estimated from interseismic deformation. Thus the relationship between the interseismic aseismic faulting and the coseismic fault is not totally clear. The large interseismic contraction mainly reflects inelastic process and only a small portion, if any, contributes to the stress accumulation of the main shock fault. This example demonstrates complexity of the earthquake cycle at a thrust fault

  13. Constraining the Late Mesozoic and Early Tertiary Tectonic Evolution of Southern Mexico: Structure and Deformation History of the Tierra Caliente Region.

    PubMed

    Cabral-Cano; Draper; Lang; Harrison

    2000-07-01

    We analyze the structure and assess the deformation history of the Tierra Caliente Metamorphic Complex (TCMC) of southern Mexico, where Laramide accretion of exotic terranes is in debate. The TCMC consists of a south-plunging antiform fault that is bounded on both its eastern and western flanks. Tierra Caliente Metamorphic Complex rocks show at least two phases of compressional deformation. The first and most prominent records a mean tectonic transport direction of 068 degrees. This phase is responsible for east-verging asymmetrical folding and thrusting of both metamorphic and superjacent sedimentary rocks. The second phase has an average transport direction of 232 degrees and is restricted to the western portion of the TCMC. A third phase is responsible for normal faulting. Lack of discernible deformation before Late Cretaceous time indicates that the main deformation phase is coincident with Laramide orogenesis elsewhere in the North American Cordillera. The stratigraphy, structure, and deformational history of the TCMC do not require accretion of exotic terranes. We explain the Mesozoic tectonostratigraphic evolution of the TCMC in terms of deposition and deformation of Mesozoic volcanic and sedimentary strata over the attenuated continental crust of the North American plate.

  14. Active deformation processes of the Northern Caucasus deduced from the GPS observations

    NASA Astrophysics Data System (ADS)

    Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury

    2015-04-01

    The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of

  15. Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Feng; He, Honglin; Densmore, Alexander L.; Li, An; Yang, Xiaoping; Xu, Xiwei

    2016-04-01

    The ongoing convergence between India and Eurasia apparently is accommodated not merely by crustal shortening in Tibet, instead also by motions along strike slip faults which are usually boundaries between tectonic blocks, especially in the Tibetan Plateau. Quantification of this strike slip faulting is fundamental for understanding the collision between India and Eurasia. Here, we use a variety of geomorphic observations to place constraints on the late Quaternary kinematics and slip rates of the Ganzi-Yushu fault, one of the significant strike-slip faults in eastern Tibet. The Ganzi-Yushu fault is an active, dominantly left-lateral strike-slip structure that can be traced continuously for up to 500 km along the northern boundary of the clockwise-rotating southeastern block of the Tibetan Plateau. We analyse geomorphic evidence for deformation, and calculate the late Quaternary slip rates at four sites along the eastern portion of the fault trace. The latest Quaternary apparent throw rates are variable along strike but are typically ~ 1 mm/a. Rates of strike-slip displacement are likely to be an order of magnitude higher, 8-11 mm/a. Trenching at two locations suggests that the active fault behaviour is dominated by strike-slip faulting and reveals several earthquake events with refined information of timing. The 2010 Mw 6.9 Yushu earthquake, which occurred on the northwestern segment of the Ganzi-Yushu fault zone, provides additional evidence for fault activity. These observations agree with GPS-derived estimates, and show that late Quaternary slip rates on the Ganzi-Yushu fault are comparable to those on other major active strike-slip faults in the eastern Tibetan Plateau.

  16. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of ~500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from ~600 to ~900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  17. Holistic microstructural techniques reveal synchronous and alternating andalusite and staurolite growth during three tectonic events resulted from shifting partitioning of growth vs deformation

    NASA Astrophysics Data System (ADS)

    Bell, T. H.; Fay, C.

    2016-10-01

    Excellent inclusion trails in a sample containing both staurolite and andalusite porphyroblasts are used to demonstrate techniques that allow the intimate relationships between deformation and porphyroblast growth to be recognized, described in detail and understood. This approach reveals three main phases of growth of both mineral phases, some of which was demonstrably synchronous, during three tectonic events. Each main period of growth occurred during the early stages of three deformations that were successively near orthogonal. However, extra periods are distinguishable in andalusite in some of these events because this phase occurs as clusters of large crystals that vary in orientation by 2° to > 10°. All foliations defined by all inclusion trails within every porphyroblast inflect/intersect about an axis trending at 025° (called a FIA). This indicates that the direction of the horizontal component of bulk shortening was identical for the first and third of the three deformations recorded by porphyroblast growth. Portions of sigmoidal to slightly spiral-shaped inclusion trails in most porphyroblast clusters locally diverge in opposite directions due to overprinting orthogonal bulk shortening typical of that which forms millipede geometries. These microstructures confirm the role of coaxial bulk shortening in initiating porphyroblast growth in an environment that locally becomes strongly non-coaxial as the deformation intensifies in the same event. In this sample, increasing non-coaxiality as the deformation intensified resulted in the same asymmetry for each of the three events and thus an overall spiral-like shape. Differing stages in the development of these bulk-shortening geometries preserved in adjacent or touching phases negate any role for porphyroblast rotation during ductile deformation. Andalusite and staurolite grew without any inter-reaction in locations where they lie in contact. This multiply repeated growth behaviour initiated within zones of

  18. Glacio-tectonic thrust and deformation structures in the Vejle Fjord, Denmark revealed by high-resolution subbottom-profile data

    NASA Astrophysics Data System (ADS)

    Andresen, Katrine Juul; Boldreel, Lars Ole; Bak Wahlgreen, Katrine; Seidenkrantz, Marit-Solveig; Røy, Hans; Nørmark, Egon; Brandbyge Ernstsen, Verner

    2016-04-01

    Surface geomorphological features and partial cliff exposures up till now represent the predominant source of information of glaciation related deformation in Denmark. In this study we apply high-resolution marine reflection seismic data from the Vejle Fjord area, supported by gravity and Rumohr coring, to document intense glacio-tectonic deformation in the shallow subsurface of Denmark. The subbottom profiler seismic data have a peak frequency around 13 kHz and a vertical resolution in the order of 10-20 cm. The data reveal several variations of glacio-tectonic deformation structures, primarily observed near the edges of the fjord where coarse-grained and sandy deposits are present. These sediments allows for an exceptionally good and high-resolution imaging of the marine shallow subsurface. Within the central regions of the fjord, widespread shallow gas accumulations probably generated from biodegradation of post glacial organic-rich fine-grained marine gytja and clay deposits, effectively blank and absorb the seismic signal. This leads to a very poor imaging of the subsurface within the deeper parts of the fjord. Glacio-tectonic deformation is observed at both the northern and southern edge of the fjord. To the north, the deformation is expressed by complex internal reflection patterns within discrete sedimentary units including faults and smaller thrust-structures and associated small-scale folding. Channel incisions and clear reflection relations (i.e. truncations, onlaps and downlaps) reveal more decollement surfaces and furthermore constrain the timing of deformation. At least three episodes of deformation can be recognized at the northern edge of the fjord. To the south, a large thrusted fold belt (c. 3 km long and up to 10 m high) with faults, folds and thrust sheets is observed indicating severe deformation which most likely reflects ice progression from a southerly direction; for instance by the Young Baltic Ice Stream c. 19-17 ka. A thick and

  19. Tectonics and Quaternary sequence development of basins along the active Vienna Basin strike-slip fault

    NASA Astrophysics Data System (ADS)

    Salcher, B.; Lomax, J.; Meurers, B.; Smit, J.; Preusser, F.; Decker, K.

    2012-04-01

    The Vienna Basin strike-slip fault is a continent scale active fault extending over a distance of some 300 km from the Eastern Alps through the Vienna Basin into the Western Carpathians. Sinistral movement causes the formation of several tight Pleistocene strike-slip basins within the older Miocene Vienna Basin. These sub-basins not only have a high relevance for groundwater exploitation but their fault activities depict serious seismic hazards. Basins are filled with fluvial sediments from the Danube and, closer to the Alpine front, with thick alluvial fan deposits. However, knowledge on the stratigraphy and tectonics is sparse and rather limited to the Miocene part of the Vienna Basin as it hosts giant hydrocarbon fields. This study tackles two major questions: (i) What is the effect of Quaternary climatic oscillations and subsidence on the sequence development of the alluvial fans and (ii) what is the deformation style of these basins? To answer (i) we present a series of new OSL ages and biotic data from both, surface and cores, to better constrain the timing of fan activity, fan abandonment but also to constrain the onset of Pleistocene basin formation. For (ii) we utilize information from unparalleled geophysical and geological data. Specifically we utilize industrial Bouguer gravity's derivatives to highlight shallow structures and to compensate for the lag of fault trace information. The integration of geological and geophysical data highlights textbook-like models of strike-slip basins, with typical features like Riedel shears with intervening relay ramps, en-echelon sidewall faults and a cross-basin fault zone delimiting opposite depocenters. The infill reflects a distinct cyclicity with thick sequences of coarse sediments deposited during colder periods and thin sequences of paleosol and flood sediments deposited during warmer periods. Ages indicate main activity around the short peak glacial periods and basin formation starting c. 300 ka ago. The

  20. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  1. In North Ecuador - South Colombia margin (0-4°N), the sedimentation rate in the trench and the tectonic deformation co-control the location of the seismogenic zone.

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Jean-Yves, Collot; Allessandra, Ribodetti; Elia, D'acremont

    2010-05-01

    The North Ecuador - South Colombia convergent margin shows along strike variations in tectonic, thermal and seismogenic features that offer a great opportunity to study the relation between subduction zone tectono-structure, thermal regime and location of the thermally-defined seismogenic zone. Multichannel seismic reflections and conventional bathymetric data were collected in 2000 and 2005 during the SISTEUR and AMADEUS cruises. 6 selected lines perpendicular to the margin were processed with a pre-stack depth migration using a preserved amplitude approach (alias Ray+Born diffraction tomography). The first heat flow measurements in this area were also acquired, completed by heat flow derived from numerous bottom simulating reflectors. The margin is divided in Esmeraldas, Patia, Tumaco and Manglares segments. 1/ Tectonically, the tectonic deformation at the margin front drastically vary from North to South: The Patia segment is fronted by a 35 km- long active accretionary prism, the Tumaco segment by a less than 10 km-long active accretionary prism, no accretion occur in the Manglares segment, while the southern Esmeraldas segment undergoes a strong tectonic erosion. It is noteworthy that this regime is independent from the sediment thickness in the trench which is thinner where the prism is longer. 2/ Thermally, these segments also shows clear variations in heat flow that is, in the trench and in the lower slope, two-fold lower in the Tumaco segment than in the others. 3/ Sismogenically, large subduction earthquakes have ruptured the plate interface beneath the Manglares segment in 1958 and the Tumaco-Patia segments en 1979. Based on the aftershocks distribution and the rupture zone location, the seismogenic zone extends trenchward nearby the deformation front in the Patia-Tumaco segments but is restricted 30 km landward in the Manglares segment. The integrated interpretation of heat flow and sismic data indicate that: 1/ The thermal segmentation is mainly

  2. Matrix deformation mechanisms in HP-LT tectonic mélanges — Microstructural record of jadeite blueschist from the Franciscan Complex, California

    NASA Astrophysics Data System (ADS)

    Wassmann, Sara; Stöckhert, Bernhard

    2012-09-01

    Exhumed high pressure-low temperature metamorphic mélanges of tectonic origin are believed to reflect high strain accumulated in large scale interplate shear zones during subduction. Rigid blocks of widely varying size are embedded in a weak matrix, which takes up the deformation and controls the rheology of the composite. The microfabrics of a highly deformed jadeite-blueschist from the Franciscan Complex, California, are investigated to help understand deformation mechanisms at depth. The specimen shows a transposed foliation with dismembered fold hinges and boudinage structures. Several generations of open fractures have been sealed to become veins at high-pressure metamorphic conditions. The shape of these veins, frequently restricted to specific layers, indicates distributed host rock deformation during and after sealing. Small cracks in jadeite and lawsonite are healed, with tiny quartz inclusions aligned along the former fracture surface. Large jadeite porphyroblasts show strain caps and strain shadows. Open fractures are sealed by quartz and new jadeite epitactically grown on the broken host. Monophase glaucophane aggregates consist of undeformed needles with a diameter between 0.1 and 2 μm, grown after formation of isoclinal folds. Only quartz microfabrics indicate some stage of crystal-plastic deformation, followed by annealing and grain growth. Aragonite in the latest vein generation shows retrogression to calcite along its rims. The entire deformation happened under HP-LT metamorphic conditions in the stability field of jadeite and quartz, at temperatures between 300 and 450 °C and pressures exceeding 1-1.4 GPa. The microfabrics indicate that dissolution precipitation creep was the predominant deformation mechanism, accompanied by brittle failure and vein formation at quasi-lithostatic pore fluid pressure. This indicates low flow strength and, combined with high strain rates expected for localized deformation between the plates, a very low viscosity

  3. Geomorphic assessment of the tectonic activity of Qiulitagh fold-belt, Kuqa foreland basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Saint Carlier, Dimitri; Graveleau, Fabien; Delcaillau, Bernard; Hurtrez, Jean-Emmanuel; Vendeville, Bruno

    2014-05-01

    significantly along-strike, which allows to divide the fold belt into several morphologic structures. These morphologic structures are suspected to be developing under variable uplift rates due to partitioning of deformation. In addition, the observation of very regular landscapes that become more complex along-strike allows investigating relief evolution mechanisms from transient to steady-state. Finally, our morphometric analysis suggests some new insights on the topographic growth of Qiulitagh folds in relation with the growth of sub-surface structures and the accommodation of convergence in Kuqa foreland basin. References : Chen, J., Heermance, R., Burbank, D. W., Scharer, K. M., Miao, J., and Wang, C., 2007, Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan: Journal of Geophysical Research, v. 112, no. B03S16, p. doi:10.1029/2006JB004345. Hubert-Ferrari, A., Suppe, J., Gonzalez-Mieres, R., and Wang, X., 2007, Mechanisms of active folding of the landscape (southern Tian Shan, China): Journal of Geophysical Research, v. 112, B03S09, doi:10.1029/2006JB004362. Li, S., Wang, X., and Suppe, J., 2012, Compressional salt tectonics and synkinematic strata of the western Kuqa foreland basin, southern Tian Shan, China: Basin Research, v. 23, p. 1-23. Wang, X., Suppe, J., Guan, S., Hubert-Ferrari, A., Gonzalez- Mieres, R., and Jia, C., 2011, Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China, in McClay, K., Shaw, J. H., and Suppe, J., eds., Thrust-Fault Related folding, Volume 94, American Association of Petroleum Geologists Memoir, p. 1-29.

  4. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Yangli; Wang, Xin; Rao, Gang; Wang, Renfu

    2016-06-01

    The recognition of paleo-strike-slip faulting is often difficult, particularly when the associated structures are presently inactive and covered by thick sediments. Fortunately, high-resolution 3D seismic reflection data can provide a powerful tool to solve this problem. In this study, we focus on the structural features and tectonic evolution of Hong-Che fault system, a paleo-strike-slip fault zone recognized in the NW margin of Junggar Basin by using the 2D and 3D seismic data. The results of our analysis demonstrate that: 1) The Middle Triassic to Jurassic dextral transpressional structures were developed along Hong-Che fault zone, which are characterized by the restraining bend on the southern segment, the highly localized shearing deformation on the central segment, and the horsetail splay faulting of a fault tip zone on the northern segment; 2) The Hong-Che fault zone had also experienced the Early Permian rifting and the Late Permian-Early Triassic tectonic inversion, which probably played important roles in controlling the subsequent tectonic deformation; and 3) The demonstrated dextral strike-slip faulting is consistent with the Middle Triassic-Jurassic deformation in the Ke-Bai, Wu-Xia, and Irtysh fault zones, and therefore supports the counterclockwise rotation of Junggar Basin, which might be the far-field effect of the collision between Qiangtang block and Songpan-Ganzi terrane in the Triassic. The results of this study also prove that high-resolution seismic reflection data can serve as a useful tool for investigating the buried paleo-structures.

  5. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  6. The depositional records of two coastal lakes in south-central Chile (Lago Lanalhue and Lago Lleu Lleu, 38°S): Active forearc tectonics and climate variability

    NASA Astrophysics Data System (ADS)

    Echtler, H. P.; Stefer, S.; Moernaut, J.; Melnick, D.; Arz, H. W.; Lamy, F.; Haug, G. H.

    2008-12-01

    On millennial time scales, the southern Chilean active margin is not only characterized by active tectonics and subduction-related coastal deformation, but also influenced by pronounced variations in the prevailing climate conditions. Here we focus on the depositional records of two coastal lakes in the southern part of the Arauco Peninsula (38°S, Lago Lanalhue and Lago Lleu Lleu), an area very sensitive to changes in both climate and tectonics. For the present study, we used a multi-proxy approach including seismic reflection surveys, sedimentological, mineralogical, and geochemical analyses, supported by radiocarbon dating. Seismic reflection analyses reveal that Lago Lanalhue and Lago Lleu Lleu developed within former river valleys that once drained into the Pacific Ocean. During the early Holocene, the ancient rivers were dammed by rising sills due to inverse faulting and tectonic uplift, turning first into marginal-marine lagoonal systems and subsequently evolving into lakes. On the basis of sedimentological analyses and radiocarbon dating, the different stages of the lakes development have been reconstructed in consideration of the regional tectonic and climatic history. The comparison of the transitions between different stratigraphic units with contemporaneous variations in the global sea level, allowed the calculation of Holocene uplift rates. These are about twenty times higher for the upraised sills than for the lakes themselves. Therefor, we interpret the sills to be the surface expression of a blind thrust associated with a prominent inverse fault (Morguilla Fault) controlling uplift and folding of the Arauco Peninsula. Geochemical data from the lacustrine part of the sedimentary sequences reveal a continuous record of the middle to late Holocene regional climate history. The results indicate more arid conditions during the middle Holocene and more humid conditions during the late Holocene. An additional increase in climate variability is recorded

  7. Study of cataclastic deformation in compressive tectonic regime of a sandstone from south central Pyrenees, Spain: Timing of deformation bands occurrence during burial history and comparison with geomechanical models.

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie

    2016-04-01

    In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally planar structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone maastrichtian formation localized on the front of the Boixols thrust, on the southern side of the San Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations and 3) take oriented cores in order to study the magnetic fabric giving information on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the

  8. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  9. Analysis of Landsat TM data for active tectonics: the case of the Big Chino Fault, Arizona

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano

    1994-12-01

    The Big Chino Valley is a 50 km-long tectonic depression of the Basin and Range province of the South- western United States. It is bordered on the NE side by an important normal fault, the Big Chino Fault. The activity of the latter has been hypothesised on the basis of the presence of a 20 m-high fault scarp and on local geomorphological studies. Moreover, a magnitude 4.9 earthquake occurred in southern Arizona in 1976 has been attributed to this fault. The climate in the Big Chino Valley is semi-arid with average rainfall of about 400 mm per year; a very sparse vegetation cover is present, yielding a good possibility for the geo-lithologic application of remote sensing data. The analysis of the TM spectral bands shows, in the short wave infrared, a clear variation in the reflected radiance across the fault scarp. Also the available radar (SLAR) images show a marked difference in response between the two sides of the fault. An explanation of this phenomena has been found in the interaction between the geomorphic evolution, the pedological composition, and the periodic occurrence of coseismic deformation along the fault. Other effects of the latter process have been investigated on colour D- stretched images whose interpretation allowed to detect two paleoseismic events of the Big Chino Fault. This work demonstrates that important information on the seismological parameters of active faults in arid and semiarid climates can be extracted from the analysis of satellite spectral data in the visible and near -infrared.

  10. Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2013-11-01

    Morphometric analysis of hierarchical arrangement of drainage networks allows to evaluate the effects of external controls especially tectonics on basin development. In this study, a quantitative method for calculation of stream's hierarchical anomaly number is introduced. Morphometric parameters such as hierarchal anomaly index (∆a), percent of asymmetry factor (PAF), basin Shape (Bs), basin length to mean width ratio (Bl/Bmw), stream's bifurcation ratio (Rb), bifurcation index (R), drainage density (Dd), drainage frequency (Df) and anticline's hinge spacing (Hs) of 15 basins in Zagros Mountains were examined. Results show that the strong correlations exist between pairs ∆a-PAF (r = 0.844), ∆a-Bs (r = 0.732), ∆a-Bl/Bmw (r = 0.775), ∆a-R (r = 0.517), PAF-Bl/Bmw (r = 0.519), Bs-R (r = 0.659), Bl/Bmw-R (r = 0.703), Hs-∆a (r = - 0.708), Hs-PAF (r = - 0.529) and Hs-Bs (r = - 0.516). The variations in trend of anticlines control the shape of basins so that where anticlines hinges become closer to each other in the downstream direction, basin become narrower downward and hence the ∆a increases. The more uplifted northeastern anticlines cause the trunk river of the basins to migrate toward the younger anticlines in southwest and hence ∆a increases because the trunk river receives a lot of first order streams. Data reveal that the rate of ∆a is higher in elongated synclinal basins. Due to the decrease in the intensity of deformation from northeast toward southwest of Zagros, the hinge spacing of anticlines increases southwestwards. Data reveal that the variation in hinge spacing of anticlines strongly controls the basin's shape and tilting as well as the hierarchical anomaly of drainage system. Since the elongation and tilting of basins are associated with the variations in rates of folding, uplift and hinge spacing of anticlines, it can be concluded that the hierarchical anomaly of drainages in studied basins is controlled by the intensity of Zagros

  11. A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama)

    NASA Astrophysics Data System (ADS)

    Riquelme, R.; Martinod, J.; Hérail, G.; Darrozes, J.; Charrier, R.

    2003-01-01

    The large (≈10000 km 2) and local-scale (<400 km 2) geomorphologic, geomorphometric and field evidence indicates that, from the mid-Miocene onwards, the Atacama Fault System (AFS) accommodated the relative uplift of the western side of the Chilean Coastal Cordillera of the Chañaral region (southern Atacama Desert). The mean regional altitude systematically decreases eastwards crossing the AFS, independent of the lithological characteristics of the substratum cut by this system of faults. Topographic analysis reveals a more incised landscape west of the AFS that, at the local scale, is reported by the distribution of the altitudes (hypsometric curves and integrals) of tributary basins and by the presence of terraces. In the Middle and Upper Miocene, a thick (>300 m) sedimentary succession was deposited east of the AFS. The succession fills previously deep paleovalleys. And it consists of gravel, so-called "Atacama Gravels", which passes laterally into fine-grained playa related deposits near the AFS. We interpret the deposition of this succession as a result of a blocking closure of the valley flowing from the Precordillera due to the activity on AFS. A pedimentation episode followed sediment deposition and is locally strongly re-incised by the main modern-day river valleys draining the Precordillera. Incision may result from either regional uplift of the forearc, and/or from more localized activity on the AFS. Furthermore, Recent (Quaternary?) tectonic activity on the AFS has been observed which is consistent with a localized relative uplift of the crustal block west of the AFS.

  12. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  13. Recent Vertical Deformation in Mexicali Valley and its Relationship with Tectonics, Seismicity, and the Exploitation of the Cerro Prieto Geothermal Field, Mexico

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; González, J.; Fabriol, H.

    The interpretation of the results of regional and local leveling which began in 1977 in the Mexicali Valley and the local short profile precision leveling which started in 1994 are discussed. The relation of vertical deformations around the Cerro Prieto Geothermal Field (CPGF) and along the Imperial fault, with local tectonics and seismicity in the Mexicali Valley, is reviewed. Also the relation between vertical deformation and fluid operation in the CPGF is analyzed. The subsidence observed in the field seems to be induced by fluid extraction. The way in which fluid production influences surface changes along the Imperial fault is not clear. The possibility that seismicity is triggering subsidence in the area and vertical movement on the Imperial fault is discussed.

  14. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    NASA Astrophysics Data System (ADS)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the

  15. Preliminary study on hydrogeology in tectonically active areas.

    SciTech Connect

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  16. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  17. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  18. Tectonic Geomorphology of an Active Low-Angle Normal Fault, Sierra El Mayor, Northern Baja California

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Spelz, R.

