Science.gov

Sample records for active tectonic setting

  1. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  2. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  3. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    plate (Sardinia, Corsica, Balearic Islands, Kabylies, Calabria, Peloritani Mountains). The bulk of igneous activity in the central-western Mediterranean is believed to have tapped mantle 'wedge' regions, metasomatized by pressure-related dehydration of the subducting slabs. The presence of subduction-related igneous rocks with a wide range of chemical composition has been related to the interplay of several factors among which the pre-metasomatic composition of the mantle wedges (i.e., fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO 2 and H 2O in the fluid phase released by the subducting plates are the most important. Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) centrifugal wave of both compressive and extensional tectonics starting from a 'pivotal' region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction 'inversion' events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subduction-related magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related 'exotic' (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the

  4. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  5. Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting

    NASA Astrophysics Data System (ADS)

    Dubbini, M.; Cianfarra, P.; Casula, G.; Capra, A.; Salvini, F.

    2010-12-01

    A semipermanent Global Positioning System (GPS) network of 30 vertices known as the Victoria Land Network for Deformation Control (VLNDEF) was set up in the Austral summer of 1998 in northern Victoria Land (NVL), including Terra Nova Bay (TNB), Antarctica. The locations were selected according to the known Cenozoic fault framework, which is characterized by a system of NW-SE regional faults with right-lateral, strike-slip kinematics. The TNB1 permanent GPS station is within the VLNDEF, and following its installation on a bedrock monument in October 1998, it has been recording almost continuously. The GPS network has been surveyed routinely every two summers, using high-quality, dual-frequency GPS receivers. In this study we present the results of a distributed session approach applied to the processing of the GPS data of the VLNDEF. An improved reference frame definition was implemented, including a new Euler pole, to compute the Antarctic intraplate residual velocities. The projection of the residual velocities on the main faults in NVL show present-day activities for some faults, including the Tucker, Leap Year, Lanterman, Aviator, and David faults, with right-lateral strike-slip kinematics and local extensional and compressional components. This active fault pattern divides NVL into eight rigid blocks, each characterized by its relative movements and rigid rotations. These show velocities of up to several millimeters per year, which are comparable to those predicted by plate tectonic theory at active plate margins.

  6. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  7. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  8. Volcanic and Tectonic Setting of Hydrothermal Activity on the Southern Mid-Atlantic Ridge, 4° - 11°S

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Haase, K. M.; Koschinsky, A.; Lackschewitz, K.; Yoerger, D. R.

    2006-12-01

    The recurrence rate of volcanism at mid-ocean ridges should drop with spreading rate. Although the southern Mid-Atlantic Ridge, with a spreading full rate of ~3.6 cm/yr, might therefore be expected to show only sporadic magmatic activity, we present information on recently-discovered volcanically, tectonically and hydrothermally active areas south of the equator (at 4°48'S and 9°33'S, see also German et al. 2005; Haase et al. 2005 EOS Trans. AGU 86 (52) Fall Meet. Suppl. Abstr. OS21C-04 & -05). Around the 4°48'S area the median valley floor forms a ~10 km wide, hour-glass shaped, plateau with water depths of around 3000 m. Four closely-spaced vent fields (the high-temperature sites Turtle Pits, Red Lion and Comfortless Cove and the diffuse low-temperature Wideawake site) occur along a flat (total relief 50 m), volcanically and tectonically active 2 km section of this plateau (see German et al. 2005, Haase et al. 2005 op. cit. also Koschinsky et al. this meeting). The Turtle Pits site lies within a small depression associated with a fracture marked by aligned collapse pits. This central depression is surrounded by laminated sheet flows to the north and northwest, whereas jumbled flows are more prevalent to the east. Comfortless Cove is also associated with young volcanics and shows strong tectonic influence on vent location. Red Lion in contrast shows no clear tectonic control - it is characterised by four active chimneys which sit directly on a pillow lava floor. The 9°33'S area is situated on 11 km-thick crust (Bruguier et al. 2003 JGR 108 2093) at 1490 m water depth and is marked by fresh pillow lavas, sheet flows, lava lakes and collapse structures. Low- temperature, diffuse hydrothermal activity is abundant in the area (Haase et al. 2005; Koschinsky et al. 2006 op. cit.) as are larger extinct hydrothermal mounds suggesting more vigourous hydrothermalism in the past. All sites are located east of a large NNW trending escarpment flanking horst and graben

  9. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  10. Africa's Megafans and Their Tectonic Setting

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; Burke, K.

    2016-01-01

    Megafans are a really extensive continental sediment bodies, fluvially derived, and fan-shaped in planform. Only those >80 km long were included in this study. Africa's megafans were mapped for purposes of both comprehensive geomorphic description and as a method of mapping by remote sensing large probable fluvial sediment bodies (we exclude sediment bodies deposited in well defined, modern floodplains and coastal deltas). Our criteria included a length dimension of >80 km and maximum width >40 km, partial cone morphology, and a radial drainage pattern. Visible and especially IR imagery were used to identify the features, combined with topographic SRTM data. We identified 99 megafans most of which are unstudied thus far. Their feeder rivers responsible for depositing megafan sediments rise on, and are consequent drainages oriented down the slopes of the swells that have dominated African landscapes since approximately 34 Ma (the high points in Africa's so-called basin-and-swell topography [1]). Most megafans (66%) have developed along these consequent rivers relatively near the swell cores, oriented radially away from the swells. The vast basins between the swells provide accommodation for megafan sediment wedges. Although clearly visible remotely, most megafans are inactive as a result of incision by the feeder river (which then no longer operates on the fan surface). Two tectonic settings control the location of Africa's megafans, 66% on swell flanks, and 33% related to rifts. (i) Swell flanks Most megafans are apexed relatively near the core of the parent swell, and are often clustered in groups: e.g., six on the west and north flanks of the Hoggar Swell (Algeria), seven on the north and south flanks of the Tibesti Swell (Libya-Chad borderlands), twelve on the west flank of the Ethiopian Swell, four on the east flank of the East African Swell (Kenya), Africa's largest, and eight around Angola's Bié Swell (western Zambia, northern Namibia). A cluster of possible

  11. Red Sea Kinematics in Relation to the Regional Tectonics Setting

    NASA Astrophysics Data System (ADS)

    Alotaibi, T.; Furlong, K. P.

    2015-12-01

    The Red sSea extensional system started approximately 22+3 Ma. Although, there is evidence that lithospheric weakening and associated incipient extension may have taken place since 30 Ma. There is oceanic crust found in the southern part of the rift, while the northern-most part still involves continental stretching. Meantime magnetic anomalies have been observed for the southern rift, the northern rift is characterized by several deeps where magnetic anomalies have been observed as well as an indication of the transition from continental to oceanic rifting. GPS stations along the Red Sea are consistent with kinematics implied from the magnetic anomalies - an opening rate in the southern part of ~ 15 mm/yr relative to Eurasia fixed while the opening rate in the is ~8 mm/yr. This significant decreasing of the opening rate towards the north implies complexity within the Red Sea extensional system.Our purpose here is to place the Red Sea extensional kinematics within the regional tectonics context by combining constraints on the rate or style of extension within the Red Sea with tectonic activities on the adjacent continental regions. To accomplish this, we will model the extensional kinematics through time by comparing recent kinematics based on the geophysical observations with ones that based on geological observations. In terms of present-day geophysical observations, we have GPS and magnetic anomalies data, and crustal and lithospheric thickness. Geological observations primarily come from stratigraphic and structural data sets.Our overall target is to construct a tectonic model that links the timing of the change in the style and extensional rate with the tectonic activities in Afar, Gulf of Aden, Zagros, Dead Sea fault and Anatolian region.

  12. Tectonic setting of the Windermere Supergroup revisited

    SciTech Connect

    Ross, G.M. )

    1991-11-01

    Neo-Proterozoic (< 780 Ma) rocks in western North America compose a regionally persistent stratigraphic succession that contains basal sedimentary and volcanic rocks that accumulated during active faulting. In the Canadian Cordillera, the synrift component is overlain by a thick succession that includes shelf, shelf-edge, and basinal strata and implies substantial postrift subsidence. Although fragmentary in nature due to the effects of sub-cambrian erosion, when reconstructed the Canadian stratigraphic record is similar in thickness, facies, and lateral persistence to the overlying Cambrian-Ordovician passive margin. The neo-Proterozoic record of western North America is thus interpreted as a passive-margin succession, rather than a simple rift, which predates a younger rift that resulted in widespread early Paleozoic passive-margin sedimentation. If correct, this may imply that break-up of western Laurentia was a neo-Proterozoic phenomenon rather than early Paleozoic.

  13. Tectonic setting for ophiolite obduction in Oman.

    USGS Publications Warehouse

    Coleman, R.G.

    1981-01-01

    The Samail ophiolite is part of an elongate belt in the Middle East that forms an integral part of the Alpine mountain chains that make up the N boundary of the Arabian-African plate. The Samail ophiolite represents a portion of the Tethyan ocean crust formed at a spreading center of Middle Cretaceous age (Cenomanian). During the Cretaceous spreading of the Tethyan Sea, Gondwana Land continued its dispersal, and the Arabian-African plate drifted northward about 10o. These events, combined with the opposite rotation of Eurasia and Africa, initiated the closing of the Tethyan during the Late Cretaceous. At the early stages of closure, downwarping of the Arabian continental margin, combined with the compressional forces of closure from the Eurasian plate, initiated obduction of the Tethyan oceanic crust along preexisting transform faults and still-hot oceanic crust was detached along oblique NE dipping thrust faults. Plate configurations combined with palinspastic reconstructions show that subduction and attendant large-scale island arc volcanism did not commence until after the Tethyan sea began to close and the Samail ophiolite was emplaced southward across the Arabian continental margin. The Samail ophiolite nappe now rests upon a melange consisting mainly of pelagic sediments, volcanics and detached fragments of the basal amphibolites, which in turn rest on autochthonous shelf carbonates of the Arabian platform. Following emplacement (Eocene) of the Samail ophiolite, the Tethyan oceanic crust began northward subduction, and active arc volcanism started just N of the present Jaz Murian depression in Iran.-Author

  14. Late Pleistocene-Holocene uplift driven terrace formation and climate-tectonic interplay from a seismically active intraplate setting: An example from Kachchh, Western India

    NASA Astrophysics Data System (ADS)

    Prizomwala, S. P.; Das, Archana; Chauhan, G.; Solanki, T.; Basavaiah, N.; Bhatt, Nilesh; Thakkar, M. G.; Rastogi, B. K.

    2016-07-01

    terrace, we reported a minimum uplift rate of 1.04 mm/a for the eastern KMF during the Late Pleistocene-Holocene period, hinting seismically active nature of the KMF during this period. The terrace formation in the eastern Northern Hill Range is mostly regulated by tectonic uplifts along the KMF.

  15. Active tectonics and human survival strategies

    NASA Astrophysics Data System (ADS)

    King, Geoffrey; Bailey, Geoffrey; Sturdy, Derek

    1994-10-01

    Tectonic movements continuously remould the surface of Earth in response to plate motion. Yet such deformation is rarely taken into account when assessing landscape change and its impact on human land use, except perhaps as an occasional hazard to human life or a temporary disruption in the longer term patterns of human history. However, active tectonics also create and sustain landscapes that can be beneficial to human survival, forming a complex topography of potentially fertile sedimentary basins enclosed by mountain barriers that can facilitate the control and explotation of food resources, especially animal prey. We discuss the tectonic history of northwest Greece and show how the Paleolithic sites of the region are located to take advantage of tectonically created features at both a local and a regional scale. We suggest that the association of significant concentrations of early Paleolithic sites with tectonically acitve regions is not coincidental and that on the longer time spans of human biological evolution, active tectonics has been an important selective agent contributing to the development of the human species as an intelligent predator.

  16. Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.

    2017-01-01

    New multi-dimensional discrimination diagrams have been used to identify plate tectonic setting of Precambrian terrains. For this work, nine sets of new discriminant-function based multi-dimensional discrimination diagrams were applied for thirteen case studies of Precambrian basic, intermediate and acid magmas from Africa to highlight the application of these diagrams and probability calculations. The applications of these diagrams indicated the following results: For northern Africa: to Wadi Ghadir ophiolite, Egypt indicated an arc setting for Neoproterozoic (746 ± 19 Ma). For South Africa: Zandspruit greenstone and Bulai pluton showed a collision and a transitional continental arc to collision setting at about Mesoarchaean and Neoarchaean (3114 ± 2.3 Ma and 2610-2577 Ma); Mesoproterozoic (1109 ± 0.6 Ma and 1100 Ma) ages for Espungabera and Umkondo sills were consistent with an island arc setting. For eastern Africa, Iramba-Sekenke greenstone belt and Suguti area, Tanzania showed an arc setting for Neoarchaean (2742 ± 27 Ma and 2755 ± 1 Ma). Chila, Bulbul-Kenticha domain, and Werri area indicated a continental arc setting at about Neoproterozoic (800-789 Ma); For western Africa, Sangmelima region and Ebolowa area, southern Cameroon indicated a collision and continental arc setting, respectively for Neoarchaean (∼2800-2900 Ma and 2687-2666 Ma); Finally, Paleoproterozoic (2232-2169 Ma) for Birimian supergroup, southern Ghana a continental arc setting; and Paleoproterozoic (2123-2108 Ma) for Katiola-Marabadiassa, Côte d'Ivoire a transitional continental arc to collision setting. Although there were some inconsistencies in the inferences, most cases showed consistent results of tectonic settings. These inconsistencies may be related to mixed ages, magma mixing, crustal contamination, degree of mantle melting, and mantle versus crustal origin.

  17. Using earthquake-triggered landslides as a hillslope-scale shear strength test: Insights into rock strength properties at geomorphically relevant spatial scales in high-relief, tectonically active settings

    NASA Astrophysics Data System (ADS)

    Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine

    2016-04-01

    The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that

  18. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  19. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  20. Marine-to-lacustrine transition, mud volcanism, and slope instability in an active tectonic setting: the MIS 5 to 4 transition in the Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Grall, Céline; Henry, Pierre; Kendé, Julia; Namık Çaǧatay, M.; Kadir Eriş, K.; Paillès, Christine; Sorlien, Christopher; Shillington, Donna; McHugh, Cecilia; Steckler, Michael; Çifçi, Günay; Géli, Louis

    2016-04-01

    In the Sea of Marmara, glacio-eustatic cycles set the tempo of a complex history of disconnection and reconnection with the Black Sea and with the global ocean through the Mediterranean Sea. As a result, the sedimentary record consists of alternating high stand marine sediments and lowstand sea or lake sediments. The Sea of Marmara is also an active transtensional basin along the Northern branch of the North Anatolian Fault (NNAF), which accommodates most (~3/4) of the 21-27 mm/a dextral slip between Eurasia and Anatolia. This peculiar setting makes the Sea of Marmara an exceptional site to study the interplay of paleo-environmental factors and seismotectonic processes. Notably, Mass Transport Deposits (MTDs) crossing the faults provide offset markers although their age remains uncertain. A high resolution seismic stratigraphic model has been proposed for 100 ka glacial cycles, based on onlap sequences within basins, and paleo-deltas at shorelines. The sedimentation rate in basins decreases during episodes of sea-level rise and reach maximum values during low stands. Remarkably, seismic reflector sequences display nearly identical character for locations with similar sedimentation rate. The uppermost sequence boundary reflector (Red-H1) has been recently cored at several locations during MARSITECRUISE (Ifremer R/V Pourquoi Pas?, Oct-Nov. 2014), enabled us to correlate high resolution seismic data with core data. The Red-H1 reflector is regionally characterized by a high amplitude and a reverse polarity. Correlations between seismic data and piston core logs indicate that the reverse polarity of this reflector may be explained by a negative density contrast between lacustrine sediments above and a greenish sapropellic layer of several meters thickness below. On shelves, Red-H1 is on top of the low stand wedge. On slopes and topographic highs, Red-H1 appears as an erosional surface laterally correlative with an onlapping unit in basins and is frequently overlain by

  1. Mobilization of evaporites in tectonically active terrains

    NASA Astrophysics Data System (ADS)

    Stiros, Stathis C.

    2015-04-01

    The role of evaporites, mostly halite, during seismic sequences is investigated using evidence from certain earthquakes with magnitude between approximately 6.0 and 7.2 which occurred in the last 60 years in the Zagros Mts. (Iran) and the Ionian Sea (Greece); i.e. two seismically active areas, characterized by evaporite-associated decollements and more shallow decollements combined with mature, along-thrusts intrusions. Studied earthquakes produced either large scale surface deformation, or were covered by high-resolution and accuracy GPS and INSAR data, permitting to fully recognize the deformation pattern. In all cases an "atypical", tectonic deformation pattern was observed, ranging from apparently "impossible" patterns (thrust and normal faults, sub-parallel and homothetic; 1953 Cephalonia earthquake, Greece) to rather diffuse tectonic patterns, even to "phantom" earthquakes (Zagros). Careful analysis and modeling of the surface deformation data, in combination with the available geological, geophysical and seismological data permits to recognize, and even to quantify differences between deformation observed, and that expected in ordinary environments. In particular, it was found that during earthquakes evaporites were mobilized, and this led either to a secondary deformation of the overburden, fully detached from the basement, or to significant aseismic (post-seismic) deformation. Anomalies in the distribution of seismic intensities due to evaporitic intrusions along faults were also observed. Apart from seismological implications (unpredictable post-seismic deformation, possibly also in the far-field), these results deriving from regions at different levels of evaporitic evolution, may prove useful to understand patterns of mobilization of evaporites during periods of tectonic activity.

  2. Transdomes: Emplacement of Migmatite Domes in Oblique Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Rey, P. F.; Whitney, D. L.; Mondy, L. S.; Roger, F.

    2014-12-01

    Many migmatite domes are emplaced within wrench corridors in which a combination of strike-slip and extensional detachment zones (pull-apart, extensional relay, or transfer zones) focus deep-crust exhumation. The Montagne Noire dome (France, Variscan Massif Central) exemplifies wrench-related dome formation and displays the following structural, metamorphic, and geochronologic characteristics of a 'transdome': the dome is elongate in the direction of extension; foliation outlines a double dome separated by a high-strain zone; lineation is shallowly plunging with a fairly uniform trend that parallels the strike of the high-strain zone; subdomes contain recumbent structures overprinted by upright folds that affected upward by flat shear zones associated with detachment tectonics; domes display a large syn-deformation metamorphic gradient from core (upper amphibolite facies migmatite) to margin (down to greenschist facies mylonite); some rocks in the dome core experienced isothermal decompression revealed by disequilibrium reaction textures, particularly in mafic rocks (including eclogite); and results of U-Pb geochrononology indicate a narrow range of metamorphic crystallization from core to mantling schist spanning ~10 Myr. 3D numerical modeling of transdomes show that the dome solicits a larger source region of partially molten lower crust compared to 2D models; this flowing crust creates a double-dome architecture as in 2D models but there are differences in the predicted thermal history and flow paths. In a transtension setting, flow lines converge at depth (radial-centripetal flow) toward the zone of extension and diverge at shallow levels in a more uniform direction that is imposed by upper crust motion and deformation. This evolution produces a characteristic pattern of strain history, progressive fabric overprint, and P-T paths that are comparable to observed dome rocks.

  3. Vertical tectonics at an active continental margin

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  4. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Bhatia, Mukul R.; Crook, Keith A. W.

    1986-02-01

    The graywackes of Paleozoic turbidite sequences of eastern Australia show a large variation in their trace element characteristics, which reflect distinct provenance types and tectonic settings for various suites. The tectonic settings recognised are oceanic island arc, continental island arc, active continental margin, and passive margins. Immobile trace elements, e.g. La, Ce, Nd, Th, Zr, Nb, Y, Sc and Co are very useful in tectonic setting discrimination. In general, there is a systematic increase in light rare earth elements (La, Ce, Nd), Th, Nb and the Ba/Sr, Rb/Sr, La/Y and Ni/Co ratios and a decrease in V, Sc and the Ba/Rb, K/Th and K/U ratios in graywackes from oceanic island arc to continental island arc to active continental margin to passive margin settings. On the basis of graywacke geochemistry, the optimum discrimination of the tectonic settings of sedimentary basins is achieved by La-Th, La-Th-Sc, Ti/Zr-La/Sc, La/Y-Sc/Cr, Th-Sc-Zr/10 and Th-Co-Zr/10 plots. The analysed oceanic island arc graywackes are characterised by extremely low abundances of La, Th, U, Zr, Nb; low Th/U and high La/Sc, La/Th, Ti/Zr, Zr/Th ratios. The studied graywackes of the continental island arc type setting are characterised by increased abundances of La, Th, U, Zr and Nb, and can be identified by the La-Th-Sc and La/Sc versus Ti/Zr plots. Active continental margin and passive margin graywackes are discriminated by the Th-Sc-Zr/10 and Th-Co-Zr/10 plots and associated parameters (e.g. Th/Zr, Th/Sc). The most important characteristic of the analysed passive margin type graywackes is the increased abundance of Zr, high Zr/Th and lower Ba, Rb, Sr and Ti/Zr ratio compared to the active continental margin graywackes.

  5. Seismic activation of tectonic stresses by mining

    NASA Astrophysics Data System (ADS)

    Marcak, Henryk; Mutke, Grzegorz

    2013-10-01

    Hard coal mining in the area of the Bytom Syncline (Upper Silesia Coal Basin, Poland) has been associated with the occurrence of high-energy seismic events (up to 109 J; local magnitude up to 4.0), which have been recorded by the local mining seismological network and regional seismological network. It has been noticed that the strongest seismic events occur when the mine longwall alignments coincide with the syncline axis. Data recorded by the improved local seismic network in the Bobrek Mine allow the estimation of the depths of the events’ hypocentres during excavation of longwall panel 3 as it approached the syncline axis. The recorded data were also used to estimate the location of the rupture surface and stress distribution in the seismic focus region. It was concluded that tectonic stresses, particularly horizontal stress components, are essential in the distribution of seismic tremors resulting from reverse faulting. The stresses induced by mining activity are only triggering tectonic deformations. The hypocentres of the strongest seismic events during mining of longwall panel 3/503 were located 300-800 m deeper than the level of coal seam 503.

  6. Active Tectonics and Seismic Potential of Alaska

    NASA Astrophysics Data System (ADS)

    Freymueller, Jeffrey T.; Haeussler, Peter J.; Wesson, Robert L.; Ekström, Göran

    This multidisciplinary monograph provides the first modern integrative summary focused on the most spectacular active tectonic systems in North America. Encompassing seismology, tectonics, geology, and geodesy, it includes papers that summarize the state of knowledge, including background material for those unfamiliar with the region; address global hypotheses using data from Alaska; and test important global hypotheses using data from this region. It is organized around four major themes: • subduction and great earthquakes at the Aleutian Arc, • the transition from strike slip to accretion and subduction of the Yakutat microplate, • the Denali fault and related structures and their role in accommodating permanent deformation of the overriding plate, and • regional integration and large-scale models and the use of data from Alaska to address important global questions and hypotheses. The book's publication near the beginning of the National Science Foundation's EarthScope project makes it especially timely because Alaska is perhaps the least understood area within the EarthScope footprint, and interest in the region can be expected to rise with time as more EarthScope data become available.

  7. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  8. 3D fold growth rates in transpressional tectonic settings

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2015-04-01

    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end

  9. Geochemistry of the Ediacaran-Early Cambrian transition in Central Iberia: Tectonic setting and isotopic sources

    NASA Astrophysics Data System (ADS)

    Fuenlabrada, José Manuel; Pieren, Agustín P.; Díez Fernández, Rubén; Sánchez Martínez, Sonia; Arenas, Ricardo

    2016-06-01

    A complete Ediacaran-Early Cambrian stratigraphic transition can be observed in the southern part of the Central Iberian Zone (Iberian Massif). Two different stratigraphic units, underlying Ordovician series, display geochemical and Sm-Nd isotopic features in agreement with an evolving geodynamic setting. Pusa Shales (Early Cambrian) rest unconformably on greywackes of the Lower Alcudian Formation (Late Ediacaran). Both sequences present minor compositional variations for major and trace element contents and similar REE patterns, close to those of PAAS (Post Archean Australian Shale). Trace element contents and element ratios suggest mixed sources, with intermediate to felsic igneous contributions for both units. Tectonic setting discrimination diagrams for the Ediacaran greywackes indicate that these turbiditic series were deposited in a sedimentary basin associated with a mature active margin (volcanic arc). However, the compositions of the Cambrian shales fit better with a more stable context, a back-arc or retro-arc setting. εNd(T) and TDM ages are compatible with dominance of a similar cratonic source for both sequences, probably the West Africa Craton. εNd565 values for the Ediacaran greywackes (- 3.0 to - 1.4) along with TDM ages (1256-1334 Ma) imply a significant contribution of juvenile material, probably derived from the erosion of the volcanic arc. However, εNd530 values in the Cambrian shales (- 5.2 to - 4.0) together with older TDM ages (1444-1657 Ma), suggest a higher contribution of cratonic isotopic sources, probably derived from erosion of the adjacent mainland. Coeval with the progressive cessation of arc volcanism along the peri-Gondwanan realm during the Cambrian, there was a period of more tectonic stability and increasing arrival of sediments from cratonic areas. The geochemistry of the Ediacaran-Cambrian transition in Central Iberia documents a tectonic switch in the periphery of Gondwana, from an active margin to a more stable context

  10. Geological evidence and future detection of active tectonics on Mars.

    NASA Astrophysics Data System (ADS)

    Pio Rossi, Angelo; Hauber, Ernst; Spagnuolo, Mauro; Fueten, Frank; Pondrelli, Monica; Breuer, Doris; Grott, Matthias; Knapmeyer, Martin; Quantin Nataf, Cathy; Unnithan, Vikram

    2013-04-01

    Accumulating evidence shows that recent tectonic deformation affected discrete areas on Mars (e.g. Spagnuolo et al., 2011; Roberts et al., 2012): Steep scarps cut bedrock and unconsolidated deposits, including mass wasting and eolian materials. The crater size frequency-based age estimate for some of these scarps, e.g. in Aureum Chaos is a few Myr only. The case for recent or very recent volcanism is sound on Mars (e.g. Hauber et al., 2011; Neukum et al., 2004), but comparably young tectonics on Mars had not been discovered until recently. Areas with linear or curvilinear, steep fault-like scarps (e.g., in Aureum or Aram Chaos) are relatively far from large volcanic edifices and provinces with recent effusive activity. Hence, a direct volcano-tectonic link, e.g., with Tharsis, seems unlikely. On the other hand, late collapses and subsidence in ~Hesperian or younger chaos/chasma areas could be responsible for the local deformation, which appears to be mainly extensional. Reactivation of older structures is also a possibility. Regardless the actual mechanism and geodynamic setting, present tectonic activity on Mars is a very real possibility, and it would open a range of opportunities for research such as geodynamics, hazards for future exploration, resources and exobiological potential: present faulting in chasmata and chaotic terrains could offer pathways for subsurface fluids to reach the surface or near subsurface, including potential degassing. Future missions such as InSight (NASA) and potentially Mars Network Science Mission (MNSM, ESA) could detect the first signs of Mars's tectonic activity. In addition, ESA ExoMars Trace Gas Orbiter could also investigate any potential outgassing in the vicinity of recently faulted candidate areas. References: Hauber et al. (2011) GLR, 38, 10, 1944-8007, doi:10.1029/2011GL047310 Neukum et al. (2004) Nature, 432, 971-979, doi:10.1038/nature03231 Roberts, G. P., et al. (2012), JGR, 117, E02009, doi:10.1029/2011JE003816

  11. Favorable Structural–Tectonic Settings and Characteristics of Globally Productive Arcs

    SciTech Connect

    Hinz, Nick; Coolbaugh, Mark; Shevenell, Lisa; Stelling, Pete; Melosh, Glenn; Cumming, William

    2016-02-19

    There are currently 74 productive geothermal systems associated with volcanic centers (VCs) in arcs globally, including actively producing systems, past producing systems, and systems with successful flow tests. The total installed or tested capacity of these 74 geothermal systems is 7,605 MWe, ranging from 0.7 MWe each at Copahue, Chile and Barkhatnaya Sopka, Kamchatka to 795 MWe, Larderello, Italy, and averaging 90.5 MWe per system. These 74 productive VCs constitute 10% of 732 VCs distributed across more than a dozen major arcs around the world. The intra-arc (within-arc) tectonic setting is highly variable globally, ranging from extension to transtension, transpression, or compression. Furthermore, the shear strain associated with oblique plate convergence can be accommodated by either intra-arc or arc-marginal deformation. The structural-tectonic settings of these 74 productive VCs were characterized to add to a global catalog of parameters to help guide future exploration, development, and regional resource potential.

  12. Tectonic Setting of the Wooded Island Earthquake Swarm, Eastern Washington

    SciTech Connect

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.; Rohay, A. C.; Wells, R. E.

    2012-08-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site, Washington. Epicenters were concentrated in a 2 km2 area near Wooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Finally, although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  13. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  14. Tectonic setting of Martian volcanoes and deep-seated intrusives

    NASA Technical Reports Server (NTRS)

    Scott, David H.; Dohm, James M.

    1991-01-01

    More than 50 volcanoes have been mapped on Mars, and recent geologic studies indicate structural evidence of deep seated intrusive bodies. Most volcanoes in the Tharsis region are volcanotectonic features; they have been associated with large scale tectonic and volcanic processes. They occur along complex systems of faults and grabens having a dominant northwest to southwest trend closely coincident with a great circle, which extends along 90 deg of arc from Tempe Patera to probable volcanic mountains near lat. 40 deg S, long. 150 deg. Deep seated intrusive bodies are also concentrated in the Tharsis region and are recognized mostly where faults have been deflected around their cores. The Elysium Mons-Amphitrites Patera volcanic alignment is subparallel to that of Tharsis but is longer, extending through about 120 deg of arc; it transects the dichotomy boundary and is radial to the Hellas basin. Volcanoes in the Tharsis region have the widest age range of all volcanoes on Mars, as determined by the size-frequency distribution of their craters having diameters of 2, 5, and 16 km.

  15. Tectonic setting of the 1. 73 Ga Payson ophiolite

    SciTech Connect

    Dann, J.C.

    1993-04-01

    The Early Proterozoic orogenic belt of central Arizona is divided by north- to northeast-trending shear zones into a collage of crustal blocks assembled during three periods of convergent tectonism. Whether any of the crustal blocks are allochthonous with respect to one another is an outstanding question. The sheeted dike complex of the Payson ophiolite forms a pseudostratigraphic layer that connects underlying gabbro to an overlying sequence of submarine volcanic rocks. The ophiolite intruded and erupted upon an older basement complex that includes 1.75 Ga granitoids, the oldest rocks known in central Arizona. The 1.73 Ga ophiolite is overlain by dacitic and andesitic volcanic and volcaniclastic rocks and a sequence of turbidites with 1.72 Ga ash beds and is intruded by 1.71 Ga granodiorite. In addition to a distinct arc geochemical signature, the fact that the Payson ophiolite intrudes older arc crust, is intruded by arc plutons, and is overlain by arc-derived rocks in consistent with in situ development within an arc. The northwest boundary of the Mazatzal block, the Moore Gulch fault, separates the Mazatzal block from the 1.74--1.735 Ga arc volcanic and plutonic rocks of the Ash Creek block. If the northeast-trending 1.70 Ga deformational structures are parallel to the paleo-convergent plate boundary, then the northwest-trending dikes of the ophiolite suggest arc-parallel extension. This geometry is more consistent with an intra-arc basin formed as a pull-apart structure along an arc-parallel, strike-slip fault than with a back-arc basin.

  16. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  17. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  18. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    USGS Publications Warehouse

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    batholith have yielded more than 100 million oz of gold. Additional significant ore-forming events during the development of North America's Cordilleran orogen included those in the Klamath Mountains region, California in the Late Jurassic and Early Cretaceous; the Klondike district, Yukon by the Early Cretaceous; the Nome and Fairbanks districts, Alaska, and the Bridge River district, British Columbia in the middle Cretaceous; and the Juneau gold belt, Alaska in the Eocene. Gold-bearing veins deposited during the Late Jurassic and Early Cretaceous terrane collision that formed the present-day Russian Far East have been the source for more than 130 million oz of placer gold. The abundance of gold-bearing quartz-carbonate veins throughout the Gondwanan, North American and Eurasian continental margins suggests the migration and concentration of large fluid volumes during continental growth. Such volumes could be released during orogenic heating of hydrous silicate mineral phases within accreted marine strata. The common temporal association between gold veining and magmatism around the Pacific Rim reflects these thermal episodes. Melting of the lower thickened crust during arc formation, slab rollback and extensional tectonism, and subduction of a slab window beneath the seaward part of the forearc region can all provide the required heat for initation of the ore-forming processes.

  19. Digital images of combined oceanic and continental data sets and their use in tectonic studies

    NASA Technical Reports Server (NTRS)

    Haxby, W. F.; Labrecque, J. L.; Weissel, J. K.; Karner, G. D.

    1983-01-01

    It is shown how crustal and lithospheric studies can benefit when continental and oceanic data sets are combined. It is also shown how digital imaging techniques provide an effective means for displaying the information contained in these combined data sets. The region of Australia, New Zealand, and the surrounding ocean is chosen for illustrating the advantages of combining continental and oceanic data sets. Here, the tectonic setting of Australia, a relatively stable continent in an intraplate environment, can be contrasted with New Zealand, which is traversed by one of the world's major plate boundaries. Simultaneous display and analysis of complementary data sets make possible a rapid geologic and tectonic interpretation of regional areas. It is shown, by way of example, that the relationship between topography and gravity anomalies in central Australia gives important new information concerning the state of isostasy of thrust terrains and their related sedimentary basins and hence provides a means of understanding the mechanical properties of the continental lithosphere.

  20. Melt Focusing Along Permeability Barriers in Various Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Montesi, L. G.; Hebert, L. B.

    2012-12-01

    The lithosphere, cold and rigid, acts as a barrier to the migration of melt from sources in the convecting mantle to the surface. In mid-ocean ridge settings in particular, the contrast between the width of the melt production zone at depths, reaching tens to hundreds of kilometer from the ridge axis, and the zone of crustal accretion, only one or two kilometers wide, points to the presence of an efficient focusing mechanism. The development of a zone impermeable to melt, or permeability barrier, at the base of the thermal boundary layer, and transport of melt in a high porosity channel at the base of this barrier provides a reasonable explanation for this focusing. Applied to various segmented and non-segmented mid-ocean ridges like the ultraslow Southwest Indian Ridge and the ultrafast East Pacific Rise at the Siqueiros transform, this process predicts along-strike variations in crustal thickness that compare favorably with observations. Although the concept of permeability barriers has been discussed mainly in the context of mid-ocean ridges, it may apply to other locations where melting in the upper mantle occurs. Permeability barriers form when ascending melt cools and crystallizes as it enters the thermal boundary layer at the base of the lithosphere. Such a setup is present at subduction zones as melts ascending from the mantle wedge interact with the overriding plate. Convection in the wedge introduces thermal gradients that may focus melt roughly to a point above the transition from a coupled to decoupled slab interface. This location is close to where volcanic arcs are observed. Above mantle plumes, a permeability barrier may develop coincident with the lithosphere-asthenosphere boundary, allowing low-degree melts to stall and form a low-velocity layer that has been observed seismically. To date, the hypothesis of a permeability barrier has been thoroughly tested only in the context of mid-ocean ridges. Whether crystallization would be rapid enough in

  1. Tectonic and paleogeographic settings of northeast Asian hydrocarbon systems

    SciTech Connect

    Lindemann, W.L.; Stanley, K.O. )

    1990-05-01

    Most of China and Soviet Asia were formed by the welding of microcontinents and accretionary wedge assemblages from the Devonian through the Late Cretaceous. The first hydrocarbon systems developed in late Precambrian to middle Paleozoic basins on continental platform blocks prior to the Hercynian welding of plates. Later hydrocarbon systems developed in both extensional and compressional successor basins associated with plate collisions from the late Paleozoic to the Cenozoic. Basins with cratonic tectono-stratigraphic assemblages, which formed on Archean-early Paleozoic microcontinent plates, feature hydrocarbon systems that are sourced by marine rocks and reservoired in weathered crusts and/or clastic/carbonate platform rocks. The upper Precambrian and Paleozoic of east Siberia, the middle Paleozoic of west Siberia, and the lower Paleozoic of the Tarim basin are examples of this hydrocarbon system. The rift-sag successor basins, which developed on these welded microplates and accretionary wedges after collision, feature hydrocarbon systems produced from mostly nonmarine rocks in China and mostly marine rocks in Russia. Example successor basins include the marine Jurassic-Cretaceous West Siberian interior sag basin formed over several microplates; the nonmarine Cretaceous-Tertiary rift-sag Songliao and north China basins; and the Neogene extensional strike-slip North Sakhalin basin. The compressional basins formed as a result of late Paleozoic to Cenozoic plate collisions. These basins feature hydrocarbon systems in marine and/or nonmarine rocks depending on the paleogeographic setting. The best example is the late Paleozoic-Mesozoic nonmarine Junggar basin in northwest China.

  2. Quaternary tectonic setting of South-Central coastal California

    USGS Publications Warehouse

    Lettis, William R.; Hanson, Kathryn L.; Unruh, Jeffrey R.; McLaren, Marcia; Savage, William U.; Keller, Margaret A.

    2004-01-01

    Recent geodetic, geologic, and seismologic studies show that the south-central coast of California is a region of active Quaternary deformation. Northeast-directed crustal shortening is occurring in a triangular-shaped region between the Hosgri-San Simeon fault system on the west, the Southern Coast Ranges on the northeast, and the western Transverse Ranges on the south. We informally call this region the Los Osos domain. In this study, we conducted detailed geological, seismological, and geophysical investigations to characterize the nature and rates of deformation in the domain. Locations of active and potentially active faults and folds are compiled at a scale of 1:250,000 for the entire domain based primarily on onshore geologic data and offshore geophysical data. Crustal shortening in the domain is accommodated by a series of prominent northwest-trending reverse faults and localized folding. The reverse faults separate distinct structural blocks that have little or no internal deformation. Hangingwall blocks are being uplifted at rates of up to 0.2 mm/yr. Footwall blocks are either static or slowly subsiding at rates of 0.1 mm/yr or less, except for localized areas of concentrated subsidence directly adjacent to some faults. The cumulative rate of crustal shortening is about 1 to 2 mm/yr across the northern part of the domain based on observed geologic deformation. Cumulative shortening across the central and southern parts of the domain is poorly constrained by geologic data and may approach 2 to 3 mm/yr. Historical and instrumental seismicity generally are spatially associated with the uplifted blocks and bordering reverse faults to depths of about 10 km. Together with near-surface geological data and deeper crustal geophysical imaging that show high-angle faulting, the seismicity data indicate that the reverse faults probably extend to the base of the seismogenic crust. The base of the seismogenic crust may correspond with a mid-crustal detachment or

  3. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  4. Using Google Earth to Explore Multiple Data Sets and Plate Tectonic Concepts

    NASA Astrophysics Data System (ADS)

    Goodell, L. P.

    2015-12-01

    Google Earth (GE) offers an engaging and dynamic environment for exploration of earth science data. While GIS software offers higher-level analytical capability, it comes with a steep learning curve and complex interface that is not easy for the novice, and in many cases the instructor, to negotiate. In contrast, the intuitive interface of GE makes it easy for students to quickly become proficient in manipulating the globe and independently exploring relationships between multiple data sets at a wide range of scales. Inquiry-based, data-rich exercises have been developed for both introductory and upper-level activities including: exploration of plate boundary characteristics and relative motion across plate boundaries; determination and comparison of short-term and long-term average plate velocities; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions. Used successfully in undergraduate course settings, for TA training and for professional development programs for middle and high school teachers, the exercises use the following GE data sets (with sources) that have been collected/compiled by the author and are freely available for non-commercial use: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA, UNAVCO); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).

