Science.gov

Sample records for active tectonic region

  1. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  2. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  3. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  4. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Goswami, Chandreyee; Mukhopadhyay, Dhruba; Poddar, Bikash Chandra

    2012-03-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River. Two distinct E-Wlineaments passing through this area had been identified by Nakata (1972, 1989) as active faults. The northern lineament manifested as Matiali scarp and the southern one manifested as Chalsa scarp represent the ramp anticlines over two blind faults, probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT), respectively. The fan surface is folded into two antiforms with a synform in between. These folds are interpreted as fault propagation folds over the two north dipping blind thrusts. Two lineaments trending NNE-SSW and nearly N-S, respectively, are identified, and parts of present day courses of the Murti and Neora Rivers follow them. These lineaments are named as Murti and Neora lineaments and are interpreted to represent a conjugate set of normal faults. The rivers have changed their courses by the influence of these normal faults along the Murti and Neora lineaments and their profiles show knick points where they cross E-W thrusts. The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults. The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults. Four major terraces and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers. The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above. But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  5. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  6. Study provides data on active plate tectonics in southeast Asia region

    NASA Astrophysics Data System (ADS)

    Wilson, P.; Rais, J.; Reigber, Ch.; Reinhart, E.; Ambrosius, B. A. C.; Le Pichon, X.; Kasser, M.; Suharto, P.; Majid, Dato'Abdul; Yaakub, Dato'Paduka Awang Haji Othman Bin Haji; Almeda, R.; Boonphakdee, C.

    A major geodynamic study has provided significant new information about the location of active plate boundaries in and around Southeast Asia, as well as deformation processes in the Sulawesi region of Indonesia and tectonic activity in the Philippine archipelago. Results also have confirmed the existence of the so-called Sunda Block, which appears to be rotating with respect to adjacent plates.The study, known as the Geodynamics of South and South-East Asia (GEODYSSEA) project, has been a joint venture of the European Commission and the Association of South- East Asian Nations. It began in 1991 and involved a large team of European and Asian scientists and technicians studying the complex geodynamic processes and natural hazards of the region from the Southeast Asia mainland to the Philippines to northern Australia. Earthquakes, volcanic eruptions, tsunamis, and tectonically induced landslides endanger the lives of millions of people in the region, and the tectonic activity behind these natural hazards results from the convergence and collision of the Eurasian, Philippine, and Indo-Australian Plates at relative velocities of up to 10 cm per year.

  7. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  8. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    earthquake activity shows that this region is tectonically still active (Mosar, 1999) with numerous earthquakes. The exposure ages imply that the rock failure occurred during the middle Holocene, a period of increased neotectonic activity in Eastern Alps suggested by Prager et al. (2007). This time period also coincides with notably wet climate, which has been suggested as an important trigger for landslides around this age across the Alps (Zerathe et al., 2014).

  9. Relative earthquake location for remote offshore and tectonically active continental regions using surface waves

    NASA Astrophysics Data System (ADS)

    Cleveland, M.; Ammon, C. J.; Vandemark, T. F.

    2015-12-01

    Earthquake locations are a fundamental parameter necessary for reliable seismic monitoring and seismic event characterization. Within dense continental seismic networks, event locations can be accurately and precisely estimated. However, for many regions of interest, existing catalog data and traditional location methods provide neither accurate nor precise hypocenters. In particular, for isolated continental and offshore areas, seismic event locations are estimated primarily using distant observations, often resulting in inaccurate and imprecise locations. The use of larger, moderate-size events is critical to the construction of useful travel-time corrections in regions of strong geologic heterogeneity. Double difference methods applied to cross-correlation measured Rayleigh and Love wave time shifts are an effective tool at providing improved epicentroid locations and relative origin-time shifts in these regions. Previous studies have applied correlation of R1 and G1 waveforms to moderate-magnitude vertical strike-slip transform-fault and normal faulting earthquakes from nearby ridges. In this study, we explore the utility of phase-match filtering techniques applied to surface waves to improve cross-correlation measurements, particularly for smaller magnitude seismic events. We also investigate the challenges associated with applying surface-wave location methods to shallow earthquakes in tectonically active continental regions.

  10. Pore pressure sensitivities to dynamic strains: Observations in active tectonic regions

    NASA Astrophysics Data System (ADS)

    Barbour, Andrew J.

    2015-08-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydromechanical properties, but accurately assessing how pore fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 to 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas Fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends nonlinearly on the inverse fault-perpendicular distance, with the response decreasing toward the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto Fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the

  11. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  12. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  13. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  14. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  15. Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Gao, Rui; Guo, Xiaoyu

    2016-04-01

    The eastern Tibetan plateau has been getting more and more attention because it combines active faults, uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus, a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative (THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks, including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the Songpan-Garze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion, which is coincident with the flowing direction indicated from the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.

  16. Active tectonics of North Haji Abad (Hormozgan region) in south of Iran

    NASA Astrophysics Data System (ADS)

    shafiei bafti, amir

    2014-05-01

    Zagros Active Fold -thrust Belt is situated in the northern margin of the Arabian Plat and formed due to shortening, thickening and uplift of tethys sedimentary basin between Arabian and Iranian plates. In this study, the rate of uplift in the northern margin of the Zagros Mountains in southern Iran are examined. The Zagros fault zone in this region is composed of a set faults, including Deragah, Haji Abad, Tezerj and several other faults and also we call these branches from F1 to F8. These segments puts from northwest to the East- Southeast. Based on field surveys and Geological maps, we prepared a structural map from major faults of Zagros fault system for identify faults pattern and estimating of uplift rate movements in Zagros fault. Three methods used to calculation of uplift rate: A: Asymmetry index Accordance with the procedure, in studied area, northeast drainage are longer than of southwest drainage and east minor drainages also longer than the west side drainages, Uplifting in this region is characterized by mentioned asymmetry factor. The amount of this index is AF=71.81. B. Interaction between the faults movements and erosion process We comparison contrast between uplifting movement rates and erosion rates in different parts of studied region by Smf and other indexes. Average amount of Smf=1.1. C. Evaluation of Uplift rate of alluvial terraces was performed by sediment ages and terraces height. We surveyed Quaternary facieses which have ages between 17,000 and 30,000 years old. the rate of uplifting for each fault is follows : Deragah fault and F8 fault between 1.0 to 1.85mm per year and F7, F6, F5, and F4 faults, have a rate Uplifting between 0.6 to 1.0 mm per year and the rate of Uplift for other faults is between 0.04 to 0.06 mm per year. According to our studies, uplift rates in north -east and south-west more than other regions The minimum rate at different stations are about 0.5mm/y to 0.93mm/y and its maximum is 0.88 mm/y to 1.47mm/y.

  17. Active tectonics and human survival strategies

    NASA Astrophysics Data System (ADS)

    King, Geoffrey; Bailey, Geoffrey; Sturdy, Derek

    1994-10-01

    Tectonic movements continuously remould the surface of Earth in response to plate motion. Yet such deformation is rarely taken into account when assessing landscape change and its impact on human land use, except perhaps as an occasional hazard to human life or a temporary disruption in the longer term patterns of human history. However, active tectonics also create and sustain landscapes that can be beneficial to human survival, forming a complex topography of potentially fertile sedimentary basins enclosed by mountain barriers that can facilitate the control and explotation of food resources, especially animal prey. We discuss the tectonic history of northwest Greece and show how the Paleolithic sites of the region are located to take advantage of tectonically created features at both a local and a regional scale. We suggest that the association of significant concentrations of early Paleolithic sites with tectonically acitve regions is not coincidental and that on the longer time spans of human biological evolution, active tectonics has been an important selective agent contributing to the development of the human species as an intelligent predator.

  18. An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Hauksson, E.; Aminzadeh, F.; Ampuero, J.-P.

    2015-10-01

    Changes in seismicity rates, whether of tectonic or of induced origin, can readily be identified in regions where background rates are low but are difficult to detect in seismically active regions. We present a novel method to identify likely induced seismicity in tectonically active regions based on short-range spatiotemporal correlations between changes in fluid injection and seismicity rates. The method searches through the entire parameter space of injection rate thresholds and determines the statistical significance of correlated changes in injection and seismicity rates. Applying our method to Kern County, central California, we find that most earthquakes within the region are tectonic; however, fluid injection contributes to seismicity in four different cases. Three of these are connected to earthquake sequences with events above M4. Each of these sequences followed an abrupt increase in monthly injection rates of at least 15,000 m3. The probability that the seismicity sequences and the abrupt changes in injection rates in Kern County coincide by chance is only 4%. The identified earthquake sequences display low Gutenberg-Richter b values of ˜0.6-0.7 and at times systematic migration patterns characteristic for a diffusive process. Our results show that injection-induced pressure perturbations can influence seismic activity at distances of 10 km or more. Triggering of earthquakes at these large distances may be facilitated by complex local geology and faults in tectonically active regions. Our study provides the first comprehensive, statistically robust assessment of likely injection-induced seismicity within a large, tectonically active region.

  19. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  20. Regional and global variations in the temporal clustering of tectonic tremor activity

    NASA Astrophysics Data System (ADS)

    Idehara, Koki; Yabe, Suguru; Ide, Satoshi

    2014-12-01

    The temporal distribution of tremor activity exhibits a highly non-Poissonian behavior, and its maximum period of non-Poissonian clustering statistically describes the recurrence interval of major tremor bursts. Here, we examine variations in the temporal clustering properties of tremor activity by assessing their characteristic times, which are determined by the maximum period of the non-Poissonian distribution. By applying a two-point correlation integral to some of the world's major tremor zones, including Shikoku, Kii-Tokai, and Kyushu in Japan; Cascadia, Jalisco, and Guerrero in Mexico; southern Chile; Taiwan; and Manawatu in New Zealand, we reveal local spatial variations in the temporal clustering properties in each tremor zone and show global-scale variations in tremor activity. The spatial variation in local tremor activity is characterized by a gradual transition in the along-dip direction and shorter-wavelength heterogeneities in the along-strike direction, possibly associated with a spatial change in frictional conditions at the plate interface and rheological conditions in the surrounding materials. The characteristic time correlates positively with locally measured median tremor duration, implying an inherent correlation between the moment release rate and the recurrence interval of tremors.

  1. Regional Tectonic Framework and Human Activities on the North Central Part of The Mexican Volcanic Belt.

    NASA Astrophysics Data System (ADS)

    Nieto-Obregon, J.

    2001-12-01

    Faults and fractures northeasterly oriented dipping NW and SE, with slips mainly normal with a slight left lateral component, affect a suite of rocks of Mesozoic to Pleistocene age, in the area of El Bajio, in the states of Queretaro, Guanajuato, Michoacan, and Aguascalientes. The faults and fractures have affected the infrastructure of the cities and surroundings of Queretaro, Celaya, Salamanca, Irapuato, Silao, Leon and Aguascalientes. In the city of Queretaro, the Tlacote-Balvanera active fault has developed a scarp and its motion may potentially affect life lines of great importance. In Celaya City a N-S trending fault traverses the city and has produced a step wise scarp more than 1.80 m high, damaging houses, streets and life lines. In Salamanca, a fault trending N 60oE, dipping to the SE extends from Cerro Gordo to the SW traversing the city and affecting with a varying degree its infrastructure. Displacements observed within the urban area reach as much as 50 cm. Close to Irapuato City, in a quarry near La Valencianita village, a N 45oE trending fault dipping to the NW affects a lacustrine sequence bearing calcareous horizons. The fault exhibits a throw of 10 m and passes north of the urban area. A similarly oriented fault traverses the city of Irapuato, and near the Traffic Circle of Puente de Guadalupe, changes its strike to the SE and continues to the city limits. In the city of Silao, a fault oriented N 60oE, traverses the city and continues to the SW up to the localities of Venta de Ramales and La Aldea. Important displacements in urban and rural areas reach more than 60 cm. Outside the city of Leon in the junction of the highways to Aguascalientes and Guadalajara a normal fault plane NE oriented and dipping SE shows striations compatible with a normal left lateral motion. Faulting is associated with old buried scarps controlled by pre existing faults, and over exploited aquifers. Some of these faults however are considered potentially active based on

  2. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  3. Investigating Cenozoic climate change in tectonically active regions with a high-resolution atmospheric general circulation model (ECHAM5)

    NASA Astrophysics Data System (ADS)

    Mutz, Sebastian; Ehlers, Todd; Li, Jingmin; Werner, Martin; Stepanek, Christian; Lohmann, Gerrit

    2016-04-01

    Studies of Cenozoic palaeo-climates contribute to our understanding of contemporary climate change by providing insight into analogues such as the Pliocene (PLIO), and by evaluation of GCM (General Circulation Models) performance using the Mid-Holocene (MH) and the Last Glacial Maximum (LGM). Furthermore, climate is a factor to be considered in the evolution of ecology, landscapes and mountains, and in the reconstruction of erosion histories. In this study, we use high-resolution (T159) ECHAM5 simulations to investigate pre-industrial (PI) and the the above mentioned palaeo-climates for four tectonically active regions: Alaska (St. Elias Range), the US Northwest Pacific (Cascade Range), western South America (Andes) and parts of Asia (Himalaya-Tibet). The PI climate simulation is an AMIP (Atmospheric Model Intercomparison Project) style ECHAM5 experiment, whereas MH and LGM simulation are based on simulations conducted at the Alfred Wegner Institute, Bremerhaven. Sea surface boundary conditions for MH were taken from coupled atmosphere-ocean model simulations (Wei and Lohmann, 2012; Zhang et al, 2013) and sea surface temperatures and sea ice concentration for the LGM are based on GLAMAP project reconstructions (Schäfer-Neth and Paul, 2003). Boundary conditions for the PLIO simulation are taken from the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) project and the employed PLIO vegetation boundary condition is created by means of the transfer procedure for the PRISM vegetation reconstruction to the JSBACH plant functional types as described by Stepanek and Lohmann (2012). For each of the investigated areas and time slices, the regional simulated climates are described by means of cluster analyses based on the variability of precipitation, 2m air temperature and the intra-annual amplitude of the values. Results indicate the largest differences to a PI climate are observed for LGM and PLIO climates in the form of widespread cooling and warming

  4. Exploring Active Tectonics in the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Carbó-Gorosabel, A.; Córdoba-Barba, D.; Martín-Dívila, J.; Granja-Bruña, J. L.; Llanes Estrada, P.; Muñoz-Martín, A.; ten Brink, U. S.

    2010-07-01

    The devastating 12 January 2010 Haiti earthquake (M = 7.0), which killed an estimated 230,000 people and caused extensive damage to homes and buildings, drew attention to the crucial need for improved knowledge of the active tectonics of the Caribbean region. But even before this disastrous event, interest in understanding the active and complex northeastern Caribbean plate boundary had been increasing, because this region has experienced significant seismic activity during the past century and has an extensively documented record of historical seismicity and tsunamis. Moreover, this is an easily accessible region in which to study the continuity of seismic faults offshore and to try to understand the transitions between strike-slip and convergent tectonic regimes. Interest in the region has led to several studies that have improved scientists' knowledge of subduction zone tectonics and earthquake and tsunami hazard assessments 005BMann et al., 2002; ten Brink et al., 2006, 2009; Grindlay et al., 2005; Manaker et al., 2008; Granja Bruña et al., 2009; Mondziel et al., 2010].

  5. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it

  6. Seismicity study of volcano-tectonic in and around Tangkuban Parahu active volcano in West Java region, Indonesia

    NASA Astrophysics Data System (ADS)

    Ry, Rexha V.; Priyono, A.; Nugraha, A. D.; Basuki, A.

    2016-05-01

    Tangkuban Parahu is one of the active volcano in Indonesia located about 15 km northern part of Bandung city. The objective of this study is to investigate the seismic activity in the time periods of January 2013 to December 2013. First, we identified seismic events induced by volcano-tectonic activities. These micro-earthquake events were identified as having difference of P-wave and S-wave arrival times less than three seconds. Then, we constrained its location of hypocenter to locate the source of the activities. Hypocenter determination was performed using adaptive simulated annealing method. Using these results, seismic tomographic inversions were conducted to image the three-dimensional velocity structure of Vp, Vs, and the Vp/Vs ratio. In this study, 278 micro-earthquake events have been identified and located. Distribution of hypocenters around Tangkuban Parahu volcano forms an alignment structure and may be related to the stress induced by magma below, also movement of shallow magma below Domas Crater. Our preliminary tomographic inversion results indicate the presences of low Vp, high Vs, and low Vp/Vs ratio that associate to accumulated young volcanic eruption products and hot material zones.

  7. Tectonic signatures on active margins

    NASA Astrophysics Data System (ADS)

    Hogarth, Leah Jolynn

    High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the

  8. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    NASA Astrophysics Data System (ADS)

    Ry, Rexha Verdhora; Nugraha, Andri Dian

    2015-04-01

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger's method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger's result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  9. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    SciTech Connect

    Ry, Rexha Verdhora; Nugraha, Andri Dian

    2015-04-24

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  10. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it

  11. Denudation rates of tropical mountain regions : What is the proportion of chemical weathering vs. mechanical denudation in a tectonically active settings?

    NASA Astrophysics Data System (ADS)

    Roelandt, C.; Vanacker, V.; Goddéris, Y.; Kaplan, J. O.

    2009-04-01

    Denudation rates of tropical mountain regions in tectonically active settings, such as the northern Andes, are known to be high. Rivers draining the northern Andes are important sources of sediment and nutrients to the low-lying basins and oceans. The largest part of the total denudation rates in these environments is often considered to be mechanical denudation, given their steep topography, young geology and humid and warm climate. In this study, we try to better understand the linkage between physical denudation and chemical weathering for degraded catchments with shallow, eroded soils. We selected a limited number of case-studies from the Ecuadorian Andes being characterized by humid climate, steep topography, and intensive land use. For these catchments, the total denudation rates are derived from cosmogenic isotope concentrations in riverborne quartz (Vanacker et al, 2007, Geology). The B-WITCH model (Roelandt et al. submitted, GBC) is used to quantify chemical weathering rates. The results of this study will allow us to get a better insight in the linkage between chemical and physical denudation rates for an active tectonic setting. Besides, the data will give the opportunity to explore the effect of land use change on chemical weathering rates.

  12. Active tectonics of the Andes

    NASA Astrophysics Data System (ADS)

    Dewey, J. F.; Lamb, S. H.

    1992-04-01

    Nearly 90 mm a -1 of relative plate convergence is absorbed in the Andean plate-boundary zone. The pattern of active tectonics shows remarkable variations in the way in which the plate slip vector is partitioned into displacement and strain and the ways in which compatibility between different segments is solved. Along any traverse across the plate-boundary zone, the sum of relative velocities between points must equal the relative plate motion. We have developed a kinematic synthesis of displacement and strain partitioning in the Andes from 47°S to 5°N relevant for the last 5 Ma based upon: (1) relative plate motion deduced from oceanic circuits giving a roughly constant azimuth between 075 and 080; (2) moment tensor solutions for over 120 crustal earthquakes since 1960; (3) structural studies of deformed Plio-Pleistocene rocks; (4) topographic/geomorphic studies; (5) palaeomagnetic data; and (6) geodetic data. We recognize four neotectonic zones, with subzones and boundary transfer zones, that are partitioned in different ways. These zones are not coincident with the 'classic' zones defined by the presence or absence of a volcanic chain or differences in finite displacements and strains and tectonic form; the long-term segmentation and finite evolution of the Andes may not occur in constantly defined segments in space and time. In Segment 1 (47°-39°S), the slip vector is partitioned into roughly orthogonal Benioff Zone slip with large magnitude/large slip-surface earthquakes and both distributed dextral shear giving clockwise rotations of up to 50° and dextral slip in the curved Liquine-Ofqui Fault System giving 5°-10° of anticlockwise fore-arc rotation. In Segment 2 (39°-20°S), the slip vector is partitioned into Benioff Zone slip roughly parallel with the slip vector, Andean crustal shortening and a very small component of dextral slip, including that on the Atacama Fault System. Between 39° and 34°S, a cross-strike dextral transfer, which deflects

  13. Characterization of potential sources of magnetic anomalies within the crust in a tectonically active region: Amphibolites and migmatites from Potrillo Maar, New Mexico

    NASA Technical Reports Server (NTRS)

    Spear, F. S.; Padovanni, E.

    1985-01-01

    The purpose was to characterize the oxide mineralogy and petrology of samples collected from Potrillo Maar, New Mexico with the goal of explaining the magnetic anamoly that is observed over this region from remote sensing. Potrillo Maar is a diatreme that has brought rocks from all depths in the crust to the surface almost instantaneously. The samples are therefore thought to be representative of the crust as it exists today below this portion of the Rio Grande Rift. It is generally believed that oxide minerals (magnetite, hematite, etc.) are responsible for the magnetic signature of the crust. The samples from Portillo Maar therefore offer a unique opportunity to examine the magnetic mineralogy of the entire crust. The results indicate that the magnetic anamoly observed over Rio Grande Rift may be consequence of the tectonic activity that caused mylonitization of the rocks and allowed the infiltration of oxidizing fluids.

  14. Mobilization of evaporites in tectonically active terrains

    NASA Astrophysics Data System (ADS)

    Stiros, Stathis C.

    2015-04-01

    The role of evaporites, mostly halite, during seismic sequences is investigated using evidence from certain earthquakes with magnitude between approximately 6.0 and 7.2 which occurred in the last 60 years in the Zagros Mts. (Iran) and the Ionian Sea (Greece); i.e. two seismically active areas, characterized by evaporite-associated decollements and more shallow decollements combined with mature, along-thrusts intrusions. Studied earthquakes produced either large scale surface deformation, or were covered by high-resolution and accuracy GPS and INSAR data, permitting to fully recognize the deformation pattern. In all cases an "atypical", tectonic deformation pattern was observed, ranging from apparently "impossible" patterns (thrust and normal faults, sub-parallel and homothetic; 1953 Cephalonia earthquake, Greece) to rather diffuse tectonic patterns, even to "phantom" earthquakes (Zagros). Careful analysis and modeling of the surface deformation data, in combination with the available geological, geophysical and seismological data permits to recognize, and even to quantify differences between deformation observed, and that expected in ordinary environments. In particular, it was found that during earthquakes evaporites were mobilized, and this led either to a secondary deformation of the overburden, fully detached from the basement, or to significant aseismic (post-seismic) deformation. Anomalies in the distribution of seismic intensities due to evaporitic intrusions along faults were also observed. Apart from seismological implications (unpredictable post-seismic deformation, possibly also in the far-field), these results deriving from regions at different levels of evaporitic evolution, may prove useful to understand patterns of mobilization of evaporites during periods of tectonic activity.

  15. Global tectonic activity map with orbital photographic supplement

    SciTech Connect

    Lowman, P.D. Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  16. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  17. Geopotential field anomalies and regional tectonic features

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  18. Red Sea Kinematics in Relation to the Regional Tectonics Setting

    NASA Astrophysics Data System (ADS)

    Alotaibi, T.; Furlong, K. P.

    2015-12-01

    The Red sSea extensional system started approximately 22+3 Ma. Although, there is evidence that lithospheric weakening and associated incipient extension may have taken place since 30 Ma. There is oceanic crust found in the southern part of the rift, while the northern-most part still involves continental stretching. Meantime magnetic anomalies have been observed for the southern rift, the northern rift is characterized by several deeps where magnetic anomalies have been observed as well as an indication of the transition from continental to oceanic rifting. GPS stations along the Red Sea are consistent with kinematics implied from the magnetic anomalies - an opening rate in the southern part of ~ 15 mm/yr relative to Eurasia fixed while the opening rate in the is ~8 mm/yr. This significant decreasing of the opening rate towards the north implies complexity within the Red Sea extensional system.Our purpose here is to place the Red Sea extensional kinematics within the regional tectonics context by combining constraints on the rate or style of extension within the Red Sea with tectonic activities on the adjacent continental regions. To accomplish this, we will model the extensional kinematics through time by comparing recent kinematics based on the geophysical observations with ones that based on geological observations. In terms of present-day geophysical observations, we have GPS and magnetic anomalies data, and crustal and lithospheric thickness. Geological observations primarily come from stratigraphic and structural data sets.Our overall target is to construct a tectonic model that links the timing of the change in the style and extensional rate with the tectonic activities in Afar, Gulf of Aden, Zagros, Dead Sea fault and Anatolian region.

  19. Interactions between regional tectonics and volcanic deformations in the Azores

    NASA Astrophysics Data System (ADS)

    Okada, J.; Sigmundsson, F.; Ofeigsson, B.; Rodrigues, R.; Ferreira, T.

    2012-04-01

    The Azores archipelago is located in the plate triple junction of Eurasia, Nubia, and North American. With this geologically peculiar location on the earth it represents intense seismic activities and active volcanisms. Space geodesy techniques such as GNSS, DORIS, SLR, and VLBI enable direct measurements of the current tectonic plate motions besides detecting local crustal deformation episodes in the volcanic fields. In this study, we report the recent new results of continuous GPS measurements in the Azores Triple Junction region. In the scope of monitoring both tectonic and volcanic activities, CVARG (Center for Volcanology and Geological Risk Assessment, University of Azores) has been operating 11 continuous GPS stations. All available data sets including the Azores government GNSS network and IGS (International GNSS Service) permanent network have been simultaneously processed using Bernese software v5.0. The site velocities are determined in ITRF2005 geodetic reference frame from the time series analysis for the period of 2008-2010. Estimated velocities are compared with tectonic plate motion models. Our results roughly agree with the previous geodetic studies by showing the following evidences; (1) the different opening velocities at MAR result in differential shear along Terceira Ridge, (2) south and western side of Pico and southwest and central part of S. Miguel Islands mimic stable Nubia plate motion. The pattern of the residual velocities in S. Miguel changes between Fogo and Furnas volcanoes. In this area, significant earthquake swarm episodes (e.g. in 1989 and in 2005) have been repeated at least during last few decades and some minor seismic swarms have been still ongoing. Our GPS station has captured an episodic crustal deformation that was accompanied with seismic jumps between NE flank of Fogo and Furnas and was followed by intense swarm activities in the area on late 2008. This seismic and deformation significances can be interpreted by mutual

  20. Active tectonics in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Sébrier, Michel; Siame, Lionel; Zouine, El Mostafa; Winter, Thierry; Missenard, Yves; Leturmy, Pascale

    2006-01-01

    Review of seismological and structural data coupled with new data on topographical, geomorphology, and Quaternary geology allows delineating the major active faults of the High Atlas. These are the North and South border faults of which fault segmentations correspond to Mw ranging between 6.1 and 6.4. Detail active tectonics analyses were performed on the South Atlas Fault Zone in the Souss and Ouarzazate basins, where deformed Quaternary levels permit to estimate slip rates on individual faults in the order of 0.1 mm yr -1. Such low slip rates imply that large observational time-window is needed to analyze active deformation in low-seismicity regions. However, the complex 3D geometry of reverse or thrust faults may cause difficulty to relate surface observations with the deeper faults that have the potential to nucleate big earthquakes. Further studies are necessary to interpret the Anti Atlas seismicity. To cite this article: M. Sebrier et al., C. R. Geoscience 338 (2006).

  1. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly

  2. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  3. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1988-01-01

    The long-term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate movements and intraplate deformation. The approach is to combine realistic modeling studies with analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also reported on briefly is progress in the use of the Global Positioning System to densify SLR observations in the Eastern Mediterranean. Reference is made to the previous annual report for a discussion of modeling results.

  4. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The long term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate motions and intraplate deformation. The approach is to combine realistic modeling studies with an analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also briefly reported on is progress made in using GPS measurements to densify SLR observations in the Eastern Mediterranean.

  5. Active tectonic studies in the United States, 1987-1990

    SciTech Connect

    Weldon, R.J., II )

    1991-01-01

    The techniques and instrumentation used in active tectonic studies are discussed, and recent results are reviewed. It is suggested that a critical mass of data on several particular regions has been accumulated, making possible critical debates and attempts to assess earthquake hazards. Particular attention is given to studies of the Pacific Northwest region, basin and range deformation studies, and distributed deformation and hidden earthquake sources. Also included is a comprehensive bibliography for the period.

  6. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  7. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  8. Fault-based PSHA of an active tectonic region characterized by low deformation rates: the case of the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Vleminckx, Bart; Camelbeeck, Thierry

    2016-04-01

    The Lower Rhine Graben (LRG) is one of the few regions in intraplate NW Europe where seismic activity can be linked to active faults, yet probabilistic seismic hazard assessments of this region have hitherto been based on area-source models, in which the LRG is modeled as a single or a small number of seismotectonic zones with uniform seismicity. While fault-based PSHA has become common practice in more active regions of the world (e.g., California, Japan, New Zealand, Italy), knowledge of active faults has been lagging behind in other regions, due to incomplete tectonic inventory, low level of seismicity, lack of systematic fault parameterization, or a combination thereof. The past few years, efforts are increasingly being directed to the inclusion of fault sources in PSHA in these regions as well, in order to predict hazard on a more physically sound basis. In Europe, the EC project SHARE ("Seismic Hazard Harmonization in Europe", http://www.share-eu.org/) represented an important step forward in this regard. In the frame of this project, we previously compiled the first parameterized fault model for the LRG that can be applied in PSHA. We defined 15 fault sources based on major stepovers, bifurcations, gaps, and important changes in strike, dip direction or slip rate. Based on the available data, we were able to place reasonable bounds on the parameters required for time-independent PSHA: length, width, strike, dip, rake, slip rate, and maximum magnitude. With long-term slip rates remaining below 0.1 mm/yr, the LRG can be classified as a low-deformation-rate structure. Information on recurrence interval and elapsed time since the last major earthquake is lacking for most faults, impeding time-dependent PSHA. We consider different models to construct the magnitude-frequency distribution (MFD) of each fault: a slip-rate constrained form of the classical truncated Gutenberg-Richter MFD (Anderson & Luco, 1983) versus a characteristic MFD following Youngs

  9. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.; Yule, J. D.

    2014-12-01

    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  10. Volcanic-tectonic interactions of the Tharsis region, Mars

    NASA Astrophysics Data System (ADS)

    Wyrick, Danielle Y.

    The Tharsis region of Mars is characterized by large volcanic and tectonic centers with distinct sets of graben systems that extend radially for distances of hundreds to thousands of kilometers. Formation of these grabens has been attributed to magmatic dike intrusion and used to interpret underlying dikes and dike swarms in the Tharsis region, which has implications for both the magmatic and tectonic history of Mars and potential astrobiological research sites. Research to date on Martian dike propagation has almost exclusively relied on boundary element models to predict surface deformation and none has provided observational evidence from Earth analog sites. In this project, the extent to which igneous activity can create and/or reactivate faults and fractures was examined through a series of interrelated tasks, including Martian data analyses, field investigations, discrete element modeling, and physical analog experiments. Neither the discrete element models nor the physical analog experiments of dike injection produced the simple graben morphology characteristic of the Tharsis grabens. The primary result of both modeling approaches was surface deformation in the form of contractional folds producing uplift at the surface (i.e., bounding anticlines with a synclinal trough ) rather than extensional faults over the dike tip producing subsidence (i.e., bounded by normal faults with a down dropped floor). Field investigations of dike intrusion did not find large-scale extensional features surrounding dikes in rock outcrop. Together, these investigations suggest a more passive role in dike emplacement, rather than the more active, graben-producing, hypothesis. This suggests that the Tharsis-radial grabens were not formed primarily in response to magmatic dike intrusion, but instead dike emplacement occurred along pre-existing faults. It is likely that many of the grabens in the Tharsis region are underlain (filled) as dikes; however, absent additional evidence (e

  11. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert

    1992-01-01

    A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.

  12. Northeast Basin and Range province active tectonics: An alternative view

    SciTech Connect

    Westaway, R. )

    1989-09-01

    Slip rates and slip vector azimuths on major active oblique normal faults are used to investigate whether circulation associated with the Yellowstone upwelling plume is driving tectonic deformation in the northeast Basin and Range province. Observed deformation is consistent with this suggestion; the plume is sheared to the southwest by motion of the North American plate. Testable predictions are made for structure and evolution of the region.

  13. Introduction to Regional Geology, Tectonics, and Metallogenesis of Northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M.; Badarch, Gombosuren; Berzin, Nikolai A.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Kuzmin, Mikhail I.; Nokleberg, Warren J.; Obolenskiy, Alexander O.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Rodionov, Sergey M.; Smelov, Alexander P.; Yan, Hongquan

    2007-01-01

    This introduction presents an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia. The major purposes are to provide a relatively short summary of these features for readers who are unfamiliar with Northeast Asia; a general scientific introduction for the succeeding chapters of this volume; and an overview of the methodology of metallogenic and tectonic analysis employed for Northeast Asia. The introduction also describes how a high-quality metallogenic and tectonic analysis, including synthesis of an associated metallogenic-tectonic model will greatly benefit refinement of mineral deposit models and deposit genesis; improvement of assessments of undiscovered mineral resources as part of quantitative mineral resource assessment studies; land-use and mineral exploration planning; improvement of interpretations of the origins of host rocks, mineral deposits, and metallogenic belts; and suggestions for new research. The compilation, synthesis, description, and interpretation of metallogenesis and tectonics of major regions, such as Northeast Asia (Eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (Russian Far East, Alaska, and Canadian Cordillera) requires a complex methodology. The methodology includes: (1) definitions of key terms; (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions; (3) compilation of a mineral deposit database that enables the determination of mineral deposit models, and relations of deposits to host rocks and tectonic origins; (4) synthesis of a series of mineral deposit models that characterize the known mineral deposits and inferred undiscovered deposits of the region; (5) compilation of a series of maps of metallogenic belts constructed on the regional geologic base map; and (6) formulation of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis in this

  14. Tectonic Activity during the Harappan Civilization

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Nur, A.

    2001-12-01

    The Harappan civilization in South Asia existed between 3,300 and 1,900 BC. Extensive remnants from this era are found in Pakistan and northwestern India. The region is far from plate boundaries and, until recently, has been considered tectonically inactive. A combination of data from current and historic seismicity, marine seismic surveys, and prevalent geologic and tectonic features with archeological findings, historical and scriptural records, and GIS mapping of large scale areas shows: \\begin{enumerate} Occurrence of earthquakes starting from the 26th January, 2001 event to as far back as 2500 BC Existence of an ancient river, Saraswati corroborated with historical records, GIS mapping, marine seismic surveys Sea level changes from archeological excavations of variations in fauna. We show how a cross-disciplinary study can provide ways of filling information gaps and providing new insights. A comparison between isoseismal lines from the Magnitude 8 event of 26th January, 2001 with location of Harappan cities shows that most cities would have been obliterated by such an event. >http://pangea.stanford.edu/ ~manika/harappa.html

  15. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  16. Tectonic and neotectonic framework of the Yucca Mountain Region

    SciTech Connect

    Schweickert, R.A.

    1992-09-30

    Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.

  17. New tectonic concept of the Arctic region evolution

    NASA Astrophysics Data System (ADS)

    Petrov, O. V.; Morozov, A.; Grikurov, G.; Shokalsky, S.; Kashubin, S.; Sobolev, N. V.; Petrov, E.

    2012-12-01

    -Early Cretaceous continental rifting and volcanic activity. Reactivation of rifting in the Central Arctic at the beginning of Cenozoic led to the onset of spreading 56 million years ago along the emerging Gakkel Ridge and to the subsequent formation of the Eurasian Basin. Approximately 33 million years ago, the newly formed Eurasian oceanic basin connected with the Norwegian-Greenland Basin of the North Atlantic. Combined interpretation of seismostratigraphic data and drilling results suggests that during the Paleogene shallow-water sedimentation in the Central Arctic occurred, which indicates the high-standing sea level. Only in the Early Miocene (about 20 million years ago) the sea bottom sank sharply reaching its present-day depth and causing transition to deep-water deposition. This essential tectonic event is recorded throughout the Central Arctic elevations by a regional unconformity in seismostratigraphic sections. The Cenozoic expansion of the North Atlantic into the Central Arctic occurred across the structural assemblages whose formation was controlled by the preceding evolution of the Asian paleo-ocean.

  18. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  19. Tectonic setting of the Mendocino triple junction region

    SciTech Connect

    Clarke, S.H. Jr.; McLaughlin, R.J. ); Carver, G.A.; Burke, R.M.; McPherson, R.C. )

    1993-04-01

    Onshore and offshore geologic mapping coupled with topical investigations constrain the tectonic relations and geometry of active plate boundaries in the Mendocino triple junction region. Along the northern California coast and offshore, Gorda-North American plate convergence is reflected by youthful west- to northwest-verging thrust fault systems that extend to or near the plate interface at depth. Interplate coupling across a minimum breadth of 70--80 km is indicated by late Quaternary uplift and shortening rates, the nature and distribution of upper and lower plate seismicity, divergent trends in upper plate structures, and a history of large late Holocene earthquakes. Offshore seismic-reflection and seismicity data from the vicinity of the Mendocino fault (MF) show that the fault dips steeply to the north, and that the older, relatively rigid Pacific plate acts as a buttress against which the southern Gorda plate is being deformed. Onshore investigations show that the San Andreas fault zone (SAF) extends on land southeast of Point Delgada (at Whale Gulch), and is manifested along the north and northeast side of the King Range (KR) by north-northeast-vergent thrust faults. This thrust fault system may root into the steeply dipping offshore San Andreas fault. Faults of this system may include active, blind northeast-vergent thrusts that extend from a root zone beneath the King Range northward and upward into Franciscan Complex (Coastal belt) rocks along the north flank of the range. The southern Cascadia subduction zone megathrust intersects the Mendocino and San Andreas transform faults in the Mendocino triple junction. The upper crustal location of this intersection lies nearshore and/or landward along the north flank of the King Range. An area of focused rapid uplift and repeated coseismic growth (Mendocino Uplift) straddles the triple junction.

  20. Plate tectonics and petroleum potential of the Laptev Sea region

    SciTech Connect

    Savostin, L.; Drachev, S.; Baturin, D. )

    1991-08-01

    About 1,600 km of multichannel seismic data with simultaneous gravity and magnetic measurements were collected in the Laptev Sea during 1989. Additionally, a 100 km onshore seismic reflection profile transected the northern termination of the Verrkoyansky Mountains. Data interpretation showed the following. The tectonic patterns of the Laptev Sea region was formed as a result of two major tectonic phases. The first phase was associated with collisions between the Paleozoic passive margin of Siberia and a number of allochthonous terrains which were previously parts of the North American Paleo-Pacific plate. These tectonic events accompanied the opening of the Canadian basin and ended in the second half of the Early Cretaceous. The second phase was a result of the opening of the Makarov and the Europeo-Asiatic basins, which caused the rifting processes within the Laptev Sea Shelf. Seismic onshore data show that the orogenic sequence consists of allochthonous plates which were thrust onto the thick sedimentary cover the Siberia platform. An underthrusting sedimentary sequence is situated at depths from 3 to 5 km, which present a good possibility to reach by the drill. The geological analogy with Appalachian Mountains United States, permits one to propose a high petroleum potential for this area. A system of offshore Laptev Sea grabens consisting of a series of alternating tilted and thrusted blocks, along with intrablock pre-drift sediments, are promising as potential hydrocarbon traps. This is akin to structural setting within North Sea oil and gas province.

  1. Mantle flow in regions of complex tectonics: Insights from Indonesia

    NASA Astrophysics Data System (ADS)

    di Leo, J. F.; Wookey, J.; Hammond, J. O. S.; Kendall, J.-M.; Kaneshima, S.; Inoue, H.; Yamashina, T.; Harjadi, P.

    2012-12-01

    Indonesia is arguably one of the tectonically most complex regions on Earth today due to its location at the junction of several major tectonic plates and its long history of collision and accretion. It is thus an ideal location to study the interaction between subducting plates and mantle convection. Seismic anisotropy can serve as a diagnostic tool for identifying various subsurface deformational processes, such as mantle flow, for example. Here, we present novel shear wave splitting results across the Indonesian region. Using three different shear phases (local S, SKS, and downgoing S) to improve spatial resolution of anisotropic fabrics allows us to distinguish several deformational features. For example, the block rotation history of Borneo is reflected in coast-parallel fast directions, which we attribute to fossil anisotropy. Furthermore, we are able to unravel the mantle flow pattern in the Sulawesi and Banda region: We detect toroidal flow around the Celebes Sea slab, oblique corner flow in the Banda wedge, and sub-slab mantle flow around the arcuate Banda slab. We present evidence for deep, sub-520 km anisotropy at the Java subduction zone. In the Sumatran backarc, we measure trench-perpendicular fast orientations, which we assume to be due to mantle flow beneath the overriding Eurasian plate. These observations will allow to test ideas of, for example, slab-mantle coupling in subduction regions.

  2. Tectonics

    NASA Astrophysics Data System (ADS)

    John Dewey will complete his term as editor-in-chief of Tectonics at the end of 1984. Clark Burchfiel's term as North American Editor will also end. Tectonics is published jointly with the European Geophysical Society. This newest of AGU's journals has already established itself as an important journal bridging the concerns of geophysics and geology.James A. Van Allen, president of AGU, has appointed a committee to recommend candidates for both editor-in-chief and North American editor for the 1985-1987 term.

  3. The Interpretation of Crustal Dynamics Data in Terms of Plate Interactions and Active Tectonics of the Anatolian Plate and Surrounding Regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert E.

    1990-01-01

    During the past 6 months, efforts were concentrated on the following areas: (1) Continued development of realistic, finite element modeling of plate interactions and associated deformation in the Eastern Mediterranean; (2) Neotectonic field investigations of seismic faulting along the active fault systems in Turkey with emphasis on identifying seismic gaps along the North Anatolian fault; and (3) Establishment of a GPS regional monitoring network in the zone of ongoing continental collision in eastern Turkey (supported in part by NSF).

  4. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  5. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi

    1987-01-01

    The primary effort in this study during the past year has been directed along two separate lines: (1) expanding finite element models to include the entire Anatolian plate, the Aegean Sea and the Northeastern Mediterranean Sea, and (2) investigating the relationship between fault geometry and earthquake activity for the North Anatolian and similar strike-slip faults (e.g., San Andreas Fault). Both efforts are designed to provide an improved basis for interpreting the Crustal Dynamics measurements NASA has planned for this region. The initial phases of both investigations have been completed and the results are being prepared for publication. These investigations are described briefly.

  6. Modern Tectonic Deformation in the Active Basin-And Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, S.; Wen, X.

    2012-12-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the present tectonic deformation, the southeastern margin of the Datong-Yangyuan basin, the biggest graben basin of the active tectonic province, shows as a turning belt of the extensional rates, suggesting that relatively high tensile strain accumulation could exist there. (3)On the northeastern segment of the studied active basin-and-range province, both the Zhangjiakou-Yanhui graben basin and the Beijing graben basin have also been being in significant extensional and shear deformation. (4) The relocated hypocenter distribution have

  7. Source mechanism studies of earthquakes in the Ibero-Maghrebian region and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Buforn, E.; Udías, A.; Pro, C.

    2016-01-01

    Seismicity of the Ibero-Maghrebian region includes the occurrence of shallow, intermediate depth, and very deep earthquakes. This is a very rare occurrence for a region not associated to an active subduction zone. Detailed studies of the source mechanism of these three types of earthquakes have been made possible through the collaboration with Prof. Madariaga. They give important information about the complex tectonic of the region. Shallow earthquakes at the west and east ends of the region have predominant reverse faulting with NW-SE trending horizontal pressure axes. The center part is the most tectonically complex. At the Strait of Gibraltar, there is a change on focal mechanisms from reverse faulting to strike-slip motion in northern Morocco, conserving the horizontal compression on NW-SE direction. In the Alboran Sea, mechanisms are of normal faulting with E-W trending horizontal tension axes, and in south Spain, mechanisms are of mixed solutions. The intermediate depth earthquakes (40-130 km) are located at both sides of the Strait of Gibraltar, at the western part distributed in E-W direction. The most important concentration, however, is located at the east of Gibraltar in a N-S trending thin vertical body and has different mechanisms. The very deep earthquakes (650 km) are concentrated at a small volume, and their mechanism corresponds to N-S vertical planes or horizontal ones. A tectonic model for the region is presented to explain the shallow, intermediate, and deep earthquakes.

  8. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  9. Discriminating Mining Induced Seismicity from Natural Tectonic Earthquakes in the Wasatch Plateau Region of Central Utah

    NASA Astrophysics Data System (ADS)

    Stein, J. R.; Pankow, K. L.; Koper, K. D.; McCarter, M. K.

    2014-12-01

    On average, several hundred earthquakes are located each year within the Wasatch Plateau region of central Utah. This region includes the boundary between the relatively stable Colorado Plateau and the actively extending Basin and Range physiographic provinces. Earthquakes in this region tend to fall in the intermountain seismic belt (ISB), a continuous band of seismicity that extends from Montana to Arizona. While most of the earthquakes in the ISB are of tectonic origin, events in the Wasatch Plateau also include mining induced seismicity (MIS) from local underground coal mining operations. Using a catalog of 16,182 seismic events (-0.25 < M < 4.5) recorded from 1981 to 2011, we use double difference relocation and waveform cross correlation techniques to help discriminate between these two populations of events. Double difference relocation greatly improves the relative locations between the many events that occur in this area. From the relative relocations, spatial differences between event types are used to differentiate between shallow MIS and considerably deeper events associated with tectonic seismicity. Additionally, waveform cross-correlation is used to cluster events with similar waveforms—meaning that events in each cluster should have a similar source location and mechanism—in order to more finely group seismic events occurring in the Wasatch Plateau. The results of this study provide both an increased understanding of the influence mining induced seismicity has on the number of earthquakes detected within this region, as well as better constraints on the deeper tectonic structure.

  10. Active Tectonics in the Tibetan Plateau Region as a Consequence of Plate-Scale Forces on the Eurasian Plate: a Model Study

    NASA Astrophysics Data System (ADS)

    Garcia-Sancho, C.; Govers, R. M. A.; Tesauro, M.

    2015-12-01

    We study the forces acting on the Eurasian plate and the resulting present-day deformation. We use mechanically balanced models based on plate contact forces (continental collision, plate boundary friction at transform faults and subduction contacts, and slab roll-back forces), lithospheric body forces (from lateral variations in topography, density structure) and mantle convective tractions including dynamic topography. These forces drive Eurasia in the direction of absolute motion and fit observed horizontal stress directions to first order. We employ plane stress spherical finite elements and linear visco-elastic rheology to compute the lithosphere-averaged mechanical response. We consider the influence of including the major active faults in these models. Here we focus on intra-plate deformation in the Tibetan Plateau. We assume five different compositions for the upper and lower crust and one for the upper mantle, and we use geotherms and crustal thickness maps to constrain depth-dependent rheology profiles and to estimate vertically averaged viscosities. Predicted velocities show to be very sensitive to the reference point: Eurasia consists of cratonic regions surrounded by more recently active "mobile belts". Using the Siberian or the East European craton as a reference gives significantly different deformation solutions. Best-matching velocities are obtained using Eurasia's "center of deformation", defined on the basis of force moments and located in the southeastern Siberian craton. Comparison with horizontal GPS velocities shows a good correlation in velocity directions and magnitudes in the Tibetan Plateau, Tarim Basin and Tien Shan. Strain rate and vertical axis rotation rates also provide a good fit. Velocity field and clockwise rotation pattern in Southeast Asia are highly dependent on the vertically averaged horizontal viscosity distribution contrast and its geometry. Faults do not significantly affect the predicted surface velocity field

  11. Early Miocene Tectonic Activity in the western Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; Geletti, R.; De Santis, L.