    2007-05-01

    Low angle normal faults (LANF) are ubiquitously distributed throughout the northern Gulf of California. They commonly bound uplifted mountain ranges and are found in numerous seismic sections in the Altar Desert and Wagner Basin (A. Martin, unpublished data). The Canada David detachment (CDD) is a spectacular example of an active LANF that controls the western mountain front of Sierra El Mayor over a strike length of 60 Km. Like most LANFs, the CDD contains two prominent antiform-synform megamullion pairs that strongly control the tectonic geomorphology of the uplifted footwall block and alluvial terraces along the range flank. Quantitative morphometric analysis along the mountain front shows that drainage basins in antiformal domains have systematically higher outlet elevations, higher gradients, greater relief, and much greater hypsometric integrals. Additionally river valleys are narrower and dominated by bedrock channels that extend nearly to the outlet, which is consistent with the fact that mountain front sinuosity is almost an order of magnitude less in the antiformal domains. A sequence of as many as 8 different regional strath terraces are preserved along the range flank and reconnaissance dating of the deposits by cosmogenic isotopes suggests that they formed during the major interglacial-to-glacial climatic transitions. Strath terraces are generally much older, and relative heights between terraces is significantly lower in synformal domains. All of these geomorphologic characteristics suggest that the synformal domains have experienced much lower rates of uplift and erosion of the footwall and likewise lower rates of sedimentation in the adjacent hanging wall basin. The lack of slip gradients on the master fault between synformal and antiformal domains suggests that the megamullions formed instead by regional buckling perpendicular to the extension direction. A Quaternary scarp array extends along the entire length of the mountain front and also shows

  19. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  20. Continuous monitoring of soil CO2 flux in tectonic active area of Sicily: relationship between gas emissions and crustal stress

    NASA Astrophysics Data System (ADS)

    Camarda, Marco; De Gregorio, Sofia; Favara, Rocco; Di Martino, Roberto M. R.

    2015-04-01

    Tectonic active areas are subjected to continue modification of the stress fields as result of the relative movement of portions of the crust. In these areas the stress generated the seismogenetic processes and at same time produces detectable modifications in the shallower portion of the crust such as superficial deformation, increase or decrease of pore pressure and change in fluids circulation. As results a wide variety of changes can be recorded in several parameters due to stress field modifications. The aim of this study was to monitor in continuous soil gas emissions of selected tectonic active area of the Sicily in order to investigate the relation between changes on this parameter and stress field modifications linked to seismogenetic processes. For this reason, in cooperation with DPC Sicilia a network of 20 stations for continuous monitoring of soil CO2 flux in the main seismic area of Sicily was deployed. The selection of the monitoring sites was based on a detailed geological structural study aimed to recognize active tectonic structures and on geochemical survey for identifying areas of anomalous degassing along the structures. Time series of soil CO2 flux long from 1 to 3 years were obtained. The acquired series were filtered for removing atmospheric parameters induced variations by applying the fast Fourier transform (FFT) and regression analysis.The results of comparison of filtered signals showed as almost all the stations have a low coefficient correlation, indicating that the recorded variations are likely due to minor stress modification having small spatial scale. A discrete correlation was founded between the signals of three stations placed in the same tectonic context in northeastern sector of Sicily. Interesting these stations showed a contemporary steep increase few days before the onset of seismic sequence, with events of magnitude up to 4.4, occurred in August 2013 in the northeastern Sicily. The concomitance of change in soil CO2 flux

  1. Experimental dynamic deformation analysis of active stressed lap.

    PubMed

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2016-02-20

    We introduce a method to measure the dynamic surface deformation of an active stressed lap for fabricating a 4  mf/1.5  mirror. Lap surface accuracy working in some typical deformation velocities is put forward. Experimental results indicate that dynamic lap surface accuracy is worse than that of a static surface, and dynamic surface accuracy gets worse if deformation velocity increases, while the difference of lap surface error RMS is less than 1 μm. An optimization of the processing strategy is feasible through changing the deformation velocity of the active stressed lap depending on the processing schedule. After optimizing the grinding and polishing strategy, efficiency is expected to have a significant increase. PMID:26906568

  2. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential

  3. The interplay between deformation and volcanic activity: new data from the central sector of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Sabatino, Ciarcia; Enrico, Iannuzzi; Ernesto, Prinzi; D'Assisi, Tramparulo Francesco; Stefano, Vitale

    2016-04-01

    The new excavation of a tunnel in the central sector of the Campi Flegrei caldera allowed us to collect new stratigraphic and structural data shedding light on the volcano-tectonic evolution of the last 10 ka. The analyzed sequences are composed by an alternation of volcanic, lacustrine, fluvial and marine sediments hosting several deformation structures such as faults, sedimentary dykes and fractures. A review of available well log togheter with the new data were used to perform a 3D reconstruction of paleo-surfaces resulted after the main volcanic and deformation episodes. Results show as the paleo-morphology was strictly controlled by faults and fractures that formed meso-scale channels and depressions subsequently filled by tephra and volcanoclastic sediments. The measured structures indicate an extensional deformation accompanying the ground uplift occurred in various stages of the caldera evolution. Stratigraphic relationships between structures and volcanic deposits further constrain the timing of the deformation phases. Presently an unrest phase of the Campi Flegrei caldera is marked by variations of different parameters such as ground deformation activities well recorded by GPS data, topographic leveling and satellite surveys. The results of this study provide further insight into the long term deformation pattern of the caldera and provide a key to interpret the ground deformation scenarios accompanying a possible resumption of volcanism.

  4. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Michaud, Francois; Proust, Jean-Noël; Dano, Alexandre; Collot, Jean-Yves; Guiyeligou, Grâce Daniella; Hernández Salazar, María José; Ratzov, Gueorgui; Martillo, Carlos; Pouderoux, Hugo; Schenini, Laure; Lebrun, Jean-Frederic; Loayza, Glenda

    2016-10-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  5. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Francois, Michaud; Noël, Proust Jean; Alexandre, Dano; Yves, Collot Jean; Daniella, Guiyeligou Grâce; José, Hernández Salazar María; Gueorgui, Ratzov; Carlos, Martillo; Hugo, Pouderoux; Laure, Schenini; Frederic, Lebrun Jean; Glenda, Loayza

    2016-01-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  6. Active tectonics of the Atacama Basin area, northern Chile: Implications for distribution of convergence across the central Andes

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-Rung; Lin, Yen-Sheng; Shyu, J. Bruce H.

    2013-04-01

    The central Andes in South America is formed as the Nazca plate subducts northeastward beneath the South American plate along the Peru-Chile trench, parallel to the coastline. It has been shown that the convergence rate between the two plates is ~70-80 mm/yr, and about 10-15 mm/yr of the convergence is absorbed in the sub-Andean belt, east of the active volcanic arc. However, the convergence in the forearc region is still not well constrained. In order to understand how much convergence is absorbed in the forearc region, we analyzed the active tectonic characteristics of the Atacama Basin, just west of the active volcanic arc. With the help of various remote sensing datasets such as 30-m and 90-m resolution digital elevation models (DEM) produced from SRTM data, thermal infrared radiometer (TIR) ASTER images, Landsat, and Google Earth images, we identified many N-S trending compressional structures around the Atacama Basin. The active structures are found mainly in the northern and southern part of the basin. The structures in the north deformed many volcanic rocks at the surface, such as ignimbrites and several lava flows. Structures may extend southward to San Pedro de Atacama, the largest town in the Atacama Basin, and produced tectonic scarps inside the town. River terraces also formed in the hanging-wall block of the structures, north of San Pedro. From field surveys, we measured the offset amount of the structures and collected volcanic rocks in order to constrain the age of the deformation. These results enabled us to calculate the long-term deformation rate of the structures. Our results indicate that the long-term slip rate of the structures in the southern part of the basin is quite low, in the order of 10-1 mm/yr. Furthermore, we obtained detailed topographic profiles across the structures. In the south, the profiles were surveyed by using real-time kinematic (RTK) GPS. Together with the attitudes of bedding planes, we constructed the subsurface geometry

  7. Seismological characteristics of the 2011 unrest in Santorini caldera: Implications for observed deformation and volcano-tectonics

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos; Evangelidis, Christos; Melis, Nikolaos; Liang, Wen-Tzong

    2013-04-01

    Santorini caldera has experienced several explosive eruptions in the past, the most well-known of these being the Late Bronze Age (ca. 1628 BC) eruption that may have been responsible for the demise of the Minoan civilization. Since the early 1950's the volcano has been dormant without exhibiting any significant activity except from discharge of low-temperature hydrothermal fluids. In January 2011 both deformation and seismic activity increased considerably signaling a period of unrest which however, did not result in an eruption. One permanent and seven temporary seismic stations equipped with three-component sensors were deployed by the National Observatory of Athens. These were combined with seismic stations from the University of Thessaloniki, seven with only a vertical component and four with three-component sensors and all operated under the Hellenic Unified Seismic Network, thus densely monitoring the Santorini Volcano. These seismic stations have recorded the seismic activity from its start up to now. About 290 micro-earthquakes recorded by at least 5 stations were analyzed for the purpose of obtaining accurate epicentral and hypocentral locations using both catalog and differential travel times from waveform cross-correlation. All of these events exhibit clear P- and S-phases indicating that they resulted from shear failure of rock rather than fluid-flow within volcanic conduits. Results show two well-defined clusters in Palea and Nea Kameni islands within the caldera with hypocentral depths ranging between 5-10 km. Interestingly, one more cluster of events with depths between 15-19 km appears near the area of Cape Coloumbo and developed almost simultaneously with the clusters within the caldera. The Mogi source depth inferred from geodetic observations previously is shallower (~4 km) and does not coincide spatially with the clusters within the caldera. This points to the possibility that seismicity and deformation may be excited by deeper pressure changes

  8. Climatically controlled formation of river terraces in a tectonically active region along the southern piedmont of the Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Huang, Wei-liang; Yang, Xiao-ping; Li, An; Thompson, Jessica A.; Zhang, Ling

    2014-09-01

    Combined tectonic uplift and Quaternary climate variability control the deposition and abandonment of terraces along the southern Tian Shan in northwest China. Several preserved terraces have been deformed by an actively growing anticline within the uplifted frontal thrust system of the southern Tian Shan. We combine geomorphic mapping, topographic surveys of the deformed terrace surfaces, 10Be terrestrial cosmogenic nuclide (TCN) depth profile dating, and optically stimulated luminescence (OSL) dating to develop a new chronology for the terraces along the Huangshui He since 550 ka. Our in situ 10Be dating of fluvial gravels capping strath terraces suggests a relationship between the formation and abandonment of the terraces and glacial climate cycles since the middle-late Pleistocene. These data indicate that the formation of the four terraces occurred at ~ 550, ~ 430, ~ 350, and ~ 60 ka. We suggest that episodes of aggradation were facilitated by high sediment supply during glacial periods, followed by subsequent incision that led to abandonment of these terraces during deglaciation. We also estimate that tectonically induced river incision may account for about 60-70% of the total incision. However, during the intervening time between 350 ka and present, only one terrace was formed and preserved. We suggest that this record might be caused by a gradually decreasing uplift rate of the anticline through time and thus has influenced the preservation of terraces. Therefore, our results demonstrate the utility of chronologic records from southern Tian Shan for deconvolving the effects of tectonics and climate on fluvial incision.

  9. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  10. Deformation invariant bounding spheres for dynamic active constraints in surgery.

    PubMed

    Bowyer, Stuart A; Rodriguez Y Baena, Ferdinando

    2014-04-01

    Active constraints are collaborative robot control strategies, which can be used to guide a surgeon or protect delicate tissue structures during robot-assisted surgery. Tissue structures of interest often move and deform throughout a surgical intervention, and therefore, dynamic active constraints, which adapt and conform to these changes, are required. A fundamental element of an active constraint controller is the computation of the geometric relationship between the constraint geometry and the surgical instrument. For a static active constraint, there are a variety of computationally efficient methods for computing this relative configuration; however, for a dynamic active constraint, it becomes significantly more challenging. Deformation invariant bounding spheres are a novel bounding volume formulation, which can be used within a hierarchy to allow efficient proximity queries within dynamic active constraints. These bounding spheres are constructed in such a way that as the surface deforms, they do not require time-consuming rebuilds or updates, rather they are implicitly updated and continue to represent the underlying geometry as it changes. Experimental results show that performing proximity queries with deformation invariant bounding sphere hierarchies is faster than common methods from the literature when the deformation rate is within the range expected from conventional imaging systems. PMID:24622983

  11. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  12. Faults Activities And Crustal Deformation near Hualien City, eastern Taiwan Analysed By Persistent Scatterer InSAR

    NASA Astrophysics Data System (ADS)

    Lu, C.; Lin, M.; Yen, J.; Chang, C.

    2008-12-01

    Hualien is located in eastern part of Taiwan, and is the collision boundary in the northern of Huatung Longitudinal Valley between the Philippine Sea tectonic plate and Eurasian tectonic plate(Biq, 1981; Barrier and Angelier, 1986). There are several active faults, such as Milun fault, Beipu fault and Minyi fault, pass through the Hualien city, and create many crustal deformation. According to previous researches (Hsu, 1956; Lin, 1962; Yu, 1997) we know Milun fault is a thrust and left lateral fault, and the fault plane incline to east. Minyi fault also is a left lateral and a slight reverse fault, but it's fault plane incline to west. (Chang, 1994; Yu, 1997) We applied the Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR, Hooper, 2007) to observe temporally-variable processes of Hualien city between 2004 to 2008. At the same time, precise leveling and GPS data were taken for the auxiliary data to verify the deformation rate and pattern in this area. In the Hualien city area, our observation showed that the active faults separate this area into several distinct blocks. Most of the blocks moved slowly, but the hanging wall of the Milun fault decreases 5- 8mm in line of sight (LOS) direction between 15 May 2004 to 24 Feb 2007, then increases 3-6mm in LOS between 1 Dec 2007 to 5 Jan 2008. The deformation reversed its direction in 2007. The western surface of Hualien City displays continuous deformation about 1.5-2mm/yr , which spread along the Beipu fault. Our preliminary investigation indicated that between late 2004 and middle 2005 there had been an abrupt increase in seismicity, which coincided with PSInSAR observation of a large displacement. The distribution of shallow source earthquakes correlate with the area with large deformation. Our following works include continuing observation of the Hualien City, and decipher the relationship between earthquakes and surface deformation, and model the fault action in Hualien City with time series.

  13. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  14. Interseismic deformations along Ecuador active fault systems: Contribution of space-borne SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Champenois, J.; Audin, L.; Baize, S.; Nocquet, J.; Alvarado, A.

    2013-05-01

    Located in the Northern Andes along the active subduction zone of the Nazca plate beneath the South American continent, Ecuador is highly exposed to seismic hazard. Up to now, numerous multidisciplinary studies for the last ten years focused on the seismicity related to the subduction, whereas few investigations concentrated on the crustal seismicity in the upper plate (through few strong events like the 1797 Riobamba earthquake, ML 8.3, 12.000 deaths). The faults that are responsible of these earthquakes are poorly known in term of slip rate and in some cases are even not identified yet. To address this issue and compare the interseismic data to the geomorphological long term signature of active faulting we propose to use multi-temporal Synthetic Aperture Radar Interferometry (InSAR) methods.Using these cost-effective techniques, we are able to investigate surface interseismic deformation with an unprecedented spatial density of measurements (highly superior to Global Positioning System network density). This study presents preliminary results of tectonic surface deformation using ERS (1993-2000) and Envisat (2002-2010) SAR data in the Inter Andean Valley and along the eastern border of the North Andean Block, where is accommodated the relative displacement between the North Andean Block and South America plate (~ 8 mm/yr). We generated average velocity maps and consistent time-series of displacements with values measured along the line of sight of the radar. Resulting maps of ground displacements are calibrated by GPS data in order to provide a homogeneous database. These preliminary results show large scale deformation localized on some major fault systems in the Inter Andean Valley (from Quito to north of Cuenca) and allow an updating of the active faults map. Moreover, these InSAR results permit detecting and quantifying ground deformation due to volcanic unrest.

  15. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    the sediments continue in the ENE- WSW direction along the faults shown by Okamura (2007b). In addition, other flexures in Holocene that had not been known up to now were found along the coastline of northwestern side of Noto Peninsula in shallower sea area. The deformation has been growing by displacements of an underlying active fault but does not cut the reflections. The vertical offset of the flexure on the LGM erosion surface is larger than those on the reflections in the sediments covering the erosinal surface and the offset decrease upward. The sea bottom topography deformed by tectonic activities is maintained in offshore area. These tectonic activity periods are uncertain because sediments are thin, however, it is presumed that there were several activities in the past. These observations indicate that the fault slipped several times during the last 20,000 years. Okamura, 2007a, AFRC News, No66, pp1-3 (in Japanese) Okamura, 2007b, Geological Map West of Noto Peninsula. Marine Geology Map Series, no. 61, GSJ, AIST.

  16. Change in biochemical and morphological characteristics of Lonicera caerulea in tectonically active zone of the Dzhazator River Valley (Altai Mountains)

    NASA Astrophysics Data System (ADS)

    Boyarskikh, I. G.; Khudyaev, S. A.; Platonova, S. G.; Kolotukhin, S. P.; Shitov, A. V.; Kukushkina, T. A.; Chankina, O. V.

    2012-12-01

    Local geophysical and geochemical anomalies affect the polymorphism of taste variations, berry shape, and content of some biologically active substances in Lonicera caerulea leaves in the tectonically active Altai Mountains (Dzhazator River basin).

  17. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  18. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Zhang, Yueqiao; Zhao, Guochun; Johnston, Stephen T.; Cui, Jianjun; Xin, Yujia

    2016-04-01

    The central Jiangnan Orogen, genetically formed by the Proterozoic Yangtze-Cathaysia collision, presents as a composite structural feature in the Phanerozoic with multiple ductile and brittle fabrics whose geometries, kinematics, and ages are crucial to decipher the tectonic evolution of south China. New structural observations coupled with thermochronological and geochronological studies of these fabrics document four main stages of deformation. The earliest stage in early Paleozoic time (460-420 Ma) corresponds to combined E-trending dextral and northwest directed thrust shearing that was variably partitioned in anastomosing high-strain zones under greenschist-facies conditions (~400-500°C), related to the continued Yangtze-Cathaysia convergence externally driven by the suturing of south China with Australia. This event was heterogeneously overprinted by the second stage characterized by ~E-oriented folding in middle Triassic time, geodynamically resulting from the continental collision of south China with Indochina and North China. The third stage was locally developed by northwest and southeast vergent thrusts that truncated ~E-oriented folds in the Late Jurassic, due to northwestward subduction of the Paleo-Pacific plate. The latest stage involved normal faulting and tectonic unroofing in Cretaceous time, which resulted in basin opening and reset footwall 40Ar/39Ar ages in proximity to the Hengshan detachment fault, associated with roll-back of the subducting Paleo-Pacific plate.

  19. Reliability of calculation of the lithosphere deformations in tectonically stable area of Poland based on the GPS measurements

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Jarosiński, Marek

    2013-04-01

    In this research we aimed to check if the GPS observations can be used for calculation of a reliable deformation pattern of the intracontinental lithosphere in seismically inactive areas, such as territory of Poland. For this purpose we have used data mainly from the ASG-EUPOS permanent network and the solutions developed by the MUT CAG team (Military University of Technology: Centre of Applied Geomatics). From the 128 analyzed stations almost 100 are mounted on buildings. Daily observations were processed in the Bernese 5.0 software and next the weekly solutions were used to determine the station velocities expressed in ETRF2000. The strain rates were determined for almost 200 triangles with GPS stations in their corners plotted used Delaunay triangulation. The obtained scattered directions of deformations and highly changeable values of strain rates point to insufficient antennas' stabilization as for geodynamical studies. In order to depict badly stabilized stations we carried out a benchmark test to show what might be the effect of one station drift on deformations in contacting triangles. Based on the benchmark results, from our network we have eliminated the stations which showed deformation pattern characteristic for instable station. After several rounds of strain rate calculations and eliminations of dubious points we have reduced the number of stations down to 60. The refined network revealed more consistent deformation pattern across Poland. Deformations compared with the recent stress field of the study area disclosed good correlation in some places and significant discrepancies in the others, which will be the subject of future research.

  20. Tectonics on Triton

    NASA Astrophysics Data System (ADS)

    Croft, Steven K.

    1993-03-01

    Tectonic features on Triton have been mapped as part of a larger study of the geology of Triton. Few purely tectonic structures are found on Triton: some grabens and possibly some compressive ridges. However, most of the other structures seen (primarily cryovolcanic in origin) exhibit tectonic control. A regional tectonic network has the following dominant orientations: N-S, E-W, NE-SW, and NW-SE. Most of the orientations are consistent with tidal deformations related to Triton's decreasing orbital radius. Localized quasi-concentric patterns may be due to interior processes such as mantle plumes.

  1. Tectonics on Triton

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    Tectonic features on Triton have been mapped as part of a larger study of the geology of Triton. Few purely tectonic structures are found on Triton: some grabens and possibly some compressive ridges. However, most of the other structures seen (primarily cryovolcanic in origin) exhibit tectonic control. A regional tectonic network has the following dominant orientations: N-S, E-W, NE-SW, and NW-SE. Most of the orientations are consistent with tidal deformations related to Triton's decreasing orbital radius. Localized quasi-concentric patterns may be due to interior processes such as mantle plumes.

  2. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  3. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  4. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  5. Lasting mantle scars lead to perennial plate tectonics

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  6. Lasting mantle scars lead to perennial plate tectonics

    PubMed Central

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  7. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon. PMID:27282541

  8. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  9. Dynamics of a deformable active particle under shear flow.

    PubMed

    Tarama, Mitsusuke; Menzel, Andreas M; ten Hagen, Borge; Wittkowski, Raphael; Ohta, Takao; Löwen, Hartmut

    2013-09-14

    The motion of a deformable active particle in linear shear flow is explored theoretically. Based on symmetry considerations, we propose coupled nonlinear dynamical equations for the particle position, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear flow as well as active spinning motions, are taken into account. Our equations reduce to known models in the two limits of vanishing shear flow and vanishing particle deformability. For varied shear rate and particle propulsion speed, we solve the equations numerically in two spatial dimensions and obtain a manifold of different dynamical modes including active straight motion, periodic motions, motions on undulated cycloids, winding motions, as well as quasi-periodic and chaotic motions induced at high shear rates. The types of motion are distinguished by different characteristics in the real-space trajectories and in the dynamical behavior of the particle orientation and its deformation. Our predictions can be verified in experiments on self-propelled droplets exposed to a linear shear flow.

  10. Active deformation of the Congo intracratonic basin and its eastern margin

    NASA Astrophysics Data System (ADS)

    Everaerts, Michel; Delvaux, Damien; Beoka, Ateba

    2015-04-01

    The Congo basin, one of the largest intracontinental sedimentary basin in the world, developed in Central Africa since the early Neoproterozoic during successive tectonically controlled stages. It formed over an heterogeneous basement as highlighted by aeromagnetic data, composed of Archean cores welded by Proterozoic mobile belts. It contains an average of 4 km and locally up to 8 km of Neoproterozoic to Mesozoic sediments. Since late Mesozoic (Cenomanian), it was submitted to intraplate stresses due to the action of ridge-push forces related to the spreading of the South Atlantic. As a result, most part of the basin entered in an erosional stage while only a small part is still accumulating sediments. Active deformation of this vast region (5°N-11°S and 12-27°E) is indicated by a certain level of seismic activity, with about 270 earthquakes instrumentally recorded with magnitudes ranging from 2.2 to 5.5 inside the basin and up to up to 6.3 along its NW (Gabon) and NW (Katanga) margins. The dozen available focal mechanisms indicate that the basin is under ENE-WSW horizontal compression, under a compressional regime in its center and strike-slip regime along its northern and western margins. Low-angle slickensided fault planes are observed in the Samba cored well, constraining the onset of the recent compressional setting in the late Albian, at a time when South America was already separated from Africa and the South Atlantic Ridge was already functioning. Although subtle, recent tectonic deformations (faulting and buckling undulations) can also be inferred from the reflection seismic profiles and the topography and river network. The overall neotectonic picture is inferred as reflecting the development of compressional tectonic instabilities in the basin fill and its margins under the action of intraplate stress field and the control of the basement heterogeneity. This is a contribution to preparation of the Seismotectonic Map of Africa by the working group of

  11. Volcano-tectonic deformation at Mount Shasta and Medicine Lake volcanoes, northern California, from GPS: 1996-2004

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Poland, M.; Dzurisin, D.; Owen, S.