  5. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  6. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  7. Tectonic setting

    SciTech Connect

    Yerkes, R.F.

    1990-01-01

    The 1983 Coalinga main shock occurred beneath the Coalinga anticline, about 45 km east of the San Andreas near the boundary between the San Joaquin Valley and the southeastern Diablo Range of the central California Coast Ranges. The main shock and most aftershocks occurred 6 to 14 km beneath the Coalinga anticline-Pleasant Valley syncline area. The main-shock epicenter was about 10 km northeast of the town of Coalinga, near the axis of the Coalinga anticline. The aftershock epicenters form an elliptical pattern, about 35 km long from Nunez Canyon on the northwest to the Guijarral Hills on the southeast, and about 15 km wide from Coalinga on the southwest to the main-shock epicenter. This pattern includes most of the southeast-plunging Coalinga anticline but lies south of contiguous, east-southeast-plunging Joaquin Ridge. This chapter outlines aspects of the structural history, seismicity, and inferred stress regime of the Diablo Range-San Joaquin Valley region.

  8. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  9. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Leeman, William P.

    1989-01-01

    The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.

  10. New insights into Wellington Harbours' tectonic settings from marine geophysical and sedimentological data

    NASA Astrophysics Data System (ADS)

    Woelz, Susi; Nodder, Scott; Barnes, Philip; Orpin, Alan

    2015-04-01

    After the experience of several damaging coastal earthquakes in New Zealand in the last three years, the importance of locating and characterising the earthquake potential of active faults close to urban areas has become more obvious, especially when cities lie in complex tectonic settings as it is the case for Wellington. To assess the earthquake and tsunami potential and the associated hazard posed by such faults, it is necessary to characterise fault geometry, slip rate, earthquake history and earthquake potential. In the marine environment, we have the advantage that faults can be assessed cross-sectionally through the application of high-resolution geophysical data without having to excavate trenches across the active fault trace. We present new marine data from Wellington Harbour that helps to characterise three faults; the Wellington Fault at Kaiwharawhara, the Evans Bay Fault, and a newly discovered fault off Oriental Bay, informally referred to as the Mount Victoria Fault. New marine geophysical data has better delineated the location and characteristics of these faults. High-resolution multi-beam bathymetric data (50 cm grid-cell size), covering the entire Wellington Harbour, were also used to determine the occurrence of seafloor scarps associated with surface ruptures on the faults. Sediment cores from either side of the Wellington Fault off Kaiwharawhara Stream, in about 17.5 m water depth, provide insight into the late Quaternary-Holocene stratigraphy and age of sediments that have been deformed by activity on the faults delineated in Wellington Harbour. The stratigraphy reveals details of the post-glacial marine flooding of the harbour that occurred about 10,000 years ago.

  11. Active tectonics coupled to fluvial erosion in the NW Himalaya

    NASA Astrophysics Data System (ADS)

    Vannay, J.-C.; Grasemann, B.; Rahn, M.; Frank, W.; Carter, A.

    2003-04-01

    Both syntaxial extremities of the Himalaya show a spatial correlation between active exhumation of deep crustal rocks and the presence of powerful rivers, the Indus and the Tsangpo-Brahmaputra, cutting across the range two of the deepest gorges on Earth. These features strongly suggests that vigorous fluvial erosion can locally enhance isostatic and tectonic uplift, which in turn contributes to heat advection and weakening of the crust, as well as to maintain steep topographic gradients [Zeitler et al., 2001]. In order to test this positive feedback model, we combined structural and geochronological data to constrain the tectono-thermal evolution along the Sutlej (NW India), the third largest river cross-cutting entirely the Himalaya. The Himalayan crystalline core zone exposed along the Sutlej Valley is composed of two gneiss sheets, that were successively underthrusted and tectonically extruded as a consequence of the foreland-directed propagation of deformation in the Indian plate margin. During Early to Middle Miocene, combined thrusting along the Main Central Thrust (MCT) and extension along the Sangla Detachment induced the rapid exhumation and cooling of the amphibolite facies to migmatitic High Himalayan Crystalline Sequence [Vannay &Grasemann, 2001]. Underthrusting beneath the MCT led to the creation of the amphibolite facies Lesser Himalayan Crystalline Sequence (LHCS). The LHCS cooled rapidly from Late Miocene to Pleistocene, as a consequence of tectonic extrusion controlled by thrusting along the Munsiari Thrust, and extension in the MCT hanging wall. This phase is still active, as indicated by: (1) cooling rates in excess of 100^oC/Myr during the past ˜3 Myr in the LHCS; (2) Holocene neo-tectonic activity; (3) present-day hydrothermal activity testifying to elevated near-surface geothermal gradients; and (4) seismic activity along the Munsiari Thrust. Modelling of fluvial erosion in the Himalaya indicate that the Sutlej Valley corresponds to the main

  12. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  13. Northeast Basin and Range province active tectonics: An alternative view

    SciTech Connect

    Westaway, R. )

    1989-09-01

    Slip rates and slip vector azimuths on major active oblique normal faults are used to investigate whether circulation associated with the Yellowstone upwelling plume is driving tectonic deformation in the northeast Basin and Range province. Observed deformation is consistent with this suggestion; the plume is sheared to the southwest by motion of the North American plate. Testable predictions are made for structure and evolution of the region.

  14. Active tectonic studies in the United States, 1987-1990

    SciTech Connect

    Weldon, R.J., II )

    1991-01-01

    The techniques and instrumentation used in active tectonic studies are discussed, and recent results are reviewed. It is suggested that a critical mass of data on several particular regions has been accumulated, making possible critical debates and attempts to assess earthquake hazards. Particular attention is given to studies of the Pacific Northwest region, basin and range deformation studies, and distributed deformation and hidden earthquake sources. Also included is a comprehensive bibliography for the period.

  15. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  16. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean

    USGS Publications Warehouse

    O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.

    2008-01-01

    Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.

  17. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  18. Geochemical indicators of provenance and tectonic setting of Mississippian pelites of the Ouachita fold belt

    SciTech Connect

    Totten, M.W. ); Blatt, H.; Weaver, B.L. )

    1992-01-01

    Plate tectonic reconstructions of the southern continental margin of North America during the Paleozoic are inconclusive. Numerous conflicting models have been proposed for the opening and closing of the Iapetus Ocean and the subsequent deposition and deformation of the Ouachita System. Considerable confusion also exists concerning the provenance of the Carboniferous flysch deposits of the Ouachitas. Trace element geochemistry of shales from the Stanley Group constrain both the provenance of the sediments and the plate tectonic setting during the Mississippian evolution of the southern continental margin. Th/Sc and Cr/Th ratios support a cratonic source for the majority of samples analyzed. However, in several samples the Th/Sc ratio decreases and the Cr/Th ratio increases, suggesting a contribution from a more mafic source. Using element ratio-ratio diagrams, all of the samples plot along a curve consistent with a two-component mixing model between a felsic and a mafic source. Both a tantalum-niobium trough and a strongly negative strontium anomaly are seen in upper-crust-normalized trace element spiderdiagrams. These anomalies are also present in interbedded volcaniclastics within the Stanley. The Stanley shales also exhibit a positive vanadium-chromium-nickel anomaly. The pervasive occurrence of these anomalies is interpreted as inherited from their source, and not from diagenetic alteration or sedimentary processes.

  19. Tectonic setting of the low-grade metamorphic rocks of the Dabie Orogen, central eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Shutong; Wu, Weiping; Lu, Yiqun; Wang, Dehua

    2012-04-01

    The tectonic setting on both the northern and southern sides of the Dabie Mountains reveals that low-grade metamorphic rocks are important constituents produced by the subduction of the oceanic crust prior to collision between the Sino-Korean and Yangtze cratons. The Zhangbaling Group/Mulanshan schist is a pre-Ordovician oceanic crust. The Sujiahe and Xinyang/Foziling Groups are trench sediments of the Ordovician-Devonian age, and constitute an accretionary prism associated with subduction. The Yangshan coal measures/Meishan Group was a forearc basin sediment of Carboniferous age, and was overthrust by the accretionary prism during collision. The Susong Group is composed of passive continental margin sediments of the Yangtze craton. Backarc basin sediments are postulated to be concealed by Mesozoic-Cenozoic sediments to the north of the Dabie Mountains. High-ultrahigh pressure terrains are exotic tectonic slices exhumed from depths, located between low-grade metamorphic rocks, and disturb the integrity of the earlier subduction orogen. Subduction occurred during the Ordovician to Devonian periods, and collision initiated at the beginning of the Permian.

  20. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  1. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Alvarado, A.; Audin, L.; Nocquet, J. M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; Jarrín, P.; Quidelleur, X.

    2014-02-01

    The Quito Fault System (QFS) extends over 60 km along the Interandean Depression in northern Ecuador. Multidisciplinary studies support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the N-S segmented, en echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active, and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited N-S direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected at depth to inactive suture to the west. A new GPS data set indicates active shortening rates for Quito blind thrust of up to 4 mm/yr, which decreases northward along the fold system as it connects to the strike-slip Guayllabamba Fault System. The proximity of these structures to the densely populated Quito region highlights the need for additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  2. The Moho in extensional tectonic settings: insights from thermo-mechanical models

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Burov, Evgenii; Liviu, Matenco

    2013-04-01

    We review consequences for the crustal and lithospheric configuration of different models for the thermo-mechanical evolution of continental lithosphere in extensional tectonic settings. The lithospheric memory is key for the interplay of lithospheric stresses and rheological structure of the extending lithosphere and for its later tectonic reactivation. Other important factors are the temporal and spatial migration of extension and the interplay of rifting and surface processes. The mode of extension and the duration of the rifting phase required to lead to continental break-up is to a large extent controlled by the interaction of the extending plate with slab dynamics. We compare predictions from numerical models with observational constraints from a number of rifted back-arc basin settings and intraplate domains at large distance from convergent plate boundaries. We discuss the record of vertical motions during and after rifting in the context of stretching models developed to quantify rifted basin formation. The finite strength of the lithosphere has an important effect on the formation of extensional basins. This applies both to the geometry of the basin shape as well as to the record of vertical motions during and after rifting. We demonstrate a strong connection between the bulk rheological properties of Europe's lithosphere and the evolution of some of Europe's main rifts and back-arc system. The thermomechanical structure of the lithosphere has a major impact on continental breakup and associated basin migration processes, with direct relationships between rift duration and extension velocities, thermal evolution, and the role of mantle plumes. Compressional reactivation has important consequences for post-rift inversion, borderland uplift, and denudation, as illustrated by polyphase deformation of extensional back-arc basins in the Black Sea and the Pannonian Basin.

  3. Tectonic setting of the San Diego formation aquifer,considered for conjunctive use storage

    NASA Astrophysics Data System (ADS)

    Keller, B.; Ward, A.

    2001-10-01

    A number of alluvial aquifers in coastal southern California are either in current use or are being considered for aquifer storage and recovery (ASR). This conjunctive-use strategy involves artificial recharge with local or imported potable water or recycled water during low-use periods and extraction during high-use periods. Most of the aquifers are alluvial fill of eroded stream channels or are alluvial fill of actively subsiding tectonic basins in the Transverse Ranges geomorphic province. In both cases, the aquifer material is relatively tectonically undisturbed since deposition, and in many cases, individual aquifer units have considerable areal extent. The San Diego Formation aquifer, which spans the international border between Alta California and Baja California, is an exception. It was deposited in a pull-apart basin in the strike-slip regime of the Rose Canyon fault zone and parallel faults, which form the boundary between the Peninsular Ranges and Continental Borderlands geomorphic provinces. The formation has been faulted, internally fractured, and locally chemically altered. The lack of continuity of individual aquifer units that is observed in aquifer studies may be associated with localized patterns of syntectonic deposition.

  4. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  5. Active tectonics of central-western Caucasus, Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N.; Tibaldi, A.; Alania, V.; Gventsadse, A.; Enukidze, O.; Varazanashvili, O.; Müller, B. I. R.

    2016-11-01

    This work contributes to a better knowledge of potentially seismogenic faults of the Georgia Greater and Lesser Caucasus by evaluating the distribution of earthquake foci, active tectonic stress field, kinematics and geometry of main fault planes. We consider all the information coming from field structural geology, geomorphology, seismological data from historical and instrumental catalogues, seismic reflection sections, as well as new focal mechanism solutions. These data enable recognizing some active ENE-WSW reverse faults in the core of the Greater Caucasus that are parallel to the mountain range. At the southernmost front of the Greater Caucasus, a series of main thrusts dipping towards NNE are active, with up to hundreds-km-long segments; along this thrust zone, a potentially locked segment is present, about 90 km long. The studied section of the Lesser Caucasus has active structures along the northern front given by south-dipping thrusts, as well as in the central core where strike-slip and oblique faults coexist. The Transcaucasian depression between the two mountain ranges shows an ongoing inversion tectonics of the central part of the Rioni Basin where active N- to NE-dipping reverse faults are present, accompanied by clear evidence of uplift of a wide area. The data are coherent with a N-S to NNE-SSW contraction of the central-western Greater Caucasus and Lesser Caucasus. Although in general the seismicity decreases westward in terms of number of earthquakes and magnitude, seismological and geological structural data in the Rioni Basin indicate here a Quaternary propagation of deformation towards the west.

  6. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  7. Seismicity studies and tectonic settings of the Caucasus; The past and the Future

    NASA Astrophysics Data System (ADS)

    Javakishvili, Z.; Karakhanyan, A.; Yetirmishli, G.

    2012-12-01

    The Caucasus as a part of continent-continent collision of Arabian and Eurasian plates is tectonically complicated region, containing many structural formations: thrusts, tectonic nappes, buried folds, normal, reverse, and strike-slip faults and other seismically active structures. This complexity is most likely to be responsible for the widespread diffuse character of seismicity. The Caucasus suffered from several devastating earthquakes in the past: such as Shemakha earthquake of 1668, M=7.5, I0 =10 (MSK scale), Alaverdi earthquake of 1742, Ms=6.8, I0=9 and the Lechkhumi-Svaneti earthquake of 1350, Ms=7.0, I0 =9 …; during instrumental period the strongest earthquakes occurred in 1988 in Armenia - Spitak earthquake 1988, M=7.0, I0=9-10(MSK scale) and in Georgia-Racha earthquake 1991, Ms=7.0, I0 =9. The earthquakes have dramatically demonstrated that future earthquakes can cause tremendous loss of human life and property. Insufficient or inadequate awareness of the population and governments regarding the actual hazard and risk in their own and neighboring countries is one of the factors that complicate mutual understanding between the countries of the region. Protection of the environment, natural hazard assessment and reduction requires developing infrastructure, capability and regionally coordinated planning for response to disasters. The proper assessment of a natural hazard should be based on an optimally selected monitoring network. In the case of a strong earthquake that affects also neighboring countries. It is necessary to use similar sensors, systems, data collection and processing methodology as well as have an agreed upon strategy for response. To investigate the problem of seismicity; tectonics and seismic hazard analysis it is necessary to establish a modern regional monitoring network comprised of high-sensitivity digital seismographs. During the last years, after a decade of collapse in the field of seismic monitoring, all countries of the

  8. The tectonic development of south-central Asia and the paleogeographic setting of its hydrocarbon resources

    SciTech Connect

    Scotese, C.R. ); Tyrell, W.W. Jr. ); Maher, K.A. )

    1990-05-01

    The countries of south-central Asia (Afghanistan to Thailand) are made up of fragments of Gondwana that collided with the southern margin of Eurasia during the Mesozoic and Cenozoic. The Cimmerian terranes (Turkey, Iran, Afghanistan, Qiang Tang, and Burma-Malaya) rifted away from Gondwana beginning in the Late Carboniferous and were accreted to Asia during the Late Triassic-Jurassic. The Lhasa terrane, presumably also derived from Gondwana, was accreted during the Late Jurassic. By the Early Cretaceous, India-Madagascar had separated from Africa and from Australia-Antarctica. In the middle Cretaceous, India rapidly rifted away from Madagascar, and during the early Eocene collided with Asia giving rise to the Tibetam Plateau and the mountain belts from Afghanistan through Burma. The sedimentary basins and petroleum provinces adjacent to and south of these collision zones are best understood when viewed in the context of their tectonic history and paleogeographic setting. About 7 billion bbl of oil and 50 tcf of gas have been discovered in south-central Asia, mostly in Cenozoic deltaic sandstones or marine carbonate reservoirs in rift (Cambay), passive margin (Bombay shelf), and foreland basins (Assam, Indux, Potwar, Bengal) in India, Pakistan, and Bangladesh, and in a fore-arc setting in Burma. Source rocks are mostly Paleogene shale, but some Paleozoic and Mesozoic sources be present in Pakistan. New exploration is underway or will begin soon in India, Bangladesh, Nepal, and Burma.

  9. How long do U-shaped valleys last? The lifespan of glacial topography set by tectonics.

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Larsen, Isaac; Montgomery, David

    2015-04-01

    More than 10 kyr after the last major glaciation the topography of mountain ranges world-wide remains dominated by characteristic glacial landforms such as U-shaped valleys, but the transition from a glacial to a fluvial landscape is poorly constrained and it remains unclear how long glacial morphology persists following deglaciation. The longevity of glacial topography influences glacial extent and erosion in subsequent glaciations and hence the cumulative impact of Pleistocene glacial cycles on the evolution of mountain ranges. We tested whether tectonic forcing and erosional response control the timescale over which glacial topography persists into inter-glacial periods in the western Southern Alps of New Zealand and other mountain ranges worldwide, including the syntaxes of the Himalaya and Taiwan. We quantified the degree of glacial imprint by exploiting the conventional interpretation of V-shaped fluvial and U-shaped glacial valleys. Valley cross sections were automatically extracted from digital terrain models and power-laws were fitted to each cross section to quantify the shape of the valley flanks. A power-law exponent of 1 characterizes the straight valley flanks of a V-shaped cross section and greater exponents are indicative of progressively more U-shaped valleys. Our results show that tectonic forcing is a first-order control on landscape evolution and on the persistence of glacial morphology worldwide. In Earth's most rapidly uplifting mountain ranges the lifespan of glacial topography is on the order of one interglacial period, preventing the development of a cumulative glacial signal. In contrast, in most alpine landscapes more than 100 kyr are required for the transformation from glacial back to fluvial topography and glacial landforms have not or have only partially been erased during the current interglacial. Thus we suggest, emphasizing the influence of glacially preconditioned topography on glacial extent and erosion, that tectonic forcing

  10. Age and tectonic setting of the Mesozoic McCoy Mountains Formation in western Arizona, USA

    USGS Publications Warehouse

    Spencer, J.E.; Richard, S.M.; Gehrels, G.E.; Gleason, J.D.; Dickinson, W.R.

    2011-01-01

    The McCoy Mountains Formation consists of Upper Jurassic to Upper Cretaceous siltstone, sandstone, and conglomerate exposed in an east-west-trending belt in southwestern Arizona and southeastern California. At least three different tectonic settings have been proposed for McCoy deposition, and multiple tectonic settings are likely over the ~80 m.y. age range of deposition. U-Pb isotopic analysis of 396 zircon sand grains from at or near the top of McCoy sections in the southern Little Harquahala, Granite Wash, New Water, and southern Plomosa Mountains, all in western Arizona, identifi ed only Jurassic or older zircons. A basaltic lava fl ow near the top of the section in the New Water Mountains yielded a U-Pb zircon date of 154.4 ?? 2.1 Ma. Geochemically similar lava fl ows and sills in the Granite Wash and southern Plomosa Mountains are inferred to be approximately the same age. We interpret these new analyses to indicate that Mesozoic clastic strata in these areas are Upper Jurassic and are broadly correlative with the lowermost McCoy Mountains Formation in the Dome Rock, McCoy, and Palen Mountains farther west. Six samples of numerous Upper Jurassic basaltic sills and lava fl ows in the McCoy Mountains Formation in the Granite Wash, New Water, and southern Plomosa Mountains yielded initial ??Nd values (at t = 150 Ma) of between +4 and +6. The geochemistry and geochronology of this igneous suite, and detrital-zircon geochronology of the sandstones, support the interpretation that the lower McCoy Mountains Formation was deposited during rifting within the western extension of the Sabinas-Chihuahua-Bisbee rift belt. Abundant 190-240 Ma zircon sand grains were derived from nearby, unidentifi ed Triassic magmatic-arc rocks in areas that were unaffected by younger Jurassic magmatism. A sandstone from the upper McCoy Mountains Formation in the Dome Rock Mountains (Arizona) yielded numerous 80-108 Ma zircon grains and almost no 190-240 Ma grains, revealing a major

  11. Provenance, tectonic setting and source-area weathering of the lower Cambrian sediments of the Parahio valley in the Spiti basin, India

    NASA Astrophysics Data System (ADS)

    Pandey, Shivani; Parcha, Suraj K.

    2017-03-01

    The geochemical study of siliciclastic rocks from the Lower Cambrian of Parahio Valley has been studied to describe the provenance, chemical weathering and tectonic setting. The K2O/Al2O3 ratio and positive correlation of Co ( r=0.85), Ni ( r=0.86), Zn ( r=0.82), Rb ( r=0.98) with K2O reflects that the presence of clay minerals control the abundances of these elements and suggests a warm and humid climate for this region. The chondrite normalized REE pattern of the samples is equivalent to upper continental crust, which reflects enriched LREE and flat HREE with negative Eu anomaly. The tectonic setting discriminant diagram log[K2O/Na2O] vs. SiO2; [SiO2/Al2O3] vs. log[K2O/Na2O]; [SiO2/20] - [K2O+Na2O] - [TiO2+Fe2O3+MgO] indicates transitional tectonic setting from an active continental margin to a passive margin. The discriminant function plot indicates quartzose sedimentary provenance, and to some extent, the felsic igneous provenance, derived from weathered granite, gneissic terrain and/or from pre-existing sedimentary terrain. The CIA value indicates low to moderate degree of chemical weathering and the average ICV values suggests immature sediments deposited in tectonically active settings. The A-CN-K diagram indicates that these sediments were generated from source rocks of the upper continental crust.

  12. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  13. Aftershock seismicity and Tectonic Setting of the 16 September 2015 Mw 8.3 Illapel earthquake

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-04-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the spatial pattern of coseismic rupture and the temporal and spatial pattern of local seismicity for aftershocks and foreshocks in relation to the tectonic setting in the earthquake area. Aftershock seismicity surrounds the rupture area in lateral and downdip direction. For the first 24 hours following the mainshock we observe aftershock migration to both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern earthquake boundary aftershocks cluster around individual subducted seamounts located on the prolongation of the downthrusting Juan Fernández Ridge indicating stress transfer from the main rupture area. In the northern part of the rupture area a deeper band of local seismicity is observed indicating an alternation of seismic to aseismic behavior of the plate interface in downdip direction. This aseismic region at ~30 km depth that is also observed before the Illapel 2015 earthquake is likely controlled by the intersection of the continental Moho with the subducting slab.

  14. Tectonic and structural setting of the northeastern central Gulf of Suez area using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Nakhla, Adel Mokhles

    2016-03-01

    Cumulative qualitative and quantitative analysis of the filtered regional and residual magnetic components of the northeastern central area of the Gulf of Suez, as well as images of the second vertical derivatives of the reduced to the northern magnetic pole map of the total magnetic intensity field images, supplemented with the available geologic information, enabled the precise delineation of the detailed structural configuration of the basement complex, which consequently illustrated the structural deformational pattern of the overlying sedimentary succession. The basement tectonic map reflects a series of N-S to NNW-SSE oriented belts of high and low basement structures. These structures are interrupted by a set of NE-SW crossing diagonal faults having varying throws and creating promising blocks for exploration. An often remarkable correlation between the reduced to the magnetic pole map and the basement relief map is noted, in particular the outline of various oil fields. A larger number of the tilted fault blocks and basement culminations have been outlined and numerous interesting exploration prospects are indicated, which appear to warrant further follow up investigation.

  15. Geomorphic signature of active tectonics in the southern Abruzzi Periadriatic hilly belt (Central Italy)

    NASA Astrophysics Data System (ADS)

    Racano, Simone; Fubelli, Giandomenico; Centamore, Ernesto; Dramis, Francesco

    2016-04-01

    The geo-structural setting of the southern Abruzzi hilly belt that stretches from the northeastern front of the Maiella Massif to the Adriatic coast is characterized by deep-seated northeast verging thrusts masked by a thick cover of Late Pliocene-Middle Pleistocene marine deposits. Most authors consider this area tectonically inactive while only few of them support the hypothesis of its recent activity from the analysis of the river network pattern. Geological and geomorphological investigations carried out in the area have clearly shown the occurrence of surface deformations resulting from the continued activity of compressive tectonics up to recent times. The analysis of the study area by of a 10 m resolution DTM (using the open-source QGIS software) confirmed and supplemented field observations. Particularly significant in this context is the topographic setting of the alluvial strath terraces in the river valleys that develop transversally to the buried thrusts. In correspondence of these structures, topographic highs have grown up displacing the middle-Pleistocene planation surface developed on top of the hilly belt, from the Maiella piedmont to the coastal zone, and diverting laterally the river courses uphill. In the same places, as along the Alento and Foro rivers that cross by antecedence the grown up topographic highs, the long profiles of terraces bend eastward and the height difference between the terrace orders, essentially related all around the area to the Quaternary regional uplift, strongly increases. In some cases, surficial faults have lowered the terraces into graben troughs or have displaced them until assuming an uphill trend. This recent tectonic activity should be taken in account in assessing the seismic hazard of the study area.

  16. Tectonic stress inversion of large multi-phase fracture data sets: application of Win-Tensor to reveal the brittle tectonic history of the Lufilan Arc, DRC

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kipata, Louis; Sintubin, Manuel

    2013-04-01

    Large fault-slip data sets from multiphase orogenic regions present a particular challenge in paleostress reconstructions. The Lufilian Arc is an arcuate fold-and-thrust belt that formed during the late Pan-African times as the result of combined N-S and E-W amalgamation of Gondwana in SE-DRCongo and N-Zambia. We studied more than 22 sites in the Lufilian Arc, and its foreland and correlated the results obtained with existing result in the Ubende belt of W-Tanzania. Most studied sites are characterized by multiphase brittle deformation in which the observed brittle structures are the result of progressive saturation of the host rock by neoformed fractures and the reactivation of early formed fractures. They correspond to large mining exploitations with multiple large and continuous outcrops that allow obtaining datasets sufficiently large to be of statistical significance and often corresponding to several successive brittle events. In this context, the reconstruction of tectonic stress necessitates an initial field-base separation of data, completed by a dynamic separation of the original data set into subsets. In the largest sites, several parts of the deposits have been measured independently and are considered as sub-sites that are be processed separately in an initial stage. The procedure used for interactive fault-slip data separation and stress inversion will be illustrated by field examples (Luiswishi and Manono mining sites). This principle has been applied to all result in the reconstruction of the brittle tectonic history of the region, starting with two major phases of orogenic compression, followed by late orogenic extension and extensional collapse. A regional tectonic inversion during the early Mesozoic, as a result of far- field stresses mark the transition towards rift-related extension. More details in Kipata, Delvaux et al.(2013), Geologica Belgica 16/1-2: 001-017 Win-Tensor can be downloaded at: http://users.skynet.be/damien.delvaux/Tensor/tensor-index.html

  17. New constraints on the active tectonic deformation of the Aegean

    USGS Publications Warehouse

    Nyst, M.; Thatcher, W.

    2004-01-01

    revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.

  18. Dynamic Digital Maps: On-line Publication of Representative "Local" Geology in a Plate Tectonic Setting

    NASA Astrophysics Data System (ADS)

    Condit, C. D.

    2002-12-01

    The use of Dynamic Digital Maps (DDMs) offers the geologic community a combination of attributes which allow the on-line publication of spatially related, highly quantitative data, to be set in a local or regional environment which lets both professional and students make inquiry based observations, and makes these data easily available for analyses. The DDM does this by displaying analytical data, images and movies from links at sample site locations on maps or images in a friendly user interface. Macintosh-only prototypes of two of these DDMs [Springerville Volcanic Field (DDM-SVF) and Tatara-San Pedro volcanic complex (DDM-TSP)] have been used in university petrology classes; the latter program has been converted to a template from which other DDMs can be made. This DDM.Template is presently being ported to a cross-platform web-enabled programming environment (MetaCard - Revolution). An example of a map produced in the process of creating this port, the DDM of New England (DDM-NE) includes six geologic field trips and the State Geologic Map of Massachusetts, and can be obtained from the URL http://ddm.geo.umass.edu. The use of these three maps allows what is essentially access to representative "local" geology in three global plate tectonic settings: a subduction zone (the Andes, DDM-TSP), a continental interior monogenetic volcanic field (DDM-SVF) and a failed rift valley (the Deerfield Basin within the DDM.NE). Because the DDM.Template provides locations for text and captions to be inserted for use at several user levels (e.g. the professional geologist, the beginning geoscientist, and the layman or perhaps middle-school student) the use of DDMs also provides a much needed outreach mechanism for the geosciences.

  19. Applications of Morphochronology to the Active Tectonics of Tibet

    SciTech Connect

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  20. Formation and tectonic evolution of the Cretaceous Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid

    2007-10-01

    The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.

  1. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  2. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  3. Tectonic activity on Pluto after the Charon-forming impact

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Collins, Geoffrey C.

    2015-01-01

    The Pluto-Charon system, likely formed from an impact, has reached the endpoint of its tidal evolution. During its evolution into the dual-synchronous state, the equilibrium tidal figures of Pluto and Charon would have also evolved as angular momentum was transferred from Pluto's spin to Charon's orbit. The rate of tidal evolution is controlled by Pluto's interior physical and thermal state. We examine three interior models for Pluto: an undifferentiated rock/ice mixture, differentiated with ice above rock, and differentiated with an ocean. For the undifferentiated case without an ocean, the Pluto-Charon binary does not evolve to its current state unless its internal temperature Ti > 200K , which would likely lead to strong tidal heating, melting, and differentiation. Without an ocean, Pluto's interior temperature must be higher than 240 K for Charon to evolve on a time scale less than the age of the Solar System. Further tidal heating would likely create an ocean. If New Horizons finds evidence of ancient tidally-driven tectonic activity on either body, the most likely explanation is that Pluto had an internal ocean during Charon's orbital evolution.

  4. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  5. Expression of Active Tectonics in Erosional Landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Whipple, K. X.; McDermott, J. A.; Adams, B. A.

    2010-12-01

    Landform analysis has become a standard tool in neotectonic studies. Most commonly the offset, tilting, and warping of abandoned depositional landforms is used to infer deformation rates and patterns. The timescales recorded in deformed landforms importantly bridge the gap between geodetic and geologic methods. Whereas such analyses of static landforms has become well developed, complementary approaches to extract quantitative information about tectonics from erosional landscapes are relatively new, rapidly evolving, and can provide powerful insight. Over the last decade, some useful general rules about the expression of rock uplift rate in erosional landscapes have been developed that can guide and augment studies of the spatial distribution of active rock uplift. At catchment scale, the relationship between landscape form and rock uplift is dictated largely by the response of stream profiles to rock uplift (particularly in rocky landscapes where uplift exceeds soil production), which is largely one of changing channel steepness (gradient adjusted for drainage area). Changes in channel steepness along stream can be either abrupt (discrete slope-break knickpoints) or gradual (expressed as zones of enhanced or reduced river profile concavity) depending on the deformation pattern. Landforms can record information about both spatial and temporal patterns in rock uplift rate. Landscapes in various parts of the Himalaya exemplify both spatial and temporal influences. The Siwalik Hills in the Himalayan foreland are a type locality for the topographic expression of spatial patterns in rock uplift rate. Here an independently known pattern of rock uplift rate over a fault-bend fold affords an opportunity to study landscape response and test landscape evolution models. Once calibrated, such models can be used to evaluate along-strike variability in the rate and pattern of rock uplift far more effectively and efficiently than can be achieved with other methods. Applying these

  6. Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for one mineralization

    NASA Astrophysics Data System (ADS)

    Branquet, Yannick; Laumonier, Bernard; Cheilletz, Alain; Giuliani, Gaston

    1999-07-01

    Colombian emeralds are formed through a hydrothermal-sedimentary process. On the western side of the Eastern Cordillera, the deposits are linked by tear faults and associated thrusts developed during a compressive tectonic phase that occurred at the time of the Eocene-Oligocene boundary, prior to the major uplift of the Cordillera during the Andean phase (middle Miocene). On the eastern side of the Cordillera, emerald mineralization occurred earlier, at the time of the Cretaceous-Tertiary boundary, during a thin-skinned extensional tectonic event linked to evaporite dissolution. This event predates the Andean phase, during which this part of the chain was folded and thrust over the Llanos foreland.

  7. Tectonic Setting of the LARSE 2 line, East Ventura and San Fernando Basins

    NASA Astrophysics Data System (ADS)

    Yeats, R. S.; Yeats, R. S.

    2001-12-01

    Middle Miocene tectonics was characterized by extension and volcanism, forming the NW-trending east Ventura rift, the Oak Ridge-Simi Hills horst, underlain by Cretaceous strata, a high granitic block in the central San Fernando Valley, a caldera complex in the western Santa Monica Mountains, and normal-faulted grabens in the Soledad Basin. Strike slip on the San Gabriel fault system (SGF) began in the middle Miocene with the Canton fault, the NE boundary of the east Ventura rift, extending into the San Fernando Basin as a possible precursor to the Verdugo fault. The SGF sensu stricto displaced the late Miocene Devil Canyon and Hasley submarine fans from their San Gabriel Mountains source, accompanied by formation of the Ridge Basin; most strike slip was completed by the Pliocene. Pliocene strata were deformed along the south-facing Pico and Newhall-Potrero monoclines and others masked by the younger Holser and Del Valle faults, extending into the hangingwall of the San Cayetano fault. The south-facing Torrey fault and north-facing Frew fault were precursors to the Quaternary Santa Susana (SSF) and Oak Ridge (ORF) faults, respectively. Active structures include the SSF, reactivating in the opposite sense the SW edge of the east Ventura rift. the blind ORF, source of the 1994 Northridge earthquake, the north-facing Holser and Del Valle faults, and the SGF, revitalized as an oblique-reverse fault. The SSF divides eastward into the Northridge Hills and Mission Hills faults, which merge eastward into the Verdugo fault, and the Sierra Madre fault at the north rim of the Sylmar Basin, together with the Buck Canyon, Lopez, and Kagel Ridge faults. The hangingwalls of these faults rotate clockwise, as does the hangingwall of the SSF, possibly in two segments bounded by the Gillibrand Canyon lateral ramp.

  8. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  9. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  10. Mantle heterogeneity and temperatures inferred from magmas from different tectonic settings

    NASA Astrophysics Data System (ADS)

    Green, D. H.

    2003-04-01

    In many earth models, Mid-Ocean Ridge magmatism is attributed to decompression melting of upwelling upper mantle/asthenosphere at normal mantle temperature. By contrast, upwelling of anomalously high temperature deep mantle plumes is invoked as the cause of "hot spots" (Hawaii, Iceland). The compositions of olivine phenocrysts in picritic magmas define both the coexisting magma composition and the temperature of crystallization. Olivine phenocrysts in Mid-Ocean Ridge tholeiitic picrites and in Hawaiian picrites range up to Mg#92.1 and Mg#91.3 respectively. The anhydrous liquidus temperatures (1 bar pressure) of N-MORB picrites average 1335^oC, of E-MORB picrites average 1355^oC and of Hawaiian picrites average 1365^oC. Correction of liquidus temperatures for dissolved volatiles leads to the conclusion that magma temperatures for all types were approximately 1325^oC implying mantle potential temperature Tp˜1430^oC. The evidence from magmatic temperatures and compositions is that the temperature contrast between the magmatic products of "hot spots" and mid-ocean ridges is <= 20^oC. The study of distinctive primitive magmas from back-arc basins (tholeiitic picrite) and island arcs (boninite, picritic ankaramite), using both the phenocryst phase of the magmas themselves, and experimental studies of picrites and peridotites demonstrate significant roles for volatiles (C-H-O fluids) and for addition of components from the subducted slab into the overlying mantle wedge. Mantle potential temperatures of Tp˜ 1430^oC are also appropriate for these settings. As well as demonstrating consistent mantle potential temperature in upwelling regions of different tectonic settings, the constraints from experimental studies of liquid/residue equilibria require mantle compositional heterogeneity in major elements and mineral phases. Refractory elements (Cr, Mg, Ni) and phase relationships (chromite-bearing harzburgite vs spinel-bearing lherzolite residues) provide signatures for

  11. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    USGS Publications Warehouse

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  12. Delivery of volatiles to terrestrial planets during accretion: Setting the stage for plate tectonics

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L.; Tikoo, S.

    2012-04-01

    A persistent problem in planetary science is how and when plate tectonics can begin in planetary evolution. On Earth, plate tectonics is thought to be facilitated by the low-viscosity asthenosphere, which obtains its low viscosity partly through low pressure, and partly through a water content on the order of hundreds of parts per million, likely trapped in the crystal structure of nominally anhydrous silicate minerals. Subduction zones introduce water contents of that magnitude to the mantle that circulates above the sinking oceanic plate, and subduction zones are sometimes cited as the process that hydrates an originally dry planetary interior. Thus there is a chicken-and-egg problem: If a damp asthenosphere is needed for plate tectonics, but plate tectonics itself creates the damp asthenosphere, how does the process initiate? Despite the existence of a metallic (reduced) core, both the compositions of meteorites and the certainty of radial mixing during accretion suggest that the Earth and other rocky planets accreted with some non-zero water content. Tracking water partitioning between magma ocean fluids and solidifying mantle minerals suggests that the planetary interior could begin with a non-zero water content. Here we present models for the interior water content of the Earth following accretion, and hypothesize about a dynamic processes that may have sped the development of plate tectonics. On an Earth-sized planet a magma ocean would solidify to produce very dense near-surface solids that also contain the bulk of the water held in the solid state, and the bulk of the incompatible elements. During gravitationally-driven overturn shallow, dense, damp solids carry their water as they sink into the perovskite stability zone and transform the bulk of their mineralogy into perovskite. The last solids that form near the surface exceed the likely water saturation levels of perovskite and will be forced to dewater as they cross the boundary into the lower mantle

  13. Stratigraphy, geochronology, geochemistry and tectonic setting of the Mesozoic Nazas Formation, north-central Mexico

    NASA Astrophysics Data System (ADS)

    Bartolini, Claudio

    Late Triassic to Middle Jurassic volcanic-sedimentary sequences that were part of the Mesozoic continental-margin of western North America are exposed in northern and central Mexico. These sequences have been grouped into the Nazas Formation and crop out in the states of Durango, Coahuila, Zacatecas, and San Luis Potosi. The Nazas Formation consists of 2,500 m or more of volcanic and pyroclastic rocks and interbedded clastic sedimentary rocks that were deposited in alluvial fan and fluvial depositional systems that developed in intra-arc basins, mainly fault-bound grabens and topographic depressions within an extending Mesozoic volcanic arc. Major and trace element geochemistry of volcanic rocks suggests that the volcanic suite is calc-alkaline and includes rhyolite, dacite, rhyodacite, andesite, trachyandesite and rare basalt. Pyroclastic rocks are basically air-fall tuffs and volcanic breccias. The sedimentary strata include conglomerate, sandstone, shale, and siltstone, locally red in color. Geochronology (Ar-Ar, K-Ar and Rb-Sr) and field evidence indicate that the age of the Nazas Formation ranges from Late Triassic to Middle Jurassic, but the peak of arc volcanism appears to be Early and Middle Jurassic. The Mesozoic magmatic arc in Mexico has a northwest trend and extends from Sonora to Chiapas. The arc structure is more than 2,000 km long, and possibly up to 150 km wide. The width of the arc is uncertain due to the limited number of surface outcrops, however, it did not extend east into the Gulf of Mexico. Arc-related magmatism began in latest Triassic time, but the peak of arc evolution occurred during the Early and Middle Jurassic. By Oxfordian time, the arc was deeply dissected and eroded, and magmatic activity had ceased. A marine transgression from the Gulf of Mexico covered most of the Nazas arc, depositing the initial sediments of the Oxfordian Zuloaga Limestone in the Mexican Geosyncline. Jurassic crustal extension in the Gulf of Mexico was

  14. The role of space-based observation in understanding and responding to active tectonics and earthquakes

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Walters, R. J.; Wright, T. J.