    2012-12-01

    In the framework of the Rossmap Italian PNRA work objectives to compile extended and revised digital maps of the main unconformities in Ross Sea, Antarctica, much additional seismic reflection data, that were not available to previous ANTOSTRAT compilation, were incorporated into a new ROSSMAP interpretation. The correlation across almost all of Ross Sea, from DSDP Site 270 and Site 272 in Eastern Basin to northern Victoria Land Basin, of additional early Miocene and late Oligocene horizons that were not part of ANTOSTRAT allows interpretations to be made of fault activity and glacial erosion or deposition at a finer time resolution. New conclusions include that extensional or transtensional fault activity within the zone between Victoria Land Basin and Northern Basin, initiated by 23 Ma or earlier, and continued after 18 Ma. Steep parallel-striking faults in southern Victoria Land Basin display both reverse and normal separation of 17.5 Ma (from Cape Roberts Program-core 1) and post-16 Ma horizons, suggesting an important strike-slip component. This result may be compared with published papers that proposed post-17 Ma extension in southern Victoria Land Basin, 16-17 Ma extension in the AdareTrough, north of the Ross Sea continental shelf, but no Miocene extension affecting the Northern Basin (Granot et al., 2010). Thus, our evidence for extension through the early Miocene is significant to post-spreading tectonic models. Reference Granot R., Cande S. C., Stock J. M., Davey F. J. and Clayton R. W. (2010) Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences. Geochem. Geophys. Geosyst., 8, Q08005, doi:10.1029/2010GC003105.

  12. Current tectonics of the Tonga-New Hebrides region

    NASA Astrophysics Data System (ADS)

    Pelletier, Bernard; Calmant, Stephane; Pillet, Robert

    1998-12-01

    This paper proposes a present-day tectonic map of the Tonga-New Hebrides region, the result of combining data from bathymetry, satellite-derived gravity, seismicity, magnetic measurements and GPS observations. Focal mechanisms and a large amount of bathymetric data collected during the last decade in the Lau and North Fiji back-arc basins indicate a deformation distributed over numerous spreading ridges rather than diffuse and shear-dominated as was previously thought. The region is also characterised by a large variation of both consumption rate along the arcs and opening rate along the back-arc basins spreading centres. Geometry and rate of spreading in the Lau and North Fiji back-arc basins, and segmentation of the Tonga and New Hebrides arcs, are closely related to, and significantly influenced by, the subduction of aseismic ridges, namely the Louisville, D'Entrecasteaux and Loyalty ridges. Where subducting aseismic ridges enter the trenches, we observe slower convergence, arc-transverse strike-slip faulting, thrusting at the rear of arcs, and slow or absent back-arc spreading. Rapid subduction correlates with fast back-arc opening. Sometimes parallel spreading ridges in the back-arc domain are required to accommodate the fast motion of convergence.

  13. Modern Tectonic Deformation in the Active Basin-and-Range Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, Suting; Wen, Xueze

    2013-04-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the western and middle segments of the active basin and range province, most of the total horizontal extension and shear deformation happen in the width from the Huangqihai basin to the Datong-Yanggao basin , suggesting that some major faults in this width could have had relatively-high strain build-up. (3) It is possible that one or more basement detachment belts exist under the active basins, and it or they possibly dip(s) southeastern-ward. (4) The modern tectonic extensional rate is up to 2 to 3mm /yr in the study region. However

  14. Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J. M.; Davey, F. J.; Clayton, R. W.

    2010-08-01

    Extension during the middle Cenozoic (43-26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deformational event took place close to the cessation of seafloor spreading in the Adare Basin (˜24 Ma). It reactivated a few normal faults and initiated the formation of the Adare Trough. A prominent pulse of rifting in the early Miocene (˜17 Ma) resulted in normal faulting that initiated tilted blocks. The overall trend of structures was NE-SW, linking the event with the activity outside the basin. It resulted in major uplift of the Adare Trough and marks the last extensional phase of the Adare Basin. Recent volcanic vents (Pliocene to present day) tend to align with the early Miocene structures and the on-land Hallett volcanic province. This latest phase of tectonic activity also involves near-vertical normal faulting (still active in places) with negligible horizontal consequences. The early Miocene extensional event found within the Adare Basin does not require a change in the relative motion between East and West Antarctica. However, the lack of subsequent rifting within the Adare Basin coupled with the formation of the Terror Rift and an on-land and subice extension within the WARS require a pronounced change in the kinematics of the rift. These observations indicate that extension increased southward, therefore suggesting that a major change in

  15. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  16. Plate tectonics and the Gulf of California region

    SciTech Connect

    Schmidt, N.

    1990-11-01

    The geology and tectonism of California have been influenced greatly by the collision and interaction between the Pacific plate and the North American plate. The forces generated by this interaction caused substantial horizontal movement along the San Andreas fault system and created the Gulf of California rift zone. This article summarizes the unique features of the gulf, describes the theory of plate tectonics, explains how tectonism may have affected the geologic evolution and physiography of the gulf, and illustrates the process by which the Colorado River became linked to the gulf.

  17. Role of local to regional-scale collisions in the closure history of the Southern Neotethys, exemplified by tectonic development of the Kyrenia Range active margin/collisional lineament, N Cyprus

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui

    2016-04-01

    Active margin processes including subduction, accretion, arc magmatism and back-arc extension play a key role in the diachronous, and still incomplete closure of the S Neotethys. The S Neotethys rifted along the present-day Africa-Eurasia continental margin during the Late Triassic and, after sea-floor spreading, began to close related to northward subduction during the Late Cretaceous. The northern, active continental margin of the S Neotethys was bordered by several of the originally rifted continental fragments (e.g. Taurides). The present-day convergent lineament ranges from subaqueous (e.g. Mediterranean Ridge), to subaerial (e.g. SE Turkey). The active margin development is partially obscured by microcontinent-continent collision and post-collisional strike-slip deformation (e.g. Tauride-Arabian suture). However, the Kyrenia Range, N Cyprus provides an outstanding record of convergent margin to early stage collisional processes. It owes its existence to strong localised uplift during the Pleistocene, which probably resulted from the collision of a continental promontory of N Africa (Eratosthenes Seamount) with the long-lived S Neotethyan active margin to the north. A multi-stage convergence history is revealed, mainly from a combination of field structural, sedimentological and igneous geochemical studies. Initial Late Cretaceous convergence resulted in greenschist facies burial metamorphism that is likely to have been related to the collision, then rapid exhumation, of a continental fragment (stage 1). During the latest Cretaceous-Palaeogene, the Kyrenia lineament was characterised by subduction-influenced magmatism and syn-tectonic sediment deposition. Early to Mid-Eocene, S-directed thrusting and folding (stage 2) is likely to have been influenced by the suturing of the Izmir-Ankara-Erzincan ocean to the north ('N Neotethys'). Convergence continued during the Neogene, dominated by deep-water terrigenous gravity-flow accumulation in a foredeep setting

  18. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  19. A paradigm shift in stormflow predictions for active tectonic regions with large-magnitude storms: generalisation of catchment observations by hydraulic sensitivity analysis and insight into soil-layer evolution

    NASA Astrophysics Data System (ADS)

    Tani, Makoto

    2013-11-01

    In active tectonic regions with large-magnitude storms, it is still difficult to predict stormflow responses by distributed runoff models from the catchment properties without a parameter calibration using observational data. This paper represents an attempt to address the problem. A review of observational studies showed that the stormflow generation mechanism was heterogeneous and complex, but stormflow responses there were simply simulated by a single tank with a drainage hole when the stormflow-contribution area was spatially invariable due to the sufficient amount of rainfall supply. These results suggested such a quick inflow/outflow waveform transmission was derived from the creation of a hydraulic continuum under a quasi-steady state. General conditions necessary for the continuum creation were theoretically examined by a sensitivity analysis for a sloping soil layer. A new similarity framework using the Richards equation was developed for specifying the sensitivities of waveform transmission to topographic and soil properties. The sensitivity analysis showed that saturation-excess overland flow was generally produced from a soil layer without any macropore effect, whereas the transmission was derived mainly from the vertical unsaturated flow instead of the downslope flow in a soil layer with a large drainage capacity originated from the macropore effect. Both were possible for the quick transmission, but a discussion on the soil-layer evolution process suggested that an inhibition of the overland flow due to a large drainage capacity played a key role, because a confinement of the water flow within the soil layer might be needed for the evolution against strong erosional forces in the geographical regions. The long history of its evolution may mediate a relationship between simple stormflow responses and complex catchment properties. As a result, an insight into this evolution process and an inductive evaluation of the dependences on catchment properties

  20. Lithosphere-asthenosphere Structure and Active Tectonics In Central Italy

    NASA Astrophysics Data System (ADS)

    Chimera, G.; Aoudia, A.; Saraò, A.; Panza, G. F.

    We investigate the lithosphere-asthenosphere structure and the active tectonics along a stripe from the Tyrrhenian to the Adriatic with emphasis on the Umbria-Marche area by means of surface-wave tomography, and inversion studies for structure and seismic moment tensor retrieval. The data include seismic waveforms, a large compilation of local group velocities (0.8-4s) and regional phase and group velocity (10-100s) measurements. The local group velocity maps cover the area reactivated by the 1997 Umbria-Marche earthquake sequence. These maps suggest a relation between the lat- eral heterogeneity and distribution of the active faults and related basins. Such relation is confirmed by the non-linear inversion of the local dispersion curves. To image the deeper structure from the Tyrrhenian to the Adriatic coast, we fix the uppermost part of the crust using the Umbria-Marche models along with the CROP03 profile and related shear wave velocity, and invert the additional long period dispersion measure- ments. The results of the inversion show the geometry and lateral heterogeneity of the lithosphere-asthenosphere system. The retrieved models for the Umbria-Marche up- per crust reveal the importance of the inherited compression on the ongoing extension and related seismic activity. The reactivated 1997 normal fault zone displays a thrust fault geometry as evidenced by the lateral extent of the faulted Late Triassic evap- orites that did not yet balance the cumulative normal faulting deformation attesting therefore recent extensional tectonics within the thrust belt. Our data are in favor of a listric geometry of faulting at depth. Source inversion studies of the two main crustal events of September 26 and October 14, 1997 show the dominance of normal faulting mechanisms, whereas selected aftershocks between the reactivated fault segments re- veal that the prevailing deformation at the step-over is of strike-slip faulting type. The rupture of the three distinct and

  1. Regional tectonics of Myanmar (Burma) and adjacent areas

    SciTech Connect

    Everett, J.R.; Russell, O.R.; Staskowski, R.J.; Loyd, S.P.; Tabbutt, V.M. ); Dolan, Stein, A. )

    1990-05-01

    Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexity of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.

  2. Tectonic Extension and Bulging in Southern Alba Patera Region, Mars

    NASA Astrophysics Data System (ADS)

    Baioni, D.; Borraccini, F.; Lanci, L.; Wezel, F. C.

    2004-12-01

    We investigated the Alba Patera area, south of the Alba Patera Volcano, in order to obtain quantitative information on the tectonic extension affecting this area. Tectonic structures of Alba Patera area have been previously described using Viking images and interpreted as extensional structures. Digital Elevation Model made using altimetry data (MOLA) can be used to quantitatively investigate these structures with a better resolution. We proceeded by constructing E-W oriented profiles and used techniques commonly employed in Structural Geology to estimate the tectonic extension. We investigated the presence of mechanical discontinuities by calculating the maximum depths reached by the graben structures. This has been estimated using the lost-area balancing method (Groshong, 1996) and the crossing depth of the border faults assuming planar fault surfaces, which gave similar results. The extension calculated in the studied area (up to 12%) cannot be explained only with the observed doming of the topographic surface and require a significant amount of horizontal stretching.

  3. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  4. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  5. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  6. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  7. Seismic response to recent tectonic processes in the Banda Arc region

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Matějková, Radka; Vaněk, Jiří

    2013-03-01

    Internal structure and recent tectonics of the geologically complex Banda Arc region (latitude 1-9°S, longitude 124-135°E) have been studied by means of the analysis of global seismological data. Relocated hypocentral determinations of the International Seismological Center (EHB data) and fault plane solutions of the Global Centroid Moment Tensor Project have been used together with previously published information on regional geology and dynamics. The analysis considered earthquakes in the lithospheric wedges above subducting slabs and earthquakes in the uppermost portions of the Wadati-Benioff zones (focal depth < 100 km); we avoided intermediate-depth and deep earthquakes that are clearly separated from shallow ones by distinct discontinuities in the Wadati-Benioff zones. Such a selection best reflects present manifestations of tectonic processes. We delimitated 11 domains of earthquakes, each of them spatially distinct and with similar earthquake focal mechanisms. The number of events that did not fit in any domain was negligible. We associated each domain of earthquakes with distinct structural units and/or tectonic processes in the studied region. This correlation revealed that two discrete recent subduction zones act in the region - northward dipping Banda subduction in the south and southward dipping Seram subduction in the north. Though the shallow parts of the WBZs of both these subduction zones reach a similar depth of 100 km, the two WBZs differ substantially by dip angle and relation between shallow and intermediate-depth portions. A depth of 100 km of the shallow WBZs corresponds to - assuming an invariable plate convergence rate - a subduction cycle starting about 1-1.5 Ma ago. The present Banda subduction cycle follows the collisional event of the Timor-Tanimbar segment of the Australian plate; this collision now persists west and east of the Banda subduction zone around Timor and Tanimbar, as revealed by respective domains of earthquakes. No

  8. The Viscoelastic Effect of Triggered Earthquakes in Various Tectonic Regions On a Global Scale

    NASA Astrophysics Data System (ADS)

    Sunbul, F.

    2015-12-01

    The relation between static stress changes and earthquake triggering has important implications for seismic hazard analysis. Considering long time difference between triggered events, viscoelastic stress transfer plays an important role in stress accumulation along the faults. Developing a better understanding of triggering effects may contribute to improvement of quantification of seismic hazard in tectonically active regions. Parsons (2002) computed the difference between the rate of earthquakes occurring in regions where shear stress increased and those regions where the shear stress decreased on a global scale. He found that 61% of the earthquakes occurred in regions with a shear stress increase, while 39% of events occurred in areas of shear stress decrease. Here, we test whether the inclusion of viscoelastic stress transfer affects the results obtained by Parsons (2002) for static stress transfer. Doing such a systematic analysis, we use Global Centroid Moment Tensor (CMT) catalog selecting 289 Ms>7 main shocks with their ~40.500 aftershocks located in ±2° circles for 5 years periods. For the viscoelastic post seismic calculations, we adapt 12 different published rheological models for 5 different tectonic regions. In order to minimise the uncertainties in this CMT catalog, we use the Frohlich and Davis (1999) statistical approach simultaneously. Our results shows that the 5590 aftershocks are triggered by the 289 Ms>7 earthquakes. 3419 of them are associated with calculated shear stress increase, while 2171 are associated with shear stress decrease. The summation of viscoelastic stress shows that, of the 5840 events, 3530 are associated with shear stress increases, and 2312 with shear stress decrease. This result shows an average 4.5% increase in total, the rate of increase in positive and negative areas are 3.2% and 6.5%, respectively. Therefore, over long time periods viscoelastic relaxation represents a considerable contribution to the total stress on

  9. Moment tensor inversion of the January 8, 2013 (Mw=5.7) and May 24, 2014 (Mw 6.8) North Aegean Earthquakes: seismicity and active tectonics of the North Aegean Region

    NASA Astrophysics Data System (ADS)

    Kalafat, Dogan; Kekovali, Kivanc; Pinar, Ali

    2015-04-01

    The North Aegean Sea is one of the most seismically active and deforming region between the Eurasia and Anatolia tectonic plates. On 8th January 2013 at 14:16 UTC (16:16 local time) a moderate earthquake (Mw= 5.7) occurred between the south of Gökçeada and southwest of Bozcaada Islands. The earthquake was felt at a wide area. Especially felt in the NE Greece south of Lemnos Island and NW Turkey surrounding areas, such as Çanakkale, Marmara Region and Northern Aegean coast as well as to Athens. The area is defined as the continuation of the branch of North Anatolian Fault (NAF) inside the Aegean Sea. Fault plane solution determined by this study shows that the earthquake occurred on NE-SW oriented strike slip fault segment. The aftershocks distribution also supported the rupture of the NE-SW oriented fault. Approximately 17 months later, another big earthquake occurred in the same area. On 24th May 2014, at 09:25 UTC (12:25 local time), a powerful Ml=6.7 (Mw=6.8) earthquake hit Greece and Turkey, 87 km west of Çanakkale, and totally 350 people injured in Greece and Turkey. This earthquake has been strongly felt in Greece, Turkey, Bulgaria, Romania. The main-shock occurred on a fault with a NE-SW strike, where the largest portion of the energy was released towards these directions. Therefore the earthquake was felt strongly in Çanakkale, Istanbul and Marmara region. In this study we calculated CMT solutions for main-shock and important aftershocks (M>4.0). CMT analyses were done for 50 important earthquakes. Moment tensor solutions show generally strike-slip faulting. The fault which caused earthquake, is thought to be a branch of North Anatolian Fault Zone in the North Aegean Sea. Generally, the location of the earthquakes and orientation of the NE-SW nodal planes are consistent with right-lateral faulting within the North Aegean Trough (NAT). The Aegean Sea is characterized by dextral strike-slip faulting along NE-SW striking faults, along fault zones formed

  10. Present-day Tectonic Stress Regimes in Northern Iraq and Surrounding Regions from Focal Mechanism Data

    NASA Astrophysics Data System (ADS)

    Mahdi, H. H.; Abdulnaby, W.; Al-Shukri, H. J.; Numan, N.

    2013-12-01

    The collision zone between the Arabian and the Eurasian plates is one of the most seismically active regions. Northern Iraq represents the northeastern part of the Arabian plate that has a suture zone with the Turkish and Iranian plates named Bitlis-Zagros suture zone. The present-day tectonic stress regimes can be estimated from focal mechanism data. The waveform moment tensor inversion method was used to derive the focal mechanism solution of 65 earthquakes with magnitudes of ≥3.5. Green's functions for the local and regional seismograms were generated in order to perform the moment tensor inversion using complete seismograms. From focal mechanism solutions, the direction of slip and the orientations of the moment tensor axes (P, N, and T) on the fault surface during an earthquake were determined. The tectonic stress regime of each focal mechanism was estimated based on Zoback (1992). The results show that all six categories of the stress regimes, which are normal faulting (NF), normal faulting with strike-slip component (NS), strike-slip faulting (SS), thrust faulting with strike-slip component (TS), thrust faulting (TF), and unknown or oblique faulting (UF), exist. However, the most common tectonic regimes in the study area are the SS (43.94%), UF (27.27%), and TF (13.64%). In most cases, the strike-slip movement on the fault surfaces consists of left-lateral movement. The NF regime, which is located in one small area near Diyala city at the Iraq-Iran border, might be a local tensional stress regime. The directions of the compressional stress axes show that the stress regime at the Zagros suture zone has two directions. One is perpendicular to the suture near the Iraq-Iran border, and the second is parallel to the suture near the Iraq-Turkey border. In addition, the compressional stress axes at the city of Sinjar, near the Iraq-Syria border, have E-W direction. These results are compatible with the tectonic setting of the Arabain-Eurasian continental

  11. Tectonic map of the Circum-Pacific region, Pacific basin sheet

    USGS Publications Warehouse

    Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.

    2013-01-01

    George W. Moore (Arctic Region). Project coordination and final cartography was being carried out through the cooperation of the Office of the Chief Geologist of the U.S. Geological Survey, under the direction of General Chairman, George Gryc of Menlo Park, California. Project headquarters were located at 345 Middlefield Road, MS 952, Menlo Park, California 94025, U.S.A. The framework for the Circum-Pacific Map Project was developed in 1973 by a specially convened group of 12 North American geoscientists meeting in California. The project was officially launched at the First Circum-Pacific Conference on Energy and Mineral Resources, which met in Honolulu, Hawaii, in August 1974. Sponsors of the conference were the AAPG, Pacific Science Association (PSA), and the Coordinating Committee for Offshore Prospecting for Mineral Resources in Offshore Asian Areas (CCOP). The Circum-Pacific Map Project operates as an activity of the Circum-Pacific Council for Energy and Mineral Resources, a nonprofit organization that promotes cooperation among Circum-Pacific countries in the study of energy and mineral resources of the Pacific basin. Founded by Michel T. Halbouty in 1972, the Council also sponsors conferences, topical symposia, workshops and the Earth Science Series books. Tectonic Map Series: The tectonic maps distinguish areas of oceanic and continental crust. Symbols in red mark active plate boundaries, and colored patterns show tectonic units (volcanic or magmatic arcs, arc-trench gaps, and interarc basins) associated with active plate margins. Well-documented inactive plate boundaries are shown by symbols in black. The tectonic development of oceanic crust is shown by episodes of seafloor spreading. These correlate with the rift and drift sequences at passive continental margins and episodes of tectonic activity at active plate margins. The recognized episodes of seafloor spreading seem to reflect major changes in plate kinematics. Oceanic plateaus and other prominences of

  12. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    downstream deposition. The second, more widespread type of knickpoints have high slope gradients and angular profiles. These knickpoints have undergone upslope advective migration through slope failures on the canyon floor and localised quarrying and plucking by sedimentary flows. Knickpoint migration is driven by base level lowering due to regional margin uplift and deepening of lower Cook Strait Canyon, and is likely faster in larger canyons because of higher sedimentary flow throughput. The formation and migration of knickpoints, the non-adherence to Playfair's Law, the linear longitudinal profiles and the lack of canyon-wide, inverse power-law slope-area relationships indicate that the Cook Strait Canyon is a system that is in a transient state, undergoing continuous adjustments to perturbations associated with tectonic displacement and changes in base level and sediment fluxes. Based on the reported canyon morphological parameters and their response to tectonic activity, we propose a generalised model for canyon geomorphic evolution in tectonically-active continental margins.

  13. Regional vertical tectonic displacement of shorelines in south- central Alaska during and between great earthquakes

    USGS Publications Warehouse

    Plafker, G.

    1990-01-01

    Reviews the setting of the 1964 earthquake and the unprecedented tectonic deformation that accompanied it. Outlines research directed towards defining the deformation that occurs between great earthquakes (interseismic part of the seismic cycle) and the longterm history of deformation over repeated seismic cycles in the earthquake-affected region, emphasizing work in progress. An understanding of this record of deformation is basic for evaluating how frequently 1964-type events recur in this same region, for improved understanding for the earthquake cycle in great subduction-zone seismotectonic events, and for predicting future great earthquakes in this and tectonically similar regions elsewhere. -from Author

  14. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  15. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  16. Crustal structure and active tectonics in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Brückl, E.; Behm, M.; Decker, K.; Grad, M.; Guterch, A.; Keller, G. R.; Thybo, H.

    2010-04-01

    During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south and underthusting of AD mantle below PA from southwest to northeast. The Moho fragmentation correlates well with major upper crustal structures and is supported by gravity, seismic, and geodetic data. An analysis of crustal thickening suggests that active convergence is associated with continued thrusting and lateral extrusion in the central Eastern Alps and thickening of the Adriatic indenter under the Southern Alps. According to the velocity relations at the triple junction, PA moves relative to EU and AD along ENE and SE striking faults, mainly by strike slip. An eastward directed extensional component is compensated by the lateral extrusion of the central Eastern Alps. The Periadriatic (Insubric) line east of the triple junction and the mid-Hungarian fault zone have relatively recently lost their role as first-order active structures. We favor the idea that the Pannonian fragment and the TISZA block merged to a "soft" microplate surrounded by the Eastern and Southern Alpine, Carpathian, and Dinaric orogens.

  17. Extension of the telluride erosion surface to Washington State, and its regional and tectonic significance

    NASA Astrophysics Data System (ADS)

    Gresens, Randall L.

    1981-11-01

    The Wenatchee Formation of Oligocene age (34 m.y.) rests on a profound unconformity that developed during an extended period of erosion and tectonic quiescence from perhaps 40-34 m.y. B.P. Its occurrence strongly suggests that a stripped erosion surface in the northern Cascade Range, previously considered of Miocene age, is of Late Eocene—early Oligocene age and that it is part of a more widespread surface in the Pacific North-west. The Late Eocene—early Oligocene unconformity/erosion surface is apparently of continental extent, from British Columbia to Mexico. Where it is incised on crystalline basement rocks, it now may be exhumed and exposed as a plateau or level-crested divides of concordant elevation. Where it is developed on sedimentary rocks, it may be found as a profound unconformity. Widespread eruptions of pyroclastic volcanic rocks covered much of the surface in Oligocene time and tended to protect and preserve it. The surface is particularly well documented in the San Juan volcanic field of Colorado. There it was given the name "Telluride peneplain", which is here broadened to the Telluride erosion surface of continental extent. A magmatic gap indicating a period of magmatic quiescence is generally associated with tectonic quiescence implied by the erosion surface, but the timing varies regionally. Development of the Telluride surface and associated magmatic gaps correlates with general plate reorganization during the Eocene. An erosion surface correlates with a global tectonic transition because erosion rates immediately dominate uplift rates when compressive deformation is slowed or shut off. An analysis of the dynamic balance between erosion rates and plate convergence rates suggests that erosion may maintain a continental surface of low relief if the relative convergence rate falls to about 0.5 cm/yr or less. Gaps in magmatic activity do not correlate as precisely with the 40 m.y. tectonic transition, in part because of the possibility of time

  18. Active Tectonics in the Ohrid Basin (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Reicherter, K.; Hoffmann, N.; Fernández-Steeger, T.

    2009-04-01

    (Aliaj et al., 2004). The Ohrid Basin meets all criteria of an active, seismogenic landscape: linear step-like fault scarps in the landscape and under water in the lake. Post-glacial (or Late Pleistocene) bedrock fault scarps at Lake Ohrid are long-lived expressions of repeated surface faulting in tectonically active regions, where erosion cannot outpace the fault slip. Other morphotectonic features are wineglass-shaped valleys and triangular facets, which are well preserved. Generally, the faults and fault scarps are getting younger towards the basin center, as depicted on seismic and hydroacoustic profiles. Additionally, mass movement bodies within the lake and also onshore (rockfalls, landslides, sub-aqueous slides, homogenites, turbidites) are likely to be seismically triggered, eventually damming the outflow of Lake Ohrid temporarily. References: Aliaj, S, Adams, J, Halchuk, S, Sulstarova, E, Peci, V, Muco, B, 2004. Probabilistic seismic hazard maps for Albania. 13th World Conf. Earthquake Engineering, Vancouver, B.C., Canada, paper no. 2469, 14 pp. Muço, B, 1998. Catalogue of ML 3,0 earthquakes in Albania from 1976 to 1995 and distribution of seismic energy released. Tectonophysics, 292, 311-319.

  19. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  20. Mesozoic Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Shallo, Minella

    2000-01-01

    . Metamorphic soles were formed during initial intra-oceanic displacement (ca. 162-174 m.y.), and underlying melanges originated as subduction-accretion complexes. The MOR, Western-type ophiolite evolved into the IAT-boninitic Eastern-type ophiolite after subduction began. During Tithonian-Berriasian time, trench-margin collision emplaced the ophiolites eastwards over the Korabi margin, coupled with redeposition of ophiolitic and continental margin material as exotic blocks, debris flow deposits and turbidites. These were emplaced onto the upper surface of the ophiolitic thrust sheet during the latest stages of emplacement onto the Korabi microcontinent. Following collision in the east, oceanic crust remained within a small, remnant Pindos-Mirdita oceanic basin. Passive conditions were restored in the Mid-Late Cretaceous, with shallow-water carbonate deposition on microcontinental units and both pelagic and redeposited carbonates in basinal settings. From the Maastrichtian onwards, Africa-Eurasia convergence resulted in large-scale westward thrusting, deforming the Apulian foreland in Oligo-Miocene time. The suture zone was re-activated in Oligo-Miocene time as the Albanie-Thassalie piggy-back-type basin in central and southern Albania. Albania as a whole was rotated 45° clockwise as part of the western Aegean arc in post-Eocene time. Coastal and offshore Albania experienced strong subsidence after Early Miocene time, forming the Periadriatic basin (including the Tirana depression), interpreted as a foredeep related to continuing regional convergence. Southern Albania experienced extensional tectonics in Plio-Quaternary time related to southward 'roll-back' of the Aegean active margin.

  1. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Wagner, Lara S.; Fischer, Karen M.; Hawman, Robert B.

    2016-05-01

    The lithospheric structure of the Southeastern United States is a product of earlier episodes of continental collision and breakup. The region is located in the interior of the North American Plate, away from active plate margins. However, there is ongoing tectonism in the region with multiple zones of seismicity, uplifting arches, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the state of stress remain enigmatic. Two important factors are plate strength and preexisting, inherited structures. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Examples include the relatively thick lithospheric mantle of stable North America that abruptly thins beneath the Paleozoic Appalachian orogeny, and the slow upper mantle of the Proterozoic Reelfoot rift. Our results also indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. This provides a viable explanation for seismicity, uplifting, and young intraplate volcanism. We postulate that not only tectonic inheritance but also continuing lithospheric foundering may control the ongoing activity of the region long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  2. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  3. Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus

    NASA Technical Reports Server (NTRS)

    Hurwitz, D. M.; Head, J. W.

    2009-01-01

    Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus

  4. Assessment of global and regional tectonic models for faulting in the ancient terrains of Mars

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1985-08-01

    The structural mapping of tectonic landforms on Mars has provided a great deal of information regarding the planet's tectonic history. The present paper has the objective to test models of regional and global fracturing by evaluating the spatial distribution and orientation of the ancient heavily cratered terrain (HCT) structural landforms. Attention is given to background information concerning earlier studies, landform selection and analysis, rose diagrams, tests for Tharsis generation, and a calculation of thermal stress in the early Martian lithosphere. The contribution of classical Tharsis-centered tectonism to the production of HCT structural landforms was found to be very small. Few structural landforms investigated are either perpendicular to calculated principal stress trajectories or radial to Tharsis.

  5. Regional tectonic analysis of Venus equatorial highlands and comparison with Earth-based Magellan radar images

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Wetherill, George

    1993-01-01

    Research on regional tectonic analysis of Venus equatorial highlands and comparison with earth-based and Magellan radar images is presented. Over the past two years, the tectonic analysis of Venus performed centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. These include studies pertaining to the original constitutive and thermal character of the planet, as well as the evolution of Venus through time, and the present day tectonics. Parameterized convection models of the Earth and Venus were developed. The parameterized convection code was reformulated to model Venus with an initially hydrous mantle to determine how the cold-trap could affect the evolution of the planet.

  6. Assessment of global and regional tectonic models for faulting in the ancient terrains of Mars

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.

    1985-01-01

    The structural mapping of tectonic landforms on Mars has provided a great deal of information regarding the planet's tectonic history. The present paper has the objective to test models of regional and global fracturing by evaluating the spatial distribution and orientation of the ancient heavily cratered terrain (HCT) structural landforms. Attention is given to background information concerning earlier studies, landform selection and analysis, rose diagrams, tests for Tharsis generation, and a calculation of thermal stress in the early Martian lithosphere. The contribution of classical Tharsis-centered tectonism to the production of HCT structural landforms was found to be very small. Few structural landforms investigated are either perpendicular to calculated principal stress trajectories or radial to Tharsis.

  7. The Tectonic and Climatic Evolution of the Arabian Sea Region

    NASA Astrophysics Data System (ADS)

    Bosence, Dan

    2004-08-01

    This multi-authored volume provides a sampling of current research into the geology of the Arabian Sea region. The editors emphasize the importance of this area as the Earth's best natural laboratory for studying relations between climate and the growth and erosion of an orogenic belt. Uplift of the Himalaya and Tibetan Plateau is now believed to have altered global climate during the Cenozoic, and also to have affected the development of the region's monsoonal climate. The geological features of the region that make it a good area to study such processes include the excellent rock outcrops in the surrounding arid Arabian and Asian landmasses, the locally high rates of sedimentation which provide high-resolution sedimentological and geochemical information, and the monsoon itself, that imparts an annual time beat in some sedimentary successions. However, the region is very large and access is not always easy. Also, many areas are still poorly known geologically, such that this volume contains some papers on basic survey geology.

  8. The Tectonic and Climatic Evolution of the Arabian Sea Region

    NASA Astrophysics Data System (ADS)

    Bosence, Dan

    2004-08-01

    This multi-authored volume provides a sampling of current research into the geology of the Arabian Sea region. The editors emphasize the importance of this area as the Earth's best natural laboratory for studying relations between climate and the growth and erosion of an orogenic belt.Uplift of the Himalaya and Tibetan Plateau is now believed to have altered global climate during the Cenozoic, and also to have affected the development of the region's monsoonal climate. The geological features of the region that make it a good area to study such processes include the excellent rock outcrops in the surrounding arid Arabian and Asian landmasses, the locally high rates of sedimentation which provide high-resolution sedimentological and geochemical information, and the monsoon itself, that imparts an annual time beat in some sedimentary successions. However, the region is very large and access is not always easy. Also, many areas are still poorly known geologically such that this volume contains some papers on basic survey geology.

  9. Tectonic origin of Lower Mesozoic regional unconformities: Southern Colorado Plateau and adjacent Basin and Range

    SciTech Connect

    Marzolf, J.E. )

    1990-05-01

    Palinspastic restoration of Basin and Range structural blocks to early Mesozoic positions relative to the Colorado Plateau permits correlation of lower Mesozoic regional unconformities of the Colorado Plateau across the southern Basin and Range. These unconformities correlate with tectonic reconfiguration of sedimentary basins in which enclosed depositional sequences were deposited. Lesser recognized intraformational unconformities are related to relative sea level change. The Tr-1 unconformity developed on subaerially exposed, karsted, and deeply incised Leonardian carbonates. The overlying Lower Triassic Moenkopi Formation and equivalent strata display a narrow, north-south aligned, passive-margin-type architecture subdivided by Smithian and Spathian intraformational unconformities into three depositional sequences. From basinal to inner shelf facies, Tr-1 truncates folds in Permian rocks. Initial deposition of the lowest sequence began with sea level at the base of the continental slope. Basal conglomerates of the Upper Triassic Chinle Formation were deposited in northward-trending paleovalleys incised within and parallel to the Early Triassic shelf. Distribution of fluvial deposition, orientation of paleovalleys, paleocurrent indicators, and provenance indicate change from the passive-margin-bordered Early Triassic basin to an offshore active-margin basin. Continental and marine facies suggest two depositional sequences separated by an early Norian type 2( ) sequence boundary. The J-O unconformity at the base of the Lower Jurassic Glen Canyon Group marks a major change in tectonic setting of western North America as evidenced by (1) progressive southwestward downcutting of the unconformity to deformed Paleozoic rocks and Precambrian basement, (2) coincidence in time and space with Late Triassic to Early Jurassic thrust faults, and (3) initiation of calcalkaline volcanism.

  10. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Hafkenscheid, E.; Wortel, M. J. R.; Spakman, W.

    2006-08-01

    In the mantle underneath the Tethyan suture zone, large volumes of positive velocity anomalies have been imaged by seismic tomography and interpreted as the present-day signature of subducted Tethyan lithosphere. We investigate the Mesozoic-Cenozoic subduction history of the region by integrating independent information from mantle tomography and tectonic reconstructions. Three different subduction scenarios for the Tethyan oceanic lithosphere, representative for the available tectonic reconstructions, are used to predict the present thermally anomalous volumes associated with the lithospheric surface subducted since the late Mesozoic. Next, these predicted thermal volumes and their expected positions are compared to the relevant anomalous volumes derived from seismic tomographic images. In this analysis we include, among others, the possible effects of ridge subduction and slab detachment after the Cenozoic continental collisions, absolute plate motion, and slab thickening in the mantle. Our preferred subduction model comprises the opening of large back-arc oceanic basins within the Eurasian margin. The model points to slab thickening by a factor of 3 in the mantle, in which case the estimated volumes allow for active oceanic spreading (˜1-2.5 cm/yr) in the Tethyan lithosphere during convergence. Our results further indicate the occurrence of early Oligocene slab detachment underneath the northern Zagros suture zone, followed by both westward and eastward propagation of the slab tear and diachronous Eocene to Miocene slab detachment below the eastern to western Himalayas. Free sinking rates of the detached material of ˜2 cm/yr in the lower mantle provide the best fit between the tomographic mantle structure and our Tethyan subduction model.

  11. Ancient wells and their geoarchaeological significance in detecting tectonics of the Israel Mediterranean coastline region

    NASA Astrophysics Data System (ADS)

    Nir, Yaacov; Eldar, Iris

    1987-01-01

    Eight ancient water wells, representing the late Bronze Age to the Crusades period (ca. 3100 700 B.P.), have recently been excavated (six by the authors) and reopened at archaeological sites (tels) along the southern and central Mediterranean coast of Israel. Evidence of ancient freshwater levels directly reflects on possible neotectonics of the region and on eustatic changes of sea level. There is substantial disagreement about the tectonic stability of the Israel Mediterranean coastal region during the past 3500 yr, whether there was a large-magnitude tectonic event (one of the largest known for recent times) during the period in discussion or whether the region was tectonically quiet. We tested the instability hypothesis by using geoarchaeological data from the wells and found no evidence for significant tectonic deformation of the central and southern Israel coast in the past 3100 yr. The “ancient water-well” method can, with appropriate modifications, be used all around the Mediterranean and other coasts elsewhere in the world where ground-water-sea-level relations are alike. Now in the digging of wells we must not disdain reflection, but must devote much acuteness and skill to the consideration of the natural principles of things. Vitruvius Pollio, Architectura, Book VIII, Chapter VI (25 B.C.)

  12. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  13. Regional and local tectonics at Erta Ale caldera, Afar (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio

    2006-10-01

    Erta Ale volcano lies along the on-shore Red Sea Rift (northern Afar, Ethiopia), separating the Nubia and Danakil plates. Erta Ale has a NNW-SSE elongated caldera, with a subvertical rim scarp, hosting a lava lake. Structural field work was aimed at defining the deformation pattern around the caldera. The caldera consists of along-rim and across-rim structures, resulting from local and regional (maximum extension ˜NE-SW) stress fields, respectively. These structures cross-cut each other at high angles, suggesting that the two stress fields remain distinct, each prevailing during rifting or caldera collapse. The local along-rim extensional fractures are gravity-driven structures that formed due to the retreat of the caldera wall after collapse, and are confined to the region of caldera subsidence. The across-rim structures are mainly located to the N and S of the caldera, where they form rift zones each accommodating a similar amount of extension (˜6.3 m), but displaying different trends and extension directions. Analogue models of interacting fractures are consistent with the Southern Rift being representative of the regional fault kinematics, while the Northern Rift is a local perturbation, resulting from the interaction between two right-stepping rift segments along the Erta Ale Range.

  14. Interaction between regional and local tectonic forcing along a complex Quaternary extensional basin: Upper Tiber Valley, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Pucci, S.; Mirabella, F.; Pazzaglia, F.; Barchi, M. R.; Melelli, L.; Tuccimei, P.; Soligo, M.; Saccucci, L.

    2014-10-01

    In extending areas undergoing regional tectonic uplift, the persistence of subsidence at a normal-fault hanging-wall depends on the competition between regional and local tectonic effects. When regional uplift exceeds the subsidence of the hanging-wall block, denudation prevails at both the hanging-wall and the foot-wall. When local tectonic subsidence exceeds regional uplift, sedimentation occurs over the hanging-wall block, supplied by foot-wall erosion. We analyzed a Pliocene-Quaternary continental basin, currently crossed by the Tiber River in Italy. The tectono-sedimentary evolution of the basin developed at the hanging-wall of a regional low-angle extensional detachment, the Alto Tiberina Fault, in the axial region of the Northern Apennines of Italy. This area is affected by regional uplift on the order of 0.5-1.0 mm/yr. The present-day activity of the fault is revealed by both microseismicity and geodetic (GPS) data. We investigated the mid- (10-100 ka) and long-term (0.5-3.0 Ma) evolution of the three depocenters by studying the continental Pleistocene succession infilling the basin as well as fluvial terraces and higher paleosurfaces carved into the Pleistocene deposits. By using surficial geologic data and an interpretation of a set of seismic reflection profiles, we show that the three depocenters experienced a fairly similar evolution during the Pliocene-Early Pleistocene, when a 1000-m-thick continental succession was deposited. On the contrary, geomorphological observations indicate that, at the beginning of the Middle Pleistocene, a switch occurred in the evolution of the three depocenters. In the northernmost Sansepolcro sub-basin, bounding normal faults are active and hanging-wall subsidence outpaces regional uplift. Concurrently, in the Umbertide and Ponte Pattoli sub-basins uplift dominates over the hanging-wall subsidence, promoting river incision and exhumation of the Pleistocene deposits. For these two depocenters, by means of terrace

  15. Discriminating Between Induced vs. Tectonic Seismicity From Long-Term History of Fault Behavior in Intraplate Regions

    NASA Astrophysics Data System (ADS)

    Magnani, M. B.; Hornbach, M. J.; DeShon, H. R.; Hayward, C.; Blanpied, M. L.

    2015-12-01

    Since 2009 there has been an increase in rate of seismicity in the Central US (CUS), a major fraction of which has been associated with shale gas production and related wastewater injection. Within this context it is important to discriminate between seismic activity that is anthropogenically induced from that arising from natural tectonic deformation. This discrimination is particularly challenging because tectonic strain rates and natural seismicity rates are low in this intraplate region, such that tectonically active faults may display periods of quiescence that are long (100's to 1000's of years) relative to the short (10's of years) instrumental record. In addition, causative faults are unknown with a poor surface expression, both types of seismicity occur on or reactivate ancient faults in the Precambrian basement, and the instrumental seismic record is sparse. While seismicity provides information about the short-term history of deformation on the involved faults, the long-term is missing. Seismic reflection data offer a means by which to interrogate the long-term history of these faults, which can be discriminatory. In this paper we present examples from two regions of the CUS. The first region shows examples of tectonically active faults within the northern Mississippi Embayment south of the New Madrid Seismic Zone, which were imaged by a high-resolution seismic reflection survey along the Mississippi River. The faults deform Quaternary alluvium and underlying sediments dating from Tertiary through Paleozoic, with increasing amount of deformation with formation age, suggesting a long history of activity. The second region shows examples from the North Texas basin, a region of ongoing shale gas exploitation. Here, industry seismic reflection data image basement faults showing deformation of the Precambrian and Paleozoic sequences, and little to no deformation of younger formations. Specifically, vertical offsets, if any, in the post

  16. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  17. Tectonic implications of spatial variation of b-values and heat flow in the Aegean region

    NASA Astrophysics Data System (ADS)

    Kalyoncuoglu, U. Yalcin; Elitok, Ömer; Dolmaz, M. Nuri

    2013-03-01

    The Aegean region is tectonically a complex area characterized mainly by the subduction of African oceanic lithosphere beneath the Aegean continental lithosphere including extensional subbasins and mantle driven block rotations. In this study, spatial distribution of earthquakes, b-value distribution, and heat flow data have been analyzed to reveal the deep structural features of the Aegean region. b-value distributions show two low NE-SW and NW-SE trending b-anomaly zones in the western and eastern side of the Crete, implying slab tear within the Aegean slab. Earthquake foci distribution indicates that the Aegean slab steepens in the eastern side of the Crete, compared to its western side. Earthquake foci reach maximum depth of 180 km along the Cycladic arc axis, suggesting northward subducted slab geometry. The low seismic activities and high b-value anomalies within Aegean basin, except North Aegean Trough, can be compared to higher heat flow. We concluded that collision-induced westward mantle flow beneath Turkey followed by hard collision between Arabian-Eurasian continental plates played a major role in the evolution of clockwise rotational retreat of the Aegean slab and slab steepening to the east of the Crete.

  18. Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Gao, Rui; Li, Sanzhong; Xu, Xiao; Huang, Xingfu; Wang, Haiyan; Li, Wenhui; Zhao, Shujuan; Li, Xiyao

    2016-09-01

    GPS measurements indicate rapid lateral extrusion of the NE Tibetan Plateau, which causes active NE-directed crustal shortening and has initiated oblique shearing along the margins of NE Tibet. However, the Tibetan highlands terminate around 103°E longitude and topographic relief disappears to the northeast. The exact reasons for this drop in elevation remain obscure due to widespread Tertiary sediments and Quaternary loess, which obscure details of the lithospheric structure. This study describes a new 310 km-long deep seismic reflection line striking NE-SW across the interior of NE Tibet. Integrating its data with a previously described 165 km-long deep seismic profile of the Tibet-Ordos transition zone together, these datasets provide a complete picture of the crustal architecture of the north-easternmost Tibetan Plateau. Gravity anomaly and previous geological evidence also help constrain complex deformation pattern in the region. Interpretations of these patterns indicate the importance of the large-scale sinistral Haiyuan fault zone and inherited vertical variation in mechanical properties of the lithosphere in the overall tectonic evolution of the NE Tibetan Plateau. The overall crustal architecture obtained in this study provides spatial context for the neotectonic evolution of NE Tibet and helps constrain the interplay of geologic and geodynamic processes affecting NE Tibet and adjacent regions.

  19. Tectonic evolution of Bell Regio, Venus: Regional stress, lithospheric flexure, and edifice stresses

    NASA Astrophysics Data System (ADS)

    Rogers, Patricia G.; Zuber, Maria T.

    1998-07-01

    In order to understand the relationship between volcanic and tectonic processes and the stress state in the lithosphere of Venus, we analyzed the stress environments and resulting tectonic features associated with the major volcanic edifices in Bell Regio, using Magellan synthetic aperture radar (SAR) images and altimeter measurements of topography. The major volcanoes of Bell Regio, Tepev Mons and Nyx Mons, exhibit tectonic characteristics that are unique relative to other volcanic edifices on Venus. The most prominent distinction is the lack of large rift zones within the overall highland uplift, which characterize many other highland rises on Venus. Also, previous studies have determined that many large Venus volcanoes exhibit radial tectonic structures on their flanks but generally lack the circumferential graben which surround volcanoes on Earth and Mars. Tepev and Nyx Montes exhibit both the radial tectonic features associated with other Venusian edifices and numerous concentric graben. Nyx Mons implies a more distributed magmatic system by its broad shape, radial chains of pit craters, and expansive flow fields, whereas Tepev Mons is a more centralized volcanic system, with limited associated long flows. We investigate the regional stresses associated with Bell Regio and structural features believed to be a consequence of lithospheric flexure due to volcanic loading, modeling both Nyx Mons and Tepev Mons as axisymmetric loads with Gaussian mass distributions on an elastic plate. The relationship between the tectonic features surrounding Tepev Mons and stresses associated with magma chamber inflation are also examined through finite element analysis. Using topography data to model the shape of the volcano, we determine that a horizontally ellipsoidal or tabular reservoir at a range of depths from approximately 20 to 40 km can satisfy the locations of graben formation observed in Magellan images. These results imply a shift in volcanic style within Bell Regio

  20. Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.

    1991-01-01

    Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.

  1. Tectonics of the Philippines and ambient regions from geophysical inversions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Li, C.; Zhou, Z.; Fairhead, J. D.

    2012-12-01

    The geological study in the Philippines and ambient regions is relatively low so far for the rather scanty data and complex geological structure. Therefore it is a challenge to do the research with limited data. In this paper, an investigation of the Philippines and surrounding area has been carried out using regional magnetic and gravity anomalies. Owing to the difficulties and limitations in reduction to the pole at the low latitudes, analytical signal amplitudes of magnetic anomalies are calculated as the equivalent substitute. Application of the Parker-Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. Curie-point depths are estimated from the magnetic anomalies using a windowed wavenumber-domain algorithm. This paper aims to reveal the structure of the Manila subduction zone accurately, and moreover, to clarify the interplay between the magmatism and subduction in the Manila Trench and East Luzon Trough. On the basis of Bouguer gravity anomaly and AS(analytical signal) of magnetic anomaly, the positions of hydrated mantle wedge in the subduction zones of this area are identified in the areas charicterizd by the distribution of high-and low value of Bouguer gravity anomaly or the paralell high value of Bouguer gravity anomaly and AS. Using our inversion results together with some other published information, the boundaries of Palawan Block, Philippine Mobile Belt and Sulu-Celebes Block are defined and the collision history of PCB(Palawan continental block)-PMB (Philippine mobile belt) and PCB-Sulu Sea is also discussed. A "seismic gap" near the 14 degree north latitude on Manila Trench, mentioned in previous studies, is thought to be induced by the slab melting and plastic behavior due to the relatively high geothermal gradient. In the central Philippines, it is likely that an incipient collision-related rifting is proceeding. Furthermore, a possible new evolution model of Sulu Sea, in which the Cagayan Ridge area is thought to be the

  2. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  3. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  4. Preliminary study on hydrogeology in tectonically active areas.