    2004-12-01

    Mount Shasta and Medicine Lake volcanoes are two of the three Cascade volcanoes targeted for dense GPS and strainmeter deployments by the magmatic systems component of Earthscope's Plate Boundary Observatory (PBO). Leveling surveys indicate an average subsidence rate of ˜9 mm/yr at Medicine Lake volcano since at least 1954, which could result from draining of a magma reservoir, cooling/crystallization of a subsurface body of magma or hot rock, loading by the volcano and dense intrusions, crustal thinning due to regional extension, or some combination of these mechanisms. Displacements from GPS surveys in 1996 and 1999 revealed regional block rotation and contraction across the summit of the volcano, but the time interval was too short to distinguish between possible mechanisms. On Mount Shasta, a 21-line, 12-km aperture EDM network was measured in 1981, 1982, and 1984 with no significant deformation detected, nor was there significant length change in three EDM lines recovered with GPS in 2000. We present results from GPS surveys completed in June and July 2004 of the region surrounding both Mount Shasta and Medicine Lake volcanoes. We find regional deformation to be dominated by a block rotation about a pole in southeast Oregon, similar to but generally south of poles determined by other workers using GPS in western Oregon and Washington. No significant residual deformation remains in the four GPS stations located on Mount Shasta, which were previously measured in 2000. In contrast, GPS results from six stations on the upper flanks of Medicine Lake volcano confirm the known subsidence and are consistent with elastic half-space models of volume loss that fit the leveling data. No significant residual regional strain was detected. As a result, we believe that subsidence at Medicine Lake does not likely result from crustal thinning due to regional extension. A more detailed examination of Medicine Lake subsidence sources, Mount Shasta edifice deformation, and

  12. Input of UAV, DTM photo-interpretation and SAR interferometry on active tectonics applied on the Southern Coastal Range (SE Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Magalhaes, Samuel; Serries, Gregory

    2016-04-01

    Taiwan is an excellent geomorphic laboratory where both extreme climatic events and high active tectonics compete. Moreover many Earth Sciences and Environmental data bases exist nowadays that help to better constrain both structural geology and active deformations. The latter unfortunately is still poorly known in the Cosatal Range of E.Taiwan in terms of geology due to access difficulties, high relief, paucity of roads, tropical vegetation and high climatic events (typhoons and heavy rainfall) and so on. Indirect methods such as photogrammetric survey using UAV's helps a lot to get high resolution topographic DEM and DTM, better than 10cm in planimetry, that helps a lot to get through careful photo-interpretation, a bird's eye view of the geology. Therefore we were able to much update the famous pre-existing geological maps (Wang and Chen, 1993). Moreover, by combining our high resolution topographic results with those of SAR interferometry (database of Champenois et al, EPSL, 2012), we were able to identify, characterise and quantify the differential active features toward the LOS of the Coastal Range (eastern Taiwan). In order to synthetise and to model the deformation of that famous place, we herein constructed more than 500 parallel projected profiles in order to locate, characterize and quantify the active tectonic features and compare them to the topography and the updated photo-interpreted geology (this work). We then were able to reconstruct the structural geometry of the Coastal Range and the Longitudinal Valley in SE Taiwan. Among our results, we reveal and prove : 1. the whole 2cm differential surrection of the Coastal Range ; 2. the differential displacement between both Central and Coastal Ranges ; 3. we explain the location of the Pinantashi river situated within the Lichi melange that correspond to the maximum surrection of the Coastal Range ; 4. we reveal the different units and their relative displacement within the Coastal Range itself ; 5. we

  13. Active deformation in the northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Ortiz, Gustavo; Alvarado, Patricia; Fosdick, Julie C.; Perucca, Laura; Saez, Mauro; Venerdini, Agostina

    2015-12-01

    The Western Sierras Pampeanas region in the San Juan Province is characterized by thick-skinned deformation with approximately N-S trending ranges of average heights of 2500 m and a high frequency occurrence of seismic activity. Its location to the east of the mainly thin-skinned tectonics of the Argentine Precordillera fold-and-thrust belt suggests that at 30°S, deformation is concentrated in a narrow zone involving these two morphostructural units. In this paper, we present new apatite (U-Th)/He results (AHe) across the northern part of the Sierra de Valle Fértil (around 30°S) and analyze them in a framework of thermochronologic available datasets. We found Pliocene AHe results for Carboniferous and Triassic strata in the northern Sierra de Valle Fértil consistent with the hypothesis of recent cooling and inferred erosional denudation concentrated along the northern end of this mountain range. Our analysis shows that this northern region may have evolved under different conditions than the central part of the Sierra de Valle Fértil. Previous studies have observed AHe ages consistent with Permian through Cretaceous cooling, indicating the middle part of the Sierra de Valle Fértil remained near surface before the Pampean slab subduction flattening process. Those studies also obtained ˜5 My cooling ages in the southern part of the Sierra de Valle Fértil, which are similar to our results in the northern end of the range. Taken together, these results suggest a pattern of young deformation in the northern and southern low elevation ends of the Sierra de Valle Fértil consistent with regions of high seismic activity, and Quaternary active faulting along the western-bounding thrust fault of the Sierra de Valle Fértil.

  14. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    SciTech Connect

    Mentes, Gy.

    2010-07-15

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093{+-}0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  15. Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Nimmo, F.

    2009-01-01

    We consider the effect of spin-orbit resonance, nonzero eccentricity, despinning, and reorientation on Mercury's gravity and tectonic pattern. Large variations of the gravity and shape coefficients from the synchronous rotation and zero eccentricity values, J 2/C 22 = 10/3 and (b - c)/(a - c) = 1/4, arise because of nonsynchronous rotation and nonzero eccentricity even in the absence of reorientation or despinning. Reorientation or despinning induces additional variations. The large gravity coefficients J 2 = (6 +/- 2) × 10-5 and C 22 = (1 +/- 0.5) × 10-5 estimated from the Mariner 10 flybys cannot be attributed to Caloris alone since the required mass excess in this case would have caused Caloris to migrate to one of Mercury's hot poles. Similarly, a large remnant bulge due to a smaller semimajor axis and spin-orbit resonance can be dismissed since the required semimajor axis is unphysically small (<0.1 AU). Reorientation of a large remnant bulge recording an epoch of faster rotation (without significant semimajor axis variations) can explain the large gravity coefficients. This requires initial rotation rates $\\gtrsim$20 times the present value and a positive gravity anomaly associated with Caloris capable of driving ~10°-45° equatorward reorientation. The required gravity anomaly can be explained by infilling of the basin with material of thicknesses $\\gtrsim$7 km or an annulus of volcanic plains emplaced around the basin with an annulus width ~1200 km and fill thicknesses $\\gtrsim$2 km. The predicted tectonic pattern due to these despinning and reorientation scenarios, including some radial contraction, is in good agreement with the lobate scarp pattern observed by Mariner 10. We also predict that lobate scarps will follow a NE-SW orientation in the eastern hemisphere and a positive gravity anomaly (of a few hundred mGal) associated with Caloris.

  16. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  17. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  18. Recent tectonic activity on Mercury revealed by small thrust fault scarps

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Daud, Katie; Banks, Maria E.; Selvans, Michelle M.; Chapman, Clark R.; Ernst, Carolyn M.

    2016-10-01

    Large tectonic landforms on the surface of Mercury, consistent with significant contraction of the planet, were revealed by the flybys of Mariner 10 in the mid-1970s. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission confirmed that the planet's past 4 billion years of tectonic history have been dominated by contraction expressed by lobate fault scarps that are hundreds of kilometres long. Here we report the discovery of small thrust fault scarps in images from the low-altitude campaign at the end of the MESSENGER mission that are orders of magnitude smaller than the large-scale lobate scarps. These small scarps have tens of metres of relief, are only kilometres in length and are comparable in scale to small young scarps on the Moon. Their small-scale, pristine appearance, crosscutting of impact craters and association with small graben all indicate an age of less than 50 Myr. We propose that these scarps are the smallest members of a continuum in scale of thrust fault scarps on Mercury. The young age of the small scarps, along with evidence for recent activity on large-scale scarps, suggests that Mercury is tectonically active today and implies a prolonged slow cooling of the planet's interior.

  19. Shear zones developed between extensional and compressional tectonic regimes: recent deformation of the Burdur Fethiye Shear Zone as a case study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Aktuǧ, Bahadır

    2016-04-01

    The southwestern Turkey is one of the most tectonically active areas of the eastern Mediterranean and therefore is a controversial region from the geodynamic point of view. This complex tectonic regime is dominated by the westward escape of Anatolia related to North Anatolian Fault, Aegean back-arc extension regime due to roll-back of Hellenic Arc, the subduction transform edge propagator (STEP) fault zone related to the motion of Hellenic and Cyprus arcs and compressional regime of Tauride Mountains. In addition to that, an active subduction and seamounts moving towards the north determine the tectonic frame of the Eastern Mediterranean. Many researchers suggest either the existence of a single left lateral fault or the nonexistence of a fault zone between Western Anatolia and Western Taurides. According to the integration of digital elevation data, non-commercial GoogleEarth satellite images and field studies, a 300 km-long 75-90 km-wide NE-SW-trending left lateral shear zone, the Burdur-Fethiye Shear Zone, is located among these tectonic structures. By using GPS velocities and focal mechanism solutions of earthquakes, it is understood that most of the previous studies turn a blind eye to the hundreds of faults related to a left-lateral shear zone which will have an important role in the Mediterrenean tectonics. The Burdur-Fethiye Shear Zone is like a zipper driven by the relative velocity differences due to the Aegean back-arc extensional system and Western Taurides compressional region and presents a high seismic activity. The GPS vectors reflect remarkable velocity differences on land and relatedly the significant topographic differences can be clearly observed. According to the GPS vectors, the Aegean region moves 4-12 mm/yr faster than the wesward escape of the Anatolia towards southwest and the velocities are low in the Western Taurides. The left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3-4 mm/yr in the north side to 8

  20. New constraints on the Pan-African tectonics and the role of the Mwembeshi Zone in Central Zambia: Deformation style and timing of two orthogonal shortening events

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Lehmann, Jeremie; Saalmann, Kerstin; Milani, Lorenzo; Kinnaird, Judith; Charlesworth, Guy; Rankin, William; Frei, Dirk

    2014-05-01

    dextral strike-slip zones. East of the granite, D2 resulted in E-W trending open folds that refolded the D1 structures. This folding becomes more intense and the folds are tighter when approaching the MwZ to the south. Along the MwZ, the molasse rocks, deposited after D1 (post ~528 Ma, based on new detrital-zircon ages), recorded high-strain greenschist facies coaxial deformation and the formation of E-W trending isoclinal folds with a steep south-dipping axial planar cleavage. This study shows that the area north of the MwZ is characterised by two orthogonal contraction events. The newly described D1 event of E-W shortening in the Hook area cannot be correlated with any of the published Pan-African tectonic models for the Lufilian Arc and Zambezi Belt. The D2 event of N-S shortening affected the region in response to the final docking between the Lufilian Arc and the Zambezi Belt. The strongest effect of this event was observed along the MwZ, which, during this stage, was a zone of intense coaxial deformation.

  1. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System

    USGS Publications Warehouse

    Hammond, W.C.; Thatcher, W.

    2004-01-01

    We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ???39?? north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ?? 1.0 mm/yr, and motion normal to this small circle is 3.9 ?? 0.9 mm/yr compared to the east end of our network. On the Colorado Plateau the east end of our network moves by ???1-2 mm/yr westerly with respect to North America. Transitions in strain rates delimit six major tectonic domains within the province. These deformation zones coincide with areas of modern seismicity and are, from east to west, (1) east-west extension in the Wasatch Fault zone, (2) low rate east-west extension centered near the Nevada-Utah border, (3) low rate east-west contraction between 114.7??W and 117.9??W, (4) extension normal to and strike-slip motion across the N10??E striking Central Nevada Seismic Zone, (5) right lateral simple shear oriented N13??W inside the Walker Lane Belt, and (6) shear plus extension near the Sierra Nevada frontal faults. Concentration of shear and dilatational deformation across the three westernmost zones suggests that the Walker Lane Belt lithosphere is rheologically weak. However, we show that linear gradients in viscosity and gravitational potential energy can also effectively concentrate deformation. In the Basin and Range, gradients in gravitational potential are spatially anticorrelated with dilatational strain rates, consistent with the presence of horizontal variations in viscosity of the lithosphere.

  2. Mechanical stability model of progradational carbonate platform margins under tectonic loads: Deformation of Cretaceous carbonate platforms in the Sierra Madre Oriental fold-thrust belt (east central Mexico)

    NASA Astrophysics Data System (ADS)

    Contreras, Juan; Suter, Max

    2015-02-01

    Shortening in the Sierra Madre Oriental fold-thrust belt (east central Mexico) is localized along the margins of Cretaceous carbonate platforms and controlled by mechanical stratigraphy. The platform margins are deformed by imbricate series of thrust ramps, whereas the coeval basins and platform interiors are deformed by map-scale detachment folds. Here we present a finite element model to evaluate the influence of the boundary geometry and boundary conditions on the style of deformation observed at these basinward progradational platform margins. We calculate the stress distribution in a linearly elastic platform-basin transition zone under the action of horizontal tectonic stress, taking into account changes of rock mechanical properties across the platform margin, as well as their dependence on direction, and infer the resulting fracture patterns based on the Mohr-Coulomb failure criterion. Stress concentrations are predicted at the contacts between the massive rocks of the platform margin and the well-layered rocks of both, the platform interior and the adjacent basin. Brittle failure of the platform border can be mostly attributed to three effects: mechanical coupling between the carbonate platform and a substratum of moderate to low viscosity, variations in layering and texture that governed the mechanical properties of the involved carbonates as well as their dependence on direction, and the development of sharp domain boundary corners associated with progradational facies changes. In contrast, the dip of the basement and a possible taper of the overlying Upper Cretaceous shale toward the basin appear to have little influence on the mechanical failure of the platform margin.

  3. Distribution of deformation on an active normal fault network, NW Corinth Rift

    NASA Astrophysics Data System (ADS)

    Ford, Mary; Meyer, Nicolas; Boiselet, Aurélien; Lambotte, Sophie; Scotti, Oona; Lyon-Caen, Hélène; Briole, Pierre; Caumon, Guillaume; Bernard, Pascal

    2013-04-01

    Over the last 20-25 years, geodetic measurements across the Gulf of Corinth have recorded high extension rates varying from 1.1 cm/a in the east to a maximum of 1.6 cm/a in the west. Geodetic studies also show that current deformation is confined between two relatively rigid blocks defined as Central Greece (to the north) and the Peloponnesus to the south. Active north dipping faults (<1 Ma) define the south coast of the subsiding Gulf, while high seismicity (major earthquakes and micro-seismicity) is concentrated at depth below and to the north of the westernmost Gulf. How is this intense deformation distributed in the upper crust? Our objectives here are (1) to propose two models for the distribution of deformation in the upper crust in the westernmost rift since 1 Ma, and (2) to place the tectonic behaviour of the western Gulf in the context of longer term rift evolution. Over 20 major active normal faults have been identified in the CRL area based specific characteristics (capable of generating earthquakes M> 5.5, active in the last 1 M yrs, slip rate >0.5 mm/a). Because of the uncertainty related to fault geometry at depth two models for 3D fault network geometry in the western rift down to 10 km were constructed using all available geophysical and geological data. The first model assumes planar fault geometries while the second uses listric geometries for major faults. A model for the distribution of geodetically-defined extension on faults is constructed along five NNE-SSW cross sections using a variety of data and timescales. We assume that the role of smaller faults in accommodating deformation is negligible so that extension is fully accommodated on the identified major faults. Uncertainties and implications are discussed. These models provide estimates of slip rate for each fault that can be used in seismic hazard models. A compilation of onshore and offshore data shows that the western Gulf is the youngest part of the Corinth rift having initiated

  4. Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone

    USGS Publications Warehouse

    Ridgway, K.D.; Trop, J.M.; Nokleberg, W.J.; Davidson, C.M.; Eastham, K.R.

    2002-01-01

    record regional subaerial uplift of the suture zone. (3) Shortening and exhumation of the suture zone peaked from 65 to 60 Ma on the basis of metamorphic and geochronologic data. In the southern part of the suture zone, submarine-fan deposits of the Kahiltna basin, which had been metamorphosed to kyanite schists at ???25 km depth and ???650 ??C, were exhumed and cooled through the biotite closure temperature (???300 ??C) by ca. 62 Ma. In the northern part of the suture zone, this time period was marked by shortening, uplift, and erosion of sedimentary strata of the Cantwell basin. (4) From 60 to 54 Ma, ???3 km of volcanic strata were deposited over deformed sedimentary strata of the Cantwell basin, and several granitic plutons (the McKinley sequence) were emplaced along the suture zone. (5) Following igneous activity, strikeslip displacement occurred from ca. 54 to 24 Ma along the Denali fault system, which had developed in the existing suture zone. Late Eocene-Oligocene strike-slip displacement resulted in the formation of several small sedimentary basins along the Denali fault system. (6) Regional transpressive shortening characterized the suture zone from ca. 24 Ma to the present. Flexural subsidence, related to regional shortening, is represented by late Eocene to Holocene nonmarine deposits of the Tanana foreland basin. Regional subsidence resulted in Miocene coal seams up to 20 m thick and well-developed lacustrine deposits. Overlying the Miocene deposits are ???1.2 km of Pliocene and Holocene conglomeratic deposits. Compositional and paleocurrent data from these younger deposits record regional Neogene uplift of the suture zone and recycling of detritus from older basins to the south that had become incorporated into the uplifted suture zone. Geologic mapping of major thrust faults along the northern and southern margins of the suture zone documents Paleozoic strata thrust over both Pliocene fluvial deposits and Quaternary glacial deposits of the Tanana basin.

  5. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  6. Mw7.7 2013 Balochistan Earthquake. Slip-Distribution and Deformation Field in Oblique Tectonic Context

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.

    2014-12-01

    The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.

  7. Active intraplate deformation as geodynamic responses to oblique shallow subduction of a flat slab: example from central and southwest Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi

    2015-04-01

    Subduction of a flat slab has been recognized as one of the primary driving mechanism of wide intracontinental subsidence farther away from the subduction leading edge in many subduction margins. In most cases, however, quantitative and qualitative limitations on chronological constraints prevent comprehensive understanding of these geodynamic linkages. In this study, we show distinct, geologic and seismic evidence for spatial and temporal correlation between plate subduction and intercontinental deformation, mainly driven by dynamic interaction between subducting Philippine Sea (PHS) plate and overriding continental crusts of central and southwest Japan (Eurasian plate) along the Nankai-Tonankai subduction zone since Pliocene. Based on analyses of Pliocene to Pleistocene tectonic histories by use of rich dataset of Neogene stratigraphy, drainage network evolution, and shallow to deep seismic reflection profiles, depocenters of wide sedimentary basins and active thrusting have migrated northward since ca. 5 Ma to present from forearc to backarc of the southwest Japan arc. Median tectonic line, active dextral strike-slip fault as a forearc sliver along the Nankai, is located north of the upward extension of the downdip limit of the interseismic locked zone. Southwest Japan north of the MTL, underlain by the subducting slab with steady state slip (Nakanishi et al., 2002; Kodaira et al., 2004), appears tectonically less inactive than central Japan and has behaved as a less deformed rigid block. Contrastingly, Quaternary active intraplate deformation has been prominent north of the inactive MTL above a shallow flat segment of the PHS plate along the Tonankai. Deep seismic reflection profile images upward corrugated very shallow PHS slab being contact with continental lower crust beneath actively deforming area. We interpreted temporal and spatial correlation of oblique subduction of the shallow and flat, corrugated PHS slab as an essential mechanical role to enhance

  8. Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): A story of crustal deformation along a convergent plate boundary

    NASA Astrophysics Data System (ADS)

    Scheuber, Ekkehard; Gonzalez, Gabriel

    1999-10-01

    The tectonic evolution of a continental magmatic arc that was active in the north Chilean Coastal Cordillera in Jurassic-Early Cretaceous times is described in order to show the relationship between arc deformation and plate convergence. During stage I (circa 195-155 Ma) a variety of structures formed at deep to shallow crustal levels, indicating sinistral arc-parallel strike-slip movements. From deep crustal levels a sequence of structures is described, starting with the formation of a broad belt of plutonic rocks which were sheared under granulite to amphibolite facies conditions (Bolfin Complex). The high-grade deformation was followed by the formation of two sets of conjugate greenschist facies shear zones showing strike-slip and thrust kinematics with a NW-SE directed maximum horizontal shortening, i.e., parallel to the probable Late Jurassic vector of plate convergence. A kinematic pattern compatible to this plate convergence is displayed by nonmetamorphic folds, thrusts, and high-angle normal faults which formed during the same time interval as the discrete shear zones. During stage II (160-150 Ma), strong arc-normal extension is revealed by brittle low-angle normal faults at shallow levels and some ductile normal faults and the intrusion of extended plutons at deeper levels. During stage III (155-147 Ma), two reversals in the stress regime took place indicated by two generations of dikes, an older one trending NE-SW and a younger one trending NW-SE. Sinistral strike-slip movements also prevailed during stage IV (until ˜125 Ma) when the Atacama Fault Zone originated as a sinistral trench-linked strike-slip fault. The tectonic evolution of the magmatic arc is interpreted in terms of coupling and decoupling between the downgoing and overriding plates. The structures of stages I and IV suggest that stress transmission due to seismic coupling between the plates was probably responsible for these deformations. However, decoupling of the plates occurred possibly

  9. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  10. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  11. Modelling of The Deep Gravity-movement of Niscemi (caltanisetta, Sicily, Italy): The Decisive Role of Tectonic Deformation.

    NASA Astrophysics Data System (ADS)

    Rizzo, V.; Toni, G.; Fragale, F.; Rijillo, R.

    The Niscemi slide occurred on 12.10.1997 at the end of a dry season, and two days after very heavy rainfall (218 mm). This movement remobilised an ancient landslide, historically documented on 19.3.1791, with the same kinematic features but with less steps. The mass consists mainly of overconsolidated clays, sometimes overlapped with sands. Seismic reflection, partly carried out by AGIP, has allowed isopach recon- struction of the postorogenic-sedimentary cover (Gela nappe). This deep geological structure seems to control the slide shape with back-thrusts and discontinuities, usu- ally present in a geological medium, that behave as natural barriers against tectonic stresses. In geotechnics, we can say also that from a brittle stress-strain behaviour, it is possible to pass on to a ductile one, following phenomenons of hardening. The subse- quent formation of zones with different shape and thickness of materials in the plastic state is responsible for the upsetting of superficial masses, that does not lead to the usual wedge shaped slide as an accumulation zone. Finally, further superficial move- ments might be stimulated by exceptional rainy events, able to give an high hydrostatic pressure along main trenches and to modify the efficacy of mobilizing friction

  12. Stress field associated with elliptical inclusions in a deforming matrix: Mathematical model and implications for tectonic overpressure in the lithosphere

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Burg, Jean-Pierre; Podladchikov, Yuri

    2014-09-01

    Shear zones and competent layers and boudins represent viscosity heterogeneities within the rock mass. Differences in viscosity impel differences in strain rates between the background material and the heterogeneities. In this work, we represent the viscosity heterogeneities as elliptical inclusions. We use the Kolosov-Muskhelishvili equations for the incompressible viscous flow problem in and around elliptical inclusions. Systematic investigation of the stress equilibrium at the matrix-inclusion interface shows that the mean stress, equivalent to the total pressure, is not continuous across viscosity boundaries. The results predict that pressure and stress perturbations depend strongly on the orientation of the elliptical heterogeneity with respect to the far-field stresses. A viscosity ratio of 10 between the inclusion and the surrounding material is sufficient to produce pressure discontinuities approximately equal to the magnitude of the effective shear stress of the strongest rock under the considered physical conditions. Comparison of the analytical solutions with thermo-mechanical models confirms pressure incongruity and suggests that dynamic parameters such as pressure and effective shear stress vary spatially and temporally within deforming, two-viscosity rock systems. As a corollary, the dependence of metamorphic phase equilibria on thermodynamic pressure implies that shear zones, taken as weak inclusions, and boudins, taken as hard inclusions, may record non-lithostatic pressure during deformation.