    2016-12-01

    The quantity and quality of satellite-geodetic measurements of tectonic deformation have increased dramatically over the past two decades improving our ability to observe active tectonic processes. We now routinely respond to earthquakes using satellites, mapping surface ruptures and estimating the distribution of slip on faults at depth for most continental earthquakes. Studies directly link earthquakes to their causative faults allowing us to calculate how resulting changes in crustal stress can influence future seismic hazard. This revolution in space-based observation is driving advances in models that can explain the time-dependent surface deformation and the long-term evolution of fault zones and tectonic landscapes.

  15. Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, Surendra S.; Kothyari, Girish Ch.

    2015-06-01

    We present the results of integrated studies of geomorphic indices of drainage networks and landforms developed across the mountain front along the Himalayan Frontal Thrust (HFT) between the Dabka and Baur rivers, Kumaun Himalaya. The HFT is a morphogenic structure in nature, creating a 100-m-high E-W trending escarpment that extends ~ 21 km. Geomorphological evidence indicates ~ 10.5 km westward migration of the Dabka River and ~ 5.2 km eastward migration of the Baur River. These migrations are a result of uplift of the hanging wall along the HFT. The HFT is offset by a transverse fault, which suggests that the latter postdates the reactivation of the HFT between 500 and 100 ka. Presence of different levels of strath terraces along the mountain front suggests the active nature of the HFT. To assess the relative tectonic activity, morphometric indices such as stream-gradient (SL) index, mountain front sinuosity (Smf) index, and ratio of valley floor width to valley height (Vf) have been analyzed. Results of the former two are consistent with the tectonic landforms developed in thrust zones. Paleochannels of the Dabka and Baur rivers are characterized by high Vf values while other valleys show low Vf values. Quaternary alluvial sediments have been deformed along the Pawalgarth Thrust, a splay of the HFT. Deformation has resulted in the formation of the Pawalgarh Anticline, a thrust-related asymmetric fold.

  16. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  17. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  18. Geochemistry of Neogene sedimentary rocks from Borneo Basin, Malaysia: implications on paleo-weathering, provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Ramasmay, N.; Roy, P.; MP, J.; Rufino, L.; Franz, L. K.; Viswanathan, P. M.

    2013-05-01

    Multi-element geochemistry and mineralogy are used to characterize the chemical composition, degree of paleo-weathering, provenance and tectonic settingsof the Neogene sedimentary rocks of Borneo Basin from east Malaysia. The sedimentary rocks are classified as extremely weathered sandstones (i.e. wacke, arkose, litharenite, Fe-sandstone and quartz arenite). Higher values of both weathering indices of alteration (i.e. CIA>83 and PIA>89) suggest that the sandstones have undergone extreme chemical weathering. Absence of any feldspar in the mineralogical analysis indicates its degradation during the weathering. Except for the quartz arenite, all other sandstones are characterized by post-depositional K-metasomatism and zircon enrichment through sediment recycling. The geochemical characteristics suggest a mixed-nature provenance for the sandstones with contribution coming from both felsic and mafic igneous rocks. Enriched Cr in quartz arenite and Fe-sandstone are related to contribution from ophiolite or fractionation of Cr-bearing minerals. The inferred tectonic settings are variable and suggest a complex nature of tectonic environment in the basin.

  19. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  20. Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2013-08-01

    studies on Cassiterita-Tabuões, Ritápolis, São Tiago-Rezende Costa (south of São Francisco craton, Minas Gerais) showed a collision setting, which agrees fairly reasonably with a syn-collision tectonic setting indicated in the literature. A within-plate setting is suggested for the Serrinha magmatic suite, Mineiro belt (south of São Francisco craton, Minas Gerais), contrasting markedly with the arc setting suggested in the literature. The ninth case study on Rio Itapicuru granites and Rio Capim dacites (north of São Francisco craton, Serrinha block, Bahia) showed a continental arc setting. The tenth case study indicated within-plate setting for Rio dos Remédios volcanic rocks (São Francisco craton, Bahia), which is compatible with these rocks being the initial, rift-related igneous activity associated with the Chapada Diamantina cratonic cover. The eleventh, twelfth and thirteenth case studies on Bom Jesus-Areal granites, Rio Diamante-Rosilha dacite-rhyolite and Timbozal-Cantão granites (São Luís craton) showed continental arc, within-plate and collision settings, respectively. Finally, the last two case studies, fourteenth and fifteenth showed a collision setting for Caicó Complex and continental arc setting for Algodões (Borborema province).

  1. The Riviere des Plante ophiolitic Melange; tectonic setting and melange formation in the Quebec Appalachians

    SciTech Connect

    Cousineau, P.A. )

    1991-01-01

    The Riviere des Plante ophiolitic Melange (RPOM) is the largest and best exposed of the three known ophiolitic melanges that contain blocks of Chain Lakes Massif (CLM). All three lie along the Baie Verte-Brompton line, which marks the suture between the continental rocks of the Humber zone and the oceanic rocks of the Dunnage zone. The ophiolitic melange is composed of: serpentinized ultramafic rocks, some of which are sheared and/or carbonatized; blocks of amphibolitized gabbro; basalt; volcanogenic breccia; and conglomerates. It also contains continental K-rich granitoid rocks and high-grade metamorphic (upper amphibolite facies) rocks. The RPOM is part of the Saint-Daniel Melange, an accretionary prism onto which the RPOM has been tectonically emplaced. The CLM was part of a terrane accreted to the Laurentian margin during the Taconian orogeny. Blocks of the CLM along the Baie Verte-Brompton line are interpreted as fragments of this terrane caught within the suture zone. It is proposed that the CLM could be the equivalent of Grenville-derived greywacke originally laid down during the phase of continental rifting that led to the formation of the Iapetus Ocean and was later tectonized and metamorphosed during the Taconian and Acadian orogenies. The RPOM would represent the relic of a serpentinite diapir that rose within a deep oceanic fault. The presence of continental rocks like the CLM suggest that a continental magmatic arc was put in contact with an oceanic crust along this fault.

  2. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    The Säntis nappe is a fold-and-thrust structure in eastern Switzerland consisting of numerous tectonic discontinuities that make rocks vulnerable to rock failure. The Sennwald landslide is one of those events that occurred due to the failure of Lower Cretaceous Helvetic limestones. This study reveals the surface exposure age of the event in relation to geological and tectonic setting, earthquake frequency of the Central Alps, and regional scale climate/weather influence. Our study comprises detailed mapping of landform features, thin section analysis of landslide boulder lithologies, landslide volume estimation, numerical DAN-3D run-out modelling, and the spatial and temporal relationship of the event. In the Sennwald landslide, 92 million m3 of limestones detached from the south-eastern wall of the Säntis nappe and slid with a maximum travel distance of ~4'500 m and a "fahrboeschung" angle of 15° along the SE-dipping sliding plane almost parallel to the orientation of the bedding plane. Numerical run-out modelling results match the extent and the thickness of landslide deposits as observed in the field. The original bedrock stratigraphy was preserved as geologically the top layer in the bedrock package travelled the farthest and the bottom layer came to rest closest to the release bedrock wall during the landslide. Velocities of maximum 90 m/s were obtained from the numerical run-out modelling. Total Cl and 36Cl were determined at ETH AMS facility with isotope dilution methods defined in the literature (Ivy-Ochs et al., 2004). Surface exposure ages of landslide deposits in the accumulation area are revealed from twelve boulders. The distribution of limestone boulders in the accumulation area, the exposure ages, and the numerical run-out modelling support the hypothesis that the Sennwald landslide was a single catastrophic event. The event is likely to have been triggered by at least light to moderate earthquakes (Mw=4.0-6.0). The historical and the last 40-year

  3. Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi-dimensional geochemical discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2015-03-01

    Fifteen multi-dimensional diagrams for basic and ultrabasic rocks, based on log-ratio transformations, were used to infer tectonic setting for eight case studies of Borborema Province, NE Brazil. The applications of these diagrams indicated the following results: (1) a mid-ocean ridge setting for Forquilha eclogites (Central Ceará domain) during the Mesoproterozoic; (2) an oceanic plateau setting for Algodões amphibolites (Central Ceará domain) during the Paleoproterozoic; (3) an island arc setting for Brejo Seco amphibolites (Riacho do Pontal belt) during the Proterozoic; (4) an island arc to mid-ocean ridge setting for greenschists of the Monte Orebe Complex (Riacho do Pontal belt) during the Neoproterozoic; (5) within-plate (continental) setting for Vaza Barris domain mafic rocks (Sergipano belt) during the Neoproterozoic; (6) a less precise arc to continental rift for the Gentileza unit metadiorite/gabbro (Sergipano belt) during the Neoproterozoic; (7) an island arc setting for the Novo Gosto unit metabasalts (Sergipano belt) during Neoproterozoic; (8) continental rift setting for Rio Grande do Norte basic rocks during Miocene.

  4. Geodynamically unusual settings of sedimentary rock and ore formation due to tectonic-decompression effects

    SciTech Connect

    Goryainov, P.M.

    1984-05-01

    The traditional views of terrigenous rocks as products of classical sedimentary cycle, ''mobilization-transport-deposition,'' are not universal. Detrital rocks are sometimes formed due to flaking and fracturation of rocks of rising blocks. The process is produced by tectonic-decompression mechanisms - the origination of a gradient of excessive stress and its discharge. It is incorrect to classify rocks created by this phenomenon with weathering crusts. The origins of certain terrigenous rocks, as well as products of low-temperature chemical processing, are connected with deep-volume decompression (brecciation, stockwork formation, formation of pipes and columns of igneous rocks, and chamber pegmatite and karst formation). The ore concentrations associated with such entities and appearing as stratiform deposits are most likely not exogenous, but they complete the endogenous history of the block concerned. The means and methods tested on typical endogenous deposits may therefore prove valuable in predicting certain varieties of stratiform deposits.

  5. Cenozoic Ignimbrites, Source Calderas, Relict Magma Chambers, and Tectonic Settings: Perspectives from Cordilleran North America (Invited)

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.

    2009-12-01

    In the early 1960s, new concepts and innovative techniques coalesced spectacularly to improve understanding of Tertiary pyroclastic volcanism in North America. Spotty recognition of welded tuff, among rocks mostly described as silicic lava flows, exploded with identification of individual ignimbrite sheets, some having volumes >103 km3 and extending >100 km from source calderas. R.l. Smith, during study of the Bandelier Tuff in New Mexico, documented complexities of welding and crystallization zones that provided a genetic framework (cooling units) for ignimbrite studies (even while confusion continues in some areas where talus and vegetation obscure bench-forming contact zones between densely welded cliffs). Also in the 1960s, application of isotopic age determinations (initially K-Ar, now largely superceded by 40Ar/39Ar laser fusion) and precise paleomagnetic pole directions became key tools for correlating ignimbrites, deciphering eruptive histories, and determining volcano-tectonic patterns. Dated ignimbrites provide unique stratigraphic markers within volcanic field, as well as datums for regional structures and the shifting patterns of volcanism related to global plate motions--another happy coincidence in the 1960s as plate-tectonic models were formulated. Tertiary ignimbrite flare-ups along the Cordilleran margin increasingly are recognized as coinciding with inception of regional extension, especially during transitions from episodes of low-angle convergence. Many large caldera sources for the Tertiary ignimbrites have now been identified, in place of prior vague concepts of “volcano-tectonic depressions”, especially as the contrasts between thin outflow and thickly ponded intracaldera ignimbrite with interleaved collapse breccia became appreciated. Multi-km-thick fills in many calderas document that collapse begins early during large ignimbrite eruptions, and downsag inception was succeeded by breakage along ring faults. Resurgent uplift has been

  6. Geochemical, geochronological characterization and tectonic setting of the metamorphic rocks from the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, F.; Tunç, Ä.°. O.; Yiǧitbaş, E.

    2012-04-01

    The Biga Peninsula in the northwest Turkey is one of the world's important natural laboratories to study geochronology due to having complex geology. The Biga Peninsula has different metamorphic basements including Kazdağ Massif, Çamlıca metamorphics, Kemer metamorphics and Karadağ Massif under cover of the Cenozoic volcano-sedimentary association. The Çamlıca metamorphic assemblage are one of the most critical regions for understanding of the geology of northwestern Turkey. The Çamlıca metamorphic association located on the westernmost part of Turkey is mainly composed of the Andıktası formation, the Dedetepe formation and the Salihler formation, from bottom to top. Metasedimentary rocks of the Çamlıca metamorphics have high SiO2 and medium Al2O3 and TiO2 values. The protolith of these metasediments is arkose-subarkose and greywacke. However, whole-rock geochemistry for the HP eclogite/blueschist within the Çamlıca metamorphics suggests that their protolith was basalt with high TiO2 and K2O-Na2O content and Nb/Y ratios. REE pattern and trace element contents of the HP eclogite/blueschist similar to typical MORB based on tectonic discrimination diagrams. The metavolcanic rocks occurring on the lowest part of the Çamlıca metamorphicassociation has andesitic composition with calc-alkaline character. All metavolcanic rocks in this unit cluster within the volcanic arc field. Zircon grains from metavolcanic rocks and HP eclogite/blueschists were dated by LA-ICPMS. Zircon ages of two metavolcanic samples yielded 328.6 ± 3.5 Ma and 343.2 ± 2.6 Ma, respectively. These ages are interpreted as the time of protolith crystallization of metavolcanic rocks. Moreover, zircon ages from HP eclogite/blueschist yielded 338 ± 1.8 Ma (Early Carboniferous) which is interpreted as the age of protolith crystallization of HP eclogite/blueschist. Geochemical and isotopic data indicate that Early Carboniferous Variscan ages within the Sakarya Zone may form the eastern

  7. Fast Episodes of West-Mediterranean-Tyrrhenian Oceanic Opening and Revisited Relations with Tectonic Setting

    NASA Astrophysics Data System (ADS)

    Savelli, Carlo

    2015-09-01

    Extension and calc-alkaline volcanism of the submerged orogen of alpine age (OAA) initiated in Early Oligocene (~33/32 Ma) and reached the stage of oceanic opening in Early-Miocene (Burdigalian), Late-Miocene and Late-Pliocene. In the Burdigalian (~20-16 Ma) period of widespread volcanism of calcalkaline type on the margins of oceanic domain, seafloor spreading originated the deep basins of north Algeria (western part of OAA) and Sardinia/Provence (European margin). Conversely, when conjugate margins’ volcanism has been absent or scarce seafloor spreading formed the plains Vavilov (7.5-6.3 Ma) and Marsili (1.87-1.67 Ma) within OAA eastern part (Tyrrhenian Sea). The contrast between occurrence and lack of margin’s igneous activity probably implies the diversity of the geotectonic setting at the times of oceanization. It appears that the Burdigalian calcalkaline volcanism on the continental margins developed in the absence of subduction. The WNW-directed subduction of African plate probably commenced at ~16/15 Ma (waning Burdigalian seafloor spreading) after ~18/16 Ma of rifting. Space-time features indicate that calcalkaline volcanism is not linked only to subduction. From this view, temporal gap would exist between the steep subduction beneath the Apennines and the previous, flat-type plunge of European plate with opposite direction producing the OAA accretion and double vergence.

  8. Volcanism, isostatic residual gravity, and regional tectonic setting of the Cascade volcanic province

    SciTech Connect

    Blakely, R.J.; Jachens, R.C. )

    1990-11-10

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: A northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The latter anomaly is one of a set of northeast trending anomalies that, within the Quaternary arc, appear related to volcanic segmentation proposed previously on the basis of spatial compositional distributions of volcanoes. These northeast trending anomalies extend hundreds of kilometers northeast of the arc, are caused by sources in the upper crust, and in some cases are related to exposed pre-Tertiary rocks. Segmentation models invoke geometric characteristics of the subducting plate as the primary factor controlling location and chemistry of volcanism, and these northeast trending gravity sources also may be a product of disturbance of the upper crust by the subduction process. More likely, the gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface.

  9. Volcanism, isostatic residual gravity, and regional tectonic setting of the Cascade Volcanic Province

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Jachens, Robert C.

    1990-11-01

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: a northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The latter anomaly is one of a set of northeast trending anomalies that, within the Quaternary arc, appear related to volcanic segmentation proposed previously on the basis of spatial and compositional distributions of volcanoes. These northeast trending anomalies extend hundreds of kilometers northeast of the arc, are caused by sources in the upper crust, and in some cases are related to exposed pre-Tertiary rocks. Segmentation models invoke geometric characteristics of the subducting plate as the primary factor controlling location and chemistry of volcanism, and these northeast trending gravity sources also may be a product of disturbance of the upper crust by the subduction process. More likely, the gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface.

  10. Fast Episodes of West-Mediterranean-Tyrrhenian Oceanic Opening and Revisited Relations with Tectonic Setting

    PubMed Central

    Savelli, Carlo

    2015-01-01

    Extension and calc-alkaline volcanism of the submerged orogen of alpine age (OAA) initiated in Early Oligocene (~33/32 Ma) and reached the stage of oceanic opening in Early-Miocene (Burdigalian), Late-Miocene and Late-Pliocene. In the Burdigalian (~20–16 Ma) period of widespread volcanism of calcalkaline type on the margins of oceanic domain, seafloor spreading originated the deep basins of north Algeria (western part of OAA) and Sardinia/Provence (European margin). Conversely, when conjugate margins’ volcanism has been absent or scarce seafloor spreading formed the plains Vavilov (7.5–6.3 Ma) and Marsili (1.87–1.67 Ma) within OAA eastern part (Tyrrhenian Sea). The contrast between occurrence and lack of margin’s igneous activity probably implies the diversity of the geotectonic setting at the times of oceanization. It appears that the Burdigalian calcalkaline volcanism on the continental margins developed in the absence of subduction. The WNW-directed subduction of African plate probably commenced at ~16/15 Ma (waning Burdigalian seafloor spreading) after ~18/16 Ma of rifting. Space-time features indicate that calcalkaline volcanism is not linked only to subduction. From this view, temporal gap would exist between the steep subduction beneath the Apennines and the previous, flat-type plunge of European plate with opposite direction producing the OAA accretion and double vergence. PMID:26391973

  11. Fast Episodes of West-Mediterranean-Tyrrhenian Oceanic Opening and Revisited Relations with Tectonic Setting.

    PubMed

    Savelli, Carlo

    2015-09-22

    Extension and calc-alkaline volcanism of the submerged orogen of alpine age (OAA) initiated in Early Oligocene (~33/32 Ma) and reached the stage of oceanic opening in Early-Miocene (Burdigalian), Late-Miocene and Late-Pliocene. In the Burdigalian (~20-16 Ma) period of widespread volcanism of calcalkaline type on the margins of oceanic domain, seafloor spreading originated the deep basins of north Algeria (western part of OAA) and Sardinia/Provence (European margin). Conversely, when conjugate margins' volcanism has been absent or scarce seafloor spreading formed the plains Vavilov (7.5-6.3 Ma) and Marsili (1.87-1.67 Ma) within OAA eastern part (Tyrrhenian Sea). The contrast between occurrence and lack of margin's igneous activity probably implies the diversity of the geotectonic setting at the times of oceanization. It appears that the Burdigalian calcalkaline volcanism on the continental margins developed in the absence of subduction. The WNW-directed subduction of African plate probably commenced at ~16/15 Ma (waning Burdigalian seafloor spreading) after ~18/16 Ma of rifting. Space-time features indicate that calcalkaline volcanism is not linked only to subduction. From this view, temporal gap would exist between the steep subduction beneath the Apennines and the previous, flat-type plunge of European plate with opposite direction producing the OAA accretion and double vergence.

  12. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  13. Caledonian granitoids in the Jinxiu area, Guangxi, South China: Implications for their tectonic setting

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Yu, Yong; Wang, Chunzeng

    2017-02-01

    Jinxiu area is tectonically located between the Cathaysia and Yangtze blocks of South China. The area has three granitic plutons, Dajin, Boquan, and Lingzu plutons. Geochemically the plutons are high-K calc-alkaline, depleted in Ba, Sr, P, and Ti and rich in Pb, with decoupled Nb and Ta, and show non-island-arc magmatic affinity. Biotite monzogranite samples collected from the Dajin, Boquan, and Lingzu plutons yield zircon SHRIMP 206Pb/238U ages of 419.0 ± 5.0 Ma, 436.0 ± 4.0 Ma, and 446.1 ± 8.2 Ma, respectively, indicating that the plutons were emplaced during the Late Ordovician to Late Silurian of the Caledonian time. The granodiorite within the Lingzu biotite monzogranite pluton yields a zircon 206Pb/238U age of 174.5 ± 1.9 Ma, indicating a superimposed Late Jurassic magmatic event. The monzogranites and their enclaves show εNd(t) values of - 14.7 to - 11.1 and - 8.0 respectively and TDM2 values of 2.1-2.4 Ga and 1.8 Ga, respectively, demonstrating that the magmas were derived from re-melted Paleoproterozoic continental crust. Based on geochronology and geochemistry of the granitic plutons, as well as regional stratigraphy and paleontology, it is concluded that any existence of oceanic crust and oceanic subduction was unlikely in the Jinxiu area and vicinity during the Paleozoic Caledonian Ordovician-Silurian time.

  14. Geochemical and isotopic constraints on the tectonic setting of Serra dos Carajas belt, eastern Para, Brazil

    NASA Technical Reports Server (NTRS)

    Olszewski, W. J., Jr.; Gibbs, A. K.; Wirth, K. R.

    1986-01-01

    The lower part of the Serra dos Carajas belt is the metavolcanic and metasedimentary Grao para Group (GPG). The GPG is thought to unconformably overlie the older (but undated) Xingu Complex, composed of medium and high-grade gneisses and amphibolite and greenstone belts. The geochemical data indicate that the GPG has many features in common with ancient and modern volcanic suites erupted through continental crust. The mafic rocks clearly differ from those of most Archean greenstone belts, and modern MORB, IAB, and hot-spot basalts. The geological, geochemical, and isotopic data are all consistent with deposition on continental crust, presumably in a marine basin formed by crustal extension. The isotopic data also suggest the existence of depleted mantle as a source for the parent magmas of the GPG. The overall results suggest a tectonic environment, igneous sources, and petrogenesis similar to many modern continental extensional basins, in contrast to most Archean greenstone belts. The Hammersley basin in Australia and the circum-Superior belts in Canada may be suitable Archean and Proterozoic analogues, respectively.

  15. The sedimentary and tectonic setting of the Transvaal Supergroup floor rocks to the Bushveld complex

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Reczko, B. F. F.

    1995-11-01

    The Palaeoproterozoic Transvaal Supergroup floor to the Bushveld complex comprises protobasinal successions overlain by the Black Reef Formation, Chuniespoort Group and the uppermost Pretoria Group. The protobasinal successions comprise predominantly mafic lavas and pyroclastic rocks, immature alluvial-fluvial braidplain deposits and finer-grained basinal rocks. These thick, laterally restricted protobasinal sequences reflect either strike-slip or small extensional basins formed during the impactogenal rifting and southeasterly-directed tectonic escape, which accompanied collision of the Zimbabwe and Kaapvaal cratons during Ventersdorp times. The erosively-based sheet sandstones of the succeeding Black Reef Formation reflect northwand-directed compression in the south of the basin. Thermal subsidence along the Ventersdorp Supergroup and Transvaal protobasinal fault systems led to shallow epeiric marine deposition of the sheet-like Chuniespoort Group carbonate-BIF platform succession. After an estimated 80 Ma hiatus, characterized by uplift and karstic weathering of the Chuniespoort dolomites, slower thermal subsidence is thought to have formed the Pretoria Group basin. Widespread, closed basin alluvial fan, fluvial braidplain and lacustrine sedimentation, as well as laterally extensive, subaerial andesitic volcanism (Rooihoogte to Strubenkop Formations), gave way to a marine transgression, which laid down the tuffaceous mudrocks, relatively mature sandstones and subordinate subaqueous volcanic rocks of the succeeding Daspoort, Silverton and Magaliesberg Formations. Poorly preserved post-Magaliesberg formations in the Upper Pretoria Group point to possible compressive deformation and concomitant rapid deposition of largely feldspathic detritus within smaller closed basins.

  16. The Moho in extensional tectonic settings: Insights from thermo-mechanical models

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Burov, Evgenii; Matenco, Liviu; Beekman, Fred; Roure, François; Ziegler, Peter A.

    2013-12-01

    The lithospheric memory is key for the interplay of lithospheric stresses and rheological structure of the extending lithosphere and for its later tectonic reactivation. Other important factors are the temporal and spatial migration of extension and the interplay of rifting and surface processes. The mode of extension and the duration of the rifting phase required to lead to continental break-up are to a large extent controlled by the interaction of the extending plate with slab dynamics. The finite strength of the lithosphere has an important effect on the formation of extensional basins. This applies both to the geometry of the basin shape as well as to the record of vertical motions during and after rifting. We demonstrate a strong connection between the bulk rheological properties of Europe's lithosphere and the evolution of some of Europe's main rifts and back-arc systems. The thermo-mechanical structure of the lithosphere has a major impact on continental break-up and associated basin migration processes, with direct relationships between rift duration and extension velocities, thermal evolution, and the role of mantle plumes. Compressional reactivation has important consequences for post-rift inversion, borderland uplift, and denudation, as illustrated by poly-phase deformation of extensional back-arc basins in the Black Sea and the Pannonian Basin region.

  17. Using Vertical Electrical Soundings for Characterizing Hydrogeological and Tectonic Settings in Deir El-Adas Area, Yarmouk Basin, Syria

    NASA Astrophysics Data System (ADS)

    Al-Fares, Walid

    2016-06-01

    The present study is aimed at characterizing the subsurface geological and tectonic structure in Deir El-Adas area, by using Vertical Electrical Sounding survey (VES) and hydrogeological investigations, in order to determine the causes of the failure for the majority of the wells drilled in the area. The survey data was treated in three different approaches including direct VES inversion, pseudo-2D method and horizontal profiling, in order to maximize the reliability of the data interpretation. The results revealed the presence of a local faulted anticline structure at the top of the Paleogene formation, underneath the basaltic outcrops where Deir El-Adas village is situated. The appearance of this subsurface anticline structure has complicated the local hydro-geological situation, and most likely led to limitation of the groundwater recharge in the area. Moreover, the performed piezometric and discharge maps indicated the presence of a notable groundwater watershed, in addition to feeble water productivity of the wells drilled adjacent to Deir El-Adas, mostly related to the subsurface geological and tectonic settings in the area.

  18. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  19. Salts as indicators of tectonic activity along Nesson anticline, North Dakota

    SciTech Connect

    Lefever, J.A.; Lefever, R.D.; Anderson, S.B.

    1988-07-01

    The Nesson anticline is the major north-south-trending structure in the North Dakota portion of the Williston basin. The trace of the anticline is marked by nearly continuous production for 110 mi (175 km) from the Canadian border south to Dunn County; production is from 13 different stratigraphic zones. Previous studies have shown that the central and southern parts of the anticline, from Beaver Lodge field south to Rattlesnake Point field, consist of at least nine structurally independent areas, each of which has an individual tectonic history. Isopach patterns indicate that most of the areas underwent their greatest tectonic activity during the Devonian and Early Mississippian, although a few areas were active during the early Mesozoic as well. Ten traceable salts are present along the anticline in the Prairie (Devonian), Charles (Mississippian), Opeche (Permian), Spearfish (Triassic), and Pipe Formations (Jurassic). The isopach patterns of the individual salts indicate contemporaneous tectonic activity through thickening or thinning of the salt. Postdepositional activity is indicated by the absence of a salt; the timing of the activity may be estimated from the presence of compensating section above the level of the salt. Their results indicate that, in addition to the times given above, significant tectonic activity took place along the anticline during the Late Mississippian, late Jurassic, and Early Cretaceous.

  20. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, beta-Value, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in 7 Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kagan, Y. Y.

    2003-12-01

    A new plate model [Bird, 2003, G3, 10.1029/2001GC000252] is used to analyze the mean seismicities of 7 types of plate boundary (CRB continental rift boundary, CTF continental transform fault, CCB continental convergent boundary, OSR oceanic spreading ridge, OTF oceanic transform fault, OCB oceanic convergent boundary, SUB subduction zone). We compare the plate-like (non-orogen) regions of model PB2002 with the CMT catalog to select apparent boundary half-widths, and then assign 95% of shallow earthquakes to one of these settings. A tapered Gutenberg-Richter model of the frequency/moment relation is fit to the subcatalog for each setting by maximum-likelihood. Best-fitting β values range from 0.53 to 0.92, but all 95%-confidence ranges are consistent with a common value of 0.61-0.66. To better determine some corner magnitudes we expand the subcatalogs by: (1) inclusion of orogens; and (2) inclusion of years 1900-1975 from the catalog of Pacheco and Sykes [1992]. Combining both earthquake statistics and the plate-tectonic constraint on moment rate, corner magnitudes include: CRB 7.64-.26+.76, CTF 8.01-.21+.45, CCB 8.46-.39+.21, OCB 8.04-.22+.52, and SUB 9.58-.46+.48. Coupled lithosphere thicknesses are found to be: CRB 3.0-1.4+7.0 km; CTF 8.6-4.1+11 km; CCB 18-11+? km; OSR 0.13-0.09+.13 km for normal-faulting and 0.40-.21+? km for strike-slip; OTF 12-7.1+?, 1.6-0.5+1.4, and 1.5-0.6+1.2 km at low, medium, and high velocities; OCB 3.8-2.3+13.7 km, and SUB 18.0-10.8+? km. Generally high coupling of subduction and continental plate boundaries suggests that here all seismic gaps are dangerous unless proven to be creeping. Generally low coupling within oceanic lithosphere suggests a different model of isolated seismic asperities surrounded by large seismic gaps which may be permanent.

  1. Preliminary study on hydrogeology in tectonically active areas.

    SciTech Connect

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  2. Provenance, sedimentology, and tectonic setting of ancient sandstones and conglomerates in a Continental rift basin: Espanola basin, Rio Grande rift, New Mexico

    SciTech Connect

    Cavazza, W.

    1988-02-01

    The Miocene fill of the Espanola basin half-graben is composed of two lithosomes with different provenance, paleocurrents, sandstone and conglomerate petrology, and sedimentary facies. Lithosome A has westward paleocurrents, basement-derived detrital composition, and represents sedimentation in a braid plain-sand flat-ephemeral lake system. Lithosome B has south-southwest-directed paleocurrents, a large volcaniclastic and sedimentary clastic detrital component, and represents a perennial fluvial system. Despite being derived from the unfaulted side of the Espanola half-graben, both lithosomes display upward-fining megasequences (100-400 m thick), comparable to similar megasequences derived from tectonically active basin margins. Thus, vertical arrangement of sedimentary deposits along the unfaulted margin of an asymmetrical rift basin can be determined by tectonism along the opposite, deeper margin. Continental rifts are ideal settings for detailed provenance studies. Variety of lithologies in the sediment source area (basement, sedimentary cover, and volcanic strata) provides petrologic tracers to delineate the sediment paleodispersal system. For the Miocene fill of the Espanola basin, integration of petrologic (sandstone point-counting, conglomerate clast-counting) and sedimentologic (paleocurrent and facies analyses) techniques resulted in identification of two genetically significant rock bodies not corresponding to previously established lithostratigraphic units.

  3. Large historical earthquakes and tsunamis in a very active tectonic rift: the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioanna; Papadopoulos, Gerassimos

    2014-05-01

    The Gulf of Corinth is an active tectonic rift controlled by E-W trending normal faults with an uplifted footwall in the south and a subsiding hangingwall with antithetic faulting in the north. Regional geodetic extension rates up to about 1.5 cm/yr have been measured, which is one of the highest for tectonic rifts in the entire Earth, while seismic slip rates up to about 1 cm/yr were estimated. Large earthquakes with magnitudes, M, up to about 7 were historically documented and instrumentally recorded. In this paper we have compiled historical documentation of earthquake and tsunami events occurring in the Corinth Gulf from the antiquity up to the present. The completeness of the events reported improves with time particularly after the 15th century. The majority of tsunamis were caused by earthquake activity although the aseismic landsliding is a relatively frequent agent for tsunami generation in Corinth Gulf. We focus to better understand the process of tsunami generation from earthquakes. To this aim we have considered the elliptical rupture zones of all the strong (M≥ 6.0) historical and instrumental earthquakes known in the Corinth Gulf. We have taken into account rupture zones determined by previous authors. However, magnitudes, M, of historical earthquakes were recalculated from a set of empirical relationships between M and seismic intensity established for earthquakes occurring in Greece during the instrumental era of seismicity. For this application the macroseismic field of each one of the earthquakes was identified and seismic intensities were assigned. Another set of empirical relationships M/L and M/W for instrumentally recorded earthquakes in the Mediterranean region was applied to calculate rupture zone dimensions; where L=rupture zone length, W=rupture zone width. The rupture zones positions were decided on the basis of the localities of the highest seismic intensities and co-seismic ground failures, if any, while the orientation of the maximum

  4. Impact-related Events on Active Tectonic Regions Defined by Its Age, Shocked Minerals and Compositions

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Hirota, A.; Gorton, M.; Kedves, M.

    2002-03-01

    New type of impact-related event is defined at active tectonic region by using semi-circular structure, bulk XRF compositions with mixed data, shocked quartz grains with the PDFs texture, and Fe-Ni content. Example is discussed in Takamatsu MKT crater in Japan.

  5. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  6. Importance of active tectonics during karst formation. A Middle Eocene to Pleistocene example of the Lina Moutains (Irian Jaya, Indonesia)

    NASA Astrophysics Data System (ADS)

    Thery, J.-M.; Pubellier, M.; Thery, B.; Butterlin, J.; Blondeau, A.; Adams, C. G.

    1999-05-01

    The Lina Moutains show a typical example of karst formation associated to recent and active tectonics. The limestone samples were collected from giant potholes present beneath the heavy rainforest, during speleological expeditions to the Bird's Head of Irian-Jaya. Micropalaeontological data allow us to give a Middle Pleistocene age for the most recent karst formation. A detailed stratigraphy between the Upper Lutetian and the Middle Pleistocene was recorded, with tectonic events during the Oligocene and Pleistocene. The edge of the resurgence layer was also dated. We also conclude the probable existence of a subterraneous network downhill of the karst within the most recent levels of the Kais Limestone formation. We replace this formation within the tectonic evolution of this area between the Eocene and the Middle Pleistocene, in conjunction with the oblique convergence of the Pacific plate carrying volcanic arc fragments and the Australian margin, which resulted in folding, normal faulting associated with local extension, and wrench motion, which are settings capable of creating uplift of the carbonated platform.

  7. Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Alania, V.; Bonali, F. L.; Enukidze, O.; Tsereteli, N.; Kvavadze, N.; Varazanashvili, O.

    2017-03-01

    The Rioni Basin, located between the Greater and Lesser Caucasus in Georgia, is an outstanding example of ongoing inversion tectonics. Marine and continental deposits of Cretaceous-Neogene age have been locally uplifted since the end of Miocene. The uplifted area totals 1300 km2, and Plio-Quaternary river deposits have been raised up to 200 m above the surrounding plains. Inversion tectonics has been accompanied by the development of south-vergent asymmetrical folds and strike-slip faults along the border of the uplifted area. The folds have locally an en-échelon geometry and microtectonic data indicate rotation of the paleostress direction over time, suggesting simple shear deformation. In the interiors of the uplifted area, there are gentle symmetrical folds and one main active south-dipping reverse fault, corresponding to a backthrust. Morphostructural evidence, as well as the tilting of Quaternary strata, the offset of Quaternary alluvial deposits and the presence of crustal seismic activity, indicate that compressional tectonics is still active. The combination of field data with seismic reflection sections shows that inversion tectonics took place through a series of north-dipping blind thrusts and a wedge with passive back-thrusting. Uplift and contraction are more developed along the eastern part of the study area, suggesting the westward propagation of the closure of the Transcaucasian depression.

  8. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  9. Altered volcanic ash layers of the Late Cretaceous San Felipe Formation, Sierra Madre Oriental (Northeastern Mexico): Usbnd Pb geochronology, provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Velasco-Tapia, Fernando; Martínez-Paco, Margarita; Iriondo, Alexander; Ocampo-Díaz, Yam Zul Ernesto; Cruz-Gámez, Esther María; Ramos-Ledezma, Andrés; Andaverde, Jorge Alberto; Ostrooumov, Mikhail; Masuch, Dirk

    2016-10-01

    A detailed petrographic, geochemical, and Usbnd Pb geochronological study of altered volcanic ash layers, collected in eight outcrops of the Late Cretaceous San Felipe Formation (Sierra Madre Oriental, Northeastern Mexico), has been carried out. The main objectives have been: (1) to establish a deposit period, and (2) to propose a reliable provenance-transport-deposit-diagenetic model. These volcano-sedimentary strata represent the altered remains of vitreous-crystalline ash (main grains: quartz + K-feldspar (sanidine) + Na-plagioclase + zircon + biotite; groundmass: glass + calcite + clinochlore + illite) deposited and preserved in a shallow, relatively large in area, open platform environment. Major and trace element geochemistry indicate that parent volcanism was mainly rhyodacitic to rhyolitic in composition. Discrimination diagrams suggest a link to continental arc transitional to extension tectonic setting. Usbnd Pb geochronology in zircon has revealed that the volcanic ash was released from their sources approximately during the range 84.6 ± 0.8 to 73.7 ± 0.3 Ma, being transported to the depocenters. Burial diagenesis process was marked by: (a) a limited recycling, (b) the partial loss of original components (mainly K-feldspar, plagioclase, biotite and glass), and (c) the addition of quartz, calcite, illite and clinochlore. The location of the source area remains uncertain, although the lack of enrichment in Zr/Sc ratio suggests that ashes were subjected to relatively fast and short-distance transport process. El Peñuelo intrusive complex, at 130-170 km west of the depocenters, is the nearest known zone of active magmatism during the Upper Cretaceous. This intermediate to felsic pluton, characterized by a geochemical affinity to post-orogenic tectonic setting, could be linked to the volcanic sources.

  10. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  11. Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Harlan, Stephen S.

    1998-01-01

    The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.

  12. The Meers Fault: Tectonic activity in southwestern Oklahoma

    SciTech Connect

    Ramelli, A.R.; Slemmons, D.B.; Brocoum, S.J.

    1987-03-01

    The Meers Fault in Southwestern Oklahoma is capable of producing large, damaging earthquakes. By comparison to historical events, a minimum of M = 6-3/4 to 7-1/4 could be expected. The most recent surface rupturing event occurred in the late Holocene, and it appears that one or more pre-Holocene events preceded it. Surface rupture length is at least 37 km. Displacements comprising the present-day scarp have left-lateral and high-angle reverse components. Vertical separation of the ground surface reaches 5 m, while lateral separation exceeds the vertical by a ratio of about 3:1 to 5:1, reaching about 20 m. Individual events apparently had maximum displacements of several meters. The Meers Fault may be part of a larger active zone. Based on surface expressions, the Washita Valley, Oklahoma and Potter County, Texas Faults may also have ruptures during the late Quaternary, although not as recently as the Meers Fault. Low sun angle photography in Southwestern Oklahoma revealed no evidence of fault activity, other than that of the Meers Fault, although activity may be concealed by poor preservation or ductile surface deformation. This suggests that additional areas of activity may be sparse and rupture infrequently.

  13. Volcanism, isostatic residual gravity and regional tectonic setting of the Cascade volcanic province

    USGS Publications Warehouse

    Blakely, R.J.; Jachens, R.C.