    SciTech Connect

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  5. Seismic Features of The June 1999 Tectonic Swarm In The Stromboli Volcano Region, Italy

    NASA Astrophysics Data System (ADS)

    Falsaperla, S.; Alparone, S.; Spampinato, S.

    Crustal tectonic seismicity in the southern Tyrrhenian Sea is characterized by high occurrence rates of earthquakes to the west of the alignment of Salina, Lipari and Vulcano islands in the Aeolian Archipelago. Only few earthquakes affect the crustal region east of these islands where, conversely, intermediate and deep seismicity plays a relevant role (Falsaperla and Spampinato, 1999). According to this evidence, the in- terest roused by the seismic swarm of between June 6 and 17, 1999 recorded at the Aeolian Island Seismic Network was twofold. First, the number of earthquakes (78) that affected the Stromboli submarine edifice in a short time interval. Secondly, despite the maximum magnitude Md 3.2, the overall energy release was relatively conspicu- ous in comparison with swarms in this region occurred in the last century. We localize the swarm about 6 km to Northeast of the Stromboli island at a depth less than 12 km. The source region was identified using standard methods of hypocentral location as well as azimuth analysis. It is worth noting that volcanic activity at Stromboli did not change significantly during the swarm nor throughout the following months. There- fore, the seismic swarm had no link with volcanic activity observed at the surface. According to their signature, most of the earthquakes share similar waveform and fre- quency content, and can be divided into families. We identify some earthquakes - with magnitude up to Md 3 - having relatively low frequency content at different seismic stations. This anomalous feature leads us to hypothesize the presence of fluid circu- lation and/or propagation of seismic waves in a ductile medium. Our hypothesis is in agreement with studies on marine geology, which highlight various forms of subma- rine volcanism in the southern basin of the Tyrrhenian Sea.

  6. Geomorphological features of active tectonics and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Pathak, Vivekanand; Pant, Charu C.; Darmwal, Gopal Singh

    2015-08-01

    The northeastern part of Kumaun Lesser Himalaya, Uttarakhand, India, lying between the rupture zones of 1905, Kangra and 1934, Bihar-Nepal earthquakes and known as `central seismic gap' is a segment of an active fault known to produce significant earthquakes and has not slipped in an unusually long time when compared to other segments. The studied section forms a part of this seismic gap and is seismically an active segment of the Himalayan arc, as compared to the remaining part of the Kumaun Lesser Himalaya and it is evident by active geomorphological features and seismicity data. The geomorphological features of various river valley transects suggest that the region had a history of tectonic rejuvenation which is testified by the deposition of various levels of terraces and their relative uplift, shifting and ponding of river channels, uplifted potholes, triangular facets on fault planes, fault scarps, etc. Further, the seismic data of five-station digital telemetered seismic network along with two stand alone systems show the distribution of earthquakes in or along the analyzed fault transects. It is observed that the microseismic earthquakes (magnitude 1.0-3.0) frequently occur in the region and hypocenters of these earthquakes are confined to shallow depths (10-20 km), with low stress drop values (1.0-10 bar) and higher peak ground velocity (PGV). The cluster of events is observed in the region, sandwiched between the Berinag Thrust (BT) in south and Main Central Thrust (MCT) in north. The occurrences of shallow focus earthquakes and the surface deformational features in the different river valley transect indicates that the region is undergoing neotectonic rejuvenation. In absence of chronology of the deposits it is difficult to relate it with extant seismicity, but from the geomorphic and seismic observations it may be concluded that the region is still tectonically active. The information would be very important in identifying the areas of hazard prone and

  7. Explanation of the regional tectonic map of the southwestern coal field of Virginia

    SciTech Connect

    McLoughlin, T.F.

    1986-01-01

    The result of this study is a single tectonic map of the southwestern coal field of Virginia, which lies within the southern portion of the Cumberland Plateau. The tectonic map was produced by compiling previously identified and plotted major structural geologic features situated in southwestern Virginia and adjacent portions of Kentucky and West Virginia. Remote sensing imagery and published geologic reports were also utilized in the generation of this tectonic map. Except for the Cumberland overthrust block and its related thrust faults, the major faults within the southwestern Virginia coal field are high-angle normal and right-lateral strike-slip faults showing apparent displacements ranging from a few tens of feet (few tens of meters) to several miles (several kilometers). Folds within the coal field are broad, gentle flexures which include anticlines, synclines and a monocline with amplitudes measured in tens of feet to hundreds of feet (tens of meters to hundreds of meters). Brief descriptions of the general geometry and structural characteristics of the tectonic features are included for use with the regional map as an aid in conducting detailed geologic and environmental investigations. Evidence of structural faulting associated with the Gladeville anticline ( Indian Creek'' lineament) is also presented. 41 refs., 5 figs.

  8. Beyond surface heat flow: An example from a tectonically active sedimentary basin

    NASA Astrophysics Data System (ADS)

    Armstrong, Phillip A.; Chapman, David S.

    1998-02-01

    Thermal anomalies that have important geodynamic implications may not always be recognizable in present-day surface heat-flow patterns. The masking occurs because surface heat flow responds to mantle heat, crustal radioactivity, magmatism, crustal deformation, burial and/or exhumation, and fluid movement, any of which may offset the thermal effects of the others. Sedimentary basins are particularly suited to partitioning heat flow into its various components. We use Taranaki basin, New Zealand, as an example. It has a relatively undeformed (since the Miocene) western region that is used as a control against which the tectonically active eastern region can be compared. Although surface heat flow is roughly constant across Taranaki basin, basal heat flow modeled at lower crustal upper mantle depths varies by a factor of two or more. A combination of low heat-producing crust and the heat sink effects of crustal thickening in the eastern region can account for the basal heat-flow anomalies. The tectonic thermal anomaly would have gone unnoticed without the aid of detailed basin analysis and thermal modeling.

  9. Task 5 -- Tectonic and neotectonic framework of the Yucca Mountain region

    SciTech Connect

    Schweickert, R.A.

    1994-12-31

    Progress on the tectonics of the Yucca Mountain region is described. Results are reported in the following: regional overview of structure and geometry of Meozoic thrust faults and folds in the area around Yucca Mountain; Evaluation of pre-middle Miocecne structure of Grapevine Mountains and it`s relation to Bare Mountain; Kinematic analysis of low and high angle normal faults in the Bare Mountain area, and comparison of structures with the Grapevine Mountains; and Evaluation of paleomagnetic character of tertiary and pre-tertiary units in the Yucca Mountain region.

  10. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    SciTech Connect

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148 km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.

  11. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  12. Geomorphic signature of active tectonics in the southern Abruzzi Periadriatic hilly belt (Central Italy)

    NASA Astrophysics Data System (ADS)

    Racano, Simone; Fubelli, Giandomenico; Centamore, Ernesto; Dramis, Francesco

    2016-04-01

    The geo-structural setting of the southern Abruzzi hilly belt that stretches from the northeastern front of the Maiella Massif to the Adriatic coast is characterized by deep-seated northeast verging thrusts masked by a thick cover of Late Pliocene-Middle Pleistocene marine deposits. Most authors consider this area tectonically inactive while only few of them support the hypothesis of its recent activity from the analysis of the river network pattern. Geological and geomorphological investigations carried out in the area have clearly shown the occurrence of surface deformations resulting from the continued activity of compressive tectonics up to recent times. The analysis of the study area by of a 10 m resolution DTM (using the open-source QGIS software) confirmed and supplemented field observations. Particularly significant in this context is the topographic setting of the alluvial strath terraces in the river valleys that develop transversally to the buried thrusts. In correspondence of these structures, topographic highs have grown up displacing the middle-Pleistocene planation surface developed on top of the hilly belt, from the Maiella piedmont to the coastal zone, and diverting laterally the river courses uphill. In the same places, as along the Alento and Foro rivers that cross by antecedence the grown up topographic highs, the long profiles of terraces bend eastward and the height difference between the terrace orders, essentially related all around the area to the Quaternary regional uplift, strongly increases. In some cases, surficial faults have lowered the terraces into graben troughs or have displaced them until assuming an uphill trend. This recent tectonic activity should be taken in account in assessing the seismic hazard of the study area.

  13. Impact of the Yakutat indentor corner on present-day tectonics and fault activity in SE Alaska - SW Yukon

    NASA Astrophysics Data System (ADS)

    Mazzotti, S.; Marechal, A.; Ritz, J. F.; Ferry, M. A.

    2015-12-01

    We present an active tectonic model of the SE Alaska - SW Yukon region based principally on the integration of recent GPS velocity data and new fault-slip rates derived from geomorphology. In this region, the Yakutat collision results in complex tectonics with patterns of strain localization and strain partitioning that strongly vary across the various mountain ranges and active faults. We propose that deformation and fault activity in the St. Elias and Chugach Mountains are primarily controlled by the eastern syntaxis of the Yakutat collision, which produces a semi-radial tectonic pattern: Velocities, principal horizontal shortening rates, and maximum horizontal stress orientations rotate by 60 - 80 ° around the syntaxis, from roughly parallel to the relative Pacific - North America motion at the front of the collision to roughly orthogonal southeast of the syntaxis. The interaction between this strain pattern and major inherited tectonic structures inland of the collision zone (i.e., Denali and Duke River Faults) results in various reactivation modes of these structures. Specifically, the Denali Fault shows a very pronounced lateral variations of activity from ~12 mm/a of dextral slip rate in its central section to ~1 mm/a of mostly shortening slip rate along its southern section. This marked change of activity is associated with a possible relay system where the Duke River and Totschunda Faults accommodate a major part (8 - 12 mm/a) of the inland strain transfer directly in front of the syntaxis. This new tectonic model retains some questions, in particular regarding the mechanisms of deformation and strain transfer (1) from the syntaxis to the Duke River - Totschunda system and (2) at the junction between Totschunda and Denali Faults. Numerical models of present-day deformation may help address these issues and provide information about relative strength of the various crustal and inherited fault elements of this system.

  14. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  15. Paleozoic plate-tectonic evolution of the Tarim and western Tianshan regions, western China

    SciTech Connect

    Yangshen, S.; Huafu, L.; Dong, J.

    1994-11-01

    The plate-tectonic evolution of the Tarim basin and nearby western Tianshan region during Paleozoic time is reconstructed in an effort to further constrain the tectonic evolution of Central Asia, providing insights into the formation and distribution of oil and gas resources. The Tarim plate developed from continental rifting that progressed during early Paleozoic time into a passive continental margin. The Yili terrane (central Tianshan) broke away from the present eastern part of Tarim and became a microcontinent located somewhere between the Junggar ocean and the southern Tianshan ocean. The southern Tianshan ocean, between the Tarim craton and the Yili terrane, was subducting beneath the Yili terrane from Silurian to Devonian time. During the Late Devonian-Early Carboniferous, the Tarim plate collided with the Yili terrane by sinistral accretional docking that resulted in a late Paleozoic deformational episode. Intracontinental shortening (A-type subduction) continued through the Permian with the creation of a magmatic belt. 21 refs., 7 figs., 1 tab.

  16. Geochronology and geochemistry of zircon from the northern Western Gneiss Region: Insights into the Caledonian tectonic history of western Norway

    NASA Astrophysics Data System (ADS)

    Gordon, Stacia M.; Whitney, Donna L.; Teyssier, Christian; Fossen, Haakon; Kylander-Clark, Andrew

    2016-03-01

    The Western Gneiss Region (WGR) of Norway is divided by the Møre-Trøndelag shear zone (MTSZ) into a southern region that contains domains of Caledonian ultrahigh-pressure (UHP) metamorphic rocks (> 2.5 GPa) and a northern area of similar Caledonian-aged rocks that record a maximum pressure reported thus far of ~1.5 GPa. Although both regions contain similar lithologies (primarily migmatitic quartzofeldspathic gneiss containing mafic lenses) and structural relationship of basement rocks to infolded nappes, this difference in maximum pressure implies a difference in tectonic history (continental subduction south of the shear zone, none to the north) and raises questions about the role of the MTSZ in the metamorphic history (including exhumation) of the WGR. Previous geochronology results indicated a difference in timing of peak metamorphism (older in north, younger in south). In order to better understand the tectonic history of the northern WGR and the MTSZ, and in particular the late- to post-Caledonian tectonic history, U-Pb zircon geochronology and trace-element abundances were obtained using the split-stream, laser-ablation ICPMS technique from metabasaltic lenses and migmatitic quartzofeldspathic host rocks from the structurally lowest exposed region of the northern WGR (Roan Peninsula basement), as well as leucosomes from an intercalated portion of the Seve Nappe Complex and a pegmatite in the MTSZ. Zircon from Roan gneiss and metabasite yield metamorphic ages of ca. 410-406 Ma, and zircon from a variety of migmatite samples (foliation-parallel leucosome to dikes) indicate melt crystallization at ca. 410 to 405 Ma. The Seve Nappe leucosomes yield only early Caledonian dates that cluster at ca. 437 Ma and ca. 465 Ma, suggesting that the allochthons in this region did not experience (or record) the same Scandian tectonic history as the basement rocks. Zircon from a weakly deformed pegmatite dike within the MTSZ crystallized at ca. 404 Ma, indicating that this

  17. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  18. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  19. Seismicity of the Pamir and Hindu Kush: new constraints on regional tectonics

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Schurr, B.; Schneider, F.; Yuan, X.; Mechie, J.; Haberland, C.; Gadoev, M.; Oimahmadov, I.; Abdybachaev, U.; Orunbaev, S.; Minaev, V.; Negmatullaev, S.; Rui, H.; Pingren, L.

    2012-04-01

    The Pamir and Hindu Kush regions in Central Asia host the most active zone of intracontinental seismic activity at intermediate depths (up to nearly 300km) in the world, which is still poorly understood in terms of its detailed structure and, most importantly, its origin. Being situated far from any typical subduction zone setting and displaying a change in its polarity along strike, this seismically active zone has been interpreted in numerous ways, e.g. as a single slab of Indian lithosphere originally subducted northwards which was subsequently overturned in its eastern part or as two adjacent subduction zones of opposing polarity. Several key questions concerning this region, among them the nature of subducted material (oceanic or continental?), the mechanism behind the generation of these intermediate-depth earthquakes and the region's tectonic framework have not been answered as of yet. As the seismological subpart of the TIPAGE project, we deployed a network of 40 seismometer stations for a total duration of two years (2008-2010) in Tajikistan and southern Kyrgyzstan, covering the Pamir mountains and surroundings. Complemented with two more temporary deployments and additional data from several permanent networks in adjacent areas, this constitutes a seismic dataset of unprecedented station density for this part of Central Asia. Showing the distribution of more than 9,500 earthquakes located with a highly precise double-difference method based on the cross-correlation of individual traces, fault plane solutions for shallow and deep earthquakes as well as preliminary results from traveltime tomography, we can resolve the exact geometry of the deep seismic zone and draw further constraints on the tectonic processes active in the region. The S-shaped region of intermediate-depth seismicity is clearly subdivided into two separate parts, hence termed Hindu Kush and Pamir seismic zones. The Hindu Kush seismic zone strikes due east-west at a latitude of about 36.4

  20. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and

  1. Tectonic History and Mantle Structure of the Sundaland and Indonesian Region

    NASA Astrophysics Data System (ADS)

    Hall, R.; Spakman, W.

    2012-12-01

    The heterogeneous Sundaland region was assembled by closure of Tethyan oceans and addition of continental fragments. Its Mesozoic and Cenozoic history is partly recorded in the mantle, and mantle structure from tomographic imaging can be interpreted using new plate tectonic reconstructions. Continental fragments of east Asian origin, ophiolites and deformed sediments were accreted to eastern Sundaland north of Borneo in the Cretaceous, and a wide zone from Sarawak northwards to South China probably represents subduction at the Pacific margin until about 90 Ma. Eastward rollback at this margin may have contributed to Cretaceous extension and thermal events in Indochina but it is difficult to identify a record of this subduction in the mantle. Continental blocks rifted from western Australia in the Late Jurassic-Early Cretaceous are in Borneo, Java and Sulawesi. West Burma was not one of them; it was already part of SE Asia by the Triassic. The Banda (SW Borneo) block was added to Sundaland at c.110 Ma, and at c.90 Ma the Woyla intra-oceanic arc and Argo (East Java-West Sulawesi) block collided with the Sundaland margin causing subduction to cease. A marked change in deep mantle structure at about 110°E reflects the different subduction histories north of India and Australia since 90 Ma. India and Australia were separated by a transform boundary that was leaky from 90 to 75 Ma and slightly convergent from 75 to 55 Ma. West of this I-A transform, ENE-striking high-velocity anomalies in the lower mantle are interpreted to mark subduction zones active as India moved rapidly north from 80 Ma, with north-directed subduction of Tethys, associated with collision of India with an intra-oceanic arc at c.55 Ma, west of Sumatra, before collision with Asia in the Eocene. In contrast, east of the I-A transform little or none of the Mesozoic history can be identified in the mantle. Between 90 and 45 Ma Australia separated very slowly from Antarctica and there was no significant

  2. Active tectonics along the Nebrodi-Peloritani boundary in northeastern Sicily (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Pavano, F.; Romagnoli, G.; Tortorici, G.; Catalano, S.

    2015-09-01

    In the epicentral area of the seismic swarm of the June-September 2011, at southern edge of the Calabrian arc in NE Sicily, very recent extensional motions remobilised two main NW-SE dextral faults. The extensional reactivation of strike-slip faults responded to a new regional dynamic, also evidenced by GPS and seismological data. The inverted structures are aligned at the margin of a wide crustal block that is moving apart from the rest of the island and is uplifting faster than the adjacent regions. The active faults terminate to the northwest at the intersection with a prominent NNE trending fault that represents the western boundary of the mobile block. The vertical displacement along this border exactly matches the difference in elevation of the marine terraces resting inside and outside the block, respectively. On the contrary, only part of differential displacement of the marine terraces was actually accommodated as cumulative motion along the two NW oriented inverted faults, across the southwestern boundary of the block. Amounts of the vertical displacement were distributed on distinct fault planes of the previous dextral shear belts. The widespread fracturing is also the best explanation for the seismic swarm of the 2011, whose epicenters spread on a discrete rock volume rather than concentrated along a single fault plane. The diffuse fracturing seems to represent a peculiar style of deformation, connected to the tectonic inversion of previous strike-slip shear zones. Seismic swarm also affects the northern termination of the Calabrian arc where active extensional deformation reactivated previous strike-slip faults. The similarity of the two regions suggests that seismic swarm can be peculiar of extensional belts developed on previous strike-slip shear zones, along which the pre-existing geometry favours the dispersion of the tectonic motion on a network of small linked fault planes.

  3. Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, Surendra S.; Kothyari, Girish Ch.

    2015-06-01

    We present the results of integrated studies of geomorphic indices of drainage networks and landforms developed across the mountain front along the Himalayan Frontal Thrust (HFT) between the Dabka and Baur rivers, Kumaun Himalaya. The HFT is a morphogenic structure in nature, creating a 100-m-high E-W trending escarpment that extends ~ 21 km. Geomorphological evidence indicates ~ 10.5 km westward migration of the Dabka River and ~ 5.2 km eastward migration of the Baur River. These migrations are a result of uplift of the hanging wall along the HFT. The HFT is offset by a transverse fault, which suggests that the latter postdates the reactivation of the HFT between 500 and 100 ka. Presence of different levels of strath terraces along the mountain front suggests the active nature of the HFT. To assess the relative tectonic activity, morphometric indices such as stream-gradient (SL) index, mountain front sinuosity (Smf) index, and ratio of valley floor width to valley height (Vf) have been analyzed. Results of the former two are consistent with the tectonic landforms developed in thrust zones. Paleochannels of the Dabka and Baur rivers are characterized by high Vf values while other valleys show low Vf values. Quaternary alluvial sediments have been deformed along the Pawalgarth Thrust, a splay of the HFT. Deformation has resulted in the formation of the Pawalgarh Anticline, a thrust-related asymmetric fold.

  4. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  5. Archaeological evidences of the tectonic activity of Shueib Structure (NW Jordan)

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, Mohammad; Azañón, J. Miguel; Pérez-Peña, J. Vicente; Booth-Rea, Gillermo

    2014-05-01

    Archaeological damage in buried ruins often offers an excellent record of recent tectonic activity. The lower Jordan valley has experienced a continuous occupation in the last 5000 year, being frequent archaeological remains of human settlements along the valley. In this work we studied the Early Neolithic-to-Middle Islamic Periods archaeological site of Tall al-Hammam (Arabic name, ¨Hill of Baths¨). This ruin is located 27 km southwest of Amman city and it constitutes the largest Bronze Age archaeological site in Jordan. It consists of two main parts; the Upper Tall and the Lower Tall. This ruin lies within the southwestern termination of the Shueib structure (SHS); a Cretaceous fold-bend fault structure thought inactive through the entire Cenozoic. The relics, in the lower Tall, show clear fault-related damage in some walls. Two Middle Bronze Age (MBA) walls are displaced 26 and 20 cm respectively, according with a NNE-SSW fault plane. Apart of wall displacements, hundreds of joints and cracks in boulders of the walls are present. They strike generally NW-SE and NE-SW. Both archaeological evidences, boulder fractures and walls distortion, are coherent with the present-day tectonic setting of the Dead Sea Transform Fault in the region, and suggest a Quaternary reactivation of the SHS.

  6. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  7. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  8. Tectonic and neotectonic framwork of the Yucca Mountain region, Task 5

    SciTech Connect

    Schweickert, R.A.

    1993-09-30

    Research continued on the tectonic and neotectonics of the Yucca Mountain region. Highlights from projects include: structural studies in Grapevine Mountains, Funeral Mountains, Bullfrog Hills, and Bare Mountain; development of structural models for pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; Paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain; sampling of pegmatites in Bullfrog Hills and Funeral Mountains for U-Pb isotopic analysis; and review and analysis of Mesozoic structure between eastern sierra and Nevada test Site.

  9. Regional tectonic evaluation of the Tuscan Apenine, vulcanism, thermal anomalies and the relation to structural units

    NASA Technical Reports Server (NTRS)

    Bodechtel, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.

  10. Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey

    NASA Astrophysics Data System (ADS)

    Gürer, Ömer Feyzi; Sanğu, Ercan; Özburan, Muzaffer; Gürbüz, Alper; Sarica-Filoreau, Nuran

    2013-11-01

    Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Muğla-Gökova Gulf region. During the Oligocene-Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale-Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N-S compression/transpression, during which sediments in the Eskihisar-Tınaz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene-Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yatağan Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo-Miocene sediments. Plio-Quaternary marked the activation of N-S extension and the development of the E-W-trending Muğla-Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.

  11. Regional tectonic synthesis of central foldbelt and Indus plain of Pakistan

    SciTech Connect

    Everett, J.R.; Russell, O.R.; Dolan, P.

    1989-03-01

    A regional tectonic synthesis based on detailed interpretation of 32 Landsat images, review of literature and maps, and integration of a regional stratigraphic analysis reveals a great deal about the development and distribution of deformational features in Pakistan and indicates a number of oil and gas exploration opportunities that may have been overlooked. It appears that the original shape of the Indian and Eurasian plates and their convergence vector through time controlled the overall pattern of deformation resulting from their collision. The details of plate convergence history, distribution of previously existing structural features, distribution of lithologic units, and their mechanical properties profoundly influence the morphology and architecture of the ranges comprising the Central foldbelt and the effects of the collision in the Indus Plain. In particular, the distribution of low-viscosity units that act as detachment zones (e.g., the Infracambrian evaporite sequence, Cretaceous and Eocene shales and evaporites) control the location of folded thrust belts, thrust duplexes, and passive-roof complexes. Taken together, the tectonic synthesis and regional stratigraphic analysis indicate a wide variety of untested exploration opportunities. These opportunities range from the obvious testing of undrilled structures within productive foldbelts such as the Potwar Plateau and Sulaiman Range to the pursuit of distal folds and the more obscure extension of foldbelts beneath the alluvial cover of the Indus Plain and delta.

  12. Heat Flow in the Salton Trough Revisited and Implications for Regional Tectonics

    NASA Astrophysics Data System (ADS)

    Williams, C.; DeAngelo, J.; Galanis, P.

    2012-12-01

    As part of research into the geothermal energy resources of the Salton Trough, we have assembled a database of 1060 temperature-gradient and heat-flow measurements acquired by the geothermal industry, universities, national labs, and the US Geological Survey (USGS) throughout the region from the early 1970s to the present. In addition to using the data to examine the nature and occurrence of hydrothermal systems, we have estimated the total heat flux through the Trough and investigated relationships between subsurface thermal conditions and the character of faulting and seismicity. Our analysis for the Imperial Valley and other portions of the Salton Trough physiographic province gives an average heat flow of ~160 mW/m2 compared to the 140 mW/m2 average determined by Lachenbruch and others in the last regional study (JGR, v.90, n. B8, 1986). The higher average reflects a larger contribution to the total heat flux from hydrothermal systems that was not recognized in earlier studies due to incomplete spatial coverage. Most of these hydrothermal systems are associated with step-overs and other structural complexities in the fault zones that pass through the region, and the dense coverage of the new heat flow database allows for a detailed examination of the degree to which variations of convective and conductive heat transfer in this region influence, and are influenced by, active tectonic processes. We compared estimated subsurface temperatures from a conductive heat transfer model with the observed depth variation of the upper and lower boundaries of the seismogenic zone along active faults both within and along the margins of the Imperial Valley, and for those areas characterized by average heat flow less than or equal to 150 mW/m2, the base of the seismogenic zone is near the estimated depth of the 400 °C isotherm, a result that is consistent with observations in other seismically active regions. The base of seismicity continues to shallow where heat flow

  13. Utilizing ERTS-A imagery for tectonic analysis through study of the Bighorn Mountains Region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary vegetation analysis has been undertaken on MSS scene 1085-17294, Oct. 16, 1973 in the Bighorn region. Forest Service maps showing detailed distribution of dominant forest types have been compared with MSS bands 5 and 7 positive transparencies, enlarged positive prints, and color imagery produced on an Addcol viewer. Patterns on the ERTS imagery match those on the Forest Service maps quite well. A tectonic map ovearlay of MSS band 7 of the Bighorn region reveals a strong concentration of linears in the uplift as compared to basins. Folds in the Bighorn Basin are visible where not covered by post-Paleocene deposits. In regions where far less is known of the geology than in this area, it might be possible to predict the subsurface occurrence of folds and lineaments on the basis of imagery analysis and more confidently explore covered areas for concealed oil structures and mineral deposits.

  14. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  15. Active tectonic characteristics of river terraces along the Tianquan River, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Cai, Y. M.; Shyu, J. B. H.; Chang, C. P.

    2015-12-01

    The Longmenshan fold-and-thrust belt at the western edge of the Sichuan Basin has long been identified as an active tectonic belt. This has been clearly illustrated by the disastrous Wenchuan and Lushan earthquakes in the recent decade. The two earthquakes, however, have distinctive characters. In the north, the Wenchuan event occurred on major fault zones identified previously. But in the south, the Lushan event was not accompanied by surface ruptures, and the seismogenic structure is still under debate. In order to further understand the neotectonic characteristics of the Lushan earthquake region, we analyzed fluvial terraces, in the hope that such geomorphic features would provide information of active structures of the area. Along the Tianquan River, river terraces are particularly well developed near two cities, Tianquan and Shiyang. Since the terraces appear to be very wide and limited in these two basin-like areas, we suspected that they formed as filled-up lakes. However, after detailed field investigations, we found that underneath these terraces, early Tertiary bedrocks crop out below river sediments that are only several meters thick. This indicates that the Tianquan River has incised into bedrocks. The slope of the terrace surfaces is similar to that of the present-day riverbed, and the river sediments in the terrace outcrops have similar grain size distribution as current riverbed sediments. Therefore, we suggest that the terraces along the Tianquan River are not related to dammed lake, but were produced by tectonic uplift. Combining the age of terrace sediments dated by optically stimulated luminescence (OSL) and detailed topography of the terrace surfaces, we aim to establish a model for the formation mechanism of these two terrace groups. We hope the results of this study would provide more information of neotectonic characteristics of the southwestern Sichuan Basin, as well as future earthquake hazards in this densely populated region.

  16. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  17. Seismological studies of tectonics in the Toba region and in the Banda sea, Indonesia

    NASA Astrophysics Data System (ADS)

    Fauzi

    By using arrival time data from the Indonesian Meteorological and Geophysical Agency (MGA), International Seismological Center (ISC) and United State Geological Survey (USGS), and the Centroid Moment Tensor (CMT) solutions of Harvard, I studied the tectonic features in north Sumatra and Banda arc, Indonesia. In north Sumatra, the study was focused on the subducted slab and attenuation beneath Toba---the world's largest Quaternary caldera. In the Banda arc, I studied the unusual shape of the slab where a part of Australian continent has been subducted under the oceanic plate. Toba was formed 75ka, resulting in a caldera of the area of 25km x 100km. The age and area of the caldera suggest that the magma remains partially molten. Seismograms at the stations near the caldera showed that P- and S-waves have been attenuated. This attenuation was studied using both qualitative and quantitative method to locate the magma system. By applying both methods, the results indicate that the magma chamber is shallower than 20km. In Banda area, hypocenters were determined using a combination of local and teleseismic data to reveal the slab geometry. Because a flat-lying slab at 600km depth is unusual, the accuracy of the hypocenters within this slab was studied in more detail. Statistically several hypocenters in this region have been accurately located using probability density functions. The shape of the slab shown by the hypocenter distribution reveals high contortion beneath the Banda sea. The stress distribution revealed from the P,T and B axes of fault plane solutions suggests that the stress field is controlled by both gravity and contortion within the slab. The subduction process in Banda region has changed since the Australian continent plate collided with the Banda arc. Strike slip earthquakes seem to concentrate along the extension of the Terera-Aiduna fault to the southwest in Wetar backarc thrust. I conclude that the extension of Terera-Aiduna fault in the subducted

  18. Regional tectonic interpretation of image enhanced gravity and magnetic data covering the mid-Norwegian shelf and adjacent mainland

    NASA Astrophysics Data System (ADS)

    Fichler, C.; Rundhovde, E.; Olesen, O.; Sæther, B. M.; Rueslåtten, H.; Lundin, E.; Doré, A. G.

    1999-06-01

    Gravity and magnetic field data covering mid-Norway and the Norwegian Sea were processed in order to enhance tectonic features on various scales. The local features were subjected to an unconventional processing technique involving a non-linear, adaptive Wallis filter designed to enhance the smallest wave lengths. When compared with recent structural information derived from seismic data, the processed gravity and magnetic maps show the main structural trends, major fault zones and basin boundaries, thus proving their worth for regional tectonic mapping. Previously undetected NW-SE-trending offshore crustal lineaments are revealed. A landward prolongation of the Bivrost Lineament appears to continue subparallel towards Proterozoic shear zones below the Caledonian nappes in the Rana area, either along the western margin of the Transscandinavian Granite-Porphyry Belt or the NW-SE-trending Malå-Skellefteå Tectonic Zone. A large lineament is also observed as a landward prolongation of the Surt Lineament indicating a relationship with the Storsjön-Edsbyn Deformation Zone, a major, deep, crustal shear zone in the Precambrian of Sweden. A slightly increased seismic activity, which is possibly related to the present ridge push force, is observed along parts of the previously unknown transfer zones. Combined gravity and magnetic modelling indicates a low crustal thickness in the northwesternmost part of the Vøring Basin, between the Surt and the Jan Mayen Lineaments. The lack of correlation between the gravity and the magnetic patterns observed on the residual field maps suggests the presence of a shallow Curie isotherm situated above or within the uppermost basement.

  19. Preliminary analysis on the tectonic stress level in the source region of Tangshan earthquake

    NASA Astrophysics Data System (ADS)

    Jian-Tao, Zhao; Cui, Xiao-Feng; Xie, Fu-Ren

    2002-05-01

    The abundant data of focal mechanism solutions in Tangshan region, China, are inverted for the tectonic stress field. Combined with tectonophysical consideration, the magnitude of the three principal stresses, as well as their vertical variation under the average crustal rock property, in the source region of the 1976 Tangshan earthquake is estimated. The relationship between crustal stress and friction μ c, pore pressure P 0 and stress shape factor Φ is studied. The paper draws the conclusion that the vertical increasing rate of the maximum principal stress σ is directly proportional to friction, and inversely to pore pressure P 0 and stress shape factor Φ; while the vertical increasing rate of the minimum principal tress σ is directly proportional to pore pressure P 0, inversely to friction μ c and stress shape factor Φ. This study is a try to invert the data of focal mechanism solutions for the complete stress tensor.

  20. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  1. Regional variation in Moho depth and Poisson's ratio beneath eastern China and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Wei, Zigen; Chen, Ling; Li, Zhiwei; Ling, Yuan; Li, Jing

    2016-01-01

    Eastern China comprises a complex amalgamation of geotectonic blocks of different ages and undergone significant modification of lithosphere during the Meso-Cenozoic time. To better characterize its deep structure, we conducted H-κ stacking of receiver functions using teleseismic data collected from 1143 broadband stations and produced a unified and detailed map of Moho depth and average Poisson's ratio (σ) of eastern China. A coexistence of modified and preserved crust with generally in Airy-type isostatic equilibrium was revealed in eastern China, which correlates well with regional geological and tectonic features. Crust is obviously thicker to the west of the North-South Gravity Lineament but exhibits complex variations in σ with an overall felsic to intermediate bulk crustal composition. Moho depth and σ values show striking differences as compared to the surrounding areas in the rifts and tectonic boundary zones, where earthquakes usually occur. Systematic comparison of Moho depth and σ values demonstrated that there are both similarities and differences in the crustal structure among the Northeast China, North China Craton, South China, and the Qinling-Dabie Orogen as well as different areas within these blocks, which may result from their different evolutionary histories and strong tectonic-magma events since the Mesozoic. Using new data from dense temporary arrays, we observed a change of Moho depth by ∼3 km and of σ by ∼0.04 beneath the Tanlu Fault Zone and an alteration of Moho depth by ∼5 km and of σ by ∼0.05 beneath the Xuefeng Mountains. In addition, striking E-W difference in crustal structure occur across the Xuefeng Mountains: to the east, the Moho depth is overall <35 km and σ has values of <0.26; to the west, the Moho depth is generally >40 km and σ shows complex and large-range variation with values between 0.22 and 0.32. These, together with waveform inversion of receiver functions and SKS shear-wave splitting measurements

  2. Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea

    SciTech Connect

    Nilsen, K.T.; Johansen, J.T.; Vendeville, B.C.

    1996-12-31

    Seismic analysis of salt structures in the Nordkapp Basin, a deep salt basin in the southern Barents Sea, combined with experimental modeling suggests that regional tectonics closely controlled diapiric growth. Diapirs formed in the Early Triassic during basement-involved regional extension. The diapirs then rose rapidly by passive growth and exhausted their source layer. Regional extension in the Middle-Late Triassic triggered down-to-the-basin gravity gliding, which laterally shortened the diapirs. This squeezed salt out of diapir stems, forcing diapirs to rise, extrude, and form diapir overhangs. After burial under more than 1000 m of Upper Triassic-Lower Cretaceous sediments, the diapirs were rejuvenated by a Late Cretaceous episode of regional extension and gravity gliding, which deformed their thick roofs. After extension, diapirs stopped rising and were buried under 1500 m of lower Tertiary sediments. Regional compression of the Barents Sea region in the middle Tertiary caused one more episode of diapiric rise. Diapirs in the Nordkapp Basin are now extinct.

  3. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Tectonics in the South Caspian region constrained through earthquake source mechanism reinterpretation

    NASA Astrophysics Data System (ADS)

    Covellone, B. M.; Savage, B.

    2008-12-01

    Rapid subsidence of the south Caspian Sea during the last 5Ma has resulted in one of the world's deepest basins; the onset of this subsidence is still under debate. The Caspian Basin is a aseismic, rigid block overlain by a thick (up to 28km) folded sedimentary cover. It is surrounded by active orogenic belts in a highly compressional regime. Competing theories exist regarding the Caspian's past and present tectonics. Some interpretations indicate decoupling of the base sediments and the subsequent northward subduction of relatively thick oceanic crust (or thinned continental crust) beneath the Apsheron-Balkhan sill in the middle Caspian Sea. An opposing theory suggests that a gabbro-eclogite phase change, within thick continental crust, facilitated subsidence. To test these theories, earthquake mechanisms and depths have been reinterpreted from published CMT solutions. Earthquake depths are 25-60km along the sill, and source mechanisms indicate both extensional and compressive motion. It is difficult to conclusively determine the processes involved in recent subsidence. However, the presence of both extensional and compressional source mechanisms and previous interpretations of the basement structure, from Knapp (2004) and Artyushkov (2006), cannot provide definitive evidence for northward subduction. Additionally, deep basins north and south of the sill and inconclusive gravity data, further complicate interpretations. The results of this study, in combination with previous source mechanisms studies, confirm a highly compressional regime along the southern and western boundaries of the south Caspian Sea. Abundant normal faulting and few thrust faults are seen along the Apsheron-Balkhan sill to the north. These results reflect an area exposed to intense compression from the south and may indicate the presence of lithospheric flexure parallel to the sill. Initiation of subduction beneath the sill, however, cannot be confirmed with current data. Instead, a major

  5. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  6. Geology of the Santa Elena Peninsula, Costa Rica and its implications for the tectonic evolution of the Central America-Caribbean region

    SciTech Connect

    Lew, L.R.

    1985-01-01

    The Santa Elena Peninsula of Costa Rice represents an Aptian to Middle Eocene intraoceanic volcanic arc formed on a basement of serpentinized periodotite. This peridotite was probably part of the oceanic lithosphere formed at a spreading ridge which began to separate South America from North America in pre-Jurassic time. The arc resulted from northward subduction of oceanic crust along one ENE-trending trench about 70 km south of Santa Elena. The first phase of tectonism, arc volcanism, and sedimentation occurred in the area from Aptian to Campanian time. Carbonate bank limestone were deposited on the peridotite, which had been tilted and uplifted along E-W-trending high angle faults. A second volcanic arc developed above the limestone and was active until the Middle Eocene. From the Campanian to the Middle Eocene a forearc basin evolved south of the arc and a backarc basin north of it. A major Middle Eocene tectonic episode was associated with termination of activity of the Santa Elena subduction zone. This involved both thin-skinned deformation and reactivation of the steep basement faults to juxtapose peridotite and Campanian to Middle Eocene sediments. Existing models of the early plate tectonic evolution of the region, postulating initiation of spreading in the Jurassic, and development of a major transform in the Santa Elena area in the Cretaceous, are incompatible with the geology of the Santa Elena area. New models have been formulated genetically relating the structures in the Santa Elena tectonic province to northward subduction.

  7. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  8. Active region seismology

    NASA Technical Reports Server (NTRS)

    Bogdan, Tom; Braun, D. C.

    1995-01-01

    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  9. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  10. Active region coronal evolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Noci, G.; Poletto, G.; Vaiana, G. S.

    1982-01-01

    Scaling relations between coronal base pressure and longitudinal photospheric magnetic field strength are tested for the case of a single active region observed for five solar rotations from Skylab. The evolution of measureable quantities, such as coronal thermal energy content, total longitudinal photospheric magnetic flux, region scale size, and peak energy density, is traced throughout the five rotations observed. The theoretically derived scaling law of Golub et al. (1980) is found to provide an acceptable fit to the data throughout the entire evolutionary history of the region from an age of about 3 days to the fully evolved state in which the mature active region merges into the general large-scale structure of the quiet corona. An alternative scaling law obtained by including the results of Galeev et al. (1981), however, is found to provide a somewhat better fit to the data. The study is seen as providing additional justification for the belief that magnetic field-related heating is the operative mechanism in the solar corona.

  11. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  12. Applications of Morphochronology to the Active Tectonics of Tibet

    SciTech Connect

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  13. Geodetic evidence for tectonic activity on the Strymon Fault System (NE Greece)

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, Vasiliki; Gianniou, Michail; Saltogianni, Vasso; Stiros, Stathis

    2014-05-01

    Geological, seismological and geodetic data have provided so far limited evidence of crustal deformation in northeast Greece (Thrace and East Macedonia); hence, the active tectonics of this area remains largely unknown. Here, we use monthly GPS solutions from 21 permanent stations of the Hellenic GPS Network (HEPOS) to shed light in the kinematics of NE Greece. Analysis of our dataset, that collectively spans a period of five years, shows that displacement vectors that derive from either side of the natural depression of the Strymon (Struma) Valley differ significantly in orientation and magnitude. The latter testify to a clear left-lateral displacement along the Strymon Fault System (SFS) with a mean fault displacement rate of ~3.7 mm/yr, while the area west of it behaves like a quasi-rigid tectonic block. The polarity of shear along the SFS appears to have changed, from right-lateral to left-lateral, during the last ~5 Ma, a period that coincides with the onset of faulting along the prolongation of the fast-moving (>20 mm/yr) North Anatolian Fault into the north Aegean. Thus, left-lateral slip along the SFS may occur in conjunction with, and in response to, right-lateral oblique slip along the North Aegean Trough, indicating that faulting in north Aegean is intimately linked in space and time. If the interseismic strain stored currently across the SFS (~3.7 mm/yr) is released seismically through large magnitude earthquakes, it may have serious implications in the seismic hazard of this densely populated region, which also accommodates important civil infrastructure.

  14. Salts as indicators of tectonic activity along Nesson anticline, North Dakota

    SciTech Connect

    Lefever, J.A.; Lefever, R.D.; Anderson, S.B.

    1988-07-01

    The Nesson anticline is the major north-south-trending structure in the North Dakota portion of the Williston basin. The trace of the anticline is marked by nearly continuous production for 110 mi (175 km) from the Canadian border south to Dunn County; production is from 13 different stratigraphic zones. Previous studies have shown that the central and southern parts of the anticline, from Beaver Lodge field south to Rattlesnake Point field, consist of at least nine structurally independent areas, each of which has an individual tectonic history. Isopach patterns indicate that most of the areas underwent their greatest tectonic activity during the Devonian and Early Mississippian, although a few areas were active during the early Mesozoic as well. Ten traceable salts are present along the anticline in the Prairie (Devonian), Charles (Mississippian), Opeche (Permian), Spearfish (Triassic), and Pipe Formations (Jurassic). The isopach patterns of the individual salts indicate contemporaneous tectonic activity through thickening or thinning of the salt. Postdepositional activity is indicated by the absence of a salt; the timing of the activity may be estimated from the presence of compensating section above the level of the salt. Their results indicate that, in addition to the times given above, significant tectonic activity took place along the anticline during the Late Mississippian, late Jurassic, and Early Cretaceous.

  15. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir

    NASA Astrophysics Data System (ADS)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.

    2012-12-01

    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  16. The relationships between volcanism, tectonism and hydrothermal activity on the Mid-Atlantic Ridge south of the equator

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; German, C. R.; Haase, K. M.; Lackschewitz, K. S.; Melchert, B.; Connelly, D.; Parson, L. M.

    2009-04-01

    Using data from the complete bathymetric and side-scan (TOBI) coverage of the Mid-Atlantic Ridge 2-14 °S collected since 2004 in conjunction with the results of extensive prospecting for hydrothermal systems in this area we attempt to formulate a general model for the interplay between volcanism, tectonics and hydrothermalism on a slow-spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) A deep, tectonically-dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults (b) a shallower, segment-centre bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis and (c) a very shallow, inflated axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

  17. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  18. The River Network, Active Tectonics and the Mexican Subduction Zone, Southwest Mexico

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.; Kostoglodov, V.; Basili, R.

    2014-12-01

    Rivers, their profiles and network reflect the integration of multiple processes and forces that are part of the fundamental controls on the relief structure of mountain belts. The motivation of this study is to understand active tectonic processes in the forearc region of subduction zones, by distinguishing evidence of active deformation using the river network and topography. To this end, morphotectonic and structural studies have been conducted on fifteen drainage basins on the mountain front, parallel to the Mexican subduction zone, where the Cocos plate underthrusts the North American plate. The southwest - northeast Cocos plate subduction stress regime initiated ca. 20 MA. NE-SW to NNE-SSW normal faults as well as sub-latitudinal to NW-SE strike-slip faults (both dextral and sinistral) constitute the majority of mesofaults recorded in the field within the studied drainage basins. Occasionally dextral N-S strike-slip faults also occur. The stress tensor reconstruction suggests two main evolution stages of these faults: 1) the older is dominated by a NW-SE to WNW-ESE extensional regime and 2) the younger is a transcurrent regime, with NNE-SSW σ1 axis. The drainage pattern is strongly controlled by tectonic features, whereas lithology is only a subordinate factor, with only one exception (Petatlán river). Generally, major rivers flow from north to south mainly through NE-SW and NNE-SSW normal faults, and/or sub-longitudinal dextral (also locally sinistral) strike-slip faults. In the central and eastern part of the studied area, rivers also follow NW-SE structures, which are generally normal or sinistral strike-slip faults (rarely reverse). In most cases, local deflections of the river main courses are related to sub-latitudinal strike-slip faults, both dextral and sinistral. Within the current stress field related to the active Cocos subduction, both normal and strike-slip fault sets could be reactivated. Our analysis suggests that strike-slip faults, mainly

  19. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    SciTech Connect

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  20. Structure of North Atlantic upper mantle based on gravity modelling, regional geochemistry and tectonic history

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans

    2016-04-01

    We study the link between deep geodynamic processes and their surface expression in the North Atlantic region which has an anomalous, complex structure compared to other oceans. We calculate a model of residual mantle gravity between the Charlie Gibbs Fracture Zone and Svalbard. The calculations are based on GOCE satellite data the regional crustal model EUNAseis (Artemieva and Thybo, 2013) ; for the crustal and topography effects, and the global totpgraphy and bathymetry model ETOPO1 from NOAA (Amante and Eakis, 2009). Results are complemented by sensitivity analysis of the various parameters' effects on the models. Our results identify strong heterogeneity in the upper mantle residual gravity, expressed as a sharp contrasts at the continent-ocean transition, positive mantle gravity below the continental blocks and negative - below oceanic blocks; the MOR has low-gravity anomaly. By introducing regional geochemical data and analysis of the tectonical history, we identify a strong correlation between residual mantle gravity anomalies and geochemical anomalies in ɛNd and Mg#. This analysis identifies three zones of North Atlantic mantle based on the correlation between upper mantle gravity and ocean floor age. In the area around Iceland, the residual mantle gravity is systematically lower than predicted from the half-space cooling model, and we estimate the thermal anomaly that could cause this shift.