  13. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  14. Coupling Fluvial Processes and Landslide Distribution Toward Geomorphological Hazard Assessment: Cases in Tectonically Active Mountain Ranges in Taiwan and Japan

    NASA Astrophysics Data System (ADS)

    Tsou, C. Y.; Chigira, M.; Matsushi, Y.; Arai, N.; Chen, S. C.; Feng, Z. Y.

    2015-12-01

    Large-scale destabilization of mountain slopes, which are affected by long-term river incision, give rise to the risk of catastrophic failures in tectonically active ranges. We found deep-seated gravitational slope deformations (DGSDs) induced by these processes in the Chishan River and Dahan River in the Central Range in Taiwan and the Kumano River in the Kii Mts. in Japan. These areas comprise paleosurface remnants with moderate relief at higher elevations and incised V-shaped inner gorges below them, which were made by the recession of knickpoints. Our studies include field surveys, mapping of DGSD and landslide scars, and cosmogenic nuclide exposure dating of several landform surfaces. In the Dahan River catchment, rims of paleosurfaces, which have a minimum age of ca. 150 kyr, are distributed up to 600 m above the present river bed, acting as a proxy of fluvial dissection associated with phases of river incision since the middle to late Pleistocene. The relationships between slope movements and the topography modified by the river incision show that about 53% of all DGSDs, or all large DGSDs (>106 m2) and catastrophic landslides occurred on slopes along the rims of paleosurfaces, suggesting they could be fundamentally controlled by long-term river incision. Catastrophic landslides observed along or below the rims of paleosurfaces were preceded by buckling of alternating beds of sandstone and mudstone on parallel or underdip cataclinal slopes dipped at 50° to 58°. This suggests that the peripheral zones of the paleosurfaces may be most susceptible to future catastrophic landslides, particularly on parallel or underdip cataclinal slopes comprising alternating beds of sandstone and mudstone dipping at 50° to 60°. The 2009 Typhoon Morakot-induced Shiaolin landslide along the Chishan River and the 2011 Typhoon Talas-induced catastrophic landslides along the Kumano River also occurred on the gravitationally deformed slopes along the rims of paleosurfaces.

  15. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  16. A subdued topography among the high relief, tectonic-active island ---registered middle to late Pleistocene climatic changes in Taiwan

    NASA Astrophysics Data System (ADS)

    Liew, P.; Chen, B.

    2003-12-01

    The island of Taiwan is geographically in the frontal zone of the Asian monsoon region, and is geologically located in the collision boundary between the Philippine Sea plate and the Eurasian plate. A Holocene uplifting rate of up to 10mm/yr in the eastern coast has been documented in this high relief mountainous island, and active folds and thrusts are common. When tracing the rivers backward to the mountain, one often encounters a subdued topography, covered by primary lateritic soil, above the higher river terrace and below the rugged mountains, and is referred to as lateritic highland (LH) by a previous author. Studies in paleoclimatology and geomorphology enable us to refine the possible age and origin of this remarkable topography. The penultimate glacial-interglacial cycle and the last interglacial period should be the major interval for the development of lateritic highland. LH may be looked upon as a reference surface for studying the dynamic evolution of the tectonic landscape of Taiwan. It shows that the lower uplifting rate is the most important factor for the preservation of the LH topography in this island. Based on the morphology of LH, different deformation styles are recognized in north and south Chiayi (near tropic of cancer), in western Taiwan. To the north, platforms originating from piedmont LH are well developed, whereas to the south, platforms and piedmont LH are hardly visible. This contrast is probably due to a lithological variance between them.

  17. Growth of a tectonic ridge

    SciTech Connect

    Fleming, R.W.; Messerich, J.A.; Johnson, A.M.

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  18. Magnetic fabric study of rock deformation during alpine tectonic evolution on a cross section through the Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Gruber, K.; Scholger, R.; Pueyo, E. L.

    2010-05-01

    Measurements of anisotropy of magnetic susceptibility (AMS) were carried out on samples from more than seventy sites collected in the Eastern Alps. The sites were taken alongside a North-South transect (about 15°30` East Longitude) from Scheibbs in the North to Kapfenberg in the South, comprising most of the Northern Calcareous Alps (NCA) nappes, Helvetic and Penninic Flysh units as well as the greywacke zone. Samples were taken in detail mostly in Mesozoic rocks of the NCA, from North to South: Bajuvaric (Frankenfels, Lunz, Sulzbach and Reisalpen nappes), Tirolic (Ötscher, Göller, Rotwald-Gindelstein nappes) and Juvavic (Mürzalpen nappe) system. Two to six sites per thrust sheet or nappe were analysed for a structural investigation of the relationship between magnetic fabric and tectonic strain. Standard paleomagnetic drill cores were taken. All measurements were performed in the Petrophysics and Paleomagnetic laboratories of the University of Leoben using AGICO MFK1-Kappabridge susceptibility system and a 2-G cryogenic magnetometer. Statistical evaluation of the AMS data was perfomed using the software package AGICO ANISOFT 4.2. (Chadima et al., 2009). Throughout the Eastern Alps transect distinct changes of the magnetic fabric are observed. Primary sedimentary fabrics and very low susceptibility values are dominant in most cases in the northernmost and southernmost part of the transect. Some inverse fabrics were found in few sites of the nappes and the percentage increases towards the south which might be related to tectonic events. Contrastingly, isotropic fabrics dominate in the middle part. The Helvetic and Penninic Flysh units yield in general weak oblate fabrics. A few sites show a tendency to inverse fabrics which indicate the presence of a certain amount of strain within this unit. The oblate fabrics of the Helvetic and Flysh units show either shallow NE dipping or slightly steeper SW dipping k1-axis orientation. Within the inverse fabrics, even

  19. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  20. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  1. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  2. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  3. Mega-Network GPS Solutions: Producing a Consistent, Global-Scale, and High-Resolution View of Plate Tectonic Stability, Rotation, and Deformation.

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C.

    2007-12-01

    We present a single self-consistent GPS solution for over 2000 stations with ambiguity resolution applied for the period 1994--2007. Here we demonstrate that such `mega-network' GPS solutions provide a consistent, global- scale, and high-resolution view of plate tectonics in action. Specifically our solution is used to investigate the stability of the North American plate, its rotation, intra-plate deformation, and deformation in the Pacific-North America Plate boundary zone. A significant improvement in precision and accuracy attributable to ambiguity resolution is quantified by (1) the reduction of variance of station position time series (`repeatability'), (2) the reduction of variance in motions between stations within stable plate interiors, and (3) the relative smoothness of the velocity field in the Great Basin of western North America. The software developed to produce this solution, AMBIZAP Version 2.0 (ftp://gneiss.nbmg.unr.edu/ambizap) was made publicly available in August 2007. The method builds seamlessly on the precise point positioning (PPP) method invented by Zumberge et al. in 1997, additionally providing improved accuracy at a fraction of the original computational cost. Like PPP, the computation time of AMBIZAP (including network adjustment) is linear with number of stations N, unlike previous algorithms that exhibit power-law behavior, which presents a barrier to processing N >> 100. The longer-term significance of this development is the ease with which the software could be applied to N ~ 10000 GPS networks worldwide within the foreseeable future, including the N > 1000 Plate Boundary Observatory, which is already nearing completion.

  4. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    NASA Astrophysics Data System (ADS)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  5. Project REPONS: Offshore Faults, Tectonic Deformation and Turbidite Record in Response to the January 12 2010 Earthquake, Haiti

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Gulick, S. P.; Cormier, M.; Dieudonne, N.; Diebold, J. B.; Douilly, R.; Hornbach, M.; Johnson, H. E.; Mishkin, K.; Seeber, L.; Sorlien, C. C.; Steckler, M. S.; Symithe, S. J.

    2010-12-01

    As part of an NSF RAPID response to the January 12, 2010 earthquake, we mapped the underwater continuation of the Enriquillo-Plantain Garden fault zone (EPGF) west of Léogâne. Multibeam bathymetry, sidescan sonar, chirp subbottom profiler, sediment sampling and CTD measurements were conducted in water depths of 2 m to 1750 m from the R/V Endeavor and from a small inflatable boat. The offshore segment of the EPGF is manifested by two steep, 50-80 m high linear ridges and at least two subsurface faults. The submarine EPGF is part of a transition from releasing to restraining segment. To the east, it joins its onshore trace in a releasing bend and continues to the west in a restraining bend that perhaps caused the Tapion ridge. Within the Baies de Petit and Grand Goâve, river outlets are correlated with lateral spreading and/or subsidence where we observed increased local damage to structures. Lateral spreading and/or subsidence appears to have increased tsunami effects locally. Coral uplift NE and SW of offshore fault traces offer evidence of the January 12, 2010 surface deformation. While a seafloor rupture is not evident from the data collected we do image deformation within the upper 20 m in both bays. Mass wasting and gravity flow deposits from the last and older earthquakes were tracked from the Léogâne delta and along the coast to the deepest depocenter. Th-234 and Be-7 with half-lives of 24 and 53 days, respectively verified the January 12 turbidite and indicated an influx of terrigenous sediment mixed with marine sources. Coral debris was sampled in the shelf and upper slope (100-300 m) near the EPGF; basalt sand derived from the highlands and wood fragments at intermediate water depths (1000-1100 m); lastly an ~0.03 km3 and >1 m thick turbidite was deposited over 50 km2 in the Canal du Sud depocenter (1750 m). The sandy parts of all cores recovered from Canal du Sud depocenter have alternate episodes of traction deposition and erosion that reflect

  6. Tectonic evolution of the Irtysh collision belt: New zircon U-Pb ages of deformed and collisional granitoids in the Kalaxiangar area, NW China

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Jun, Gao; Xingwang, Xu; Klemd, Reiner

    2016-04-01

    The CAOB is thought to have formed by multiple accretion and collision of various microcontinents, island arcs, oceanic plateaus and accretionary wedges due to the closure of the Paleo-Asia Ocean [1, 2, 3]. The Irtysh collision belt is located at the middle-western part of the CAOB and generally thought to be the result of the collision of the Sawuer Island arc and the Altay Terrane, subsequent to the consumption of the Early Paleozoic Junggar Ocean, a branch of Paleo-Asia Ocean. Therefore, the exact timing of the Irtysh collision belt is crucial for a better understanding of the tectonic evolution of this collision belt and will provide constraints on the evolution of the CAOB. Recently, we discovered various collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh collision belt. In this contribution, we report new geochemical whole-rock, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our new results reveal that 1) the arc-related granodioritic porphyries formed at ca. 374 Ma. Furthermore, recrystallized zircons from the granodioritic mylonite and ultramylonite of the Laoshankou ductile deformation zone have a similar U-Pb age of ca. 360 Ma; 2) the syn-collisional granodioritic porphyries, which distribute along cleavege, were emplaced at ca. 355 Ma; 3) the post-collisional A-type granodioritic porphyry, which cuts the NW-NNW trending schistosity at a low angle, has an age of ca. 323 Ma, ɛHf(t) values from + 7.5 to + 14.4, and young Hf model ages between 387 and 658 Ma; 4) the post-collisional A-type granite dykes, which are exposed along strike-slip faults, have ages between 282.5 and 279.2Ma, ɛHf(t) values from + 4.8 to + 12.6, and Hf model ages between 436 and 729 Ma; 5) the A-type biotite granite dykes that intruded along conjugate tension joints have ages between 273.9 and 271.4 Ma, ɛHf(t) values from + 1.1 to + 12.8, and Hf model ages between 393 and 979 Ma. In

  7. Seismic evidence of divergent rifting and subsequent deformation in the southern Japan Sea, and a Cenozoic tectonic synthesis of the eastern Eurasian margin

    NASA Astrophysics Data System (ADS)

    Itoh, Yasuto; Uno, Koji; Arato, Hiroyuki

    2006-10-01

    Neogene rift system configuration for the back-arc of southwest Japan, southern rim of the Japan Sea, is argued on the basis of reflection seismic interpretation. Divergent rifting and subsequent contraction provoked by an arc-arc collisional event are manifested by the formation of faulted grabens and their inverted deformation, respectively. We identified the following four Cenozoic tectonic epochs as a decomposition process of the eastern Eurasian margin based on reliable paleomagnetic data: (1) Plate margin rearrangement on a regional left-lateral fault through southwest Japan and Sikhote Alin, which constituted a continuous geologic province before the early Tertiary differential motion; (2) Early Tertiary clockwise rotation (>20°) of the east Tan-Lu block relative to the North China block; (3) Oligocene to early Miocene divergent rifting and spreading of the Japan Sea, which divided southwest Japan from the east Tan-Lu block; (4) Middle Miocene bending and back-arc inversion of southwest Japan caused by collision with the Izu-Bonin arc. According to the estimation of relative motions during these events, a paleogeographic reconstruction is presented through Cenozoic time.

  8. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin

    NASA Astrophysics Data System (ADS)

    Rougier, Géraldine; Ford, Mary; Christophoul, Frédéric; Bader, Anne-Gaëlle

    2016-03-01

    The central North-Pyrenean retrowedge developed on a thinned lithosphere, rich in Keuper evaporites. The behavior of this retro-foreland system is studied using subsidence analyses and a sequentially restored cross-section (120 km, Saint-Gaudens to Castelsarrasin) constrained by new chrono- and lithostratigraphy, surface and subsurface data. During the Late Cretaceous, a first episode of foreland subsidence (E1) produced a narrow marine depocenter (Comminges Basin, 30 km wide), supplied from the east. A synchronous early deformation involved inversion of basement faults and gentle shortening (4.5 km) of the Mesozoic strata above a Keuper decoupling layer. A tectonically quiet period (Q, Paleocene), characterized by a condensed succession (marine and continental), was followed by a second episode of subsidence (E2), basin migration and gentle thick- and thin-skinned shortening (8 km). Continental sedimentation, supplied by the uplifting orogen, first filled a narrow flexural basin (E2, M-L Eocene), then expanded across the Aquitaine Platform (E3, Oligocene-Miocene).

  9. Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey

    NASA Astrophysics Data System (ADS)

    Sağlam Selçuk, Azad

    2016-10-01

    The eastern part of the Lake Van basin (Van region, Turkey) is controlled by reverse faults, such as the Gürpınar, Everek and Alaköy faults. These represent the major tectonic structures within the Van region and have caused many devastating earthquakes. Based on quantitative analyses, the Quaternary activity and topographic relief control of each of these faults was investigated. The Gürpınar, Everek and Alaköy faults are restricted to the southern slopes of the Güzelsu, Everek, and Karasu basins, respectively. Analyses of the mountain front sinuosity (Smf) and valley floor width-to-height ratio (Vf) suggest high activity along the Gürpınar fault, the Everek fault, and the western part of the Alaköy fault. Furthermore, based on the integration between Smf and Vf, the estimated uplift rates were observed to increase from north to south. The Gürpınar and Everek hanging-wall blocks are characterized by uplift rates of > 0.5 mm yr- 1, whereas the Alaköy fault exhibited a rate of 0.05 to 0.5 mm yr- 1. These faults produce knickpoints or knickzones, complex basin hypsometric curves, and high values of the stream length-gradient index. Based on these geomorphic analyses, it was established that the tectonic activity of both the Gürpınar and Everek faults is greater than that of the Alaköy fault.

  10. Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance

    NASA Astrophysics Data System (ADS)

    Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.

    2015-10-01

    The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.

  11. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China

    NASA Astrophysics Data System (ADS)

    Zhongyuan, Yu; Peizhen, Zhang; Wei, Min; Qinghai, Wei; Limei, Wang; Bin, Zhao; Shuang, Liu; Jian, Kang

    2015-08-01

    The Da'an-Dedu Fault Zone is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Five earthquakes with magnitudes over 5 that occurred during the past 30 years suggest the fault zone is a seismogenic structure with future seismic potential. The structural pattern, tectonic history, Quaternary activity and seismic potential have previously been unknown due to the Quaternary sedimentary coverage and lack of large historic earthquakes (M > 7). In this paper, we use seismic reflection profiles and drilling from petroleum explorations and shallow-depth seismic reflections to study those problems. The total length of the Da'an-Dedu Fault Zone is more than 400 km; modern seismicity delineates it into 4 segments each with a length of 90-100 km. In cross-section view, the folds and associated faults form a complex structural belt with a width of more than 10 km. Shallow-level seismic reflection across the Da'an-Dedu Fault Zone reveals that the Late Quaternary sediments were folded and faulted, indicating its present tectonic activity. The Da'an-Dedu Fault Zone and Songliao Basin have been subjected to three stages of tectonic evolution: a rifting stage characterized by normal faulting and extension (∼145-112 Ma), a prolonged stage of thermal subsidence (∼112-65 Ma), and a tectonic reversal that has been taking place since ∼65 Ma. Our shallow-level reflection profiles show that the folding and reverse faulting have influenced the Late Quaternary sediments. The seismicity and moderate earthquakes suggest that the tectonic activity persists today. The deformation rate across the Da'an-Dedu Fault Zone, however, is measured to be very slow. In conjunction with the inference that most deformation in NE China may be taken up by the Yilan-Yitong Fault Zone bounding the Songliao Basin to the east, we suggest moderate earthquake potential and thus moderate seismic hazards along the Da'an-Dedu Fault Zone. The geological structures, which

  12. Active deformation of the northern front of the Eastern Great Caucasus

    NASA Astrophysics Data System (ADS)

    Niviere, Bertrand; Gagala, Lukasz; Callot, Jean-Paul; Regard, Vincent; Ringenbach, Jean-Claude

    2016-04-01

    The Arabia-Eurasia collision involved a mosaic of island arcs and microcontinents. Their accretion to the complex paleogeographic margin of Neotethys was marked by numerous collisional events. The Greater Caucasus constitute the northernmost tectonic element of this tectonic collage, developed as a back arc extensional zone now inverted, which relationships to the onset of Arabia-Eurasia continental collision and/or to the reorganization of the Arabia-Eurasia plate boundary at ˜5 Ma remain controversial. Structurally, the Greater Caucasus are a former continental back arc rift, now the locus of ongoing continental shortening. Modern geodetic observations suggest that in the west, the strain north of the Armenian Plateau is accommodated almost exclusively along the margins of the Greater Caucasus. This differs from regions further east where strain accommodation is distributed across both the Lesser and Greater Caucasus, and within the Greater Caucasus range, with a unique southward vergence. We question here the amount and mechanisms by which the Eastern Greater Caucasus accommodate part of the Arabia-Eurasia convergence. Morphostructural analysis of the folded late Pleistocene marine terrace along the northern slope of the Eastern Greater Caucasus evidences an on going tectonic activity in the area where GPS measurements record no motion. Most of the recent foreland deformation is accommodated by south-vergent folds and thrust, i. e. opposite to the vergence of the Caucasus frontal northern thrust. A progressive unconformity in the folded beds shows that it was already active during the late Pliocene. Cosmogenic dating of the terrace and kinematic restoration of the remnant terrace, linked to the subsurface geology allows for the estimation of a shortening rate ranging from a few mm/yr to 1 cm/yr over the last 5 Myr along the greater Caucasus northern front. Thus more than one third of the shortening between the Kura block / Lesser Caucasus domain and the Stable

  13. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter

    2016-04-01

    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  14. The Large Scale Tectonic Framework of SE Asia and the Deformation of the lithosphere Beneath Tibet and SW China (Invited)

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Huang, H.; Yao, H.

    2010-12-01

    delineate the 3-D anisotropic structure of the crust and lithospheric mantle at length scales as small as 100 km beneath SE Asia. These inversions revealed (i) the presence of intra-crustal low velocity zones (perhaps bounded by major faults), (ii) a strong correlation between these low velocity zones and radial anisotropy (Vsh faster than Vsv), and (iii) that the pattern of crustal (azimuthal) anisotropy is quite different from that in the deep crust and mantle lithosphere. Furthermore, the spatial relationship with high heat flow, high (electrical) conductivity, and high Poisson’s ratio’s suggests that the crustal zones of low shear velocity are mechanically weak. Collectively, these inferences suggest that deformation is generally not vertically coherent and that (horizontal) ductile flow occurs (at least locally) in the deep crust of SE Tibet. Deformation of the lithosphere in SE Tibet may thus occur through interaction of geological units with and without crustal flow that are separated by major faults.

  15. Deformation in a hyperslow oceanic rift: Insights from the tectonics of the São Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.; Boulesteix, T.; Costa, A. C. G.; Catalão, J.

    2016-02-01

    The evolution of hyperslow oceanic rifts, like the Terceira Rift (TR) in the Azores, is still poorly understood. Here we examine the distribution of strain and magmatism in the portion of the TR making up the Nubia-Eurasia plate boundary. We use São Miguel Island because it stretches most of the TR width, which allows to investigate the TR's architecture and shedding light on TR's age and mode of deformation. From topography and structural analysis, and new measurements of 380 faults and dikes, we show that (1) São Miguel has two main structural directions, N150 and N110, mostly concentrated in the eastern part of the island as an onshore continuation of the faults observed offshore in the NE (N110 faults) and SW (N140) TR walls; (2) a new N50-N80 fault system is identified in São Miguel; (3) fault and dike geometries indicate that eastern São Miguel comprises the TR's northern boundary, and the lack of major faults in central and western São Miguel indicates that rifting is mostly concentrated at master faults bounding the TR. Based on TR's geometry, structural observations and plate kinematics, we estimate that the TR initiated between 1.4 and 2.7 Ma ago and that there is no appreciable seafloor spreading associated with rifting. Based on plate kinematics, on the new structural data, and on São Miguel's structural and volcanic trends, we propose that the eastern two thirds of São Miguel lie along a main TR-related transform fault striking N70-N80, which connects two widely separated N130-N150 TR-trending segments.

  16. Basin development and compressional deformation in the central High Atlas Mountains northwest of Errachidia (Morocco) - rejuvenated tectonics

    SciTech Connect

    Brede, R.

    1988-08-01

    The development of the central High Atlas Mountains from the Triassic until today was controlled by a set of pre-existent basement faults which were reactivated in various manners. During the Triassic a graben began to subside at the northwestern border of the African craton. The graben's development was at least temporarily linked to the opening of the Atlantic Ocean. The growing basin was filled by red detrital material from the adjacent elevated regions. Evaporites were only locally formed. Mostly the red beds show an intercalation of basic volcanics. During the early and middle Liassic, a shallow shelf with reefs existed at the southern rim of the Atlas-Gulf, from which much carbonate material was delivered into the basin. This deposition is proved by turbiditic limestones of considerable thickness in the Pliensbachian. After a further deepening of the Atlas-Gulf in the late Liassic and the early Dogger, a trend toward shallowing began in the Bajocian, enabling reefs to grow from the south into the basin. Toward the end of the middle Dogger, the trough began to fill with red detrital material. This period of red-bed sedimentation lasted until the early part of the late Cretaceous and had abundant intercalation of gypsum near the top of the sequence. Due to a transgression a short marine period followed, documented by the Cenomanian-Turonian limestones. This marine period was succeeded again by the deposition of red beds in the middle of late Cretaceous. The Jurassic sediments are sometimes penetrated by small doleritic dikes. The development of the basin was controlled by east-northeast-striking faults. During compression in the Tertiary, the /sigma//sub 3/ direction (north-northwest) of the Mesozoic basin development changed into the /sigma//sub 1/ direction of compressional deformation and the synsedimentary normal faults were reactivated as upthrusts.

  17. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  18. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2004-05-01

    Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S-C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.

  19. Sediment yield from the tectonically active semiarid Western Transverse Ranges of California

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.