    1990-01-01

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: a northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface. -from Authors

  14. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians

    SciTech Connect

    Drummond, M.S. . Geology Dept.); Allison, D.T. . Geology Dept.); Tull, J.F. . Geology Dept.); Bieler, D.B. . Geology Dept.)

    1994-03-01

    A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derived from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.

  15. Spatial analysis of an intra-plate basaltic volcanic field in a compressional tectonic setting: South-eastern Australia

    NASA Astrophysics Data System (ADS)

    van den Hove, Jackson; Grose, Lachlan; Betts, Peter G.; Ailleres, Laurent; Van Otterloo, Jozua; Cas, Ray A. F.

    2017-04-01

    The Newer Volcanics Province (NVP) is a Pliocene to Recent intra-plate basaltic volcanic field (BVF) that has formed in a compressive tectonic setting (σv < σhmin < σHmax) and is not readily attributed to a single geodynamic process. A comprehensive spatial analysis of both monogenetic eruption centres and coeval vents of the NVP constrain factors that control the distribution and emplacement of volcanoes. A point-set of 434 eruption centres totalling 726 vents are divided into three geographical sub-provinces for analysis. Kernel density estimation and Poisson nearest neighbour analysis are used to scrutinize the distribution of eruption centres. A simple and novel fitted regression line method is used to determine the orientation of coeval vents, and Hough transform and two-point azimuth methods are used to identify alignments and alignment trends between eruption centres. The distribution of eruption centres and their relative spatial density corresponds with the extent of thinner lithosphere. Eruption centres of the NVP have a clustered distribution whilst smaller sub-sets of eruption centres are distributed more uniformly. The main alignment trends between coeval vents related to individual dikes and between eruption centres related to successive temporally discrete dikes are primarily oriented nearly parallel with pre-existing crustal fault trends. The frequency of volcanic alignments shows faults oriented nearly parallel to the orientation of the regional maximum horizontal compressive stress (σ1) are favourably utilised by intrusions over other fault trends. The depth from which pre-existing faults facilitate dike propagation is not constrained. We interpret they are likely important in preventing dikes from stalling and forming sills under a compressive stress field in the case of the NVP. It is also observed that coeval vent alignments are more strongly aligned in areas overlying consolidated basement relative to areas of poorly consolidated basin

  16. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Alvarado, Alexandra; Nocquet, Jean-Mathieu; Lagreulet, Sarah; Segovia, Monica; Font, Yvonne; Yepes, Hugo; Mothes, Patricia; Rolandone, Frédérique; Jarrin, Pierre; Quidelleur, Xavier

    2014-05-01

    The Quito Fault System (QFS) is an intraplate reverse fault zone, that extend over 60km along the Interandean Depression in northern Ecuador. Multidisciplinary studies coherently support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the NS segmented, en-echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited NS direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected, at depth, to inactive suture to the west. A new GPS dataset indicates active shortening rates for Quito blind thrust of up to 4mm/yr, wich decreases northwards along the fold system as it connects to the strike slip Guayllabamba Fault System. The proximity of these structures to the densely-populated Quito region underlines the need of additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  17. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  18. Physical mechanism of the vertical electric field generation over active tectonic faults

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.

    2009-09-01

    The concept of the Global Electric Circuit (GEC) provides an explanation of the existence of a vertical atmospheric electric field and coupling between the ground and ionosphere. Presently, ionospheric physics pays more attention to electric fields and coupling processes in the polar and auroral regions, whereas in other areas the potential difference between the ground and ionosphere usually is not taken into account. Regional processes exist, however, that are able to significantly affect the GEC parameters and through modification of the ionospheric potential to create plasma density irregularities of different scales within the ionosphere. One such source of ionosphere modification is air ionization in the vicinity of active tectonic faults, which takes place due to increased radon emanation. This paper considers the process of local modification of the GEC and corresponding ionospheric variability due to tectonic activity.

  19. Geochemical response to varying tectonic settings: an example from southern Sulawesi, Indonesia.

    NASA Astrophysics Data System (ADS)

    Elburg, Marlina A.; Foden, John

    1999-04-01

    The South arm of Sulawesi was an active continental margin from approximately 60 to 10 Ma, when it collided with the microcontinental fragment of Buton. Pre-collisional samples analyzed for this study are characterized by a geochemical signature typical of arc volcanics: high LILE/HFSE ratios; 87Sr/ 86Sr slightly higher than MORB; 143Nd/ 144Nd ratios similar to MORB. Syn-collisional samples have more enriched isotopic signatures, and are relatively potassium rich. This is interpreted to reflect a larger contribution from subducted sediments, added to the mantle wedge as a silicic melt. Melting of subducted sediments is interpreted to result from a decrease in subduction rate and an increase of temperature in the slab. Magmatism that postdates the collisional event by 10 Ma is characterized by higher Nb/Y ratios than the pre- or syn-collisional samples, and Sr and Nd isotopic signatures intermediate between these two groups. This is likely to reflect melting of a subduction-modified mantle, with a significant contribution from the sub-continental lithospheric mantle. Comparison with post-collisional magmatism from other areas of the world suggests that trace element signatures are similar, but isotopic characteristics are variable. The latter are likely to reflect both the age of the sub-continental lithospheric mantle and the time lag between cessation of subduction and formation of the post-collisional magmas.

  20. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  1. Aftershock seismicity and tectonic setting of the 2015 September 16 Mw 8.3 Illapel earthquake, Central Chile

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-08-01

    Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the Mw 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr-1. At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic-aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.

  2. Tectonic Setting of Explosive Volcanic Eruptions in the UPPER Ordovician of the Siberian Platform

    NASA Astrophysics Data System (ADS)

    Huff, W. D.; Dronov, A.; Sell, B. K.; Kanygin, A. V.

    2014-12-01

    In recent years 8 K-bentonite beds have been discovered in the Upper Ordovician of the Tungus basin on the Siberian Platform. All the beds were identified in the outcrops of the Baksian, Dolborian and Burian regional stages, which correspond roughly to the Upper Sandbian, Katian and probably lowermost Hirnantian Global Stages. The 4 lowermost beds from the Baksian and Dolborian Regional Stages were studied in detail. They are represented by thin beds (1-2 cm) of soapy light gray or yellowish plastic clays and usually easily identifiable in the outcrops. The beds were traced in the outcrops over a distance of more than 60 km along the Podkamennaya Tunguska River valley. All K-bentonite beds have been found within the Upper Ordovician cool-water carbonate succession. The four lowermost K-bentonite beds, which were sampled, have been studied by powder X-ray diffraction and scanning electron microscopy together with energy dispersive X-ray analysis. The low percent of smectite in mixed-layer phases reflects a high degree of burial metamorphism since the time of their origin. The K-bentonites provide evidence of intensive explosive volcanism on or near the western margin of the Siberian craton in Late Ordovician time. The K-bentonite beds from the Baksian and Dolborian regional stages (Katian) of the southwestern part of the Tungus basin in Siberia are thus derived from the alteration of volcanic ash falls. All four beds contain volcanogenic euhedral zircon and apatite phenocrysts. Zircon crystals from the uppermost K-bentonite bed within the Baksian regional stage provide a 206Pb/238U age of 450.58±0.27 Ma. The timing of volcanism is surprisingly close to the period of volcanic activity of the Taconic arc near the eastern margin of Laurentia. The Yenisei arc had its continuation along the western continental margin of Siberia and both of them constitute a single Taconic-Yenisei volcanic arc. Field studies of the Upper Ordovician succession along the Moyero River in

  3. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  4. Comparing the stress change characteristics and aftershock decay rate of the 2011 Mineral, VA, earthquake with similar earthquakes from a variety of tectonic settings

    NASA Astrophysics Data System (ADS)

    Walsh, L. S.; Montesi, L. G.; Sauber, J. M.; Watters, T. R.; Kim, W.; Martin, A. J.; Anderson, R.

    2011-12-01

    On August 23, 2011, the magnitude 5.8 Mineral, VA, earthquake rocked the U.S. national capital region (Washington, DC) drawing worldwide attention to the occurrence of intraplate earthquakes. Using regional Coulomb stress change, we evaluate to what extent slip on faults during the Mineral, VA, earthquake and its aftershocks may have increased stress on notable Cenozoic fault systems in the DC metropolitan area: the central Virginia seismic zone, the DC fault zone, and the Stafford fault system. Our Coulomb stress maps indicate that the transfer of stress from the Mineral, VA, mainshock was at least 500 times greater than that produced from the magnitude 3.4 Germantown, MD, earthquake that occurred northwest of DC on July 16, 2010. Overall, the Mineral, VA, earthquake appears to have loaded faults of optimum orientation in the DC metropolitan region, bringing them closer to failure. The distribution of aftershocks of the Mineral, VA, earthquake will be compared with Coulomb stress change maps. We further characterize the Mineral, VA, earthquake by comparing its aftershock decay rate with that of blind thrust earthquakes with similar magnitude, focal mechanism, and depth from a variety of tectonic settings. In particular, we compare aftershock decay relations of the Mineral, VA, earthquake with two well studied California reverse faulting events, the August 4, 1985 Kettleman Hills (Mw = 6.1) and October 1, 1987 Whittier Narrow (Mw = 5.9) earthquakes. Through these relations we test the hypothesis that aftershock duration is inversely proportional to fault stressing rate, suggesting that aftershocks in active tectonic margins may last only a few years while aftershocks in intraplate regions could endure for decades to a century.

  5. Petrogenesis and tectonic setting of the Bondla mafic-ultramafic complex, western India: Inferences from chromian spinel chemistry

    NASA Astrophysics Data System (ADS)

    Ishwar-Kumar, C.; Rajesh, V. J.; Windley, B. F.; Razakamanana, T.; Itaya, T.; Babu, E. V. S. S. K.; Sajeev, K.

    2016-11-01

    Crustal-scale shear/suture zones hold prime importance because they are one of the critical parameters used for paleogeographic configurations of supercontinental assemblies. The Kumta suture, located on the western margin of peninsular India, has been interpreted as the eastern extension of the Betsimisaraka suture zone of Madagascar. This suture separates the Karwar block (ca. 3200 Ma tonalite-trondhjemite-granodiorite (TTG) and amphibolite) in the west from a quartzite-dominated shelf that overlies ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block in the east. The NW/SE-trending Bondla ultramafic-mafic complex, situated in the arc just west of the Kumta suture, comprises gabbro, troctolite, wehrlite, dunite, peridotite, pyroxenite, chromitite and chromian spinel-bearing serpentinite. In this paper, we study the chemistry of Cr-spinels in chromitites and serpentinites to help understand their paleo-tectonic environments. The Cr-spinel in Bondla chromitites and serpentinites shows variations in Cr# [Cr/(Cr + Al)] ranging from 0.54 to 0.58 and 0.56 to 0.64 respectively; also, the Mg# [Mg/(Mg + Fe)] varies from 0.56 to 0.67 and 0.41 to 0.63 respectively. The Cr-spinels in serpentinites have strong chemical zoning with distinctive ferrian chromite rims (Mg# 0.41-0.63), whereas the Cr-spinels in chromitites are generally homogeneous with only occasional weak zoning. The spinel-core crystallization temperature in the serpentinite is estimated to be above 600 °C (the spinel stability field was calculated for equilibrium with Fo90 olivine), which suggests the core composition is chemically unaltered. The Cr-spinels in all studied samples have low-Al2O3 (15-23 wt%) and moderate to high-Cr# (0.54-0.69), suggesting derivation from a supra-subduction zone arc setting. The chemistry of clinopyroxene in serpentinite indicates a wide range of crystallization temperatures from 969 °C to 1241 °C at 1.0 GPa. The calculated parental magma composition was similar to

  6. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology

    NASA Astrophysics Data System (ADS)

    Kakar, Mohammad Ishaq; Kerr, Andrew C.; Mahmood, Khalid; Collins, Alan S.; Khan, Mehrab; McDonald, Iain

    2014-08-01

    The geology of the Muslim Bagh area comprises the Indian passive continental margin and suture zone, which is overlain by the Muslim Bagh Ophiolite, Bagh Complex and a Flysch Zone of marine-fluvial successions. The Muslim Bagh Ophiolite has a nearly-complete ophiolite stratigraphy. The mantle sequence of foliated peridotite is mainly harzburgite with minor dunite and contains podiform chromite deposits that grade upwards into transition zone dunite. The mantle rocks (harzburgite/dunite) resulted from large degrees of partial melting of lherzolite and have also been affected by melt-peridotite reaction. The Muslim Bagh crustal section has a cyclic succession of ultramafic-mafic cumulate with dunite at the base, that grades into wehrlite/pyroxenite with gabbros (olivine gabbro, norite and hornblende gabbro) at the top. The sheeted dykes are immature in nature and are rooted in crustal gabbros. The dykes are mainly metamorphosed dolerites, with minor intrusions of plagiogranites. The configuration of the crustal section indicates that the crustal rocks were formed over variable time periods, in pulses, by a low magma supply rate. The whole rock geochemistry of the gabbros, sheeted dykes and the mafic dyke swarm suggests that they formed in a supra-subduction zone tectonic setting in Neo-Tethys during the Late Cretaceous. The dykes of the mafic swarm crosscut both the ophiolite and the metamorphic sole rocks and have a less-marked subduction signature than the other mafic rocks. These dykes were possibly emplaced off-axis and can be interpreted to have been generated in the spinel peridotite stability zone i.e., < 50-60 km, and to have risen through a slab window. The Bagh Complex is an assemblage of Triassic-Cretaceous igneous and sedimentary rocks, containing tholeiitic, N-MORB-like basalts and alkali basalts with OIB-type signatures. Nb-Ta depletion in both basalt types suggests possible contamination from continental fragments incorporated into the opening Tethyan

  7. The tectonic setting of Mount Vesuvius and the correlation between its eruptions and the earthquakes of the Southern Apennines

    NASA Astrophysics Data System (ADS)

    Marzocchi, Warner; Scandone, Roberto; Mulargia, Francesco

    1993-11-01

    Mount Vesuvius is emplaced on a regional NE-SW-trending fault that accommodates the stretching of the lithosphere caused by a backward retreat of the Calabrian arc. The dynamics of the Calabrian arc controls the temporal occurrence of earthquakes in the Southern Apennines and in Sicily. By means of a detailed statistical approach, we identified a significant correlation between seismic events occurring in different subsets of this geodynamic domain: seismicity changes in the Southern Apennines follow those in the Calabrian arc after 18-21 years, while seismicity changes in Sicily follow those in the Calabrian arc after 8-10 years. The seismicity changes in these three areas appear also to have affected the eruptive activity of Vesuvius in the period 1631-1944. The major effusive-explosive eruptions of this period followed the seismicity changes in the Southern Apennines after 6-13 years and those in the Calabrian arc after 36-39 years. From a tectonic point of view, this indicates a direct link between the eruptive activity of Vesuvius and the dynamics of the Calabrian arc. The backward retreat of the arc produces strain pulses propagating to adjacent areas. From a volcanological point of view, we speculate that the arrival of an extension strain pulse in the area of Vesuvius may trigger the fast movement of magma-filled cracks that stay in unstable equilibrium in the roots of the volcano.

  8. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  9. Recent tectonic activity on Mercury revealed by small thrust fault scarps

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Daud, Katie; Banks, Maria E.; Selvans, Michelle M.; Chapman, Clark R.; Ernst, Carolyn M.

    2016-10-01

    Large tectonic landforms on the surface of Mercury, consistent with significant contraction of the planet, were revealed by the flybys of Mariner 10 in the mid-1970s. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission confirmed that the planet's past 4 billion years of tectonic history have been dominated by contraction expressed by lobate fault scarps that are hundreds of kilometres long. Here we report the discovery of small thrust fault scarps in images from the low-altitude campaign at the end of the MESSENGER mission that are orders of magnitude smaller than the large-scale lobate scarps. These small scarps have tens of metres of relief, are only kilometres in length and are comparable in scale to small young scarps on the Moon. Their small-scale, pristine appearance, crosscutting of impact craters and association with small graben all indicate an age of less than 50 Myr. We propose that these scarps are the smallest members of a continuum in scale of thrust fault scarps on Mercury. The young age of the small scarps, along with evidence for recent activity on large-scale scarps, suggests that Mercury is tectonically active today and implies a prolonged slow cooling of the planet's interior.

  10. Formation and metasomatism of continental lithospheric mantle in intra-plate and subduction-related tectonic settings

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri

    2010-05-01

    Our knowledge of the origin and evolution of the continental lithospheric mantle (CLM) remains fragmentary and partly controversial in spite of recent advances in petrologic, geochemical and geophysical studies of the deep Earth and experimental work. Debate continues on a number of essential topics, like relative contributions of partial melting, metasomatism and ‘re-fertilisation' as well as the timing, conditions and tectonic settings of those processes. These topics can be addressed by studies of ultramafic xenoliths in volcanic rocks which arguably provide the least altered samples of modern and ancient CLM. The subcontinental lithosphere is thought to be a mantle region from which melts have been extracted, thus making the lithosphere more refractory. Melting degrees can be estimated from Al contents while the depth of melt extraction can be assessed from Al-Fe (Mg#) relations in unmetasomatized melting residues in comparison with experimental data, e.g. [1]. High silica and opx in the residues may indicate melting in water-rich conditions. High-precision Mg# and Mn for olivine may constrain degrees and conditions of partial melting and/or metasomatism, tectonic settings, modal compositions (e.g. presence of garnet) and equilibration conditions of mantle peridotites [2]. These estimates require both adequate sampling and high-quality major element and modal data; sampling and analytical uncertainties in published work may contribute substantially to chemical heterogeneities (and different origins) inferred for CLM domains [3]. Very fertile peridotite xenolith suites are rare worldwide [3]. They were initially viewed as representing mantle domains that experienced only very small degrees of melt extraction but are attributed by some workers to ‘refertilization' of refractory mantle by percolating asthenospheric melts. Such alternative mechanisms might be valid for some rare hybrid and Fe-enriched peridotites but they fail to comprehensively explain modal

  11. Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Zaid, Samir M.

    2012-05-01

    The Lower Miocene Rudies sandstones are important oil reservoirs in the southeastern part, Gulf of Suez basin, Egypt. However, their provenance and diagenesis and their impact in reservoir quality, are virtually unknown. Samples from the Warda field, representing the Lower and Middle Rudies, were studied using a combination of petrographic, mineralogical and geochemical techniques. The Lower Rudies sandstones have an average framework composition of Q85F7.2R7.8, and 83% of the quartz grains are monocrystalline. By contrast, the Middle Rudies sandstones are only slightly more quartzose with an average framework composition of Q90F7R3 and 86% of the quartz grains are monocrystalline. Rudies sandstones are mostly quartz arenite with subordinate subarkose and sublithic arenites and their bulk-rock geochemistry support the petrographic results. The modal analysis data of studied samples suggest influence of granitic and metamorphic terrains as the main source rock with a subordinate quartzose recycled sedimentary rocks. The geochemical data interpretation on the basis of discriminate function diagrams reveal the source material was deposited on a passive margin. Textural attributes possibly suggest long-distance transport of grains from the source region and indicates a cratonic or a recycled source. Tectonic setting of Rudies Formation reveals that the lower Rudies sandstones are typically rift sandstone and their deposition constrained the beginning of the faulting, while the middle Rudies sandstones were transported from the far along the rift. Diagenetic features include compaction; dolomite, silica and anhydrite cementation with minor iron-oxide, illite, kaolinite and pyrite cements; dissolution of feldspars, rock fragments. Silica dissolution, grain replacement and carbonate dissolution greatly enhance the petrophysical properties of many sandstone samples.

  12. Rates and Mechanisms of Solidification in Large Magma Bodies: Implications for Melt Extraction in all Tectonic Settings

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.

    2013-12-01

    As is observed in both experiment and theory, in the absence of hydrothermal convection, the majority of magma chamber heat loss occurs via conduction through the roof of the intrusion and into the cold country rock above. The formation of an upper solidification front (or Upper Border Series, UBS), recorded in the rocks both geochemically and texturally, is a natural outcome of the progression of the solidification front from the cold roof to the hot center of the magma chamber. There are, however, a few unique layered mafic intrusions for which little or no UBS exists. In this study, I examine the thermal evolution and crystallization rates of several classic layered intrusions as it is recorded in the extent of the preserved UBS. For those intrusions that have experienced crystallization at the roof, such as the Skaergaard Intrusion, the development of a UBS reduces the temperature gradient at the roof and effectively slows the rate of heat loss from the main magma body. However, for those intrusions that do not have an UBS, such as the Bushveld Complex, the cooling rate is controlled only by the maximum rate of conductive heat loss through the overlying roof rocks, which decreases with time. The implications are two-fold: (1) The relative thickness of the UBS in large intrusions may be the key to quantifying their cooling and solidification rates; and (2) The nature of the magma mush zone near the roof of an intrusion may depend principally on the long-term thermal evolution of the magma body. Particularly at the end stages of crystallization, when the liquids are likely to be highly evolved and high viscosities may inhibit convection, intrusions lacking a well-defined UBS may provide important insights into the mechanics of crystal-liquid separation, melt extraction, and compaction in felsic plutons as well as mafic intrusions. These results are important for long-lived (>500 kyr) or repeatedly replenished magma chambers in all tectonic settings.

  13. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  14. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  15. The fold-and-thrust tectonic setting of the Mesozoic carbonate units of Eastern Sardinia: insights from 3D (2D + t) modelling

    NASA Astrophysics Data System (ADS)

    Arragoni, Simone; Cianfarra, Paola; Maggi, Matteo; Salvini, Francesco

    2015-04-01

    Present-day Eastern Sardinia structural setting was mainly determined by Cenozoic strike-slip-to-oblique faulting in the Tacchi and Golfo di Orosei regions, where Mesozoic shallow water carbonates crop out (Costamagna and Barca, 2004 and references therein). These structures are interpreted as the effects of the rotation of the Sardinia-Corsica block during Oligocene and the successive opening of the Tyrrhenian sea starting from lower Miocene (Oggiano et al., 2009 and references therein). New structural data indicate the presence of dip-slip compressive tectonics and thrusting affecting the Mesozoic carbonates and involving the underlying Paleozoic basement. This event shows a westward vergence (top-to-the-W) and is cut by later strike-slip faults. The age of this tectonics is constrained between Eocene (Lutetian rocks involved) and Oligo-Miocene (post-dated by the strike-slip tectonic event). The integration between these new structural observations and the available geological and geophysical datasets allowed to construct a balanced and admissible geological cross section in order to study the tectonic evolution of eastern Sardinia before the opening of the Tyrrhenian basin. The orientation of the section is parallel to the direction of the tectonic transport, that is WSW-ENE. The balanced cross-section has been modelled with the "Forctre" software in order to get a 3D (2D + t) evolutionary model and check its admissibility through time. The final section shows a thin-skin geometry (flats sectors prevailing over ramps) and is composed of two main tectonic slices deeply involving the Paleozoic basement and secondary thrusting affecting the Mesozoic carbonate units. These are characterized by "younger-on-older" flat-over-flat tectonics evidenced by Cretaceous-over-Jurassic thrusting. Similar geometries have been described also in the Latium-Abruzzi sector of the Southern Apennines. Costamagna L.G. & Barca S. 2004. Stratigrafia, analisi di facies, paleogeografia ed

  16. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  17. Sediment composition of big Chinese and Indochinese rivers reflects geology of their source, not tectonic setting of their sink.

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Limonta, Mara; Nie, Junsheng; Resentini, Alberto; Vezzoli, Giovanni; Wang, Jiangang; Yang, Shouye

    2016-04-01

    There are several reasons why the tectonic setting of a sedimentary basin cannot be inferred from the composition of its sedimentary fill. One is that sediments can, and quite often are transported for thousands of kilometers from sources uplifted by certain tectonic processes to subsident basins created by totally different tectonic processes. A classical case is the Amazon River, carrying detritus from the Andean Cordillera to the Atlantic passive margin on the opposite side of South America (Franzinelli and Potter, 1983; Dickinson, 1988). Similar is the case of major rivers in China and Indochina, sourced in Tibetan orogenic highlands and reaching the Chinese passive margin or the back-arc/pull-apart Andaman Sea. The Huang He (Yellow River), the most sediment-laden river in the world, delivers annually to the Bohai Sea 1 billion tons of litho-feldspatho-quartzose sedimentaclastic/metamorphiclastic sediments with moderately rich, amphibole-epidote-garnet suites including apatite and zircon (Nie et al., 2015). The Changjiang (Yangtze) River, the fourth longest on Earth and the largest in Eurasia, carries to the East China Sea litho-feldspatho-quartzose sedimentaclastic/metamorphiclastic sand with moderately poor, amphibole-epidote suites including clinopyroxene and garnet (Vezzoli et al., 2016). The Ayeyarwadi (Irrawaddy) River, ranking among the five major rivers in the world for its annual load of 0.4 billion tons, carries to the Andaman Sea litho-feldspatho-quartzose metamorphiclastic/sedimentaclastic sand with moderately rich, amphibole-epidote suites including garnet and clinopyroxene (Garzanti et al., 2013). Detrital modes in these three very big river basins are thus similar, and would plot in the "Recycled Orogen" field of Dickinson (1985) rather than in the "Continental Block" or "Magmatic Arc" fields. The orogenic signature acquired in mountainous headwaters is carried all the way to the mouth, and even after long-distance transport across wide

  18. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  19. Geochemistry and tectonic setting of the Paleoproterozoic metavolcanic rocks from the Chirano Gold District, Sefwi belt, Ghana

    NASA Astrophysics Data System (ADS)

    Senyah, Gloria A.; Dampare, Samuel B.; Asiedu, Daniel K.

    2016-10-01

    Major and trace elements, including rare earth elements (REEs) data are presented for metavolcanic rocks of the Paleoproterozoic Birimian Sefwi belt to determine the geochemical characteristics as well as the possible tectonic setting of emplacement of these rocks. In order to accomplish the aim of the study, the petrographical characteristics of the rocks were examined coupled with analysis of the rocks for their whole-rock major and trace elements contents by ICP-AES and ICP-MS methods respectively. The rocks have been classified as basalt/basaltic andesites and dolerites based on their textural and mineralogical compositions. It is observed that the rocks have suffered various degrees of alteration evident in the overprinting of primary minerals such as pyroxenes and plagioclase by chlorite, epidote, sericite and others. Generally, the rocks are moderately deformed and may have experienced at least greenschist metamorphism. The basalt/basaltic andesites are derivative magmas [Mg# (20-51), Cr (10-220 ppm) and Ni (5-137 ppm)], and show flat REE to fractionated REE patterns with (La/Sm)N = 1.36-3.90, (La/Yb)N = 1.17-5.32 and strong negative to non-existent Eu anomalies (Eu/Eu* = 0.51-1.03). N-MORB-normalised multi-element diagrams show that the rocks have geochemical patterns characterised by enrichment in LILE relative to HFSE and in LREE relative to HREE. The basalt/basaltic andesites exhibit characteristics of subduction zone-related magmas, such as pronounced negative Nb-Ta anomalies, slightly negative Hf and variable negative Ti anomalies. The dolerites do not vary much from the basalts and basaltic andesites. The MgO and Fe2O3 values of the dolerite range from 2.97 to 6.93 and 5.98 to 14.35 wt.% respectively, corresponding to Mg#s of 38-62. LREEs enrichment over HREEs with (La/Sm)N ranging from 0.61 to 4.61 and (Gd/Yb)N ranging from 0.99 to 2.91 is also typical of these rocks. The dolerites also exhibit quite invariable Eu anomalies (Eu/Eu* = 0.81-1.00) and

  20. Perceived climate in physical activity settings.

    PubMed

    Gill, Diane L; Morrow, Ronald G; Collins, Karen E; Lucey, Allison B; Schultz, Allison M

    2010-01-01

    This study focused on the perceived climate for LGBT youth and other minority groups in physical activity settings. A large sample of undergraduates and a selected sample including student teachers/interns and a campus Pride group completed a school climate survey and rated the climate in three physical activity settings (physical education, organized sport, exercise). Overall, school climate survey results paralleled the results with national samples revealing high levels of homophobic remarks and low levels of intervention. Physical activity climate ratings were mid-range, but multivariate analysis of variation test (MANOVA) revealed clear differences with all settings rated more inclusive for racial/ethnic minorities and most exclusive for gays/lesbians and people with disabilities. The results are in line with national surveys and research suggesting sexual orientation and physical characteristics are often the basis for harassment and exclusion in sport and physical activity. The current results also indicate that future physical activity professionals recognize exclusion, suggesting they could benefit from programs that move beyond awareness to skills and strategies for creating more inclusive programs.

  1. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  2. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  3. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  4. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  5. Active tectonics in Eastern Lunana (NW Bhutan): Implications for the seismic and glacial hazard potential of the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Meyer, M. C.; Wiesmayr, G.; Brauner, M.; HäUsler, H.; Wangda, D.

    2006-06-01

    Paleoseismological investigations, brittle fault analysis, and paleostrain calculations combined with the interpretation of satellite imagery and flood wave modeling were used to investigate the seismic and associated glacial hazard potential in Eastern Lunana, a remote area in NW Bhutan. Seismically induced liquefaction features, cracked pebbles, and a surface rupture of about 6.8 km length constrain the occurrence of M ≥ 6 earthquakes within this high-altitude periglacial environment, which are the strongest earthquakes ever been reported for the Kingdom of Bhutan. Seismicity occurs along conjugate sets of faults trending NE-SW to NNW-SSE by strike-slip and normal faulting mechanism indicating E-W extension and N-S shortening. The strain field for these conjugate sets of active faults is consistent with widespread observations of young E-W expansion throughout southern Tibet and the north Himalaya. We expect, however, that N-S trending active strike-slip faults may even reach much farther to the south, at least into southern Bhutan. Numerous glacial lakes exist in the investigation area, and today more than 100 × 106 m3 of water are stored in moraine-dammed and supraglacial lakes which are crosscut by active faults. Strong earthquakes may trigger glacial lake outburst floods, and the impact of such flash floods may be worst 80 km downstream where the valley is broad and densely populated. Consequently, tectonic models of active deformation have to be closely linked with glacial hazard evaluation and require rethinking and modification.

  6. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance

    NASA Astrophysics Data System (ADS)

    Eggert, Silke; Walter, Thomas R.

    2009-06-01

    The study of volcanic triggering and interaction with the tectonic surroundings has received special attention in recent years, using both direct field observations and historical descriptions of eruptions and earthquake activity. Repeated reports of clustered eruptions and earthquakes may imply that interaction is important in some subregions. However, the subregions likely to suffer such clusters have not been systematically identified, and the processes responsible for the observed interaction remain unclear. We first review previous works about the clustered occurrence of eruptions and earthquakes, and describe selected events. We further elaborate available databases and confirm a statistically significant relationship between volcanic eruptions and earthquakes on the global scale. Moreover, our study implies that closed volcanic systems in particular tend to be activated in association with a tectonic earthquake trigger. We then perform a statistical study at the subregional level, showing that certain subregions are especially predisposed to concurrent eruption-earthquake sequences, whereas such clustering is statistically less significant in other subregions. Based on this study, we argue that individual and selected observations may bias the perceptible weight of coupling. The activity at volcanoes located in the predisposed subregions (e.g., Japan, Indonesia, Melanesia), however, often unexpectedly changes in association with either an imminent or a past earthquake.

  7. Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey

    NASA Astrophysics Data System (ADS)

    Sağlam Selçuk, Azad

    2016-10-01

    The eastern part of the Lake Van basin (Van region, Turkey) is controlled by reverse faults, such as the Gürpınar, Everek and Alaköy faults. These represent the major tectonic structures within the Van region and have caused many devastating earthquakes. Based on quantitative analyses, the Quaternary activity and topographic relief control of each of these faults was investigated. The Gürpınar, Everek and Alaköy faults are restricted to the southern slopes of the Güzelsu, Everek, and Karasu basins, respectively. Analyses of the mountain front sinuosity (Smf) and valley floor width-to-height ratio (Vf) suggest high activity along the Gürpınar fault, the Everek fault, and the western part of the Alaköy fault. Furthermore, based on the integration between Smf and Vf, the estimated uplift rates were observed to increase from north to south. The Gürpınar and Everek hanging-wall blocks are characterized by uplift rates of > 0.5 mm yr- 1, whereas the Alaköy fault exhibited a rate of 0.05 to 0.5 mm yr- 1. These faults produce knickpoints or knickzones, complex basin hypsometric curves, and high values of the stream length-gradient index. Based on these geomorphic analyses, it was established that the tectonic activity of both the Gürpınar and Everek faults is greater than that of the Alaköy fault.

  8. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Wagner, Lara S.; Fischer, Karen M.; Hawman, Robert B.

    2016-05-01

    The lithospheric structure of the Southeastern United States is a product of earlier episodes of continental collision and breakup. The region is located in the interior of the North American Plate, away from active plate margins. However, there is ongoing tectonism in the region with multiple zones of seismicity, uplifting arches, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the state of stress remain enigmatic. Two important factors are plate strength and preexisting, inherited structures. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Examples include the relatively thick lithospheric mantle of stable North America that abruptly thins beneath the Paleozoic Appalachian orogeny, and the slow upper mantle of the Proterozoic Reelfoot rift. Our results also indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. This provides a viable explanation for seismicity, uplifting, and young intraplate volcanism. We postulate that not only tectonic inheritance but also continuing lithospheric foundering may control the ongoing activity of the region long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  9. Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacán, México

    NASA Astrophysics Data System (ADS)

    Guilbaud, Marie-Noëlle; Siebe, Claus; Layer, Paul; Salinas, Sergio; Castro-Govea, Renato; Garduño-Monroy, Victor Hugo; Le Corvec, Nicolas

    2011-04-01

    The Jorullo monogenetic volcano erupted 250 years ago at the southern border of the Trans-Mexican Volcanic Belt (TMVB), an area that records a long history of magmatic and tectonic activity. The oldest rocks that crop out in the area are early-Oligocene (32.7 ± 0.2 Ma) dioritic to granitic (60-72 wt.% SiO 2) plutons intruded by younger to contemporaneous (30.3 ± 0.1 and 33.3 ± 0.7 Ma) aplitic (76-78 wt.% SiO 2) dikes and mineralized veins. Volcanic rocks related to these intrusives form a thick sequence exposed in cliffs, from the base of which an altered andesite (58 wt.% SiO 2) was collected. The nearby epithermal Cu-mineralization of the Inguarán mining area to the southeast is also related to this Tertiary volcanic episode. The oldest expression of the TMVB in this area is represented by Pliocene (3.2-2.4 Ma) basaltic andesite to andesite (53-63 wt.% SiO 2) lavas (with pyroxene ± olivine) forming extensive mesas, eroded mounds, and thick elongate flows, that were unconformably deposited on top of the Oligocene rocks. Their emplacement was followed by erosion approximating a rate of 100 m/Ma over the past 3 Ma. This led to the formation of an inverted topography reflecting the higher resistance to erosion of these lavas that were originally deposited in valleys and today constitute prominent mesas. During the last 1 Ma, at least twenty-six monogenetic scoria cones formed in the study area, erupting about 10.2 km 3 of lava and pyroclastics dominantly composed of olivine and pyroxene-bearing andesites (61 vol.% DRE), lesser basaltic andesites (30 vol.% DRE), and a minority of olivine-rich basalts (10 vol.% DRE). These eruptive products include the K-rich basaltic trachyandesites of Cerro La Pilita, a scoria and lava cone located close to Jorullo. The ≤ 27 ka San Hilario and Esmeralda lavas, which are located 13 km southeast of Jorullo, are the southernmost eruptive products of the TMVB and also the youngest volcanoes after Jorullo in this area. Mapping of

  10. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  11. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  12. Sediment yield from the tectonically active semiarid Western Transverse Ranges of California

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.

    2009-01-01

    Sediment yields from the world's rivers are generally highest from steep drainage basins with weak lithology, active tectonics, or severe land-use impacts. Here, we evaluate sediment yields from the Western Transverse Ranges of California in an attempt to explain why they are two- to tenfold greater than the surrounding areas of California. We found that suspended-sediment yields across the gauged basins of the Western Transverse Range during 1969-1999 varied by approximately an order of magnitude (740-5300 t/km2/yr). Similarly, fine-sediment concentrations for normalized discharge rates varied by almost two orders of magnitude (e.g., 1.3-110 g/L for the mean annual flood) for 11 previously unmonitored drainages of the Santa Ynez Mountains. Areas with high sediment yields consistently have weakly consolidated bedrock (Quaternary-Pliocene marine formations) and are associated with the highest rates of tectonic uplift of the region (>5 mm/yr). These regions are important to the sediment discharge budgets, because ???50% of the total suspended-sediment discharge from the Western Transverse Range is estimated to be generated within these regions, even though they represent only ???10% of the total watershed area. Previous estimates of suspended-sediment discharge from the Ventura River have likely been underestimated by ???50% because the gauging station is located immediately upstream of a high sediment yield region. We also found a significant and positive correlation between sediment yield and the percentage of a watershed with grassland and agricultural land use. These results suggest that there is adequate variation within the lithology, tectonics, and land use of the broader Western Transverse Range geologic province to induce large variations in sediment yield at the local scale. ?? 2009 Geological Society of America.

  13. Discrimination and Assessment of Induced Seismicity in Active Tectonic Zones: A Case Study from Southern California

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Lindsey, N.; Foxall, W.; Robertson, M.

    2014-12-01

    Earthquakes induced by human activity have become a matter of heightened public concern during recent years. Of particular concern is seismicity associated with wastewater injection, which has included events having magnitudes greater than 5. The causes of the induced events are primarily changes in pore-pressure, fluid volume and perhaps temperature due to injection. Recent research in the US has focused on mid-continental regions having low rates of naturally-occurring seismicity, where induced events can be identified by relatively straightforward spatial and temporal correlation of seismicity with high-volume injection activities. Recent examples include events correlated with injection of wastewater in Oklahoma, Arkansas, Texas and Ohio, and long-term brine injection in the Paradox Valley in Colorado. Even in some of the cases where there appears at first sight to be a clear spatial correlation between seismicity and injection, it has been difficult to establish causality definitively. Here, we discuss methods to identify induced seismicity in active tectonic regions. We concentrate our study on Southern California, where large numbers of wastewater injection wells are located in oil-producing basins that experience moderate to high rates of naturally-occurring seismicity. Using the catalog of high-precision CISN relocations produced by Hauksson et al. (BSSA, 2012), we aim to discriminate induced from natural events based on spatio-temporal patterns of seismicity occurrence characteristics and their relationships to injection activities, known active faults and other faults favorably oriented for slip under the tectonic stress field. Since the vast majority of induced earthquakes are very small, it is crucial to include all events above the detection threshold of the CISN in each area studied. In addition to exploring the correlation of seismicity to injection activities in time and space, we analyze variations in frequency-magnitude distributions, which can

  14. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  15. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian?Zambezi belt, Zambia: Implications for tectonic setting and regional correlation

    NASA Astrophysics Data System (ADS)

    Katongo, Crispin; Koller, Friedrich; Kloetzli, Urs; Koeberl, Christian; Tembo, Francis; Waele, Bert De

    2004-12-01

    There are several pre-orogenic Neoproterozoic granitoid and metavolcanic rocks in the Lufilian-Zambezi belt in Zambia and Zimbabwe that are interpreted to have been emplaced in a continental-rift setting that is linked to the break-up of the Rodinia supercontinent. However, no geochemical data were previously available for these rocks in the Zambian part of the belt to support this model. We conducted petrographic and whole-rock chemical analyses of the Neoproterozoic Nchanga Granite, Lusaka Granite, Ngoma Gneiss and felsic metavolcanic rocks from the Lufilian-Zambezi belt in Zambian, in order to evaluate their chemical characteristics and tectonic settings. Other magmatic rocks of importance for understanding the evolution of the belt in Zambia, included in this study, are the Mesoproterozoic Munali Hills Granite and associated amphibolites and the Mpande Gneiss. The Neoproterozoic rocks have monzogranitic compositions, aluminum-saturation indices (ASI) < 1.1, and high contents of high field strength elements (HFSE) and rare earth elements (REE). The chondrite-normalised spider diagrams are similar to those of A-type granites from the Lachlan fold belt and show negative Sr, P, and Ti anomalies. On various tectonic discrimination diagrams the Neoproterozoic rocks plot mainly in A-type granite fields. These petrographic and trace element compositions indicate that these rocks are A-type felsic rocks, but they do not have features of granites and rhyolites emplaced in true continental-rift settings, as previously suggested. On the basis of the A-type features and independent regional geological and geochronological data, we suggest that the Neoproterozoic granitoid and felsic metavolcanic rocks were emplaced during the earliest extensional stages of continental rifting in the Lufilian-Zambezi belt. The apparent continental-arc like chemistry of the granitoid and felsic metavolcanic rocks is thus inferred to be inherited from calcalkaline sources. The Mesoproterozoic

  16. Tectonic and Hydrological Activities on Xanadu, Hotei and Tui Regions on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Di Marco, C.; Di Achille, G.; Lunine, J. I.; Flamini, E.; Meriggiola, R.; Poggiali, V.