  1. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    A number of alkaline plutons have been recorded at the K-T (Cretaceous-Tertiary) boundary in western Rajasthan, India. Significant magmatism occurred at Mundwara, Barmer, Sarnu-Dandali and Tavider. The evolution of the Cambay-Sanchor-Barmer rift during the K-T period resulted in these alkaline complexes at the rift margins. Sedimentary basins are developed in the Barmer and Jaiselmer regions. The magmatism of Mundwara and Sarnu-Dandali is dated at 68.50 Ma and considered as an early pulse of Deccan volcanism. Several workers correlated K-T sedimentary basin evolution, magmatism and other tectonic features of western Rajasthan with the Reunion plume-interaction in the northwestern Indian shield. Alkaline igneous complexes along the rift from the southern part are reported from Phenai Mata, Amba Dongar and Seychelles. The Seychelles was part of the northwestern Indian shield prior to Deccan volcanism. The Mundwara igneous complex represents three distinct circular plutonic bodies - Toa, Mer and Mushala, which are situated in the periphery of an area three kilometers in radius. Besides these, there are numerous concentric and radial dykes of lamprophyre, carbonatite, dolerite and amphibolite. All these three bodies represent different phases of intrusion and are not similar to each other. The alkaline rocks of Sarnu-Dandali occur as dykes and isolated plugs in the desert sand. Carbonatite dykes are also reported from southeast of Barmer. The Tavider outcrop is devoid of any plutonic rock and consists of rhyolite, andesite and basalt. These rocks occur along the Precambrian Malani magmatic lineaments. The development of the Cambay-Sanchor-Barmer rift caused reactivation of Precambrian fractures and resulted in magmatism at the basin margin. The Gondwanaland fragmentation during the Mesozoic era caused extensional tectonics in the northwestern Indian shield. This led to the development of rift basins in Gujarat and western Rajasthan. Deccan volcanism, separation of the

  2. Tectonic evolution of the Gaoua region, Burkina Faso: Implications for mineralization

    NASA Astrophysics Data System (ADS)

    Baratoux, L.; Metelka, V.; Naba, S.; Ouiya, P.; Siebenaller, L.; Jessell, M. W.; Naré, A.; Salvi, S.; Béziat, D.; Franceschi, G.

    2015-12-01

    The interpretation of high-resolution airborne geophysical data integrated with field structural and lithological observations were employed in the creation of a litho-structural framework for the Gaoua region, Burkina Faso. The granite-greenstone domain of Paleoproterozoic age was affected by multiple deformation and mineralization events. The early tectonic phase is characterized by the emplacement of voluminous tholeiitic and calc-alkaline lavas, probably in a volcanic arc setting. The copper mineralization in Gongondy, Dienemera and Mt Biri is concentrated in a diorite/andesite breccia, and is interpreted as porphyry-copper style formed at an early stage of the evolution of the area. Evidence for the first deformation event D1Ga corresponding to N-S shortening was only found in the E-W trending mafic unit bordering the Gaoua batholith to the south. A second deformation phase D2Ga occurred under greenschist facies conditions and lead to a development of more or less penetrative metamorphic foliation and its subsequent folding under overall E-W compression. At later stages, the D2Ga switched to a transcurrent regime characterized by intense N-S to NW-trending steeply dipping shear zones. The first significant gold mineralization event is related to this transcurrent tectonic phase. During subsequent D3Ga, intense network of brittle to brittle-ductile NW and NE faults developed. Economic gold concentrations are attributed to the D3Ga event and are associated with the remobilization of early disseminated low grade gold concentrations. Significant deposits in the area are Nassara, Gomblora, Batié West and Kampti. The last deformation event D4Ga resulted in E-W trending thrust faults and crenulation cleavage planes, under overall N-S compression. No mineralization events related to this stage have been seen.

  3. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  4. Large historical earthquakes and tsunamis in a very active tectonic rift: the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioanna; Papadopoulos, Gerassimos

    2014-05-01

    The Gulf of Corinth is an active tectonic rift controlled by E-W trending normal faults with an uplifted footwall in the south and a subsiding hangingwall with antithetic faulting in the north. Regional geodetic extension rates up to about 1.5 cm/yr have been measured, which is one of the highest for tectonic rifts in the entire Earth, while seismic slip rates up to about 1 cm/yr were estimated. Large earthquakes with magnitudes, M, up to about 7 were historically documented and instrumentally recorded. In this paper we have compiled historical documentation of earthquake and tsunami events occurring in the Corinth Gulf from the antiquity up to the present. The completeness of the events reported improves with time particularly after the 15th century. The majority of tsunamis were caused by earthquake activity although the aseismic landsliding is a relatively frequent agent for tsunami generation in Corinth Gulf. We focus to better understand the process of tsunami generation from earthquakes. To this aim we have considered the elliptical rupture zones of all the strong (M≥ 6.0) historical and instrumental earthquakes known in the Corinth Gulf. We have taken into account rupture zones determined by previous authors. However, magnitudes, M, of historical earthquakes were recalculated from a set of empirical relationships between M and seismic intensity established for earthquakes occurring in Greece during the instrumental era of seismicity. For this application the macroseismic field of each one of the earthquakes was identified and seismic intensities were assigned. Another set of empirical relationships M/L and M/W for instrumentally recorded earthquakes in the Mediterranean region was applied to calculate rupture zone dimensions; where L=rupture zone length, W=rupture zone width. The rupture zones positions were decided on the basis of the localities of the highest seismic intensities and co-seismic ground failures, if any, while the orientation of the maximum

  5. Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: an overview ( USA).

    USGS Publications Warehouse

    Hill, D.P.; Bailey, R.A.; Ryall, A.S.

    1985-01-01

    Geological, chronological, and structural studies of the Long Valley-Mono/Inyo Craters area document a long history of related volcanic eruptions and earthquakes controlled by regional extensional tectonics of the Basin and Range province. This activity has persisted for hundreds of thousands of years and is likely to continue. The Long Valley magma chamber had a volume approaching 3000 km3 prior to its climatic caldera-forming eruption 0.7 ma but has been reduced to less than a third of this volume by cooling, eruption, and crystallization. Although current unrest is concentrated in the S moat of Long Valley caldera, the Inyo/Mono Craters probably hold a greater potential for producing an eruption in the foreseeable future. The Inyo/Mono Craters have erupted at 500-year intervals over the past 2000-3000 years, whereas the Long Valley magma chamber has erupted at about 200,000-year intervals over the past 700,000 years. In either case, a major earthquake near the caldera could strongly influence the course of volcanic activity.-from Authors

  6. Regional mantle upwelling on Venus: The Beta-Atla-Themis anomaly and correlation with global tectonic patterns

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Aubele, Jayne C.

    1993-01-01

    The morphology and global distribution of volcanic centers and their association with other geological characteristics offers significant insight into the global patterns of geology, tectonic style, thermal state, and interior dynamics of Venus. Magellan data permit the detailed geological interpretation necessary to address questions about interior dynamics of Venus particularly as they reflect relatively physical, chemical, and thermal conditions of the interior. This paper focuses on the distribution of anomalous concentrations of volcanic centers on Venus and regional patterns of tectonic deformation as it may relate to the identification of global internal anomalies, including mantle dynamic, petrological, or thermal patterns.

  7. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    deposition within the Middle Aterno River Valley. These fluvial deposits are deeply embedded into the lacustrine sequence, thus suggesting the happening of a hydrographic connection among the originally separated tectonic depressions. This was probably due to the headward erosion by streams draining the Sulmona depression that progressively captured the hydrological networks of the Subequana basin, the Middle Aterno Valley, the L'Aquila and Paganica-Castelnuovo-San Demetrio basins to the North. Stream piracy was probably helped by an increase of the regional uplift rate, occurred between the Lower and the Middle Pleistocene. To reconstruct the paleo-landscape that characterised the early stages of these basins formation we sampled the remnants of the Quaternary erosinal/depositional surfaces and reconstructed the ancient topographic surfaces using the Topo to Raster tool of ArcGIS 10.0 package. Finally we have cross-checked the geological and geomorphological data with the model of the Middle Aterno River paleo-drainage basin obtained through the GIS based method. References Falcucci E., Scardia G., Nomade S., Gori S., Giaccio B., Guillou H., Fredi P. (2012). Geomorphological and Quaternary tectonic evolution of the Subequana basin and the Middle Aterno Valley (central Apennines).16th Joint Geomorphological Meeting Morphoevolution of Tectonically Active Belts Rome, July 1-5, 2012

  8. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity

    NASA Astrophysics Data System (ADS)

    Tárraga, Marta; Cruz-Reyna, Servando; Mendoza-Rosas, Ana; Carniel, Roberto; Martínez-Bringas, Alicia; García, Alicia; Ortiz, Ramon

    2012-06-01

    The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.

  9. Evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Green, Lucie May

    2015-09-01

    The evolution of active regions (AR) from their emergence through their long decay process is of fundamental importance in solar physics. Since large-scale flux is generated by the deep-seated dynamo, the observed characteristics of flux emergence and that of the subsequent decay provide vital clues as well as boundary conditions for dynamo models. Throughout their evolution, ARs are centres of magnetic activity, with the level and type of activity phenomena being dependent on the evolutionary stage of the AR. As new flux emerges into a pre-existing magnetic environment, its evolution leads to re-configuration of small-and large-scale magnetic connectivities. The decay process of ARs spreads the once-concentrated magnetic flux over an ever-increasing area. Though most of the flux disappears through small-scale cancellation processes, it is the remnant of large-scale AR fields that is able to reverse the polarity of the poles and build up new polar fields. In this Living Review the emphasis is put on what we have learned from observations, which is put in the context of modelling and simulation efforts when interpreting them. For another, modelling-focused Living Review on the sub-surface evolution and emergence of magnetic flux see Fan (2009). In this first version we focus on the evolution of dominantly bipolar ARs.

  10. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data for Mars from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible postflow tectonic subsidence on the Snake River Plain in Idaho.

  11. Earthquake mechanisms and active tectonics of the Hellenic subduction zone

    NASA Astrophysics Data System (ADS)

    Shaw, Beth; Jackson, James

    2010-05-01

    We use improved focal mechanisms and centroid depth estimates of earthquakes, combined with GPS velocities, to examine the tectonics of the Hellenic subduction zone, and in particular the processes occurring at both ends of the Hellenic Arc. Nubia-Aegean convergence is accommodated by shallowly dipping thrust-faulting along the subduction-zone interface, as well as by steeper splay faults in the overriding material. From a comparison of observed and expected seismic moment release over the last 100 yr, combined with existing knowledge of the longer-term documented historical record, we confirm earlier suggestions that most (80 per cent) of this convergence is accommodated aseismically, that is, that the subduction zone is uncoupled. This conclusion is robust, even allowing for rare very large earthquakes on splay faults, such as that of AD 365, and also allowing for the contribution of small earthquakes. The downgoing Nubian plate deforms by arc-parallel contraction at all depths, from 200 km seaward of Crete to at least 100 km within the subducting slab. Extensional (T) axes of earthquakes are aligned downdip within the descending slab suggesting that, even if the aseismic prolongation of the slab has reached the 670 km mantle discontinuity, it does not transmit stresses to shallower depths. Shallow thrust-faulting earthquakes on the subduction interface show a divergence of slip vectors round the arc, and GPS measurements show that this is accommodated mainly by E-W extension on normal faults in the overriding Aegean material. The eastern end of the subduction zone, south of Rhodes, displays distributed deformation in the overriding material, including a mixture of strike-slip and splay-thrust faulting, and probably involves rotations about a vertical axes. Here slip on the interface itself is by thrust faulting with slip vectors oblique to the arc but parallel to the overall Nubia-Aegean convergence: there is no evidence for slip-partitioning in the traditional

  12. Geopotential field anomalies and regional tectonic features - two case studies: southern Africa and Germany

    NASA Astrophysics Data System (ADS)

    Korte, Monika; Mandea, Mioara

    2016-05-01

    Maps of magnetic and gravity field anomalies provide information about physical properties of the Earth's crust and upper mantle, helpful in understanding geological conditions and tectonic structures. Depending on data availability, whether from the ground, airborne, or from satellites, potential field anomaly maps contain information on different ranges of spatial wavelengths, roughly corresponding to sources at different depths. Focussing on magnetic data, we compare amplitudes and characteristics of anomalies from maps based on various available data and as measured at geomagnetic repeat stations. Two cases are investigated: southern Africa, characterized by geologically old cratons and strong magnetic anomalies, and the smaller region of Germany with much younger crust and weaker anomalies. Estimating lithospheric magnetic anomaly values from the ground stations' time series (repeat station crustal biases) reveals magnetospheric field contributions causing time-varying offsets of several nT in the results. Similar influences might be one source of discrepancy when merging anomaly maps from different epochs. Moreover, we take advantage of recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of ˜ 200 km resolution. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Comparing short- and long-wavelength anomalies and the correlation of rather large-scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement in the southern African region than the German region. This probably indicates stronger concordance between near-surface (down to at most a few km) and deeper (several kilometres down to Curie depth) structures in the former area, which can be seen to agree with a thicker lithosphere and a lower heat flux reported in the literature for the southern

  13. Intraoceanic Arc Tectonic and Sedimentary Processes: Translation from Modern Activity to Ancient Records

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Clift, P. D.

    2013-12-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are used to reconstruct paleogeography, plate motion, collision and accretion events, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records after arc-continent collision is complicated by preservation of evidence for some processes and loss of evidence for others. We examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of oceanic subduction zones. Composition of accreted arc terranes differs as a function of arc-continent collision geometry. ';Forward-facing' collision can accrete an oceanic arc onto either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In ';backward-facing' collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern oceanic subduction zones implies that valuable records of arc processes are commonly destroyed even before collision with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of

  14. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  15. Change in biochemical and morphological characteristics of Lonicera caerulea in tectonically active zone of the Dzhazator River Valley (Altai Mountains)

    NASA Astrophysics Data System (ADS)

    Boyarskikh, I. G.; Khudyaev, S. A.; Platonova, S. G.; Kolotukhin, S. P.; Shitov, A. V.; Kukushkina, T. A.; Chankina, O. V.

    2012-12-01

    Local geophysical and geochemical anomalies affect the polymorphism of taste variations, berry shape, and content of some biologically active substances in Lonicera caerulea leaves in the tectonically active Altai Mountains (Dzhazator River basin).

  16. Tectonic evolution and hydrocarbon potential of the southern Moesian platform and Balkan-Forebalken regions of northern Bulgaria

    SciTech Connect

    Emery, M. ); Georgiev, G. )

    1993-09-01

    The major tectonic elements of northern Bulgaria are the east-west-trending Balkan-Forebalkan fold belt and the Moesian platform. Moderate hydrocarbon exploration potential exists in trapping geometries generated during the tectonic evolution of the region coupled with reservoir/seal pairs and source rocks within Mesozoic strata. The tectonic evolution of the region includes Early Triassic to Early Jurassic intracratonic rifting followed by multiphase compression that contracted the rift basin and produced a north vergent fold and thrust belt along the southern margin of the stable Moesian platform. Compression began during the Early Cretaceous, continued during the Paleocene, and concluded during the middle Eocene. Trap types generated during the tectonic evolution include normal fault-bounded rotated blocks in the autochthonous section and elongate, asymmetric anticlines in the allochthonous section. Triassic to Upper Jurassic Marine facies were deposited in an east-west-trending rift. Sediments deposited in a shallow foredeep, which evolved during Lower cretaceous compression, overlay the rift sequence. The Early Mesozoic rift sequence provides the depositional settings for Middle Triassic and lower Middle Jurassic source rock shales and sandstone/carbonate reservoirs ranging from Middle Triassic to Lower Cretaceous. Carbonate reservoirs generally are porous dolomites with intercrystalline, moldic, and vugular pore types interbedded with nonporous limestones. Clastic reservoirs are quartz-rich sandstones with pore types that are reduced intergranular, dissolution, and microporosity. These heterogeneous reservoir targets exhibit poor to good reservoir characteristics and are overlain with sealing lithologies of variable thicknesses.

  17. Crustal radial anisotropy in Northeast China and its implications for the regional tectonic extension

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Yang, Yingjie; Chen, Y. John

    2016-07-01

    We obtain high resolution Rayleigh and Love wave phase velocity maps from ambient noise tomography using data recorded by NECESSArray in Northeast China. The resulting radial anisotropic model from the joint inversion of Rayleigh and Love wave dispersion curves reveals strong relationship between the crustal radial anisotropy and tectonic provinces, that is, strong positive anisotropy (Vsh>Vsv) beneath the Songliao Basin and weak radial anisotropy beneath the Xinmeng Belt and Changbaishan region. The Songliao Basin experienced widespread crustal extension during the late Mesozoic. We interpret the lower crustal anisotropy beneath the Songliao Basin as a result of ductile deformation during the rifting stage, which may lead to the alignment of anisotropic minerals and the observed strong radial anisotropy at present. In the northern Songliao Basin, where thick syn-rift and post-rift sediments (≥4 km) are believed to be present, we observe a broader lateral distribution of anisotropy with stronger amplitude compared with the southern basin. We suggest that the broader distribution of crustal radial anisotropy in the northern basin could be the consequence of outward lower crustal flow driven by the sedimentary loading during the post-rift stage, which is also proposed by previous numerical modelling.

  18. Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: Tectonics and volcanism of San Borja volcanic field

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, Raquel; Cañón-Tapia, Edgardo; Brandle, Jose Luis; Ortega-Rivera, M. Amabel; Lee, James K. W.; Spelz, Ronald M.; Hinojosa-Corona, Alejandro

    2010-04-01

    Because of its long-lived (Late Miocene to Pleistocene) post-subduction volcanic activity and location, the San Borja volcanic field (SBVF) is a key area for understanding the physical mechanisms controlling the spatial distribution of post-subduction volcanism on the Peninsula of Baja California. In this paper, we study the distribution and general characteristics of individual eruptive centers in the SBVF, aiming to provide insight into the changing physical nature of post-subduction magmatism and the control on vent location in a very unique tectonic setting. Volcanic activity has built more than 227 high-magnesium andesites (HMA) monogenetic scoria cones and thick lava flows capping large mesas during the last 12.5 Ma. The average (mean) eruptive center in the SBVF has a height of 85 m, a basal diameter of 452 m and a slope angle of 30°. Our volcanic alignment analysis of this field is based on field data, satellite images, and a quantitative method for detecting volcanic center alignments. The morphologic data, together with new 40Ar/ 39Ar geochronology data have been used to refine our alignment analysis and to better delineate the temporal evolution of post-subduction volcanic activity in this field. The available ages vary from 3.53 ± 0.18 to 10 ± 0.23 Ma suggesting that the long-lived HMA volcanism occurred almost continuously (with some concentration of pulses) throughout Late Miocene and extending to the Pleistocene and even into the Quaternary, replacing the arc-related activity of the Comondú arc which vanished in this area around 12.5 Ma. Alignment analysis confirms a NW-SE direction as the preferred orientation of volcanic alignments and shows that vent elongations do not display a strong parallelism in any particular direction, marking the absence of matches between lineaments defined by multiple vents and orientations of vent elongation. The results of the volcanic alignment analysis allowed us to infer the direction of the maximum

  19. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  20. Inversions for earthquake focal mechanisms and regional stress in the Kachchh Rift Basin, western India: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Zhao, L.; Kumar, Santsoh; Mishra, Smita

    2016-03-01

    More than a decade after the 2001 MW 7.7 Bhuj earthquake in western India, aftershocks up to MW 5.0 are still continuing around the rupture zone in the Kachchh Rift Basin. Over the years, some surrounding faults in the region have been activated, and a transverse fault generated an MW 5.1 earthquake in 2012. Most of the earthquakes occur in the lower crust at depths between 15 and 35 km. We have determined focal mechanism solutions of 47 earthquakes (MW 3.2-5.1) that were recorded by a 60-station broadband network during 2007-2014 within an area of 50 km radius of the 2001 main shock. South dipping nodal planes in most of the solutions correlate well with the active faults. The earthquakes near the epicenter of the 2001 main shock primarily show reverse-faulting mechanisms. The surrounding earthquakes in the area, however, show predominantly strike-slip mechanisms. The P axes of the earthquakes mostly oriented in north-south, and the T axes in east-west. However, the orientations of the P and T axes exhibit more complexity near the source area of the main shock. Stress field inversion of the solutions yields a dominant north-south compression, which is consistent with the ambient tectonic stress field owing to the northward movement of the Indian Plate with respect to the Eurasian Plate. The geodetic measurements are in reasonable agreement with our results.

  1. Cenozoic tectonic evolution of Qaidam Basin: Structural geology, sedimentation, and implications for regional tectonic reconstruction of the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Yin, A.; Dang, Y.; Chen, X.; Zhang, M.; Wang, L.; McRivette, M. W.

    2007-12-01

    Qaidam basin is the largest topographic depression inside the Tibetan plateau. Regional seismic-reflection profiles reveal its first-order structure as a broad Cenozoic synclinorium, with amplitude decreasing from greater than 16 km in the west to less than 4 km in the east. The synclinorium has expanded progressively eastward across the Qaidam region: starting from the west at 65-50 Ma to the east at about 24 Ma. Its formation was induced by an older thrust system initiated at 65-50 Ma in the north and a younger thrust system initiated at 29-24 Ma in the south. Cenozoic upper-crustal shortening decreases eastward across basin, from greater than 48 percent in the west to less than 1 percent in the east. This observation has two implications: (1) the southern Qaidam margin has rotated clockwise relative to the northern Qaidam margin for about 12 degrees, and (2) the crustal-thickening mechanism shifts progressively from dominantly upper-crustal shortening in the west to dominantly lower-crustal shortening in the east because the elevation and crustal thickness of the basin are rather constant. The diachronous initiation of thrusting in the northern and southern margins of Qaidam basin and the existing inference that the uplift of the Eastern Kunlun Range began at or after 30-20 Ma imply that the Paleogene (65-24 Ma) Qaidam basin and the coeval Hoh Xil basin were once parts of a single topographic depression bounded by the Fenghuo Shan thrust belt in the south and the Qilian Shan thrust belt in the north. The development of this large basin, similar in size to the modern Tarim basin north of Tibet, and its subsequent destruction may have been controlled by pre-existing weakness in the Tibetan lithosphere, creating a highly irregular sequence of deformation across Tibet during Indo-Asian collision.

  2. Geology of the Blue Mountains region of Oregon, Idaho, and Washington: Petrology and tectonic evolution of pre-tertiary rocks of the Blue Mountains region. Professional paper

    SciTech Connect

    Vallier, T.L.; Brooks, H.C.

    1995-12-31

    U.S. Geological Survey Professional Paper 1438 is one volume of a five-volume series on the geology, paleontology, and mineral resources of the Blue Mountains region eastern Oregon, western Idaho, and southeastern Washington. This professional paper deals specifically with petrology and tectonic evolution.

  3. Apparent Susceptibility Contrast Distribution of Continental Lithosphere in China and Its Surroundings: Implications to Regional Tectonics

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Sun, S.; Zhang, Y.; Liang, Q.

    2015-12-01

    Lithospheric magnetic field characterizes response of magnetic properties of rocks, which are mainly dependent on mineral and temperature variations. Hence, lithospheric magnetic structure brings important information to understand tectonic and thermal processes in the crust and uppermost mantle. In particular, the reliable global geomagnetic field models with large-scales based on satellite magnetic measurements provide regional view of the lithospheric magnetic structure. Here, with smallest and flattest constraints we use the inversion method based on the single layer model to calculate the spatial distribution of apparent susceptibility of continental lithosphere in China and its surroundings. It should be noted that: (1) magnetic anomaly data we used has removed the effect of global oceanic remanent magnetization, (2) the error of magnetic anomaly data is estimated from statistical analysis among MF7, GRIMM_L120, CHAOS5 and CM5 models, (3) the magnetic layer is bounded by the bottom of sediment and the Moho from CRUST1.0 model and is discretized into ellipsoidal prisms with equal angles in latitude and longitude, and (4) an adaptive subdivision & Gauss-Legendre quadrature with fixed order is adopted to solve the forward problem and IGRF11 is utilized as inducing field model. Since the missing longest wavelength components in the lithospheric magnetic field models and the so-called magnetic annihilators, the Apparent Susceptibility Contrast (ASC) distribution is obtained. The ASC distribution has obvious variations and illustrates the mosaic continent with old blocks, orogenic belts, rework fragments and also earthquake regions/zones. Moreover, the ASC distribution provides new insights and evidences of the destruction of North China Craton and geodynamic processes of Tibetan plateau and Baikal rift etc. This study is supported by China Postdoctoral Science Foundation (Grant No.: 2015M572217) and Natural Science Fund of Hubei Province (Grant No.: 2015CFB361).

  4. Tomographic imaging of the tectonic tremor zone beneath the San Andreas fault in the Parkfield region

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Zhang, H.; Brown, J. R.

    2012-12-01

    The fine-scale seismic velocity structure around zones of tectonic (nonvolcanic) tremor and low-frequency earthquakes (LFE's) has been imaged successfully in subduction zones. This success is due in part to the occurrence of earthquakes in the subducting slab beneath the zone of tremor and LFE's. Such studies have found the tremor and LFE's to lie within zones of reduced seismic velocity and high Vp/Vs, which have been interpreted to reflect high pore fluid pressure (e.g., Shelly et al., 2006). For the San Andreas fault, the observed tremor and LFE's in the Parkfield region occur at depths greater than 15 km, which is below the deepest conventional earthquakes in the region. This makes tomographic imaging of the tremor zone more challenging. We use a combination of P and S arrival times and corresponding differential times from stacked seismograms of LFE's (Shelly and Hardebeck, 2010) along with absolute and differential times from shallower microearthquakes to image the three-dimensional P- and S- wave velocity structure to ~20 km depth. Our initial results indicate the LFE's near SAFOD lie within or adjacent to zones with slightly reduced P-wave velocity and more sharply reduced S- wave velocity. The estimated Vp/Vs values are approximately 1.85 to 1.95 in these zones. The elevated Vp/Vs values are interpreted to reflect high pore fluid pressure and low effective stress. This is consistent with results from subduction zones and with observations of triggering and tidal modulation of LFE's and tremor on this deep extension of the SAF. We will present refined tomography results that expand the area imaged and include additional LFE arrival time picks from temporary array data. Cross-section from SW to NE through SAFOD at Y=0. Vs is shown by black contours (labeled with km/sec) and colors from red (slow) to blue (fast). Black diamonds are hypocenters of LFE's and earthquakes used in the inversion.

  5. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  6. Tectonics of the Northern Bresse region (France) during the Alpine cycle

    NASA Astrophysics Data System (ADS)

    Rocher, Muriel; Chevalier, Francis; Petit, Christophe; Guiraud, Michel

    2003-11-01

    Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE-SW, E-W and NW-SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N-S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE-SW in the graben. After a transitional minor E-W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE-SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE-SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.

  7. The effect of changing regional tectonics on an arc volcano: Methana, Greece

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.

    2013-06-01

    The peninsula of Methana has the longest recorded volcanic history of any volcanic centre in the South Aegean Arc. Regional fault patterns in the arc changed during the Pliocene-Quaternary, with E-W-striking listric faulting increasingly important through the Quaternary, as recorded in well-dated sedimentary basins. This study investigates how the geochemistry and eruptive style of volcanic products is influenced by regional tectonics. The volcanic stratigraphy of Methana was refined using radiometric dating, lithogeochemistry and field observations that included recording deformational structures and enclave abundance. Small N-S-striking Pliocene domes and a central volcano of uncertain type (phase A) were eroded to produce a widespread volcaniclastic apron (phase B). In the early Quaternary, an explosive central volcano with flank eruptions of andesite developed (phase C). Dacite domes and small andesitic stratovolcanoes formed throughout the mid and late Quaternary (phases D-H). Basaltic andesite and andesite of phase C are the least evolved rocks, characterised by high TiO2. Rocks that have experienced important assimilation and fractional crystallisation in the crust have a high abundance of enclaves, Th, U and alkalies (Na, K). Ni and Cr are abundant in phase A andesites, due to crystallisation and entrainment of olivine and pyroxene, whereas phase H andesites have the highest relative abundance of Ba, Rb and Sr from crystallisation and entrainment of hornblende and biotite. Pliocene domes of phase A were emplaced on N-S-striking listric faults during regional E-W extension. Onset of NE-SW faulting, arguably crustal scale and strike slip in character, led to the eruption of the least evolved rocks of phase C. Thereafter, E-W-striking faults controlled the location of volcanism. Volcanism in phases F and G was particularly voluminous and was synchronous with the onset of steep normal faulting in the Gulf of Corinth, 150 km west of Methana. These steep faults

  8. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  9. Broadband regional waveform modeling to investigate crustal structure and tectonics of the central Andes

    NASA Astrophysics Data System (ADS)

    Swenson, Jennifer Lyn

    We use broadband regional waveform modeling of earthquakes in the central Andes to determine seismic properties of the Altiplano crust. Properties of the shear-coupled P-wavetrain (SPL ) from intermediate-depth events provide particularly important information about the structure of the crust. We utilize broadband seismic data recorded at the BANJO and SEDA stations, and synthetic seismograms computed with a reflectivity technique to study the sensitivity of SPL to crustal and upper mantle parameters at regional distances. We find that the long-period SPL-wavetrain is most sensitive to crustal and mantle Poisson's ratios, average crustal velocity, and crustal thickness. A comprehensive grid search method developed to investigate these four parameters suggests that although trade-offs exist between model parameters, models of the Altiplano which provide the best fit between the data and synthetic seismograms are characterized by low Poisson's ratios, low average crustal velocity and thick crust. We apply our grid search technique and sensitivity analysis results to model the full waveforms from 6 intermediate-depth and 2 shallow-focus earthquakes recorded at regional distances by BANJO and SEDA stations. Results suggest that the Altiplano crust is much thicker (55--65 km) and slower (5.75--6.25 km/s) than global average values. Low crustal and mantle Poisson's ratios together with the lack of evidence for a high-velocity lower crust suggests a bulk felsic crustal composition, resulting in an overall weak crust. Our results favor a model of crustal thickening involving large-scale tectonic shortening of a predominantly felsic crust. To better understand the mechanics of earthquake rupture along the South American subduction zone, we have analyzed broadband teleseismic P-waves and utilize single- and multi-station inversion techniques to constrain source characteristics for the 12 November 1996 Peru subduction zone earthquake. Aftershock locations, intensity reports

  10. Collapse of the Cretaceous Helvetiafjellet Formation due to tectonic activity at Kvalvågen, eastern Spitsbergen

    NASA Astrophysics Data System (ADS)

    Onderdonk, N.; Midtkandal, I.; Ahokas, J.

    2008-12-01

    A variety of features recording disturbance of Mid-Cretaceous sediments are exposed in coastal cliffs at Kvalvågen, east Spitsbergen. The most striking of these features are large displaced blocks of Helvetiafjellet Formation sandstone (ranging from 5 to 25 meters across) that were dropped down into underlying shale- dominated sediments along normal faults. In addition to the displaced blocks much of the sandstone unit is missing along a 2 km stretch of coastal exposure and must have been slipped out of the plane of exposure. Several hypotheses have been proposed to explain the style and cause of the Cretaceous collapse at Kvalvågen including delta front collapse (Nemec et al., 1988), landslides into a submarine canyon (Steel et al., 2001), and collapse related to magmatic activity (Midtkandal et al., 2007). New structural data and field observations show that the orientations and style of deformation are not entirely consistent with the previous hypotheses and are better explained as the direct result of tectonically produced topography (i.e., a fault scarp). The deformation at Kvalvågen is the result of west-side-down displacement along a north-striking fault that crops out at the southern end of the cliff exposure. Tectonic disturbance in the area began in Hauterivian time and was over by the early Aptian. These outcrops are the only evidence of tectonic activity in the area during the Mid-Cretaceous and may be the result of displacement along a previously unrecognized extension of the Lomfjorden fault zone or related to regional stresses imposed by extensive sill intrusions during the formation of the High Arctic Large Igneous Province.

  11. UAV's for active tectonics : case example from the Longitudinal Valley and the Chishan Faults (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2015-04-01

    Taiwan is a case example to study active tectonics due to the active NW-SE collision of the Philippine and Eurasian Sea Plates as the whole convergence reaches 10cm/y. In order to decipher the structural active tectonics geometry, we used herein UAV's to get high resolution Digital Terrain Model (DTM) in local active tectonics key areas. Classical photo-interpretation where then developped in order to structurally interprete these data, confirmed by field studies. Two location had first been choosen in order to highlight the contribution of such high resolution DTM in SW Taiwan on the Longitudinal Valley Fault (SE Taiwan) on its southern branch from Pinting to Luyeh terraces (Pinanshan) where UAV's lead to better interprete the location of the outcropping active deformations. Combined with available GPS data and PALSAR interferometry (Deffontaines et Champenois et al., submitted) it is then possible to reconstruct the way of the present deformation in this local area. In the Pinting terraces, If the western branch of the fault correspond to an outcroping thrust fault, the eastern branch act as a a growing active anticline that may be characterized and quantified independantly. The interpretation of the UAV's high resolution DTM data on the Chishan Fault (SW Taiwan) reveals also the geometry of the outcropping active faults complex structural behaviour. If the Chishan Fault act as a thrusting in its northern tip (close to Chishan city), it acts as a right lateral strike-slip fault north of Chaoshan (Kaohsiung city) as described by Deffontaines et al. 2014. Therefore UAV's are a so useful tool to get very high resolution topographic data in Taiwan that are of great help to get the geometry of the active neotectonic structures in Taiwan.

  12. Investigation into the regional wrench tectonics of inner East Anatolia (Turkey) using potential field data

    NASA Astrophysics Data System (ADS)

    Büyüksaraç, Aydın

    2007-01-01

    The residual aeromagnetic and gravity anomalies of inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, display complexities. Some faults, which are known and new lineaments, are drawn from maxspot map derived from the location of the horizontal gradient of gravity anomalies. Tectonic lineaments of inner East Anatolia exhibit similarities to the direction of East Anatolian Fault Zone. Anticlockwise rotation, approximately -30°, defined from disorientations of aeromagnetic anomalies. The lineaments obtained from maxspots map produced from the gravity anomalies and disoriented aeromagnetic anomalies are in-line with the mobilistic system revealed by the palaeomagnetic data. These Alpine age continental rotations caused westward wrenching of the global lithosphere and led to significant tectonic reactivation and deformations. GPS measurements, current tectonic knowledge and the results of the evaluation of potential field data were combined in a base map to demonstrate similarities.

  13. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling

    NASA Astrophysics Data System (ADS)

    Reynolds, Scott D.; Coblentz, David D.; Hillis, Richard R.

    2002-07-01

    The tectonic forces controlling the present-day regional intraplate stress field in continental Australia have been evaluated through a finite element analysis of the intraplate stresses in the Indo-Australian plate (IAP). Constraint for the modeling is provided by an observed regional stress field based on observations in 12 stress provinces. A weighted ``basis set'' method has been employed to provide an efficient means to evaluate a very large number of tectonic force combinations and to make a quantitative assessment of the fit between the observed and predicted stress fields. Our modeling results indicate that the major features of the regional stress field in continental Australia can be explained in terms of a geologically plausible array of tectonic forces. While the results continue to substantiate that modeling of the Australian intraplate stress field is inherently nonunique, we are nevertheless able to draw a number of fundamental conclusions about the tectonic settings along the principal plate boundary segments including the following: (1) The Himalayan and New Guinea boundaries exert a compressional force on the IAP. (2) Fitting the stress field in the Bowen Basin requires compressional boundary forces along the Solomon and New Hebrides subduction zones directed toward the interior of the IAP. (3) East-west compression in eastern Australia requires a small compressional force along the Tonga-Kermadec subduction zone. (4) Fitting the stress field in southeastern Australia requires compressional forces along the New Zealand, Puysegur Trench, and Macquarie Ridge boundary segments. (5) Significant tensional slab-pull forces exist only along the Java subduction zone.

  14. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  15. Quantifying Tectonic Controls on Regional Cenozoic Surface Evolution in the Eastern Lhasa Block

    NASA Astrophysics Data System (ADS)

    Schmidt, J. L.; Zeitler, P. K.; Shuster, D. L.; Tremblay, M. M.; Harrison, M.

    2013-12-01

    The scale of river incision, climatically driven erosion, and faulting occurring in the southeastern Tibetan Plateau affords the opportunity for a detailed investigation into the coupling of these processes and their role in driving exhumation of an orogenic plateau. By examining both the pattern of regional unroofing and mechanisms of knickpoint formation on the Yarlung Tsangpo we evaluate the overall magnitude and timing of erosional unroofing and incision and determine how the region's topographic evolution is correlated to mechanical models of plateau evolution such as delamination, lithospheric-scale folding, and rifting. Variation in depths of exposure of the Gangdese batholith suggests differential unroofing occurred in the eastern Lhasa block. We examine the spatial and temporal pattern of exhumation in the region and evaluate if a relationship exists to deeper lithospheric structure, specifically a known upwarp in the Moho. Preliminary U-Th/He zircon data display a minimum of ~10 m.y. variation in exhumation age across the region. U-Th/He and 4He/3He apatite data from a vertical transect in the region indicate rapid denudation between approximately 16 Ma and 14 Ma. 40Ar/39Ar K-feldspar multi-diffusion domain model analysis, 40Ar/39Ar biotite and U-Th/He zircon data are forthcoming and will provide a detailed time-temperature history of exhumation in the region. A correlation between the distribution of removed material and the mapped Moho depth would suggest the Moho was advected and thus the thermochronologic data would indicate the timing of this upwarp. A salient geomorphic feature of the Yarlung Tsangpo is its abundance of large-scale knickpoints that are often coincident with major north-south trending rifts. Within one of these features, near the town of Jiacha, the Tsangpo falls nearly 500 m from an elevation of ~3500 m over 80 river kilometers as it crosses the Nari Yun Chu Rift. The presence of the Jiacha and other knickpoints along the Tsangpo

  16. Tectonic Evolution of the Banda Arc-Continent Collision in the Timor Region

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    Recent detailed studies of the active Banda arc-continent collision reveal many new features about its tectonic evolution, such as (1) when collision initiated, (2) conditions and age of metamorphism, (3) timing of island emergence and exhumation, (4) how the arc is affected by collision, (5) differences between rock and surface uplift rates, (6) the temporal distribution of strain and (7) natural hazards. (1) The youngest Australian continental margin material incorporated into the Banda orogen is 7-8 Ma in East Timor and 6 Ma in West Timor. (2) Collision-related metamorphic rocks in East Timor yield max. temperatures of 850 °C and pressures of 12 kb. The age of the metamorphism is constrained by zircon U/Pb ages of 6.7 Ma. (3) Island emergence and erosional exhumation is constrained by foraminifera depth vs. age estimates of the transition from deep marine chalk to distal turbidite deposition at 4.2 Ma in East Timor and younger to the east and west. Exhumation of metamorphic rocks is constrained by amphibole with Ar/Ar cooling ages of ~6 Ma (~525°C), zircons with U/He ages of 4.5 Ma (215°C), and apatite with U/He ages of 3.5 Ma (90°C). Younger exhumation ages are found to the south. (4) Contamination of the volcanic arc by subducted continental material is first detected in eroded arc islands near East Timor at 5 Ma. The age of contamination youngs both east and west in less eroded, active arc islands. The main arc edifice north of East Timor is abandoned at 1-3 Ma and is shifted 30 km to the north by the Wetar backarc thrust. A new volcanic center emerges further north. (5) Coral terraces encrust the rising islands and yield highly variable uplift rates, with some as high as 1.5 mm/a. The highest rates correspond with active thrust faults and diapirs. Rock uplift rates associated with exhumation of the schist belt are as high as 8 mm/a. (6) GPS velocities in the most advanced part of the collision (central Timor) show that 70% of the 70 mm/a convergence

  17. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  18. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region

    NASA Astrophysics Data System (ADS)

    Li, Shanying; Currie, Brian S.; Rowley, David B.; Ingalls, Miquela

    2015-12-01

    An improved understanding of the elevation history of the Tibetan Plateau is crucial in discriminating among the various tectonic models for the evolution of the India-Asia continental collision. We reconstruct the paleoelevation history for three Cenozoic sedimentary basins from SE Tibet and Yunnan, China, to provide more constraints on the tectonic processes for raising the SE margin of the Tibetan Plateau. The results presented here, together with those of previous studies, indicate that (1) the plateau margin of NW Yunnan was near its elevation (˜ 2.6 km) by the latest middle Eocene (˜ 40 Ma); (2) the plateau margin of SE Yunnan reached its current elevation (˜ 1.6 km) by the middle Miocene (˜ 13 Ma). Interpretations of the tectonic processes responsible for this inferred surface uplift of the region are made in the context of well-documented surface geology. We conclude that high landscape (˜ 2.6 km elevation) in NW Yunnan may represent the remnants of the Eocene Tibetan plateau that originally formed in the northeastern Qiangtang Block by crustal thickening associated with the India-Asia continental collision. The near-modern elevation of SE Yunnan since ˜ 13 Ma probably reflects the initiation of lower crustal flow in this area by at least that time. Collectively, our paleoaltimetric interpretations disagree with previously proposed models of middle Miocene to Pliocene crustal flow acting as a sole tectonic process for raising the SE margin of the plateau, but support a protracted history of surface uplift that most likely involved crustal thickening during the Eocene, southeastward extrusion of a portion of Eocene Tibetan plateau during the Oligocene to early Miocene, and lower crustal flow beneath this region since at least the early Miocene.

  19. Analogue experiments applied to active tectonics studies: the case of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Seno, S.; Bonini, L.; Toscani, G.

    2010-12-01

    Lithosphere can be divided into three main zones as a function of increasing depth: an aseismic updip zone, the seismogenic zone and a deep aseismic zone. Identifying the location of these zones is a key goal to understand how a specific seismogenic fault works. The evaluation of the seismogenic structures potential in tectonically active regions needs an accurate knowledge of the geometries and kinematic of the faults. In many cases, large seismogenic faults are not clearly and unambiguously expressed at the surface, whereas in other regions with higher deformation rates a clear geological surface evidence is often associated with large earthquakes. Therefore, the characterization of the seismogenic faults and of their mutual interactions it is not always straightforward; in this case, analogue modeling can provide an independent and useful tool for the interpretation of the surface geological data. Analogue modeling applied to earthquake geology is a quite innovative technique: when combined with other datasets (e.g.: seismic tomography, seismic profiles, well-logging data, field geology, morphotectonic and palaeo-seismological data) it can provide significant insights on the long term (i.e. Quaternary) evolution of a seismogenic fault. We carried out a set of analogue models at 1 : 100,000 scale that reproduce in 2D a normal fault with a relatively low dip angle (45°-50°). In our experimental approach different materials have been used to simulate the three main zones in which the lithosphere is separated. Dry sand and wet clay simulate different mechanical behaviour of rocks during seismic cycle. The dry sand, with its negligible cohesion and ductility, represents brittle rocks that deformed by localized faulting during earthquakes. Wet clay, with its slightly greater cohesion and ductility, mimics aseismic updip zone. Glass microbeads simulate aseismic plastic zone. Preliminary results are highlighting a mutual control among the three analogue materials

  20. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  1. Mesozoic-Cenozoic history of subduction within the Tethyan region as inferred from seismic tomography and plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Hafkenscheid, E.; Wortel, R.; Spakman, W.

    2003-12-01

    We have studied the large-scale history of subduction within the Tethyan region, the Alpine-Himalayan-Indonesian mountain chain that stretches from the Mediterranean to Southeast Asia. From tomographic images of the present mantle structure, the volumes and locations of the positive seismic velocity anomalies are determined. The large tomographic volumes, and the large depths at which they are found, indicate that they must have resulted from long periods of subduction in Cenozoic and Mesozoic times. We therefore examine the large-scale surface motions within the region since 200 Ma, the time window that is thought to be necessary to explain the inferred tomographic anomalies. From plate tectonic reconstructions, the amount of convergence and velocities, both relative and absolute, are determined using the relevant poles of rotation. In general, we find the tomographic volumes in the upper mantle in the eastern Mediterranean and Middle East to be similar to the tectonic volumes that are expected to have subducted during the Cenozoic. On the contrary, the results indicate that the Cenozoic amount of shortening in the Indian region was probably not accompanied by lithosphere subducting into the mantle. For all regions, the tomographic volumes found in the lower mantle are larger than the tectonic volumes expected to have subducted during mainly Mesozoic times. The volumes in the Indian region and the Middle East approximately differ a factor 1-2. However, the results suggest that much more material must have been subducted in the eastern Mediterranean than is calculated for the African-Eurasian convergence alone. This points to a major role of oceanic spreading during lithospheric subduction in the area.

  2. Source and movement of helium in the eastern Morongo groundwater Basin: The influence of regional tectonics on crustal and mantle helium fluxes

    USGS Publications Warehouse

    Kulongoski, J.T.; Hilton, David R.; Izbicki, J.A.

    2005-01-01

    We assess the role of fracturing and seismicity on fluid-driven mass transport of helium using groundwaters from the eastern Morongo Basin (EMB), California, USA. The EMB, located ???200 km east of Los Angeles, lies within a tectonically active region known as the Eastern California Shear Zone that exhibits both strike-slip and extensional deformation. Helium concentrations from 27 groundwaters range from 0.97 to 253.7 ?? 10-7 cm3 STP g-1 H2O, with corresponding 3He/4He ratios falling between 1.0 and 0.26 RA (where RA is the 3He/4He ratio of air). All groundwaters had helium isotope ratios significantly higher than the crustal production value of ???0.02 RA. Dissolved helium concentrations were resolved into components associated with solubility equilibration, air entrainment, in situ production within the aquifer, and extraneous fluxes (both crustal and mantle derived). All samples contained a mantle helium-3 (3Hem) flux in the range of 4.5 to 1351 ?? 10-14 cm3 STP 3He cm-2 yr-1 and a crustal flux (J0) between 0.03 and 300 ?? 10-7 cm3 STP 4He cm-2 yr-1. Groundwaters from the eastern part of the basin contained significantly higher 3Hem and deep crustal helium-4 (4Hedc) concentrations than other areas, suggesting a localized source for these components. 4Hedc and 3Hem are strongly correlated, and are associated with faults in the basin. A shallow thermal anomaly in a >3,000 m deep graben in the eastern basin suggests upflow of fluids through active faults associated with extensional tectonics. Regional tectonics appears to drive large scale crustal fluid transport, whereas episodic hydrofracturing provides an effective mechanism for mantle-crust volatile transport identified by variability in the magnitude of degassing fluxes (3Hem and J0) across the basin. Copyright ?? 2005 Elsevier Ltd.

  3. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  4. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  5. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models

    USGS Publications Warehouse

    Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.

    1998-01-01

    In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have

  6. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  7. Geology of the Blue Mountains region of Oregon, Idaho, and Washington; petrology and tectonic evolution of pre-Tertiary rocks of the Blue Mountains region

    USGS Publications Warehouse

    Vallier, T. L., (Edited By); Brooks, H.C.

    1995-01-01

    This Professional Paper contains 14 chapters on the Blue Mountains region of Oregon, Idaho, and Washington. The authors discuss petrology and tectonic evolution of an island arc that formed in the ancestral Pacific Ocean during the Permian to Cretaceous interval. The island arc was accreted to cratonal North America in the Early Cretaceous and thereby became one of the several exotic terranes in western North America.