    2009-01-01

    Sediment yields from the world's rivers are generally highest from steep drainage basins with weak lithology, active tectonics, or severe land-use impacts. Here, we evaluate sediment yields from the Western Transverse Ranges of California in an attempt to explain why they are two- to tenfold greater than the surrounding areas of California. We found that suspended-sediment yields across the gauged basins of the Western Transverse Range during 1969-1999 varied by approximately an order of magnitude (740-5300 t/km2/yr). Similarly, fine-sediment concentrations for normalized discharge rates varied by almost two orders of magnitude (e.g., 1.3-110 g/L for the mean annual flood) for 11 previously unmonitored drainages of the Santa Ynez Mountains. Areas with high sediment yields consistently have weakly consolidated bedrock (Quaternary-Pliocene marine formations) and are associated with the highest rates of tectonic uplift of the region (>5 mm/yr). These regions are important to the sediment discharge budgets, because ???50% of the total suspended-sediment discharge from the Western Transverse Range is estimated to be generated within these regions, even though they represent only ???10% of the total watershed area. Previous estimates of suspended-sediment discharge from the Ventura River have likely been underestimated by ???50% because the gauging station is located immediately upstream of a high sediment yield region. We also found a significant and positive correlation between sediment yield and the percentage of a watershed with grassland and agricultural land use. These results suggest that there is adequate variation within the lithology, tectonics, and land use of the broader Western Transverse Range geologic province to induce large variations in sediment yield at the local scale. ?? 2009 Geological Society of America.

  20. Active Printed Materials for Complex Self-Evolving Deformations

    NASA Astrophysics Data System (ADS)

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  1. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  2. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    NASA Astrophysics Data System (ADS)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  3. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  4. Archaeological evidences of the tectonic activity of Shueib Structure (NW Jordan)

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, Mohammad; Azañón, J. Miguel; Pérez-Peña, J. Vicente; Booth-Rea, Gillermo

    2014-05-01

    Archaeological damage in buried ruins often offers an excellent record of recent tectonic activity. The lower Jordan valley has experienced a continuous occupation in the last 5000 year, being frequent archaeological remains of human settlements along the valley. In this work we studied the Early Neolithic-to-Middle Islamic Periods archaeological site of Tall al-Hammam (Arabic name, ¨Hill of Baths¨). This ruin is located 27 km southwest of Amman city and it constitutes the largest Bronze Age archaeological site in Jordan. It consists of two main parts; the Upper Tall and the Lower Tall. This ruin lies within the southwestern termination of the Shueib structure (SHS); a Cretaceous fold-bend fault structure thought inactive through the entire Cenozoic. The relics, in the lower Tall, show clear fault-related damage in some walls. Two Middle Bronze Age (MBA) walls are displaced 26 and 20 cm respectively, according with a NNE-SSW fault plane. Apart of wall displacements, hundreds of joints and cracks in boulders of the walls are present. They strike generally NW-SE and NE-SW. Both archaeological evidences, boulder fractures and walls distortion, are coherent with the present-day tectonic setting of the Dead Sea Transform Fault in the region, and suggest a Quaternary reactivation of the SHS.

  5. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  6. Thermally Induced Deformation in Metallic Glass: the Activations and Relaxations

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-03-01

    Thermally induced deformation in metallic glasses was investigated by sampling the potential energy landscape (PEL) and probing the changes in the atomic properties (e.g. energy, displacement, stress). The complete deformation processes consist of two stages: the activation (i.e. trigger, from initial minima to nearby saddle states on PEL), and relaxation (i.e. from saddle states to final minima on PEL). We show that the activation stages are triggered by local rearrangements of a small number of atoms, typically 5 atoms in average. Surprisingly, the individual triggers are invariant of the cooling history or elastic structure of the system. However, the organizations between different trigger centers can be varied and are related to the overall stability of the system. On the other hand, relaxation stages consist of two branches, a localized branch, and a cascade branch. While the localized branch is insensitive to the cooling history the system, the cascade branch is highly related with the processing conditions. In particular, for a faster quenched system, the cascade relaxation is found more prominent than in a slowly quenched system. The work is supported by Department of Energy.

  7. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    earthquake activity shows that this region is tectonically still active (Mosar, 1999) with numerous earthquakes. The exposure ages imply that the rock failure occurred during the middle Holocene, a period of increased neotectonic activity in Eastern Alps suggested by Prager et al. (2007). This time period also coincides with notably wet climate, which has been suggested as an important trigger for landslides around this age across the Alps (Zerathe et al., 2014).

  8. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  9. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  10. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  11. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  12. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  13. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  14. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  15. Holocene canyon activity under a combination of tidal and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu; Micallef, Aaron; Stevens, Craig; Stirling, Mark

    2013-04-01

    The majority of submarine canyon systems that are active during sea level highstands are coupled to terrestrial or littoral sediment transport systems (e.g. high sediment-yield rivers, wave-base sediment disturbance). However, non-coupled canyon systems can also exhibit sedimentary activity. Characterising the nature, origin, and spatial and temporal influence of the processes responsible for this sedimentary activity is important to understand the extent of sediment and carbon transfer to the deep sea, the impact of sedimentary flows on biological colonisation and diversity, and the control of recent seafloor processes on canyon morphology. The Cook Strait canyon system, between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially-coupled system. Sediment transport on the continental shelf, associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data reveals a system where oceanographic (tidal) and tectonic (earthquake) processes are moving sediment from the continental shelf, through the upper canyon, and finally to the deep ocean. Sediment accumulation rates may reach several mm/yr in the upper canyons, with data suggesting minimum rates of 0.5 mm/yr. We demonstrate that tidal currents are sufficient to mobilise fine to medium sand around and within the upper canyon

  16. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  17. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    PubMed

    Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  18. Estimate of the post-Last Glacial Maximum tectonic subsidence and attempt to elucidate the subsurface geometry of the active Shanchiao Fault in the Taipei metropolis, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.; Teng, L. S.

    2011-12-01

    The Taipei Metropolis, home to some 10 million people, is subject to seismic hazard originated from not only ground shaking in thick alluvial deposits due to distant faults or sources scattered throughout the Taiwan region, but also active faulting directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Plio-Pleistocene arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for the areal extent and magnitude of its recent activity. Based on the growth faulting analysis in the Wuku profile in the central portion of the fault, one key horizon - the top of the Jingmei Conglomerate which was an alluvial fan formed rapidly when a major drainage reorganization occurred during the Last Glacial Maximum - serves to be the marker of tectonic subsidence since its inception around 23 ka. A determination and compilation of the depths of the Jingmei Conglomerate top horizon from nearly 500 borehole records within the Taipei Basin demonstrates that the hanging-wall deforms in a roll-over fashion and the offset is largest in the Wuku-Luzhou area in the central portion of the fault and decreases toward the southern tip of the fault. A geologic profile across the fault zone in the Luzhou area reveals the similar main-branch fault half-negative flower structural pattern observed in the Wuku profile, a phenomenon we interpreted to be originated from the geometry of the basin basement and the strong rheological contrast between unconsolidated basin sediments and basement rocks. We also attempt to resolve the poorly-known subsurface geometry of the Shanchiao Fault by simple elastic dislocation models. The surface deformation recorded by the above compilation is representative of the latest Quaternary period as it spans probably more than 10 earthquake

  19. Tectonics of the Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    McKinnon, W. B.; Collins, G. C.; Moore, J. M.; Nimmo, F.; Pappalardo, R. T.; Prockter, L. M.; Schenk, P. M.

    2010-01-01

    Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Io's surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax. Most satellites exhibit evidence for extensional deformation, and some exhibit strike-slip faulting, whereas contractional tectonism appears to be rare. Io s surface is unique, exhibiting huge isolated mountains that may be blocks of crust tilting and foundering into the rapidly emptying interior as the surface is constantly buried by deposits from hyperactive volcanoes. Of the satellites, diminutive Enceladus is spectacularly active; its south polar terrain is a site of young tectonism, copious heat flow, and tall plumes venting into space. Europa's surface is

  20. Hazard analysis of active tectonics through geomorphometric parameters to cultural heritage conservation: the case of Paphos in Cyprus

    NASA Astrophysics Data System (ADS)

    Argyriou, A. V.; Sarris, A.; Alexakis, D.; Agapiou, A.; Themistocleous, K.; Lysandrou, V.; Hadjimitsis, D.

    2014-08-01

    Natural hazards, such as earthquakes, can have a large destructive effect on cultural heritage sites conservation. This study aims to assess from a geospatial perspective the risk from natural hazards for the archaeological sites and monuments and evaluate the potential tectonic activity impact on the cultural and historic heritage. Geomorphometric data derivatives that can be extracted from Digital Elevation Models (DEMs) provide information relevant with active tectonics. The specific extracted tectonic information when being used on the basis of analytical hierarchy process and weighted linear combination approach can offer an important robust approach. The ranking of the derived information relatively to specific criteria of weights can enhance the interrelationships and assemblages over neotectonics aspects. The outcomes of that methodological framework can propose an assessment approach for the spatial distribution of neotectonic activity and can become a useful tool to assessing seismic hazard for disaster risk reduction. The risk assessment aspects of such a hazard are being interlinked with the archaeological sites in order to highlight and examine those that are exposed on ongoing tectonic activity and seismic hazard. Paphos area in Cyprus has been used as the test bed for the particular analysis. The results show an important number of archaeological sites being located within zones of high degree of neotectonic activity.

  1. Tracing the evolution of crustal-scale, transient permeability in a tectonically active, mid-crustal, low-permeability environment by means of quartz veins

    NASA Astrophysics Data System (ADS)

    Sintubin, M.

    2013-12-01

    In mid-crustal, low-permeability environments pervasive fluid flow is primarily driven by the production of internally-derived metamorphic fluids, causing a near permanent state of near-lithostatic fluid-pressure conditions. In a tectonically active crust, these overpressured fluids will generate intermittently an enhanced permeability that will facilitate fluid flow through the crust. The High-Ardenne slate belt (Belgium, France, Germany) can be considered as a fossil (late Palaeozoic) analogue of such mid-crustal, low-permeability environment at the brittle-plastic transition (depth range from 7 to 15 km). Low-grade metamorphic (250°C-350°C), predominantly fine-grained, siliciclastic metasediments were affected by a contraction-dominated deformation, materialized by a pervasive slaty cleavage. Quartz veins, abundantly present in the slate belt, are used as a proxy for the enhanced permeability. Detailed structural, petrographical, mineralogical and geochemical studies of different quartz-vein occurrences has enabled to reconstruct the evolution of the crustal-scale permeability , as well as to constrain the coupled fluid-pressure and stress-state evolution throughout the orogenic history. Extensive veining on a regional scale seems confined to periods of tectonic stress inversion, both at the onset (compressional stress inversion) and in the final stages (extensional stress inversion) of orogeny. Firstly, compressional stress inversion is expressed by pre-orogenic bedding-normal extension veins, consistently arranged in parallel arrays, followed by early orogenic bedding-parallel hybrid veins. Fluid-inclusion studies demonstrate near-lithostatic to supralithostatic fluid pressures, respectively. Secondly, discordant veins, transecting the pre-existing cleavage fabric, are interpreted to be initiated shortly after the extensional stress inversion, reflecting the late-orogenic extensional destabilisation of the slate belt. Veining again occurred at high fluid

  2. Investigating Geothermal Activity, Volcanic Systems, and Deep Tectonic Tremor on Akutan Island, Alaska, with Array Seismology

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.; Ghosh, A.; Power, J. A.; Thurber, C. H.

    2012-12-01

    In addition to hosting one of the most active volcanoes in the Aleutian Arc, Akutan Island, Alaska, is the site of a significant geothermal resource within Hot Springs Bay Valley (HSBV). We deployed 15 broadband (30 s to 50 Hz) seismometers in and around HSBV during July 2012 as part of an effort to establish a baseline for background seismic activity in HSBV prior to geothermal production on the island. The stations recorded data on-site and were retrieved in early September 2012. Additional targets for the array include the tracking of deep tectonic tremor known to occur within the Aleutian subduction zone and the characterization of volcano-tectonic (VT) and deep long period (DLP) earthquakes from Akutan Volcano. Because 13 of the stations in the array sit within an area roughly 1.5 km by 1.5 km, we plan to apply methods based on stacking and beamforming to analyze the waveforms of extended signals lacking clear phase arrivals (e.g., tremor). The average spacing of the seismometers, roughly 350 m, provides sensitivity to frequencies between 2-8 Hz. The stacking process also increases the signal-to-noise ratio of small amplitude signals propagating across the array (e.g., naturally occurring geothermal seismicity). As of August 2012, several episodes of tectonic tremor have been detected in the vicinity of Akutan Island during the array deployment based on recordings from nearby permanent stations operated by the Alaska Volcano Observatory (AVO). This is the first small-aperture array deployed in the Aleutian Islands and the results should serve as a guide for future array deployments along the Aleutian Arc as part of the upcoming EarthScope and GeoPRISMS push into Alaska. We demonstrate the power of array methods based on stacking at Akutan Volcano using a sequence of DLP earthquakes from June 11, 2012 that were recorded on the permanent AVO stations. We locate and characterize the lowest frequency portion of the signals at 0.5 Hz. At these low frequencies, the

  3. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  4. Evidence for a major, tectonically active structure beneath the coastal plain of North and South Carolina

    SciTech Connect

    Marple, R.T.; Talwani, P. . Geology Dept.); Olson, O.

    1994-03-01

    Evaluation of Landsat imagery, aerial photography, potential field data, and topographic maps have revealed a linear, [approximately]400-km-long, NNE-trending zone in the coastal plain of North and South Carolina. This zone is composed of subtle topographic highs, aeromagnetic anomalies, and in some locations mapped and inferred faults. It is also associated with a zone of river anomalies (ZRA). Various data suggest that the ZRA may be associated with tectonic activity on a large right-lateral strike-slip fault system. The ZRA in the South Carolina coastal plain is defined by an [approximately]15-km-wide NNE-trending zone that crosses NW-SE-flowing rivers. Along this zone the rivers are characterized by river bends that are convex toward the NNE, incised channels, changes in river patterns, and convex-upward longitudinal profiles. In the coastal plain and eastern Slate Belt of North Carolina the ZRA (width yet to be determined) displays a slightly more northeasterly trend that is highlighted by linear aeromagnetic anomalies and right-lateral offsets of larger rivers crossing its trend. This feature is not traceable across the southern flank of the Cape Fear Arch and north of this area the ZRA's trend is offset [approximately]15 km toward the east (right step geometry) from that of the ZRA in South Carolina. Analyses of geologic and geophysical data further indicate that these two zones may be the result of ongoing tectonic uplift along a NNE-trending right-lateral strike-slip fault zone possibly associated with recent seismicity near Charleston.

  5. Levelling profiles and a GPS network to monitor the active folding and faulting deformation in the Campo de Dalias (Betic Cordillera, southeastern Spain).

    PubMed

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  6. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    PubMed Central

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  7. North Chilean forearc tectonics and cenozoic plate kinematics

    NASA Astrophysics Data System (ADS)

    Buddin, Tim S.; Stimpson, Ian G.; Williams, Graham D.

    1993-04-01

    The continental forearc of northern Chile has been subjected to contemporaneous extension and compression. Here, cross-sections constructed across the forearc are presented which show that since initial shortening, deformation of the forearc has occurred in two tectonically distinct areas. These inner and outer forearc areas are separated by the strain discontinuity of the Atacama fault system and the tectonically neutral Central Depression. The outer forearc, the Coastal Cordillera, exhibits extensional tectonics, with large (up to 300 m) normal fault scarps preserved. These faults cut the earlier thrusts responsible for the elevation of Jurassic rocks at the coast above their regional elevation. The normal faults have been re-activated, displacing Quaternary salt deposits in the Salar Grande. This re-activation of the basement faults is probably due to the subduction of anomalously thick oceanic crust, producing an isostatic imbalance in the outer forearc. In the inner forearc, cross-sections through the Sierra del Medio and Cordillera de Domeyko show that structures of the Pre-Cordillera are best explained by a thick-skinned thrust system, with localized thin-skinned tectonics controlled by evaporite detachment horizons. Current forearc deformation features indicate a strong degree of correlation between subduction zone geometry and forearc tectonics. The timing of Cenozoic tectonism also fits well with established plate motion parameters, and the spatial and temporal variation in the state of stress of the forearc shows a close relationship throughout the Cenozoic to the plate kinematics and morphology of the subducting Nazca plate.

  8. Hidden faults in the Gobi Desert (Inner Mongolia, China) - evidence for fault activity in a previously tectonically stable zone

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Haedke, Hanna; Reicherter, Klaus

    2013-04-01

    The Gaxun Nur Basin (GNB, also Ejina Basin, Hei River Basin, Ruoshui Basin) north of the Tibetan Plateau and the Hexi Corridor is an endorheic basin bounded by the Bei Shan ranges in the west, the Gobi Altai mountains in the north and the Badain Jaran sand desert in the east. The basin is fed from the south by the braided drainage system of the Hei He (Hei River) and its tributaries, which originate in the Qilian Shan; terminal lakes like the dried Gaxun Nur and Sogo Nur are and have been temporal. The sedimentary succession of up to 300 m comprises intercalations of not only alluvial deposits but also lake sediments and playa evaporites. The basin has been regarded as tectonically inactive by earlier authors; however, the dating of sediments from an earlier drill core in the basin center provided some implications for tectonic activity. Subsequent remote sensing efforts revealed large lineaments throughout the basin which are now considered as possible fault line fingerprints. We investigated well preserved Yardangs (clay terraces) in the northeastern part of the GNB, in the vicinity of the Juyanze (paleo) lake, and found evidence for Holocene active tectonics (seismites). We present a lithological analysis of the relevant sequences and conclusions on the recent tectonic activity within the study area.

  9. Landslides in tectonically active areas and their influence on sediment supply to basins: examples from Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; McDonald, Jordan

    2016-04-01

    Landslides are a key mechanism of sediment delivery from hillslopes and can produce volumes of sediment that are potentially significant for basin stratigraphy. In tectonically active areas, landslides are highly sensitive to tectonic and lithological boundary conditions, but this sensitivity and the impact that landslides have on the overall sediment supply from catchments remain largely unquantified. Here we use a combination of DEM analysis and fieldwork to quantify the distribution and volumes of landslides along the strike of active normal faults in Southern Italy, where fault throw rates and lithology are well constrained. We then explore the geomorphic, tectonic and lithological variables controlling landslide occurrence. Additionally, we compare the landslide distribution with the transient incision that is affecting footwall channels as a result of active normal faulting. Finally, we quantify the grain size distributions (GSD) supplied by landslides across different lithologies and landslide types, and we compare them with those being supplied by bedrock weathering. Our results show that landslide frequency is highly influenced by lithology and the amount of incision experienced by the catchments, and that landslides supply on average GSDs that are 50% coarser than those supplied by the weathering of the same lithology. Landslides triggered during landscape adjustment to tectonics therefore have a significant impact both on the volumes and grain sizes of sediment exported to neighbouring basins, and the development of transient stratigraphy.

  10. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  11. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  12. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    USGS Publications Warehouse

    Barbour, Andrew

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength

  13. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Xu, Wen-Liang; Wang, Feng; Zhao, Shuo; Li, Yu

    2015-09-01

    This paper presents new zircon and sphene U-Pb ages, biotite and hornblende 40Ar/39Ar ages, Hf isotopic data, and geochemical data for five Mesozoic plutons in the Erguna Massif of NE China. These data are used to constrain the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. This new dating, when combined with previously published ages, indicates that the Late Jurassic-Early Cretaceous (J3-K1) intrusive rocks can be subdivided into three stages that represent periods of magmatism during the Late Jurassic (~ 155 Ma), early Early Cretaceous (~ 137 Ma), and late Early Cretaceous (~ 123 Ma). In addition, the rocks have undergone later deformation recorded by peak ages of ~ 137 and ~ 123 Ma. The Late Jurassic and early Early Cretaceous intrusive rocks in the study area are dominantly syenogranites and are either A-type granites or are classified as alkaline series, suggesting that they formed in an extensional environment. The late Early Cretaceous intrusive rocks in this area are generally monzogranitic and were emplaced as dikes in an extensional environment, along with coeval bimodal volcanics. These data, combined with the presence of regional unconformities in the northern part of Hebei Province and western part of Liaoning Province, and the spatial distribution of coeval volcanic rocks in NE China, suggest the Late Jurassic and early Early Cretaceous magmatisms and the early Early Cretaceous deformation in this area occurred in an extensional environment related to the delamination of a thickened part of the crust after closure of the Mongol-Okhotsk Ocean. In comparison, the late Early Cretaceous deformation and magmatism occurred in an extensional environment related to either delamination of the previously thickened crust related to the Mongol-Okhotsk tectonic regime or the subduction of the Paleo-Pacific Plate, or the combined influence of these two tectonic regimes.

  14. Structural deformation and evolution of right-lateral strike-slip tectonics of the Liaohe western depression during the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Jia, Dong; Chen, Wei; Zhang, Yikun; Wang, Maomao; Li, Yiquan; Li, Haibin; Li, Shiqin; Zhou, Xiaojun; Wu, Long; Zhang, Meng; Shen, Li; Sun, Chuang; Jin, Ke

    2013-11-01

    The Tan-Lu fault zone (TLFZ) traverses the Liaohe western depression (LHWD), affords an exceptional opportunity to reveal the structural deformation and evolution of a major strike-slip fault of the LHWD using three dimensional seismic data and well data. In this paper, based on structural interpretations of the 3-D seismic data of the LHWD, combined with depth slice and seismic coherency, a variety of structural features in relation to right-lateral strike-slip fault (the western branch of the Tan-Lu fault) have been revealed presence in the depression, such as thrust faults (Xinlongtai, Taian-Dawa, and Chenjia faults), structural wedges, positive flower structures, and en echelon normal faults. Fault cutoffs, growth strata and the Neogene unconformity developed in the LHWD verify that the activity of right-lateral strike-slip from the late Eocene to Neogene (ca. 43-23 Ma). The study indicates that the right-lateral strike-slip played an important role in controlling the structural deformation and evolution of the LHWD in the early Cenozoic. Moreover, the front structural wedge generated the gross morphology of the Xinlongtai anticline and developed the Lengdong faulted anticline during the late Eocene, and the back structural wedge refolded the Lengdong faulted anticline zone in the late Eocene to the early Oligocene. Wrench-related structures (the Chenjia thrust fault and the en echelon normal faults) were developed during the late Oligocene. Uniform subsidence in the Neogene to Quaternary. Furthermore, the driving force of the right-lateral strike-slip deformation was originated from N-S extension stress related to the opening of the Japan Sea and NE-SW compression, as the far-field effect of India-Eurasia convergence.

  15. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada

    NASA Astrophysics Data System (ADS)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  16. Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: an overview ( USA).

    USGS Publications Warehouse

    Hill, D.P.; Bailey, R.A.; Ryall, A.S.

    1985-01-01

    Geological, chronological, and structural studies of the Long Valley-Mono/Inyo Craters area document a long history of related volcanic eruptions and earthquakes controlled by regional extensional tectonics of the Basin and Range province. This activity has persisted for hundreds of thousands of years and is likely to continue. The Long Valley magma chamber had a volume approaching 3000 km3 prior to its climatic caldera-forming eruption 0.7 ma but has been reduced to less than a third of this volume by cooling, eruption, and crystallization. Although current unrest is concentrated in the S moat of Long Valley caldera, the Inyo/Mono Craters probably hold a greater potential for producing an eruption in the foreseeable future. The Inyo/Mono Craters have erupted at 500-year intervals over the past 2000-3000 years, whereas the Long Valley magma chamber has erupted at about 200,000-year intervals over the past 700,000 years. In either case, a major earthquake near the caldera could strongly influence the course of volcanic activity.-from Authors

  17. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  18. Geomorphic impacts of active tectonics on a river course, the case of Klissoura gorge, central Greece.