    2012-12-01

    Xanadu (~10°S, 120°W), Tui (~24°S, 125°W) and Hotei (~26°S, 78°W) regions are three adjacent geomorphic provinces located on Titan's leading hemisphere. The interpretation of the geological activities of these regions is not unique. Radebaugh et al. (2010) proposed that complex geological activity occurred to form the highlands regions of Xanadu where first compression occurred, and subsequently extensional tectonism and erosion by methane precipitation. However, Brown et al. (2011) proposed that Xanadu is a wide and ancient impact crater basin. Nelson et al. (2009) observed surface reflectance variability at the Hotei region suggesting that such surface variability might be due to surface activity potentially related to cryovolcanic activity. Wide lobate features in the Tui and Hotei regions were identified using Cassini VIMS (Barnes et al. 2009) and RADAR observations (Walls et al. 2009) and were interpreted as cryovolcanic flows. However, Moore and Howard (2010) suggested that the observed lobate features in both regions might be paleolakes. We produced a geomorphological map encompassing the Xanadu, Tui and Hotei regions. Our geomorphological analysis is based on the Synthetic Aperture Radar images from the Cassini RADAR. We also used topographic data from radar altimeter and SAR-Topography technique datasets. We show that Xanadu is a dissected plateau whose formation most likely involved crustal uplift produced by compressional tectonic activity. We also show that both the Tui and Hotei regions present characteristics of closed drainage basins with an inflow of liquids from the highlands of Xanadu and a lack of outflow, suggesting that Hotei and Tui are endorheic basins that might contain ephemeral lakes currently appearing as dry lakebeds. Such lakebeds are likely filled with liquid hydrocarbons only during rare periods of significant rainfall and dry out due to evaporation.

  17. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  18. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  19. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Zhou; Zhang, Chang; Xu, Yang; Wang, Jian-Gang; Chen, Yi; Guo, Shun; Wu, Fu-Yuan; Sein, Kyaing

    2016-11-01

    display a significant Eu positive anomaly and have similar contents of LREE to the co-existing clinopyroxenes. In contrast, they have much lower contents of HREE and MREE than the clinopyroxene. Clinopyroxenes in the Myitkyina harzburgites display consistent patterns from HREE to MREE but different patterns in LREE. Clinopyroxenes with LREE-depleted patterns display remarkable negative Sr and Zr anomalies, whereas clinopyroxenes with LREE-flat patterns do not show Sr or Zr anomaly. However, the LREE contents of clinopyroxenes in both Kalaymyo and Myitkyina peridotites are too enriched to be produced by degrees of melting corresponding to spinel Cr# values. This indicates that they were variably re-enriched after melt depletion, which is also supported by mineral microtextures, e.g., embayment of olivine within orthopyroxene. Plagioclase in the Kalaymyo peridotites was produced during melt-peridotite reaction rather than through breakdown of spinel. Chemical compositions support the co-existence of both refractory and fertile peridotites in both Kalaymyo and Myitkyina ophiolites. The refractory peridotites have compositions similar to the forearc peridotites, whereas the fertile peridotites are compositionally similar to the abyssal peridotites. Therefore, both ophiolites have experienced complicated evolution in different tectonic settings.

  20. Sea Level Changes and Active Tectonics of the Guerrero Coast, Mexico

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M.; Cundy, A. B.; Sedor, M.; Kostoglodov, V.

    2003-12-01

    Understanding the interaction between sea-level changes and tectonic activity during the Holocene is essential in determining long-term tectonic deformation rates and in identifying prehistorical earthquake events along active margins. The Guerrero coast extends along the active Pacific margin of southwest Mexico and parallels the trench where the Cocos Plate subducts beneath the North American Plate. The last major earthquakes occurred in Guerrero in 1899, 1907, 1909, 1911, and 1957, but none have occurred since the major 1911 (Ms=7.6) earthquake in the northwest segment of the Guerrero seismic gap. The Guerrero gap is currently considered to be matured for a severe earthquake of estimated Mw= 8.1 to 8.4. We present preliminary results of geomorphic field surveying, sediment coring, and geochemical and microfaunal analyses of cored sediments on the Guerrero coast. The Coyuca lagoon strip of the Guerrero coast consists of long barrier beaches, behind which extends a lagoon, beach ridges, extensive swamps, mangrove swamps, salt pans, floodplains, alluvial plains, fluvial terraces, and abandoned meanders. Abandoned meanders and fluvial terraces indicate that the Coyuca River has migrated to the southeast. This migration, and changes in hill elevations near the coast, suggest a southeast tilting of this coastal segment. The morphology of the Guerrero coast has no evidence of long-term coastal uplift. This is consistent with short- term tide gauge measurements (1953-1999) and GPS data (1992-2000) indicative of subsidence rates of ~3 mm/yr (Kostoglodov et al., 2001) in this area. Five cores up to 5.5 m depth were taken nearby the Mitla, Coyuca, Tres Palos and Tecomate lagoons. Core stratigraphies show clear sequences of interbedded peats and clays, interspersed with sand units. The peat-clay sequences are similar to those observed along active margins elsewhere, and indicate fluctuations between marine and brackish/freshwater conditions. Two cores included sediments

  1. Using Digital Topography to Differentiate Erosionally Exhumed and Tectonically Active Mountains Fronts

    NASA Astrophysics Data System (ADS)

    Frankel, K. L.; Pazzaglia, F. J.

    2003-12-01

    Mountain ranges in the southern Rocky Mountains have departed on unique landscape evolutionary pathways in the late Cenozoic that are directly dependent upon the degree of post-orogenic tectonic activity they have experienced. The topography of Sierra Nacimiento, a Laramide uplift in west-central New Mexico lacking an active range-front fault, is shaped primarily by erosional exhumation that is continuous, but not steady, being driven by distal base level fall from Rio Grande incision and resultant south to north knickpoint migration. In contrast, the topography of the Taos Range, a rift flank uplift in north-central New Mexico is shaped by contrasting active stream incision and aggradation astride an active range front normal fault. The distinction between exhumation-dominated and tectonically-dominated mountain fronts is best quantified by analyses of a new metric we call the drainage basin volume to drainage basin area ratio (V-A ratio) as well as the gradients of first-order streams. Drainage basin volume and area are calculated by constructing topographic envelope maps from 10 m resolution digital elevation models (DEM). The envelope maps are pinned by the watershed divide and cover the maximum elevations in each drainage basin. Subtracting the original DEM from the maximum elevation envelope map produces a topographic residual map from which area and volume data can be obtained. The erosionally exhumed Sierra Nacimiento has a mean V-A ratio of 88 m while the tectonically active Taos Range has a mean V-A ratio of 140 m. Similarly, there are systematic differences in the gradients of first order streams measured both in the range block and approximately 5 km of adjacent piedmont. Streams were defined and subsequently Strahler ordered by a flow accumulation threshold of 250 water-equivalent grid cell units. First order stream channel long profiles were extracted from the DEM at 30 meter increments and gradients were calculated by a FORTRAN program. Gradients of

  2. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  3. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  4. Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting

    NASA Astrophysics Data System (ADS)

    Zaid, Samir M.

    2015-02-01

    Petrographic, major and trace element compositions of sandstones from the Pliocene Gabir Formation, Central Eastern Desert, Egypt have been investigated to determine their provenance, intensity of paleo-weathering of the source rocks and their depositional tectonic setting. Gabir Formation is composed mainly of sandstones alternating with limestone and shale beds. The Gabir sandstone is yellowish gray to yellowish brown color, calcareous and fossiliferous. The composition of this formation refers to shallow warm agitated marine conditions. Texturally, Gabir sandstones are immature, poorly sorted and grain supported. Abundance of feldspars indicates rapid deposition of sediments from a nearby source rocks. Their average modal composition (Q71.35F16.6L12.05), classifies them as sublitharenite and arkose with subordinate litharenite and subarkose, which is also supported by geochemical study. Chemical analyses revealed that sandstones have high SiO2, K2O > Na2O, and low Fe2O3 values, which are consistent with the modal data. Also, sandstone samples are enriched in most trace elements such as Ba, Sr, Ni, Cr and Zr and depleted in U and Th. The petrography and geochemistry suggest that Gabir sandstones were deposited in an active continental margin basin. They were mainly derived from granitic and low grade metamorphic sources. The CIA values (41.69-74.84) of the Gabir sandstones indicate low to moderate degree of chemical weathering, which may reflect cold and/or arid climate conditions in the source area. The source rocks are probably identified to be Proterozoic granites, metagabbros and metavolcanics, which must have been exposed during rifting, initiated during Oligocene and continued till post Miocene.

  5. The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: tectonically anomalous forearc volcanism in an urban setting

    USGS Publications Warehouse

    Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.

  6. The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the northern Kaapvaal Craton, South Africa

    NASA Technical Reports Server (NTRS)

    Vanreenen, D. D.; Barton, J. M., Jr.; Roering, C.; Vanschalkwyk, J. C.; Smit, C. A.; Debeer, J. D.; Stettler, E. H.

    1986-01-01

    High-grade gneiss terranes and low-grade granite-greenstone terranes are well known in several Archaean domains. The geological relationship between these different crustal regions, however, is still controversial. One school of thought favors fundamental genetic differences between high-grade and low-grade terranes while others argue for a depth-controlled crustal evolution. The detailed examination of well-exposed Archaean terranes at different metamorphic grades, therefore, is not only an important source of information about the crustal levels exposed, but also is critical to the understanding of the possible tectonic and metamorphic evolution of greenstone belts with time. Three South African greenstone belts are compared.

  7. An attempt to monitor tectonic forces in the Vrancea active geodynamic zone: The Baspunar experiment

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita; Plopeanu, Marin

    2013-04-01

    (sparsely) run in the area, have provided inconsistent results on the PCF current dynamics. The Baspunar Geodynamic Observatory (BGO) has been designed and implemented by the Solid Earth Dynamics Department in the Institute of Geodynamics of the Romanian Academy in order to reveal and monitor eventual motions along PCF in the attempt to correlate variations in the slip rate with changes in the seismicity released within Vrancea zone. The first BGO records were strongly affected by changes in the atmospheric parameters. Consequently, technical measures and special corrections for the removal or at least mitigation of the effects created by changes in temperature, air pressure and humidity have been applied to the observations. In order to improve the signal to noise ratio, some mathematical filters have been applied too. The paper is aimed at revealing results of the geodetic observations along with preliminary geodynamic considerations. On the overall, after about two years of monitoring, PCF appears as an active tectonic contact. It mainly behaves as a left-lateral fault, but some short episodes with a reverse slip (dextral) were also pointed out. Correlations with crustal and intermediate-depth earthquakes occurring in both cases within the bending zone of East Carpathians are illustrated and discussed.

  8. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  9. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  10. Recent Advances in Mars Tectonics

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1999-01-01

    Since the publication of the "Stress and Tectonics on Mars" chapter in the Mars book (the last comprehensive summary of our knowledge on the topic) considerable advances have been made in certain areas of Martian tectonics and significant advances are expected with the return of Mars Global Surveyor data. This abstract will summarize the advances in our knowledge of tectonic features and processes on Mars since the Mars book and point towards new areas of research that can be expected from the Mars Global Surveyor data. Two out of three areas of study that were discussed as future directions of work in the Mars chapter have had significant work directed towards them. One area is the field of structural mapping and understanding the timing of tectonic activity on Mars in the framework of the global stratigraphy. Although the general development and relative timing of the development of the Tharsis province on Mars had been understood for some time, actual placement of mapped tectonic features in a global stratigraphic framework has only recently been completed. The second area of study mentioned in the Mars chapter was the impact of improved topography and gravity on modeling loads and deriving stresses in the Martian lithosphere. Mars Global Surveyor is on the brink of returning vastly improved topographic and gravity fields and these newer data sets can be used to better define the size and shape of Tharsis and to quantify loads and derived stresses in the Martian lithosphere. Additional information is contained in the original extended abstract.

  11. Active tectonics and mud diapirism in the Gulf of Squillace (Crotone Basin, Calabrian Arc, Italy)

    NASA Astrophysics Data System (ADS)

    Artoni, A.; Capozzi, R.; Lorenzini, S.; Oppo, D.; Polonia, A.; Torelli, L.

    2009-04-01

    The Calabrian arc is a prominent accretionary prism in the Mediterranean sea that contains alpine metamorphic rocks and connects the southern Apennine chain of Calabria, to the north, with the Maghrebian chain of Sicily, to the southwest. Recent active deformation inside the prism is testified by the earthquakes records and by submarine mud volcanism. The latter, not yet well defined within the accretionary prism, is generally associated to deeper active tectonic structures. In order to unravel the relationships between mud volcanoes and deeper deformations a study has been carried out in the Gulf of Squillace, located in the central portion of the backstop zone of the Calabrian arc and inside the Crotone basin. The deeper tectono-stratigraphic frame has been defined by using 10 well logs, 330 kms of public seismic reflection lines and three CROP seismic lines (the project for deep crust of Italy) recently processed with prestack depth migration. The study has been carried out within the Italian PRIN 2006 Project: "Tectonic and Sedimentation in the Accretionary Complex at the Front of the Calabrian Arc (Ionian Sea)". Three major tectonic units could be distinguished; from the top to the bottom, they are: 1) a metamorphic basement nappe (Alpine/Calabrian units); 2) a complex and east-verging Apenninic-Maghrebian prism, that can be subdivided in an outer prism sealed by middle Eocene(?)/Oligocene deposits and an inner prism sealed by middle/late Miocene deposits; 3) a deeper Mesozoic to Neogene relatively undeformed block interpreted as a thinned block of continental crust that preserves Mesozoic extensional fault. Subsurface mapping of Alpine/Calabrian and Apenninic-Maghrebian units show that their leading edges are oriented NNE-SSW and their tectonic stack was completed at least in the late Miocene; since then, WNW-ESE trending Catanzaro-Squillace transcurrent faults system and out-of-sequence thrusting started to locally reshape the backstop. The Cantanzaro

  12. Hazard analysis of active tectonics through geomorphometric parameters to cultural heritage conservation: the case of Paphos in Cyprus

    NASA Astrophysics Data System (ADS)

    Argyriou, A. V.; Sarris, A.; Alexakis, D.; Agapiou, A.; Themistocleous, K.; Lysandrou, V.; Hadjimitsis, D.

    2014-08-01

    Natural hazards, such as earthquakes, can have a large destructive effect on cultural heritage sites conservation. This study aims to assess from a geospatial perspective the risk from natural hazards for the archaeological sites and monuments and evaluate the potential tectonic activity impact on the cultural and historic heritage. Geomorphometric data derivatives that can be extracted from Digital Elevation Models (DEMs) provide information relevant with active tectonics. The specific extracted tectonic information when being used on the basis of analytical hierarchy process and weighted linear combination approach can offer an important robust approach. The ranking of the derived information relatively to specific criteria of weights can enhance the interrelationships and assemblages over neotectonics aspects. The outcomes of that methodological framework can propose an assessment approach for the spatial distribution of neotectonic activity and can become a useful tool to assessing seismic hazard for disaster risk reduction. The risk assessment aspects of such a hazard are being interlinked with the archaeological sites in order to highlight and examine those that are exposed on ongoing tectonic activity and seismic hazard. Paphos area in Cyprus has been used as the test bed for the particular analysis. The results show an important number of archaeological sites being located within zones of high degree of neotectonic activity.

  13. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  14. Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: Age, geochemistry, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Larin, A. M.

    2009-06-01

    Rapakivi granites characteristic practically of all old platforms are greatly variable in age and irregularly distributed over the globe. Four types of magmatic associations, which include rapakivi granites, are represented by anorthosite-mangerite-charnockite-rapakivi granite, anorthosite-mangerite-rapakivi-peralkaline granite, gabbro-rapakivi granite-foidite, and rapakivi granite-shoshonite rock series. Granitoids of these associations used to be divided into the following three groups: (1) classical rapakivi granites from magmatic associations of the first three types, which correspond to subalkaline high-K and high-Fe reduced A2-type granites exemplifying the plumasitic trend of evolution; (2) peralkaline granites of the second magmatic association representing the highly differentiated A1-type reduced granites of Na-series, which are extremely enriched in incompatible elements and show the agpaitic trend of evolution; and (3) subalkaline oxidized granites of the fourth magmatic association ranging in composition from potassic A2-type granites to S-granites. Magmatic complexes including rapakivi granites originated during the geochronological interval that spanned three supercontinental cycles 2.7-1.8, 1.8-1.0 and 1.0-0.55 Ga ago. The onset and end of each cycle constrained the assembly periods of supercontinents and the formation epochs of predominantly anorthosite-charnockite complexes of the anorthosite-mangerite-charnockite-rapakivi granite magmatic association. Peak of the respective magmatism at the time of Grenvillian Orogeny signified the transition from the tectonics of small lithospheric plates to the subsequent plate tectonics of the current type. The outburst of rapakivi granite magmatism was typical of the second cycle exclusively. The anorthosite-mangerite-charnockite-rapakivi granite magmatic series associated with this magmatism originated in back-arc settings, if we consider the latter in a broad sense as corresponding to the rear parts of

  15. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stöckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc

  16. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    SciTech Connect

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N.; Karlin, R.; Baskin, R.; Louie, J.; Pullammanappallil, S.

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  17. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  18. Interpretation of tectonic setting in the Phetchabun Volcanic Terrane, Northern Thailand: Evidence from enhanced airborne geophysical data

    NASA Astrophysics Data System (ADS)

    Sangsomphong, Arak; Thitimakorn, Thanop; Charusiri, Punya

    2015-08-01

    Re-processed aeromagnetic data with enhancement approaches of reduction to the pole, high pass filtering and shaded relief have been used to interpret complex subsurface structures of the Carboniferous to Triassic Phetchabun Volcanic Terrane (PVT) which is largely covered by thick Cenozoic sediment deposits. Interpretation of the enhanced aeromagnetic data reveals four distinct structural domains in the PVT, viz. Northern, Eastern, Central, and Western domains. Within these domains, high magnetic units are recognized, namely elongate, ring, circular, and dipolar spot units. The elongate unit in the Central domain is characterized by a deformation zone with northwest-southeast trending, sinistral shearing. East-west trending and the northeast-southwest trending faults cross-cut several magnetic units in the Central domain, with sinistral and dextral movements, respectively. Three major fault directions have been identified, including the northeast-southwest trending sinistral faults, north-south trending dextral faults, and northwest-southeast trending dextral faults. The younger spot units are small intrusive bodies largely situated along these latest fault segments. The aeromagnetic interpretation results, together with relevant current field verification, as well as previous geochronological and petrochemical investigations, have lead to the clarification of structural development in the PVT. The elongate units are interpreted to represent Late Carboniferous intrusive bodies. They occurred as a result of an eastward subduction of the Nakhonthai oceanic plate beneath the Indochina continental plate, along the Loei suture. The elongate units are also reflected in a north-south trending deformation zone formed by the east-west compressional tectonics. The ring units are considered to have formed in a Permo-Triassic volcanic arc, whereas the circular units represent equigranular intrusive bodies which formed in a response to the second phase of eastward subduction

  19. Impact of the Yakutat indentor corner on present-day tectonics and fault activity in SE Alaska - SW Yukon

    NASA Astrophysics Data System (ADS)

    Mazzotti, S.; Marechal, A.; Ritz, J. F.; Ferry, M. A.

    2015-12-01

    We present an active tectonic model of the SE Alaska - SW Yukon region based principally on the integration of recent GPS velocity data and new fault-slip rates derived from geomorphology. In this region, the Yakutat collision results in complex tectonics with patterns of strain localization and strain partitioning that strongly vary across the various mountain ranges and active faults. We propose that deformation and fault activity in the St. Elias and Chugach Mountains are primarily controlled by the eastern syntaxis of the Yakutat collision, which produces a semi-radial tectonic pattern: Velocities, principal horizontal shortening rates, and maximum horizontal stress orientations rotate by 60 - 80 ° around the syntaxis, from roughly parallel to the relative Pacific - North America motion at the front of the collision to roughly orthogonal southeast of the syntaxis. The interaction between this strain pattern and major inherited tectonic structures inland of the collision zone (i.e., Denali and Duke River Faults) results in various reactivation modes of these structures. Specifically, the Denali Fault shows a very pronounced lateral variations of activity from ~12 mm/a of dextral slip rate in its central section to ~1 mm/a of mostly shortening slip rate along its southern section. This marked change of activity is associated with a possible relay system where the Duke River and Totschunda Faults accommodate a major part (8 - 12 mm/a) of the inland strain transfer directly in front of the syntaxis. This new tectonic model retains some questions, in particular regarding the mechanisms of deformation and strain transfer (1) from the syntaxis to the Duke River - Totschunda system and (2) at the junction between Totschunda and Denali Faults. Numerical models of present-day deformation may help address these issues and provide information about relative strength of the various crustal and inherited fault elements of this system.

  20. Hidden faults in the Gobi Desert (Inner Mongolia, China) - evidence for fault activity in a previously tectonically stable zone

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Haedke, Hanna; Reicherter, Klaus

    2013-04-01

    The Gaxun Nur Basin (GNB, also Ejina Basin, Hei River Basin, Ruoshui Basin) north of the Tibetan Plateau and the Hexi Corridor is an endorheic basin bounded by the Bei Shan ranges in the west, the Gobi Altai mountains in the north and the Badain Jaran sand desert in the east. The basin is fed from the south by the braided drainage system of the Hei He (Hei River) and its tributaries, which originate in the Qilian Shan; terminal lakes like the dried Gaxun Nur and Sogo Nur are and have been temporal. The sedimentary succession of up to 300 m comprises intercalations of not only alluvial deposits but also lake sediments and playa evaporites. The basin has been regarded as tectonically inactive by earlier authors; however, the dating of sediments from an earlier drill core in the basin center provided some implications for tectonic activity. Subsequent remote sensing efforts revealed large lineaments throughout the basin which are now considered as possible fault line fingerprints. We investigated well preserved Yardangs (clay terraces) in the northeastern part of the GNB, in the vicinity of the Juyanze (paleo) lake, and found evidence for Holocene active tectonics (seismites). We present a lithological analysis of the relevant sequences and conclusions on the recent tectonic activity within the study area.

  1. Quaternary active tectonic structures in the offshore Bajo Segura basin (SE Iberian Peninsula - Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Perea, H.; Gràcia, E.; Alfaro, P.; Bartolomé, R.; Lo Iacono, C.; Moreno, X.; Masana, E.; Event-Shelf Team

    2012-10-01

    The Bajo Segura fault zone (BSFZ) is the northern terminal splay of the Eastern Betic shear zone (EBSZ), a large left-lateral strike-slip fault system of sigmoid geometry stretching more than 450 km from Alicante to Almería. The BSFZ extends from the onshore Bajo Segura basin further into the Mediterranean Sea and shows a moderate instrumental seismic activity characterized by small earthquakes. Nevertheless, the zone was affected by large historical earthquakes of which the largest was the 1829 Torrevieja earthquake (IEMS98 X). The onshore area of the BSFZ is marked by active transpressive structures (faults and folds), whereas the offshore area has been scarcely explored from the tectonic point of view. During the EVENT-SHELF cruise, a total of 10 high-resolution single-channel seismic sparker profiles were obtained along and across the offshore Bajo Segura basin. Analysis of these profiles resulted in (a) the identification of 6 Quaternary seismo-stratigraphic units bounded by five horizons corresponding to regional erosional surfaces related to global sea level lowstands; and (b) the mapping of the active sub-seafloor structures and their correlation with those described onshore. Moreover, the results suggest that the Bajo Segura blind thrust fault or the Torrevieja left-lateral strike-slip fault, with prolongation offshore, could be considered as the source of the 1829 Torrevieja earthquake. These data improve our understanding of present deformation along the BSFZ and provide new insights into the seismic hazard in the area.

  2. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China)

    NASA Astrophysics Data System (ADS)

    Ni, Jin-Long; Liu, Jun-Lai; Tang, Xiao-Ling; Shi, Xiao-Xiao; Zhang, Hong; Han, Shuai

    2016-10-01

    This paper conducts a petrogeochemical analysis of the Lower Cretaceous Laiyang Group's sandstones, compares the results with the Neoproterozoic and Mesozoic intrusive rocks in the southern Sulu Orogen (also called the Jiaonan Orogen), and performs an LA-ICP-MS zircon geochronology analysis of the granitic gneisses in the conglomerates of the Laiyang Group and the intrusive rocks in the Jiaonan Orogen. The results show that the major element proportions of the Longwangzhuang Formation (LWZ Fm) and Qugezhuang Formation (QGZ Fm) of the Laiyang Group in the Zhucheng Basin are similar. The values of various indices for the LWZ Fm are similar to the average sandstone content of active continental margins, whereas, the values for the QGZ Fm are similar to those of continental island arcs. The comparison shows that the REE characteristics of the LWZ Fm and QGZ Fm of Laiyang Group are similar to those of the Neoproterozoic granitic gneisses in the Jiaonan Orogen but obviously different from those of the Early Cretaceous intrusive rocks. A tectonic setting discrimination diagram reveals that the provenance of the Laiyang Group includes features of active continental margins and continental island arcs. A number of indicators, e.g., the sandstone type, the Chemical Index of Alteration, the Chemical Index of Weathering, the Plagioclase Index of Alteration and the Index of Chemical Constituent Variation, indicated that the sandstones did not undergo intense weathering and were deposited near the source area. The zircon ages of the granitic gneiss material in the conglomerates at the base of the Laiyang Group are 790 ± 8.4 Ma, close to the ages of the Neoproterozoic granitic gneiss in the Jiaonan Orogen (739-819 Ma), and very different from the ages of the Early Cretaceous intrusive rocks. Combining with paleocurrent directions, geochemical character, the Neoproterozoic granitic gneisses in the Jiaonan Orogen may represent the primary provenance of the Laiyang Group in the

  3. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir

    NASA Astrophysics Data System (ADS)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.

    2012-12-01

    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  4. Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions

    NASA Astrophysics Data System (ADS)

    Houston, Heidi

    2001-06-01

    Source time functions of 255 moderate to great earthquakes obtained from inversions of teleseismic body waves by Tanioka and Ruff [1997] and coworkers were compared in a systematic way. They were scaled to remove the effect of moment and to allow the direct comparison and averaging of time function shape as well as duration. Time function durations picked by Tanioka and Ruff [1997] are proportional to the cube root of seismic moment if moments from the Harvard centroid moment tensor catalog are used. The average duration of scaled time functions is shorter and the average shape has a more abrupt termination for deeper events than shallower ones, with a distinct change occurring at ˜40 km depth. The complexity of the time functions, as quantified by the number of subevents, appears to decrease below ˜40 km depth. Furthermore, among events shallower than 40 km, the average duration of scaled time functions is shorter, and their average shape has a more abrupt termination (1) for events with strike-slip focal mechanisms compared to thrust events and (2) for the few thrust events associated with an intraplate setting compared to the majority associated with an interplate (subduction) boundary. In each of these cases, events in more technically and seismically active settings have a longer duration and a more gradual termination. This can be interpreted in terms of lower stress drops and/or slower rupture velocities at active plate boundaries, suggesting that fault rheology depends on slip rate and may evolve as total fault slip accumulates. Furthermore, differences in average time function shape and duration associated with different subduction zones suggest that differences exist in the rheology on the plate boundaries at the various subduction zones. Supporting data table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password = "guest"); subdirectories in the ftp site are arranged by paper

  5. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    USGS Publications Warehouse

    Barbour, Andrew

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength

  6. Late Quaternary loess landscape evolution on an active tectonic margin, Charwell Basin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hughes, Matthew W.; Almond, Peter C.; Roering, Joshua J.; Tonkin, Philip J.

    2010-10-01

    Loess deposits constitute an important archive of aeolian deposition reflecting wider patterns of glacial atmospheric circulation, and more localised interactions between riverine source areas, loess trapping efficiency and geomorphic controls on erosion rate. Conceptual models have been formulated to explain the coeval evolution of loess mantles and associated landscapes (loess landscape models) but none apply to areas of tectonically induced base-level lowering. This study uses an age sequence of alluvial fill terraces in the Charwell Basin, north-eastern South Island New Zealand, which straddles the transpressive Hope Fault, to investigate geomorphic controls on loess landscape evolution in an active tectonic region. We hypothesize that the more evolved drainage networks on older terraces will more effectively propagate base-level lowering by way of a greater areal proportion of steep and convex hillslopes and a smaller proportion of non-eroding interfluves. Eventually, as the proportion of interfluves diminishes and hillslope convexity increases, terraces shift from being net loess accumulators to areas of net loess erosion. We investigate the nature of erosion and the geomorphic thresholds associated with this transition. Morphometric analysis of alluvial terraces and terrace remnants of increasing age demonstrated geomorphic evolution through time, with a decrease in extent of original planar terrace tread morphology and an increase in frequency of steeper slopes and convexo-concave land elements. The number of loess sheets and the thickness of loess increased across the three youngest terraces. The next oldest (ca. 150 ka) terrace remnant had the greatest maximum number of loess sheets (3) and loess thickness (8 m) but the loess mantle was highly variable. A detailed loess stratigraphic analysis and the morphometric analysis place this terrace in a transition between dominantly planar, uniformly loess-mantled landforms and loess-free ridge and valley terrain

  7. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  8. Petrography and geochemistry characteristics of the lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: implications for provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Song, Yu; Liu, Zhaojun; Meng, Qingtao; Wang, Yimeng; Zheng, Guodong; Xu, Yinbo

    2016-10-01

    The petrography, mineralogy and geochemistry of sedimentary rocks from the lower Cretaceous Muling Formation (K1ml) in the Laoheishan basin, northeast (NE) China are studied to determine the weathering intensity, provenance and tectonic setting of the source region. Petrographic data indicate the average quartz-feldspar-lithic fragments (QFL) of the sandstone is Q = 63 %, F = 22 %, and L = 15 %. Lithic fragments mainly contain volcanic clasts that derived from surrounding basement. X-ray diffraction (XRD) data reveal abundant clay and detrital minerals (e.g. quartz), as well as minor calcite in the fine-grained sediments. The Hf contents and element concentration ratios such as Al2O3/TiO2, Co/Th, La/Sc, and La/Th are comparable to sediments derived from felsic and intermediate igneous rocks. The strong genetic relationship with the igneous rocks from the northwest and northeast areas provides evidence that the sediments of the Muling Formation (K1ml) in the Laoheishan basin have been derived from this area. The chemical index of alteration (CIA) and index of chemical variability (ICV) reveal an intensive weathering in the source region of the sediments. The multidimensional tectonic discrimination diagrams indicate that the source rocks of K1ml are mainly derived from the collision system. However, they may also comprise sediments derived from the continental rift system. The results are consistent with the geology of the study area.

  9. Provenance and sediment-dispersal system in tectonically active rapidly evolving foreland basin, Western Interior

    SciTech Connect

    Khandaker, N.I.; Vondra, C.F.

    1989-03-01

    The Upper Cretaceous Frontier Formation, along the mobile edge of the Western Interior foreland basin, is composed mainly of clastic sediments and was deposited during the initial Late Cretaceous transgressive-regressive phases of the Western Interior seaway across Wyoming. The formation contains many persistent bentonite beds and several sandstone packages in its lower part and a thin, lenticular lithic wacke-polymictic conglomerate association at its upper contact (Torchlight Sandstone Member). Abundant granule to cobble-sized clasts of andesite, granite, chert, and quartzite are set in a poorly sorted sand-to-granule grade volcaniclastic matrix. There is a lithologic continuity of this volcaniclastic unit across the Bighorn Mountains into the Powder River basin. A high-energy distributary complex of sizable areal extent is invoked for the deposition of this linear conglomerate facies. Geochemical investigations of the whole-rock andesite clasts and bentonite allowed more precise definition of character, tectonic setting, and evolutionary stages of sedimentary distributive provinces. Bentonites and andesites are strongly enriched in strontium and barium, but only mildly enriched in heavy rare earth elements and high field-strength elements. These analyzed rocks have trace element characteristics similar in a general way to those of typical orogenic volcanics; they show some significant differences in detail. Composition of volcaniclasts and paleocurrent data indicate a proximal sediment source for the extrabasinal detritus within the Frontier Formation. The possibility of a contribution from a Mesozoic volcanic center in the neighborhood of southwestern Montana is strongly favored. The products of this volcanism constitute an assemblage of deep crustal to mantle( ) derived rocks, and their composition record time-integrated enrichment in light over heavy rare earth elements.

  10. Quantifying submarine landslide processes driven by active tectonic forcing: Cook Strait submarine canyon, New Zealand.

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Barnes, P. M.; Pettinga, J. R.

    2006-12-01

    The Cook Strait submarine canyon system is a multi-branched, deeply incised and highly sinuous feature of New Zealand's active margin, covering some 1500km2 of sea floor between the North and South Islands and spanning water depths of between 50 and 2700m. The canyon occurs at the transition from the westward dipping oblique subduction zone adjacent to the SE North Island and the zone of continental transpression in NE South Island. The recent acquisition of high resolution (5-10m) SIMRAD EM300 bathymetric data allows active tectonic and geomorphic processes to be assessed and quantified at a level of detail previously not possible. While multiple active submarine fault traces have been identified in the Cook Strait by previous studies, quantitative information on their activity has been limited. Cook Strait is structurally characterized by westward dipping thrust faults and E-W trending dextral strike slip faults. The multiple large magnitude high frequency earthquake sources define zones of very high ground shaking expected to contribute to triggering of extensive submarine slope failures. Landslide activity within the canyon system is widespread and represents the dominant mass movement process affecting canyon heads and walls, redistributing material into valley fills. Complexes of large (km3) multi-stepped, deep-seated (100m) translational bedding plane failures represented by gently sloping (<3°) evacuated slide-scar areas with associated blocky valley fill deposits are numerous. Steep catchment heads, channel walls and the leading edges of asymmetric thrust-fault driven anticlines are dominated by gulley and rill systems with associated eroded and/or incipient slump features. Large (107m3+) slide blocks are recognized in discrete failures with quantifiable displacement vectors. Tsunamigenic landslides in this environment are inevitable. This study will provide quantification of landslide models including triggering mechanisms, discrete geometries and

  11. Geochemistry of the Cretaceous coals from Lamja Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Implications for paleoenvironment, paleoclimate and tectonic setting

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Adegoke, Adebanji Kayode

    2015-04-01

    The Cretaceous coals of Lamja Formation located in Yola Sub-basin of the Northern Benue Trough, northeastern Nigeria, were analyzed based on a combined investigation of organic and inorganic geochemistry to define the paleodepositional environment condition, organic matter source inputs and their relation to paleoclimate and tectonic setting. The total organic carbon and sulfur contents of Lamja Formation coals ranges from 48.2%-67.8% wt.% and 0.42%-0.76% wt.%, respectively, pointing their deposition in freshwater environment with inferred marine influence during burial. Biomarkers and chemical compositions provide evidence for a major contribution of land-derived organic matter, with minor aquatic organic matter input. Minerals such as quartz, pyrite, kaolinite, illite, montmorillonite and calcite were present in the coals, suggesting that these minerals were sourced from terrigenous origin with slightly marine influence, considered as post-depositional. This is consistent with a significant amount of the oxides of major elements such as SiO2, Fe2O3, Al2O3, TiO2, CaO, and MgO. The investigated biomarkers are characterized by dominant odd carbon numbered n-alkanes (n-C23 to n-C33), moderately high Pr/Ph ratios (1.72-3.75), very high Tm/Ts ratios (18-29), and high concentrations of regular sterane C29, indicating oxic to relatively suboxic conditions, delta plain marine environment of deposition with prevalent contribution of land plants and minor aquatic organic matter input. Concentrations of trace elements such as Ba, Sr, Cr, Ni, V, Co and their standard ratios also suggested that the organic matter was deposited under oxic to relatively suboxic conditions, which is in parts deposited under marine influenced. Some standard binary plots of SiO2 versus (Al2O3 + K2O + Na2O) indicate a semi-arid paleoclimatic condition whereas log SiO2 versus (K2O/Na2O) also revealed passive continental margin setting. The inferred tectonic setting is in agreement with the tectonic

  12. Tectonic implications of Early Miocene OIB magmatism in a near-trench setting: The Outer Zone of SW Japan and the northernmost Ryukyu Islands

    NASA Astrophysics Data System (ADS)

    Kiminami, Kazuo; Imaoka, Teruyoshi; Ogura, Kazuki; Kawabata, Hiroshi; Ishizuka, Hideo; Mori, Yasushi

    2017-03-01

    The Outer Zone of the SW Japan and northernmost Ryukyu arcs was affected by intense igneous activity during the Miocene, characterized by MORB-like basalts, alkaline basalts, and S-type (with subordinate I-type) felsic to intermediate volcano-plutonic complexes. These igneous rocks are inferred to be the products of near-trench magmatism. Early Miocene (∼18 Ma) alkaline basalt dikes from the Shingu-Otoyo area in central northern Shikoku, and an alkaline lamprophyre dike from Tanegashima, one of the northernmost Ryukyu Islands, pre-date the Middle Miocene felsic to intermediate igneous rocks. The basalts and lamprophyre have compositions of basanite, basalt, trachybasalt and phonotephrite. They are characterized by elevated large-ion lithophile elements (LILEs; e.g., Sr, Ba, and Th) and high concentrations of high-field strength elements (HFSEs; e.g., TiO2, Nb, and Zr). The geochemical signatures of the basalts and lamprophyre suggest an ocean island basalt-type (OIB-type) mantle source. The occurrence of alkaline basalts and lamprophyre with OIB-type, intraplate geochemical signatures in a near-trench setting is unusual with regard to plate tectonic processes. We propose that trench-ward motion of the overriding plate during the period around the Early Miocene resulted in a shallowly dipping slab, and interplate coupling between the subducting Philippine Sea Plate (PSP) and the overlying crust beneath most of the Outer Zone in the western part of SW Japan and the northernmost Ryukyu Islands. The OIB-type magmatism in the near-trench environment is most plausibly explained by the upwelling of asthenospheric material from beneath the subducting slab, which migrated through fractures and/or tears in the slab. We envisage two possible scenarios for the formation of these fractures or tears: (1) the shallowing dip angle of the subducted PSP resulted in concave-upwards flexure of the slab, generating fractures in the flexed region; and (2) differential motion within

  13. Current Magmato-Tectonic Activity in the Asal-Ghoubbet Rift (Afar Depression, Republic of Djibouti)

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Doubre, C.; Dorbath, L.; Manighetti, I.; Jacques, E.; Geoffroy, L.