  8. Impact of wind erosion on detecting active tectonics from geomorphic indexes in extremely arid areas: a case study from the Hero Range, Qaidam Basin, NW China

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Xiao, Ancheng; Yang, Shufeng

    2014-11-01

    Geomorphologic analysis has been used widely to detect active tectonics in regions where fluvial incision is the major erosional process. In this paper, however, we assess the feasibility of utilizing these frequently-used geomorphic indexes (e.g., hypsometric curves, longitudinal channel profiles, normalized stream length-gradient (SLK) index) to determine active tectonics in extremely arid areas where wind erosion also plays an important role. The case study is developed on the Hero Range in the western Qaidam Basin, one of the driest regions on Earth with severe wind erosion since late Pliocene. The result shows that in the west and south sectors, as well as the western part of the east sector, of the Hero Range where fluvial incision prevails, these geomorphic indexes are good indicators of active faulting and consistent with the geological result based on study of fault traces, scarps, faulted Holocene fans and historical seismicity within the past four decades. In contrast, along the northeastern margin (the NE and the SE parts of the east sector) of the range where wind erosion is also important, the results from the geomorphic indexes show quite active tectonics, contrary with the geological evidence favoring weakly active tectonics. Moreover, the positive SLK anomaly lies oblique to the fault trace and the anticline axis but parallel to the wind direction. To reconcile the contradiction, we propose that wind erosion caused by northwestern winds has a tendency to make geomorphic indexes exhibit anomalous values that indicate higher activities, by way of (1) lowering the base-level to generate knickpoints on the longitudinal channel profiles and therefore positive SLK anomalies, and (2) lateral erosion of the mountain front making the hypsometric curves and even the longitudinal channel profiles more convex, and producing obvious slope breaks.

  9. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  10. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  11. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  12. The magmatic record in the Arghash region (northeast Iran) and tectonic implications

    NASA Astrophysics Data System (ADS)

    Alaminia, Zahra; Karimpour, Mohammad Hassan; Homam, Seyed Massoud; Finger, Fritz

    2013-09-01

    The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U-Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz-monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U-Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende-granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U-Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The

  13. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  14. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  15. The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece

    NASA Astrophysics Data System (ADS)

    Kiratzi, A.; Sokos, E.; Ganas, A.; Tselentis, A.; Benetatos, C.; Roumelioti, Z.; Serpetsidaki, A.; Andriopoulos, G.; Galanis, O.; Petrou, P.

    2008-06-01

    We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW-ESE trend. The previous strong sequence close to Lake Trichonis occurred in June-December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW-SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW-SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E-W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW-SE normal fault that strikes at a ˜ 45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the

  16. New insights into the tectonic inversion of North Canterbury and the regional structural context of the 2010-2011 Canterbury earthquake sequence, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; Ghisetti, Francesca C.; Gorman, Andrew R.

    2016-02-01

    The 2010-2011 Canterbury earthquake sequence highlighted the existence of previously unknown active faults beneath the North Canterbury plains and Pegasus Bay, South Island, New Zealand. We provide new insights into the geometry and kinematics of ongoing deformation by analyzing marine seismic data to produce new maps of regional faults and cross-sectional reconstructions of deformation history. Active faulting and folding extends up to 30 km offshore, and involves reactivation of sets of Late Cretaceous-Paleogene normal faults under NW-SE tectonic compression. The active faults consist predominantly of NE-SW striking, SE-dipping reverse faults, and less commonly E-W to NW-SE faults suitably oriented for strike-slip reactivation. Additionally, newly developing reverse faults obliquely segment and overprint the inherited basement fabric and impose geometric and kinematic complexities revealed by mapping and reverse displacement profiles of markers. The Quaternary reverse slip rates decrease from 0.1-0.3 mm/yr beneath northern Pegasus Bay to <0.05 mm/yr approaching Banks Peninsula. Fault growth modeling involving trishear fault-propagation folding mechanisms successfully restores an evolutionary sequence of progressive fault inversion, revealing a history of reactivated individual faults. Tectonic inversion and overprinting processes beneath Pegasus Bay are immature and <1.2 ± 0.4 Ma old, with no evidence of systematic spatial migration of deformation. Our marine data analyses give insights into the structural context of the 2010-2011 Canterbury earthquake sequence, while the combined onshore to offshore data provide an excellent illustration of fault growth associated with immature inversion tectonics, in which selective fault reactivation results from compressive stress imposed across a complex network of inherited faults.

  17. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  18. Topographic Expression of Active Tectonics in the Absence of Physical Erosion in the External Dinarides of Croatia

    NASA Astrophysics Data System (ADS)

    Casale, G.; Paulson, K.; Salamonsen, E.; Bennett, R. A.; Surkovic, M.

    2010-12-01

    The Dinarides of Croatia and Bosnia-Herzegovina form part of the actively deforming Adria-Eurasia boundary, but their topography differs greatly from similar sized active orogens such as the neighboring Northern Apennines. The Dinarides include two distinct regions with contrasting surface drainage patterns: the surface drainage of the External Dinarides is a series of disconnected internally drained basins, whereas the Internal Dinarides much more closely resemble the Northern Apennines with well connected basins and waterways. We used SRTM DEMs to characterize surface drainage in the Dinarides and found a strong correlation between mapped rock-type and surface connectivity. Specifically, disconnected internally drained basins are restricted to carbonate lithologies prevelant in the External Dinarides, which are often susceptible to chemical dissolution, whereas heterogenous rock types found in the Internal Dinarides are associated with typical dendritic drainages. The extent of the carbonate-dominated topography characterizing the External Dinarides is further divided into areas of distinctly higher (300-700 m) and (<100 m) lower relief despite the inability of the low topography of the Dinarides to concentrate precipitation and thus chemical erosion. Therefore, the topographic variation between these two areas is either controlled by the contrasting solubility of various carbonate lithologies, or active tectonics. To test for contrasting solubility, we analyzed a suite of samples from both ridge and valley forming sites using a microprobe and ICP-MS. We found that the weight percent Ca was indistinguishable between our samples and that of pure calcite. We then expanded our investigation by incorporating spectral analysis of ASTER imagery across the entire external Dinarides, with similar results. We conclude that the large scale topography of the External Dinarides is not the result of lithologic heterogeneity, and is instead controlled by tectonics. Our

  19. Active tectonics and Quaternary landscape evolution across the western Panama block, Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey Scott

    Three aspects of active tectonism are examined across central Costa Rica: (1) fault kinematics; (2) volcanic arc retreat; and (3) spatially variable coastal uplift. Diffuse faulting along the Central Costa Rica Deformed Belt (CCRDB) defines the western margin of the Panama block and aligns with the rough-smooth boundary (RSB) on the subducting Cocos plate. Sub-horizontal subduction of rough, hotspot thickened crust (Cocos Ridge and seamounts) shifts active shortening into the volcanic arc along the CCRDB. Mesoscale faults express variable kinematics across three domains: transtension in the forearc, transcurrent motion across the volcanic arc, and transpression in the back arc. Fault kinematics agree with seismicity and GPS data, and isotopic ages confirm that faulting postdates the late Neogene onset of shallow subduction. Stratigraphic correlation augmented by 40Ar/39Ar dating constrain the timing of Quaternary arc migration from the Neogene Aguacate range to the modern Cordillera Central. The Valle Central basin, between the cordilleras, filled with thick sequences of lavas, pyroclastic flows, and lahars. Middle Pleistocene drainage capture across the Aguacate arc linked the Valle Central with the Pacific slope and ash flows descended onto the coastal Orotina debris fan. Arc retreat reflects slab shallowing and enhanced tectonic erosion as rough crust entered the subduction zone. Differing subduction parameters across the RSB (crustal age, slab dip, roughness) produce marked contrasts in coastal tectonism. Varying uplift rates across coastal faults reflect sub-horizontal subduction of seamount roughness. Three groups (I--III) of fluvial terraces are correlated along the coast by isotopic ages and geomorphic characteristics. Base level fluctuations and terrace genesis reflect interaction between eustatic sea level and spatially variable rock uplift. Low uplift rates (north of RSB), yield one surface per terrace group, whereas moderate rates (south of RSB

  20. Vertical tectonics of the High Plateau region, Manihiki Plateau, Western Pacific, from seismic stratigraphy

    NASA Astrophysics Data System (ADS)

    Ai, Huirong-Anita; Stock, Joann M.; Clayton, Robert; Luyendyk, Bruce

    2008-01-01

    The Manihiki Plateau is an elevated oceanic volcanic plateau that was formed mostly in Early Cretaceous time by hotspot activity. We analyze new seismic reflection data acquired on cruise KIWI 12 over the High Plateau region in the southeast of the plateau, to look for direct evidence of the location of the heat source and the timing of uplift, subsidence and faulting. These data are correlated with previous seismic reflection lines from cruise CATO 3, and with the results at DSDP Site 317 at the northern edge of the High Plateau. Seven key reflectors are identified from the seismic reflection profiles and the resulting isopach maps show local variations in thickness in the southeastern part of the High Plateau, suggesting a subsidence (cooling) event in this region during Late Cretaceous and up to Early Eocene time. We model this as a hotspot, active and centered on the High Plateau area during Early Cretaceous time in a near-ridge environment. The basement and Early Cretaceous volcaniclastic layers were formed by subaerial and shallow-water eruption due to the volcanic activity. After that, the plateau experienced erosion. The cessation of hotspot activity and subsequent heat loss by Late Cretaceous time caused the plateau to subside rapidly. The eastern and southern portions of the High Plateau were rifted away following the cessation of hot spot activity. As the southeastern portion of the High Plateau was originally higher and above the calcium carbonate compensation depth, it accumulated more sediments than the surrounding plateau regions. Apparently coeval with the rapid subsidence of the plateau are normal faults found at the SE edge of the plateau. Since Early Eocene time, the plateau subsided to its present depth without significant deformation.

  1. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    NASA Astrophysics Data System (ADS)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the

  2. Active Tectonics In The Rukwa Rift (sw Tanzania): A Study of The Potential For Large Earthquakes In A Continental Rift.

    NASA Astrophysics Data System (ADS)

    Kervyn, F.

    The Rukwa rift is a deep sedimentary basin that is considered as a tectonic trans- fer zone between the Tanganyika and the Malawi troughs. The tectonic evolution of the depression is controlled by the reactivation of proterozoic structures and started with the deposition of the permo-triasic Karoo sediments. In the southeast, the rift is divided into two facing half graben separated by a Precambrian horst, whereas its northwestern part has a more symmetrical graben structure. Although most of the vertical displacement is accommodated by the Lupa eastern boundary fault, onshore shallow seismic profiles have confirmed the co-occurrence of intrabasin synthetic- and strike-slip faults within the sub surface sediments. Both normal and dextral strike-slip movement are indeed observed in the basin in response to the E-W to WNW-SSE ex- tension. The region has a moderate seismic activity and the earthquakes magnitude is generally below M 6.5. However, a M 7.4 earthquake occurred in the Rukwa region in 1910 but its exact location remains uncertain. The current research aimed at the identi- fication of active faults within the recent deposits of the basin by the combination in a GIS of radar interferometric data with topographical and geological maps, geophysical data, and field observations. Radar interferometry (InSAR) was found to be especially suitable for DEM computation in low relief areas where available topographic data are limited in accuracy. Numerous topographic lineaments were observed on InSAR DEM, and follow two main directions, both oblique to the main NW-SE trend of the rift. On the one hand, the GIS analysis confirms that the observed lineaments corre- spond to real natural alignment such like the drainage for example, and are therefore not related to atmospheric artefacts. On the other hand, the field observations revealed that in most cases, the topographic lineaments are very subtle and difficult to identify. However, direct correlations with tectonic

  3. Source regions of granites and their links to tectonic environment: examples from the western United States

    NASA Astrophysics Data System (ADS)

    Anthony, Elizabeth Y.

    2005-03-01

    This review, in honor of Ilmari Haapala's retirement, reflects on lessons learned from studies of three granitic systems in western North America: (1) Mesoproterozoic samples from west Texas and east New Mexico; (2) Laramide granitic systems associated with porphyry-copper deposits in Arizona; and (3) granites of the Colorado Mineral Belt. The studies elucidate relationships amongst tectonic setting, source material, and magma chemistry. Mesoproterozoic basement samples are from two different felsic suites with distinct elemental and isotopic compositions. The first suite, the "plutonic province", is dominantly magnesian, calc-alkalic to alkali-calcic, and metaluminous. It has low K 2O/Na 2O and Rb/Sr, and Nd model ages of 1.56 to 1.40 Ga. The second suite, the "Panhandle igneous complex", is magnesian, metaluminous, alkalic, and is part of the Mesoproterozoic belt of magmatism that extends from Finland to southwestern United States. Samples from the Panhandle igneous complex demonstrate three episodes of magmatism: the first pulse was intrusion of quartz monzonite at 1380 to 1370 Ma; the second was comagmatic epizonal granite and rhyolite at 1360 to 1350 Ma. Both of these rock types are high-K to slightly ultra-high-K. The third pulse at 1338 to 1330 Ma was intrusion of ultra-high-K quartz syenite. Nd model ages (1.94 to 1.52 Ga) are distinct from those of the "plutonic province" and systematically older than crystallization ages, implying a substantial crustal input to the magmas. At the Sierrita porphyry-copper deposit in the Mazatzal Province of southeastern Arizona, trace element, Sr, and Nd isotopic compositions were determined for a suite of andesitic and rhyolitic rocks (67 Ma) intruded by granodiorite and granite. Isotopic composition and chemical evolution are well correlated throughout the suite. Andesite has the least negative initial ɛNd (-4.3) and lowest 87Sr/ 86Sr i (0.7069). It is also the oldest and chemically most primitive, having low

  4. Magmatic-Tectonic Interactions: Implications for Seismic Hazard Assessment in the Central Walker Lane and Long Valley Caldera Regions

    NASA Astrophysics Data System (ADS)

    Chacko, R.; Hammond, W. C.; Blewitt, G.; Bormann, J. M.

    2014-12-01

    Accurate estimates of fault slip rates based on geodetic data rely on measurements that represent the long-term deformation of the crust. In the Central Walker Lane/Sierra Nevada transition, the Long Valley Caldera region has experienced multiple episodes of uplift and subsidence during the last four decades. The latest episode began in late 2011 and is detectable as a transient signal in the time series of GPS stations around the caldera. These transient signals become more apparent and reveal the extent of the impact on the ambient crustal deformation field of the Walker Lane when the velocity vectors are transformed to a Sierra-Nevada reference frame. Estimating contemporary slip-rates on faults for the purpose of seismic hazard assessment in the region around Long Valley requires detecting and subtracting the transient signals caused by the uplift and subsidence in the caldera. We estimate the geographic extent to which the ambient crustal deformation field is significantly perturbed by ongoing magmatic activity in Long Valley. We present a time variable 3D deformation field constrained by InSAR and GPS observations, and discuss the implications that tectonic-magmatic interaction have for estimates of present-day fault slip-rate. We model the time dependent deformation at Long Valley by analyzing InSAR time series from Envisat and ERS interferograms spanning a period of more than 19 years. We use an analytical volcano deformation source model derived from vertical (GPS) and line of site (InSAR) component of geodetic observations to estimate the horizontal component of the signals associated with magmatic activity beneath the caldera. Previous studies showed that the latest episode of uplift can be modeled with a Mogi source located at a depth of ~6 km with a volume change of 0.03 km3 beneath the resurgent dome. This model predicts a perturbation to the ambient crustal deformation field extending as far as 60 km from the center of the resurgent dome. Thus the

  5. Active Region Release Two CMEs

    NASA Video Gallery

    Solar material can be seen blowing off the sun in this video captured by NASA’s Solar Dynamics Observatory (SDO) on the night of Feb. 5, 2013. This active region on the sun sent out two coronal ...

  6. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  7. New evidence for active tectonics at the boundary of the Kashi Depression, China, from time series InSAR observations

    NASA Astrophysics Data System (ADS)

    He, Ping; Wen, Yangmao; Xu, Caijun; Liu, Yang; Fok, H. S.

    2015-06-01

    Kashi Depression is one of the most complex active tectonic areas in the southern flank of Tianshan, China. Due to the lack of ground observations, the boundary of basin mountain transition zone and the interseismic activity of the Tianshan have not been clearly determined. In this study, 48 Envisat Advanced Synthetic Aperture Radar (ASAR) imagery acquired from 2003 to 2010 are used to construct interferograms for measuring high-resolution interseismic deformation in the Kashi Depression area. A global atmospheric model ERA-Interim provided by the European Center for Medium Range Weather Forecast (ECMWF) and a global network orbital correction are applied to remove atmospheric effect, and the long-wavelength orbital errors, respectively, for the interferograms. Interferometric SAR time series with Atmospheric Estimation Model (InSAR TS + AEM) are then used to obtain a deformation rate map for the Kashi Depression area. The InSAR rate map indicates that the north part of South Atushi Fault has ~ 3 mm/year uplift relative to that of the south part. This result manifests the main tectonic deformation potentially occurs along the Southern Atushi Fault. Based on a simple edge dislocation model, the dip angle of 31 ± 0.6°, slip rate of 2.3 ± 0.1 mm/year, and locking depth of 10.6 ± 0.4 km for the Southern Atushi Fault between Tianshan Orogenic Belt and the Kashi Depression are obtained. This modeling result shows in good agreement with the InSAR derived rates. Our results show that the Southern Atushi Fault is the main active fault in block boundary region between the south of Tianshan and the Tarim Basin.

  8. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  9. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  10. The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance

    NASA Astrophysics Data System (ADS)

    Petrinovic, I. A.; Martí, J.; Aguirre-Díaz, G. J.; Guzmán, S.; Geyer, A.; Paz, N. Salado

    2010-07-01

    Polygenetic, silicic collapse calderas are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes that occurred at 17.15 Ma and 10.3 Ma. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. We find that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60 vol.% of crystals) reservoir of batholithic size became unstable due to the effect of increasing regional transpression, which favoured local dilation through minor strike-slip faults from which ring faults nucleated and permitted caldera collapse. Both calderas are similar in shape, location and products. The 17.15 Ma caldera has an elliptical shape (17 × 14 km) elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620 km 2 with a minimum volume estimate of 140 km 3 (DRE). The 10.3 Ma episode generated another elliptical caldera (19 × 14 km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1700 km 2, representing a minimum eruption volume of 350 km 3(DRE). In this paper we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region.

  11. The Cerro Aguas Calientes caldera, NW Argentina: an example of a tectonically controlled, polygenetic, collapse caldera, and its regional significance

    NASA Astrophysics Data System (ADS)

    Petrinovic, Ivan A.; Martí, Joan; Aguirre-Diaz, Gerardo J.; Guzmán, Silvina R.; Geyer, Adelina; Grosse, Pablo; Salado Paz, Natalia

    2010-05-01

    Polygenetic, silicic collapse calderas such as Cerro Galán, Pastos Grandes, La Pacana, Vilama, Negra Muerta, Farallón Negro, Cerro Guacha, among others are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes occurred at 17.15 Ma and 10.3 Ma, respectively. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. Our results reveal that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60 vol. % of crystals) reservoir of batholitic size became unstable due to the effect of increasing regional transpression, favouring local dilation throughout minor strike slip faults from which ring faults nucleated and permitted caldera collapse. Both episodes are similar in shape, location and products of the resulting calderas. The 17.15 Ma caldera has an elliptical shape (17 × 14 km) and is elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620 km2 with a minimum volume estimate of 138 km3 (DRE). The 10.3 Ma episode generated another elliptical caldera (19 ×14 km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1,700 km2, representing a minimum eruption volume of 341 km3 (DRE). In this work we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region.

  12. Regional uplift and local tectonic deformation recorded by the Quaternary marine terraces on the Ionian coast of northern Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Cucci, Luigi; Cinti, Francesca R.

    1998-06-01

    The setting of a flight of marine terraces along a 65-km-long section of the Ionian coast of northern Calabria is the result of the interaction between interglacial sea levels, regional uplift, and local fault-related elevation changes. Seven terraces with corresponding palaeoshoreline angles at elevations ranging from 12 m to ˜420 m were recognised by aerial photo interpretation and field surveying. The terraces were correlated to the oxygen isotope stages 1, 5a, 5c, 5e, 7, 9, 15, which correspond to the 7, 81, 102, 124, 215, 330 and ˜600 ka highstands of the palaeosea-level curve. The ˜600-ka-long regional ascent of the terraces took place at an average uplift rate of 0.67 mm/yr; this value slightly but progressively increases southward along the coastline. The elevation of the strandlines is related to the activity of tectonic structures. Three cases were analysed, allowing us: (1) to recognise the height anomalies of the terraces on the Sibari plain as the result of cumulated coseismic deformation caused by the normal Castrovillari fault, and on this basis calculate a minimum slip rate and a mean recurrence time for a single event of deformation; (2) to exclude the presence of significant vertical deformations and consequently activity on the easternmost section of the normal Pollino fault; and (3) to hypothesise the presence of an hitherto unknown active fault responsible for the strong vertical displacements of the flight of terraces near the river Avena. Finally, we find the ratio of the rate of regional uplift to the average rates of local tectonic deformation to be 2 to 3 : 1.

  13. Shear velocity structure of the Tyrrhenian region in relation to volcanism and tectonics

    NASA Astrophysics Data System (ADS)

    Paulssen, H.; Greve, S.

    2012-12-01

    We present a detailed 3D shear velocity model of the Tyrrhenian Sea and surrounding onshore areas down to about 160 km depth. The high resolution of the model is achieved through the measurement of interstation Rayleigh wave dispersion curves in a small regional setting with dense station coverage. The most noticeable structure is a pronounced, nearly ringshaped low velocity region at about 80 km depth surrounding the Tyrrhenian Sea: from Corsica to the western part of the Italian mainland, continuing to the western part of Sicily and Sardinia. The thickness of this low velocity region is constrained to a maximum of 40 km, and it is independent of the chosen inversion parameters or the background model. The low values of the shear velocity suggest the presence of fluids or melt. The lateral extent of the low velocity region beneath the Italian mainland is well correlated with the locations of subduction-related volcanism, but there is also a striking continuation of the anomalous low-velocity region along the Northern Tyrrhenian Sea towards (and beneath) the island of Corsica. The recent (<5 Ma) magmatism along the Italian peninsula and the older (5-9 Ma) magmatism of the Northern Tyrrhenian Sea are associated with the subduction of the Adriatic slab beneath the Apennines, indicating mantle contamination with continental crustal material. Slab rollback, the eastward migration of the Adriatic subduction zone during the last 15 My, has been invoked to explain the eastward decrease in the age of the volcanism along the Northern Tyrrhenian Sea. Our seismic results now suggest that the anomalous mantle is still present beneath Corsica and the Northern Tyrrhenian Sea, although it does not produce any active volcanism anymore. The picture for the Southern Tyrrhenian Sea is different. Intriguingly, the sublithospheric low velocity anomaly does not continue to southeasternmost part of the Tyrrhenian Sea where the volcanism of the Aeolian arc is related to subduction of the

  14. Gold mineralization in the Serra de Jacobina region, Bahia Brazil: tectonic framework and metallogenesis

    NASA Astrophysics Data System (ADS)

    Teixeira, João Batista Guimarães; de Souza, Jorge André Braz; da Silva, Maria da Glória; Leite, Carlson Matos Maia; Barbosa, Johildo Salomão Figueiredo; Coelho, Carlos Eduardo Silva; Abram, Maisa Bastos; Filho, Valter Mônaco Conceição; Iyer, Sundaram S. S.

    2001-07-01

    Gold deposits in the Serra de Jacobina region in Bahia, northeastern Brazil, occur in a belt of siliciclastic metasedimentary rocks intercalated with mafic and ultramafic rocks, and underlain by a tonalite-trondhjemite-granodiorite gneiss-dominated (TTG) basement. The siliciclastic sequence probably represents the remnants of a sedimentary basin, which formed in an Archean passive margin-type setting. The basin was subsequently subjected to a complex history of deformation, metamorphism, and hydrothermal activity, as a result of oblique collisional events in Late Archean and Paleoproterozoic. The majority of the auriferous occurrences in the area are hosted by quartz-pebble conglomerates, and have been noted to resemble placer-type deposits. However, structurally-controlled hydrothermal orebodies, and the formation of gold occurrences also in quartzites and mafic and ultramafic rocks, support an epigenetic model for the mineralizing event. Gold mineralization is interpreted to be an integral part of the late (~1.9 Ga) tectonothermal evolution of the Serra de Jacobina region. It was roughly coeval with the emplacement of large volumes of post-collisional type, peraluminous granitic magmas, during a regional strike-slip regime.

  15. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  16. Using Digital Topography to Differentiate Erosionally Exhumed and Tectonically Active Mountains Fronts

    NASA Astrophysics Data System (ADS)

    Frankel, K. L.; Pazzaglia, F. J.

    2003-12-01

    Mountain ranges in the southern Rocky Mountains have departed on unique landscape evolutionary pathways in the late Cenozoic that are directly dependent upon the degree of post-orogenic tectonic activity they have experienced. The topography of Sierra Nacimiento, a Laramide uplift in west-central New Mexico lacking an active range-front fault, is shaped primarily by erosional exhumation that is continuous, but not steady, being driven by distal base level fall from Rio Grande incision and resultant south to north knickpoint migration. In contrast, the topography of the Taos Range, a rift flank uplift in north-central New Mexico is shaped by contrasting active stream incision and aggradation astride an active range front normal fault. The distinction between exhumation-dominated and tectonically-dominated mountain fronts is best quantified by analyses of a new metric we call the drainage basin volume to drainage basin area ratio (V-A ratio) as well as the gradients of first-order streams. Drainage basin volume and area are calculated by constructing topographic envelope maps from 10 m resolution digital elevation models (DEM). The envelope maps are pinned by the watershed divide and cover the maximum elevations in each drainage basin. Subtracting the original DEM from the maximum elevation envelope map produces a topographic residual map from which area and volume data can be obtained. The erosionally exhumed Sierra Nacimiento has a mean V-A ratio of 88 m while the tectonically active Taos Range has a mean V-A ratio of 140 m. Similarly, there are systematic differences in the gradients of first order streams measured both in the range block and approximately 5 km of adjacent piedmont. Streams were defined and subsequently Strahler ordered by a flow accumulation threshold of 250 water-equivalent grid cell units. First order stream channel long profiles were extracted from the DEM at 30 meter increments and gradients were calculated by a FORTRAN program. Gradients of

  17. Geomorphology, tectonics, and exploration

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  18. Regional tectonic analysis of Venus as part of the Pioneer Venus guest investigator project

    NASA Technical Reports Server (NTRS)

    Williams, David R.

    1991-01-01

    Over the past year, much of the tectonic analysis of Venus we have done has centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. We have developed convection models of the Earth and Venus. These models assume whole mantle internally-heated convection. The viscosity is temperature, volatile-content, and stress dependent. An initial temperature and volatile content is assumed, and the thermal evolution is tracked for 4.6 billion years. During this time, heating occurs by decay of radiogenic elements in the mantle, and degassing and regassing of volatiles takes place at the surface. For a model assuming plate tectonics as the primary heat loss mechanism, representing the Earth through most of it's history and perhaps Venus' earlier history, degassing of the mantle was found to occur rapidly (approximately 200 My) over a large range of parameters. Even for parameters chosen to represent extreme cases of an initially cool planet, low radiogenic heating, and large initial volatile complement, the mantle water content was degassed to an equilibrium value in about 2 By. These values may be applicable to the early Venus, if a large, Moon-forming impact on Earth resulted in efficient heating and loss of water, leaving Venus with a comparably greater volatile budget and less vigorous early convection. It may therefore be impossible to retain large amounts of water in the interior of Venus until the planet cools down enough for the 'cold-trap' effect to take place. This effect traps crust forming melts within the mantle due to a cusp in the solidus, causing these melts to refreeze at depth into a dense eclogite phase, which will inhibit ascent of this material to the surface. This effect, however, requires a hydrous mantle, so early loss of water might prevent it from taking place. Since without plate tectonics there is no mechanism for regassing volatiles into the mantle, as occurs on

  19. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  20. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  1. Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Montone, Paola; Pirro, Mario; Boschi, Enzo

    2004-04-01

    In this paper we describe evidence of strong tectonic deformation affecting two aqueducts of Roman age (II-III century A.D.). The channels are located approximately 20 km northeast of Rome along the ancient Via Tiburtina. Brittle and ductile deformation affects these two structures, including extensional joint systems, NE-oriented faults, and horizontal distortion. This deformation is consistent with right-lateral movement on major N-striking faults, and represents the first evidence that tectonic deformation took place in historical times in the vicinity of Rome, with local strike-slip movement superimposed on a regional extensional fault system.

  2. Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Hauksson, E.; Shearer, P. M.; Ampuero, J. P.

    2015-07-01

    In general, seismic slip along faults reduces the average shear stress within earthquake source regions, but stress drops of specific earthquakes are observed to vary widely in size. To advance our understanding of variations in stress drop, we analysed source parameters of small-magnitude events in the greater San Gorgonio area, southern California. In San Gorgonio, the regional tectonics are controlled by a restraining bend of the San Andreas fault system, which results in distributed crustal deformation, and heterogeneous slip along numerous strike-slip and thrust faults. Stress drops were estimated by fitting a Brune-type spectral model to source spectra obtained by iteratively stacking the observed amplitude spectra. The estimates have large scatter among individual events but the median of event populations shows systematic, statistically significant variations. We identified several crustal and faulting parameters that may contribute to local variations in stress drop including the style of faulting, changes in average tectonic slip rates, mineralogical composition of the host rocks, as well as the hypocentral depths of seismic events. We observed anomalously high stress drops (>20 MPa) in a small region between the traces of the San Gorgonio and Mission Creek segments of the San Andreas fault. Furthermore, the estimated stress drops are higher below depths of ˜10 km and along the San Gorgonio fault segment, but are lower both to the north and south away from San Gorgonio Pass, showing an approximate negative correlation with geologic slip rates. Documenting controlling parameters of stress-drop heterogeneity is important to advance regional hazard assessment and our understanding of earthquake rupture processes.

  3. Multithermal emission in active regions

    NASA Astrophysics Data System (ADS)

    Del Zanna, Giulio

    High-resolution EUV observations from SDO/AIA, Hi-C and Hinode/EIS are used, together with updated new atomic data, to study the multi-thermal emission in active region structures. Previous observations are largely confirmed, with most structures being not co-spatial and having nearly isothermal cross-sections. Those at temperatures below 1 MK appear as nearly resolved but those at 1-3 MK are still largely unresolved even at the Hi-C resolution. Very little emission above 3 MK is present in quiescent active regions. Elemental abundances vary in different structures. The active region cores show FIP enhancements of about a factor of three. X-ray spectroscopy confirms the results of the EUV observations for the hot cores.

  4. Permian-Triassic plutonism and tectonics, Death Valley region, California and Nevada

    SciTech Connect

    Snow, J.K.; Asmerom, Y. ); Lux, D.R. )

    1991-06-01

    Significant contractional structures that deform Permian rocks but predate an Early Triassic overlap sequence are recognized within the Cordilleran orogen, western US. Thrusting in the Death Valley region of the orogen, however, has been regarded as Middle Triassic or younger and thus kinematically distinct. The authors present new isotopic age limits on two posttectonic stocks that intrude major structures of the Death Valley thrust belt. The stocks are no younger than Middle Triassic, but are likely Late Permian in age, consistent with stratigraphic and structural data suggesting that thrusting predates the overlap sequence. The authors hypothesize that Permian shortening may have affected more than 700 km of the Cordilleran orogen at the same time arc activity began within cratonic North America but prior to Early Triassic emplacement of the structurally higher Sonomian arc terrane.

  5. Sedimentary development of the Oligocene Karsantı Basin, southern Turkey, in its regional tectonic setting

    NASA Astrophysics Data System (ADS)

    Ünlügenç, Ulvi Can; Akıncı, Ahmet Can

    2015-06-01

    Following Late Cretaceous ophiolite and melange emplacement within the Tauride belt several Neogene sedimentary basins of variable size were formed along the southern flank of the Taurus continent in southern Turkey. These include the Pozantı and Karsantı Basins and the regional scale Çukurova Basin Complex, extending southwestwards into the Cilicia-Kyrenia Basin. The Karsantı Basin is bounded by the regional scale sinistral Ecemiş Fault Zone to the west, the East Anatolian Fault Zone to the southeast and the Negoene Adana Basin to the south. Deformed Palaeozoic and Mesozoic rock units that display an irregular palaeotopography form the basement of the Karsantı Basin. These units are overlain by an allochthonous Kızıldağ melange and by thrust slices of basic/ultrabasic ophiolitic rocks (Faraşa ophiolites) that were emplaced in this region during the Late Maastrichtian. The Karsantı Basin was formed during the Oligocene above the thrust sheets. The Karsantı Basin disconformably overlies the ophiolitic nappes and is interpreted as a N-S trending half graben which was probably most active following the deposition of lacustrine sediments during the late Oligocene. The main Karsantı Basin infill is represented by four lithological units: 1. Alluvial fan deposits (A1), 2. shallow-marine deposits (A2), 3. lacustrine deposits (A3), and 4. fluvial deposits (A4). These sediments were deposited during the Oligocene, prior to the initiation of the main Adana Basin, which formed in a separate intermontane setting. The Karsantı Basin fill is unconformably overlain by early Miocene sediments of the Neogene Adana basin.

  6. An attempt to monitor tectonic forces in the Vrancea active geodynamic zone: The Baspunar experiment

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita; Plopeanu, Marin

    2013-04-01

    (sparsely) run in the area, have provided inconsistent results on the PCF current dynamics. The Baspunar Geodynamic Observatory (BGO) has been designed and implemented by the Solid Earth Dynamics Department in the Institute of Geodynamics of the Romanian Academy in order to reveal and monitor eventual motions along PCF in the attempt to correlate variations in the slip rate with changes in the seismicity released within Vrancea zone. The first BGO records were strongly affected by changes in the atmospheric parameters. Consequently, technical measures and special corrections for the removal or at least mitigation of the effects created by changes in temperature, air pressure and humidity have been applied to the observations. In order to improve the signal to noise ratio, some mathematical filters have been applied too. The paper is aimed at revealing results of the geodetic observations along with preliminary geodynamic considerations. On the overall, after about two years of monitoring, PCF appears as an active tectonic contact. It mainly behaves as a left-lateral fault, but some short episodes with a reverse slip (dextral) were also pointed out. Correlations with crustal and intermediate-depth earthquakes occurring in both cases within the bending zone of East Carpathians are illustrated and discussed.

  7. Tectonic earthquakes of anthropogenic origin

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    2016-03-01

    The enhancement of seismicity induced by industrial activity in Russia in the conditions of present-day anthropization is noted. In particular, the growth in the intensity and number of strong tectonic earthquakes with magnitudes M ≥ 3 (seismic energy 109 J) due to human activity is revealed. These man-made tectonic earthquakes have started to occur in the regions of the East European Platform which were previously aseismic. The development of such seismicity is noted in the areas of intense long-term mineral extraction due to the increasing production depth and extended mining and production. The mechanisms and generation conditions of man-made tectonic earthquakes in the anthropogenically disturbed medium with the changed geodynamical and fluid regime is discussed. The source zones of these shallow-focus tectonic earthquakes of anthropogenic origin are formed in the setting of stress state rearrangement under anthropogenic loading both near these zones and at a significant distance from them. This distance is determined by the tectonic structure of the rock mass and the character of its energy saturation, in particular, by the level of the formation pressure or pore pressure. These earthquakes occur at any time of the day, have a triggered character, and are frequently accompanied by catastrophic phenomena in the underground mines and on the surface due to the closeness to the source zones.

  8. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    SciTech Connect

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

  9. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  10. Holocene canyon activity under a combination of tidal and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu; Micallef, Aaron; Stevens, Craig; Stirling, Mark

    2013-04-01

    The majority of submarine canyon systems that are active during sea level highstands are coupled to terrestrial or littoral sediment transport systems (e.g. high sediment-yield rivers, wave-base sediment disturbance). However, non-coupled canyon systems can also exhibit sedimentary activity. Characterising the nature, origin, and spatial and temporal influence of the processes responsible for this sedimentary activity is important to understand the extent of sediment and carbon transfer to the deep sea, the impact of sedimentary flows on biological colonisation and diversity, and the control of recent seafloor processes on canyon morphology. The Cook Strait canyon system, between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially-coupled system. Sediment transport on the continental shelf, associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data reveals a system where oceanographic (tidal) and tectonic (earthquake) processes are moving sediment from the continental shelf, through the upper canyon, and finally to the deep ocean. Sediment accumulation rates may reach several mm/yr in the upper canyons, with data suggesting minimum rates of 0.5 mm/yr. We demonstrate that tidal currents are sufficient to mobilise fine to medium sand around and within the upper canyon

  11. Crustal Structure at the North Eastern Tip of Rivera Plate, Nayarit- Marias Islands Region: Scenarios and Tectonic Implications. Tsujal Project

    NASA Astrophysics Data System (ADS)

    Danobeitia, J.; Bartolome, R.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Bandy, W. L.; Prada, M.; Cameselle, A. L.; Nunez, D.; Espindola, J. M.; Estrada, F.; Zamora, A.; Gomez, A.; Ortiz, M.

    2014-12-01

    A primarily analysis of marine geophysical data acquired aboard the RRS James Cook in the framework of the project "Characterization of seismic hazard and tsunami associated with cortical contact structure Rivera Jalisco Block Plate (TSUJAL)" is presented. This survey was held in the region of Nayarit-Tres Marias Islands between February and March 2014. The examination of data recorded by 16 OBS 's, deployed along 4 wide angle seismic profiles is presented, using an airgun-array seismic source of 6800 c.i., which allows sampling the crustal structure to the Moho. The profiles are located along the margin off the Marias Islands: a profile of over 200 km NNW-SSE direction and parallel to the western flank of the Islas Marias Islands and three orthogonal thereto. These perpendicular sections sample the lithosphere from the north of Maria Madre Island with a profile of 100 km length, across Maria Magdalena and Mari Cleofas Islands, with a profile of 50 km long, till south of Maria Cleofas with a profile of 100 km long. Coincident multichannel seismic profiles with refraction ones are also surveyed, although shooting with a source of 3,540 c. i., and acquired with a digital "streamer" of 6.0 km long. Simultaneously, multibeam, parametric and potential field data were recorded during seismic acquisition A first analysis shows an anomalously thickened crust in the western flank of the Marias Islands, as indicated by relatively short pre-critical distances of 30-35 km. While the moderate dip of 7 ° of the subduction of the Pacific oceanic plate favors somehow this effect, the existence of a remnant crustal fragment is also likely. Moreover, the images provided by the parametric sounding show abundant mass wasting deposits suggesting of recent active tectonics, possibly generated by earthquakes with moderate magnitude as those reported in the Marias Islands. This set of geophysical data, not only provide valuable information for the seismogenic characterization and

  12. 1983 Borah Peak, Idaho earthquake: a review of seismicity, surface faulting and regional tectonics

    SciTech Connect

    Richins, W.D.

    1985-01-01

    The October 28, 1983 Borah Peak, Idaho earthquake (M/sub s/ = 7.3) occurred in an area of low historic seismicity within east-central Idaho along a segment of the Lost River fault active during the Holocene. A dense network of portable short period seismographs (up to 45 stations, station spacings of 2 to 10 km) was installed beginning several hours after the main shock and operated for 22 days. In addition to records from the portable instrumentation, data from permanent seismograph stations operating in Idaho, Utah, Montana, Oregon, Washington, and Wyoming, provide a good regional data base. No foreshock activity above magnitude 2.0 (M/sub L/) was detected for the two month period preceding the main shock. The distribution of 421 aftershocks of M/sub L/ > 2 defines an epicentral pattern, 75 km x 15 km, trending north-northwest parallel to the surface rupture but displaced laterally southwest by 5 to 10 km. The epicenter of the main shock is approximately 14 km south-southwest of the end of surface faulting. This relationship suggests unilateral rupture propagating to the northwest. Aftershocks extend to depths of approximately 16 km and in the southeastern portion of the aftershock pattern define a zone, dipping approximately 45/sup 0/ SW, that intersects the surface near the fault scarp. The entire aftershock zone as observed during the first 3.5 weeks was active shortly after the main shock occurred. Fault plane solutions indicate predominantly normal faulting with varying components of strike slip. 17 refs., 8 figs. 1 tab.

  13. Salt tectonics and structural styles in the deep-water province of the Cabo Frio Region, Rio de Janeiro, Brazil

    SciTech Connect

    Mohriak, W.U.; Macedo, J.M.; Castellani, R.T.

    1996-12-31

    The Cabo Frio region, offshore Rio de Janeiro, lies between two of the most prolific Brazilian oil provinces, the Campos and Santos basins. Major geologic features have been identified using a multidisciplinary approach integrating seismic, gravity, petrographic, and borehole data. The Cabo Frio frontier region is characterized by marked changes in stratigraphy and structural style and is unique among the Brazilian marginal basins. Major geologic features include the deflection of the coastline and pre-Aptian hings line from northeast to east; a large east-striking offshore graben related to salt tectonics; a northwest-trending lineament extending from oceanic crust to the continent; basement-involved landward-dipping (antithetic) normal faults in shallow water; a stable platform in the southern Campos Basin; a thick sequence of postbreakup intrusive and extrusive rocks; and, near the Santos Basin, a mobilized sequence of deep-water postrift strata affected by landward-dipping listric normal faults. These faults are unusual in salt-related passive margins in that they dip landward, apparently detach on the Aptian salt, and show large late Tertiary offsets. Locally, the older sequences do not show substantial growth in the downthrown blocks. South of the Rio de Janeiro coast, a phenomenal landward-dipping fault system detaches blocks of the Albian platform to the north and, to the south, coincides with the depositional limit of the Albian platform. Two end-member processes of salt tectonics in the Cabo Frio region result in either synthetic or antithetic basal shear along the fault weld under the overburden: (1) thin-skinned processes, in which the listric faults were caused by salt flow in response to gravity forces related to massive clastic progradation from the continent; and (2) thick-skinned processes, in which faulting was indirectly triggered by diastrophic causes or disequilibrium in the basement topography.

  14. Tectonics on Triton

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    Tectonic features on Triton have been mapped as part of a larger study of the geology of Triton. Few purely tectonic structures are found on Triton: some grabens and possibly some compressive ridges. However, most of the other structures seen (primarily cryovolcanic in origin) exhibit tectonic control. A regional tectonic network has the following dominant orientations: N-S, E-W, NE-SW, and NW-SE. Most of the orientations are consistent with tidal deformations related to Triton's decreasing orbital radius. Localized quasi-concentric patterns may be due to interior processes such as mantle plumes.

  15. SDO Sees Active Region Outbursts

    NASA Video Gallery

    This close up video by NASA’s Solar Dynamics Observatory shows an active region near the right-hand edge of the sun’s disk, which erupted with at least a dozen minor events over a 30-hour period fr...

  16. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  17. Late Quaternary tectonic activity and crustal shortening rate of the Bogda mountain area, eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong; Wu, Guodong; Shen, Jun; Dai, Xunye; Chen, Jianbo; Song, Heping

    2016-04-01

    The Bogda mountain range is the highest range among the northern Tian Shan mountains. Based on geologic and geomorphologic field surveys, trench excavation and optically stimulated luminescence (OSL) dating, we targeted the active Fukang fault along the Bogda mountain range and identified the late Quaternary deformation characteristics of this area. We found that the Fukang fault dislocated different geomorphic surfaces of the northern Bogda piedmont. The vertical fault displacement corresponds to the topographic relief of the Bogda over long time scales. Since the late Quaternary, the crustal shortening rate was estimated to be 0.90 ± 0.20 mm/yr, which is less than that of the western segment of the northern Tian Shan. We interpret the Bogda fold and thrust belt to be a thick-skinned structure, since a high angle thrust fault bounds the Bogda mountain range and the foreland basin. The deformation characteristics of this region have been dominated by vertical uplift, and the component of propagation toward the basin has been very limited. This tectonic deformation is evidenced as vertical growth. Although the deformation rate is small, the uplift amplitude is very significant in this region.

  18. Identification and interpretation of tectonic features from ERTS-1 imagery. [geological faults in California mountain regions

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery shows that the southern segment of the San Gabriel fault which controls the west fork of the San Gabriel River is strikingly similar to the Mill Creek Fault in the San Bernardino Mountains. It has also been noted that there is a similarity between the Sierra Madre thrust zone of the San Gabriel Mountains to the Banning thrust of the San Bernardino Mountains. This suggests that the southern San Gabriel fault was once continuous with the Mill Creek fault. When the San Bernardino Mountain block is theoretically moved to the northwest along the San Jacinto fault so that the Mill Creek fault is aligned with the southern part of the San Gabriel fault, it was found that the four transverse fault segments become aligned with the Pinto Fault on the east and with the Raymond-Santa Monica Malibu Fault zone on the west. The reconstruction identifies a continuous zone of transverse faulting extending from the Colorado River Desert to the Pacific. It seems likely that the entire fault zone was once a continuous left-lateral shear. This Anacapa Shear has probably been subjected to a 50 km left lateral movement. This analysis strongly indicates that the tectonic history of the Transverse Range has been characterized by left lateral shear on transverse faults and right lateral shear on the San Andreas fault system.

  19. Palaeomagnetic studies within the Ballantrae Ophiolite; southwest Scotland: magnetotectonic and regional tectonic implications

    NASA Astrophysics Data System (ADS)

    Trench, A.; Bluck, B. J.; Watts, D. R.

    1988-11-01

    The Early Arenig Slockenray Formation within the Ballantrae Ophiolite, southwest Scotland, displays a multivectorial magnetisation structure. Two components (S and M) are identified delineated by differing blocking temperature/ coercivity spectra. Component S is removed around 200°C/10 mT, and is regarded to be of recent viscous origin. Component M forms the characteristic formation magnetisation and resides in both magnetite and haematite. Extensive sampling of all exposed lithologies reveals an (in situ) non-Fisherian distribution of the characteristic magnetisation defining an envelope from SE moderate positive to SW shallow negative directions. A negative infra-formation conglomerate test identifies this component as a pervasive overprint. A second conglomerate test performed in the overlying Benan Conglomerate of Llandeilo age, reveals dispersely directed magnetisation with a stability range equivalent to that of component M. This field test therefore defines a maximum remagnetisation window of 30 million years for the characteristic remanence. "Hard" viscous magnetisations are identified both in the Benan Conglomerate and at some sites within the Slockenray Formation. Structurally corrected site mean results from the Slockenray Formation define a non-Fisherian distribution and form a small circle partial arc centred on a vertical axis (NW moderate positive to SW moderate positive directions). A combined palaeomagnetic fold and fault test suggests that acquisition of component M pre-dates both folding and faulting. The resulting palaeolatitude of remanence acquisition (28.8°S) implies a tectonic position close to the southern Laurentian margin for the Ballantrae ophiolite in Arenig times.

  20. Paleomagnetic investigation of the Early Permian Panjal Traps of NW India; regional tectonic implications

    NASA Astrophysics Data System (ADS)

    Stojanovic, Denis; Aitchison, Jonathan C.; Ali, Jason R.; Ahmad, Talat; Dar, Reyaz Ahmad

    2016-01-01

    The ∼289 Ma Panjal Traps of NW India (Kashmir) are part of a series of rift-related mafic suites (Abor, Sikkim etc.) that were erupted onto northern India (present-day coordinates) around the same time as separation of the Cimmerian blocks of Qiangtang and Sibumasu. We report new data from only the second paleomagnetic investigation of this unit. Standard alternating field and thermal demagnetization methods were used to isolate characteristic magnetizations from seven outcrops at three locations within the Kashmir Valley, NW India. Analysis of four sections (14 individual cooling units) from close to Srinagar, that together form a tectonically coherent sequence spanning ∼3 km of stratigraphy, yield a single-component, primary magnetization with a mean direction of Dec: 134.8°, Inc: 55.3° (α95 = 8.9°, k = 21.0). An inclination-only mean of 52.5° (α95 = 8.9°, k = 47.2) gives a paleolatitude of ∼33°S (±5°). A paleopole of 110.5°E 8.4°S (A95 = 10.7) is also calculated. Assuming the magnetization records a portion of the reverse polarity Kiaman Superchron, the new result indicates extrusion of the Panjal Traps basalts at mid-latitudes in the southern hemisphere. By inference this constrains the location of central Gondwana, and informs debates related to Cimmeria's detachment from Gondwana.