    NASA Astrophysics Data System (ADS)

    Tsanakas, Konstantinos; Fubelli, Giandomenico; Karymbalis, Efthimios

    2014-05-01

    The delicate balance of the natural processes within the river systems can be easily tipped making them very sensitive to changes occurring on the earth surface. Fluvial systems are therefore profoundly influenced by endogenic processes such as active tectonics as well as global sea level fluctuations following the climatic variations during the Quaternary. This study deals with the geomorphological evolution of the broader area of the abandoned gorge of Klissoura which is located in central Greece. This 130 m deep and roughly 3 km long gorge is a characteristic example of an old drainage course preserved on the footwall blocks of two normal faults which confine both outlets of the deeply incised valley. The gorge has formed by a river that once had a N-S flow direction discharging into the Gulf of Patras. Acheloos River and the much smaller Ermitza Remma Stream are the two recent primary watercourses which drain the area close to the abandoned gorge. Both the dimensions and morphological characteristics of the abandoned deep valley indicate that the gorge has formed by a large river with high discharge in order to incise into the limestone bedrock. In order to investigate the tectonic constrains and determine the geomorphic and climatic processes that compelled the lower reaches of Acheloos River to abandon the gorge and find an outlet following its present course a GIS based analysis at a scale of 1:50.000 was applied in the drainage basin of Acheloos River. Additionally, to reconstruct the palaeolandscape and the earth surface processes, a detailed morphometric and geomorphic analysis of the abandoned gorge was also performed at a scale of 1:5.000 coupled with field observations and stratigraphic analysis of the deposits outcropping on the valley sides within the gorge as well as on both outlets. The geomorphic analysis led to the conclusion that the primary course of the gorge abandonment and diversion and reverse of the drainage is the uplift of the footwall

  19. Imaging active faults in a region of distributed deformation from joint focal mechanism and hypocenter clustering: Application to western Iberia

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Lima, V.; Vales, D.; Carrilho, F.; Cesca, S.

    2015-12-01

    Mainland Portugal, on the SW edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation, which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. We analyse the instrumental earthquake catalog for western Iberia, enriched with data from recent dense broadband deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high quality data, earthquakes collapse into well-defined clusters and lineations. We then present a new joint focal mechanism and hypocenter cluster algorithm that is able to extract coherent information between hypocenter locations and focal mechanisms. We apply the method to the Azores-western Mediterranean region, with emphasis on western Iberia. In addition to identifying well-known seismo-tectonic features, the joint clustering algorithm identifies eight new clusters of earthquakes with a good match between the directions of epicentre lineations and focal mechanism fault planes. These clusters may signal single active faults or wider fault zones accommodating a consistent type of faulting. Mainland Portugal is dominated by strike-slip faulting, consistent with the NNE-SSW and WNW-ESE oriented lineations. The region offshore SW Iberia displays clusters that are either predominantly strike-slip or reverse, indicating slip partitioning. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, where high-magnitude earthquakes occur with long recurrence intervals.

  20. Active tectonics, paleoseismology and associated methodological challenges posed by the slow moving Alhama de Murcia fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas; Sharp, Warren D.; Arrowsmith, Ramon; Medialdea, Alicia; Rhodes, Edward

    2016-04-01

    The Alhama de Murcia fault (AMF) is a 87 km-long left-lateral slow moving fault and is responsible for the 5.1 Mw 2011 Lorca earthquake. The characterization of the seismic potential of seismogenic strike-slip slow moving faults is necessary but raises huge methodological challenges, as most paleoseismological and active tectonic techniques have been designed on and for fast moving faults. The AMF is used here as a pilot study area to adapt the traditional geomorphological and trenching analyses, especially concerning the precise quantification of offset channels. We: 1) adapted methodologies to slow moving faults, 2) obtained, for the first time, the slip rate of the AMF, and 3) updated its recurrence period and maximum expected magnitude. Morphotectonic studies aim to use the measured tectonic offset of surface channels to calculate seismic parameters. However, these studies lack a standard criterion to score the analysed features. We improved this by differentiating between subjective and objective qualities, and determining up to three objective parameters (lithological changes, associated morphotectonics and shape, and three shape sub-parameters; all ranging from 0 to 1). By applying this methodology to the AMF, we identified and characterized 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size) Digital Elevation Model (DEM) from a point cloud acquired in 2013 by airborne light detection and ranging (lidar). The identified offsets, together with the ongoing datings, are going to be used to calculate the lateral slip rate of the AMF. In three-dimensional trenches, we measured the offsets of a buried channel by projecting the far-field tendency of the channel onto the fault. This procedure is inspired by the widespread geomorphological procedure and aims to avoid the diffuse deformation in the fault zone associated with slow moving faults. The calculation of the 3D tendency of the channel and its projection onto the fault permitted

  1. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    could be possible to infer the genesis of the scarps as due to complex tectono-karstic phenomena. As for case (ii), our ongoing analyses are aimed to analyze the tectonic "significance" of some closed depressions, up to 4 km long and to 0,5-1 km large, that occur along the south-western slope of the Gran Sasso Range. All these small depression are NW-SE trending. As already described by Bosi et al. (1989), Galadini and Giuliani (1993), D'Agostino et al. (1998), Falcucci et al. (2015), these closed depressions are bounded by scarps carved onto the carbonate bedrock and, subordinately, onto early Quaternary slope deposits, reaching height of up to 5 m. These scarps are preferentially NE dipping, even if in few cases some SW dipping scarp are also present . The field work has permitted to attest that these scarps are related to shear planes that that displaced two subsequent of Early Pleistocene breccias formations (the Valle Valiano Fm. and Fonte Vedice Fm.; Bosi e Bertini, 1993; D'agostino et al., 1997). A paleoseismological trench was also performed across one of these scarps, attesting the activity of these shear planes also in recent times, providing indications result about the deformation style. Reference Bertini, T., & Bosi, C. (1993). La tettonica quaternaria della conca di Fossa (L'Aquila). Il Quaternario, 6(2), 293-314. Bertini, T., Bosi, C., & Galadini, F. (1989). La conca di Fossa-S. Demetrio dei Vestini. CNR, Centro di Studio per la Geologia Tecnica, ENEA, PAS in Elementi di tettonica pliocenicoquaternaria ed indizi di sismicita olocenica nell'Appennino laziale-abruzzese, Societa Geologica Italiana, L'Aquila, 26-58. Bosi, C., & Bertini, T. (1970). Geologia della media valle dell'Aterno. Memorie Società Geologica Italiana, 9(4), 719-777. D'Agostino, N., F. Speranza, & R. Funiciello., (1997) "Le Brecce Mortadella dell'Appennino Centrale: primi risultati di stratigrafia magnetica." Il Quaternario10.2: 385-388. D'Agostino, N., Chamot-Rooke, N., Funiciello, R

  2. Sensing surface mechanical deformation using active probes driven by motor proteins

    PubMed Central

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  3. Sensing surface mechanical deformation using active probes driven by motor proteins

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-10-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science.

  4. Teleseismic P and S Delay Times within Tectonically Active and Stable North America

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.

    2009-12-01

    We have measured teleseismic P and S relative delay times within 1) Stable North America (SNA) using waveforms from IRIS PASSCAL seismic arrays MOMA (Fischer et al., 1995), ABBA (Roecker and Beavan, 1995), Abitibi (Hearn and Mareschal, 1996), and FLED (Wysession and Fischer, 2001), and 2) Tectonically-active North America (TNA) using Earthscope's Transportable Array (TA). To study the contribution of mantle structure to these delays we subtracted delays predicted for topography and crustal structure, using CRUST 2.0 (Bassin et al., 2000). Preliminary analyses of delay times from earthquakes with Mw>=6.5 show surprising differences between the heterogeneity of the mantle beneath SNA and TNA. While the range of delay times is expectedly small for an intra-shield array such as Abitibi, the range of delay times from Proterozoic basement in the midwest to Paleozoic margin in New England is much larger and slightly exceeds that for the TA in TNA. This suggests that that the mantle of SNA is slightly more heterogeneous than TNA, despite there being relatively little surface expression of this heterogeneity. Patterns of P and S relative delay times measured in TNA correlate better with surface tectonics, suggesting that the mantle in TNA has a greater effect on the surface geology than in SNA. The central and southern Basin and Range are characterized by positive delays. As shown in previous studies, the Snake River Plain is also well delineated by positive delays. These delays exhibit a significant peak at station H17A in Yellowstone National Park. Teleseismic P and S waves arriving at stations in the Rocky Mountains are much faster, including in northern Idaho and western Washington, but not in western Oregon. For both SNA and TNA, the measured S and P delay times have a significant linear correlation, with S delays at approximately 3 times the P delays, which confirms the dominant effect of mantle temperature on mantle velocity structure. However, the slope of this

  5. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  6. Interactions between recent tectonic activity and the evolution of mountain relief of the Inner Cottians Alps (Western Alps): preliminary morphotectonic map.

    NASA Astrophysics Data System (ADS)

    Bacenetti, Marco; Morelli, Michele; Cadoppi, Paola; Giardino, Marco; Perotti, Luigi; Perrone, Gianluigi

    2014-05-01

    Possible interactions between recent tectonic activity and the evolution of mountain relief have been investigated at the regional (1:50,000) and local (1:5,000) scale in the Germanasca Valley (Cottian Alps, NW-Italy) through an integrated, multidisciplinary approach combining Structural analysis, Quaternary Geology, Geomorphology and Geomatics. The inner edge of the Cottians Alps and the adjacent Po Plain are among the most densely populated portions of the Piemonte Region (NW-Italy). This area corresponds to the junction between the Alpine and Apennine chains and it is affected by a diffuse low- to moderate- seismicity (Ml<5) and hypocenters at a shallow crustal level (< 20 Km). Available apatite fission track data indicate that this sector reached shallow crustal levels, where brittle deformation mechanisms prevail since Late Oligocene times. Historical earthquakes (e.g. Prarostino's earthquakes, 1808 Ml=5.5; Cumiana's earthquakes, 1980 Ml=4.8) caused both material and social damage in the area. Since faults activity is often associated with characteristic geomorphological features, linear valleys, ridgelines, slope-breaks, steep slopes of uniform aspect, regional anisotropy and tilt of terrain, have been detected in the area. Analysis of digital elevation models, by means of numerical geomorphology, provides a tool to recognize linear features and characterizing the tectonics of an area in a quantitative way. Geomorphology and morphotectonic analyses have been performed using digital orthophotos (AGEA Orthophoto 2009), aerial stereo couples and DEMs (LiDAR5x5 meters, Regione Piemonte 2009). The morphotectonic lineament analysis was conducted using TerraExplorer® Software Systems, Inc. For the field mapping activities, it was used an application called "SRG2" (Support to Geological / Geomorphological Surveys), an extension for ArcPad (ESRI mobile GIS). Into ArcPad, the SRG2 application adds a toolbar made up of several functions for a useful mapping and

  7. Relative earthquake location for remote offshore and tectonically active continental regions using surface waves

    NASA Astrophysics Data System (ADS)

    Cleveland, M.; Ammon, C. J.; Vandemark, T. F.

    2015-12-01

    Earthquake locations are a fundamental parameter necessary for reliable seismic monitoring and seismic event characterization. Within dense continental seismic networks, event locations can be accurately and precisely estimated. However, for many regions of interest, existing catalog data and traditional location methods provide neither accurate nor precise hypocenters. In particular, for isolated continental and offshore areas, seismic event locations are estimated primarily using distant observations, often resulting in inaccurate and imprecise locations. The use of larger, moderate-size events is critical to the construction of useful travel-time corrections in regions of strong geologic heterogeneity. Double difference methods applied to cross-correlation measured Rayleigh and Love wave time shifts are an effective tool at providing improved epicentroid locations and relative origin-time shifts in these regions. Previous studies have applied correlation of R1 and G1 waveforms to moderate-magnitude vertical strike-slip transform-fault and normal faulting earthquakes from nearby ridges. In this study, we explore the utility of phase-match filtering techniques applied to surface waves to improve cross-correlation measurements, particularly for smaller magnitude seismic events. We also investigate the challenges associated with applying surface-wave location methods to shallow earthquakes in tectonically active continental regions.

  8. Taiwan: a perfect field trip to study active tectonics and erosion processes

    NASA Astrophysics Data System (ADS)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  9. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  10. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  11. The variety of subaerial active salt deformations in the Kuqa fold-thrust belt (China) constrained by InSAR

    NASA Astrophysics Data System (ADS)

    Colón, Cindy; Webb, A. Alexander G.; Lasserre, Cécile; Doin, Marie-Pierre; Renard, François; Lohman, Rowena; Li, Jianghai; Baudoin, Patrick F.

    2016-09-01

    Surface salt bodies in the western Kuqa fold-thrust belt of northwestern China allow study of subaerial salt kinematics and its possible correlations with weather variations. Ephemeral subaerial salt exposure during the evolution of a salt structure can greatly impact the subsequent development and deformation of its tectonic setting. Here, we present a quantitative time-lapse survey of surface salt deformation measured from interferometric synthetic aperture radar (InSAR) using Envisat radar imagery acquired between 2003 and 2010. Time series analysis and inspection of individual interferograms confirm that the majority of the salt bodies in western Kuqa are active, with significant InSAR observable displacements at 3 of 4 structures studied in the region. Subaerial salt motion toward and away from the satellite at rates up to 5 mm/yr with respect to local references. Rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) and temperature from a local weather station are used to test the relationship between seasonality and surface salt motion. We observe decoupling between surface salt motion and seasonality and interpret these observations to indicate that regional and local structural regimes exert primary control on surface salt displacement rates.

  12. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  13. Microearthquakes and tectonics in an active back-arc basin: the Lau Basin

    NASA Astrophysics Data System (ADS)

    Eguchi, Takao; Fujinawa, Yukio; Ukawa, Motoo

    1989-09-01

    An Ocean Bottom Seismograph (OBS) array was deployed for 20-22 days in late 1984 to investigate the precise locations of microearthquakes and their tectonic implications for active back-arc opening in the northern Lau Basin. Using P- and S-wave arrival times from four or more OBSs, the hypocenters of ˜ 300 shallow earthquakes were located with a high confidence level. The magnitudes of most OBS-located earthquakes were estimated to be less than four. In the northern half of the survey area, a narrow, linear zone of microearthquakes, trending NNW-SSE, has been identified. The northern part of the narrow seismic zone is within a central axial depression at the southern end of the Peggy Ridge. Further south, the trend of the seismic zone becomes more N-S. The narrow seismic zone seems to be composed of at least six seismic segments, offset by short aseismic zones. Most of the seismic segments trend NNW-SSE, suggesting a system of left-stepping en echelon spreading ridges, where the spreading ridge segment is seismically inactive and the transform fault is active. The spreading ridges appear to strike N-S or NNW-SSE, but the direction of the back-arc opening is considered to be NW-SE. No hypocenters were located with a high level of precision in the area south of latitude 18°S, except a small isolated zone of shallow earthquakes at the southeastern part of the survey area. We suggest that the shallow earthquakes in this isolated seismic zone were intraplate events in the Tonga platelet. This platelet is separated from the major Indo-Australian plate by the back-arc opening system in the Lau Basin.

  14. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  15. Geomorphic Indicators and Tectonic Implications of the Active Chaochou Fault, Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Hung, J.; Liao, H.

    2003-12-01

    The Chaochou Fault, lying on the easternmost edge of the Pingtung plain, is the major geologic boundary between the Slate Belt to the east and the Western Foothills to the west. According to previous studies, the Chaochou fault is a high-angle reverse fault dipping 75-80 degrees to the east. Along strike, several transverse rivers cut across the fault and form alluvial fans in the foothills, which provide unique morphotectonic features to study the activity of the Chaochou Fault. Digitized data from topographic maps of 1/5,000 to 1/25,000 scales and digital elevation data of 40m resolution were input into GIS software and analyzed to quantitatively evaluate geomorphic indicators such as hypsometric integral, stream length-gradient index and drainage basin asymmetry etc. Anomalies of these indices are further checked in the field on bedrocks, man-made structures and fold and faults, to clarify spatial variations of indicators. These, coupled with GPS data, field survey in the slate belt and uplifted terraces and subsurface seismic profiles, can further constrain spatial and temporal kinematics of the Chaochou fault and the relationship between topographic evolution and subsurface structures. Our preliminary results show that river landforms are highly related to the Chaochou Fault. Drainages were tilted to the west in response to uplifting in the east of the Chaochou Fault. Geomorphic indices indicate that the uplift rate is higher in the north and decreases progressively toward the south. The peak tectonic activity occurs in the area between the Chaochou and the Chishan Fault.

  16. Erosional flux from tectonically active landscapes: Case studies from Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Allen, Philip; Gheorghiu, Delia; Rodes, Angel

    2016-04-01

    Erosion and sediment supply are fundamentally important controls on landscape evolution, governing the denudation of relief, the stratigraphy deposited in basins, and the ultimate destruction of orogens. However, quantifying the rates, timescales, and predominant processes of erosion remains a major challenge in many tectonically active areas. Here, we use Southern Italy as a case study to demonstrate how these challenges can be overcome. We present 15 new 10Be catchment-averaged erosion rates, for systems distributed along 5 active normal faults for which we have excellent constraints on throw rates along strike and uplift history. These footwall catchments have a total relief of up to 1800 m and throw rates up to 1.4 mm/yr. We show that sediment supply estimates based on the 10Be erosion rates agree well with sediment supply predictions based on the fault throw profiles. Our results suggest that about 80% of the material uplifted by the faults is being eroded at a similar magnitude to the fault throw rates, offering new insights into the topographic balance of uplift and erosion in this area. These findings imply that active normal faulting is the primary control on sediment supply in Southern Italy. Our field observations suggest that landslides are an important source of sediment in our study area, and are largely driven by incision in response to fault activity. Using a field-calibrated landslide inventory, we estimate landslide-derived sediment flux for our sampled catchments. These estimates correlate well with total sediment flux estimates, demonstrating quantitatively that landslides must be a major source of sediment. Their erosional signal is adequately captured by the 10Be analyses most likely because of the high frequency of small landslides and their high spatial density in these catchments (typically >10% of the total area), which ensures sufficient sediment mixing. Finally, we use our results to calibrate the BQART model of sediment supply, enabling

  17. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  18. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  19. Mechanics of dielectric elastomer-activated deformable transmission grating

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Zhou, Jinxiong; Sun, Wenjie; Wu, Xiaohong; Zhang, Ling

    2014-09-01

    Laminating a thin layer of elastomeric grating on the surface of a prestretched dielectric elastomer (DE) membrane forms a basic design of electrically tunable transmission grating. We analyze the inhomogeneous deformation of a circular multiple-region configuration. Variation of the geometric and material parameters, as well as of the critical condition determined by loss of tension instability, is probed to aid the design of a DE-based deformable grating. The predicted changes in the grating period agree substantially with the experimental results reported by Aschwanden et al (Aschwanden et al 2007 IEEE Photon. Technol. Lett. 19 1090).

  20. Differentiating tectonic from climatic factors in the evolution of alluvial fans

    SciTech Connect

    Wilson, D.S.; West, R.B. . Dept. of Geology)

    1993-04-01

    Alluvial fans are integral parts of landscapes of arid and semi-arid regions and are most commonly found along the flanks of tectonically active mountain ranges. Alluvial fans are sensitive indicators of tectonic and climatic activity through time. Three dimensional fan modelling has the potential to discriminate between these two forces and provide quantitative estimates of deformation of fan surfaces due to tilting, faulting, or folding. The model has tremendous potential for seismic hazard evaluation at both the reconnaissance and detailed level of investigation. The ability to recognize deformation of alluvial fans alleviates the need for postulation of complex interactions between climate and internal variables in the depositional system leading to present fan morphology. The greatest problems associated with fan modelling come from failure to identify individual segments. Inclusion of more than one segment can lead to poor model performance or, more likely, inaccurate results. The long term tectonic influence on a fan's evolution can be assessed from the differences in deformation of different segments. Reliable correlations of segments from different fans along the same mountain front can provide a means to asses regional deformation. Once tectonic effects are taken into account, then climatic effects can be evaluated. Previous fan models have failed to recognize areal limitations, failed to account for deformation, or assumed deformation geometry.

  1. A tectonic resurfacing model for Venus

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    Two remarkable aspects of the population of impact craters on Venus are that craters at all sizes are indistinguishable from a random population and that the vast majority of craters have not been significantly modified by tectonic strain or by volcanic flows external to the crater rim, despite evidence from Magellan images that volcanic and tectonic features are widespread on Venus. One interpretation of these observations is that most of the surface dates from the end of a catastrophic global resurfacing event that ceased about 500 My ago, and that the small fraction of craters volcanically embayed or modified by deformation indicates that volcanic and tectonic activity subsequent to that time has been at much lower levels. An alternative model, in which resurfacing occurs episodically in patches a few hundred kilometers in extent and there is a wider spectrum of surface ages, also appears to be consistent with the characteristics of impact craters on Venus. A number of potential mechanisms for catastrophic resurfacing of Venus have been proposed, ranging from geologically sudden convective destabilization of the global lithosphere to strongly time-dependent heat flux and melt generation in the underlying mantle. In most of these geophysical models, resurfacing occurs implicitly or explicitly by volcanism. We explore the hypothesis that, at least in the geologically recent history of Venus, the primary resurfacing mechanism has been tectonic deformation rather than volcanism. We show how such a hypothesis provides at least as good an explanation of a wide range of observations as do volcanic resurfacing models. Finally, we explore the implications of tectonic resurfacing hypothesis for the controversy over the recent resurfacing history of the planet.

  2. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    Seychelles microcontinent from India, sedimentary basin development in western Rajasthan and the alkaline magmatism of Mundwara, Sarnu-Dandali and elsewhere are considered to be the products of Reunion plume activity in western India. However, basin development began in western Rajasthan in the Jurassic period and no plume has been suggested for this. The continual extensional tectonic regime caused deep fractures in the continental and oceanic lithosphere. The Cambay-Sanchor-Barmer rift developed in continental lithosphere. The Mundwara, Sarnu-Dandali and Barmer magmatism with nephelinite-carbonatite affinity at the basin margin represents a typical rift-tectonic setting. The tectonic setting and crustal development during the K-T period in western Rajasthan represents an extensional tectonic regime rather than the manifestation of Reunion plume activity.

  3. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  4. Active Tectonics of off-Hokuriku, Central Japan, by two ships seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Kato, Naoko; Sato, Hiroshi; Ishiyama, Tatsuya; Abe, Susumu; Shiraishi, Kazuya

    2015-04-01

    Along the southern to eastern margin of the Sea of Japan, active faults are densely distributed. These submarine active faults produced tsunami disasters, such as 1983 Nihonkai-chubu earthquake (M7.7) and 1993 Hokkaido Nansei-oki earthquake (M7.8). To estimate tsunami hazards, we performed deep seismic reflection profiling to obtain the information of tsunami source faults, off-Hokuriku area in the central part of Honshu, Japan. The survey is carried out as a part of research project named "the integrated research project on seismic and tsunami hazards around the Sea of Japan" funded by MEXT. To obtain long offset data in busy marine activity area, we used two vessels; a gun-ship with 3020 cu. inch air-gun and a cable-ship with a 2-km-long, streamer cable with 156 channels and 480 cu. inch air-gun. Common-midpoint reflection data were acquired using two ships at 4 km offset. The survey area consists of stretched continental crust associated with rifting and opening of the Sea of Japan in early Miocene and is marked by densely distributed syn-rift normal faults. Fault reactivation of normal faults as reverse faults is common. Two phases of fault reactivation are identified from the seismic sections after termination of opening of the Sea of Japan. One is the late Miocene NS trending shortening deformation. This is produced by NS-trending convergence of the Shikoku basin (15 Ma), which belongs to the Philippine Sea plate (PHS) to SW Japan at Nankai trough (Kimura et al., 2005). After the initiation of the subduction of PHS at Nankai trough, the strong shortening deformation is terminated and the fold-and-thrust belt was unconformably covered by sub-horizontal Pliocene sediments. Some horizons of unconformities represent multiple events of shortening driven from the subduction interface. Some normal faults reactivated as active strike-slip and reverse faults in Quaternary. Well observed example is the 2007 Noto peninsula earthquake (M6.8). The 2007 Noto peninsula

  5. Tectonic evolution of northwestern Imbrium of the Moon that lasted in the Copernican Period

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi; Haruyama, Junichi; Morota, Tomokatsu; Ohtake, Makiko; Matsunaga, Tsuneo

    2016-09-01

    The formation ages of tectonic structures and their spatial distributions were studied in the northwestern Imbrium and Sinus Iridum regions using images obtained by Terrain Camera and Multiband Imager on board the SELENE spacecraft and the images obtained by Narrow Angle Camera on board LRO. The formation ages of mare ridges are constrained by the depositional ages of mare basalts, which are either deformed or dammed by the ridges. For this purpose, we defined stratigraphic units and determined their depositional ages by crater counting. The degradation levels of craters dislocated by tectonic structures were also used to determine the youngest limits of the ages of the tectonic activities. As a result, it was found that the contractions to form mare ridges lasted long after the deposition of the majority of the mare basalts. There are mare ridges that were tectonically active even in the Copernican Period. Those young structures are inconsistent with the mascon tectonics hypothesis, which attributes tectonic deformations to the subsidence of voluminous basaltic fills. The global cooling or the cooling of the Procellarum KREEP Terrane region seems to be responsible for them. In addition, we found a graben that was active after the Eratosthenian Period. It suggests that the global or regional cooling has a stress level low enough to allow the local extensional tectonics.[Figure not available: see fulltext.