    2001-12-01

    The Asal-Ghoubbet rift, the most active, emerged segment of the Aden ridge, opens at 16+/-2 mm/yr. Although normal faulting operates in the rift, it does not accommodate the entire extension, so that dyking must occur at depth. In order to investigate the current relationship between tectonics and magmatism, we installed 11 seismometers (3 3C + one broad band; plus 6 permanent stations) in the northeastern part of the rift, site of the most active faults and of the Fieale volcano caldera, and monitored the seismic activity during 5 months. About 200 small-magnitude (time, <= 3) events could be accurately ( ~ 300m) localized in the emerged part of the rift, using an appropriate velocity model. All fall within the temporary network, forming three major clusters. Nine % of the events spread in the outermost part of the rift northern shoulder, where clear active faults and volcanic structures are lacking. All seem to nucleate at a similar depth, of 6-8 km. Seven % of the events nucleate at a shallow depth ( ~1 km) in the northern Disa Le Mallo subrift, zone of intense active faulting and fissuring. Finally, the majority of events (70%) cluster below the Fieale caldera, at a mean depth of 3 km, hence just above the inferred magma chamber. The analysis of the broader-scale seismological data acquired in the rift over the last 20 years, points to a similar distribution. Thirty five out of 50 focal mechanisms we calculated using P wave polarities, are consistent with a double-couple source model, and reveal predominant normal faulting on NW-SE-striking planes parallel to the faults which structure the rift. Fifteen events, however, show non-double couple radiation pattern, particularly in the Fieale area. These particular events may result from magmatic activity (filling or collapse of the magma chamber) and/or geothermal processes. In the other two areas, where they are also found, their origin is possibly related to fissuring or dyking. One seismic sequence also occurred

  14. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Wu, Fadong; Zhang, Xujiao; Zeng, Peng; Ma, Pengfei; Song, Yuping; Chu, Hao

    2016-12-01

    Developed in the Anxi-Dunhuang basin, the yardangs of Dunhuang (western China) are clearly affected by tectonic movement. Based on fieldwork, this study ascertained three levels of river terrace in the area for the first time. Through the analysis of river terraces formation and regional tectonic movement, the study ascertained that the river terraces were formed mainly by Late Pleistocene tectonic uplift, which had activated the evolution of yardangs in the study area. By electron spin resonance (ESR) dating and optically stimulated luminescence (OSL) dating, the starting time and periodicity of the evolution of the yardangs were determined. The river terraces designated T3, T2 and T1 began to evolve at 109.0 ˜98.5, 72.9 ˜66.84 and 53.2 ˜38.0 kaBP, respectively, which is the evidence of regional neotectonic movement. And, the formation of the yardangs was dominated by tectonic uplift during the prenatal stage and mainly by wind erosion in the following evolution, with relatively short stationary phases. This research focused on the determination of endogenic processes of yardangs formation, which would contribute to further understanding of yardangs formation from a geological perspective and promote further study of yardang landform.

  15. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    SciTech Connect

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  16. Debris Flow Architecture and Processes in Offshore Trinidad: Implications for basin fill in tectonically active margins

    NASA Astrophysics Data System (ADS)

    Moscardelli, L.; Wood, L.; Mann, P.

    2004-12-01

    The eastern continental margin of Trinidad is situated along the tectonically active oblique converging southeastern boundary of the Caribbean and South American plates and proximal to the Orinoco Delta. Factors that have contributed to gravitational instabilities in the shelf edge include high sedimentation accumulation rates, high frequency sea-level fluctuations during the Quaternary, frequent earthquakes and the abundance of methane hydrate. This volatile mix of factors favor the formation of episodic gravity induced deposits that have affected thousands of square kilometers of the deep marine environment. Debris flows are the predominant type of gravity induced deposits in the area. Multiple episodes of debris flow occurrence have been identified using nearly 10,000 square kilometers of three-dimensional seismic data that cover the entire eastern margin. Units can reach up to 250 meters in thickness and occur over 100's of kilometer square areas. Maps that have been generated for the uppermost flow show significant basal scour, up to 33 meters deep generated during passage of the flow. Scours also show divergent patterns in map view indicating changes in the flow conditions. Flow scour erosional shadows around prominent seafloor mud volcanoes preserving evacuated strata on the downslope side of these obstructions. Internal architecture shows high amplitude discontinuous and chaotic seismic facies, and stacked thrust imbricates association with compressional bends in the flow path. The scale and occurrence frequency of these features suggest that they may form a significant threat to submarine installations and possibly generate tsunamigenic waves that can threaten shipping and coastal communities.

  17. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.

    2009-01-01

    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  18. Taiwan: a perfect field trip to study active tectonics and erosion processes

    NASA Astrophysics Data System (ADS)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  19. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Walter, T. R.

    2009-04-01

    The study of volcanic triggering and coupling to the tectonic surroundings has received special attention in recent years, using both direct field observations and historical descriptions of eruptions and earthquake activity. Repeated reports of volcano-earthquake interactions in, e.g., Europe and Japan, may imply that clustered occurrence is important in some regions. However, the regions likely to suffer clustered eruption-earthquake activity have not been systematically identified, and the processes responsible for the observed interaction are debated. We first review previous works about the correlation of volcanic eruptions and earthquakes, and describe selected local clustered events. Following an overview of previous statistical studies, we further elaborate the databases of correlated eruptions and earthquakes from a global perspective. Since we can confirm a relationship between volcanic eruptions and earthquakes on the global scale, we then perform a statistical study on the regional level, showing that time and distance between events follow a linear relationship. In the time before an earthquake, a period of volcanic silence often occurs, whereas in the time after, an increase in volcanic activity is evident. Our statistical tests imply that certain regions are especially predisposed to concurrent eruption-earthquake pairs, e.g., Japan, whereas such pairing is statistically less significant in other regions, such as Europe. Based on this study, we argue that individual and selected observations may bias the perceptible weight of coupling. Volcanoes located in the predisposed regions (e.g., Japan, Indonesia, Melanesia), however, indeed often have unexpectedly changed in association with either an imminent or a past earthquake.

  20. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa; Koike, Katsuaki

    2006-08-01

    Fracture zones on the Earth's surface are important elements in the understanding of plate motion forces, the dynamics of the subsurface fluid flow, and earthquake distributions. However, good exposures of these features are always lacking in arid regions, characterized by flat topography and where sand dunes extensively cover the terrain. During field surveys these conditions, in many cases, hinder the proper characterization of such features. Therefore, an approach that identifies the regional fractures as lineaments on remotely-sensed images or shaded digital terrain models, with its large scale synoptic coverage, could be promising. In the present work, a segment tracing algorithm (STA), for lineament detection from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery, and the data from the Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM), has been applied in the Siwa region, located in the northwest of the Western Desert of Egypt. The objectives are to analyze the spatial variation in orientation of the detected linear features and its relation to the hydrogeologic setting in the area and the underlying geology, and to evaluate the performance of the algorithm applied to the ETM+ and the DEM data. Detailed structural analysis and better understanding of the tectonic evolution of the area could provide useful tools for hydrologists for reliable groundwater management and development planning. The results obtained have been evaluated by the structural analysis of the area and field observations. Four major vertical fracture zones were detected corresponding to two conjugate sets of strike-slip faults that governed the surface, and subsurface environments of the lakes in the region, and these correlate well with the regional tectonics.

  1. The Effect of Plumes on the Dynamics of Supercontinents in a Self-Consistent Plate Tectonics Setting

    NASA Astrophysics Data System (ADS)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2014-12-01

    Strong mantle plumes arising from the deep mantle can impose stresses on the continents, thereby facilitating continental rifting and disrupting the supercontinent cycle (Storey, Nature 1995; Santosh et al., Gondwana Research 2009). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Extent of continental motion depends on the heat budget of the mantle (CMB heat flux, radiogenic heating, mantle cooling). CMB heat flux is not well defined; however, the recent determination of core's high thermal conductivity requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. Unlike free-slip, a free surface boundary condition allows for the development of topography and leads to realistic single-sided (asymmetric) subduction (Crameri et al., GJI 2012; Crameri et al., GRL 2012). Using StagYY code (Tackley, PEPI 2008), we test (i) the impact of increased basal heating on mantle dynamics with continents and self-consistent plate tectonics, including whether plumes prefer to develop under continents; (ii) the influence of a free surface on continents using the 'sticky air' approach, in which a low density and a small viscosity fluid layer is

  2. Mesozoic tectonic setting of rift basins in eastern North China and implications for destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Qi, Guo-wei; Zhang, Jin-Jiang; Wang, Meng

    2015-11-01

    Destruction of the North China Craton (NCC) in the Mesozoic due to subduction of the Paleo-Pacific Plate has attracted a lot of recent interest, with numerous studies focusing on regional tectonics and associated magmatism. Although the peak ages for this event have been established, the timing of its initiation remains poorly understood. In this paper, two rift basins in the northern Hebei Province of China, the Diaoe Basin (DB) and Houcheng Basin (HB), are studied in order to constrain the timing of destruction of the northern margin of the NCC. Both NNE-striking basins developed on Proterozoic basement. The DB is a graben controlled by normal faults on its two margins, and the HB is a half-graben bounded by normal faults on its eastern side. Basin fills include detrital sediments and volcanic rocks, which are (from bottom to top) the Houcheng Formation (Fh), the Zhangjiakou Formation (Fzh), the Shijiayao Formation (Fs), and the Huajiying Formation (Fhj). The Fh is composed mainly of detrital sediments interlayered with andesite in its lower section, and interlayered with felsic volcanics (rhyolite) in its upper section. There exists a transitional change from the Fh to the thick felsic volcanic strata of the Fzh. Geochemically, the andesite layers in the lower Fh were most likely derived from mixing of crust and mantle melts, whereas the felsic rocks were derived from melting of the lower crust. U-Pb dating of zircons by LA-ICP-MS yielded ages for the lower Fh andesites of ca. 165.7 Ma in the HB and ca. 157.4 Ma in the DB. The felsic rocks at the base of the Fzh yielded ages of ca. 155.1 Ma in the HB and ca. 149.2-143.4 Ma in the DB. The Fs and Fhj in the DB both yielded similar ages of ca. 136 Ma. The development of rift basins, together with the occurrence of massive felsic volcanic rocks, indicates a period of significant extension and thinning of the NCC. The ca. 165.7-155.1 Ma age for andesites not only represents the initial timing of crustal extension

  3. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  4. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  5. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  6. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate

    NASA Astrophysics Data System (ADS)

    Young, Grant M.

    2002-11-01

    Among Palaeoproterozoic glacial deposits on four continents, the best preserved and documented are in the Huronian on the north shore of Lake Huron, Ontario, where three glaciogenic formations have been recognized. The youngest is the Gowganda Formation. The glacial deposits of the Gowganda Formation were deposited on a newly formed passive margin. To the west, on the south side of Lake Superior, the oldest Palaeoproterozoic succession (Chocolay Group) begins with glaciogenic diamictites that have been correlated with the Gowganda Formation. The >2.2 Ga passive margin succession (Chocolay Group=upper Huronian) is overlain, with profound unconformity, by a >1.88 Ga succession that includes the superior-type banded iron-formations (BIFs). The iron-formations are therefore not genetically associated with Palaeoproterozoic glaciation but were deposited ˜300 Ma later in a basin that formed as a result of closure of the "Huronian" ocean. In Western Australia, Palaeoproterozoic glaciogenic deposits of the Meteorite Bore Member appear to have formed part of a similar basin fill. The glaciogenic rocks are, however, separated from underlying BIF by a thick siliciclastic succession. In both North America and Western Australia, BIF-deposition took place in compressional (possibly foreland basin) settings but the iron-formations are of greatly different age, suggesting that the most significant control on their formation was not oxygenation of the Earth's atmosphere but rather, emplacement of Fe-rich waters (uplifted as a result of ocean floor destruction?) in a siliciclastic-starved environment where oxidation (biogenic?) could take place. Some of the Australian BIFs appear to predate the appearance of red beds in North American Palaeoproterozoic successions and are therefore unlikely to be related to oxygenation of the atmosphere. Neoproterozoic glaciogenic deposits are widespread on the world's continents. Some are associated with iron-formations. Two theories have emerged

  7. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  8. Detrital modes of the Pyeongan Supergroup (Late Carboniferous Early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Lee, Yong Il; Sheen, Dong-Hee

    1998-08-01

    Medium to coarse sandstones of the Carboniferous to Early Triassic Pyeongan Supergroup in the Samcheog coalfield, Korea, were studied to infer the provenance and tectonic settings of the source areas. Sandstone detrital modes change upwards stratigraphically. Sandstone types from the Manhang to Dosagog formations low to middle in the sequence are quartzarenite, and sublitharenite to litharenite, whereas sandstones of the Gohan and Donggo formations high in the sequence are feldspathic litharenite and arkose, respectively. Using various ternary diagrams, the provenance of the Manhang to Gohan formations is suggested to be a recycled orogen setting. Some Gohan Formation sandstones plot within the arc-related setting field, and the Donggo Formation sandstones plot within both continental block and recycled orogen fields. Results of quartz grain petrography are consistent with those of detrital modes. Quartz in sandstones of all units except the Donggo Formation indicates derivation from low-rank metamorphic sources. Quartz in Donggo sandstones was derived from medium- to high-rank metamorphic and plutonic source rocks. Considering the sandstone composition and palaeocurrent data, the Pyeongan Supergroup probably was deposited in a molasse foreland basin and was derived from a synbasinal orogenic belt, probably the Akiyoshi orogen located in southwest Japan.

  9. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  10. Project ACE Activity Sets. Book II: Grades 6 and 7.

    ERIC Educational Resources Information Center

    Eden City Schools, NC.

    The document contains eight activity sets suitable for grades 6 and 7. Topics focus on governmental, social, and educational systems in foreign countries. Each activity set contains background reading materials, resources, concepts, general objectives, and instructional objectives. Grade 6 sets are "Soviet Youth Organizations,""How…

  11. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  12. Structure, age, and tectonic setting of a multiply reactivated shear zone in the piedmont in Washington, D.C., and vicinity

    USGS Publications Warehouse

    Fleming, A.H.; Drake, A.A.

    1998-01-01

    The Rock Creek shear zone is the dominant tectonic feature in the Piedmont in Washington, D.C. and adjacent parts of Maryland, has an exposed length of 25 km, and a width of up to 3 km. The shear zone is characterized by a complicated composite fabric produced by the imposition of both ductile and brittle structures as well as the reactivation, transposition, and folding of older structures during subsequent antithetic displacement. At least five main types of structural elements are discernible and include: 1) relict, medium- to coarse-grained mylonitic foliation and related structures produced by sinistral shearing under at least middle amphibolite facies conditions; 2) a ductile fault zone having an apparent sinistral displacement of at least several km and an unknown, but possibly significant component of upward throw of the east wall; 3) pervasive, fine-grained ultramylonitic foliation associated with quartz ribbons and late oblique shear bands, generated by dextral shearing under thermal conditions that appear to have progressed from middle greenschist to sub-greenschist (semi-brittle); 4) a system of oblique-(west wall up) and dextralship faults localized chiefly within a tectonic me??lange at the junction of two major strands, and whose motion spanned the ductile-brittle transition; and 5) a system of post-Cretaceous thrust faults that cut Coastal Plain rocks as young as Quaternary as well as the previously deformed crystalline rocks. The first two sets of structures are of probable Ordovician age and are thus believed to coincide with the Taconic event, which produced regional middle to upper amphibolite facies metamorphism, widespread plutonism, and extensive southwest-vergent fold phases in this area. In contrast, the dextral shearing and faulting were generated during final thermal cooling and represent the latest Paleozoic penetrative deformation that affected this area. They are very likely Alleghanian because of their great similarity to other better

  13. 10 Ma of Igneous Activity in the Transmexican Volcanic Belt: Tectonic and Geomagnetic Implications.

    NASA Astrophysics Data System (ADS)

    Ruiz-Martinez, V. C.; Osete, M. L.; Urrutia-Fucugauchi, J.

    2007-05-01

    A total of 51 sites with geochronological control were sampled in the central and western segments of the Transmexican Volcanic Belt (TMVB). Together with other previously published 69 sites from the eastern segment, they span the spatial and temporal activity of the TMVB. Using now the same reference directions and methodologies, they are analyzed in order (i) to determine the possible occurrence and significance (spatially and temporally) of vertical axis crustal block rotations that have been reported in this region; and (ii) to study the geomagnetic Paleo Secular Variation during the last 10 Ma; to check the previously suggested existence of a "Pacific Dipole Window" extending to Mexico. Paleomagnetic results, backed by statistical tests performed according to their geographical distribution (3 structural segments) or according to their ages (Late Miocene, Pliocene or Quaternary), do not support the notion that large vertical axis block rotations (paleomagnetically detectable) occurred in this arc after Late Miocene times. They suggest that the TMVB could be considered paleomagnetically as an unique tectonic domain under a transtensional regime, where its extension component prevails over its left-lateral component. The mean paleomagnetic directions, obtained in the age ranges 10-5 Ma and 5-0 Ma, do not differ from their respective reference directions. In both datasets, VGPs have been selected using quality Fisher's precision parameters and optimum cutoff angles. This results in a circularly symmetrical data distribution with statistically indistinguishable antipodal normal and reverse polarities. VGP dispersions are consistent with those from globally distributed observations at Mexican latitudes for the Miocene and the Plio- Quaternary. An analysis of all the published paleomagnetic data from the TMVB, when combined all together and selected in the same terms, do not support neither the existence of large crustal block rotations nor the persistence of a

  14. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  15. Linking mantle dynamics, plate tectonics and surface processes in the active plate boundary zones of eastern New Guinea (Invited)

    NASA Astrophysics Data System (ADS)

    Baldwin, S.; Moucha, R.; Fitzgerald, P. G.; Hoke, G. D.; Bermudez, M. A.; Webb, L. E.; Braun, J.; Rowley, D. B.; Insel, N.; Abers, G. A.; Wallace, L. M.; Vervoort, J. D.

    2013-12-01

    Eastern New Guinea lies within the rapidly obliquely converging Australian (AUS)- Pacific (PAC) plate boundary zone and is characterized by transient plate boundaries, rapidly rotating microplates and a globally significant geoid high. As the AUS plate moved northward in the Cenozoic, its leading edge has been a zone of subduction and arc accretion. The variety of tectonic settings in this region permits assessment of the complex interplay among mantle dynamics, plate tectonics, and surface processes. Importantly, the timescale of tectonic events (e.g., subduction, (U)HP exhumation, seafloor spreading) are within the valid bounds of mantle convection models. A record of changes in bathymetry and topography are preserved in high standing mountain belts, exhumed extensional gneiss domes and core complexes, uplifted coral terraces, and marine sedimentary basins. Global seismic tomography models indicate accumulation of subducted slabs beneath eastern New Guinea at the bottom of the upper mantle (i.e., <660km depth). Some of the deeply subducted material may indeed be buoyant subducted AUS continental margin (to depths of ~250-300 km), as well as subducted continental material that has reached the point of no return (i.e., > 250-300 km). Preliminary global-scale backward advected mantle convection models, driven by density inferred from joint seismic-geodynamic tomography models, exhibit large-scale flow associated with these subducted slab remnants and predict the timing and magnitude (up to 1500 m) of dynamic topography change (both subsidence and uplift) since the Oligocene. In this talk we will explore the effects of large-scale background mantle flow and plate tectonics on the evolution of topography and bathymetry in eastern New Guinea, and discuss possible mechanisms to explain basin subsidence and surface uplift in the region.

  16. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    SciTech Connect

    Zilberman, E.; Wachs, D. )

    1988-02-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.

  17. Sequence stratigraphic and synsedimentary tectonic controls on reservoir compartmentalization in a transgressive sequence set: Almond formation, southwest Wyoming

    SciTech Connect

    Krystinik, L.F.; Mead, R.H.

    1996-12-31

    The Campanian upper Almond Formation in Southwestern Wyoming contains at least 15 aggradational to backstepping microtidal to low mesotidal barrier/shoreline complexes laid down during a period of net transgression from 72 to 70.5 million years ago. Reservoir compartmentalization in the upper Almond occurs at several scales, including an aggradational to retrogradations sequence set composed of 3 retrogradational parasequence sets; numerous parasequences, and diverse barrier sub-facies units. The lowstand shorelines of these sequence sets stack aggradationally prior to transgression by a really extensive, marine mudstone horizons which separate the sequences. Highstand systems tracts are poorly preserved, often completely removed below fourth of fifth order sequence boundaries which cause seaward jumps of facies in excess of 30 Km and place fluvial sediment, coal and lagoonal deposits abruptly over marine mudstone. Each sequence in the upper Almond is composed of several parasequences (sanding-upward, storm-dominated barrier shorefaces) which intercalate with marine mudstone to the east and grade into oyster-bearing, organic-rich lagoonal mudstone to the west. Compartmentalization in the barrier complexes occurs at most parasequence boundaries and in association with major sub-facies; boundaries (barrier margins, tidal inlets, flood-tidal deltas, washover fans). Further reservoir compartmentalization is induced by synsedimentary faulting and subsidence which locally preserve isolated reservoir-quality barrier/shoreline sandstone bodies by dropping them below the depth of ravinement (5-30 m). The recognition of synsedimentary faulting and subsequent ravinement is critical to accurate sequence stratigraphic analysis and for prediction of reservoir compartments.

  18. Sequence stratigraphic and synsedimentary tectonic controls on reservoir compartmentalization in a transgressive sequence set: Almond formation, southwest Wyoming

    SciTech Connect

    Krystinik, L.F.; Mead, R.H. )

    1996-01-01

    The Campanian upper Almond Formation in Southwestern Wyoming contains at least 15 aggradational to backstepping microtidal to low mesotidal barrier/shoreline complexes laid down during a period of net transgression from 72 to 70.5 million years ago. Reservoir compartmentalization in the upper Almond occurs at several scales, including an aggradational to retrogradations sequence set composed of 3 retrogradational parasequence sets; numerous parasequences, and diverse barrier sub-facies units. The lowstand shorelines of these sequence sets stack aggradationally prior to transgression by a really extensive, marine mudstone horizons which separate the sequences. Highstand systems tracts are poorly preserved, often completely removed below fourth of fifth order sequence boundaries which cause seaward jumps of facies in excess of 30 Km and place fluvial sediment, coal and lagoonal deposits abruptly over marine mudstone. Each sequence in the upper Almond is composed of several parasequences (sanding-upward, storm-dominated barrier shorefaces) which intercalate with marine mudstone to the east and grade into oyster-bearing, organic-rich lagoonal mudstone to the west. Compartmentalization in the barrier complexes occurs at most parasequence boundaries and in association with major sub-facies; boundaries (barrier margins, tidal inlets, flood-tidal deltas, washover fans). Further reservoir compartmentalization is induced by synsedimentary faulting and subsidence which locally preserve isolated reservoir-quality barrier/shoreline sandstone bodies by dropping them below the depth of ravinement (5-30 m). The recognition of synsedimentary faulting and subsequent ravinement is critical to accurate sequence stratigraphic analysis and for prediction of reservoir compartments.

  19. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  20. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  1. The influence of sandstone caprock material on bedrock channel steepness within a tectonically passive setting: Buffalo National River Basin, Arkansas, USA

    NASA Astrophysics Data System (ADS)

    Thaler, E. A.; Covington, M. D.

    2016-09-01

    Bedrock channel profile analysis typically assumes that channels evolve toward a condition of topographic steady state where channel morphology is adjusted to rock erodibility, uplift rates, and stream power. Here we use the integral method of channel profile analysis to quantify channel steepness within a large set of tributary channels that incise through layered rocks in the Buffalo National River Basin in northern Arkansas. Statistical analysis of these channels demonstrates that normalized channel steepness is not a function of local bedrock lithology but is influenced by coarse sediment supply. Specifically, normalized steepness is greatest in reaches of the basin where an interval of Pennsylvanian sandstone forms a caprock on the ridges. Block detachment of the sandstone causes large boulders to be stranded in the upper tributaries where stream power is too low to mobilize or effectively erode the boulders. Within these channels, normalized steepness is correlated with sandstone boulder size and percent boulder coverage rather than local lithology, despite strong contrasts in the mechanical strength of the lithologies incised. This analysis suggests that removal of caprock material is rate limiting within the landscape and may be responsible for the long-term persistence of topography within this tectonically passive setting.

  2. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  3. Hot spot activity and tectonic settings near Amsterdam-St. Paul plateau (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Janin, M.; HéMond, C.; Guillou, H.; Maia, M.; Johnson, K. T. M.; Bollinger, C.; Liorzou, C.; Mudholkar, A.

    2011-05-01

    The Amsterdam-St. Paul (ASP) plateau is located in the central part of the Indian Ocean and results from the interaction between the ASP hot spot and the Southeast Indian Ridge (SEIR). It is located near the diffuse boundary between the Capricorn and Australian plates. The seamount chain of the Dead Poets (CDP) is northeast of the ASP plateau and may represent older volcanism related to the ASP hot spot; this chain consists of two groups of seamounts: (1) large flat-topped seamounts formed 8-10 Ma and (2) smaller conical seamounts formed during the last 2 Myr. The ASP hot spot has produced two pulses of magmatism that have been ponded under the ASP plateau and erupted along the divergent boundary between the Capricorn and Australian plates. The N65° orientation of the CDP as well as the seamount's elongated shapes support an opening motion between the Capricorn and Australian plates along a suture oriented in the N155° direction. This motion compared to the Antarctic plate amounts to an apparent velocity of 7.7 cm/yr northeastward for the Capricorn-Australian block. This motion does not fit with a fixed plume model. We suggest, therefore, that the ASP plume experienced a motion of about 1-2 cm/yr to the SW, which is opposite to the asthenospheric flow in this region and suggests a deep-seated plume.

  4. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  5. Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Nagarajan, Ramasamy; Balaram, Vysetti; Natalhy-Pineda, Olmedo

    2015-12-01

    Compositional and geochemical analyses of sands collected from the Chachalacas (CHA) and Veracruz (VER) beach areas along the western Gulf of Mexico were studied to determine the provenance and tectonic setting of the source region. The modal composition showed that the proportion of quartz (Q) is lower in CHA than in VER sands. The average quartz-feldspar-lithic fragment (QFL) ratios for the CHA and VER sands are Q75F8L17 and Q86F4L10, respectively. The X-ray diffractometer (XRD) and Scanning Electron Microscope equipped with EDAX spectrometer (SEM-EDS) data revealed that the CHA sands were abundant in heavy minerals like magnetite, ilmenite, and zircon. The rare earth element concentration (REE) is higher in CHA than in VER sands, which is due to the concentration of heavy minerals in CHA sands. The weathering indices such as chemical index of alteration (CIA), plagioclase index of alteration, and A-CN-K (A = Al2O3, CN = CaO∗ + Na2O, K = K2O) plot suggested that the intensity of weathering in the source area was low to moderate. The index of chemical variability (ICV) for the CHA (˜1.9-3.0) and VER (˜0.82-1.33) sands indicated that the compositional maturity was higher for the VER sands. The concentrations of Co, Cr, Ni, and V are lower in VER sands than in CHA sands, indicating that the CHA sands were derived from the intermediate source rocks. Provenance modelling revealed that the CHA sands were associated with the mixture of basalt, andesite, dacite, and trachyandesite in the ratio of 5:20:25:50. The VER sands were best matched with a mixture having 75-90% dacite and 25-10% andesite compositions. The provenance difference between the two beach areas suggested that longshore current play a less significant role in mixing and homogenization of sands. The multidimensional tectonic discrimination diagrams revealed rift and collision settings for the VER and CHA beach areas, respectively, which is consistent with the general geology of the study areas.

  6. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  7. Structural styles and regional tectonic setting of the ``Gela Nappe'' and frontal part of the Maghrebian thrust belt in Sicily

    NASA Astrophysics Data System (ADS)

    Lickorish, W. Henry; Grasso, Mario; Butler, Robert W. H.; Argnani, Andrea; Maniscalco, Rosanna

    1999-08-01

    The Gela Nappe of south central Sicily provides an example of a curved segment of an orogenic front that can be examined both onshore and offshore for deformational style and amount of shortening. Synorogenic sediments allow the deformation to be dated. Two distinct structural styles are observed in the Gela Nappe: The central salient part of the nappe (Caltanissetta basin) consists of a single thrust sheet containing a train of continuously tightening folds and the reentrant margins of the nappe (Sciacca and Monte Judica) consist of a stack of several thrust sheets. These different structural styles correspond to the pretectonic Mesozoic stratigraphy of the foreland plate. Carbonate platforms exist on the Adventure bank and Hyblean Plateau ahead of Sciacca and Monte Judica, respectively, while the Caltanissetta basin region appears to have accumulated basinal clay facies. Where the resistant carbonate stratigraphy provides a buttress to the propagation of the thrust front, deformation is taken up by imbrication on-steep ramps through the carbonates generating a relatively thick orogenic wedge. In the basinal setting, where no strong rheology exists, the low angle of friction on the clay detachment levels requires the growing thrust wedge to be much thinner with a very low foreland dip. Hence the thrust front propagates much farther forward into the basin than it does in the adjacent platformal areas, producing a nonlinear thrust front. In the basinal region, accretion of foreland material to the nappe by imbrication was only prominent during the Messinian when subaerial exposure prevented low-friction transport of the nappe across the highest levels of the stratigraphy. A steady thickening of the nappe by internal folding suggests an increase in friction along the basal detachment, possibly due to progressive compaction of the clays.

  8. Geochemistry, petrogenesis and tectonic setting of late Neoproterozoic Dokhan-type volcanic rocks in the Fatira area, eastern Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, F. H.; Moghazi, A. M.; Hassanen, M. A.

    The Neoproterozoic Dokhan volcanics of the Fatira area in eastern Egypt comprise two main rock suites: (a) an intermediate volcanic suite, consisting of basaltic andesite, andesite, dacite, and their associated pyroclastic rocks; and (b) a felsic volcanic suite composed of rhyolite and rhyolitic tuffs. The two suites display well-defined major and trace element trends and a continuum in composition with wide ranges in SiO2 (54-76%), CaO (8.19-0.14%), MgO (6.96-0.04%), Sr (983-7ppm), Zr (328-95ppm), Cr (297-1ppm), and Ni (72-1ppm). They are enriched in LILEs (Rb, Ba, K, Th, Ce) relative to high field strength elements (Nb, Zr, P, Ti) and show strong affinity to calc-alkaline subduction-related rocks. However, their undeformed character, their emplacement temporally and spatially with post-orogenic A-type granite, and their high Zr/Y values suggest that their emplacement follow the cessation of subduction in eastern Egypt in an extensional-related within-plate setting. Major and trace element variations in the intermediate volcanics are consistent with their formation via partial melting of an enriched subcontinental lithospheric mantle source followed by a limited low-pressure fractional crystallization of olivine and pyroxene before emplacement. The LILE enrichment relative to HFSE is attributed to the inheritance of a subduction component from mantle material which constituted the mantle wedge during previous subduction events in eastern Egypt. The evolution of the whole volcanic spectrum was governed mainly by crystal/melt fractionation of amphibole, plagioclase, titanomagnetite, and apatite in the intermediate varieties and plagioclase, amphibole, biotite, Fe-Ti oxides, apatite, and zircon in the felsic varieties. At each stage of evolution, crystal fractionation was accompanied by variable degrees of crustal contamination.

  9. Some evidence for the base-metal potential of the Pretoria Group: stratigraphic targets, tectonic setting and REE patterns

    NASA Astrophysics Data System (ADS)

    Reczko, B. F. F.; Eriksson, P. G.; Snyman, C. P.

    1995-04-01

    The Timeball Hill and Silverton Formations of the 2.1 2.3 Ga Pretoria Group have regional lithological associations which are thought to have been favourable for the genesis of stratiform sulphide deposits. The observed association of carboniferous and pyritic black shales, tuffaceous material, stromatolitic carbonates and inferred turbidity current deposits is common in stratiform sulphide deposits of the sedimentary exhalative group. Massive sulphides in the Silverton Formation are compatible with a syngenetic brine discharge, probably related to deep fracture systems. The basal shales of the Timeball Hill Formation are significantly enriched in base-metals and Ba. Interlayered tuff beds at this stratigraphic level have PGE-contents of up to 1 g/t. The REE-geochemistry of Pretoria Group sedimentary rocks supports hydrothermal activity as an important factor in both stratigraphic units.

  10. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.; Lanphere, Marvin A.; Champion, Duane E.; Ramsey, David W.

    2008-10-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ˜ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ˜ 2000 km 2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ˜ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ˜ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ˜ 200 to ˜ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ˜ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ˜ 600 km 3, giving an overall effusion rate of ˜ 1.2 km 3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted

  11. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline

  12. Tectonic investigation of Central Anatolia, Turkey, using geophysical data

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila

    2009-07-01

    Central Anatolia in Turkey includes a number of internal basins and quite complex geology, but only three major faults can be observed on the surface. There are limited amount of investigations on the tectonic development, structure and history of this area. In this study, tectonic model of the Central Anatolia was investigated using geophysical data and it was compared with recently suggested tectonic models. Existence of two strike-slip faults that have orientations similar to the North Anatolian and East Anatolian Faults in the triple-junction area around the Bingol-Karliova region (eastern Turkey), led some geoscientists to consider the probability of another tectonic escape model in Central Anatolia. Strike-slip characteristics and slip directions of the Sereflikochisar-Aksaray and Ecemis Faults, and the geographical proximity of them are main reasons to consider this model. In this study, the tectonic escape model was investigated and criticized in detail using regional aeromagnetic, gravity, seismic and seismological data. Tectonic developments, faults and their relevance in tectonic setting of the Tuzgolu Basin, together with the comparison of the tectonic escape, and most recent wrench tectonic issues are comprehensively discussed. According to results of this study, existence of tectonic escape between the Sereflikochisar-Aksaray and Ecemis Faults, and geological reasons behind the model are found contradictory requiring geological and geophysical proofs. Moreover, strike direction of the Sereflikochisar-Aksaray Fault is also controversial. Instead of this, a recent model, the regional wrench tectonics appears more reasonable for Central Anatolia that was also supported by the GPS measurements, previous paleomagnetic studies and some recent papers. Geophysical investigation results pointed out that the counter-clockwise rotational movement of the Kirsehir Block to the east of Tuzgolu Basin has been driven by the Kirikkale-Erbaa and Sereflikochisar

  13. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    the lithosphere. In contrast, the 40-m.y.-younger ore-bearing porphyritic granodiorite is sub-alkaline and peraluminous. They are enriched in LREEs and LILEs, depleted in HFSEs, and show weak negative Eu anomalies. They displayεHf(t) values of captured or inherited zircons in the range of +8.5 to +10.0, and younger two-stage Hf model ages of 0.78 Ga and 0.86 Ga, similar to those of ca. 485 Ma tonalite. The ca. 445 Ma zircons have εHf(t) values of −2.1 to +9.9, with two-stage Hf model ages of 0.75–1.27 Ga. Moreover, they have relatively high oxygen fugacity than that of the precursor barren tonalite. The ca. 445 Ma magmas at Wangdian thus formed in a subduction setting, and incorporated melts from the subduction-modified lithosphere that had previously been enriched by additions of chalcophile and siderophile element-rich materials by the earlier magmatism and metasomatism during the Paleo Qilian-Qinling Ocean subduction event.

  14. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    40-m.y.-younger ore-bearing porphyritic granodiorite is sub-alkaline and peraluminous. They are enriched in LREEs and LILEs, depleted in HFSEs, and show weak negative Eu anomalies. They display εHf(t) values of captured or inherited zircons in the range of +8.5 to +10.0, and younger two-stage Hf model ages of 0.78 Ga and 0.86 Ga, similar to those of ca. 485 Ma tonalite. The ca. 445 Ma zircons have εHf(t) values of -2.1 to +9.9, with two-stage Hf model ages of 0.75-1.27 Ga. Moreover, they have relatively high oxygen fugacity than that of the precursor barren tonalite. The ca. 445 Ma magmas at Wangdian thus formed in a subduction setting, and incorporated melts from the subduction-modified lithosphere that had previously been enriched by additions of chalcophile and siderophile element-rich materials by the earlier magmatism and metasomatism during the Paleo Qilian-Qinling Ocean subduction event.

  15. Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.; Ashwal, L. D.; Shirey, S. B.; Horan, M.; Mock, T.; Andersen, T. B.

    2014-03-01

    from which the anorthosites are derived. Modeling of these anorthositic magmas with MELTS indicates that their ultramafic cumulates would have sunk in the magma and been sequestered at the Moho, where they may have sunk deeper into the mantle resulting in large-scale compositional differentiation. The HAOMs thus represent a rare example of part of a cumulate assemblage that was carried to the upper crust during anorthosite emplacement and, together with the anorthosites, illustrate the dramatic influence that magma ponding and differentiation at the Moho has on residual magmas traveling towards the surface. The new geochronologic and isotopic data indicate that the magmas were derived by melting of the mantle, forming magmatic systems that could have been long-lived (e.g. 80-100 m.y.). A geologic setting that would fit these temporal constraints is a long-lived Andean-type margin.

  16. Thermal basin modelling of the Arauco forearc basin, south central Chile — Heat flow and active margin tectonics

    NASA Astrophysics Data System (ADS)

    Kuhn, Philipp P.; Echtler, Helmut; Littke, Ralf; Alfaro, Guillermo

    2010-11-01

    The Arauco basin is part of the coastal forearc domain in South-Central Chile. During its evolution since the Late Cretaceous it was subject to multiple deposition cycles and the erosion of lower bathyal to beach and lagoon sediments. These different environments were established in alternating accretional and erosive subduction tectonic settings along the South Andean active margin. Whereas the general development is well understood, inconsistencies arise regarding the origin of the high thermal maturity of Eocene coals and the estimates of vertical movements of the whole area during the Cenozoic. Thermal modelling of this forearc basin provides new insights regarding its thermal evolution and evaluation of the magnitudes of subsidence and inversion. Results are based on the analysis of coal samples from surface outcrops, mines and drill cores of ten onshore wells from ENAP/Sipetrol. Newly derived vitrinite reflectance (VR r) measurements indicated a temperature in the range of 135-150 °C for the oldest sediment unit of the Arauco basin, which was reached in post Eocene times. Furthermore, 1D basin modelling techniques indicate scenarios that could explain the coalification values in the basin's sediments. The models were calibrated against VR r data from drill core samples supplied by ENAP/Sipetrol. A Miocene and an Oligocene subsidence/inversion scenario were considered, while neither could be securely discarded based on the modelling results. Furthermore, it can be shown that the current thermal maturity was not reached by an increased heat flow (HF) or a deep subsidence only. Consequently, a structural inversion accompanied by the erosion of ~ 3.0 ± 0.4 km depending on the locality in combination with a high HF of ~ 64 ± 4 mW/m 2 is the best explanation of the available data. The HF, which is high for a forearc setting, can be attributed to the increased temperature of the relatively young subducted Nazca Plate and an additional influence of ascending hot

  17. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  18. Tectonics, magmatism and fluid flow in a transtensional strike-slip setting: The northern termination of the Liquiñe-Ofqui fault System, Chile

    NASA Astrophysics Data System (ADS)

    Cembrano, J. M.; Perez-Flores, P.; Sánchez, P.; Sielfeld, G.

    2013-12-01

    vein systems, which appear to be associated with dextral strike-slip displacement on the LOFS. Fault-vein and vein structure varies from mineral fibers to typical ridge-and-groove striae. Bladed calcite occurs in dilational jogs along the main LOFS master faults; they are interpreted to represent boiling episodes. Thicker and more pervasive WNW sinistral-reverse fault-vein systems and breccias bodies suggest that the fault-valve mechanism was active during fluid transport and mineral precipitation. In some sites the WNW-striking system cuts and displaces the active LOFS, suggesting that their active has extended to at least the Pleistocene. Internally consistent structural and kinematic data from fault-fracture systems spatially and temporally associated with volcanoes and hydrothermal systems suggest that the same processes that drive the interplay between volcanism and tectonics may also control the nature, geometry and composition of geothermal reservoirs in the southern Andes.