  1. Age and petrogenesis of late Paleozoic granites from the northernmost Alxa region, northwest China, and implications for the tectonic evolution of the region

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Pease, Victoria; Meng, Qingpeng; Zheng, Rongguo; Wu, Tairan; Chen, Yan; Gan, Lisheng

    2016-01-01

    The Wudenghan, Huhetaoergai and Zhuxiaobuguhe plutons, northern Alxa region, in the southern Central Asia Orogenic Belt are dated by U-Pb zircon to 383 ± 3, 356 ± 3 and 286 ± 2 Ma, respectively. The late Devonian Wudenghan monzogranite, a highly fractionated I-type granite with ɛ Nd(t) (-0.2 to -0.1) and very low (87Sr/86Sr) t (0.704719-0.706113), is from mantle-derived magmas and shows volcanic arc characteristics. The early Carboniferous Huhetaoergai granodiorite with medium-K calc-alkaline peraluminous characteristics represents a volcanic arc granite generated from partial melting of lower continental crust combined with mantle-derived input. The early Permian Zhuxiaobuguhe pluton, an unfractionated calc-alkaline granodiorite with moderately low ɛ Nd(t) (-2.0 to -1.1) and low (87Sr/86Sr) t (0.708370-0.708462), was likely derived from partial melting of the mafic lower crust of a paleo-volcanic arc and represents a post-collisional granite. Our revised tectonic evolution of the region includes (1) northward subduction of the oceanic crust represented by the Engger Us Ophiolitic Belt and formation of the late Devonian Wudenghan monzogranite, (2) northward subduction of the ocean between the Huhetaoergai and Zhusileng tectonic zones and the formation of the Huhetaoergai volcanic arc granite during the early Carboniferous and (3) the emplacement of the Zhuxiaobuguhe pluton in the early Permian during post-collisional extension.

  2. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    NASA Astrophysics Data System (ADS)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  3. Three Ingredients for Improved Global Aftershock Forecasts: Tectonic Region, Time-Dependent Catalog Incompleteness, and Inter-Sequence Variability

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Hardebeck, J.; Felzer, K. R.; Michael, A. J.; van der Elst, N.

    2015-12-01

    Following a large earthquake, seismic hazard can be orders of magnitude higher than the long-term average as a result of aftershock triggering. Due to this heightened hazard, there is a demand from emergency managers and the public for rapid, authoritative, and reliable aftershock forecasts. In the past, USGS aftershock forecasts following large, global earthquakes have been released on an ad-hoc basis with inconsistent methods, and in some cases, aftershock parameters adapted from California. To remedy this, we are currently developing an automated aftershock product that will generate more accurate forecasts based on the Reasenberg and Jones (Science, 1989) method. To better capture spatial variations in aftershock productivity and decay, we estimate regional aftershock parameters for sequences within the Garcia et al. (BSSA, 2012) tectonic regions. We find that regional variations for mean aftershock productivity exceed a factor of 10. The Reasenberg and Jones method combines modified-Omori aftershock decay, Utsu productivity scaling, and the Gutenberg-Richter magnitude distribution. We additionally account for a time-dependent magnitude of completeness following large events in the catalog. We generalize the Helmstetter et al. (2005) equation for short-term aftershock incompleteness and solve for incompleteness levels in the global NEIC catalog following large mainshocks. In addition to estimating average sequence parameters within regions, we quantify the inter-sequence parameter variability. This allows for a more complete quantification of the forecast uncertainties and Bayesian updating of the forecast as sequence-specific information becomes available.

  4. Active strike-slip faulting history inferred from offsets of topographic features and basement rocks: a case study of the Arima Takatsuki Tectonic Line, southwest Japan

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2002-01-01

    Geological, geomorphological and geophysical data have been used to determine the total displacement, slip rates and age of formation of the Arima-Takatsuki Tectonic Line (ATTL) in southwest Japan. The ATTL is an ENE-WSW-trending dextral strike-slip fault zone that extends for about 60 km from northwest of the Rokko Mountains to southwest of the Kyoto Basin. The ATTL marks a distinct topographic boundary between mountainous regions and basin regions. Tectonic landforms typically associated with active strike-slip faults, such as systematically-deflected stream channels, offset ridges and fault scarps, are recognized along the ATTL. The Quaternary drainage system shows progressive displacement along the fault traces: the greater the magnitude of stream channel, the larger the amount of offset. The maximum dextral deflection of stream channels is 600-700 m. The field data and detailed topographic analyses, however, show that pre-Neogene basement rocks on both sides of the ATTL are displaced by about 16-18 km dextrally and pre-Mio-Pliocene elevated peneplains are also offset 16-17 km in dextral along the ATTL. This suggests that the ATTL formed in the period between the development of the pre-Mio-Pliocene peneplains and deflection of the Quaternary stream channels. The geological, geomorphological and geophysical evidence presented in this study indicates that (1) the ATTL formed after the mid-Miocene, (2) the ATTL has moved as a dextral strike-slip fault with minor vertical component since its formation to late Holocene and (3) the ATTL is presently active with dextral slip rates of 1-3 mm/year and a vertical component of >0.3 mm/year. The formation of the ATTL was probably related to the opening of the Japan Sea, which is the dominant tectonic event around Japan since mid-Miocene. The case study of the ATTL provides insight into understanding the tectonic history and relationship between tectonic landforms and structures in active strike-slip faults.

  5. Evidence for Tectonic Activity During the Mature Harappan Civilization, 2600-1800 BCE

    NASA Astrophysics Data System (ADS)

    Grijalva, K. A.; Kovach, R. L.; Nur, A. M.

    2006-12-01

    The mature Harappan civilization located in Pakistan and India dates from 2600 to 1800 BCE. By combining seismic data, three-dimensional elastic dislocation modeling, and archaeological findings we examined the role that earthquakes played in the demise of Harappan settlements. The study focuses on three different geographical regions: Gujarat, the Sarasvati-Ghaggar-Hakra River valley, and the Makran coast of Pakistan. In Gujarat, the fluvial system of the Rann of Kachchh has undergone significant changes. The Rann of Kachchh formed as a delta for three rivers, becoming an inland sea during the time of Alexander the Great, and ultimately a salty marsh. These changes were brought about by a combination of sea level changes, the truncation of the three rivers by tectonic uplift and the deepening of the Rann by earthquake induced subsidence. Events analogous to the 1819 Allah Bund earthquake, which dammed the Puran River for seven years, would have significantly altered the water source for downstream settlements. Data from the recent 2001 Bhuj event shows that Harappan settlements would have suffered considerable shaking damage from an analogous historical event. Archaeological studies to date have found direct evidence for of at least one large earthquake at Dholavira in 2200 BCE. A number of the mature Harappan settlements are located along the dry Sarasvati-Ghaggar-Hakra river system. The decline of these sites coincides with the divergence of the Sarasvati-Ghaggar-Hakra system to the Indus and Ganga river systems. A succession of earthquakes, along with a period of aridity, likely led to the disappearance of the Sarasvati-Ghaggar-Hakra system. Although this region has not had any large earthquakes in historic times, there is archaeological evidence of two large events at the Harappan site of Kalibangan, at 2900 and 2700 BCE. Along the Makran coast two settlements, believed to have been Harappan seaports, are now located tens of kilometers inland. Changes in sea

  6. Global oscillations and active regions

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.

    The author presents further estimates of the amplitude of the modulation of the solar global velocity signal caused by the passage of active regions across the solar disc. Using measurements of the profile of the K I λ769.9 nm line in the quiet sun and in plages he finds a global velocity variation of ≡2 m s-1 during the transit of a typical active region of area 3300 millionths of the hemisphere. However, during the period in which a velocity amplitude of 6 m s-1 was reported by Claverie et al. (1982), the sunspot areas were exceptionally large and the author confirms Schröter's (1984) result that the combination of spot and plage contributions is sufficient to account for the observed signal. The velocity modulation is thus attributable to surface inhomogeneities, not to the structure of the solar core.

  7. Geomorphic assessment of the tectonic activity of Qiulitagh fold-belt, Kuqa foreland basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Saint Carlier, Dimitri; Graveleau, Fabien; Delcaillau, Bernard; Hurtrez, Jean-Emmanuel; Vendeville, Bruno

    2014-05-01

    The Qiulitagh fold belt is an anticline structure located in the Kuqa fold-and-thrust belt (southern Tian Shan, China), whose active folding is well documented by structural and palaeomagnetic studies (Chen et al., 2007; Hubert-Ferrari et al., 2007; Li et al., 2012; Wang et al., 2011). The topography of Quilitagh fold belt can be divided into two SW-NE parallel ridges: 1) a 90 km long northern ridge, composed of the Northern Qiulitagh anticline and the Yakelike anticline, and 2) a 165km long southern ridge, composed of the Southern Qiulitagh anticline and the Mishikantage anticline. Due to the current absence of vegetation and relative homogeneity of outcropping lithologies (mainly Neogene detrital sandstone and silstone), these anticlines provide exceptional field cases for investigating the dynamic relationships between fold growth mechanisms, the subsurface structures, the geomorphic entities and the drainage network evolution. We used free topographic and satellite image datasets to carry out a morphometric study of the Quilitagh fold-belt and investigate the kinematics of active folding. Topographic datasets include Digital Elevation Models (DEM) from the NASA SRTM V.4.0 and ASTER programs, whereas satellite images are extracted from Landsat 7 shots and Google Earth. These datasets were incorporated in GIS software where three scales of observation were investigated: 1) a global fold scale, 2) a drainage basin scale and 3) a valley scale. At the drainage basin scale, we selected about 250 items and quantified several geomorphic indices of relative active tectonic growth. These are the basin mean slope, hypsometric integral, basin asymmetry and local relief. We also used published seismic profiles to link the 3D subsurface geometry of the salt-related Qiulitagh fold belt with the geomorphic signal. Results indicate that the morphometry of Quilitagh drainage basins (hypsometry, drainage basin asymmetry, local relief, valley incision, steepness index) change

  8. Lasting mantle scars lead to perennial plate tectonics

    PubMed Central

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  9. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon. PMID:27282541

  10. Lasting mantle scars lead to perennial plate tectonics

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  11. Neotectonic deformation in the western sector of tectonic escape in Anatolia: palaeomagnetic study of the Afyon region, central Turkey

    NASA Astrophysics Data System (ADS)

    Gürsoy, H.; Piper, J. D. A.; Tatar, O.

    2003-10-01

    Following final closure of the Neotethyan Ocean during the late Miocene, deformation in central Turkey has led to crustal thickening and uplift to produce the Anatolian Plateau followed by westward extrusion of terranes by strike-slip. Widespread volcanism has accompanied this latter (neotectonic) phase, and palaeomagnetic study of the volcanism shows a coherent record of differential block rotations, indicating that the Anatolian region is not a plate (or 'platelet') sensu stricto but is undergoing distributed internal deformation. To evaluate the scale of neotectonic rotations in the transition zone near the western limit of tectonic escape and the border of the extensional domain in central-west Turkey, we have studied the palaeomagnetism at 82 sites in volcanic suites distributed along a ˜140-km lineament with north-south trend and ranging in age from 18 to 8 Ma. Comparable deflection of magnetic remanence from the present field direction is identified along the full length of the lineament. A mean clockwise rotation of 12.3±4.2° is determined for this western sector of the Anatolian strike-slip province. Since similar rotations are observed in the youngest and oldest units, this cumulative rotation occurred after the late Miocene. When interpreted together with results elsewhere in Anatolia, it is inferred that the rotation is later than crustal thickening and uplift of the Anatolian Plateau and entirely a facet of the tectonic escape. Inclinations are mostly ˜10° shallower than the predicted Miocene field and are considered to reflect the presence of a persistent inclination anomaly in the Mediterranean region. Larger rotations departing from the regional trend are also observed within the study region, but are confined to the vicinity of major faults, notably those bounding the Afyon-Akşehir Graben. The pattern of neotectonic declinations across Anatolia identifies strong anticlockwise rotation in the east near the Arabian pincer with progressive

  12. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yong; Sandvol, E.; Zhu, L.; Lou, Hai; Yao, Zhixiang; Luo, Xinghua

    2014-02-01

    Crustal thicknesses and Poisson's ratios in the Ordos block and surrounding regions were estimated by the use of the H-k stacking method on teleseismic receiver functions. The data came from 353 temporary and permanent seismic stations in 2006-2011. Results show that the crustal thickness and Poisson's ratio gently vary within the Ordos block, with an average of 41.3 km and 0.265, respectively, consistent with a felsic composition of the crust. Crustal thicknesses predicted on the basis of Airy isostasy are consistent with the estimated thicknesses, implying that the topography is approximately compensated. The reactivated portion of the North China Craton that has undergone Mesozoic-Cenzoic lithospheric thinning is also characterized by the thinning crust, while the Ordos block maintains normal crustal thickness and average crustal velocity. Inferred higher densities in the lower crust and the anti-correlation between Poisson's ratio and crustal thickness in the Ordos block may be the result from underplating of mafic magmas in the Precambrian. Around the Ordos block, the Paleoproterozoic khondalite zone in the northern edge has higher Poisson's ratio and thickened crust, which is consistent with the lower crust being of more mafic composition. The Weihe-Shanxi graben in the southeastern edge has mid-high Poisson's ratio, high heat flow and thinning crust, which is consistent with the known transtensional tectonic setting. In the Liupanshan thrust belt, along the southwestern edge of the Ordos plateau, significant variations in crustal thicknesses and Poisson's ratios occur on two sides. Besides a thickened crust, a concaved Moho implies horizontal shortening of this edge of the Ordos block due to its collision with the northeastern Tibetan Plateau. The structural differences between the eastern and western edges of the Ordos block reflect that the Ordos block is in tectonic stress environment of the western compression and the eastern extension.

  13. Isotopic ages from the Nelson region of South Island New Zealand: crustal structure and definition of the Median Tectonic Zone

    NASA Astrophysics Data System (ADS)

    Kimbrough, D. L.; Tulloch, A. J.; Geary, E.; Coombs, D. S.; Landis, C. A.

    1993-10-01

    Plutonic rocks in the Rotoroa Complex and Drumduan Terrane of South Island, New Zealand yield zircon U/Pb dates of 156 and 142 Ma, respectively, that are interpreted as crystallization ages. Hornblende and biotite 40Ar/ 39Ar dates of 140-130 Ma from the Rotoroa represent either emplacement ages, cooling ages or a metamorphic resetting event. These two units crop out between the Brook Street Terrane and the Separation Point Batholith and lack any clear affinity with tectonostratigraphic terranes of the New Zealand Western or Eastern provinces. The Rotoroa Complex and Drumduan Terrane are interpreted as part of a series of dismembered Mesozoic volcanic-plutonic arc complexes that are sandwiched between terranes of the Western and Eastern provinces, occupying a structural position here referred to as the Median Tectonic Zone (MTZ). Correlative units in Fiordland on the opposite side of the Alpine Fault include the Mackay Intrusives, Darran Complex, Largs Terrane, Lochburn Formation and the Halfway Peak Gabbro. Farther south on Stewart Island the Anglern Complex and Paterson Group are part of the same structural belt. The MTZ is an extension of the original concept of the Median Tectonic Line put forth by Landis and Coombs (1967). Dismemberment and juxtaposition of arc magmatic assemblages in the MTZ with Western and Eastern Province terranes is related to large-scale transcurrent faulting in the Early Cretaceous. Its essential features as a regional tectonostratigraphic terrane were established by ~ 117 Ma as indicated by stitching of the Rotoroa Complex to the Takaka Terrane (Western Province) by the Separation Point Batholith (117-114 Ma). The Echinus Granite yields a 310 Ma U/Pb zircon crystallization age that suggests the granite and associated gneisses are part of the Western Province which may constrain the position of the western margin of the MTZ near Nelson City.

  14. Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Coakley, Bernard; Hopper, John; Kristoffersen, Yngve

    2010-11-01

    Multichannel seismic (MCS), seismic refraction, and gravity data collected down the flank of the Chukchi Plateau, but predominantly over the Mendeleev Ridge have been processed and interpreted to describe the crustal style of the ridge, as well as the structural history. These results provide constraints on the origin of the ridge, and the tectonic evolution of the Amerasian Basin. MCS images reveal two primary sediment sequences separated by an unconformity that persists across the entire Mendeleev Ridge. The basement and lower sediment sequence exhibit pervasive normal faulting. The upper sequence is laterally conformable and not effected by faulting, thus the regional unconformity dividing the two sequences is interpreted to mark the end of extensional deformation. Modeling of sonobuoy seismic refraction data reveals upper crustal P-wave velocities ranging from 3.5 to 6.4kms-1 approximately 5km into the basement. The velocity structure of the Mendeleev Ridge is consistent with either a volcanic rifted continental margin, or an oceanic plateau origin. Observed gravity anomalies over the ridge are reproduced by a model consisting of bathymetry, sediment and basement horizons from the MCS data and a single crustal layer of 2.86gcm-3. This result is consistent with homogeneous, mafic crust. The similar velocity and density structures of the Mendeleev and Alpha ridges is consistent with a model where the two ridges are contiguous and share a common geological origin. Gravity modelling over the transition between the Chukchi Plateau and the Mendeleev Ridge suggests the two features have differing compositions and distinct emplacement histories. Three tectonic models are presented for the origin of the Alpha Mendeleev Ridge (AMR) that satisfy constraints set by this and previous studies: (1) a rifted volcanic continental margin, (2) an oceanic plateau formed at a spreading centre-perpendicular to the AMR and (3) an oceanic plateau formed at a spreading centre

  15. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  16. Geomorphic impacts of active tectonics on a river course, the case of Klissoura gorge, central Greece.

    NASA Astrophysics Data System (ADS)

    Tsanakas, Konstantinos; Fubelli, Giandomenico; Karymbalis, Efthimios

    2014-05-01

    The delicate balance of the natural processes within the river systems can be easily tipped making them very sensitive to changes occurring on the earth surface. Fluvial systems are therefore profoundly influenced by endogenic processes such as active tectonics as well as global sea level fluctuations following the climatic variations during the Quaternary. This study deals with the geomorphological evolution of the broader area of the abandoned gorge of Klissoura which is located in central Greece. This 130 m deep and roughly 3 km long gorge is a characteristic example of an old drainage course preserved on the footwall blocks of two normal faults which confine both outlets of the deeply incised valley. The gorge has formed by a river that once had a N-S flow direction discharging into the Gulf of Patras. Acheloos River and the much smaller Ermitza Remma Stream are the two recent primary watercourses which drain the area close to the abandoned gorge. Both the dimensions and morphological characteristics of the abandoned deep valley indicate that the gorge has formed by a large river with high discharge in order to incise into the limestone bedrock. In order to investigate the tectonic constrains and determine the geomorphic and climatic processes that compelled the lower reaches of Acheloos River to abandon the gorge and find an outlet following its present course a GIS based analysis at a scale of 1:50.000 was applied in the drainage basin of Acheloos River. Additionally, to reconstruct the palaeolandscape and the earth surface processes, a detailed morphometric and geomorphic analysis of the abandoned gorge was also performed at a scale of 1:5.000 coupled with field observations and stratigraphic analysis of the deposits outcropping on the valley sides within the gorge as well as on both outlets. The geomorphic analysis led to the conclusion that the primary course of the gorge abandonment and diversion and reverse of the drainage is the uplift of the footwall

  17. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  18. The Proterozoic Ladoga rift (SE Baltic shield): Linking mantle dynamics to supercontinent cycle and regional tectonics

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Shulgin, Alexey

    2015-04-01

    Mesoproterozoic mafic magmatism at the southern part of the Baltic Shield (the Lake Ladoga region) is conventionally ascribed to epicratonic rifting. The region hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). Our analysis of characteristics of continental rifts demonstrates that: 1. the topography of the region lacks a linear horst-graben structure typical of modern rifts, however this feature might have been lost by surface erosion; 2. the crust has neither shallow Moho, nor magmatic high-velocity underplated material, and thus is not typical of continental rifts; 3. weakly negative Bouguer gravity anomalies, especially by comparison with adjacent "background" anomalies suggest the presence of high-density material at shallow, near-Moho depths; however, the shape of the anomaly is rounded rather than linear, and may not attest to the paleorifting event; 4. seismic velocities in the upper mantle show a possible weak low-Pn anomaly near Lake Ladoga, and strong positive (+5+7%) Vs anomaly at 75-125 km depth to the NE of the lake, but not in the region of Mesoproterozoic mafic magmatism; 5. no thermal anomaly or lithosphere thickness anomaly is currently present in the lithosphere of the region, which instead is marked by extremely low heat flow; however, given the age of magmatism any thermal anomaly may have long ceased and thus its absence does not disprove rifting origin of magmatism; 6. the absence of linear magnetic anomalies which are preserved in other paleorifts provides strong evidence that this region has

  19. Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Feng; He, Honglin; Densmore, Alexander L.; Li, An; Yang, Xiaoping; Xu, Xiwei

    2016-04-01

    The ongoing convergence between India and Eurasia apparently is accommodated not merely by crustal shortening in Tibet, instead also by motions along strike slip faults which are usually boundaries between tectonic blocks, especially in the Tibetan Plateau. Quantification of this strike slip faulting is fundamental for understanding the collision between India and Eurasia. Here, we use a variety of geomorphic observations to place constraints on the late Quaternary kinematics and slip rates of the Ganzi-Yushu fault, one of the significant strike-slip faults in eastern Tibet. The Ganzi-Yushu fault is an active, dominantly left-lateral strike-slip structure that can be traced continuously for up to 500 km along the northern boundary of the clockwise-rotating southeastern block of the Tibetan Plateau. We analyse geomorphic evidence for deformation, and calculate the late Quaternary slip rates at four sites along the eastern portion of the fault trace. The latest Quaternary apparent throw rates are variable along strike but are typically ~ 1 mm/a. Rates of strike-slip displacement are likely to be an order of magnitude higher, 8-11 mm/a. Trenching at two locations suggests that the active fault behaviour is dominated by strike-slip faulting and reveals several earthquake events with refined information of timing. The 2010 Mw 6.9 Yushu earthquake, which occurred on the northwestern segment of the Ganzi-Yushu fault zone, provides additional evidence for fault activity. These observations agree with GPS-derived estimates, and show that late Quaternary slip rates on the Ganzi-Yushu fault are comparable to those on other major active strike-slip faults in the eastern Tibetan Plateau.

  20. Teleseismic P and S Delay Times within Tectonically Active and Stable North America

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.

    2009-12-01

    We have measured teleseismic P and S relative delay times within 1) Stable North America (SNA) using waveforms from IRIS PASSCAL seismic arrays MOMA (Fischer et al., 1995), ABBA (Roecker and Beavan, 1995), Abitibi (Hearn and Mareschal, 1996), and FLED (Wysession and Fischer, 2001), and 2) Tectonically-active North America (TNA) using Earthscope's Transportable Array (TA). To study the contribution of mantle structure to these delays we subtracted delays predicted for topography and crustal structure, using CRUST 2.0 (Bassin et al., 2000). Preliminary analyses of delay times from earthquakes with Mw>=6.5 show surprising differences between the heterogeneity of the mantle beneath SNA and TNA. While the range of delay times is expectedly small for an intra-shield array such as Abitibi, the range of delay times from Proterozoic basement in the midwest to Paleozoic margin in New England is much larger and slightly exceeds that for the TA in TNA. This suggests that that the mantle of SNA is slightly more heterogeneous than TNA, despite there being relatively little surface expression of this heterogeneity. Patterns of P and S relative delay times measured in TNA correlate better with surface tectonics, suggesting that the mantle in TNA has a greater effect on the surface geology than in SNA. The central and southern Basin and Range are characterized by positive delays. As shown in previous studies, the Snake River Plain is also well delineated by positive delays. These delays exhibit a significant peak at station H17A in Yellowstone National Park. Teleseismic P and S waves arriving at stations in the Rocky Mountains are much faster, including in northern Idaho and western Washington, but not in western Oregon. For both SNA and TNA, the measured S and P delay times have a significant linear correlation, with S delays at approximately 3 times the P delays, which confirms the dominant effect of mantle temperature on mantle velocity structure. However, the slope of this

  1. Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2013-11-01

    tectonic activities.

  2. Edaphics, active tectonics and animal movements in the Kenyan Rift - implications for early human evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Owenga, Peter; Rucina, Stephen; King, Geoffrey C. P.

    2014-05-01

    The quality of soils (edaphics) and the associated vegetation strongly controls the health of grazing animals. Until now, this has hardly been appreciated by paleo-anthropologists who only take into account the availability of water and vegetation in landscape reconstruction attempts. A lack of understanding the importance of the edaphics of a region greatly limits interpretations of the relation between our ancestors and animals over the last few million years. If a region lacks vital trace elements then wild grazing and browsing animals will avoid it and go to considerable length and take major risks to seek out better pasture. As a consequence animals must move around the landscape at different times of the year. In complex landscapes, such as tectonically active rifts, hominins can use advanced group behaviour to gain strategic advantage for hunting. Our study in the southern Kenya rift in the Lake Magadi region shows that the edaphics and active rift structures play a key role in present day animal movements as well as the for the location of an early hominin site at Mt. Olorgesailie. We carried out field analysis based on studying the relationship between the geology and soil development as well as the tectonic geomorphology to identify 'good' and 'bad' regions both in terms of edaphics and accessibility for grazing animals. We further sampled different soils that developed on the volcanic bedrock and sediment sources of the region and interviewed the local Maasai shepherds to learn about present-day good and bad grazing sites. At the Olorgesailie site the rift valley floor is covered with flood trachytes; basalts only occur at Mt. Olorgesailie and farther east up the rift flank. The hominin site is located in lacustrine sediments at the southern edge of a playa that extends north and northwest of Mt. Olorgesailie. The lakebeds are now tilted and eroded by motion on two north-south striking faults. The lake was trapped by basalt flows from Mt. Olorgesailie

  3. Applications of Quaternary stratigraphic, soil-geomorphic, and quantitative geomorphic analyses to the evaluation of tectonic activity and landscape evolution in the Upper Coastal Plain, South Carolina

    SciTech Connect

    Hanson, K.L.; Bullard, T.F.; de Wit, M.W.; Stieve, A.L.

    1993-07-01

    Geomorphic analyses combined with mapping of fluvial terraces and upland geomorphic surfaces provide new approaches and data for evaluating the Quaternary activity of post-Cretaceous faults that are recognized in subsurface data at the Savannah River Site in the Upper Coastal Plain of southwestern South Carolina. Analyses of longitudinal stream and terrace profiles, regional slope maps, and drainage basin morphometry indicate long-term uplift and southeast tilt of the site region. Preliminary results of drainage basin characterization suggests an apparent rejuvenation of drainages along the trace of the Pen Branch fault (a Tertiary reactivated reverse fault that initiated as a basin-margin normal fault along the northern boundary of the Triassic Dunbarton Basin). This apparent rejuvenation of drainages may be the result of nontectonic geomorphic processes or local tectonic uplift and tilting within a framework of regional uplift.

  4. Developing of Regional Tectonic Stress Map for Two Oil Fields in Western part of Persian Gulf, Acquisition and Preparation of the General Structure of Stress Distribution

    NASA Astrophysics Data System (ADS)

    Haghi, A.; Heidbach, O.; Kharrat, R.; Asef, M.

    2011-12-01

    Recently, application of stress field data in petroleum industry has significantly increased. Field stress databases are prerequisite data to study reservoir compaction and deformations, wellbore stability, reservoir stimulation, CO2 sequestration and the like. This has convinced petroleum industries and many sponsors to allocate investment for acquiring accurate stress field data and developing stress maps. In southern part of Iran, large scale sedimentation from different geological periods and intense tectonic activities create huge petroleum fields. Persian Gulf located in south to south-west of Iran, contains a great number of the most giant offshore oil and gas reservoirs in the world. The objective of this research is development of a regional tectonic stress map for two fields in western part of the Persian Gulf. For this purpose, standard stress indicators including earthquake focal mechanism solutions, well-bore breakouts and drilling-induced fractures, in-situ stress measurements (LOT, hydraulic fracturing), young geologic data (fault-slip analysis) and core tests (ASR, DSCA, Petal Centerline Fractures) were used to collect and rearrange field stress data. The data are quality ranked according to World Stress Map quality ranking scheme 2008 based on their standard deviation and a tectonic regime is assigned where possible. In these fields some stress indicators like hydraulic fracturing and core tests was not employed before. Primary stress data gathered from focal mechanism confirmed a TF regime in the area mainly with the quality C. WSM database only provides around 14 SH measurement from the northern border of our area. All these data gathered from FMS with quality C. In our study we will add several new stress measurements from other standard stress indicators including LOT, well-bore breakout, drilling induced fractures and core tests with higher quality than C. Almost SH orientation varied between 0 to 90°N based on primary information. On the

  5. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region of Mars: Indications of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible post-flow tectonic subsidence on the Snake River Plain in Idaho.

  6. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  7. Taiwan: a perfect field trip to study active tectonics and erosion processes

    NASA Astrophysics Data System (ADS)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  8. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  9. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Nagarajan, Ramasamy; Madhavaraju, Jayagopal; Rosalez-Hoz, Leticia; Lee, Yong Il; Balaram, Vysetti; Cruz-Martínez, Adriana; Avila-Ramírez, Gladis

    2013-04-01

    This study focuses on the Jurassic (Huayacocotla and Pimienta Formations) and Upper Cretaceous (Méndez Formation) shales from the Molango Region, Hidalgo, Mexico. In this article, we discuss the mineralogy, major, and trace element geochemistry of the Mesozoic shales of Mexico. The goal of this study is to constrain the provenance of the shales, which belong to two different periods of the Mesozoic Era and to understand the weathering conditions and tectonic environments of the source region.

  10. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  11. Tectonic style and regional relations of the central Nevada thrust belt

    SciTech Connect

    Bartley, J.M. . Dept. of Geology and Geophysics); Taylor, W.J. . Dept. of Geoscience); Fryxell, J.E. . Dept. of Geological Sciences); Schmitt, J.G. . Dept. of Earth Sciences); Vandervoort, D.S. . Dept. of Geological Sciences); Walker, J.D. . Dept. of Geology)

    1993-04-01

    The Mesozoic( ) Central Nevada thrust belt (CNTB) lies in a geographically and structurally central position in the Great Basin. Understanding the structural geometries and timing of deformation in this belt is critical to reconstructing pre-thrusting sedimentary basins, post-thrusting sediment source locations and the syn- to post-thrusting Cretaceous Newark Canyon basins. The authors recent detailed studies in the thrust belt better constrain the structural geometries, associated sedimentary basins and timing of deformation in the CNTB. They suggest that contractile structures in the CNTB east and south of Railroad Valley are part of the same orogen as the Eureka belt which north and west of that valley. Therefore, the CNTB is an essentially continuous orogen for 250 km along strike, from Alamo to Eureka, Nevada. The structural style effects paleogeographic reconstructions. The CNTB is made up of a stack of at least six separate thrusts. Many thrusts have long ramps that cut from the Mississippian into the Cambrian ([approximately] 2,200 m of section) suggesting large vertical uplifts. Shortening in the CNTB is bracketed between Late Permian and Cretaceous, but regional correlations indicate it may be Jurassic to Cretaceous. The youngest contraction is no younger than Early Cretaceous as indicated by (1) folding and thrusting of parts of the Albian-Aptian Newark Canyon Formation, (2) intrusion of an anticline by the 84.6 Ma (new date) Troy stocked, and (3) intrusion of another anticline by the [approximately]100 Ma (new date) Lincoln stock. The onset of shortening is more difficult to ascertain because Triassic and Jurassic rocks are not present. Rocks as young as Pennsylvanian in the south and Permian in central region are deformed. A Jurassic age is based on regional correlations with the Jurassic Elko orogenic belt.

  12. Panxi region (South-West China): Tectonics, magmatism and metallogenesis. A review

    NASA Astrophysics Data System (ADS)

    Munteanu, Marian; Yao, Yong; Wilson, Allan H.; Chunnett, Gordon; Luo, Yaonan; He, Hong; Cioacă, Mihaela; Wen, Maolin

    2013-11-01

    The Panxi region of SW China makes up most of the western margin of the Yangtze craton. Its structural pattern, defined by NS-trending deep faults, is superimposed on a zone of late Proterozoic crustal extension. The Panxi region seems to have evolved as a continental rift in the Permian, and was subsequently subjected to compression, caused mainly by the Himalayan collision. This induced the uplift of its axial and western parts, generating a horst-type structure within the former rift graben. At ca. 260 Ma, mantle plume-related magmatism in the Panxi region generated the Emeishan flood basalts together with ultramafic and silicic volcanic rocks and with numerous intrusive bodies (peridotites, pyroxenites, layered gabbros, syenites, granites). A geochemical distinction between high-Ti and low-Ti Emeishan basalts can be made, but just with the significance of compositional end-members since the published data define a continuous variation of the entire compositional range. Similar compositional variation occurs in the ultramafic lavas (picrites and komatiites) intercalated in the sequence of the Emeishan basalts, which are considered to be the products of undifferentiated primary magmas. Based on the geochemical data, the primary magmas could have been generated from distinct source materials (mantle plume, asthenosphere, lithospheric mantle), from compositionally heterogeneous mantle plume source or from a common source but with various degrees of mantle melting and crustal contamination. Considering the picritic composition of the primary magmas, a deep-seated differentiation of large volume of magma is needed to produce the extrusion of the relatively evolved Emeishan basalts. World class Fe-Ti-V oxide ore deposits are associated with the layered gabbros, while the ultramafic intrusions can host small Ni-Cu and PGE sulfide deposits. The intrusions containing Fe-Ti-V oxide deposits show remarkably continuous layering and probably derived from mafic magmas

  13. Koolen metamorphic complex, NE Russia: Implications for the tectonic evolution of the Bering Strait region

    NASA Astrophysics Data System (ADS)

    Akinin, Vyacheslav V.; Gelman, Mikhail L.; Sedov, Boris M.; Amato, Jeffrey M.; Millwer, Elizabeth L.; Toro, Jaime; Calvert, Andrew T.; Fantini, Riccardo M.; Wright, James E.; Natal'in, Boris A.

    Structural culminations of midcrustal metamorphic rocks are found on both sides of the Bering Strait in Alaska and Russia and occur within a magmatic belt of Cretaceous age. Geologic mapping in the Koolen Lake-Lavrentia Bay region of the Chukchi Peninsula, Russia, outlines the basic relations between deformation, metamorphism, and magmatism in one of these structural culminations, the Koolen metamorphic complex. Here, a 10-15 km-thick, southwest dipping structural succession of gneisses and high-grade metamorphic rocks is exposed. The succession consists of a lower sequence of granitic gneisses and an upper sequence of biotite-rich gneisses, quartzofeldspathic gneisses, lesser amphibolite and marble, and gneisses and schists with an increasing abundance of intercalated marble and calc-silicate units toward the top. All rocks are strongly foliated and exhibit north-south trending stretching lineations. Deformation occurred during sillimanite-grade metamorphism concurrent with partial melting of the crust. Metamorphic conditions varied from 7 to 3 kbar and from 700°C-500°C. Three fractions of monazite from a deformed pegmatite yielded ages of 104 Ma. Igneous monazite from undeformed biotite granite yielded a U-Pb age of 94 Ma, indicating peak metamorphism and deformation is Cretaceous. Relations in the Koolen complex are similar to those in the Kigluaik gneiss dome, Seward Peninsula, Alaska, where upper amphibolite to granulite facies metamorphism and deformation occurred between ~105 and 90 Ma. Our findings,together with regional relations, suggest that wholesale crustal extension or extensional collapse of the crust affected this region, perhaps during Pacific-ward migration of subduction. The results do not support large amounts of east-west shortening between North America and Russia predicted by poles of rotation related to opening of the North Atlantic in the Late Cretaceous and Tertiary.

  14. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  15. Analysis of Landsat TM data for active tectonics: the case of the Big Chino Fault, Arizona

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano

    1994-12-01

    The Big Chino Valley is a 50 km-long tectonic depression of the Basin and Range province of the South- western United States. It is bordered on the NE side by an important normal fault, the Big Chino Fault. The activity of the latter has been hypothesised on the basis of the presence of a 20 m-high fault scarp and on local geomorphological studies. Moreover, a magnitude 4.9 earthquake occurred in southern Arizona in 1976 has been attributed to this fault. The climate in the Big Chino Valley is semi-arid with average rainfall of about 400 mm per year; a very sparse vegetation cover is present, yielding a good possibility for the geo-lithologic application of remote sensing data. The analysis of the TM spectral bands shows, in the short wave infrared, a clear variation in the reflected radiance across the fault scarp. Also the available radar (SLAR) images show a marked difference in response between the two sides of the fault. An explanation of this phenomena has been found in the interaction between the geomorphic evolution, the pedological composition, and the periodic occurrence of coseismic deformation along the fault. Other effects of the latter process have been investigated on colour D- stretched images whose interpretation allowed to detect two paleoseismic events of the Big Chino Fault. This work demonstrates that important information on the seismological parameters of active faults in arid and semiarid climates can be extracted from the analysis of satellite spectral data in the visible and near -infrared.

  16. Erosional flux from tectonically active landscapes: Case studies from Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Allen, Philip; Gheorghiu, Delia; Rodes, Angel

    2016-04-01

    Erosion and sediment supply are fundamentally important controls on landscape evolution, governing the denudation of relief, the stratigraphy deposited in basins, and the ultimate destruction of orogens. However, quantifying the rates, timescales, and predominant processes of erosion remains a major challenge in many tectonically active areas. Here, we use Southern Italy as a case study to demonstrate how these challenges can be overcome. We present 15 new 10Be catchment-averaged erosion rates, for systems distributed along 5 active normal faults for which we have excellent constraints on throw rates along strike and uplift history. These footwall catchments have a total relief of up to 1800 m and throw rates up to 1.4 mm/yr. We show that sediment supply estimates based on the 10Be erosion rates agree well with sediment supply predictions based on the fault throw profiles. Our results suggest that about 80% of the material uplifted by the faults is being eroded at a similar magnitude to the fault throw rates, offering new insights into the topographic balance of uplift and erosion in this area. These findings imply that active normal faulting is the primary control on sediment supply in Southern Italy. Our field observations suggest that landslides are an important source of sediment in our study area, and are largely driven by incision in response to fault activity. Using a field-calibrated landslide inventory, we estimate landslide-derived sediment flux for our sampled catchments. These estimates correlate well with total sediment flux estimates, demonstrating quantitatively that landslides must be a major source of sediment. Their erosional signal is adequately captured by the 10Be analyses most likely because of the high frequency of small landslides and their high spatial density in these catchments (typically >10% of the total area), which ensures sufficient sediment mixing. Finally, we use our results to calibrate the BQART model of sediment supply, enabling

  17. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Deeds, Daniel A.; Kulongoski, Justin T.; Mühle, Jens; Weiss, Ray F.

    2015-02-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (Cre; ∼30 fmol kg-1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1-9 times Cre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10-980 times Cre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20-100 km) suggests that the SAFS potentially emits (0.3- 1) ×10-1 kg CF4 yr-1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 ×104km2 of granitic rock in California is estimated to release (0.019- 3.2) ×10-1 kg CF4 yr-1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial-interglacial transitions.

  18. Utilizing ERTS-1 imagery for tectonic analysis through study of the Bighorn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparisons of imagery of three seasons, late summer-fall, winter, and spring indicate that for this region fall imagery is the best for overall geologic analysis. Winter scenes with light to moderate snow cover provide excellent topographic detail owing to snow enhancement, lower sun angle, and clarity of the atmosphere. Spring imagery has considerable reduction of tonal contrast owing to the low reflecting heavy green grass cover which subdues lithologic effects; heavy snow cover in the uplands masks topography. Mapping of geologic formations is impractical in most cases. Separation into tonal units can provide some general clues on structure. A given tonal unit can include parts of several geologic formations and different stratigraphic units can have the same tonal signature. Drainage patterns and anomalies provide the most consistent clues for detecting folds, monoclines, and homoclines. Vegetation only locally reflects lithology and structure. False color infrared 9 x 9 transparencies are the most valuable single imagery. Where these can be supplemented by U-2 color infrared for more detailed work, a tremendous amount of information is available. Adequately field checking such a large area just in one scene is the major logistic problem even in a fairly well known region.

  19. The structure of the Chañarcillo Basin: An example of tectonic inversion in the Atacama region, northern Chile

    NASA Astrophysics Data System (ADS)

    Martínez, F.; Arriagada, C.; Peña, M.; Del Real, I.; Deckart, K.

    2013-03-01

    The Chañarcillo Basin is an Early Cretaceous extensional basin in northern Chile (27-29°S). The folding style of the syn-rift successions along the eastern side of the basin reveals an architecture consisting of a NNE-trending anticline “Tierra Amarilla Anticlinorium”, associated with the inversion of the Elisa de Bordos Fault. A set of balanced cross sections and palinspastic restorations across the basin show that a partially inverted “domino-style” half-graben as the structural framework is most appropriate for reproducing the deformation observed at the surface. This inverted system provides a 9-14 km shortening in the basin. The ages of the synorogenic deposits preserved next to the frontal limb of the “Tierra Amarilla Anticlinorium” suggest that basin inversion occurred close to the “K-T” boundary (“K-T” phase of Andean deformation). We propose that tectonic inversion is the fundamental deformation mechanism, and that it emphasizes the regional importance of inherent Mesozoic extensional systems in the evolution of the northern Chilean Andes.

  20. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad

    2016-07-01

    The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.

  1. Consequences of Chixculub Impact for the Tectonic and Geodynamic Evolution of the Gulf of Mexico North Carribean Region

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Crespy, A.; Martinez-Reyes, J.

    2013-05-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic

  2. Location and mechanism of the 1933 Diexi earthquake and its association with the regional tectonic deformation prior to the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Wang, K.; Shen, Z.

    2010-12-01

    The east margin of the Tibetan plateau is composed of the Longmenshan and Minjiang-Huya fault systems, which are tectonically active and produced the 1933 M7.5 Diexi, 1976 M7.2 Songpan doublelet, and 2008 M7.9 Wenchuan earthquakes. Among all the large events the 1933 Diexi earthquake is the least known, and its location and mechanism, despite of the importance in understanding the regional tectonic process and assessing the seismic hazards, have been subject to controversy. We collect worldwide seismic records of this earthquake, among which some polarities of the first arrival phases were picked, and use the data to relocate this earthquake and obtain the fault plane solution. The relocated epicenter is at (31.9°E, 103.6°N) and one of the nodal planes trends NNW, with the azimuth ranging N5~30°W. Taking this as the rupture plane of the Diexi earthquake, we conclude that the seismogenic structure was the southern segment of the Minjiang fault, which was dominated mainly by sinistral slip with a minor thrust component. Present day GPS velocity profile across the Minshan Mountains indicates that the Huya fault absorbs ~2 mm/yr crustal shortening, associated with the rapid uplift of the Minshan Mountains since Quaternary. A discrepancy between the focal mechanism solution of the 1933 Diexi earthquake and the GPS determined present sense of motion across the Minjiang fault may be attributed to the crustal deformation processes of the Longmenshan and Minjiang-Huya fault systems and their earthquake cycles, particularly the role that the Longmen shan fault system played in altering the regional deformation field late into the earthquake cycle prior to the 2008 great Wenchuan earthquake. We are using a visco-elastic FEM code to simulate the process taking into account of the layering and lateral change of the crustal and mantle materials. A 3-D evolution of the deformation field will be evaluated, and its temporal change due to crustal and mantle rheology across the

  3. Seismicity and Tectonics of the Lake Tahoe Basin through the Truckee, California Region

    NASA Astrophysics Data System (ADS)

    Seaman, T.; Ruhl, C. J.; Schmauder, G. C.; Smith, K. D.

    2013-12-01

    East dipping range bounding normal faults, NE-trending sinistral, and NW-trending dextral strike-slip faults of the Tahoe-Truckee, California-Nevada area define the transtensional strain environment of the Northern Walker Lane. North of Long Valley, California, the Sierran front is comprised of a series of left-stepping normal faults that terminate in the northern Lake Tahoe basin area. Directly north of Lake Tahoe, slip is transferred through the Truckee, California area and northward through a complex distribution of primarily conjugate strike-slip and minor normal fault systems. The recent identification of the Polaris fault zone extends Northern Walker Lake Belt dextral slip south of the Mohawk Valley fault zone to Truckee. The region accommodates as much as 10 mm/yr of dextral shear and has a history of M6+ earthquakes. In contrast to the general lack of background seismicity associated with major range bounding normal faults in the Tahoe region, there is abundant seismicity north of the Lake through this slip transfer zone (i.e., focal mechanisms of small magnitude earthquakes provide limited constraints on the dips of major range bounding normal faults). A NE-SW-trending zone of seismicity north of Lake Tahoe and extending into southeast Reno, Nevada, includes several M4+ strike-slip and normal faulting sequences, and numerous identifiable structures. An M4.5 (2004), M4.8 (2005), and associated general increase in seismicity in the N. Tahoe area may have been triggered by broader deformation resulting from a Moho-depth dike injection event in late 2003 (von Seggern et al., 2008). Preliminary analysis of short-period focal mechanisms reveals a change in T-axis trend from ESE west of the California-Nevada border to ENE east of the border. Focal mechanism and moment tensor solutions produce a ratio of 9/1 strike-slip to normal solutions in contrast to range bounding east dipping normal structures. Earthquake relocations display distinct lineaments of seismicity

  4. Interactions between recent tectonic activity and the evolution of mountain relief of the Inner Cottians Alps (Western Alps): preliminary morphotectonic map.

    NASA Astrophysics Data System (ADS)

    Bacenetti, Marco; Morelli, Michele; Cadoppi, Paola; Giardino, Marco; Perotti, Luigi; Perrone, Gianluigi

    2014-05-01

    Possible interactions between recent tectonic activity and the evolution of mountain relief have been investigated at the regional (1:50,000) and local (1:5,000) scale in the Germanasca Valley (Cottian Alps, NW-Italy) through an integrated, multidisciplinary approach combining Structural analysis, Quaternary Geology, Geomorphology and Geomatics. The inner edge of the Cottians Alps and the adjacent Po Plain are among the most densely populated portions of the Piemonte Region (NW-Italy). This area corresponds to the junction between the Alpine and Apennine chains and it is affected by a diffuse low- to moderate- seismicity (Ml<5) and hypocenters at a shallow crustal level (< 20 Km). Available apatite fission track data indicate that this sector reached shallow crustal levels, where brittle deformation mechanisms prevail since Late Oligocene times. Historical earthquakes (e.g. Prarostino's earthquakes, 1808 Ml=5.5; Cumiana's earthquakes, 1980 Ml=4.8) caused both material and social damage in the area. Since faults activity is often associated with characteristic geomorphological features, linear valleys, ridgelines, slope-breaks, steep slopes of uniform aspect, regional anisotropy and tilt of terrain, have been detected in the area. Analysis of digital elevation models, by means of numerical geomorphology, provides a tool to recognize linear features and characterizing the tectonics of an area in a quantitative way. Geomorphology and morphotectonic analyses have been performed using digital orthophotos (AGEA Orthophoto 2009), aerial stereo couples and DEMs (LiDAR5x5 meters, Regione Piemonte 2009). The morphotectonic lineament analysis was conducted using TerraExplorer® Software Systems, Inc. For the field mapping activities, it was used an application called "SRG2" (Support to Geological / Geomorphological Surveys), an extension for ArcPad (ESRI mobile GIS). Into ArcPad, the SRG2 application adds a toolbar made up of several functions for a useful mapping and

  5. The correlation between the characteristics of seismic wave propagation in Western Caucasus and the geological-tectonic features of the region

    NASA Astrophysics Data System (ADS)

    Kharazova, Yu. V.; Pavlenko, O. V.; Dudinskii, K. A.