  6. Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Bruhn, R. L.

    1984-01-01

    Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.

  7. Structural deformation and sedimentation in an active Caldera, Rabaul, Papua New Guinea

    USGS Publications Warehouse

    Greene, H. Gary; Tiffin, D.L.; McKee, C.O.

    1986-01-01

    Recent seismic and tectonic activity in Rabaul Caldera, Papua New Guinea, suggests that magma is accumulating at a shallow depth beneath this partially submerged structure and that a new volcano may be developing. Changes in onshore elevation since 1971 (as much as 2 m on south Matupit Island) indicate that rapid and large-scale uplifts have occurred on the seafloor near the center of the caldera. The frequency of seismic events within the caldera has also increased during this period. Earthquake locations define an elliptical ring surrounding the center of this uplift within the caldera. A marine geophysical survey in 1982 by the U.S. Geological Survey's R/V "S.P. Lee" in Rabaul Caldera shows the development of a bulge in the seafloor near the center of the caldera. High-resolution seismic reflection profiles show that this bulge consists of two domal uplifts bounded and separated by two major north-south-trending fault zones. Deformed sediments overlie these zones; a prominent slump flanks the area of the bulge. Five major acoustic units were identified in the seismic reflection profiles: an acoustic basement and four sedimentary units consisting of irregularly layered, cross-layered, contorted, and well-layered sequences. The acoustic basement is probably composed of crystalline volcanic rocks, and the layered acoustic units are probably sediments, primarily ash deposited in different environments. The cross-layered, irregularly layered, and contorted units appear to have been deposited in a dynamic environment subjected to strong currents, seismicity, and/or mass wasting, while the well-layered units were deposited in a low-energy environment. Locally, well-layered sequences interfinger with the other sedimentary units, indicating a transitional environment that alternated between high-energy and low-energy depositional processes. A submarine channel cuts most of the acoustic units and appears to be the conduit for sediment transport out of the caldera; it

  8. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  9. Active crustal deformation in the Jalisco block, Mexico: evidence for a great historical earthquake in the 16th century

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; García-Acosta, Virginia; Gaulon, Roland

    1994-06-01

    On December 27th, 1568, a large earthquake occurred to the southwest of Guadalajara, Mexico, near the northeastern corner of the Jalisco block, in an area where no great earthquakes have been reported before. It caused heavy damage in the region where the Colima and Tepic-Zacoalco grabens intersect. Many churches, houses and convents in the neighboring towns collapsed and severe deformation of the ground was observed in the area. Landslides apparently dammed the Ameca River for several days and the opening of large cracks was reported in the lowlands. The flow of natural springs and the level of Lake Zacoalco changed dramatically after the earthquake. All of these reports strongly suggest that a local fault was the source of this large and destructive earthquake. Based on the intensity data inferred from the historical reports, the 1568 event is perhaps the largest earthquake to date in the Trans-Mexican Volcanic Belt. Compared to other well documented, large earthquakes that occurred in the volcanic belt in 1875, 1912 and 1920, the magnitude appears to be greater than 7.0 ( MW). The Jalisco block is presumed to be rifting away from the North American plate. The Colima and Tepic-Zacoalco grabens, which bound the Jalisco block to the east and north, respectively, are apparently the boundaries where rifting is taking place in a complex and highly faulted environment. Based on the data available, it is impossible to identify the specific fault ruptured during the earthquake unequivocally. However, the occurrence of this large event in 1568 confirms that active deformation is still taking place in the Jalisco block. The apparently long recurrence times of these large events suggest that tectonic deformation is slow.

  10. Constraints from finite element modeling on the active tectonics of northern Central America and the Middle America Trench

    NASA Astrophysics Data System (ADS)

    ÁLvarez-Gómez, José A.; Meijer, Paul T.; MartíNez-DíAz, José J.; Capote, Ramón

    2008-02-01

    We have developed an elastic finite element model in order to study the role of the different forces acting on the northwestern part of the Central American Volcanic Arc and the Chortis Block. We present synthetic focal mechanisms, maps of tectonic regime, and strain crosses to analyze the results. The models show that to achieve the observed state of stress on the volcanic arc, the arc must be modeled as a lithospheric weak zone. Also, the forces related to the eastward drift of the Caribbean plate must be higher than those related to the subduction of the Cocos plate. The coupling on the subduction interface must be low, with or without slip-partitioning due to the obliquity of the subduction at the trench. At Guatemala the western edge of the Chortis block is pinned against North America, even with low trench-normal forces, making the triple junction between the Cocos, North American, and Caribbean plates a zone of diffuse deformation. The extension in the western part of the Chortis block, from Guatemala to the Honduras depression, is explained by the geometry of the North American-Caribbean plate boundary and the direction of motion of the Caribbean plate with respect to North America. The direction of extension in the Chortis block is always E-W regardless of the magnitude of the applied forces, and the main part of the deformation is absorbed between the Ipala graben and the Honduras depression, both features being consistent with our models.

  11. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  12. Magnetic fabric results in weakly deformed deposits from extensional and compressional domains of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Caricchi, Chiara; Cifelli, Francesca; Kissel, Catherine; Sagnotti, Leonardo; Mattei, Massimo

    2016-04-01

    Since 1960s the anisotropy of magnetic susceptibility (AMS) analysis has been used to reconstruct the deformation history of rocks, and many studies have been published regarding the relationships between magnetic fabric and tectonics. Nevertheless, an active scientific debate still exists on the tectonic or sedimentary origin of the magnetic fabric observed in sedimentary rocks in which visible evidence of deformation is lacking. In this work, we present results from AMS analyses carried out on weakly deformed fine-grained sediments from the Northern Apennines (Italy). We analyzed pre-, syn- and post- orogenic sequences, which differ in age, composition, depositional environment, degrees of deformation and tectonic regimes. The AMS fabric of these weakly deformed sediments is characterized by a magnetic foliation sub-parallel to the bedding plane, and a magnetic lineation well-defined in this plane. The sediments are characterized by strongly oblate magnetic susceptibility ellipsoids suggesting that magnetic fabric results from both compaction process and tectonic load during diagenesis and orogenic events. The orientation of the magnetic lineation with respect to the main tectonic elements depends on the regional tectonic context, and in particular it varies between extensional and compressional tectonic regimes. In the pre- and syn- orogenic deposits of the more internal arc of the Apennine chain, the lineation is mostly NNW-SSE, parallel to the main compressional structures (folds and thrusts), suggesting a tectonic origin of the magnetic lineation with an acquisition related to the Apennines compressional phases. Instead, in the post-orogenic deposits of the extensional basins developed along the Tuscan Tyrrhenian Margin, magnetic lineation is oriented ENE-WSW, almost perpendicular to the main extensional faults which represent the main deformation elements of the area. Our results indicate a distinctive linkage between the magnetic fabric and the local

  13. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  14. Mouthpart deformities and nucleolus activity in field-collected Chironomus riparius larvae.

    PubMed

    Meregalli, G; Bettinetti, R; Pluymers, L; Vermeulen, A C; Rossaro, B; Ollevier, F

    2002-05-01

    Chironomid mouthpart deformities and aberrations of their polytenic chromosomes are sublethal responses to toxic stress. These endpoints have been used in several cases as bioindications for sediment pollution. In the present study we aimed to establish whether there was an association between mouthpart deformities and nucleolus activity in the polytenic chromosomes. Such information could be useful to gain insight into the mechanisms involved in the occurrence of mouthpart deformities and their consequences on the larvae. Third-instar larvae of Chironomus riparius were collected at a site downstream of a sewage treatment plant mostly contaminated by pesticides. Larvae were then raised in the laboratory in aquaria containing sediment and water from the study location. During a 16-day period, larvae ready to molt to the fourth instar were reared individually. Within a few hours of their molt, the larvae were preserved. The presence of mouthpart deformities (mentum, mandibles, and pecten epipharyngis) and the percentage of active nucleoli were assessed. Those larvae presenting mentum deformities had a significantly higher incidence of active nucleoli in their polytenic chromosomes than nondeformed larvae. Because a high number of active nucleoli generally indicates increased rRNA synthesis, deformed larvae seemed to exhibit a higher protein synthesis than normal individuals. The synthesis of additional proteins may increase deformed larva tolerance to toxicants. PMID:11994780

  15. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  16. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  17. Active deformation in Western Turkey: new GPS observations and models

    NASA Astrophysics Data System (ADS)

    Nocquet, J.; Aktug, B.; Parsons, B.; Cingoz, A.; England, P.; Erkan, Y.; Soyer, N.; Akdeniz, H.; Kilicoglu, A.

    2007-12-01

    How the continents deform remains a matter of debate. One view postulates that continental deforming zones are comprised of a limited numbers of rigid (elastic) microplates. If true, the surface motion can then be described by the relative rotation of blocks, and strain should be localized along the major faults separating the blocks. An alternative view is that the deformation at depth is distributed over wide areas, can be modelled by a viscous flow responding to boundary conditions applied on it and gravitational potential energy gradients related to variations in topography, and the surface strain simply reflects this deformation. Western Turkey is a region of crustal extension, part of the Nubia/Eurasia plate boundary. Its kinematics is often modelled by the relative motion of a small number of rigid blocks (Nyst & Thatcher, 2005, Reilinger et al., 2006). However, until now, the limited number of GPS velocity vectors available has prevented a detailed examination of which is the more appropriate description. We present a new geodetic velocity field including ~100 sites from the longitude the Central Anatolian plateau to the Aegean coast, derived from a combination of campaigns carried out between 1997 and 2006, and continuous GPS operating since 2003, which we use to test the different models. While the kinematics of the area can be correctly modelled by a block model, a good fit to the velocity field requires blocks with sizes smaller than 100 km and still fails to adequately predict the strain rate observed within blocks . Alternatively, we test an approach where the lithosphere is modelled as a thin viscous sheet, responding to the gravitational potentiel energy contrast between the high plateau of eastern Turkey to the east and the subduction along the Hellenic trench in the southwest. The simplistic model has only one free parameter (the force applied by the subducting oceanic lithosphere on the Aegean ), but provides a good agreement with the observed

  18. Constraining deformation history and recent activity along the Tuz Gölü fault zone, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Krystopowicz, N. J.; Schoenbohm, L. M.; Cosca, M. A.

    2013-12-01

    The 200 km long, dextral, transtensive Tuz Gölü fault zone is a prominent northwest-striking feature in Central Anatolia. It is one of the most significant structures in Central Anatolia in that it lies within the transition zone between the Western Anatolian Extensional Province and the Eastern Anatolian Contractional Province; its study therefore offers valuable insight into how Central Anatolia is affected by lateral extrusion related to collision in the east, and gravitational pull forces associated with subduction in the west. Proposals for the initiation of the Tuz Gölü fault zone range from Cretaceous to Neogene times, and the amount of recent activity along this fault system remains poorly constrained. Furthermore, potential basinward migration of deformation into the Tuz Gölü basin poses the question as to whether or not this fault system is active in the Holocene. Previous work suggests that migration of deformation towards the basin interior may be related to lithospheric-scale processes such as plateau development, microplate extrusion, or the onset of crustal thinning associated with slab-tear propagation in subducting African lithosphere. In this study, we use a combination of paleostress and morpho-tectonic analysis to further delineate the segmentation and present activity of the Tuz Gölü fault zone. Paleostress analysis offers insight into the deformation history of the region as well as the modern-day stress regime. We conducted a morphometric analysis of over 300 drainage basins along the range-front, which reveal variations that characterize the unique development of numerous fault strands in the region. Statistical analysis of hypsometric curves, systematic variation in basin morphology and orientation, as well as changes in mountain-front sinuosity reveal fault segmentation. Additionally, field mapping and Ar-Ar dating of offset lava flows from the Hasan Dag Volcano quantitatively constrain slip-rates in the southeastern portion of the

  19. Quaternary migration of active extension revealed by a syn-tectonic alluvial fan shift. A case study in the Northern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Mirabella, Francesco; Bucci, Francesco; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2016-04-01

    In areas characterized by the progressive migration of active extension through time, shifts in the position of the active depocenter occur. Such shifts through time produces peculiar geomorphological settings that are often characterized by wind gaps, abandoned valleys, streams captures and drainage inversions. These features provide the opportunity to investigate active areas by studying the recent-most geological history of the related nearby basins. We investigate this topic in a tectonically active area in the Northern Apennines of Italy, as indicated by both instrumental and historical seismicity (maximum epicentral intensity I0=VIII) and extension rates in the order of 2.5-2.7 mm/yr. In particular, we study the Montefalco ridge drainage inversion. Here, fluvial sands and imbricated conglomerates deposited in a lower Pleistocene depocenter constituted by an extensional subsiding basin, are presently uplifted more than 200 m above the present day alluvial plain. The Montefalco ridge drainage inversion, at about 400 m a.s.l., separates two valleys, the Gualdo Cattaneo - Bastardo valley to the West (300 m a.s.l.) and the Foligno present-day alluvial plain to the East (200 m a.s.l.). Seismic reflection data show that the maximum thickness of the continental sequence in the Foligno valley is in the order of 500 m. This valley is presently occupied by a 37 km2 alluvial fan produced by the Topino river flowing from NE to SW. To unravel the Quaternary tectonic evolution of the area, we integrate different data sets collected by field mapping, detailed photo-geological data, sediments provenance information, and subsurface data. We interpret the Montefalco ridge as a paleo-Foligno-like alluvial fan representing the evidence of the recent migration of the active extension to the East of around 7 km. Considering an age of deformation of 2.5 My, an extension rate of about 2.8 mm/yr is derived, which corresponds to the present-day geodetic rates. We stress the importance

  20. Active tectonic extension across the Alto Tiberina normal fault system from GPS data modeling and InSAR velocity maps: new perspectives within TABOO Near Fault Observatory

    NASA Astrophysics Data System (ADS)

    Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore

    2014-05-01

    The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions

  1. Caribbean plate tectonics from seismic tomography

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Villasenor, A.

    2012-12-01

    New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.

  2. Coseismic fault zone deformation caused by the 2014 Mw=6.2 Nagano-ken-hokubu, Japan, earthquake on the Itoigawa-Shizuoka Tectonic Line revealed with differential LiDAR

    NASA Astrophysics Data System (ADS)

    Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.

    2015-12-01

    The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.

  3. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  4. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).

    PubMed

    King, G; Soufleris, C; Berberian, M

    1981-03-01

    surface faulting. It h a s also been observed that high aftershock activity appears beneath gaps in the surface rupture system. The Carlisle earthquake (Force moment 9 times 10(23) dyne cm. Geometric moment 3 times 10(6) m(3) ) produced no surface ruptures. However, dislocation model-ling suggests that surface deformation will be visible on a first order levelling line which passes very close t o the epicentre. A well controlled fault plane solution, the first in the British Isles, derived from an aftershock study shows north-south compression. All three studied earthquakes occurred along major faults which had been reactivated in geological times. The fault on which the Tabas-e-Golshan earthquake occurred could have been identified a s active from evidence of Quaternary motion and previous smaller earthquakes. However, there were no perceptible events in the 12 months preceeding the catastrophic earthquake. In both Thessaloniki and Carlisle, significant foreshocks did occur within 6 months prior to the main shock*

  5. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).

    PubMed

    King, G; Soufleris, C; Berberian, M

    1981-03-01

    surface faulting. It h a s also been observed that high aftershock activity appears beneath gaps in the surface rupture system. The Carlisle earthquake (Force moment 9 times 10(23) dyne cm. Geometric moment 3 times 10(6) m(3) ) produced no surface ruptures. However, dislocation model-ling suggests that surface deformation will be visible on a first order levelling line which passes very close t o the epicentre. A well controlled fault plane solution, the first in the British Isles, derived from an aftershock study shows north-south compression. All three studied earthquakes occurred along major faults which had been reactivated in geological times. The fault on which the Tabas-e-Golshan earthquake occurred could have been identified a s active from evidence of Quaternary motion and previous smaller earthquakes. However, there were no perceptible events in the 12 months preceeding the catastrophic earthquake. In both Thessaloniki and Carlisle, significant foreshocks did occur within 6 months prior to the main shock* PMID:20958479

  6. Upper plate responses to active spreading ridge/transform subduction: The tectonics, basin evolution, and seismicity of the Taita area, Chile Triple Junction

    SciTech Connect

    Flint, S.; Prior, D. ); Styles, P.; Murdie, R. ); Agar, S.; Turner, P. )

    1993-02-01

    Integrated field geophysical, structural and stratigraphic studies are attempting to elucidate the mechanisms and consequences of the Late Miocene-present day subduction of the Chile Ridge triple junction system. Preliminary data indicate a shallow plane of seismicity at about 15 km to 20 km depth below the Taitao peninsula. The depths correspond to the predicted depth range of subducted upper ocean crust. The calculated Bouguer anomaly map cannot be explained by the upper plate geology, suggesting that gravity is influenced by heterogeneities in the subducting oceanic plate. Seismic data imply that a subducted transform system underlying the inner Taitao Peninsula is still an active structure. A series of Middle-Late Tertiary sedimentary basins lie inboard of the triple junction. Within the Cosmelli basin, abrupt marine to continental facies transitions give clear evidence of base level changes. The amount of basinward shift of facies across sequence boundaries gets progressively greater up stratigraphy, indicating progressively greater base level changes. The lower part of the basin fill is folded and then thrusted eastward as a series of imbricates, while the overlying, greater thickness of fluvial sediments are only gently tilted westwards. We provisionally interpret this geometry to indicate that the early basin fill was deforming due to contractional tectonics while the later basin fill was being deposited. This complex basin history may reflect initiation and development of triple junction subduction.

  7. Active fibers: matching deformable tract templates to diffusion tensor images.

    PubMed

    Eckstein, Ilya; Shattuck, David W; Stein, Jason L; McMahon, Katie L; de Zubicaray, Greig; Wright, Margaret J; Thompson, Paul M; Toga, Arthur W

    2009-08-01

    Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry.

  8. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    could be possible to infer the genesis of the scarps as due to complex tectono-karstic phenomena. As for case (ii), our ongoing analyses are aimed to analyze the tectonic "significance" of some closed depressions, up to 4 km long and to 0,5-1 km large, that occur along the south-western slope of the Gran Sasso Range. All these small depression are NW-SE trending. As already described by Bosi et al. (1989), Galadini and Giuliani (1993), D'Agostino et al. (1998), Falcucci et al. (2015), these closed depressions are bounded by scarps carved onto the carbonate bedrock and, subordinately, onto early Quaternary slope deposits, reaching height of up to 5 m. These scarps are preferentially NE dipping, even if in few cases some SW dipping scarp are also present . The field work has permitted to attest that these scarps are related to shear planes that that displaced two subsequent of Early Pleistocene breccias formations (the Valle Valiano Fm. and Fonte Vedice Fm.; Bosi e Bertini, 1993; D'agostino et al., 1997). A paleoseismological trench was also performed across one of these scarps, attesting the activity of these shear planes also in recent times, providing indications result about the deformation style. Reference Bertini, T., & Bosi, C. (1993). La tettonica quaternaria della conca di Fossa (L'Aquila). Il Quaternario, 6(2), 293-314. Bertini, T., Bosi, C., & Galadini, F. (1989). La conca di Fossa-S. Demetrio dei Vestini. CNR, Centro di Studio per la Geologia Tecnica, ENEA, PAS in Elementi di tettonica pliocenicoquaternaria ed indizi di sismicita olocenica nell'Appennino laziale-abruzzese, Societa Geologica Italiana, L'Aquila, 26-58. Bosi, C., & Bertini, T. (1970). Geologia della media valle dell'Aterno. Memorie Società Geologica Italiana, 9(4), 719-777. D'Agostino, N., F. Speranza, & R. Funiciello., (1997) "Le Brecce Mortadella dell'Appennino Centrale: primi risultati di stratigrafia magnetica." Il Quaternario10.2: 385-388. D'Agostino, N., Chamot-Rooke, N., Funiciello, R

  9. Early Cretaceous tectono-magmatic activity and tectonic implications along the Sulu Orogenic Belt - case study of the Dashan complex

    NASA Astrophysics Data System (ADS)

    Liu, Yanghe; Liu, Junlai; Shi, Xiaoxiao; Yuan, Fengjie; Ni, Jinlong; Wu, Wenbin; Chen, Xiaoyu

    2016-04-01

    The tectonic extension of the eastern Eurasian continent during the Early Cretaceous resulted in widespread occurrence of metamorphic core complexes, wide rifts and related magmatic emplacement, among which the Dashan complex of the Jiaonan orogenic belt is a typical example. The complex is a complex massif of several types of granitic rocks. The core of the complex is composed of massive porphry-bearing biotite-hornblende granitoid without any evidence of ductile deformation. Mylonitized augen quartz monzonite and granodiorite constitute the margin of the complex. A transition zone is composed of porphyritic biotite-hornblende monzonite with weakly orientated K-feldspar phenocryst and mafic microgranular enclave. The foliations along the northwestern margin of the complex dip to NW at with dip angles of about 38°, and along the southwestern and northeastern margins to SE with dip angles of about 45°. Stretching lineations are constantly plunging WNW-ESE with pitch angles between 10° and 40°, which is consistent with the orientation of lineations in the other regions in eastern China. The granites,porphyritic monzogranite and the mafic microgranular enclaves in monzogranite are dated of ca.126Ma. The similarities in ages of crystallization of the monzogranite and its MME's implies the existence of magmatic mixing processes. Meanwhile, the mylonitized augen quartz monzonite and granodiorite along the margins of the complex possess crystallization ages of 129.8±1.1Ma and 132.7±2.8Ma, respectively. The petrographical zonation , structural characteristics and the systematical zircon U-Pb geochronology of the granitic rocks may suggest that the Dashan complex has experienced multistage emplacement under the same tectonic extension setting. In despite of the location of the complex near the Tanlu fault zone, the remarkable consistency of the orientations of stretching lineation of the Dashan complex to those from the other parts of the eastern China area implies

  10. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  11. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  12. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  13. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  14. Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling

    NASA Astrophysics Data System (ADS)

    Larroque, C.; Scotti, O.; Ioualalen, M.; Hassoun, V.; Migeon, S.

    2012-04-01

    Early in the morning, of February 23, 1887 a major damaging earthquake hit the towns along the Italian and French Riviera. The earthquake was followed by a tsunami wave with a maximum runup of 2 m near Imperia. At least 600 hundred people died, mainly due to building collapses. The "Ligurian earthquake" occurred at the junction between the Southern French-Italian Alps and the Ligurian Basin in the western Mediterranean. For such historical event, the epicentre and the equivalent magnitude are difficult to characterize with a high degree of precision, and the tectonic fault responsible for the earthquake is still debated today. The recent MALISAR marine geophysical survey allowed identifying a set of N60-70°E recent scarps at the foot of the northern Ligurian margin, revealing a large system of active faults. The scarps correspond to cumulative reverse faulting, with a minor strike-slip component, consistent with the present-day kinematics of earthquakes. Since we have also identified submarine failures in the time-range of the Ligurian earthquake we addressed the question of the submarine slide-induced tsunami. Nevertheless, the maximum volume involved by these submarine slides was in the range of 0.005 km3. Such a volume appears too small to trigger a tsunami with the observed extent and run-up characteristics. Therefore, we propose that the rupture of fault segments belonging to the 80 km-long northern Ligurian Faults system is the source of the 1887 Ligurian earthquake. We investigate the macroseismic data from the historical databases SISFRANCE-08 and DBMI-04 using several models of intensity attenuation with distance and focal depth. Modelling results are consistent with the location offshore, indicating an epicentre around 43.70°-43.78°N and 7.81°-8.07°E with a magnitude Mw in the range of 6.3-7.5. A refinement of this range of magnitude is discussed in the light of the tsunami modelling. Numerous earthquake sources scenarios have been tested with

  15. Tectonic models for Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, D. W.

    2006-01-01

    Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.