  19. A comprehensive view of Late Quaternary fluvial sediments and stratal architecture in a tectonically active basin: Influence of eustasy, climate, and tectonics on the Bengal Basin and Brahmaputra River system

    NASA Astrophysics Data System (ADS)

    Sincavage, R.; Goodbred, S. L.; Williams, L. A.; Pickering, J.; Wilson, C.; Steckler, M. S.; Seeber, L.; Reitz, M. D.; Hossain, S.; Akhter, S. H.; Mondal, D. R.; Paola, C.

    2013-12-01

    More than 130 closely-spaced (~3-5 km) boreholes have been drilled along five transects in the upper Bengal Basin, providing the first detailed record of the stratigraphic architecture and provenance of the entire Late Quaternary fluviodeltaic sedimentary succession of the Ganges-Brahmaputra-Meghna Delta (GBMD). This effort is part of BanglaPIRE, an interdisciplinary, multi-institutional research effort aimed at unraveling the history and mechanisms of river-tectonic-basin interactions in the GBMD and Bengal basin, around which three tectonic plates converge. Following the Younger-Dryas, the onset of a strong summer monsoon coincident with continued eustatic sea-level rise initiated construction of the modern delta and rapid development of a thick (up to 80 m) succession of fluvial and deltaic sediments. These deposits illustrate several (3-4) avulsions and asymmetric occupations of the Brahmaputra River in the tectonically active Sylhet Basin. We hypothesize that the longer occupation periods (10 3 years) may be classified as major river avulsions driven by autogenic fluvial processes, whereas shorter occupation periods (10 2 years) reflect minor distributive events that may have been initiated by allogenic forcing via floods or earthquakes. Subsidence rates in Sylhet Basin, driven by an active foredeep, are relatively high (~5 mm/yr); however, the Brahmaputra River does not regularly migrate towards this side of the delta. Annual widespread flooding of Sylhet Basin may negate the potential topographic attraction for the system to be steered in this direction. Furthermore, a gentle westward topographic tilt of the active thrust front of the Tripura fold belt appears to have forced lateral steering of the Brahmaputra River and initiated erosion of a bench-cut terrace into an adjacent Pleistocene landform. Tectonic effects over longer timescales (10 3 years) are revealed by the presence of sediment with a unique provenance at the core of regional anticlines, which

  20. Gravity sliding in basinal setting, a surficial record of tectonic and geodynamic evolution; examples from the southern W. Alps and their foreland

    NASA Astrophysics Data System (ADS)

    Dumont, T.; Franzi, V.; Matthews, S. J.

    2012-04-01

    -Miocene dynamics and which are overprinted or crosscut by the modern orogen (Dumont et al., 2011). Theses examples show that, in different structural and geodynamic settings, detailed analysis of basin floor morphology, (re)sediments transport directions, syndepositional deformations and provenance of exotic blocks can provide useful information about the regional kinematics, which can be integrated with other datasets, i.e. tectonic, metamorphic, thermochronologic, etc. Dumont T., Schwartz S., Guillot S., Simon-Labric T., Tricart P. & Jourdan S. (2011), Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. Jour. Geodyn., in press. Ferry S. & Flandrin J. (1979), Mégabrèches de resédimentation, lacunes mécaniques et pseudo-« hard-grounds » sur la marge vocontienne au Barrémien et à l'Aptien inférieur (SE France). Géologie Alpine, 55, p. 75-92. Michard A., Dumont T., Andreani L. & Loget N. (2010), Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. Bull. Soc. Géol. Fr., 181, p. 565-581.

  1. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Wang, Yuejun; Zhang, Feifei; Fan, Weiming; Zhang, Guowei; Chen, Shiyue; Cawood, Peter A.; Zhang, Aimei

    2010-12-01

    Zircon U-Pb geochronological data on over 900 zircon grains for Cambrian to Silurian sandstone samples from the South China Block constrain the pre-Devonian tectonic setting of, and the interrelationships between, the constituent Cathaysia and Yangtze blocks. Zircons range in age from 3335 to 465 Ma. Analyses from the Cathaysia sandstone samples yield major age clusters at ˜2560, ˜1850, ˜1000, and 890-760 Ma. Zircons from the eastern and central Yangtze sandstone samples show a similar age distribution with clusters at ˜2550, ˜1860, ˜1100, and ˜860-780 Ma. A minor peak at around 1450 Ma is also observed in the Cathaysia and central Yangtze age spectra, and a peak at ˜490 Ma represents magmatic zircons from Middle Ordovician sandstone in the eastern Yangtze and Cathaysia blocks. The Cambrian and Ordovician strata show a transition from a carbonate-dominated succession in the central Yangtze Block, to an interstratified carbonate-siliciclastic succession in the eastern Yangtze Block, to a neritic siliciclastic succession in the Cathaysia Block. Paleocurrent data across this succession consistently indicate directions toward the W-NNW, from the Cathaysia Block to the Yangtze Block. Our data, together with other geological constraints, suggest that the Cathaysia Block constitutes a fragment on the northern margin of east Gondwana and both Cathaysia and east Gondwana constituted the source for the analyzed early Paleozoic samples. The similar age spectra for the Cambrian to Silurian sandstone samples from the Yangtze and Cathaysia blocks argue against the independent development and spatial separation of these blocks in the early Paleozoic but rather suggest that the sandstone units accumulated in an intracontinental basin that spanned both blocks. Subsequent basin inversion and Kwangsian orogenesis possibly at 400-430 Ma also occurred in an intracontinental setting probably in response to the interaction of the South China Block with the Australian

  2. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting...

  3. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting...

  4. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site...

  5. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site...

  6. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site...

  7. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site...

  8. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site...

  9. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting...

  10. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting...

  11. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting...

  12. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  13. Response of Cenozoic turbidite system to tectonic activity and sea-level change off the Zambezi Delta

    NASA Astrophysics Data System (ADS)

    Castelino, Jude A.; Reichert, Christian; Jokat, Wilfried

    2017-03-01

    Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.

  14. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  15. The nature of magmatism at Palinpinon geothermal field, Negros Island, Philippines: implications for geothermal activity and regional tectonics

    NASA Astrophysics Data System (ADS)

    Rae, Andrew J.; Cooke, David R.; Phillips, David; Zaide-Delfin, Maribel

    2004-01-01

    The Palinpinon geothermal field, Negros Island, Philippines is a high-temperature, liquid-dominated geothermal system in an active island-arc volcanic setting. This paper presents a regional context for the Palinpinon geology, discusses the petrogenetic evolution of magmatism in the district and assesses the genetic relationships between intrusion and geothermal circulation. The oldest rock formation, the Lower Puhagan Volcanic Formation (Middle Miocene), is part of a volcanic sequence that is traceable throughout the Visayas region and is related to subduction of the Sulu Sea oceanic basin in a southeasterly direction beneath the Sulu arc. Late Miocene to Early Pliocene times mark a period of regional subsidence and marine sedimentation. A thick sequence of calcareous sediments (Okoy Formation) was deposited during this period. Magmatism in Early Pliocene to Recent times coincided with commencement of subduction at the Negros-Sulu Arc. This produced basaltic andesites and andesites belonging to the Southern Negros and Cuernos Volcanic Formations. During this time the Puhagan dikes and the Nasuji Pluton intruded Middle Miocene, Late Miocene and Early-Late Pliocene formations. Based on radiogenic ( 40Ar/ 39Ar) dating of hornblende, the Puhagan dikes are 4.1-4.2 Ma and the Nasuji Pluton 0.3-0.7 Ma. This age difference confirms these intrusions are not genetically related. The Early Pliocene age of the Puhagan dikes also confirms they are not the heat source for the current geothermal system and that a much younger intrusion is situated beyond drill depths. Igneous rock formations in southern Negros are the products of regional island-arc magmatism with medium K, calc-alkaline, basaltic to dacitic compositions. Their adakitic affinity implies that the melting of subducted oceanic basalt has influenced magmatism in this region. Considering the regional tectonic history the most likely scenarios for the generation of slab melts are: (1) during the Middle Miocene, by the

  16. Tectonic history and setting of a seismogenic intraplate fault system that lacks microseismicity: The Saline River fault system, southern United States

    NASA Astrophysics Data System (ADS)

    Cox, Randel Tom; Hall, J. Luke; Gardner, Chris S.

    2013-11-01

    Although the northwest-striking Saline River fault system of southeastern Arkansas is not defined by microseismicity, it is associated with sand blows and shows evidence of Pleistocene and Holocene surface ruptures, suggesting a significant seismogenic potential. This fault system is within the northern Gulf of Mexico interior coastal plain, a region only recently recognized as containing seismogenic faults. To better characterize this active fault system, we reconstructed its post-Paleozoic history using petroleum and coal industry wire-line well log and seismic reflection subsurface data. The Saline river fault system initiated as a series of northwest-striking grabens during Triassic/Jurassic uplift and incipient Gulf of Mexico rifting along the basement Alabama-Oklahoma transform margin of the North American Proterozoic craton. During post-rift subsidence, these grabens were buried by Gulf sediments until mid-Cretaceous uplift and igneous activity resulted in minor extensional reactivation of graben faults. Faulting style changed from extension to transpression during the Late Cretaceous due to compression of eastern North America as the North Atlantic rapidly widened and due to thermal weakening of the Alabama-Oklahoma transform lithospheric discontinuity as it obliquely crossed a mantle hot spot. In the Late Cretaceous, graben faults experienced contractional reactivation and steep, deeply-rooted transpressional faults developed within and parallel to the graben system. These transpressional faults locally displace Eocene, Pleistocene, and Holocene sediments. Fault activity continues on the Saline River fault system due to thin crust along the Alabama-Oklahoma transform and to high heat flow, which act together to weaken the crust and promote seismogenic tectonism. The fault system may lack appreciable microseismicity because the aftershock sequence of the last large earthquake has had time to dissipate.

  17. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  18. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-05-17

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  19. Precise Landslide Displacement Time Series from Continuous GPS Observations in Tectonically Active and Cold Regions: A Case Study in Alaska

    NASA Astrophysics Data System (ADS)

    Cuddus, Y.; Wang, G.

    2014-12-01

    Over the past 15 years, Global Positioning System (GPS) has been frequently used as a scientific tool to detect potential earth mass movements and to track creeping landslides. In this study, we investigated four-years of continuous GPS data (September 2006-July 2010) recorded at a landslide site in Alaska. This GPS station (AC55) was installed on an un-identified creeping site by the Plate Boundary Observatory (PBO) project, which was funded by the U.S. National Science Foundation. The landslide moves with a steady horizontal velocity of 5.5 cm/year toward NEE, and had a subsidence rate of 2.6 cm/year. There was a considerable correlation between annual snow loading and melting cycles and seasonal variations of the landslide displacements. The seasonal movements vary year to year with an average peak-to-peak amplitude of 1.5 cm and 1.0 cm in horizontal and vertical directions, respectively. This study addresses three challenging issues in applying GPS for landslide monitoring in tectonically active and cold regions. The three challenges include (1) detecting GPS-derived positions that could be contaminated by the snow and ice accumulated on GPS antennas during cold seasons, (2) establishing a precise local reference frame and assessing its accuracy, and (3) excluding local seasonal ground motions from GPS-derived landslide displacements. The methods introduced in this study will be useful for GPS landslide monitoring in other tectonically active and/or cold regions.

  20. Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2012-07-01

    The Noakoh anticline is located in Kermanshah province and is part of the Simply Folded Belt of Zagros. Boundaries of 97 triangular facets and 67 wine-glass (W-G) valleys, which formed on anticline limbs, were delineated using Quickbird satellite imagery. The strata dip (D), area (A), base length (BL), topographic slope (S) of facets, the maximum width (M), outlet width (O) and ratio of maximum width to outlet width (W index) of W-G valleys were analysed in detail. Noakoh anticline was subdivided into 9 tectonic zones on the basis of dip, topographic slopes and width of limbs. Results show that there are strong positive correlations between means of D-BL and S-BL pairs. Poor positive correlations exist between means of D-A and S-A pairs. Among W-G valley metrics, the W index has strong relations with D and S parameters. Based on the results, steep facets with long bases and well developed W-G valleys with narrow outlets and wide upper parts are associated with more rotated limbs having steep slopes. Facets on the northeastern slope have more forest cover, micro-organism activity, karstic features and soil cover, whereas facets on relatively drier southwestern slope are characterized by physical weathering processes and minor karstic landforms. This study demonstrates that, apart from tectonic activity as a major control on the morphometry of facets and valleys, climate and slope aspect have also acted as secondary factors on the development of the studied landforms.

  1. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  2. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  3. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  4. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  5. Tectonics of the Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    McKinnon, W. B.; Collins, G. C.; Moore, J. M.; Nimmo, F.; Pappalardo, R. T.; Prockter, L. M.; Schenk, P. M.

    2010-01-01

    Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Io's surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax. Most satellites exhibit evidence for extensional deformation, and some exhibit strike-slip faulting, whereas contractional tectonism appears to be rare. Io s surface is unique, exhibiting huge isolated mountains that may be blocks of crust tilting and foundering into the rapidly emptying interior as the surface is constantly buried by deposits from hyperactive volcanoes. Of the satellites, diminutive Enceladus is spectacularly active; its south polar terrain is a site of young tectonism, copious heat flow, and tall plumes venting into space. Europa's surface is

  6. Active Tectonics of Southern Alaska and the Role of the Yakutat Block Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2011-12-01

    GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region's tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, the margin is made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. We present GPS data from across the region and use it to constrain a tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. According to our model, the Yakutat block itself moves NNW at a rate of 50 mm/yr. Along its eastern edge, the Yakutat block is fragmenting into small crustal slivers. Part of the strain from the collision is transferred east of the Fairweather - Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. Further north, the GPS data and model results indicate that the current deformation front between the Yakutat block and southern Alaska runs along the western side of the Malaspina Glacier. The majority of the ~37 mm/yr of relative convergence is accommodated along a narrow band of thrust faults concentrated in the southeastern part of the St. Elias orogen. Near the Bering Glacier, the tectonic regime abruptly changes as crustal thrust faults give way to subduction of the Yakutat block beneath the western St. Elias orogen and Prince William Sound. This change aligns with the Gulf of Alaska shear zone, implying that the Pacific plate may be fragmenting in response to the Yakutat collision. From the Bering

  7. Active tectonics in Southern Alaska and the role of the Yakutat block constrained by GPS measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Julie

    2011-12-01

    GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region's tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, the margin is made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. This thesis presents GPS data from across the region and uses it to constrain a tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. The Yakutat block itself moves NNW at a rate of 50 mm/yr. Along its eastern edge, the Yakutat block is fragmenting into small crustal slivers. Part of the strain from the collision is transferred east of the Fairweather -- Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. Further north, the GPS data and model results indicate that the current deformation front between the Yakutat block and southern Alaska runs along the western side of the Malaspina Glacier. The majority of the ˜37 mm/yr of relative convergence is accommodated along a narrow band of thrust faults concentrated in the southeastern part of the St. Elias orogen. Near the Bering Glacier, the tectonic regime abruptly changes as crustal thrust faults give way to subduction of the Yakutat block beneath the western St. Elias orogen and Prince William Sound. This change aligns with the Gulf of Alaska shear zone, implying that the Pacific plate is fragmenting in response to the Yakutat collision. The Bering Glacier region is

  8. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  9. Anatomy of mass transport deposits in the Dead Sea: sedimentary processes in an active tectonic hypersaline basin

    NASA Astrophysics Data System (ADS)

    Waldmann, Nicolas; Hadzhiivanova, Elitsa; Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Frank, Ute; Dulski, Peter

    2014-05-01

    Continental archives such as interplate endorheic lacustrine sedimentary basins provide an excellent source of data for studying regional climate, seismicity and environmental changes through time. Such is the case for the sediments that were deposited in the Dead Sea basin, a tectonically active pull-apart structure along the Dead Sea fault (DSF). This elongated basin is characterized by steep slopes and a deep and flat basin-floor, which are constantly shaped by seismicity and climate. In this study, we present initial results on the sedimentology and internal structure of mass transport deposits in the Pleistocene Dead Sea. The database used for this study consists of a long core retrieved at ~300 m water depth in the deepest part of the Dead Sea as part of an international scientific effort under the auspice of the ICDP. Micro-facies analysis coupled by elemental scanning (µXRF), granulometry and petrophysical measurements (magnetic susceptibility) have been carried out on selected intervals in order to decipher and identify the source-to-sink processes and controlling mechanisms behind the formation of mass transport deposits. The findings of this study allowed defining and characterizing the mass transport deposits into separate sedimentary facies according to the lake level and limnological conditions. Investigating sediments from the deep Dead Sea basin allowed better understanding and deciphering the depositional processes in relation with the tectonic forces shaping this basin.

  10. Active tectonics evaluation from geomorphic indices for the central and the southern Longmenshan range on the Eastern Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Mingxing; Zeilinger, Gerold; Xu, Xiwei; Tan, Xibin; Wang, Qingliang; Hao, Ming

    2016-08-01

    We applied the geomorphic indices (hypsometry and stream length gradient) to evaluate the differential uplift of the central and southern Longmenshan, a mountain range characterized by rapid erosion, strong tectonic uplift, and devastating seismic hazards. The results of the geomorphic analysis indicate that the Beichuan-Yingxiu fault and the Shuangshi-Dachuan fault act as major tectonic boundaries separating areas experiencing rapid uplift from slow uplift. The results of the geomorphic analysis also suggest that the Beichuan-Yingxiu fault is the most active fault with the largest relative uplift rates compared to the rest of the faults in the Longmenshan fault system. We compared reflected relative uplift rates based on the hypsometry and stream length gradient indices with geological/geodetic absolute rates. Along-strike and across-strike variations in the hypsometry and stream length gradient correlate with the spatial patterns derived from the apatite fission track exhumation rates, the leveling-derived uplift rate, and coseismic vertical displacements during the 2008 Wenchuan earthquake. These data defined multiple fault relationships in a complex thrust zone and provided geomorphic evidence to evaluate the potential seismic hazards of the southern Longmenshan range.

  11. Early to late Yanshanian I-type granites in Fujian Province, SE China: Implications for the tectonic setting and Mo mineralization

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Long; Ni, Pei; Yan, Jun; Wu, Chang-Zhi; Dai, Bao-Zhang; Xu, Ying-Feng

    2017-04-01

    existing data, suggest that the tectonic setting of the early Yanshanian (∼143 Ma) highly fractionated I-type Dayang granite was a back-arc that formed in response to the westward subduction of the Paleo-Pacific Plate, and that the late Yanshanian (∼133 Ma) Juzhou granite formed in a continental arc setting in response to rollback of the Paleo-Pacific Plate toward the coastline. The Mo mineralization in the Makeng ore area was probably the result of the exsolution of Mo-bearing fluids from the Dayang granitic magmas due to extensive fractional crystallization.

  12. Tectonic setting of the pebble and other copper-gold-molybdenum porphyry deposits within the evolving middle cretaceous continental margin of Northwestern North America

    USGS Publications Warehouse

    Goldfarb, Richard J.; Anderson, Eric; Hart, Craig J.R.

    2013-01-01

    The Pebble Cu-Au-Mo deposit in southwestern Alaska, containing the largest gold resource of any known porphyry in the world, developed in a tectonic setting significantly different from that of the present-day. It is one of a series of metalliferous middle Cretaceous porphyritic granodiorite, quartz monzonite, and diorite bodies, evolved from lower crust and metasomatized lithospheric mantle melts, which formed along much of the length of the North American craton suture with the Peninsular-Alexander-Wrangellia arc. The porphyry deposits were emplaced within the northernmost two of a series of ca. 130 to 80 Ma flysch basins that define the suture, as well as into arc rocks immediately seaward of the two basins. Deposits include the ca. 100 to 90 Ma Pebble, Neacola, and other porphyry prospects along the Kahiltna basin-Peninsula terrane boundary, and the ca. 115 to 105 Ma Baultoff, Carl Creek, Horsfeld, Orange Hill, Bond Creek, and Chisna porphyries along the Nutzotin basin-Wrangellia terrane boundary.The porphyry deposits probably formed along the craton margin more than 1,000 km to the south of their present latitude. Palinspastic reconstructions of plate kinematics from this period are particularly difficult because magmatism overlaps the 119 to 83 Ma Cretaceous Normal Superchron, a period when sea-floor magnetic data are lacking. Our favored scenario is that ore formation broadly overlaps the cessation of sedimentation and contraction and the transition to a transpressional continental margin regime, such that the remnant ocean basins were converted to strike-slip basins. The basins and outboard Peninsular-Alexander-Wrangellia composite superterrane, which are all located seaward of the deep crustal Denali-Farewell fault system, were subjected to northerly dextral transpression for as long as perhaps 50 m.y., beginning at ca. 95 ± 10 Ma. The onset of this transpression was marked by development of the mineralized bodies along fault segments on the seaward side

  13. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil: Implications for tectonic setting and crustal evolution

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Luzardo, Renê; Moura, Candido A. V.; Lobato, Denise C.; Brito, Reinaldo S. C.; Armstrong, Richard

    2009-02-01

    New field work, in addition to zircon geochronology, Nd isotopes and reconnaissance geochemical data allow the recognition of Paleoproterozoic volcanic and metavolcanic sequences in the São Luís Craton of northern Brazil. These sequences record at least five volcanic pulses occurring probably in three distinct epochs and in different tectonic settings. (1) The Pirocaua Formation of the Aurizona Group comprises early arc-related calc-alkaline metapyroclastic rocks of 2240 ± 5 Ma formed from juvenile protoliths in addition to minor older crustal components. (2) The Matará Formation of the Aurizona Group holds mafic tholeiitic and ultramafic metavolcanic rocks of back arc and/or island arc setting, which are likely coeval to the Pirocaua Formation. (3) The Serra do Jacaré volcanic unit is composed of tholeiitic basalts and predominantly metaluminous, normal- to high- K calc-alkaline andesites of 2164 ± 3 Ma formed in mature arc or active continental margin from juvenile protoliths along with subordinate older (Paleoproterozoic) materials and associated to the main calc-alkaline orogenic stage. (4) The Rio Diamante Formation consists of late-orogenic metaluminous, medium- K, calc-alkaline rhyolite to dacite and tuffs of 2160 ± 8 Ma formed in continental margin setting from reworked Paleoproterozoic crust (island arc) with incipient Archean contribution. (5) The Rosilha volcanic unit is composed of weakly peraluminous, medium- K, calc-alkaline dacite and tuff formed probably at about 2068 Ma from reworked crustal protoliths. As a whole the volcanic and metavolcanic rocks record and characterized better the previously proposed orogenic evolution of the São Luís Craton.

  14. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean.

    PubMed

    Schüürmann, Gerrit; Ebert, Ralf-Uwe; Chen, Jingwen; Wang, Bin; Kühne, Ralph

    2008-11-01

    The external prediction capability of quantitative structure-activity relationship (QSAR) models is often quantified using the predictive squared correlation coefficient, q (2). This index relates the predictive residual sum of squares, PRESS, to the activity sum of squares, SS, without postprocessing of the model output, the latter of which is automatically done when calculating the conventional squared correlation coefficient, r (2). According to the current OECD guidelines, q (2) for external validation should be calculated with SS referring to the training set activity mean. Our present findings including a mathematical proof demonstrate that this approach yields a systematic overestimation of the prediction capability that is triggered by the difference between the training and test set activity means. Example calculations with three regression models and data sets taken from literature show further that for external test sets, q (2) based on the training set activity mean may become even larger than r (2). As a consequence, we suggest to always use the test set activity mean when quantifying the external prediction capability through q (2) and to revise the respective OECD guidance document accordingly. The discussion includes a comparison between r (2) and q (2) value ranges and the q (2) statistics for cross-validation.

  15. Innovative tidal notch detection using TLS and fuzzy logic: Implications for palaeo-shorelines from compressional (Crete) and extensional (Gulf of Corinth) tectonic settings

    NASA Astrophysics Data System (ADS)

    Schneiderwind, S.; Boulton, S. J.; Papanikolaou, I.; Reicherter, K.

    2017-04-01

    Tidal notches are a generally accepted sea-level marker and maintain particular interest for palaeoseismic studies since coastal seismic activity potentially displaces them from their genetic position. The result of subsequent seismic events is a notch sequence reflecting the cumulative coastal uplift. In order to evaluate preserved notch sequences, an innovative and interdisciplinary workflow is presented that accurately highlights evidence for palaeo-sea-level markers. The workflow uses data from terrestrial laser scanning and iteratively combines high-resolution curvature analysis, high performance edge detection, and feature extraction. Based on the assumptions that remnants, such as the roof of tidal notches, form convex patterns, edge detection is performed on principal curvature images. In addition, a standard algorithm is compared to edge detection results from a custom Fuzzy logic approach. The results pass through a Hough transform in order to extract continuous line features of an almost horizontal orientation. The workflow was initially developed on a single, distinct, and sheltered exposure in southern Crete and afterwards successfully tested on laser scans of different coastal cliffs from the Perachora Peninsula. This approach allows a detailed examination of otherwise inaccessible locations and the evaluation of lateral and 3D geometries, thus evidence for previously unrecognised sea-level markers can be identified even when poorly developed. High resolution laser scans of entire cliff exposures allow local variations to be quantified. Edge detection aims to reduce information on the surface curvature and Hough transform limits the results towards orientation and continuity. Thus, the presented objective methodology enhances the recognition of tidal notches and supports palaeoseismic studies by contributing spatial information and accurate measurements of horizontal movements, beyond that recognised during traditional surveys. This is especially

  16. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  17. Seismo-turbidite Sedimentology: Implications for Active Tectonic Margin Stratigraphy and Sediment Facies Patterns

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Goldfinger, C.; Gutierrez Pastor, J.; Polonia, A.; Van Daele, M. E.

    2014-12-01

    Earthquakes generate mass transport deposits (MTDs); megaturbidites (MTD overlain by coeval turbidite); multi-pulsed, stacked, and mud homogenite seismo-turbidites; tsunamites; and seiche deposits. The strongest (Mw 9) earthquake shaking signatures appear to create multi-pulsed individual turbidites, where the number and character of multiple coarse-grained pulses for correlative turbidites generally remain constant both upstream and downstream in different channel systems. Multiple turbidite pulses, that correlate with multiple ruptures shown in seismograms of historic earthquakes (e.g. Chile 1960, Sumatra 2004 and Japan 2011), support this hypothesis. The weaker (Mw = or < 8) (e.g. northern California San Andreas) earthquakes generate dominantly upstream simple fining-up (uni-pulsed) turbidites in single tributary canyons and channels; however, downstream stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Proven tsunamites, which result from tsunami waves sweeping onshore and shallow water debris into deeper water, are a fine-grained turbidite cap over other seismo-turbidites. In contrast, MTDs and seismo-turbidites result from slope failures. Multiple great earthquakes cause seismic strengthening of slope sediment, which results in minor MTDs in basin floor turbidite system deposits (e.g. maximum run-out distances of MTDs across basin floors along active margins are up to an order of magnitude less than on passive margins). In contrast, the MTDs and turbidites are equally intermixed in turbidite systems of passive margins (e.g. Gulf of Mexico). In confined basin settings, earthquake triggering results in a common facies pattern of coeval megaturbidites in proximal settings, thick stacked turbidites downstream, and ponded muddy homogenite turbidites in basin or sub-basin centers, sometimes with a cap of seiche deposits showing bi-directional flow patterns.

  18. Facies and environmental setting of the Miocene coral reefs in the late-orogenic fill of the Antalya Basin, western Taurides, Turkey: implications for tectonic control and sea-level changes

    NASA Astrophysics Data System (ADS)

    Karabıyıkoğlu, M.; Tuzcu, S.; Çiner, A.; Deynoux, M.; Örçen, S.; Hakyemez, A.

    2005-01-01

    Facies and environmental setting of the Miocene coral reefs in the Late Cenozoic Antalya Basin are studied to contribute towards a better understanding of the time and space relationships of the reef development and the associated basin fill evolution in a tectonically active basin. The Antalya Basin is an extention-compression-related late post-orogenic basin that developed unconformably on a basement comprising a Mesozoic para-authocthonous carbonate platform overthrust by the Antalya Nappes and Alanya Massif metamorphics within the Isparta angle. The Late Cenozoic basin fill consists of thick Miocene to Recent clastic-dominated terrestrial and marine deposits with subordinate marine carbonates and extensive travertines. Late Miocene compressional deformation has resulted into three parts, referred as Aksu, Köprüçay and Manavgat sub-basins, bounded by north-south extending dextral Kırkkavak fault and the westward-verging Aksu thrust. Coralgal reefs are common within the Miocene sequences and are represented by coral assemblages closely similar to that of the circum-Mediterranean fauna. They occur as massive, small, isolated, patch reefs that developed in two contrasting depositional systems (progradational coastal alluvial fan and/or fan-delta conglomerates and transgressive shelf carbonates) during Early-Middle Miocene and Late Miocene. The Early-Middle Miocene reefs are represented by rich and high-diversity hermatypic corals, mainly comprising Tarbellastraea, Heliastraea, Favites, Favia, Acanthastraea, Porites, Caulastraea and Stylophora with occasional presence of solitary (ahermatypic) corals, Lithophyllia, Mussismilia and Leptomusso, locally reflecting relative changes in the bathymetry. Densely packed, massive, domal and hemispherical growth forms bounded by coralline algae and encrusting foraminifera Acervulina construct the reef framework. They occur in the fan-deltas and the transgressive open marine shelf carbonates of the Manavgat and the K

  19. Tectonic Setting of the Gravity Fault and Implications for Ground-Water Resources in the Death Valley Region, Nevada and California

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sweetkind, D. S.; Faunt, C. C.; Jansen, J. R.; McPhee, D. K.; Morin, R. L.

    2007-12-01

    The Amargosa trough, extending south from Crater Flat basin to the California-Nevada state line, is believed to be a transtensional basin accommodated in part by strike-slip displacement on the northwest-striking State Line fault and normal displacement on the north-striking Gravity fault. The Gravity fault, lying along the eastern margin of the Amargosa trough, was first recognized in the 1970s on the basis of correlations between gravity anomalies and a prominent spring line in Amargosa Valley. The Gravity fault causes an inflection in water-table levels, similar to other (but not all) normal faults in the area. Pools along the spring line, some of which lie within Death Valley National Park and Ash Meadows Wildlife Refuge, include endemic species potentially threatened by increasing agricultural activities in Amargosa Valley immediately to the west, where water tables are declining. Most of the springs and pools lie east of the Gravity fault, however, and it is important to understand the role that the Gravity fault plays in controlling ground-water flow. We have conducted a variety of geophysical investigations at various scales to better understand the tectonic framework of the Amargosa Desert and support new ground-water-flow models. Much of our focus has been on the tectonic interplay of the State Line, Gravity, and other faults in the area using gravity, ground-magnetic, audiomagnetotelluric (AMT), and time-domain electromagnetic (TEM) surveys. With 1250 new gravity measurements from Ash Meadows and Stewart Valley, we have developed a revised three-dimensional crustal model of the Amargosa trough constrained by well information and geologic mapping. The model predicts approximately 2 km of vertical offset on the Gravity fault but also suggests a complex structural framework. The fault is conventionally seen as a simple, down-to-the-west normal fault juxtaposing permeable pre-Tertiary carbonate rocks to the east against less permeable Tertiary sediments to

  20. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential

  1. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhou, Mei-Fu

    2014-01-01

    The Paleoproterozoic to Mesoproterozoic (1742-1503 Ma) Dongchuan Group in the southwestern Yangtze Block is a rift-related sedimentary sequence that was associated with the breakup of the supercontinent Columbia and is particularly important for the possible linkage between the Yangtze Block and other continents in Columbia. The Dongchuan Group consists of the Yinmin, Luoxue, Etouchang and Luzhijiang formations from the base upward. Sandstones from the Yinmin Formation are mainly arkose containing dominant K-feldspar with subordinate plagioclase and quartz. Abundant feldspar and high Qm/Q ratios (0.94-1) are indicative of plutonic sources. These sandstones have high La/Sc (3.06 to 4.32), low Sc/Th (0.74 to 1.15) and Co/Th (0.85 to 1.52) and highly evolved Nd isotopes (εNd(t) = - 6.2 to - 8.2), consistent with an old, felsic igneous source. Detrital zircons of this formation have two major age groups at 2602-2887 Ma and 2224-2392 Ma. Siltstones of the Etouchang Formation have detrital zircons with a prominent age peak at ~ 2560 Ma and several subordinate peaks at ~ 2180 Ma, ~ 2100 Ma and ~ 1900 Ma. They have high Sc/Th (1.00-7.08), Co/Th (0.13 to 6.31) and εNd(t) (- 2.1 to - 6.7), significantly different from the Yinmin Formation. The Yinmin Formation is interpreted to deposit during the initial stage of extensional rifting receiving detritus of granites and TTG mainly from uplifted shoulder. The Etouchang Formation more likely formed in a passive margin with sedimentary material largely from cratonic sources. Paleoproterozoic to Mesoproterozoic rift basins in the southwestern Yangtze Block, north Australia and northwestern Laurentia have remarkably similar provenance and tectonic setting in their lower part (1742-1596 Ma), but significantly different since the onset of the Etouchang Formation (ca. 1596 Ma). Therefore, the southwestern Yangtze Block was likely connected with the north Australia and northwestern Laurentia in Columbia and drifted away from these

  2. The odyssey of the Cache Creek terrane, Canadian Cordillera: Implications for accretionary orogens, tectonic setting of Panthalassa, the Pacific superwell, and break-up of Pangea

    NASA Astrophysics Data System (ADS)

    Johnston, S. T.; Borel, G. D.

    2007-01-01

    The Cache Creek terrane (CCT) of the Canadian Cordillera consists of accreted seamounts that originated adjacent to the Tethys Ocean in the Permian. We utilize Potential Translation Path plots to place quantitative constraints on the location of the CCT seamounts through time, including limiting the regions within which accretion events occurred. We assume a starting point for the CCT seamounts in the easternmost Tethys at 280 Ma. Using reasonable translation rates (11 cm/a), accretion to the Stikinia-Quesnellia oceanic arc, which occurred at about 230 Ma, took place in western Panthalassa, consistent with the mixed Tethyan fauna of the arc. Subsequent collision with a continental terrane, which occurred at about 180 Ma, took place in central Panthalassa, > 4000 km west of North America yielding a composite ribbon continent. Westward subduction of oceanic lithosphere continuous with the North American continent from 180 to 150 Ma facilitated docking of the ribbon continent with the North American plate. The paleogeographic constraints provided by the CCT indicate that much of the Canadian Cordilleran accretionary orogen is exotic. The accreting crustal block, a composite ribbon continent, grew through repeated collisional events within Panthalassa prior to docking with the North American plate. CCT's odyssey requires the presence of subduction zones within Panthalassa and indicates that the tectonic setting of the Panthalassa superocean differed substantially from the current Pacific basin, with its central spreading ridge and marginal outward dipping subduction zones. A substantial volume of oceanic lithosphere was subducted during CCT's transit of Panthalassa. Blanketing of the core by these cold oceanic slabs enhanced heat transfer out of the core into the lowermost mantle, and may have been responsible for the Cretaceous Normal Superchron, the coeval Pacific-centred mid-Cretaceous superplume event, and its lingering progeny, the Pacific Superswell. Far field

  3. Geochemical discrimination of siliciclastic sediments from active and passive margin settings

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Armstrong-Altrin, John S.

    2016-03-01

    Discrimination of active and passive margins is important from both academic and economic aspects. This can only be successfully achieved, however, if there are major compositional differences among sediments derived from different continental margins. A worldwide database of active and passive margin settings was established from published major and trace element geochemical data of Neogene to Quaternary siliciclastic sediments. These data were used to evaluate the performance of existing discrimination diagrams, which were shown to work unsatisfactorily with success values of mostly between 0% and 30%. Because these diagrams were not based on a statistically coherent methodology, we proposed two new discriminant functions from linear discriminant analysis of multinormally distributed isometric log-transformed ratios of major and combined major and trace elements. These new diagrams showed very high percent success values of about 87%-97% and 84%-86% for the active and passive margins, respectively, for the original database. Excellent performance of the multidimensional diagrams and related discriminant functions was confirmed from 11 test studies involving Quaternary to Holocene siliciclastic sediments from known tectonic margins. The expected result of an active or passive margin was obtained, with most samples plotting correctly in the respective field.

  4. The petrology, phase relations and tectonic setting of basalts from the taupo volcanic zone, New Zealand and the Kermadec Island arc - havre trough, SW Pacific

    NASA Astrophysics Data System (ADS)

    Gamble, John A.; Smith, Ian E. M.; Graham, Ian J.; Peter Kokelaar, B.; Cole, James W.; Houghton, Bruce F.; Wilson, Colin J. N.

    1990-10-01

    Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled. All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc. Sparsely porphyritic primitive compositions (Mg/(Mg+Fe 2) > 70) are high in Al 2O 3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo 87) phenocrysts and plagioclase (> An 60) microphenocrysts. These magmas have ratios of

  5. Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting

    NASA Astrophysics Data System (ADS)

    Gu, X. X.

    1994-11-01

    The Triassic Tethys graywacke-slate turbidites in the northwestern Sichuan, China have been analysed for major and trace elements and petrographically studied. Compared to Phanerozoic turbidites, the turbidites in this study are quartz-intermediate (average 55%) in composition and are characterized geochemically by their moderate Fe 2O ∗3 + MgO (9.28 ± 2.84%), TiO 2 (0.72 ± 0.17%) contents and Al 2O 3/SiO 2 (0.25 ± 0.10) ratios; moderate abundances of ferromagnesian trace elements ( Co = 15 ± 8 ppm, Cr = 113 ± 72 ppm, Ni = 14 + 9 ppm, Sc = 12 ± 4 ppm, etc.); and moderate contents of incompatible elements, such as Th (11 ± 3 ppm), U (3 ± 0.7 ppm), Zr (170 ± 64 ppm), Hf (4 ± 1 ppm) and total REEs (159 ± 33 ppm). In general, the slates show systematically higher Fe 2O ∗3 + MgO, Sc, Co and Eu/Eu∗, but lower solLa/Sc and Th/Sc than the associated graywackes, suggesting that various provenance components may separate into different grain-size fractions during sedimentary sorting processes, that is, the more mafic materials tended to incorporate into the sedimentary record for the clay-size fraction. Framework modes and geochemical data indicate that the turbidites were mainly derived from a recycled orogenic provenance characterized chiefly by sedimentary-metasedimentary rocks and granite-gneisses, similar to the upper continental crust, but with a variable admixture of continental island arc volcanic components. Flysch deposition took place in a back arc basin situated between an active continental margin (the Kunlun-Qinling fold belt) and a continental island arc (the Yidun island arc). Weathering conditions in the source area significantly influenced the composition and distribution of elements in the sediments. With the elapse of time during sedimentation, the degree of chemical weathering in the provenance became intense while the tectonic activity decreased gradually.

  6. Tectonic Controls on the Volumes and Petrologic Evolution of Pantellerite-Trachyte-Phonolite Volcanoes in a Continental Rift Setting, Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Lemasurier, W. E.

    2010-12-01

    some basanite magmas within the stability field of kaersutite, but allowed others to rise directly to upper crustal reservoirs, allowing a range of FC schemes to produce diverse felsic rock types. Mantle plume activity has produced syn-volcanic doming and large volumes of basalt magma in MBL over the past ~30 m.y. A stationary plate environment has allowed a continued focus of magma generation, storage, and eruption beneath the same volcanic centers throughout this time. The sum of these tectonic factors has resulted in an environment that was optimal for producing large volumes of felsic rock by FC.

  7. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  8. Task 1 quarternary tectonics

    SciTech Connect

    Bell, J.W.

    1994-12-31

    Activities on the task of quarternary tectonics for the Yucca Mountain Site investigations are described. Technical topics include: A preliminary reveiw of Bare Mountain Trench; A preliminary detailed lineament map of the Southwestern part of the proposed repository; A discussion on the 1994 Double Spring Flat, Nevada earthquake; and evidence for temporal clustering.