    2016-05-01

    The relationship between the characteristics of seismic waves in the Western Caucasus and the geological-tectonic structure of the region is studied for identifying the specificity of seismic propagation in the mountainous regions with a complicated geological structure and forecasting the characteristics of the propagation from the geological and tectonic data. The interpretation is presented for the estimates of the Q-factor of the medium ( Q( f) ~ 55 f 0.9 in the region of Sochi and Q( f) ~ 90 f 0.7 in the region of Anapa), seismic wave enhancement in the upper crustal layers ( A( f) ~ 1), and peak ground acceleration residuals, which were previously determined from the records of the local earthquakes and show the distributions of local variations in the parameters of seismic wave radiation and propagation. The obtained characteristics are interpreted in the context of the up-to-date information about the tectonic, geological, and deep structure of the epicentral zones in the Western Caucasus and neighboring territory of the Black Sea. The discrepancies revealed in the low-frequency behavior of the Q-factor in the vicinities of Sochi and Anapa is accounted for by the spatial scale and character of tectonic dislocations of the rocks in these regions. The local variations in the parameters of seismic radiation and propagation are probably related to the geological features of the region such as the fault structures, including the thrusts, shatter zones, oblique seismic boundaries, variations in the thickness and consolidation of the sedimentary cover, as well as the peculiarities in the structure and material composition of the basement.

  6. Distribution, facies, ages, and proposed tectonic associations of regionally metamorphosed rocks in northern Alaska

    SciTech Connect

    Dusel-Bacon, C.; Brosge, W.P.; Till, A.B.; Doyle, E.O.; Mayfield, C.F.; Reiser, H.N.; Miller, T.P.

    1989-01-01

    Approximately half of the exposed bedrock in northern Alaska has been regionally metamorphosed. In the southern Brooks Range and on the Seward Peninsula, continental rocks experienced a clockwise pressure-temperature path that evolved during Middle Jurassic to late Early Cretaceous time from the low- to high-temperature subfacies of the blueschist facies and, finally, due to decreasing pressure, evolved to the greenschist facies. Metamorphism in the southern Brooks Range was associated with north-vergent compression along a south-dipping subduction zone that emplaced the oceanic rocks of the Angayucham terrane onto the continental margin. High-pressure metamorphism on the Seward Peninsula probably had a similar origin to that in the southern Brooks Range, but remnants of the overriding plate have not been identified, and the mechanism by which the high-pressure rocks in the two areas were separated is not known. In the Ruby geanticline, glaucophane, attesting to high-pressure metamorphism, is sporadically developed both within the continental rocks of the lower plate and, less commonly, near the base of the overlying oceanic thrust sheets. Although the majority of the metamorphic episodes that affected northern Alaska occurred during the Mesozoic, older episodes have been documented or are suspected in a few areas.

  7. Occurrences of large-magnitude earthquakes in the Kachchh region, Gujarat, western India: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Khan, Prosanta Kumar; Mohanty, Sarada Prasad; Sinha, Sushmita; Singh, Dhananjay

    2016-06-01

    Moderate-to-large damaging earthquakes in the peninsular part of the Indian plate do not support the long-standing belief of the seismic stability of this region. The historical record shows that about 15 damaging earthquakes with magnitudes from 5.5 to ~ 8.0 occurred in the Indian peninsula. Most of these events were associated with the old rift systems. Our analysis of the 2001 Bhuj earthquake and its 12-year aftershock sequence indicates a seismic zone bound by two linear trends (NNW and NNE) that intersect an E-W-trending graben. The Bouguer gravity values near the epicentre of the Bhuj earthquake are relatively low (~ 2 mgal). The gravity anomaly maps, the distribution of earthquake epicentres, and the crustal strain-rate patterns indicate that the 2001 Bhuj earthquake occurred along a fault within strain-hardened mid-crustal rocks. The collision resistance between the Indian plate and the Eurasian plate along the Himalayas and anticlockwise rotation of the Indian plate provide the far-field stresses that concentrate within a fault-bounded block close to the western margin of the Indian plate and is periodically released during earthquakes, such as the 2001 MW 7.7 Bhuj earthquake. We propose that the moderate-to-large magnitude earthquakes in the deeper crust in this area occur along faults associated with old rift systems that are reactivated in a strain-hardened environment.

  8. Utilizing ERTS-A imagery for tectonic analysis through study of Big Horn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. MSS scene 1085-17294 of the Big Horn region has been subjected to detailed structural analysis. Band 7 is particularly good for revealing structural and drainage patterns because of enhance topographic detail and the subdued vegetational contrasts. Considerable stereo coverage through sidelap with adjoining scenes adds to the effectiveness of the study and has been used on both positive transparencies and enlarged prints. Negative prints of Band 7 positive transparencies have proven to be much more useful than positive prints because the higher resolution of the positive transparencies can be maintained. The Bighorn Mountains are crisscrossed by a number of prominent topographic linears, most of which can be correlated with known fault and shear zones in the Precambrian crystalline core. Many of these do not appear to continue into the flanking sedimentary rocks and a few that do (Tensleep, Tongue River lineaments) are very difficult to trace farther out into the basins. The Tongue River lineament, long a source of speculation and uncertainty as to its existence, appears as a very prominent discontinuity in the imagery.

  9. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  10. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  11. Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Schlindwein, V.; Schenke, H.-W.; Jokat, W.

    2011-03-01

    With its remote location in the ice-covered Fram Strait, Lena Trough is a poorly known segment of the global mid-ocean ridge system. It is a prominent member of the ultra-slow spreading mid-ocean ridges but its spreading mechanisms are not well understood. We relocalized teleseismically recorded earthquakes from the past five decades to identify tectonic processes in Lena Trough and the adjacent Spitsbergen Fracture Zone (FZ). During two cruises with RV Polarstern in 2008 and 2009 we deployed seismic arrays on ice floes to record the local seismicity of Lena Trough. We could identify and localize microseismic events which we assume to be present in the entire rift valley. In contrast, our relocalization of teleseismically recorded earthquakes shows an asymmetric epicentre distribution along Lena Trough with earthquakes occurring predominately along the western valley flanks of Lena Trough. In 2009 February/March, several high-magnitude earthquakes peaking in an Mb 6.6 event occurred in an outside-corner setting of the Spitsbergen FZ. This is the strongest earthquake which has ever been recorded in Fram Strait and its location at the outside-corner high of the ultra-slow spreading ridge is exceptional. Comparing the seismicity with the magnetic anomalies and high-resolution multibeam bathymetry, we divide Lena Trough in a symmetrically spreading northern part and an asymmetrically spreading southern part south of the South Lena FZ. We propose that a complex interaction between the former De Geer Megashear zone, which separated Greenland from Svalbard starting at Late Mesozoic/Early Cenozoic times, and the developing rift in the southern Lena Trough resulted an increasing eastward dislocation towards the Spitsbergen FZ between older spreading axes and the recent active spreading axis which we believe to be located west of the bathymetric rift valley flanks in a wide extensional plain.

  12. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  13. Extensional geometries as a result of regional scale thrusting: tectonic slides of the Dunlewy-NW Donegal area, Ireland

    NASA Astrophysics Data System (ADS)

    Hutton, Donald H. W.; Alsop, G. Ian

    1995-09-01

    The synmetamorphic ductile dislocations, known in the British Caledonian literature as 'Tectonic Slides', pose a classical structural problem. That is, despite being associated with synchronous contractional folds and cleavages the low angle dislocations have the effect, in many celebrated cases, of juxtaposing younger over older rocks: a geometry normally associated with extensional rather than contractional deformation. Recent models have attempted to demonstrate that this is the result of thrust reactivation of original, sedimentary, extensional growth faults. The Appin Group Dalradian metasediments of the complex and small Dunlewy area of NW Donegal, Ireland, contain the following geometric elements: (a) an early strike-swing-related stratigraphic facies change; (b) a major inter-deformational dolerite sheet; (c) major regional recumbent folds and slides; (d) major structures related to the 400 Ma sinistral Main Donegal Granite shear zone. This solution to the structural geometry reveals that the early mid-crustal (~11 km depth) D2 Ardsbeg-Dunlewy Slide is a thrust to the northwest. Its hangingwall contains rocks two-thirds of which are younger than the rocks of the footwall, together with major recumbent folds, coeval with the underlying thrust, which face downwards into the thrust in the direction of transport. Rather than thrust reactivation of an original extensional growth fault, we find that both stratigraphic and structural constraints are satisfied by a double thrusting model, with fault-bend folding onto an upper ramp of an earlier formed but penecontemporaneous and kinematically linked major fold pair. This solution to the geology also allows us to recognize that the regional (pre-granite) structure of the Dalradian of NW Donegal is a series of major D2 synmetamorphic thrust bounded nappes possibly involving up to 250 km of northwesterly overthrusting.

  14. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    NASA Astrophysics Data System (ADS)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion

  15. Tectonic evolution of the central Brooks Range mountain front: Evidence from the Atigun Gorge region

    USGS Publications Warehouse

    Mull, C.G.; Glenn, R.K.; Adams, K.E.

    1997-01-01

    Atigun Gorge, at the northern front of the eastern Endicott Mountains, contains well-exposed rocks of the upper part of the Endicott Mountains allochthon and rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. These allochthons contain rocks as young as Early Cretaceous (Valanginian) and are separated by a nearly vertical fault zone that contains exotic blocks of Triassic and Jurassic chert and silicified mudstone. Siliceous rocks of this type are not present in the Endicott Mountains allochthon but are characteristic of the Picnic Creek, Ipnavik River, and some of the other allochthons that structurally overlie the Endicott Mountains allochthon in the central and western Brooks Range. These exotic blocks, therefore indicate that structurally higher rocks of either the Picnic Creek or Ipnavik River allochthon were emplaced during the Early Cretaceous and are preserved along the northern flank of the eastern Endicott Mountains. The deformed thickness of this higher allochthon in the subsurface north of the mountains is unknown but probably exceeds 2 kilometers. Similar relations are mapped east of Atigun Gorge in an area of structural transition from the eastern Endicott Mountains into the northern Philip Smith Mountains, which are formed by the parautochthonous North Slope stratigraphic assemblage. The allochthonous rocks at the mountain front are regionally unconformably overlain by proximal Lower Cretaceous (Albian) foredeep conglomerate at the southern flank of the Colville basin, but at Atigun Gorge, the base of these deposits is interpreted as a possible back thrust at a triangle zone. Conglomerate clasts in the foredeep deposits are dominantly chert, mafic igneous rock, and other lithologies characteristic of the Picnic Creek and Ipnavik River allochthons and scattered clasts from the Endicott Mountains allochthon. The conglomerates show that the chert-rich allochthonous rocks and the Endicott Mountains allochthon were emplaced in the

  16. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    SciTech Connect

    Zilberman, E.; Wachs, D. )

    1988-02-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.

  17. Martian impact basins: Morphology differences and tectonic provinces

    NASA Technical Reports Server (NTRS)

    Stam, M.; Schultz, P. M.; Mcgill, G. E.

    1984-01-01

    Detailed geomorphic and structural mapping of five Martian basins and preliminary study of eleven other basins reveal four characteristic styles of modification that relate to the degree and age of past tectonic activity. Within regions that exhibit no evidence for tectonic activity, the modification style can be used to distinguish areas dominated by different exogenic processes. A framework for understanding these different styles of basin modification is provided.

  18. Volcanically Active Regions on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shown here is a portion of one of the highest-resolution images of Io (Latitude: +10 to +60 degrees, Longitude: 180 to 225 degrees) acquired by the Galileo spacecraft, revealing immense lava flows and other volcanic landforms. Several high-temperature volcanic hot spots have been detected in this region by both the Near Infrared Mapping Spectrometer and the imaging system of Galileo. The temperatures are consistent with active silicate volcanism in lava flows or lava lakes (which reside inside irregular depressions called calderas). The large dark lava flow in the upper left region of the image is more than 400 km long, similar to ancient flood basalts on Earth and mare lavas on the Moon.

    North is to the top of the picture and the sun illuminates the surface from the left. The image covers an area 1230 kilometers wide and the smallest features that can be discerned are 2.5 kilometers in size. This image was taken on November 6th, 1996, at a range of 245,719 kilometers by the Solid State Imaging (CCD) system on the Galileo Spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  20. The effect of plate movements in the northern region of South America on tectonics and sedimentation in the Eastern Llanos Basin

    SciTech Connect

    Pena, L.E. )

    1993-02-01

    The geological configuration of the Eastern Llanos pericratonic mega-basin has been directly affected by the overall tectonic regime experienced in the Northern part of South America. Interaction between the Pacific (Cocos), South American and Caribbean Plates generated a regional compressional dextral rotational force expressed as a regional North-South striking structural trend in the southern part of the basin and an east-west striking trend in portion nearest the Caribbean Plate Boundary. Nearly 90% of the strike-slip faults in this northern area show right lateral displacement. The majority of the structures in the East Llanos basin are related to the Late Miocene uplift of the Eastern Andes. Nevertheless we can subdivide the structures into two major groups: pre-Miocene and post-Miocene. By being able to recognize pre-Miocene Cretaceous age structures, much altered by later movements, we can envision remigration of hydrocarbons out of early traps into those created more recently. Plate tectonic events in the north of South America have produced a general regional structure strike directional through time. Sedimentary-tectonic relationships depend upon regional phenomena which, if interpreted correctly, help to sub-divide the mega-basin into genetically related parts. By understanding the mechanism that creates large scale structural features, the geologist is thus provided with an important tool that can aid him in exploring the Eastern Llanos basin.

  1. Structural evolution of the Rieserferner Pluton: insight into the localization of deformation and regional tectonics implications

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio

    2016-04-01

    deformation structures within the RFP is controlled by the development and later reactivation in shear of two main sets of joints during cooling and progressive exhumation of the pluton. These joints were either exploited as faults or localized ductile shear zones. In the RFP, the kinematics of shear reactivation is complex, with the same joint set recording different senses of shear and transport directions. Preliminary kinematic analysis and qualitative paleostress reconstruction show that there has been a clockwise rotation of the main regional shortening direction from WNW-ESE, during the first ductile event, to N-S during later brittle deformation. These two different shortening directions fit with those inferred, respectively, for Austroalpine nappe stacking by Ratschbacher (1989) and for the Alpine convergence during late Oligocene-Miocene within the Tauern window (Pennacchioni & Mancktelow, 2007). References Cesare, B. (1994). Hercynite as the product of staurolite decomposition in the contact aureole of Vedrette di Ries, eastern Alps, Italy. Contributions to Mineralogy and Petrology, 116(3), 239-246. Pennacchioni, G., Di Toro, G., Brack, P., Menegon, L., & Villa, I. M. (2006). Brittle-ductile-brittle deformation during cooling of tonalite (Adamello, Southern Italian Alps). Tectonophysics, 427(1), 171-197. Pennacchioni, G., & Mancktelow, N. S. (2007). Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions. Journal of Structural Geology, 29(11), 1757-1780. Ratschbacher, L., Frisch, W., Neubauer, F., Schmid, S. M., & Neugebauer, J. (1989). Extension in compressional orogenic belts: the eastern Alps. Geology, 17(5), 404-407. Romer, R. L., & Siegesmund, S. (2003). Why allanite may swindle about its true age. Contributions to Mineralogy and Petrology, 146(3), 297-307. Steenken, A., Siegesmund, S., & Heinrichs, T. (2000). The emplacement of the Rieserferner Pluton (Eastern

  2. Inverted Regional Metamorphism in the Coaxially Refolded Tonga Formation: Evidence for Cretaceous Accretional Tectonics in the Cascades Crystalline Core

    NASA Astrophysics Data System (ADS)

    Jensen, L. A.; Lebit, H. D.; Paterson, S. R.; Miller, R. B.; Vernon, R. H.

    2008-12-01

    The Tonga Formation, on the westernmost boundary of the Cascades crystalline core, records Cretaceous plutonism, contact to regional metamorphism, and multiple episodes of folding related to intense east-west contractional deformation. The Tonga Formation is exposed in a fault-bounded, north-south elongate tectonic domain that comprises pelite-psammite metasediments, which increase from greenschist to amphibolite grade (south to north). This metamorphic gradient is inverted relative to a major westward verging and downward facing fold system that dominates the internal architecture of the formation. Sedimentary structures are remarkably well-preserved in the Tonga Formation, which allowed for the determination of younging directions. Using these and bedding-cleavage relationships, detailed field mapping indicates a stratigraphically overturned section that forms a large-scale antiformal syncline (exposed in the northern and eastern domain) and related synformal anticline (southern and western domain). The overturned nature of the strata and the geometry of gently north-plunging folds imply upsection a pre-existing tight, recumbent anticline refolded into a co-axial (type III) fold interference pattern. The core of this early anticline, exposed in the northern domain, corresponds with the higher metamorphic conditions of the inverted metamorphic gradient and early Cascades regional metamorphism ('M1') rarely decipherable in the adjacent Chiwaukum Schist. The co-axial, superposed folding in the Tonga Formation and the overall N-S arrangement of the component fold generations suggests a strong component of east-west shortening in the foreland of the Cascades core. Fold geometries account for the inverted metamorphic zonation as well as control the localization of plutons, which also elongate parallel to the regional fold axes. The central and southern and portion of Tonga Formation records subsequent contact ('M2') and regional ('M3') metamorphism, and appears to be a

  3. Tectonic and karstic effects on the western Taurus region, southwestern Turkey: Relations to the present temperature gradients and total organic carbon content

    SciTech Connect

    Demirel, I.H.; Gunay, Y.

    2000-06-01

    The western Taurus region is one of the promising hydrocarbon provinces and the largest karstic terrain of Turkey. The Mesozoic Beydaglari units deposited in the study area are composed mainly of a carbonate succession which has potential hydrocarbon source rocks of various ages. To confirm the tectonic and karstic influence on the regional temperature gradient and total organic carbon content, subsurface data obtained from four drillholes, and the results of the surface samples and water samples analyses, were used. The low salinity values (less than 2,500 mg/liter) of the formation water, and the measured hole temperatures, indicate the presence of the meteoric water circulation in the geologic section. Since the Late Miocene, intensive tectonic deformations and karstification have provided the development of the aquifer characteristics of the Beydaglari units. Water circulation in the aquifer system has influenced the total organic carbon content and karstic conduits within carbonates.

  4. Basement and crustal structure of the Davis Sea region (East Antarctica): implications for tectonic setting and continent to oceanic boundary definition

    USGS Publications Warehouse

    Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.

    2007-01-01

    This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.

  5. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  6. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  7. Importance of active tectonics during karst formation. A Middle Eocene to Pleistocene example of the Lina Moutains (Irian Jaya, Indonesia)

    NASA Astrophysics Data System (ADS)

    Thery, J.-M.; Pubellier, M.; Thery, B.; Butterlin, J.; Blondeau, A.; Adams, C. G.

    1999-05-01

    The Lina Moutains show a typical example of karst formation associated to recent and active tectonics. The limestone samples were collected from giant potholes present beneath the heavy rainforest, during speleological expeditions to the Bird's Head of Irian-Jaya. Micropalaeontological data allow us to give a Middle Pleistocene age for the most recent karst formation. A detailed stratigraphy between the Upper Lutetian and the Middle Pleistocene was recorded, with tectonic events during the Oligocene and Pleistocene. The edge of the resurgence layer was also dated. We also conclude the probable existence of a subterraneous network downhill of the karst within the most recent levels of the Kais Limestone formation. We replace this formation within the tectonic evolution of this area between the Eocene and the Middle Pleistocene, in conjunction with the oblique convergence of the Pacific plate carrying volcanic arc fragments and the Australian margin, which resulted in folding, normal faulting associated with local extension, and wrench motion, which are settings capable of creating uplift of the carbonated platform.

  8. Tectonics of Neyterkob corona on Venus

    NASA Technical Reports Server (NTRS)

    Kauhanen, K.

    1993-01-01

    Neyterkob double corona (50 deg N 202 deg) presents an area of corona-related interfering tectonic patterns which are formed in different phases of evolution of the corona and modified by regional stresses. Analyzing the patterns can reveal something about the coronal formation. Tectonic features form distinct units on topographic depressions, slopes, and volcanic flows extending over one radius of the corona. A remarkable amount of compressional features were found near the rim and related to interaction between adjacent coronae. Radial extension was mainly observed on a peculiar NE-SW trending high crossing the corona. Concentric fractures were found to the east partly connected to the lithospheric flexure. Tectonic features indicate movements of volcanic activity and modification of the area by more regional stresses.

  9. Coexistence of thin- and thick-skinned tectonics in Zakynthos area (western Greece): Insights from seismic sections and regional seismicity

    NASA Astrophysics Data System (ADS)

    Kokkalas, S.; Kamberis, E.; Xypolias, P.; Sotiropoulos, S.; Koukouvelas, I.

    2013-06-01

    The structural style of the fold-and-thrust belt in the western part of the Hellenic foreland in an area offshore the Zakynthos Island is assessed on the basis of two lithoseismic profiles, earthquake data and field data in the broader area. The compressional deformation in the area is due to the late phases of subduction and collision between Aegean and African plates. Shortening is affecting a ~ 6-7 km thick sedimentary succession of Mesozoic carbonate rocks and evaporites, as well as Miocene to Pleistocene foredeep clastic deposits. Structures accommodating shortening in the Pre-Apulian and Ionian zones comprise a blind imbricate thrust system and fault-propagation folds that formed over a 10-11 km deep detachment. The thrust system comprises an array of forward-verging thrust faults, which sole out in a low-angle hinterland dipping décollement, separating the Mesozoic cover from the pre-Mesozoic basement. In this tectonic context, the Triassic evaporitic layers seem to play an important role in the vertical partitioning of the deformation style acting as either detachment horizons or lining the imbricate thrust surfaces. The concentration of recent seismic activity at a depth between 6 and 16 km implies that the pre-Mesozoic basement is also involved in the deformation in the form of upthrust basement slices, suggesting a combination of thick and thin-skinned deformation across this domain of the External Hellenides fold-and-thrust belt. The frontal part of the belt shows higher seismic activity along a low-angle blind thrust, as well as also in the areas where the individual thrust planes branch at depth to the basal décollement.

  10. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  11. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  12. Emerging flux in active regions. [of sun

    NASA Technical Reports Server (NTRS)

    Liggett, M.; Zirin, H.

    1985-01-01

    The rates at which flux emerges in active and quiet solar regions within the sunspot belts are compared. The emerging flux regions (EFRs) were identified by the appearance of arch filament structures in H-alpha. All EFRs in high resolution films of active regions made at Big Bear in 1978 were counted. The comparable rate of flux emergence in quiet regions was obtained from SGD data and independently from EFRs detected outside the active region perimeter on the same films. The rate of flux emergence is 10 times higher in active regions than in quiet regions. A sample of all active regions in 31 days of 1983 gave a ratio of 7.5. Possible mechanisms which might funnel new magnetic flux to regions of strong magnetic field are discussed.

  13. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  14. Normal faulting along the western side of the Matese Mountains: Implications for active tectonics in the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Dichiarante, Anna Maria; Auciello, Eugenio; Saroli, Michele; Stoppa, Francesco

    2016-01-01

    We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4-5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3-0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano - Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW-SE and progressively bending to the E-W in its southern part, and a 7 km-long segment striking E-W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over). An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese - Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2-3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic

  15. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  16. CHARACTER AND REGIONAL SIGNIFICANCE OF GREAT FALLS TECTONIC ZONE, EAST-CENTRAL IDAHO AND WEST-CENTRAL MONTANA.

    USGS Publications Warehouse

    O'Neill, J. Michael; Lopez, David A.

    1985-01-01

    The Great Falls tectonic zone, here named, is a belt of diverse northeast-trending geologic features that can be traced from the Idaho batholith in the Cordilleran miogeocline, across thrust-belt structures and basement rocks of west-central and southwestern Montana, through cratonic rocks of central Montana, and into southwestern-most Saskatchewan, Canada. Geologic mapping in east-central Idaho and west-central Montana has outlined a continuous zone of high-angle faults and shear zones. Recurrent fault movement in this zone and strong structural control over igneous intrusion suggest a fundamental tectonic feature that has influenced the tectonic development of the Idaho-Montana area from a least middle Proterozoic time to the present. Refs.

  17. Long-lasting tectonic activities of the Lepontine Dome. New evidence from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Elfert, Simon; Reiter, Wolfgang; Spiegel, Cornelia

    2013-11-01

    To investigate the Neogene exhumation history of the central European Alps, we apply low-temperature thermochronology in combination with thermal history modelling. Fission track and (U-Th-Sm)/He ages on apatites from the central Lepontine Dome (Ticino, Switzerland) indicate higher exhumation rates in the centre of the dome and rather moderate exhumation at the northern and southern boundaries since Neogene times. We present a model for explaining the latest stage exhumation of the central Lepontine Dome and show that (I) both episodic and continuous exhumations are found on small-scale throughout the Neogene, (II) compressional tectonics control the exhumation until the Late Neogene, (III) the exhumation regime changes between 6 and 4 Ma and (IV) increasing hinterland exhumation rates at the Mio-Pliocene boundary cannot be related to tectonic structures of the dome and they are thus explained by climatic changes.

  18. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  19. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  20. Eocene-Oligocene calcalkaline magmatism in the Lut-Sistan region, eastern Iran: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Pang, K.; Chung, S.; Zarrinkoub, M. H.; Khatib, M. M.; Mohammadi, S. S.; Lee, H.; Chu, C.; Lin, I.

    2011-12-01

    lithospheric thinning and asthenospheric upwelling in an extensional setting, which is supported by independent lines of structural, stratigraphic and magmatic evidence. Our results indicate that Eocene-Oligocene magmatism in the Lut-Sistan region is related to a post-collisional tectonic setting, implying that the conventional linkage between calcalkaline magmatism sensu lato and continental arc settings needs to be applied with great caution. References Peacock, M.A., 1931. Classification of igneous rock series. Journal of Geology 39, 54-67.

  1. Synthesis of Late Cretaceous-Quaternary tectonic, sedimentary and magmatic processes and basin formation related to episodic subduction-collision in the easternmost Mediterranean region

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Timothy; McCay, Gillian; Palamakumbura, Romesh; Taslı, Kemal

    2015-04-01

    subaerial lineament; 8. Mid-Late Quaternary: gradual tectonic uplift giving rise to a flight of shallow marine to non-marine terrace deposits, that were also influenced by eustatic sea-level fluctuations and climatic change. The stages of basin development were punctuated by four main episodes of compression/uplift. A. Late Miocene underthrusting/metamorphism/exhumation; B. Mid-Eocene southwards thrusting; C. Late Miocene southward thrusting/left-lateral transpression; D. Late Pliocene-Mid Quaternary tectonic uplift. In a setting of continuing plate convergence why did the nature of sedimentation change so dramatically through time? The deformation front between the Kyrenia Range and the Troodos Massif is delineated by the Ovgos Fault which shows an episodic development including Late Miocene compression (transpression) and Quaternary left-lateral strike slip. The Late Cretaceous volcanogenic rocks relate to a phase of regional arc magmatism also documented in SE Turkey. Subduction appears to have slowed or ceased during the Maastrichtian-Palaeocene while the active margin experienced extension or transtension. Following final closure of a Tethyan oceanic basin further north ('northern Neotethys') subduction appears to have relocated southwards and re-activated/accelerated during the Early Eocene triggering large-scale collapse of the over-riding plate and olistostrome formation. Diachronous continental collision was in progress during Early Miocene causing strong uplift of the over-riding plate, intense erosion and voluminous siliciclastic sediment supply to a fore-arc type basin in the N Cyprus-Misis area (becoming foreland basin further east, in SE Turkey). The Pliocene was characterised by eastward 'tectonic escape' of the Anatolian plate towards the Aegean and this allowed relatively fine-grained deposition to accumulate along the former convergent continental margin in northern Cyprus and adjacent areas (e.g. Mesaoria basin). The dramatic late Pliocene to mid

  2. The tectonics of Titan: Global structural mapping from Cassini RADAR

    NASA Astrophysics Data System (ADS)

    Liu, Zac Yung-Chun; Radebaugh, Jani; Harris, Ron A.; Christiansen, Eric H.; Neish, Catherine D.; Kirk, Randolph L.; Lorenz, Ralph D.

    2016-05-01

    The Cassini RADAR mapper has imaged elevated mountain ridge belts on Titan with a linear-to-arcuate morphology indicative of a tectonic origin. Systematic geomorphologic mapping of the ridges in Synthetic Aperture RADAR (SAR) images reveals that the orientation of ridges is globally E-W and the ridges are more common near the equator than the poles. Comparison with a global topographic map reveals the equatorial ridges are found to lie preferentially at higher-than-average elevations. We conclude the most reasonable formation scenario for Titan's ridges is that contractional tectonism built the ridges and thickened the icy lithosphere near the equator, causing regional uplift. The combination of global and regional tectonic events, likely contractional in nature, followed by erosion, aeolian activity, and enhanced sedimentation at mid-to-high latitudes, would have led to regional infilling and perhaps covering of some mountain features, thus shaping Titan's tectonic landforms and surface morphology into what we see today.

  3. Estimate of the post-Last Glacial Maximum tectonic subsidence and attempt to elucidate the subsurface geometry of the active Shanchiao Fault in the Taipei metropolis, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.; Teng, L. S.

    2011-12-01

    The Taipei Metropolis, home to some 10 million people, is subject to seismic hazard originated from not only ground shaking in thick alluvial deposits due to distant faults or sources scattered throughout the Taiwan region, but also active faulting directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Plio-Pleistocene arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for the areal extent and magnitude of its recent activity. Based on the growth faulting analysis in the Wuku profile in the central portion of the fault, one key horizon - the top of the Jingmei Conglomerate which was an alluvial fan formed rapidly when a major drainage reorganization occurred during the Last Glacial Maximum - serves to be the marker of tectonic subsidence since its inception around 23 ka. A determination and compilation of the depths of the Jingmei Conglomerate top horizon from nearly 500 borehole records within the Taipei Basin demonstrates that the hanging-wall deforms in a roll-over fashion and the offset is largest in the Wuku-Luzhou area in the central portion of the fault and decreases toward the southern tip of the fault. A geologic profile across the fault zone in the Luzhou area reveals the similar main-branch fault half-negative flower structural pattern observed in the Wuku profile, a phenomenon we interpreted to be originated from the geometry of the basin basement and the strong rheological contrast between unconsolidated basin sediments and basement rocks. We also attempt to resolve the poorly-known subsurface geometry of the Shanchiao Fault by simple elastic dislocation models. The surface deformation recorded by the above compilation is representative of the latest Quaternary period as it spans probably more than 10 earthquake

  4. Late Pleistocene-Holocene uplift driven terrace formation and climate-tectonic interplay from a seismically active intraplate setting: An example from Kachchh, Western India

    NASA Astrophysics Data System (ADS)

    Prizomwala, S. P.; Das, Archana; Chauhan, G.; Solanki, T.; Basavaiah, N.; Bhatt, Nilesh; Thakkar, M. G.; Rastogi, B. K.

    2016-07-01

    Fluvial terrace formation is often regulated by external forcings like climate, tectonic and eustatic changes. These terraces, particularly in a dryland environment, preserves the discrete signatures of these external forcings, thus enabling us to reconstruct the fluvial response to the late Quaternary palaeoenvironmental changes and factors governing them. The present study focuses on reconstructing the aggradation/incision phases in the Lotia River which is located in the eastern segment of the Northern Hill Range (NHR) of the Kachchh Peninsula. The Lotia river drains through Mesozoic rocks before cutting across the Kachchh Mainland Fault (KMF) and finally debouch in the Banni Plains. Reconstruction based on tectonic geomorphology, sedimentology, sediment geochemistry, mineral magnetic, and OSL chronology suggests the fluvial response to monsoon variability archived during the last 15 ka. The time frame was also marked by incision enhanced by uplift along the KMF, which led to strath terrace formation. The accommodation space thus created was filled by an aggradational event between 14.8 ka and 10.6 ka. Sedimentological and geochemical parameters have also suggested that the time period between 12.5 ka and 11.5 ka showed a decline in the monsoon strength, which coincides with 'Younger Dryas'. It has been observed that the sediments spanning between 10.6 ka and 7.8 ka are absent from the archive, which is most likely the manifestation of the early Holocene optimum that led to severe erosional processes. The period between 7.8 ka and 3.3 ka is marked as another aggradational phase with fluctuating climatic conditions. At 3.3 ka, the region has experienced an incision of 4 m, which led to the formation of Holocene terrace T1, most likely due to tectonic uplift. During the last 3.3 ka, another pulsative uplift has occurred, which led to the formation of unpaired Holocene terrace T2, along with tilting of the Lotia basin. Based on the OSL chronology of bedrock strath

  5. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  6. Triassic post collision igneous activity and granulite facies metamorphic event in the Yangpyeong area, South Korea and its meaning to the tectonics of Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, S.; Oh, C.

    2009-12-01

    The Korean peninsula is tectonically positioned in the eastern margin of the Asia continent and the Gyeonggi massif is situated in the center part of Korean peninsula. Triassic (231 Ma) eclogite was first found in the Hongseong area, the southwestern part of the Gyeonggi Massif, which suggested that the Hongseong area is the extension of Triassic collision belt between the North and South China blocks, in China. The 257-226 post-collisional mangerite was also found in the Odesan area, the eastern part of Gyeonggi massif. Based on these new findings, it was proposed that the line connecting Hongseong and Odesan areas is the collision belt between the North and South China blocks. It was also reported that 247 Ma ultrahigh temperature metamorphism occurred together with the intrusion of mangerite in the Odesan area indicating that regional metamorphism occurred together with the post-collision igneous activity. The Yangpyeong area locates in the middle part of the Hongseong-Odesan collision belt. The area mainly consists of Precambrian migmatitic gneiss which was intruded by Triassic igneous complex. The igneous complex mainly consists of gabbro and porpyritic syeno-diorite and SHRIMP age dating indicates that they intruded at 227 ± 4 Ma. They are shoshonitic and high-K series and have high Ba, Sr contents. They show LREE enriched pattern and Nb, Ta, P, Ti depletion in the chondrite- and primitive-mantle-normalized trace element patterns, respectively. In the tectonic discrimination diagrams, gabbros are plotted in the within plate tectonic field and porpyritic syeno-diorites are plotted in the Post-collision field. These geochemical characters indicate that they formed in the within plate after continental collision. Two metamorphic ages (1861 ± 6 Ma, and 235 ± 6 Ma) are obtained from the migmatitic gneiss. The peak metamorphic conditions of the first Precambrian metamorphism are 750-780°C and 8-10 kbar indicating intermediate-P/T metamorphism. On the other hand

  7. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard

    NASA Astrophysics Data System (ADS)

    Chevalier, Marie-Luce; Leloup, Philippe Hervé; Replumaz, Anne; Pan, Jiawei; Liu, Dongliang; Li, Haibing; Gourbet, Loraine; Métois, Marianne

    2016-07-01

    The Litang fault system (LTFS) in the eastern Tibetan Plateau has generated several large (7.5 > M > 7) historical earthquakes and has exhumed granitic peaks rising > 1700 m above the mean elevation of the plateau, despite being located within a tectonic block surrounded by highly active faults. We study horizontally offset moraine crests from the Cuopu basin and a vertically offset alluvio-glacial fan from the eastern Maoya basin. We determine a left-lateral rate of 0.09 ± 0.02 mm/yr along a slowly slipping secondary fault at Cuopu, while the main active fault at present is the normal range-front N Cuopu fault, along which we determined a left-lateral rate of 2.3 ± 0.6 mm/yr since 173 ka. At Maoya fan, matching the vertical 12 ± 1 m cumulative offset with the 21.7 ± 4.2 ka fan age yields a vertical (normal) rate of 0.6 ± 0.1 mm/yr. This rate is very similar to that recently determined at the same location using low-temperature thermochronology (0.59 ± 0.03 mm/yr since 6.6 ± 0.5 Ma). Left-lateral rates along the main faults of the LTFS range between 0.9 and 2.3 mm/yr at all timescales from a few years to ~ 6 Ma. The facts that the LTFS is highly segmented and that at present, the Cuopu, Maoya and South Jawa segments are mostly normal (while the Litang and Dewu segments are left-lateral/normal), could prevent the occurrence of M > 7.5 destructive earthquakes along the LTFS, as is generally assumed. However, motion on the normal faults appears to be linked with motion on the strike-slip faults, potentially allowing for exceptional larger earthquakes, and implying that the area is not experiencing pure ~ NS extension but rather NW-SE left-lateral transtension. Figure S2: Boulders collected for 10Be surface-exposure dating at Maoya fan, with their approximate sizes. Figure S3: Left: (A) Shaded relief map of available GPS velocities in the study area, as calculated by Liang et al. (2013), plotted in an Eurasia-fixed reference frame. Red arrows are used in profile

  8. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Wang, Hai-hong; Luo, Zhi-cai; Ning, Jin-sheng; Liu, Hua-liang

    2015-03-01

    It is significant to identify urban active faults for human life and social sustainable development. The ordinary methods to detect active faults, such as geological survey, artificial seismic exploration, and electromagnetic exploration, are not convenient to be carried out in urban area with dense buildings. It is also difficult to supply information about vertical extension of the deeper faults by these methods. Gravity, reflecting the mass distribution of the Earth's interior, provides an alternative way to detect faults, which is more efficient and convenient for urban active fault detection than the aforementioned techniques. Based on the multi-scale decomposition of gravity anomalies, a novel method to invert multilayer horizontal tectonic stresses is proposed. The inverted multilayer stress fields are further used to infer the distribution and stability of the main faults. In order to validate our method, the multilayer stress fields in the Shenzhen fault zone are calculated as a case study. The calculated stress fields show that their distribution is controlled significantly by the strike of the main faults and can be used to derive depths of the faults. The main faults in Shenzhen may range from 4 km to 20 km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  9. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stöckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc

  10. Overview of ophiolites and related units in the Late Palaeozoic-Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Karamata, Stevan; Šarić, Kristina

    2009-03-01

    The northern Balkan Peninsula, including Serbia, Montenegro, Bosnia, Croatia and the Former Yugoslavian Republic of Macedonia, represents an excellent region for the study of tectonic processes related to Mesozoic Tethyan ophiolite genesis and emplacement. We first summarise the main tectonic units of the northern Balkan Peninsula and then use this information to discuss tectonic processes, including rifting, sea-floor spreading, ophiolite genesis and emplacement, melange accretion, ocean-basin closure and collision. We then discuss alternative models of ophiolite genesis and emplacement for the region and suggest that multi-ocean-basin interpretations fit the data better than single-ocean-basin interpretations. Rifting of Adria (Gondwana) during the Triassic created a rift in the south (Budva zone) and opened a Triassic oceanic basin further north (Dinaride ocean). Occurrences of inferred sub-continental mantle lithosphere in the Dinaride ophiolite belt (e.g. Zlatibor) may record extensional exhumation within an ocean-continent transition zone bordering the Adria/Dinaride continent. This was followed by emplacement together with ophiolites and melange during Upper Jurassic-Early Cretaceous time. Upper Triassic radiolarites and mid-ocean ridge-type basalts formed at a spreading ridge after continental break-up. The oceanic lithosphere of the Dinaride ophiolite belt was partly generated above a subduction zone. The metamorphic soles of the Dinaride ophiolites formed during Mid-Late Jurassic mainly based on K/Ar dating. Widespread melange that is associated with the ophiolites represents a subduction complex, controlled by tectonic accretion and sedimentary reworking in trench and fore-arc basin settings. A possible cause of Jurassic Dinaride ophiolite emplacement was collision of a subduction trench with a continental margin. Further north, Mesozoic oceanic lithosphere subducted northeastwards (present coordinates) opening a Late Jurassic marginal basin in the Main

  11. Active tectonic data calling for the re-evaluation of the seismic hazard along the Vienna Basin Transform Fault

    NASA Astrophysics Data System (ADS)

    Decker, K.; Hinsch, R.; Peresson, H.; Wagreich, M.

    2003-04-01

    The Vienna Basin Transform Fault is a slow moving active fault passing through the most populated and most productive region of Austria with 2.4 million inhabitants producing c. 45% of the Austrian GDP. Active faulting in this highly vulnerable environment is accompanied by historically moderate seismicity (Imax ~ 8-9) in a narrow NE-striking zone paralleling the fault. Novel tectonic data such as maps of active faults and computed seismic slip deficits indicate that previous hazard analyses for the surrounding of Vienna may both underestimate the probability of severe earthquakes and the maximum credible earthquake. Slip rates of the fault in the Vienna Basin are derived from an actively subsiding pull-apart structure filled with up to 140 m Quaternary sediments. 1.5 to 2 km sinistral displacement, which accumulated during basin formation in the last 400 (?) ky corresponds to a slip rate of 1.6 - 2.5 mm/y. This is in good agreement with GPS data showing 2 mm slip per year and precise leveling proving surface subsidence up to 1 mm/y. The data, however, strongly contrast from slip rates computed from cumulative seismic moments of earthquakes. Seismic energy release only accounts for c. 0.2 mm/yr slip proving a seismic slip deficit for the historical time window of about 750 y. In addition, seismic slip calculations for arbitrarily selected fault sectors reveal large differences between the fastest (0.5 mm/yr) and slowest (0.02 mm/yr) seismically moving sector. We relate these to the locking of fault segments. Both results indicate that the seismic cycle exceeds the length of available seismological observation and larger earthquakes than those recorded need to be expected along the fault. Additional data to call for hazard re-evaluation come from the integration of subcrop data, Quaternary thickness, earthquake data, geophysical data (Gegenleitner et al., this vol.) and geomorphology, which results in a detailed map of active faults. The map depicts a major NE

  12. Tectonic Geomorphology in the Laboratory: Evolution of landscape along an active thrust, normal and strike-slip fault

    NASA Astrophysics Data System (ADS)

    Graveleau, Fabien; Strak, Vincent; Dominguez, Stéphane; Malavieille, Jacques; Chatton, Marina; Manighetti, Isabelle; Petit, Carole

    2015-04-01

    Tectonically controlled landforms develop morphologic features that provide useful markers to investigate crustal deformation and relief growth dynamics. We present here results of morphotectonic experiments obtained with an innovative approach combining tectonic and surface processes (erosion, transport and sedimentation), coupled with accurate model monitoring techniques. This approach allows for a qualitative and quantitative analysis of landscape evolution in response to active deformation in the three end-member geological settings: compression, extension and strike-slip. Experimental results outline first that experimental morphologies evolve significantly at a short timescale. Numerous morphologic markers form continuously, but their lifetime is generally short because erosion and sedimentation processes tend to destroy or bury them. For the compressional setting, the formation of terraces above an active thrust appears mainly controlled by narrowing and incision of the main channel through the uplifting hanging-wall and by avulsion of deposits on fan-like bodies. Terrace formation is irregular even under steady tectonic rates and erosional conditions. Terrace deformation analysis allows retrieving the growth history of the structure and the fault slip rate evolution. For the extensional setting, the dynamics of hanging-wall sedimentary filling appears to control the position of the base level, which in turn controls footwall erosion. Two phases of relief evolution can be evidenced: the first is a phase of relief growth and the second is a phase of upstream propagation of topographic equilibrium that is reached first in the sedimentary basin. During the phase of relief growth, the formation of triangular facets occurs by degradation of the fault scarp and their geometry (height) becomes stationary during the phase of upstream propagation of the topographic equilibrium. For the strike-slip setting, the complex morphology of the wrench zone, composed of

  13. Tectonics of the Levant fault system

    NASA Astrophysics Data System (ADS)

    Klinger, Yann

    2015-07-01

    In June 2013, for the second time, an international workshop dedicated to the tectonics of the Levant fault system and the Arabic plate was held in Paris. During two days, this meeting gathered researchers from 19 institutions and 12 countries, with 24 presentations. During this meeting, a large variety of topics were addressed, ranging from new insights into the geodynamics of the Red Sea to earthquake history along the Dead Sea fault. A key point of this meeting was actually to gather contributions focused on the same object, here the Levant fault system, but with different perspectives, to foster new collaborations and research projects. In line with this idea, several presentations were actually dealing with issues related to the palaeoclimate of this specific region, engineering issues about earthquake destructions, or the impact of the Dead Sea active tectonics on the evolution of hominins, aside from general tectonics.

  14. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  15. Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2012-07-01

    The Noakoh anticline is located in Kermanshah province and is part of the Simply Folded Belt of Zagros. Boundaries of 97 triangular facets and 67 wine-glass (W-G) valleys, which formed on anticline limbs, were delineated using Quickbird satellite imagery. The strata dip (D), area (A), base length (BL), topographic slope (S) of facets, the maximum width (M), outlet width (O) and ratio of maximum width to outlet width (W index) of W-G valleys were analysed in detail. Noakoh anticline was subdivided into 9 tectonic zones on the basis of dip, topographic slopes and width of limbs. Results show that there are strong positive correlations between means of D-BL and S-BL pairs. Poor positive correlations exist between means of D-A and S-A pairs. Among W-G valley metrics, the W index has strong relations with D and S parameters. Based on the results, steep facets with long bases and well developed W-G valleys with narrow outlets and wide upper parts are associated with more rotated limbs having steep slopes. Facets on the northeastern slope have more forest cover, micro-organism activity, karstic features and soil cover, whereas facets on relatively drier southwestern slope are characterized by physical weathering processes and minor karstic landforms. This study demonstrates that, apart from tectonic activity as a major control on the morphometry of facets and valleys, climate and slope aspect have also acted as secondary factors on the development of the studied landforms.

  16. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413

  17. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  18. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    USGS Publications Warehouse

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times CreCre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits (0.3–1)×10−1 kg(0.3–1)×10−1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼7.5×104 km2∼7.5×104 km2 of granitic rock in California is estimated to release (0.019–3.2)×10−1 kg(0.019–3.2)×10−1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

  19. Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Kanamori, Hiroo; Stock, Joann; Cormier, Marie-Helene; Legg, Mark

    2014-03-01

    Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent-ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific-North America Plate boundary motion today is concentrated on continental fault systems well to the east, and this region of oceanic crust is generally thought to be within the rigid Pacific Plate. Yet, the 2012 December 14 Mw 6.3 earthquake that occurred about 275 km west of Ensenada, Baja California, Mexico, is evidence for continued tectonism in this oceanic part of the Pacific Plate. The preferred main shock centroid depth of 20 km was located close to the bottom of the seismogenic thickness of the young oceanic lithosphere. The focal mechanism, derived from both teleseismic P-wave inversion and W-phase analysis of the main shock waveforms, and the 12 aftershocks of M ˜3-4 are consistent with normal faulting on northeast striking nodal planes, which align with surface mapped extensional tectonic trends such as volcanic features in the region. Previous Global Positioning System (GPS) measurements on offshore islands in the California Continental Borderland had detected some distributed Pacific and North America relative plate motion strain that could extend into the epicentral region. The release of this lithospheric strain along existing zones of weakness is a more likely cause of this seismicity than current thermal contraction of the oceanic lithosphere or volcanism. The main shock caused weak to moderate ground shaking in the coastal zones of southern California, USA, and Baja California, Mexico, but the tsunami was negligible.

  20. Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Peltzer, Gilles F.

    1993-01-01

    In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.

  1. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  2. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  3. New multi-beam bathymetric map of the Ionian Sea (Central Mediterranean): Evidence for active sedimentary and morpho-tectonic processes along the Africa-Eurasia plate boundary

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Kopp, H.; Krastel, S.; Bohrmann, G.; Garlan, T.; Zaragosi, S.; Klaucke, I.; Wintersteller, P.; Loubrieu, B.; Le Faou, Y.; San Pedro, L.; Dominguez, S.; Rovere, M.; Mercier De Lepinay, B. F.