  16. Active Tectonics of the Lower Tagus Valley Fault(Portugal) and Implications for Seismic Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Vilanova, S. P.; Meghraoui, M.; Bosi, V.; Fonseca, J. F.

    2001-12-01

    The Lower Tagus Valley (LTV) has been the locus of M6 to M7 onshore historical earthquakes in the vicinity of Lisbon, the best studied being those of 1531 and 1909 (Moreira, 1984). The distribution of damage in these events shows an elongated shape along the river valley, leading several authors to infer the existence of an active fault following the valley (Choffat and Bensaude, 1912; Fonseca, 1989; Cabral, 1995). However, no direct evidence of such structure - other than the occurrence of large earthquakes - was put forward until now. To address this problem we developed a series of geomorphic, geophysical and paleoseismological investigations along the LTV which indicated displacement of drainage system, uplifted alluvial terrace, and the presence of a scarp for a minimum length of 20 km. Upon trenching, we identified NNE-SSW trending thrust planes affecting Pliocene and Holocene formations, and measured a minimum displacement of 3m over the last 4000 years. The age of thrusting was constrained by radiocarbon dating and corroborated by archaeological findings. The most recent faulting event can likely be correlated with the M7 1531 earthquake. The thrust geometry shows a significant left-lateral component, as it is pointed out by the imbricate pattern of fault planes and kinematic indicators (striations), which suggest a N-S direction of maximum compression. A gravitational origin for the deformation exposed in the trenches is discussed and discarded. On a larger scale, fault segments inland may be a continuation of the offshore source of the 1755 Lisbon Earthquake (Vilanova et al., this conference). We present new calculations of seismic hazard for Western Iberia, and discuss the impact of the new seismotectonic data for the Lower Tagus Valley.

  17. Linking Europa’s Plume Activity to Tides, Tectonics, and Liquid Water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa R.; Hurford, Terry; Roth, Lorenz; Retherford, Kurt

    2014-11-01

    Much of the geologic activity preserved on Europa’s icy surface has been attributed to tidal deformation, mainly due to Europa’s eccentric orbit. Although the surface is geologically young, evidence of ongoing tidally-driven processes has been lacking. However, a recent observation of water vapor near Europa’s south pole suggests that it may be geologically active. Non-detections in previous and follow-up observations indicate a temporal variation in plume visibility and suggests a relationship to Europa’s tidal cycle. Similarly, the Cassini spacecraft has observed plumes emanating from the south pole of Saturn’s moon, Enceladus, and variability in the intensity of eruptions has been linked to its tidal cycle. The inference that a similar mechanism controls plumes at both Europa and Enceladus motivates further analysis of Europa’s plume behavior and the relationship between plumes, tides, and liquid water on these two satellites.We determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa’s orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. In contrast, the addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of the model faults are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across model faults suggests that the plumes would be best observed earlier in Europa’s orbit. Our results indicate that Europa’s plumes, if

  18. An Early, Transient, Impact-driven Tectonic Regime in the Hadean?

    NASA Astrophysics Data System (ADS)

    O'Neill, C.; Marchi, S.; Zhang, S.

    2015-12-01

    The earliest preserved crust formed in a tectonic regime that different from present in several significant ways. Earth was still losing a significant fraction of its primordial heat, and heat production was declining more rapidly than in any period subsequently. Additionally, a waning impact flux provided an important thermal - and mechanical - forcing on the early Earth. These factors affect tectonics in a number of ways - internal velocities are faster, and internal viscosities lower due to hotter internal temperatures. Previous modelling of the tectonic evolution of the Earth under these conditions suggests that the early Earth may have exhibited periods of hot stagnant-lid convection - where vigorous internal convection - and volcanic activity - occurred under a tectonically quiescent lid. As the Earth cooled the planet would have transited into an episodic regime - characterised by periods of tectonic quiescence interspersed by extreme tectonic activity. Such scenarios explain a number of facets of the early Earth, including its observed slow mixing rates, inefficient cooling, and its paleomagnetic and tectonic history. Here we expand these models to incorporate the effects of major impacts. We find tectonic forcing due to impacts to be a major dynamic driver during the Hadean, with major return flow driving horizontal surface deformation, and transient subduction events. Such events may be reflected in the Hadean zircon record. Post this impact-dominated phase, models suggest an over-heated Earth may have then experienced a long phase of stagnant-lid convection, lasting till the meso-Archaean.

  19. Investigation of remnant versus active deformation in the lithosphere beneath south Africa from shear-wave splitting

    NASA Astrophysics Data System (ADS)

    emuh, M.; Nyblade, A.; Weeraratne, D. S.

    2012-12-01

    South Africa is comprised of several continental blocks formed during previous collisional events, which date back 2-3 Ga. The three main blocks known as the Pietersburg, Kimberley, and Witwatersrand blocks are delineated by ancient subduction boundaries such as the Colesberg lineament. We consider whether these continental blocks retain remnant deformation at lithospheric depths from ancient collisional events or are governed by stresses due to current plate motion and mantle flow. We use shear-wave splitting methods to study seismic anisotropy from teleseismic phases. Splitting measurements are obtained by minimizing the smallest eigenvalue, maximizing the ratio of the smallest and largest eigenvalues, and rotation correlation, using the graphical user interface Splitlab. We only consider results that show consistency between multiple methods. The seismic data was collected from a new deployment of AfricaArray stations in south Africa and consists of 28 earthquake events. Earthquakes used in this study have a good azimuthal distribution with the poorest coverage only in the NW and S directions. Stations located within the Witwatersrand block display consistent results with a NE fast direction and an average delay time of 1.01 +/- 0.4 s. One station west of the Colesberg lineament in the Kimberley block yields a NW-SE fast direction for all measurements and is nearly perpendicular to results from stations east of this boundary. Stations south of Kaapvaal craton show dependence on the back azimuth of earthquake arrivals. Paths which travel through the Namaqua-Natal fold belt all produce N-S fast directions with average delay times of 0.9 s. Raypaths that travel through the southern Saldania fold belt produce NW-SE fast directions. We suggest that seismic anisotropy in this region represents active deformation in the Witwatersrand block dictated by current tectonic stresses and absolute plate motion. Remnant fabric from ancient tectonic collisional events may still

  20. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  1. Tectonic History of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.

  2. Evaporite sedimentation in a tectonically active basin: The lacustrine Las Minas Gypsum unit (Late Tortonian, SE Spain)

    NASA Astrophysics Data System (ADS)

    Ortí, Federico; Rosell, Laura; Gibert, Lluís; Moragas, Mar; Playà, Elisabet; Inglès, Montserrat; Rouchy, Jean Marie; Calvo, José Pedro; Gimeno, Domingo

    2014-08-01

    Evaporite successions may undergo significant lithostratigraphic changes laterally and vertically in tectonically-active basins. The Las Minas Gypsum, a lacustrine unit of Late Tortonian age and up to 160 m thick in the Las Minas-Camarillas basin (SE Spain), consists of a number of shallowing-upward cycles. Each cycle is made up of a lower interval with marl and carbonate, and an upper interval with gypsum. In the upper interval, the base displays carbonate-gypsum laminites (couplets, yearly microcycles) showing a large variability of textures and fabrics; gypsum textures are cumulates and bottom-grown crystals. Laminites are overlain by selenitic gypsum. The carbonate is a primary dolomite induced by sulphate-reducing bacterial activity. Native sulphur was formed in early diagenesis and during exhumation was partly transformed into late diagenetic gypsum. The isotopic compositions of gypsum suggest that the sulphate mainly derived from chemical recycling of Triassic evaporites; however, marine sulphate was probably supplied by episodic marine incursions. A perennial saline lake characterized by irregular bottom topography and depositional settings with variable subsidence ratios is interpreted. In addition to climate, saline diapirism, Neogene volcanism, synsedimentary faulting and seismicity influenced the evaporitic deposition. Las Minas-Camarillas basin is an example of how in tectonically active zones different factors interplay to produce significant variability of the evaporitic sedimentation and cyclicity.

  3. Geodynamic significance of the TRM segment in the East African Rift: active tectonics and paleostress in western Tanzania

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Macheyeki, A. S.; Temu, E. B.

    2012-04-01

    The Tanganyika-Rukwa-Malawi (TRM) rift segment in western Tanzania is a key sector for understanding the opening dynamics of the East African rift system (EARS). In an oblique opening model, it is considered as a dextral transfer fault zone that accommodates the general opening of the EARS in a NW-SE direction. In an orthogonal opening model, it accommodates pure dip-slip normal faulting with extension orthogonal to the rift segments and a general E-W extension for the entire EARS. We investigated the active tectonic architecture and paleostress evolution of the Ufipa plateau and adjacent Rukwa basin and in order to define their geodynamic role in the development of the EARS and highlight their pre-rift brittle tectonic history. The active fault architecture, fault-kinematic analysis and paleostress reconstruction show that the recent to active fault systems that control the rift structure develop in a pure extensional setting with extension direction orthogonal to the trend of the TRM segment. Two pre-rift brittle events are evidenced. An older brittle thrusting is related to the interaction between the Bangweulu block and the Tanzanian craton during the late Pan-African (early Paleozoic). It was followed by a transpressional inversion during the early Mesozoic. This inversion stage caused dextral strike-slip faulting along the fault systems that now control the major rift structures. It has been erroneously interpreted as related to the late Cenozoic EARS which instead is characterized by pure normal faulting.

  4. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Wang, Hai-hong; Luo, Zhi-cai; Ning, Jin-sheng; Liu, Hua-liang

    2015-03-01

    It is significant to identify urban active faults for human life and social sustainable development. The ordinary methods to detect active faults, such as geological survey, artificial seismic exploration, and electromagnetic exploration, are not convenient to be carried out in urban area with dense buildings. It is also difficult to supply information about vertical extension of the deeper faults by these methods. Gravity, reflecting the mass distribution of the Earth's interior, provides an alternative way to detect faults, which is more efficient and convenient for urban active fault detection than the aforementioned techniques. Based on the multi-scale decomposition of gravity anomalies, a novel method to invert multilayer horizontal tectonic stresses is proposed. The inverted multilayer stress fields are further used to infer the distribution and stability of the main faults. In order to validate our method, the multilayer stress fields in the Shenzhen fault zone are calculated as a case study. The calculated stress fields show that their distribution is controlled significantly by the strike of the main faults and can be used to derive depths of the faults. The main faults in Shenzhen may range from 4 km to 20 km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  5. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  6. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects.

    PubMed

    Monesterolo, Noelia E; Nigra, Ayelen D; Campetelli, Alexis N; Santander, Verónica S; Rivelli, Juan F; Arce, Carlos A; Casale, Cesar H

    2015-11-01

    Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.

  7. Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2012-07-01

    The Noakoh anticline is located in Kermanshah province and is part of the Simply Folded Belt of Zagros. Boundaries of 97 triangular facets and 67 wine-glass (W-G) valleys, which formed on anticline limbs, were delineated using Quickbird satellite imagery. The strata dip (D), area (A), base length (BL), topographic slope (S) of facets, the maximum width (M), outlet width (O) and ratio of maximum width to outlet width (W index) of W-G valleys were analysed in detail. Noakoh anticline was subdivided into 9 tectonic zones on the basis of dip, topographic slopes and width of limbs. Results show that there are strong positive correlations between means of D-BL and S-BL pairs. Poor positive correlations exist between means of D-A and S-A pairs. Among W-G valley metrics, the W index has strong relations with D and S parameters. Based on the results, steep facets with long bases and well developed W-G valleys with narrow outlets and wide upper parts are associated with more rotated limbs having steep slopes. Facets on the northeastern slope have more forest cover, micro-organism activity, karstic features and soil cover, whereas facets on relatively drier southwestern slope are characterized by physical weathering processes and minor karstic landforms. This study demonstrates that, apart from tectonic activity as a major control on the morphometry of facets and valleys, climate and slope aspect have also acted as secondary factors on the development of the studied landforms.

  8. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  9. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  10. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  11. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  12. Tectonic boundaries of the eastern Gulf Coast of North America

    SciTech Connect

    Leonard, C. Jr.; Phillips, R.R. )

    1993-09-01

    Two Precambrian extensional fault episodes, recorded in mapping from central Arkansas across Mississippi, central Alabama, southern Georgia, and into the Atlantic Ocean affected later Pennsylvanian and Triassic tectonics. This interpretation is from magnetic anomaly data and is supported by seismic, gravity, core, and well-log data. The fault system was first suspected from an anomalous magnetic high, representing a feature that affected tectonism during the Ouachita and the Alleghenian orogenies of the eastern Gulf Coast and southeastern United States. The northernmost upthrown block is considered part of an ancient passive continental margin developed during the late Precambrian. The southern downthrown block is deformed by left-lateral transverse faults active during the Ouachita Orogeny. The Ouachita Orogeny may have deformed terrain farther east than the Black Worrior basin. These transverse fault blocks were buttressed by the footwall of the extensional fault system. These left-lateral faults extending from Florida and Georgia into Alabama, Mississippi, and southern Arkansas.

  13. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  14. Time-frequency scale decomposition of tectonic tremor signals for space-time reconstruction of tectonic tremor sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Vilotte, J. P.; Bernard, P.; Obara, K.

    2015-12-01

    Seismic radiation associated with transient deformations along the faults and subduction interfaces encompasses a variety of events, i.e., tectonic tremors, low-frequency earthquakes (LFE), very low-frequency earthquakes (VLFs), and slow-slip events (SSE), with a wide range of seismic moment and characteristic durations. Characterizing in space and time the complex sources of these slow earthquakes, and their relationship with background seismicity and large earthquakes generation, is of great importance for understanding the physics and mechanics of the processes of active deformations along the plate interfaces. We present here first developments towards a methodology for: (1) extracting the different frequency and scale components of observed tectonic tremor signal, using advanced time-frequency and time-scale signal representation such as Gabor transform scheme based on, e.g. Wilson bases or Modified Discrete Cosine Transform (MDCT) bases; (2) reconstructing their corresponding potential sources in space and time, using the array method of Poiata et al. (2015). The methodology is assessed using a dataset of tectonic tremor episodes from Shikoku, Japan, recorded by the Hi-net seismic network operated by NIED. We illustrate its performance and potential in providing activity maps - associated to different scale-components of tectonic tremors - that can be analyzed statistically to improve our understanding of tremor sources and scaling, as well as their relation with the background seismicity.

  15. Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: The Alboran Sea, Western Mediterranean

    USGS Publications Warehouse

    Alvarez-Gomez, J. A.; Aniel-Quiroga, I.; Gonzalez, M.; Olabarrieta, M.; Carreno, E.

    2011-01-01

    The tsunami impact on the Spanish and North African coasts of the Alboran Sea generated by several reliable seismic tsunamigenic sources in this area was modeled. The tectonic setting is complex and a study of the potential sources from geological data is basic to obtain probable source characteristics. The tectonic structures considered in this study as potentially tsunamigenic are: the Alboran Ridge associated structures, the Carboneras Fault Zone and the Yusuf Fault Zone. We characterized 12 probable tsunamigenic seismic sources in the Alboran Basin based on the results of recent oceanographical studies. The strain rate in the area is low and therefore its seismicity is moderate and cannot be used to infer characteristics of the major seismic sources. These sources have been used as input for the numerical simulation of the wave propagation, based on the solution of the nonlinear shallow water equations through a finite-difference technique. We calculated the Maximum Wave Elevations, and Tsunami Travel Times using the numerical simulations. The results are shown as maps and profiles along the Spanish and African coasts. The sources associated with the Alboran Ridge show the maximum potential to generate damaging tsunamis, with maximum wave elevations in front of the coast exceeding 1.5. m. The Carboneras and Yusuf faults are not capable of generating disastrous tsunamis on their own, although their proximity to the coast could trigger landslides and associated sea disturbances. The areas which are more exposed to the impact of tsunamis generated in the Alboran Sea are the Spanish coast between Malaga and Adra, and the African coast between Alhoceima and Melilla. ?? 2011 Elsevier B.V.

  16. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gy

    2010-07-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbánfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093+/-0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  17. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gy

    2010-07-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbánfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093+/-0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters. PMID:20687746

  18. The role of mechanical heterogeneities in evaporite sequence during deformation initiated by basement fault activity

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Burliga, Stanisław

    2016-04-01

    Kłodawa Salt Structure (KSS) situated in the centre of the Polish Zechstein Basin started to rise above a basement fault in the Early Triassic. Geological studies of the KSS revealed significant differences in the deformation patterns between the PZ1-PZ2 (intensely deformed) and PZ3-PZ4 (less deformed) cycle evaporites. These two older and two younger cycle evaporite complexes are separated by the thick Main Anhydrite (A3) bed. We use numerical simulations to assess the impact of a thick anhydrite bed on intrasalt deformation. In our models, the overburden consists of clastic sediments. A normal fault located in the rigid basement beneath the salt is activated due to model extension. At the same time, the sedimentation process takes place. The evaporites consist of a salt bed intercalated with a thick anhydrite layer of varying position and geometry. To understand the role of anhydrite layer, we run comparative simulations, in which no anhydrite layer is present. In the study, we use our own numerical codes implemented in MATLAB combined with the MILAMIN and MUTILS numerical packages. Our investigations revealed a significant influence of the anhydrite on deformation style in the evaporate series. The supra-anhydrite domain is characterized by weaker deformation and lower rates of salt flow in comparison to the sub-anhydrite domain. The highest contrast in the rate of salt flow between the two domains is observed in the case of the anhydrite layer situated close to the bottom of the salt complex. The thick anhydrite layer additionally diminishes the deformation rate in the supra-anhydrite domain and can lead to detachment of the basement deformation from its overlay. Our numerical simulations showed that the presence of the A3 Main Anhydrite bed could be the dominant factor responsible for the decoupling of deformation in the KSS salt complex.

  19. Identification and Active Exploration of Deformable Object Boundary Constraints through Robotic Manipulation

    PubMed Central

    Boonvisut, Pasu; Cavusoglu, M. Cenk

    2014-01-01

    Robotic motion planning algorithms for manipulation of deformable objects, such as in medical robotics applications, rely on accurate estimations of object deformations that occur during manipulation. An estimation of the tissue response (for off-line planning or real-time on-line re-planning), in turn, requires knowledge of both object constitutive parameters and boundary constraints. In this paper, a novel algorithm for estimating boundary constraints of deformable objects from robotic manipulation data is presented. The proposed algorithm uses tissue deformation data collected with a vision system, and employs a multi-stage hill climbing procedure to estimate the boundary constraints of the object. An active exploration technique, which uses an information maximization approach, is also proposed to extend the identification algorithm. The effects of uncertainties on the proposed methods are analyzed in simulation. The results of experimental evaluation of the methods are also presented. PMID:25684836

  20. Evolution of fault activity reflecting the crustal deformation: Insights from crustal stress and fault orientations in the northeast-southwest Japan

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Otsubo, M.

    2015-12-01

    We evaluated fault activity in northeast- southwest Japan based on the regional stress and the fault orientation field for both active faults and inactive faults (here, an inactive fault is a fault which activity has not been identified in Quaternary). The regional stress field was calculated using the stress inversion method [Hardebeck and Michael, 2006] applied to earthquake focal mechanisms in the northeast-southwest Japan. The locations and orientations (i.e., strike and dip, assuming a planar fault geometry) of active faults in the study area were obtained from the Active Fault Database of Japan and inactive faults from a database compiled by Kosaka et al. [2011]. We employed slip tendency analysis [Morris et al., 1996] to evaluate the likelihood of fault slip. The values of the slip tendency is generally higher along active faults than along inactive faults. The difference between the slip tendencies of active and inactive faults reflects the difference in their activities. Furthermore the high slip tendency observed for some inactive faults suggests their high activity. These high slip tendencies imply that they have potential to be active. We propose the temporal evolution from inactive to active faulting during long-term crustal deformation to explain the potential for fault activity along inactive faults. When a region undergoes the transition from inactive to active faulting, potential active faults are observed as inactive faults with a high Part of this findig have been submitted to Tectonics (AGU Journal) (2015-07-27). We will presentate some new findings.slip tendency. The average slip tendency of inactive faults gradually increases from northeast to southwest Japan, because a relatively large number of inactive faults in southwest Japan have a high slip tendency. The representative deformation zones in Japan shows a relationship with the observed spatial variations in the evolution from inactive to active faulting. This study was supported by MEXT

  1. Tracking tectonic activity and climate change in Southernmost Patagonia - The Lago Fagnano record

    NASA Astrophysics Data System (ADS)

    Waldmann, N.; Ariztegui, D.; Anselmetti, F. S.; Austin, J. A.; Moy, C.; Dunbar, R.

    2005-12-01

    The climate of southernmost Patagonia is influenced by the westerly winds, the Southern Ocean circumpolar flow, and the South Pacific gyre. Therefore, continental sediment records from this area are ideal to track high-latitude climate variability through time. Located at 55° S in Tierra del Fuego, Lago Fagnano occupies the deepest of a chain of tectonic depressions along the Fagnano-Magallanes fault system. Fagnano is the biggest (~110 km long), southernmost non-ice covered lake in the world. In March 2005, >800 km of geophysical data were acquired in the lake, combining simultaneously 3.5 kHz (pinger) single-channel with 1 in3 airgun multi-channel systems. These data provide a unique opportunity to look at the most recent lacustrine sediments with high-resolution, while imaging the oldest sediments at the same time. Preliminary interpretations show that the lake is divided into two sub-basins: a deep eastern sub-basin (~200 m water depth), and a shallower western sub-basin (~100 m). The seismic survey penetrated more than several tens of meters of sediments, exhibiting both lacustrine and glacial provenance, probably comprising the LGM and the Holocene. Seismic reflectors indicate the presence of neo-tectonic structures affecting even the most recent sedimentary package, including some mega-turbidites, suggesting continuing tectonic impact on sedimentation. Gravity cores from both sub-basins reveal a regular alternation of light and dark laminae with abundant diatom content. Ultra-high resolution X-ray fluorescence micro-profiles show fluctuations at mm scale in major and trace elements that may indicate seasonal influx changes into the basin. These core data will provide a unique record of decadal changes in regional climate that will be compared with other marine and continental archives to improve our understanding of the forcing mechanisms behind climate change that can be further used to validate the outcome of ocean and atmospheric climatic models for the

  2. Neotectonic to Active Tectonic Situation along Ulsan-Yeonil Faults, SE. Korea

    NASA Astrophysics Data System (ADS)

    Choi, S.; Chwae, U.

    2006-05-01

    Characteristics of middle to late Pleistocene faults occurred along NNW Ulsan-Yeonil faults, SE. Korea, have been controverted during last decade due to very short and frequent distribution. Those faults, having NS strike and dip to the east, generally show the top-up-to-the-west movement sense. ESR ages came out 300ka in average and OSL data range 90-50ka. Therefore the faults movement could be considered to two times within 500ka, which indicates capable fault. Earthquake around the region ranges middle to weak. Historic earthquake record described damages of wooden house and some roof tiles, which is not considered as strong as mm6.5-7.0. However tectonic background has been remained yet. In this study, the aim is to figure out geometric relationship between NNW Ulsan fault and Yeonil fault and addresses how the above capable faults have left step pattern of NS strike and left lateral movement sense. As early stage around 23Ma, the eastern block of Yeonil fault had begun to rotate to clockwise due to right lateral movement of two master faults, which are interpreted to Yansan fault and possibly Tsushima tectonic line. Yeonil block, which was in between two master faults, had been undergone the effect of clockwise rotation until around 15ma. The western margin of Yeonil block, which strikes NNW and parallel to sub-parallel to Ulsan fault, had jigsaw-type left lateral movement sense because of the clockwise fan-shape rotation. Among those jigsaw-type fault segments, NS fault segments have been given the westward tectonic pressure since 5Ma. Therefore, small NS-faults have had the top-up-to-the-west movement sense up to present time since after Pliocene and those jigsaw-type fault length yielded to short due to several intermittent shearing along NNW Ulsan fault. As an early product, two Miocene basins developed along Ulsan fault, which strike is not shown because of flat plain.

  3. Active zone impact on deformation state of non-rigid pavement

    NASA Astrophysics Data System (ADS)

    Mandula, Ján

    2014-06-01

    The paper deals with the design of non-rigid pavement, with emphasis on the effect of active zone on its deformation state. The concepts of de