    2015-12-01

    A combined dataset of multi-beam bathymetry, based on 5 recent marine geophysical surveys since 2010 as well as a compilation of earlier surveys, now spans the vast majority of the Ionian Sea and the active margin of East Sicily and Calabria. (The new surveys are: R/V Meteor cruise 86, 2010 PI - S. Krastel; MocoSed R/V PourquoiPas 2012 PI - T. Garlan; Circee R/V Suroit 2013 PI - M.-A. Gutscher; R/V Meteor cruise 111, 2014 PI's - H. Kopp, M.-A. Gutscher; R/V Meteor cruise 112, 2014 PI - G. Bohrmann). This new compilation of mostly unpublished bathymetric data is presented as a 2 arc-sec (60m) grid and reveals fine-scale structures on the seafloor in unprecedented detail. These include the deeply incised Malta-Hyblean Escarpment, numerous submarine canyons, broad regions of relatively flat seafloor dominated by fields of sediment waves, the gently undulating anticlinal fold-and-thrust belts of two accretionary wedge complexes related to the Hellenic subduction (W Mediterranean ridge) and to the Calabrian arc. These accretionary wedges intersect and overlap and define two of the three sides of the triangular Ionian abyssal plain. The internal structure of these morpho-tectonic provinces as well as the transition zones between them is also imaged by high-resolution 72-channel seismic reflection profiles. Together these data offer new insights into the interaction and competition between active sedimentary and tectonic processes shaping this part of the Central Mediterranean. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).

  4. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  5. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  6. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

    USGS Publications Warehouse

    Nelson, R.M.; Kamp, L.W.; Matson, D.L.; Irwin, P.G.J.; Baines, K.H.; Boryta, M.D.; Leader, F.E.; Jaumann, R.; Smythe, W.D.; Sotin, C.; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Pearl, J.C.; Hapke, B.W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R.Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.

    2009-01-01

    Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March–April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).

  7. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  8. Synthesis of Late Cretaceous-Quaternary tectonic, sedimentary and magmatic processes and basin formation related to episodic subduction-collision in the easternmost Mediterranean region

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Timothy; McCay, Gillian; Palamakumbura, Romesh; Taslı, Kemal

    2015-04-01

    subaerial lineament; 8. Mid-Late Quaternary: gradual tectonic uplift giving rise to a flight of shallow marine to non-marine terrace deposits, that were also influenced by eustatic sea-level fluctuations and climatic change. The stages of basin development were punctuated by four main episodes of compression/uplift. A. Late Miocene underthrusting/metamorphism/exhumation; B. Mid-Eocene southwards thrusting; C. Late Miocene southward thrusting/left-lateral transpression; D. Late Pliocene-Mid Quaternary tectonic uplift. In a setting of continuing plate convergence why did the nature of sedimentation change so dramatically through time? The deformation front between the Kyrenia Range and the Troodos Massif is delineated by the Ovgos Fault which shows an episodic development including Late Miocene compression (transpression) and Quaternary left-lateral strike slip. The Late Cretaceous volcanogenic rocks relate to a phase of regional arc magmatism also documented in SE Turkey. Subduction appears to have slowed or ceased during the Maastrichtian-Palaeocene while the active margin experienced extension or transtension. Following final closure of a Tethyan oceanic basin further north ('northern Neotethys') subduction appears to have relocated southwards and re-activated/accelerated during the Early Eocene triggering large-scale collapse of the over-riding plate and olistostrome formation. Diachronous continental collision was in progress during Early Miocene causing strong uplift of the over-riding plate, intense erosion and voluminous siliciclastic sediment supply to a fore-arc type basin in the N Cyprus-Misis area (becoming foreland basin further east, in SE Turkey). The Pliocene was characterised by eastward 'tectonic escape' of the Anatolian plate towards the Aegean and this allowed relatively fine-grained deposition to accumulate along the former convergent continental margin in northern Cyprus and adjacent areas (e.g. Mesaoria basin). The dramatic late Pliocene to mid

  9. Tectonics of the Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    McKinnon, W. B.; Collins, G. C.; Moore, J. M.; Nimmo, F.; Pappalardo, R. T.; Prockter, L. M.; Schenk, P. M.

    2010-01-01

    pervasively tectonized, covered with a diverse array of exotic and incompletely understood tectonic features. The paucity of impact craters on Europa suggests that its tectonic activity is ongoing. Geysers on Triton show that some degree of current activity, while tectonic features that cross sparsely cratered terrain indicate that it may also be tectonically active. Ganymede and Miranda both exhibit ancient terrains that have been pulled apart by normal faulting. On Ganymede these faults form a global network, while they are confined to regional provinces on Miranda. Ariel, Dione, Tethys, Rhea, and Titania all have systems of normal faults cutting across their surfaces, though the rifting is less pronounced than it is on Ganymede and Miranda. Iapetus exhibits a giant equatorial ridge that has defied simple explanation. The rest of the large and middle-sized satellites show very little evidence for tectonic features on their surfaces, though the exploration of Titan's surface has just begun.

  10. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S-190A color transparencies from SL-2 of the Big Horn basin region provide the best format to date for geologic study of that region; red beds are quite mappable and resistant key beds sharply outlined. An S-190B color frame from SL-3 of the Pryor-Bighorn mountains provides no indication that the Nye-Bowler lineament extends east of East Pryor Mountain. This has important implications regarding the role of this and other lineaments (which also appear to be of restricted length) in the tectonics of the region. Extensions of these lineaments for great distances does not seem warranted on the basis of surface evidence.

  11. A new international tectonic map of the Arctic (TeMAr) at 1:5 M scale and geodynamic evolution in the Arctic region

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Smelror, Morten; Shokalsky, Sergey; Morozov, Andrey; Kashubin, Sergey; Grikurov, Garrik; Sobolev, Nikolay; Petrov, Evgeny

    2013-04-01

    A new tectonic map of the Arctic (TeMAr) at 1:5 M scale is a part of the international Atlas of Geological Maps of the Circumpolar Arctic, which is being compiled under the aegis of the Commission for the Geological Map of the World (CGMW). Compilation of the TeMAr was initiated in 2009 after the publication of base maps of the Atlas - geological map (geological survey of Canada) and magnetic and gravity maps (geological survey of Norway) - with the use of a wide range of bathymetric, geophysical, geological, isotope and geochronological data, including new dated seabed samples and new bedrock samples obtained during recent field studies on the Arctic territory. Making use of these data in the map legend employing tectonic settings enabled correlation of various onshore and offshore fragments of the map. The map reflects Arctic regions' tectonic structure, which consists principally of orogenic belts of the Neoproterozoic to the Late Mesozoic age, platform and basin sediments that overlie them and rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic. Furthermore, many structures are traced from the land throughout shelf regions and into deepwater parts of the Arctic Ocean and show a tendency to become younger northwards toward the Canada Basin. For example, collisional structures of South Ural were formed in the Late Carboniferous, those in the Middle Urals in the Permian, and those of Polar Ural, Pay-Khoy and Novaya Zemlya in the Late Permian and Triassic. The Triassic traps of Eastern and Western Siberia were followed by Cretaceous basalts of the High Arctic large igneous province (HALIP). Cenozoic rifting and subsequent spreading (ca. 56 Ma) was caused by the propagation of sea-floor spreading in the North East Atlantic penetration into the Central Arctic along the Gakkel Ridge

  12. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential

  13. Early Cretaceous tectono-magmatic activity and tectonic implications along the Sulu Orogenic Belt - case study of the Dashan complex

    NASA Astrophysics Data System (ADS)

    Liu, Yanghe; Liu, Junlai; Shi, Xiaoxiao; Yuan, Fengjie; Ni, Jinlong; Wu, Wenbin; Chen, Xiaoyu

    2016-04-01

    The tectonic extension of the eastern Eurasian continent during the Early Cretaceous resulted in widespread occurrence of metamorphic core complexes, wide rifts and related magmatic emplacement, among which the Dashan complex of the Jiaonan orogenic belt is a typical example. The complex is a complex massif of several types of granitic rocks. The core of the complex is composed of massive porphry-bearing biotite-hornblende granitoid without any evidence of ductile deformation. Mylonitized augen quartz monzonite and granodiorite constitute the margin of the complex. A transition zone is composed of porphyritic biotite-hornblende monzonite with weakly orientated K-feldspar phenocryst and mafic microgranular enclave. The foliations along the northwestern margin of the complex dip to NW at with dip angles of about 38°, and along the southwestern and northeastern margins to SE with dip angles of about 45°. Stretching lineations are constantly plunging WNW-ESE with pitch angles between 10° and 40°, which is consistent with the orientation of lineations in the other regions in eastern China. The granites,porphyritic monzogranite and the mafic microgranular enclaves in monzogranite are dated of ca.126Ma. The similarities in ages of crystallization of the monzogranite and its MME's implies the existence of magmatic mixing processes. Meanwhile, the mylonitized augen quartz monzonite and granodiorite along the margins of the complex possess crystallization ages of 129.8±1.1Ma and 132.7±2.8Ma, respectively. The petrographical zonation , structural characteristics and the systematical zircon U-Pb geochronology of the granitic rocks may suggest that the Dashan complex has experienced multistage emplacement under the same tectonic extension setting. In despite of the location of the complex near the Tanlu fault zone, the remarkable consistency of the orientations of stretching lineation of the Dashan complex to those from the other parts of the eastern China area implies

  14. Sedimentology of seismo-turbidites off the Cascadia and northern California active tectonic continental margins, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Gutierrez Pastor, Julia; Nelson, Hans; Goldfinger, Chris; Escutia, Carlota

    2013-04-01

    Holocene turbidites from turbidite channel systems along the active tectonic continental margins of the Cascadia subduction zone (offshore Vancouver Island to Mendocino Triple Junction) and the northern San Andreas Transform Fault (the Triple Junction to San Francisco Bay), have been analyzed for sedimentologic features related to their seismic origin. Centimeter thick silt/sand beds (turbidite base) capped by mud layers (turbidite tail) and interbedded with hemipelagic silty clay intervals with high biogenic content have been characterized by visual core descriptions, grain-size analysis, X-ray radiographs and physical properties. Along the northern California margin in upstream single tributary canyons and channels, most turbidites are uni-pulsed (classic fining up) whereas downstream below multiple tributary canyon and channel confluences, most deposits are stacked turbidites. Because each set of stacked turbidites has no hemipelagic sediment between each turbidite unit and each unit has a distinct mineralogy from a different tributary canyon, we interpret that a stacked turbidite is deposited by several coeval turbidity currents fed by multiple tributary canyons and channels with synchronous triggering from a single San Andreas Fault earthquake. The Cascadia margin is characterized by individual multi-pulsed turbidites that contain multiple coarse-grained sub-units without hemipelagic sediment between pulses. Because the number and character of multiple coarse-grained pulses for each correlative multi-pulsed turbidite is almost always constant both upstream and downstream in different channel systems for 600 km along the margin,we interpret that the earthquake shaking or aftershock signature is usually preserved, for the much stronger Cascadia (≥9 Mw) compared to weaker California (≥8Mw) earthquakes, which result in upstream uni-pulsed turbidites and downstream stacked turbidites. Consequently, both the strongest (≥9 Mw) great earthquakes and downstream

  15. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  16. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  17. Geomorphic evidence of possible tectonic activity in the Mississippi embayment of southeast Missouri

    SciTech Connect

    Steckel, P.J.

    1993-03-01

    Several distinct topographic and geomorphic features in the Mississippi Embayment of southeast Missouri may provide direct and indirect evidence of tectonic influence on surface processes. First, the Pascola bulge is an extremely subtle feature, which probably trends northwest from about Caruthersville to northeast of Kennett and may or may not be associated with the Pascola Arch. The Pascola bulge may be responsible for an abrupt change in both the direction and meander pattern of the natural channel of the Little river near Wardell; a bifurcation of the natural channel of the Little river west of Wardell; the closing off of a natural, navigable waterway between the Mississippi and St. Francis rivers (in the early 1800s); and, at least partly, the extremely inefficient Caruthersville Bend of the Mississippi River. Second, the Canalou nickpoint is an abrupt and distinct change in slope that coincides with both a series of northwest-trending surface lineaments and a southeast projection of the Black fault, located in the Paleozoic rock of the Ozark Uplift. The Canalou nickpoint may suggest a structural feature in the area west of Sikeston. Finally, a subtle yet distinctly irregular surface topography and the near obliteration of topographic expression of the natural channel of the Little River suggest that sunklands may have occurred in areas southeast of Kennett and from near Hornersville south to at least the Missouri-Arkansas state line.

  18. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  19. Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: From perspectives of hydrogeochemical modeling and regional tectonic setting

    NASA Astrophysics Data System (ADS)

    Raychowdhury, Nilasree; Mukherjee, Abhijit; Bhattacharya, Prosun; Johannesson, Karen; Bundschuh, Jochen; Sifuentes, Gabriela Bejarano; Nordberg, Erika; Martin, Raúl A.; Storniolo, Angel del Rosario

    2014-10-01

    Extensive arsenic (As) enriched groundwater is known to occur in the aquifers of the Chaco-Pampean Plain of Argentina. Previous studies speculated that the As mobilization in these groundwaters was a direct result of their elevated pH and oxidative conditions. The volcanic glass layers present in the aquifer matrix were hypothesized as one of the possible sources of As to the groundwaters. Here, we examine the groundwater chemistry of the Santiago del Estero province of Chaco-Pampean Plains of Argentina, and test these hypotheses by using hydrogeochemical modeling within the framework of the regional geologic-tectonic setting. The study area is located in the active foreland of the Andean orogenic belt, which forms a continental arc setting, and is dotted with several hot springs. Rhyolitic volcanic glass fragments derived from arc volcanism are abundant within the aeolian-fluvial aquifer sediments, and are related to the paleo-igneous extrusion in the vicinity. Hydrogeochemical analyses show that the groundwater is in predominantly oxidative condition. In addition, some of the groundwaters exhibit very high Na, Cl- and SO42- concentrations. It is hypothesized in this study that the groundwater chemistry has largely evolved by dissolution of rhyolitic volcanic glass fragments contained within the aquifer sediments along with mixing with saline surface waters from, adjoining salinas, which are thought to be partially evaporated remnants of a paleo inland sea. Flow path modeling, stability diagrams, and thermodynamic analyses undertaken in this study indicate that the dominant evolutionary processes include ion exchange reactions, chemical weathering of silicate and evaporites, in monosialitization-dominated weathering. Geochemical modeling predicts that plagioclase feldspar and volcanic glass are the major solids phases that contribute metal cations and dissolved silica to the local groundwaters. Co-influxed oxyanions, with similar ionic radii and structure (e.g. Mo

  20. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  1. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    SciTech Connect

    Alcock, J. . Dept. of Environmental Science); Wagner, M.E. . Geology); Srogi, L.A. . Dept. of Geology and Astronomy)

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in the PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.

  2. On the tectonic problems of the southern East China Sea and adjacent regions: Evidence from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Shang, Luning; Zhang, Xunhua; Han, Bo; Du, Runlin

    2016-02-01

    In this paper, two sets of gravity and magnetic data were used to study the tectonics of the southern East China Sea and Ryukyu trench-arc system: one data set was from the `Geological-geophysical map series of China Seas and adjacent areas' database and the other was newly collected by R/V Kexue III in 2011. Magnetic and gravity data were reorganized and processed using the software MMDP, MGDP and RGIS. In addition to the description of the anomaly patterns in different areas, deep and shallow structure studies were performed by using several kinds of calculation, including a spectrum analysis, upward-continuation of the Bouguer anomaly and horizontal derivatives of the total-field magnetic anomaly. The depth of the Moho and magnetic basement were calculated. Based on the above work, several controversial tectonic problems were discussed. Compared to the shelf area and Ryukyu Arc, the Okinawa Trough has an obviously thinned crust, with the thinnest area having thickness less than 14 km in the southern part. The Taiwan-Sinzi belt, which terminates to the south by the NW-SE trending Miyako fault belt, contains the relic volcanic arc formed by the splitting of the paleo Ryukyu volcanic arc as a result of the opening of the Okinawa Trough. As an important tectonic boundary, the strike-slip type Miyako fault belt extends northwestward into the shelf area and consists of several discontinuous segments. A forearc terrace composed of an exotic terrane collided with the Ryukyu Arc following the subduction of the Philippine Sea Plate. Mesozoic strata of varying thicknesses exist beneath the Cenozoic strata in the shelf basin and significantly influence the magnetic pattern of this area. The gravity and magnetic data support the existence of a Great East China Sea, which suggests that the entire southern East China Sea shelf area was a basin in the Mesozoic without alternatively arranged uplifts and depressions, and might have extended southwestward and connected with the

  3. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    USGS Publications Warehouse

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  4. Task 1 quarternary tectonics

    SciTech Connect

    Bell, J.W.

    1994-12-31

    Activities on the task of quarternary tectonics for the Yucca Mountain Site investigations are described. Technical topics include: A preliminary reveiw of Bare Mountain Trench; A preliminary detailed lineament map of the Southwestern part of the proposed repository; A discussion on the 1994 Double Spring Flat, Nevada earthquake; and evidence for temporal clustering.

  5. Provenance and sediment-dispersal system in tectonically active rapidly evolving foreland basin, Western Interior

    SciTech Connect

    Khandaker, N.I.; Vondra, C.F.

    1989-03-01

    The Upper Cretaceous Frontier Formation, along the mobile edge of the Western Interior foreland basin, is composed mainly of clastic sediments and was deposited during the initial Late Cretaceous transgressive-regressive phases of the Western Interior seaway across Wyoming. The formation contains many persistent bentonite beds and several sandstone packages in its lower part and a thin, lenticular lithic wacke-polymictic conglomerate association at its upper contact (Torchlight Sandstone Member). Abundant granule to cobble-sized clasts of andesite, granite, chert, and quartzite are set in a poorly sorted sand-to-granule grade volcaniclastic matrix. There is a lithologic continuity of this volcaniclastic unit across the Bighorn Mountains into the Powder River basin. A high-energy distributary complex of sizable areal extent is invoked for the deposition of this linear conglomerate facies. Geochemical investigations of the whole-rock andesite clasts and bentonite allowed more precise definition of character, tectonic setting, and evolutionary stages of sedimentary distributive provinces. Bentonites and andesites are strongly enriched in strontium and barium, but only mildly enriched in heavy rare earth elements and high field-strength elements. These analyzed rocks have trace element characteristics similar in a general way to those of typical orogenic volcanics; they show some significant differences in detail. Composition of volcaniclasts and paleocurrent data indicate a proximal sediment source for the extrabasinal detritus within the Frontier Formation. The possibility of a contribution from a Mesozoic volcanic center in the neighborhood of southwestern Montana is strongly favored. The products of this volcanism constitute an assemblage of deep crustal to mantle( ) derived rocks, and their composition record time-integrated enrichment in light over heavy rare earth elements.

  6. Permian to late Cenozoic evolution of northern Patagonia: Main tectonic events, magmatic activity, and depositional trends

    NASA Astrophysics Data System (ADS)

    Uliana, M. A.; Biddle, K. T.

    The late Paleozoic to late Cenozoic evolution of northern Patagonia was influenced significantly by events that occurred while the area was part of the South American sector of Gondwanaland. Late Paleozoic to Middle Triassic subduction along the edge of the supercontinent formed a broad convergent-margin system that is the underpinning of northern Patagonia. Deformation (Gondwanidian orogeny) associated with the subduction is recognized in both the forearc and the convergent backarc areas. Regional extension, accompanied by bimodal volcanism, began in the Late Triassic and led to the formation of a number of north-northwest trending rift basins in Patagonia, which generally followed the Gondwanidian basement grain. Continued extension in the Jurassic and Early Cretaceous led to the opening of the Rocas Verdes marginal basin in southern Chile and, ultimately, to the opening of the South Atlantic Ocean. Once oceanic crust began to form, faulting and volcanism declined in Patagonia. During the late Early Cretaceous to the Late Cretaceous, sags over the rift basins coalesced to form a broad backarc basin behind the volcanic arc to the west. These sags are suggestive of thermally driven subsidence. Subsidence of the evolving Atlantic margin allowed extensive marine transgressions to take place from the east. The stratigraphic record of northern Patagonia reflects these events. The upper Paleozoic to upper Mesozoic sedimentary sequences were deposited in basins directly associated with convergent activity along the margin of Gondwanaland or in rift basins created during its breakup. Even though the Tertiary evolution of Patagonia was dominated by events along the western margin of South America, the patterns of sediment transport, thickness, and general shoreline position were still influenced by the locations of the Mesozoic rifts formed during the breakup of Gondwanaland.

  7. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  8. Active tectonics and rheology of slow-moving thrusts in the Tibetan foreland of peninsular India

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, Alastair; Gaonkar, Sharad; Avouac, Jean-Philippe; Hollingsworth, James

    2016-04-01

    Peninsular India is cut by active thrust faults that break in earthquakes in response to the compressive force exerted between India and the Tibetan Plateau. The rate of deformation is low, with 2 +/- 1 mm/yr of shortening being accommodated over the entire N-S extent of the Indian sub-continent. However, the large seismogenic thickness in the region (40-50 km), and the long faults, mean that the rare earthquakes that do occur can have magnitudes up to at least 8. This contribution describes studies of two large Indian earthquakes, and their rheological and hazard implications, using a range of techniques. First, the Mw 7.6 Bhuj (Gujarat) earthquake of 2001 is examined using a combination of seismology, InSAR, and levelling data. A slip model for the earthquake will be presented, which allows the material properties of the fault plane to be examined. Second, a Holocene-age earthquake rupture from central India will be discussed. Geomorphic analysis of the scarps produced by the event suggest a magnitude of 7.6 - 8.4. Both of these earthquakes had unusually large stress-drops, amongst the largest recorded for shallow earthquakes. The information provided by these two events will be combined with calculations for the total compressive force being transmitted through the Indian peninsular in order to suggest that the faults are characterised by a low coefficient of friction (approximately 0.1), and that the stress-drops in the earthquakes are close to complete. In turn, these results imply that the majority of the force being transmitted through the Indian plate is supported by the brittle crust. Finally, the along-strike continuation of the faults will be described, with implications for hazard assessment and material properties throughout India.

  9. The flare productivity of active regions

    NASA Astrophysics Data System (ADS)

    Kuroda, N.; Christe, S.

    2012-12-01

    Previous studies have shown that the flare frequency distribution is consistent with a power-law. Furthermore, studies have shown that regions of higher magnetic complexity produce more large flares. This may imply that the flare frequency distribution is harder for magnetically complex active regions. However, the relationship between source active regions' magnetic complexity and the flare size distribution has not been extensively studied. We present a new study of 25,000 microflares detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) from March 2002 to February 2007. For each flare, we have obtained the two classifications of magnetic complexity, the Mount Wilson Magnetic Classification and the Zurich/McIntosh Sunspot Classification, from the Solar Region Summary prepared by the National Oceanic and Atmospheric Administration (NOAA)/ Space Weather Prediction Center (SWPC), and compared them with the RHESSI flare size distribution as observed in the 12 to 25 keV energy range. We investigate the relationship between the slope of the microflare size distribution and the magnetic properties of source active regions. For each flare we obtain the relevant MDI magnetogram to determine properties such as the area of the source active region and total unsigned magnetic flux. These properties are then compared to properties of the associated microflares such as peak flux and microflare size distribution. We find that, for both the Mount Wilson Magnetic Classification and the Zurich/McIntosh Sunspot Classification, the slopes of the microflare size distribution tend to get harder as a function of magnetic complexity. For example, in Mount Wilson Magnetic Classification the slope for α regions was 1.66 and the slope for βγδ region was 1.51.This suggests that βγδ regions are 50 % more likely to produce X class flares than α regions.

  10. Variations of fluvial tufa sub-environments in a tectonically active basin, Pleistocene Teruel Basin, NE Spain

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Alonso-Zarza, Ana M.; Rodríguez-Berriguete, Álvaro; Meléndez, Alfonso

    2015-12-01

    The Pleistocene Tortajada fluvial deposit occurs in the eastern active margin of the Teruel Basin. It developed in the early stages of opening of the basin and at present is disconnected to the Alfambra River. The preserved deposits show that the fluvial system consisted in three different sub-environments including: Upper Terraces, Ponds and Cascades. The main facies are framestones of stems, phytoclastic rudstone, framestone of bryophytes, peloidal and filamentous stromatolites, mudstone and detrital (conglomerates and slope-breccias) facies. These facies are arranged in three different sequence types, all of them showing a lower detrital term followed by pond and, in cases, cascade deposits. The microfacies analyses reveal that both biotic and abiotic processes performed an important role in the deposition within the river. Isotopic analyses (δ18O from - 8.58‰ to - 6.70‰ VPDB and δ13C from - 7.44‰ to - 3.97‰ VPDB) are indicative of meteoric water within a hydrologically open system. The carbonate hinterland rocks, together with a semi-arid to sub-humid climate favored carbonate accumulation within the river. Our results point out that the location, morphology and sedimentary sequences of the Tortajada fluvial system had an important tectonic control. The situation of the main and secondary faults controlled the paleomorphology of the river floor. Thus cascades are found in areas of important step faults, whereas the spaces between faults were occupied by fluviatile/lacustrine areas. In addition the development of the different sedimentary sequences was also a reflection of movements of these faults. In short, our study may confirm that tectonism is an important control on tufa development.

  11. Changes in Eocene-Miocene shallow marine carbonate factories along the tropical SE Circum-Caribbean responded to major regional and global environmental and tectonic events

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, Juan Carlos

    2015-04-01

    Changes in the factory of Cenozoic tropical marine carbonates have been for long attributed to major variations on climatic and environmental conditions. Although important changes on the factories of Cenozoic Caribbean carbonates seem to have followed global climatic and environmental changes, the regional impact of such changes on the factories of shallow marine carbonate along the Caribbean is not well established. Moreover, the influence of transpressional tectonics on the occurrence, distribution and stratigraphy of shallow marine carbonate factories along this area is far from being well understood. Here we report detailed stratigraphic, petrographic and Sr-isotope chemostratigraphic information of several Eocene-Miocene carbonate successions deposited along the equatorial/tropical SE Circum-Caribbean (Colombia and Panama) from which we further assess the influence of changing environmental conditions, transtentional tectonics and sea level change on the development of the shallow marine carbonate factories. Our results suggest that during the Eocene-early Oligocene interval, a period of predominant high atmospheric pCO2, coralline algae constitute the principal carbonate builders of shallow marine carbonate successions along the SE Circum-Caribbean. Detailed stratigraphic and paragenetic analyses suggest the developed of laterally continuous red algae calcareous build-ups along outer-rimmed carbonate platforms. The predominance of coralline red algae over corals on the shallow marine carbonate factories was likely related to high sea surface temperatures and high turbidity. The occurrence of such build-ups was likely controlled by pronounce changes in the basin paleotopography, i.e. the occurrence of basement highs and lows, resulting from local transpressional tectonics. The occurrence of these calcareous red algae dominated factories was also controlled by diachronic opening of different sedimentary basins along the SE Circum Caribbean resulting from

  12. Active tectonics evidences and seismicity registry of Servitá Fault, Colombia

    NASA Astrophysics Data System (ADS)

    Chicangana, G.; Vargas-Jimenez, C. A.; Pedraza, P.; Kammer, A.; Ochoa Gutierrez, L. H.

    2013-05-01

    The Servita fault is a thrust whose scarp is located 5km west of Villavicencio in the center of Colombia. Here with neotectonic evidences and the seismicity record obtained by the Colombian National Seismological Network for the 1993-2012 period confirms the potential occurrence of earthquakes in this region related to this fault because is the biggest thrust of the region.

  13. Discriminating Between Tectonic and Climatic Controls on Early Hominin Paleoenvironments From the Koobi Fora Region, Northeastern Turkana Basin, Kenya: Part I

    NASA Astrophysics Data System (ADS)

    Lepre, C. J.; Quinn, R. L.

    2004-12-01

    Understanding controls on environmental records from Plio-Pleistocene Africa is critical for interpreting human origins. Recent geological studies from East Africa have focused on the relationship between Plio-Pleistocene patterns of hominin evolution, environmental change, and climate preserved in stratigraphic records of sedimentary basins (e.g. deMenocal, 2004; Wynn, 2004). Despite the fact that tectonics is a primary control on sedimentation in East African basins (e.g. Baker, 1986; Frostick, 1997), relatively few studies have either investigated its potential influence on early hominin evolution or attempted to discriminate between tectonic and climate controls on paleoenvironmental change. Presented is a study that explores these issues. Within the Koobi Fora Formation, between 4.0 and 2.5 Ma, environmental change is related to an overall trend of linear rates of tectonic subsidence. However, smaller-scale fluctuations in subsidence rates established lakes during times of increased subsidence followed by the transition to rivers during times of decreased subsidence and basin infilling (Feibel, 1994a, 2000). In contrast, environmental change during the period between 2.5 and 1.5 Ma was forced by changes in half-graben propagation, fault movement, and subsidence. This change is recorded within a stratigraphic sequence that is defined by major (erosional) boundary surface unconformities. The sequence is internally comprised of stable-lacustrine; stable-lacustrine, delta, and ephemeral-lacustrine; and fluvial environments of deposition. This environmental progression defines lowstand, transgressive, and highstand systems tracts respectively. Transition between systems tracts and depositional environments was controlled by rates of tectonic subsidence. The formation of stable-lacustrine environments of deposition during the lowstand systems tract was due to subsidence rates out-pacing sedimentation rates that was associated with a major tectonic event

  14. Tectonic geomorphology of the northern Upper Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Peters, Gwendolyn; van Balen, Ronald T.

    2007-07-01

    This paper focuses on the northern Upper Rhine Graben (URG), which experienced low tectonic deformation and multiple climate changes during Quaternary times. Recently, human modifications have been high. The paper presents the results of a study into the effects of fault activity on the landscape evolution of the area. The study aims to detect active faults and to determine the last phase of tectonic activity. Information on the long-term tectonic activity is gained from the geological record (drainage system, sediment distributions, fluvial terraces, fault mapping). Previous studies are reviewed and supplemented with new data on tectonic activity. The compilation of all data is presented as a series of paleogeographic maps from Late Miocene to present. It is demonstrated that differential uplift of the western margin of the northern URG had significant impact on the drainage system, the formation of fluvial terraces and the landscape of the western graben shoulder. In a second part of the paper, the imprint of tectonics on the present-day landscape is investigated at the regional scale in order to determine the location of fault scarps and tectonically influenced parts of the drainage system. This study uses an integrated analysis of topography, drainage patterns and fault network. The comparison of features suggests a structural control by numerous NNE- and NNW-oriented intra-graben faults on the flow directions of streams in the Rhine Valley. Several scarps in the Rhine Valley are identified and interpreted to result from intra-graben faulting activity, which in turn controlled fluvial dissection. The third part of the paper presents quantitative measurements of the present-day landscape shape. Calculations of geomorphic indices are used to determine the balance between erosional and tectonic processes and to identify active fault segments. The mountain-front sinuosity and valley shape indices measured along the border faults and in the footwall area are used to

  15. Early Paleozoic oceanic inliers and reconstruction of accretionary tectonics in the Middle Gobi region, Mongolia: Evidence from SHRIMP zircon U-Pb dating and geochemistry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingshuai; Miao, Laicheng; Baatar, Munkhtsengel; Zhang, Fochin; Anaad, Chimedtseren; Yang, Shunhu; Li, Xingbo

    2016-09-01

    The ophiolites that occur as inliers among the Late Paleozoic formations in the Middle Gobi area are crucial for understanding the tectonic evolution of South Mongolia. In this paper, we conducted detailed studies on the Namdain hundy ophiolite to provide some constraints on the Early Paleozoic evolution of the Middle Gobi region in Mongolia. The ophiolite mainly consists of ultramafic rocks (carbonatation), plagiogranite, metagabbro, basalt and chert. The metagabbro and plagiogranite from Namdain hundy ophiolite yielded SHRIMP zircon U-Pb ages of 528 ± 7 Ma and 519 ± 5 Ma, respectively. Though most of the volcanic rocks of this ophiolite show supra-subduction zone (SSZ) affinity, samples with OIB and N-MORB geochemical features were also identified, indicating genesis in a forearc setting. The granodiorite intruding into the Namdain hundy ophiolite yielded a SHRIMP zircon U-Pb age of 491 ± 3 Ma, which constrained the upper age limit of ophiolite emplacement. This granodiorite shows adakitic geochemical affinity, attesting to the existence of Cambrian paleo - subduction in South Mongolia. Based on the available data so far, we suggest the Middle Gobi area comprises of the Manlay accretion complex, the island arc and the Biluutiin ovoo back-arc basin. The spatial configuration of these three tectonic belts suggests that the polarity of the paleo-ocean subduction was from south to north in the Early Paleozoic, forming a trench-arc-basin system south of the Central Mongolia microcontinent.

  16. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  17. Chromospheric Acoustic Oscillations in Active Flaring Regions

    NASA Astrophysics Data System (ADS)

    Monsue, T.; Hill, F.; Stassun, K.

    2014-12-01

    Chromospheric p-mode oscillations are studied in Hα to obtain helioseismic information regarding the local structural conditions around highly magnetic regions such as sunspots. Solar flares commonly occur in active regions where these sunspots exist therefore boosting the p-mode power. In our current study of analyzing p-modes in the chromosphere we study the time evolution of acoustic p-mode oscillation data taken from the Global Oscillation Network Group (GONG) Hα, and investigate the p-modes across the frequency band (1 < ν < 8.33 mHz). This study entails three active regions directly over sunspots, with accompanying flaring activity from two solar flares, occurring on June 13th and July 12th, 2012. Our analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved around the flare region, to study the frequency bands. We then study how the frequency distribution evolves temporally by constructing a Power Map Movie (PMM) of the regions. From these PMMs we can take a survey of the chromospheric oscillations for each frequency band. We found that the intensity of the flare has an effect on the behavior of the p-modes within different frequency bands. The suppression of power was observed in dark anomalous structures within the PMMs and in other regions there was an observed boost in power due to flaring activity.

  18. New Quaternary geochronometric constraints on river incision in the Virginia Piedmont: Relative contributions of climate, base-level fall, knickpoint retreat, and active tectonics

    NASA Astrophysics Data System (ADS)

    Malenda, Helen Fitzgerald

    River terraces are fluvial landforms that represent flood plains abandoned through river incision and, when accurately correlated and dated, can serve as paleogeodetic markers, indicating the elevation and location of past channels and the subsequent fluvial and tectonic processes shaping the landscape. Fluvial terraces are most useful when the incision processes that caused their abandonment and formation are better understood. This thesis studies river incision reconstructed from fluvial terraces of the South Anna River in the central Virginia Piedmont, USA. The South Anna River flows directly above an active fault, on which large, but infrequent seismic events have occurred, and the most recent event was the 23 August 2011 Mineral earthquake. Two conceptual incision models are tested to better understand the fluvial response to active tectonics in this region: 1) spatially-uniform vertical incision and 2) diachronous horizontal knickpoint retreat. Here, terraces and incision were evaluated in the context of a 1:24,000 scale surficial map of alluvial deposits, optically stimulated luminescence (OSL) and infrared luminescence (IRSL) geochronology, and knickpoint celerity modeling. The South Anna River and its tributaries traverse across the geologic, topographic and structural grain of central Virginia Piedmont, USA, a region known for Late Cenozoic base-level fall, high amplitude climate changes, and historic seismicity. Litho- and pedostratigraphically correlative deposits are found to form five groups of terraces (Qt1-Qt5) with similar, but not exact relative elevations above modern channel. Within these groups, the terraces have similar OSL/IRSL ages that do not systematically decrease in age upstream towards knickpoint in the modern channel. Similarly, the modeled rate of knickpoint retreat through the South Anna channel of ~7-14km/Ma is too slow to explain the time-transgressive OSL/IRSL dates for any terrace group. Terrace formation by knickpoint migration

  19. Growth and Decay of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Dobias, J. J.; Chapman, G. A.; Cookson, A. M.; Preminger, D. G.; Walton, S. R.

    2002-05-01

    We report here on a study of growth and decay rates of sunspot and facular areas of solar active regions. The data used in this project come from an ongoing program of daily photometric observations of the sun with the Cartesian Full Disk Telescope No. 1 (CFDT1) at the San Fernando Observatory (SFO). Sunspot regions are determined from images taken with a red filter centered at 672.3 nm with a bandpass of 9.7 nm, while images taken with a Ca II K line filter, centered at 393.4 nm and with a bandpass of only 1nm, are used to find facular areas. Before any areas can be found on any observed images, they have to be calibrated then flattened by removing limb darkening thus producing contrast images. Sunspot areas are then determined from any pixel with contrast of -8.5% or less, while any pixel on a K line contrast image with a contrast of +4.8%/μ or higher, where μ is the cosine of the heliocentric angle, is considered to be a facular pixel. To identify the areas as clearly as possible, studied active regions were usually observed on the sun with relatively low activity; that means that each region is either alone on the sun's disk or with only very few other active regions present. Furthermore, to obtain growth and decay patterns of the areas as reliably as possible, only such active regions must be chosen for which there is as complete observational coverage as possible. At the present time studies have been finished for only a few active regions, but analysis of several others is on going. Obtained results will be presented at the meeting. This work is supported by NSF grant ATM-9912132 and NASA grants NAG5-7191 and NAG5-7778.

  20. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  1. The tectonics of intraplate regions: Quantifying stress and surface deformation in the central and eastern U.S. and planetary analogs on Mercury and the Moon

    NASA Astrophysics Data System (ADS)

    Walsh, Lisa Schleicher

    Occurring ~ 1 year apart, the magnitude 3.4 Germantown, Maryland, (16 July 2010) and magnitude 5.8 Mineral, Virginia, (23 August 2011) earthquakes rocked the U.S. national capital region, drawing renewed attention to the occurrence of seismicity within continental interiors. While the majority of earthquakes concentrate at tectonic plate boundaries, the processes that promote spatially diffuse zones of seismicity in intraplate regions are not well understood. The Mineral earthquake was one of the largest earthquakes to occur east of the Rocky Mountains in the past century and offers a rare opportunity to examine the role of stress transfer, long-distance triggering, and aftershock decay within an intraplate region. Stress transfer from the Mineral and Germantown earthquakes relieved stress on the majority of Cenozoic faults in the Mid-Atlantic region, moving these faults further away from future failure. The Everona fault and southern portion of the Mountain Run fault zone were the only locations (except in the aftershock region) that were loaded from the Mineral earthquake, although by only ~1 mbar. Accumulation of stress over time is required in order to significantly affect regional seismicity. There is no evidence of remote triggering due to the passage of seismic waves in any of the major seismic zones in the central and eastern U.S. However, the slow decay rate of aftershocks suggests seismicity in the epicentral region might continue for a decade or longer. Aftershocks triggered by stress imparted by the mainshock imply that Coulomb stress transfer plays an important role in earthquake triggering processes within intraplate regions. Processes in the aftershock zone likely have the greatest influence on seismic hazard. New imagery and altimetry data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft provide new insight into processes driving intraplate tectonic

  2. Tectonic structure of East Antarctica

    NASA Astrophysics Data System (ADS)

    Leychenkov, German; Grikurov, Garrik; Golynsky, Alexander

    2013-04-01

    First overviews of tectonic structure of the Southern Continent were made by the pioneers of Antarctic earth science investigations almost 100 years ago. Despite rapidly advancing international geological studies under the Antarctic Treaty, the presentations of Antarctic tectonic structure remained largely speculative until the end of the past century when implementation of modern analytical and remote-sensing research technologies enabled compilation of more credible tectonic models of Antarctica. The East Antarctic bedrock consists mainly of the Precambrian crystalline complexes and the Paleozoic-Early Mesozoic platform units. Crystalline Shield is locally complicated by Neoproterozoic aulacogenes and Late Paleozoic to Mesozoic rifts. Shield assemblages reliably recognized in coastal outcrops indicate the predominant occurrence of Archean cratonic nuclei and Mesoproterozoic mobile belts. The undisturbed platform cover strata are exposed in East Antarctica mainly along its boundary with West Antarctica. Tectonic structure of ice-covered regions (more that 99% of the East Antarctic territory) is interpreted using mostly magnetic and bedrock topography data, but other geophysical and geological information (satellite, airborne and over-ice gravity; seismology; active seismics; erratics; detrital zircons dates; etc.) is also important. Archean cratons are geologically documented in western Dronning Maud Land, Enderby Land, Princess Elizabeth Land and in the southern Prince Charles Mts. Their distribution under the ice is marked by a specific magnetic pattern including low-amplitude mosaic and/or high-amplitude long-wavelength anomalies. The most extensive ancient craton being 1000 km across is believed to extend from the southern Prince Charles Mts. to the Gamburtsev Mts. Mesoproterozoic mobile belts are distinguished by elongated high-amplitude magnetic anomalies and are mapped along the costal area as the zone of 250-600 km wide. The Gamburtsev Mts. area is also

  3. Recent tectonics of the Eastern Sakhalin Slope

    NASA Astrophysics Data System (ADS)

    Rukavishnikova, D.

    2014-12-01

    Eastern Sakhalin slope belongs to an active strike-slip boundary between Amur and Okhotsk plates, which is marked by an active tectonics and seismicity. In the east the slope joints to the Okhotsk Sea deep basins. This continental margin has a complex structural geometry formed by the strike-slip tectonics of the active plate boundary and the deep sea basins formation. Geophysical data in this region show a system of the NS, NE and NW-striking faults in the basement that is covered by sediments of 3-5 km thickness. These faults reflect structure of the strike-slip system at the time of its origin. According to focal mechanism solutions the Sakhalin region is characterized by transition from pure strike-slip motion in the north to compression motion in the south, while Okhotsk Sea deep basins had formed by regional extension. The recent tectonic activity and kinematics of those processes along this continental margin are under discussion We present results of many years research of the upper part of sedimentary cover structure. Bathymetry and seismic data was interpreted using geomorphology and structural geology approach. Based on the results of the research we distinguished recent fault system, including NS, north-east and north-west faults with significant vertical offset. According to faults kinematics we suggest that this system is formed as a surface manifestation of the recent displacement along deep-seated strike-slip faults. While some of them could be connected to reactivation of the faults originated during the deep-basins formation. Obtained data allows us make suggestions about recent tectonic conditions and lithospheric dynamics In the Eastern Sakhalin slope.

  4. Active tectonics in Taiwan: insights from a 3-D viscous finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yujun; Liu, Mian; Dong, Shuwen; Zhang, Huai; Shi, Yaolin

    2015-12-01

    Taiwan is a young orogenic belt with complex spatial distributions of deformation and earthquakes. We have constructed a three-dimensional finite element model to explore how the interplays between lithospheric structure and plate boundary processes control the distribution of stress and strain rates in the Taiwan region. The model assumes a liberalized power-law rheology and incorporates main lithospheric structures; the model domain is loaded by the present-day crustal velocity applied at its boundaries. The model successfully reproduces the main features of the GPS-measured strain rate patterns and the earthquake-indicated stress states in the Taiwan region. The best fitting model requires the viscosity of the lower crust to be two orders of magnitude lower than that of the upper crust and lithospheric mantle. The calculated deviatoric stress is high in regions of thrust faulting and low in regions of extensional and strike-slip faulting, consistent with the spatial pattern of seismic intensity in Taiwan.

  5. Seismicity and Tectonics of the South Shetland Islands Region From a Combined Land-Sea Seismograph Deployment

    NASA Astrophysics Data System (ADS)

    Robertson, S. D.; Wiens, D. A.; Dorman, L. M.; Shore, P. J.; Vera, E.

    2001-12-01

    During 1997-1999 we deployed seven land seismometers and fourteen ocean bottom seismometers (OBSs) in the South Shetland Island - Antarctic Peninsula region. The seven land stations were part of the Seismic Experiment in Patagonia and Antarctica (SEPA), and they were equipped with broadband STS-2 sensors. The OBSs were deployed between December of 1998 and May of 1999. Seven of the OBSs were equipped with broadband PMD sensors and the other seven used 1 Hz L4 sensors. Although the South Shetland Island area displays a low level of seismicity in global catalogs, our data indicates a high level of local seismicity (Mb 2-4). The combination of OBS and land station data allowed us to accurately locate more than 170 events. Subduction beneath the South Shetland Islands either slowed or stopped with the cessation of spreading at the Aluk spreading ridge 4 million years ago; our results show many earthquakes at locations and depths indicative of ongoing subduction. Earthquakes are located on both the outer rise and along the shallow thrust interface. We determined a focal mechanism for the largest shallow interface event using regional waveform inversion and found that it is indeed a thrusting event. The maximum depth of seismicity is approximately 50 km, but the majority of the events are shallower than 30 km. These seismic results are consistent with recent GPS data that suggests a subduction rate of 1 cm/yr (Taylor, personal communication, 1998). We have also located many earthquakes associated with volcanism and rifting in Bransfield Strait. Swarms of events located on a few submarine volcanoes suggest current eruptive activity. Earthquakes associated with rifting in the northeastern portion of the strait are clustered along well-established rifts that are visible in bathymetric profiles, but the seismicity is much more diffuse to the southwest where the rifts are less established. This evidence supports the hypothesis that the backarc rift is propagating from

  6. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. Fluxon Modeling of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Kankelborg, C. C.; Davey, A. R.; Rachmeler, L.

    2006-12-01

    We present current results and status on fluxon modeling of free energy buildup and release in active regions. Our publicly available code, FLUX, has the unique ability to track magnetic energy buildup with a truly constrained topology in evolving, nonlinear force-free conditions. Recent work includes validation of the model against Low &Lou force-free field solutions, initial evolution studies of idealized active regions, and inclusion of locally parameterized reconnection into the model. FLUX is uniquely able to simulate complete active regions in 3-D on a single workstation; we estimate that a parallelized fluxon model, together with computer vision code to ingest solar data, could run faster than real time on a cluster of \\textasciitilde 30 CPUs and hence provide a true predictive space weather model in the style of predictive simulations of terrestrial weather.

  8. North Chilean forearc tectonics and cenozoic plate kinematics

    NASA Astrophysics Data System (ADS)

    Buddin, Tim S.; Stimpson, Ian G.; Williams, Graham D.

    1993-04-01

    The continental forearc of northern Chile has been subjected to contemporaneous extension and compression. Here, cross-sections constructed across the forearc are presented which show that since initial shortening, deformation of the forearc has occurred in two tectonically distinct areas. These inner and outer forearc areas are separated by the strain discontinuity of the Atacama fault system and the tectonically neutral Central Depression. The outer forearc, the Coastal Cordillera, exhibits extensional tectonics, with large (up to 300 m) normal fault scarps preserved. These faults cut the earlier thrusts responsible for the elevation of Jurassic rocks at the coast above their regional elevation. The normal faults have been re-activated, displacing Quaternary salt deposits in the Salar Grande. This re-activation of the basement faults is probably due to the subduction of anomalously thick oceanic crust, producing an isostatic imbalance in the outer forearc. In the inner forearc, cross-sections through the Sierra del Medio and Cordillera de Domeyko show that structures of the Pre-Cordillera are best explained by a thick-skinned thrust system, with localized thin-skinned tectonics controlled by evaporite detachment horizons. Current forearc deformation features indicate a strong degree of correlation between subduction zone geometry and forearc tectonics. The timing of Cenozoic tectonism also fits well with established plate motion parameters, and the spatial and temporal variation in the state of stress of the forearc shows a close relationship throughout the Cenozoic to the plate kinematics and morphology of the subducting Nazca plate.

  9. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    NASA Astrophysics Data System (ADS)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  10. Quantifying the Complexity of Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Stark, B.; Hagyard, M. J.

    1997-05-01

    While solar physicists have a better understanding of the importance magnetic fields play in the solar heating mechanism, it is still not possible to predict whether or when an active region will flare. In recent decades, qualitative studies of the changes in active region morphology have shown that there is generally an increase in the complexity of the spatial configuration of a solar active region leading up to a flare event. In