  9. Fluid-Faulting Interactions Examined Though Massive Waveform-Based Analyses of Earthquake Swarms in Volcanic and Tectonic Settings: Mammoth Mountain, Long Valley, Lassen, and Fillmore, California Swarms, 2014-2015

    NASA Astrophysics Data System (ADS)

    Shelly, D. R.; Ellsworth, W. L.; Prejean, S. G.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.

    2015-12-01

    Earthquake swarms, sequences of sustained seismicity, convey active subsurface processes that sometimes precede larger tectonic or volcanic episodes. Their extended activity and spatiotemporal migration can often be attributed to fluid pressure transients as migrating crustal fluids (typically water and CO2) interact with subsurface structures. Although the swarms analyzed here are interpreted to be natural in origin, the mechanisms of seismic activation likely mirror those observed for earthquakes induced by industrial fluid injection. Here, we use massive-scale waveform correlation to detect and precisely locate 3-10 times as many earthquakes as included in routine catalogs for recent (2014-2015) swarms beneath Mammoth Mountain, Long Valley Caldera, Lassen Volcanic Center, and Fillmore areas of California, USA. These enhanced catalogs, with location precision as good as a few meters, reveal signatures of fluid-faulting interactions, such as systematic migration, fault-valve behavior, and fracture mesh structures, not resolved in routine catalogs. We extend this analysis to characterize source mechanism similarity even for very small newly detected events using relative P and S polarity estimates. This information complements precise locations to define fault complexities that would otherwise be invisible. In particular, although swarms often consist of groups of highly similar events, some swarms contain a population of outliers with different slip and/or fault orientations. These events highlight the complexity of fluid-faulting interactions. Despite their different settings, the four swarms analyzed here share many similarities, including pronounced hypocenter migration suggestive of a fluid pressure trigger. This includes the July 2015 Fillmore swarm, which, unlike the others, occurred outside of an obvious volcanic zone. Nevertheless, it exhibited systematic westward and downdip migration on a ~1x1.5 km low-angle, NW-dipping reverse fault at midcrustal depth.

  10. Post 12 Ma tectonic activity of the Subalpine Molasse resolved by combining thermochronology and critical wedge analysis

    NASA Astrophysics Data System (ADS)

    von Hagke, C.; Oncken, O.; Ortner, H.; Cederbom, C.

    2012-04-01

    Thermochronological studies in the Northern Alpine Foreland Basin show that the folded and thrusted part of the basin, the Subalpine Molasse (SM), has been tectonically active during the last 12 Ma (Cederbom, C. E. et al., 2011; von Hagke, C. et al., in review). However, the amount of erosion and timing of thrusting is so far only reported from the Swiss Molasse basin. To test whether this is a local signal and whether climate contributed to this thrusting, we report thermochronological data from a profile south of Lake Constance and analyse the results in the framework of critical taper theory. We selected the Bregenzerach stream as suitable study area because it is one of the few profiles, which provides excellent outcrops in all stratigraphic units of the SM and is located east of the Jura fold and thrust belt, north of the Eastern Alps. We present new apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) data. In contrast to the Central Alps, the new data do not show full resetting of the AFT system. This demonstrates that the eastern SM has experienced less erosion than the central SM. The AHe system in contrast, shows complete resetting also in the eastern SM. We observe age-offsets across the same thrusts which have been reactivated in the central SM. This confirms that the SM of the Eastern Alps must have been tectonically active until at least 5 Ma, as is also known from the central SM. This implies reactivation of thrusts, which formed originally in mid to late Miocene times. From critical taper analysis, reactivation of thrusting (assuming constant dip of the basal detachment through time) can only be obtained (1) by an increase of basal detachment strength or (2) a decrease of surface slope. An increase of detachment strength through time is either possible due to jumping of the detachment to another stratigraphic level or a change in pore fluid pressure. A decrease in surface slope is either tectonic- or erosion-controlled. We show that today the

  11. Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: Insights from the northern termination of the Liquiñe-Ofqui fault System, Chile

    NASA Astrophysics Data System (ADS)

    Pérez-Flores, Pamela; Cembrano, José; Sánchez-Alfaro, Pablo; Veloso, Eugenio; Arancibia, Gloria; Roquer, Tomás

    2016-06-01

    This study addresses the interplay between strain/stress fields and paleo-fluid migration in the Southern Andean Volcanic Zone (SVZ). The SVZ coexists with the margin-parallel Liquiñe-Ofqui Fault System (LOFS) and with NW-striking Andean Transverse Faults (ATF). To tackle the role of different fault-fracture systems on deformation distribution and magma/fluid transport, we map the nature, geometry and kinematics of faults, veins and dikes at various scales. Fault-slip data analysis yields stress and strain fields from the full study area data base (regional scale) and fault zones representative of each fault system (local scale). Regional scale strain analysis shows kinematically heterogeneous faulting. Local strain analyses indicate homogeneous deformation with NE-trending shortening and NW-trending extension at NNE-striking Liquiñe-Ofqui master fault zones. Strain axes are clockwise rotated at second order fault zones, with ENE-trending shortening and NNW-trending stretching. The ATF record polyphasic deformation. Conversely, stress field analysis at regional scale indicates a strike-slip dominated transpressional regime with N64°E-trending σ1 and N30°W-trending σ3. Deformation is further partitioned within the arc through NNE-striking dextral-reverse faults, NE-striking dextral-normal faults and NW-striking sinistral-reverse faults with normal slip activation. The regional tectonic regime controls the geometry of NE-striking dikes and volcanic centers. NE-striking faults record local stress axes that are clockwise rotated with respect to the regional stress field. NNE- and NE-striking faults are favorably oriented for reactivation under the regional stress field and show poorly-developed damage zones. Conversely, NW-striking fault systems, misoriented under the regional stress field, show multiple fault cores, wider damage zones and dense vein networks. Deformation driven by oblique subduction is partially partitioned into strike-slip and shortening

  12. Project ACE Activity Sets. Book III: Grades 8 through 12.

    ERIC Educational Resources Information Center

    Eden City Schools, NC.

    Eleven activity sets for students in grades 8 through 12 are designed to supplement courses in citizenship and U.S. history and government. "The Civil War That Could Have Been" creates a hypothetical situation which requires the participant to analyze the causes of the Civil War. In "History on TV -- Enemy or Ally of the Social Studies Program,"…

  13. 40 CFR 35.3535 - Authorized set-aside activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... make expenditures to establish and implement wellhead protection programs under section 1428 of the Act... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Authorized set-aside activities. 35.3535 Section 35.3535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  14. 40 CFR 35.3535 - Authorized set-aside activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... make expenditures to establish and implement wellhead protection programs under section 1428 of the Act... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Authorized set-aside activities. 35.3535 Section 35.3535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  15. Variations of fluvial tufa sub-environments in a tectonically active basin, Pleistocene Teruel Basin, NE Spain

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Alonso-Zarza, Ana M.; Rodríguez-Berriguete, Álvaro; Meléndez, Alfonso

    2015-12-01

    The Pleistocene Tortajada fluvial deposit occurs in the eastern active margin of the Teruel Basin. It developed in the early stages of opening of the basin and at present is disconnected to the Alfambra River. The preserved deposits show that the fluvial system consisted in three different sub-environments including: Upper Terraces, Ponds and Cascades. The main facies are framestones of stems, phytoclastic rudstone, framestone of bryophytes, peloidal and filamentous stromatolites, mudstone and detrital (conglomerates and slope-breccias) facies. These facies are arranged in three different sequence types, all of them showing a lower detrital term followed by pond and, in cases, cascade deposits. The microfacies analyses reveal that both biotic and abiotic processes performed an important role in the deposition within the river. Isotopic analyses (δ18O from - 8.58‰ to - 6.70‰ VPDB and δ13C from - 7.44‰ to - 3.97‰ VPDB) are indicative of meteoric water within a hydrologically open system. The carbonate hinterland rocks, together with a semi-arid to sub-humid climate favored carbonate accumulation within the river. Our results point out that the location, morphology and sedimentary sequences of the Tortajada fluvial system had an important tectonic control. The situation of the main and secondary faults controlled the paleomorphology of the river floor. Thus cascades are found in areas of important step faults, whereas the spaces between faults were occupied by fluviatile/lacustrine areas. In addition the development of the different sedimentary sequences was also a reflection of movements of these faults. In short, our study may confirm that tectonism is an important control on tufa development.

  16. Basement and crustal structure of the Davis Sea region (East Antarctica): implications for tectonic setting and continent to oceanic boundary definition

    USGS Publications Warehouse

    Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.

    2007-01-01

    This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.

  17. Greenstone belt tectonics: Thermal constraints

    NASA Technical Reports Server (NTRS)

    Bickle, M. J.; Nisbet, E. G.

    1986-01-01

    Archaean rocks provide a record of the early stages of planetary evolution. The interpretation is frustrated by the probable unrepresentative nature of the preserved crust and by the well known ambiguities of tectonic geological synthesis. Broad constraints can be placed on the tectonic processes in the early Earth from global scale modeling of thermal and chemical evolution of the Earth and its hydrosphere and atmosphere. The Archean record is the main test of such models. Available general model constraints are outlined based on the global tectonic setting within which Archaean crust evolved and on the direct evidence the Archaean record provides, particularly the thermal state of the early Earth.

  18. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Nagarajan, Ramasamy; Madhavaraju, Jayagopal; Rosalez-Hoz, Leticia; Lee, Yong Il; Balaram, Vysetti; Cruz-Martínez, Adriana; Avila-Ramírez, Gladis

    2013-04-01

    This study focuses on the Jurassic (Huayacocotla and Pimienta Formations) and Upper Cretaceous (Méndez Formation) shales from the Molango Region, Hidalgo, Mexico. In this article, we discuss the mineralogy, major, and trace element geochemistry of the Mesozoic shales of Mexico. The goal of this study is to constrain the provenance of the shales, which belong to two different periods of the Mesozoic Era and to understand the weathering conditions and tectonic environments of the source region.

  19. Integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology of authigenic illite to evaluate tectonic reactivation in an intraplate setting, central Australia

    NASA Astrophysics Data System (ADS)

    Middleton, Alexander W.; Uysal, I. Tonguç; Bryan, Scott E.; Hall, Chris M.; Golding, Suzanne D.

    2014-06-01

    The Warburton-Cooper basins, central Australia, include a multitude of reactivated fracture-fault networks related to a complex, and poorly understood, tectonic evolution. We investigated authigenic illites from a granitic intrusion and sedimentary rocks associated with prominent structural features (Gidgealpa-Merrimelia-Innamincka Ridge and the Nappamerri Trough). These were analysed by 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology to explore the thermal and tectonic histories of central Australian basins. The combined age data provide evidence for three major periods of fault reactivation throughout the Phanerozoic. While Carboniferous (323.3 ± 9.4 Ma) and Late Triassic ages (201.7 ± 9.3 Ma) derive from basin-wide hydrothermal circulation, Cretaceous ages (∼128 to ∼86 Ma) reflect episodic fluid flow events restricted to the synclinal Nappamerri Trough. Such events result from regional extensional tectonism derived from the transferral of far-field stresses to mechanically and thermally weakened regions of the Australian continent. Specifically, Cretaceous ages reflect continent-wide transmission of tensional stress from a >2500 km long rifting event on the eastern (and southern) Australian margin associated with break-up of Gondwana and opening of the Tasman Sea. By integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd dating, this study highlights the use of authigenic illite in temporally constraining the tectonic evolution of intracontinental basins that would otherwise remain unknown. Furthermore, combining Sr- and Ar-isotopic systems enables more accurate dating of authigenesis whilst significantly reducing geochemical pitfalls commonly associated with these radioisotopic dating methods.

  20. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  1. Active tectonics of North Haji Abad (Hormozgan region) in south of Iran

    NASA Astrophysics Data System (ADS)

    shafiei bafti, amir

    2014-05-01

    Zagros Active Fold -thrust Belt is situated in the northern margin of the Arabian Plat and formed due to shortening, thickening and uplift of tethys sedimentary basin between Arabian and Iranian plates. In this study, the rate of uplift in the northern margin of the Zagros Mountains in southern Iran are examined. The Zagros fault zone in this region is composed of a set faults, including Deragah, Haji Abad, Tezerj and several other faults and also we call these branches from F1 to F8. These segments puts from northwest to the East- Southeast. Based on field surveys and Geological maps, we prepared a structural map from major faults of Zagros fault system for identify faults pattern and estimating of uplift rate movements in Zagros fault. Three methods used to calculation of uplift rate: A: Asymmetry index Accordance with the procedure, in studied area, northeast drainage are longer than of southwest drainage and east minor drainages also longer than the west side drainages, Uplifting in this region is characterized by mentioned asymmetry factor. The amount of this index is AF=71.81. B. Interaction between the faults movements and erosion process We comparison contrast between uplifting movement rates and erosion rates in different parts of studied region by Smf and other indexes. Average amount of Smf=1.1. C. Evaluation of Uplift rate of alluvial terraces was performed by sediment ages and terraces height. We surveyed Quaternary facieses which have ages between 17,000 and 30,000 years old. the rate of uplifting for each fault is follows : Deragah fault and F8 fault between 1.0 to 1.85mm per year and F7, F6, F5, and F4 faults, have a rate Uplifting between 0.6 to 1.0 mm per year and the rate of Uplift for other faults is between 0.04 to 0.06 mm per year. According to our studies, uplift rates in north -east and south-west more than other regions The minimum rate at different stations are about 0.5mm/y to 0.93mm/y and its maximum is 0.88 mm/y to 1.47mm/y.

  2. Active Seismicity and Tectonics in Central Asia from Seismological Data Recorded in the Pamir and Tien Shan Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Sippl, Christian; Schurr, Bernd; Schneider, Felix M.; Yuan, Xiaohui; Mechie, James; Minaev, Vladislav; Abdybachaev, Ulan A.; Gadoev, Mustafo; Oimahmadov, Ilhomjon

    2010-05-01

    Active tectonics in the Pamir mountains in central Asia, the westernmost part of the India-Eurasia collision zone, are controlled by ongoing convergence (about 20 mm/yr), causing substantial crustal shortening and compressional deformation. This leads to high seismicity rates throughout the region. Whereas seismic activity along the rim of the Pamir plateau is mostly compressional and concentrated along the Main Pamir Thrust, the distribution and focal mechanisms of earthquakes in its interior are more diffuse, with extensional events occurring along North-South trending rift zones (Kara Kul, Wachan). Seismicity in the south-western Pamir and in the Hindu Kush features frequent intermediate-depth earthquakes, reaching hypocentral depths of 300 km, which is rare for regions not obviously related to active subduction of oceanic lithosphere. These mantle earthquakes, which are not observed beneath the Himalayas and Tibet further east, form a rather well-defined Wadati-Benioff zone that was readily interpreted as subducted lithosphere present below the current collisional orogen. Earlier seismological studies showed the presence of a northward-dipping lithospheric slab under the Hindu Kush and a southward-dipping one beneath the Pamirs, with a small seismic gap in-between. Different hypotheses concerning the nature of these slabs (oceanic or continental lithosphere) and tectonic geometry in general (two slabs subducting in opposite directions or a single, hugely contorted slab) have been proposed in literature. Political instability in the region in the last two decades hampered on-site studies and field work, leaving many key issues poorly understood. In the framework of the multidisciplinary project TIPAGE (Tien Shan Pamir Geodynamic Programme), for the first time, new field campaigns collecting high quality data have been made possible. Local seismicity in the Pamir and Tien Shan mountain ranges (Tajikistan and Kyrgyzstan) is currently being recorded by a temporary

  3. An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Hauksson, E.; Aminzadeh, F.; Ampuero, J.-P.

    2015-10-01

    Changes in seismicity rates, whether of tectonic or of induced origin, can readily be identified in regions where background rates are low but are difficult to detect in seismically active regions. We present a novel method to identify likely induced seismicity in tectonically active regions based on short-range spatiotemporal correlations between changes in fluid injection and seismicity rates. The method searches through the entire parameter space of injection rate thresholds and determines the statistical significance of correlated changes in injection and seismicity rates. Applying our method to Kern County, central California, we find that most earthquakes within the region are tectonic; however, fluid injection contributes to seismicity in four different cases. Three of these are connected to earthquake sequences with events above M4. Each of these sequences followed an abrupt increase in monthly injection rates of at least 15,000 m3. The probability that the seismicity sequences and the abrupt changes in injection rates in Kern County coincide by chance is only 4%. The identified earthquake sequences display low Gutenberg-Richter b values of ˜0.6-0.7 and at times systematic migration patterns characteristic for a diffusive process. Our results show that injection-induced pressure perturbations can influence seismic activity at distances of 10 km or more. Triggering of earthquakes at these large distances may be facilitated by complex local geology and faults in tectonically active regions. Our study provides the first comprehensive, statistically robust assessment of likely injection-induced seismicity within a large, tectonically active region.

  4. Late Pleistocene Alberca de Guadalupe maar volcano (Zacapu basin, Michoacán): Stratigraphy, tectonic setting, and paleo-hydrogeological environment

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Pooja; Siebe, Claus; Guilbaud, Marie Noëlle; Salinas, Sergio; Layer, Paul W.

    2015-10-01

    The Late Pleistocene (~ 21,000 yr BP) Alberca de Guadalupe maar is one of the few phreatomagmatic volcanoes occurring within the scoria-cone dominated Plio-Quaternary Michoacán-Guanajuato Volcanic Field. The scarcity of this type of volcano implies that conditions favoring their formation are rarely met in this region. We identify these factors by implementing current methods of investigation with emphasis on hydrogeological conditions. We present the stratigraphy (including a set of 40Ar/39Ar and 14C dates) of the SE margin of the Zacapu intermontane tectonic basin, where the maar just forms a hole (~ 1 km in diameter, ~ 150 m deep, bearing a ~ 9 m deep lake) in the otherwise planar topography of the underlying early Pleistocene lava flows of the Cerro Pelón scoria cone. The maar is composed of typical phreatomagmatic surge deposits that are poorly sorted and rich in accidental lithics (> 60 wt.% of the deposit) with few juveniles (basaltic andesite, SiO2 = 54-58 wt.%). The entire structure is cut by an ENE-WSW trending normal fault and is underlain by andesite lavas and silicic ignimbrites (partly inferred from xenoliths encountered in the maar deposits) that are Miocene to Early Pleistocene in age. The crater is at the center of a N-S elongated drainage basin surrounded by topographic highlands that channel water with high hydraulic pressure from most directions towards the location of the maar. This geometric configuration was already in existence at the time of the maar-forming eruption, but the climate was different. Colder and more humid conditions during the Last Glacial Maximum (Cw2-climate type, annual precipitation of > 1000 mm) favored the saturation of the fractured shallow aquifer system (hydraulic conductivity of 10- 8 to 10- 7 m/s) that supplied sufficient groundwater at a high flow rate directed towards the center of the basin. Upon contact near surface (< 200 m) with the rising dike of basaltic andesite magma, the continuous supply of both dike

  5. Spiral tectonics

    NASA Astrophysics Data System (ADS)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  6. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    NASA Astrophysics Data System (ADS)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  7. Mixed carbonate-siliciclastic sedimentation on a tectonically active margin: Example from the Pliocene of Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; Kidwell, Susan M.

    1999-10-01

    Bioclast-rich, coarse-grained deposits in the Pliocene Loreto basin provide a record of mixed carbonate and siliciclastic sedimentation at the steep hanging-wall margin of this small, fault-controlled basin. Sedimentary facies consist of sand- to gravel-sized carbonate debris mixed with volcaniclastic sand and gravel in a proximal to distal facies tract that includes matrix-rich and matrix-poor shelly conglomerate, impure calcirudite and calcarenite, mixed-composition turbidites, and bioturbated calcarenitic sandstone. Carbonate material was produced by mollusks and other benthic organisms on a narrow, high-energy shelf and mixed with volcaniclastic sand and gravel in cross-shelf channels. These mixtures were transported down a steep subaqueous slope by debris flows, grain flows, and turbidity currents, forming foresets and bottomsets of marine Gilbert-type deltas. This style of mixed carbonate-siliciclastic sedimentation has not been documented in detail elsewhere but should be locally abundant in the stratigraphic record of fault-bounded basins, particularly those with cool or nutrient-rich waters that support relatively few binding and framework-building faunas. Recognition of similar facies in other settings can provide useful insights into ancient conditions of carbonate production, oceanography, climate, and tectonics.

  8. An active set algorithm for treatment planning optimization.

    PubMed

    Hristov, D H; Fallone, B G

    1997-09-01

    An active set algorithm for optimization of radiation therapy dose planning by intensity modulated beams has been developed. The algorithm employs a conjugate-gradient routine for subspace minimization in order to achieve a higher rate of convergence than the widely used constrained steepest-descent method at the expense of a negligible amount of overhead calculations. The performance of the new algorithm has been compared to that of the constrained steepest-descent method for various treatment geometries and two different objectives. The active set algorithm is found to be superior to the constrained steepest descent, both in terms of its convergence properties and the residual value of the cost functions at termination. Its use can significantly accelerate the design of conformal plans with intensity modulated beams by decreasing the number of time-consuming dose calculations.

  9. An active set algorithm for tracing parametrized optima

    NASA Technical Reports Server (NTRS)

    Rakowska, J.; Haftka, R. T.; Watson, L. T.

    1991-01-01

    Optimization problems often depend on parameters that define constraints or objective functions. It is often necessary to know the effect of a change in a parameter on the optimum solution. An algorithm is presented here for tracking paths of optimal solutions of inequality constrained nonlinear programming problems as a function of a parameter. The proposed algorithm employs homotopy zero-curve tracing techniques to track segments where the set of active constraints is unchanged. The transition between segments is handled by considering all possible sets of active constraints and eliminating nonoptimal ones based on the signs of the Lagrange multipliers and the derivatives of the optimal solutions with respect to the parameter. A spring-mass problem is used to illustrate all possible kinds of transition events, and the algorithm is applied to a well-known ten-bar truss structural optimization problem.

  10. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Michaud, Francois; Proust, Jean-Noël; Dano, Alexandre; Collot, Jean-Yves; Guiyeligou, Grâce Daniella; Hernández Salazar, María José; Ratzov, Gueorgui; Martillo, Carlos; Pouderoux, Hugo; Schenini, Laure; Lebrun, Jean-Frederic; Loayza, Glenda

    2016-10-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  11. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  12. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; Rosing, Minik T.; Frei, Robert

    2010-12-01

    in chromitite. In the zoned grains, the composition of the core is modified and the rim is ferritchromit. In general, ferritchromit occurs as irregular patches along the grain boundaries and fractures of the zoned grains. In this case, ferritchromit formation is not very extensive. This indicates a secondary low temperature hydrothermal origin of ferritchromit during serpentinization. In some occurrences, the ferritchromit rim is very well developed, and only a small relict core appears to remain in the chromite grain. However, complete alteration of the chromite grains to ferritchromit without any remnant core is also present. The regular, well-developed and continuous occurrence of ferritchromit rims around the chromite grain boundaries, the complete alteration of the chromite grains and the modification of the core composition indicate the alteration in the Nuggihalli schist belt to be intense, pervasive and affected by later low-grade metamorphism. The primary composition of chromite has been used to compute the nature of the parental melt. The parental melt calculations indicate derivation from a high-Mg komatiitic basalt that is similar to the composition of the komatiitic rocks reported from the greenstone sequences of the Western Dharwar Craton. Tectonic discrimination diagrams using the primary composition of chromites indicate a supra-subduction zone setting (SSZ) for the Archean chromitites of Nuggihalli and derivation from a boninitic magma. The composition of the komatiitic basalts resembles those of boninites that occur in subduction zones and back-arc rift settings. Formation of the massive chromitites in Nuggihalli may be due to magma mixing process involving hydrous high-Mg magmas or may be related to intrusions of chromite crystal laden magma; however, there is little scope to test these models because the host rocks are highly altered, serpentinized and deformed. The present configurations of the chromitite bodies are related to the multistage

  13. Continental tectonics in the aftermath of plate tectonics

    NASA Technical Reports Server (NTRS)

    Molnar, Peter

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.

  14. Episodic activity of a dormant fault in tectonically stable Europe: The Rauw fault (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Verbeeck, Koen; Wouters, Laurent; Vanneste, Kris; Camelbeeck, Thierry; Vandenberghe, Dimitri; Beerten, Koen; Rogiers, Bart; Schiltz, Marco; Burow, Christoph; Mees, Florias; De Grave, Johan; Vandenberghe, Noël

    2017-03-01

    Our knowledge about large earthquakes in stable continental regions comes from studies of faults that generated historical surface rupturing earthquakes or were identified by their recent imprint in the morphology. Here, we evaluate the co-seismic character and movement history of the Rauw fault in Belgium, which lacks geomorphological expression and historical/present seismicity. This 55-km-long normal fault, with known Neogene and possibly Early Pleistocene activity, is the largest offset fault west of the active Roer Valley Graben. Its trace was identified in the shallow subsurface based on high resolution geophysics. All the layers within the Late Pliocene Mol Formation (3.6 to 2.59 Ma) are displaced 7 m vertically, without growth faulting, but deeper deposits show increasing offset. A paleoseismic trench study revealed cryoturbated, but unfaulted, late glacial coversands overlying faulted layers of Mol Formation. In-between those deposits, the fault tip was eroded, along with evidence for individual displacement events. Fragmented clay gouge observed in a micromorphology sample of the main fault evidences co-seismic faulting, as opposed to fault creep. Based on optical and electron spin resonance dating and trench stratigraphy, the 7 m combined displacement is bracketed to have occurred between 2.59 Ma and 45 ka. The regional presence of the Sterksel Formation alluvial terrace deposits, limited to the hanging wall of the Rauw fault, indicates a deflection of the Meuse/Rhine confluence (1.0 to 0.5 Ma) by the fault's activity, suggesting that most of the offset occurred prior to/at this time interval. In the trench, Sterksel Formation is eroded but reworked gravel testifies for its former presence. Hence, the Rauw fault appears as typical of plate interior context, with an episodic seismic activity concentrated between 1.0 and 0.5 Ma or at least between 2.59 Ma to 45 ka, possibly related to activity variations in the adjacent, continuously active Roer Valley

  15. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  16. Evolution of the Late Pleistocene Aspe River (Western Pyrenees, France). Signature of climatic events and active tectonics

    NASA Astrophysics Data System (ADS)

    Nivière, Bertrand; Lacan, Pierre; Regard, Vincent; Delmas, Magali; Calvet, Marc; Huyghe, Damien; Roddaz, Bernard

    2016-03-01

    We make use of the cosmogenic nuclide 10Be exposure to date an alluvial terrace of the Aspe River in the foothills of the northwestern Pyrenees. Initially ascribed to the Rissian glaciation, our dating shows that the terrace was abandoned at 18 ± 2 kyr. In reference to the Late Pleistocene climatic chronology, two kinds of terraces can be distinguished: high-standing fill terraces probably deposited during glacial events and lower cut-in-fill and strath terraces cut during the postglacial river incision. A part of the terrace aggradations could have occurred during the Würmian glacial episodes. Hence, the dated terrace fits in with the prevailing view of incision during climate transitions. Our study also shows that elevation is not a good criterion of terrace correlation, which should be better carried out on the basis of absolute dating. In addition, this dating also suggests a potential Late Pleistocene fault reactivation of the Mail Arrouy thrust in this tectonically active area of the Western Pyrenees.

  17. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2004-05-01

    Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S-C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.

  18. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  19. Tectonics of the central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.

    1989-01-01

    Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.

  20. Assembling activity/setting participation with disabled young people.

    PubMed

    Gibson, Barbara E; King, Gillian; Teachman, Gail; Mistry, Bhavnita; Hamdani, Yani

    2016-11-21

    Rehabilitation research investigating activity participation has been largely conducted in a realist tradition that under-theorises the relationship between persons, technologies, and socio-material places. In this Canadian study we used a post-critical approach to explore activity/setting participation with 19 young people aged 14 to 23 years with complex communication and/or mobility impairments. Methods included integrated photo-elicitation, interviews, and participant observations of community-based activities. We present our results using the conceptual lens of assemblages to surface how different combinations of bodies, social meanings, and technologies enabled or constrained particular activities. Assemblages were analysed in terms of how they organised what was possible and practical for participants and their families in different contexts. The results illuminate how young people negotiated activity needs and desires in particular 'spacings' each with its own material, temporal, and social constraints and affordances. The focus on assemblages provides a dynamic analysis of how dis/abilities are enacted in and across geotemporal spaces, and avoids a reductive focus on evaluating the accessibility of static environmental features. In doing so the study reveals possible 'lines of flight' for healthcare, rehabilitation, and social care practices.

  1. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  2. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    prevent the ultimate closure of the Pacific basin and thus the cessation of subduction. More noteworthy is where subduction is not initiating. First, there is no evidence for subduction initiation anywhere within the Atlantic basin (excluding the Caribbean and Scotia), despite the mature 100-200 my age of passive-margin oceanic lithosphere. The formation of the Alpine-Himalayan chain represents the cessation of roughly 10,000 km of subduction at about 35-50 ma, Yet, no new subduction zones have initiated south of India or Africa, the two major continents that participated in the collision. These examples illustrate that subduction does not immediately initiate following a continent-continent collision, and may lag by 10s if not 100s of millions of years. The stoppage of plate tectonics, or even a dramatic reduction in subduction flux, would have significant thermal consequences for the mantle. It would effectively mark a temporary switch to "stagnant-lid" tectonics, analogous to that found on Venus, resulting in a significant increase in global mantle potential temperature (30- 100°C per 100 my) and a possibly widespread increase in magmatic activity. Such a hiatus may have occurred in the Mid-Proterozoic (1.1-1.6Ga), an era characterized by the virtual absence of orogenic activity, the longest-lived passive margin (600 My), and the production of enigmatic "anorogenic" granites found over thousands of kilometers in a belt presently stretching from southwestern to northeastern North America.

  3. Geophysical Imaging of Active Tectonics: A Case Study From the Inter Andean Valley, Ecuador

    NASA Astrophysics Data System (ADS)

    Call, C.; Meltzer, A.; Alvardo, A.

    2004-12-01

    The Inter Andean Valley is a Pliocene-Quaternary basin filled with volcanic, lacustrine, fluvial and marine sedimentary deposits. A series of faults sometimes collectively referred to as the Delores-Guayaquil Mega Shear (DGM) traverses the length of the Inter Andean Valley posing a seismic hazard to a number of cities including the capitol, Quito. The DGM is a large right-lateral fault system similar in scale and seismicity to the San Andres Fault system which is understudied, especially in the subsurface. A site characterization study utilizing ground penetrating radar (GPR) and near-surface seismic reflection profiling was conducted in two areas of the Inter Andean Valley where geomorphic evidence suggests active faulting. One area, Nono Valley, exhibits extensional characteristics through basin bounding fault and the second area, Saquisili, has a structure consistent with the geometry of a fault propagation fold. Both areas are covered with thinly layered volcanic ash which is clearly seen in outcrop and the GPR profiles. Saquisili, in addition to the ash layers, has a nonuniform layer of pumice near the surface which was revealed in the drilled holes for the seismic source, which helps to account for the quick attenuation of the higher frequencies. The GPR profiles also image abrupt terminations and offset of horizontal layers, often associated with active faulting. We used a 48 channel multichannel seismograph with 30Hz geophones and a 20ft spacing to collect 24 fold common-midpoint profiles using a Betsy Seis-Gun firing 12 gauge blanks. Preliminary seismic data indicates that the frequency content ranged between 20 and 100 Hz with higher frequencies being systematically filtered out with depth. Seismic velocities range between 740 and 2600 m/s, producing a vertical resolution between 2 and 32.5m to a depth of approximately 900m. The GPR data was collected using a GSSI SIR-2 data accusation system with a 100 MHz antenna. The GPR signal penetrated between 120ns

  4. Pleistocene calcrete deposits from southern Spain as indicators of climatic conditions and tectonic activity

    NASA Astrophysics Data System (ADS)

    Herrero, Maria J.; Insua-Arevalo, Juan M.; Garcia-Mayordomo, Julian; Martin-Banda, Raquel

    2014-05-01

    Quaternary calcrete horizons are common weathering products in arid and semi-arid regions of southern Spain. We have analysed a calcrete profile developed within poorly sorted gravels of an alluvial fan. These deposits were sourced from the Carrascoy Range, a fault generated mountain front located in the Internal Zones of the Betic Cordillera (South Spain). During the Pleistocene the climate in southern Spain was dry, either in the form of semi-arid/arid conditions or as seasonal moisture deficits. Alluvial channel incision trends appeared to be disrupted by episodes of alluvial aggradation produced during cold and dry glacial periods. At the top of the aggradational phases, pedogenic processes operated profusely, and, as a result, several calcretes (stage V mature calcrete profiles) were formed. We have analysed one of these calcrete profiles that appears subvertical within the forelimb of a regional fold in relation to the Carrascoy Fault activity. The calcrete consist of a densely cemented hardpan horizon (20 to 40 cm thick) overlain by a thin, 2-cm thick laminar crust. Below the hardpan horizon, carbonate concentrations gradually decrease to clast-coating textures. Calcretes form progressively and a wide range of carbonate phases occur within a single horizon, being the laminar crust the final stage of evolution within a mature pedogenic calcrete deposit, and, therefore, the carbonate within it postdates all the cement phases within the profile. The location of the latest cement phase of the calcrete deposit has been estimated by microscopic observations (to establish their suitability for dating) together with a detailed sedimentological analysis of the calcrete profile in the field. The laminar crust consists of less than 1 mm thick laminae characterized by the alternation of layers of micrite and layers of micrite with ooids, detrital grains and clays indicating environmental conditions in which sedimentation rates were low and episodic. By using radiometric

  5. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  6. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

    USGS Publications Warehouse

    Nelson, R.M.; Kamp, L.W.; Matson, D.L.; Irwin, P.G.J.; Baines, K.H.; Boryta, M.D.; Leader, F.E.; Jaumann, R.; Smythe, W.D.; Sotin, C.; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Pearl, J.C.; Hapke, B.W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R.Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.

    2009-01-01

    Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March–April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).

  7. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Kamp, L. W.; Matson, D. L.; Irwin, P. G. J.; Baines, K. H.; Boryta, M. D.; Leader, F. E.; Jaumann, R.; Smythe, W. D.; Sotin, C.; Clark, R. N.; Cruikshank, D. P.; Drossart, P.; Pearl, J. C.; Hapke, B. W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R. Y.; McCord, T. B.; Mennella, V.; Nicholson, P. D.; Sicardy, B.

    2009-02-01

    Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km 2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March-April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H 2O, CO 2, and CH 4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH 3 frost over a water ice substrate. NH 3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH 3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).

  8. Insights into active tectonics of eastern Taiwan from analyses of geodetic and geologic data

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Jeng; Johnson, Kaj M.; Fukuda, Jun'ichi; Yu, Shui-Beih

    2010-03-01

    About 50 mm/yr of convergence between the Philippine Sea and Eurasian plates is absorbed in eastern Taiwan, and it remains unclear how the convergence is partitioned among active faults. The Longitudinal Valley fault (LVF), the most seismically active fault in eastern Taiwan, creeps at the surface in the south and not in the north; however, it is unclear how much of the fault is locked or creeping at depth. To address these problems, we model Holocene and interseismic deformation of elastic lithospheric blocks moving over a viscoelastic asthenosphere in eastern Taiwan. Through a fully probabilistic scheme, we invert GPS, interferometric synthetic aperture radar, creepmeter, and Holocene marine terrace data for block motions, fault slip rates, and distribution of interseismic creep. The data are explained with four blocks separated by three faults, Central Range fault, LVF, and an offshore fault. The model explains the essential features of interseismic and Holocene deformation. We find that 35-55 mm/yr of slip on the offshore fault is necessary to fit marine terrace uplift rates, which is a larger fraction of the plate convergence than previously recognized. The LVF has a Holocene slip rate of 20-30 mm/yr with approximately equal magnitudes of reverse-slip and left-lateral strike-slip components. Only about half of the surface area of the Longitudinal Valley fault appears to be locked. The southern segment of the LVF creeps at a rate of 5-28 mm/yr down to a depth of 15-20 km, while the northern segment is locked from the surface to a depth of 20 km.

  9. Geodetic and geological evidence of active tectonics in south-western Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Barreca, G.; Bruno, V.; Cocorullo, C.; Cultrera, F.; Ferranti, L.; Guglielmino, F.; Guzzetta, L.; Mattia, M.; Monaco, C.; Pepe, F.

    2014-12-01

    Integrated geological, geodetic and marine geophysical data provide evidence of active deformation in south-western Sicily, in an area spatially coincident with the macroseismic zone of the destructive 1968 Belice earthquake sequence. Even though the sequence represents the strongest seismic event recorded in Western Sicily in historical times, focal solutions provided by different authors are inconclusive on possible faulting mechanism, which ranges from thrusting to transpression, and the seismogenic source is still undefined. Interferometric (DInSAR) observations reveal a differential ground motion on a SW-NE alignment between Campobello di Mazara and Castelvetrano (CCA), located just west of the maximum macroseismic sector. In addition, new GPS campaign-mode data acquired across the CCA alignment documents NW-SE contractional strain accumulation. Morphostructural analysis allowed to associate the alignment detected through geodetic measurements with a topographic offset of Pleistocene marine sediments. The on-land data were complemented by new high-resolution marine geophysical surveys, which indicate recent contraction on the offshore extension of the CCA alignment. The discovery of archaeological remains displaced by a thrust fault associated with the alignment provided the first likely surface evidence of coseismic and/or aseismic deformation related to a seismogenic source in the area. Results of the integrated study supports the contention that oblique thrusting and folding in response to NW-SE oriented contraction is still active. Although we are not able to associate the CCA alignment to the 1968 seismic sequence or to the historical earthquakes that destroyed the ancient Greek city of Selinunte, located on the nearby coastline, our result must be incorporated in the seismic hazard evaluation of this densely populated area of Sicily.

  10. Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and its Active Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Kaneda, H.; Nakata, T.; Tsutsumi, H.; Kondo, H.; Sugito, N.; Awata, Y.; Akhtar, S. S.; Majid, A.; Khattak, W.; Awan, A. A.; Yeats, R. S.

    2006-12-01

    The 8th October 2005 Kashmir earthquake of Mw 7.6 struck the westernmost area of the Indian-Eurasian collision zone, resulting in the worst earthquake disaster ever recorded along the frontal Himalaya. Although none of the historical Himalayan earthquakes is reported to have produced primary surface rupture, our field mapping reveals that the 2005 earthquake accompanied a NW-trending ~70-km-long distinctive surface rupture with maximum and mean vertical separations of ~7 m and ~3 m, respectively. Typical surface expression of faulting is a NE-side-up fault scarp or warp with surface shortening features at its base and tension cracks on its crest. Bulging and back-tilting are also observed on the upthrown side at many places. The surface rupture is subdivided into three geometrical segments separated by small steps. Location of the hypocenter suggests that the rupture was initiated at a deep portion of the northern-central segment boundary and bilaterally propagated to eventually break three segments. Mapped surface rupture trace clearly shows that neither the Himalayan Frontal Thrust (HFT) nor the Main Boundary Thrust (MBT) is responsible for the earthquake, but a geomorphologically-evident active fault within the Sub-Himalaya, the Balakot-Garhi fault, is a causative fault, although a part of the Balakot-Garhi fault appears to coincide with the surface trace of the MBT. Cumulative vertical separation of the most extensively recognized fluvial terrace surface is 7-8 times larger than the 2005 separation, implying occurrence of 7-8 similar earthquakes after the surface abandonment. If this deeply-incised fill surface is related to sediment yield increase due to the last major glaciation around 20 ka, the rupture interval and vertical slip rate of the Balakot-Garhi fault are estimated to be on the order of ~3000 years and ~1 mm/yr, respectively. By using the seismologically determined fault dip of ~30 degrees, horizontal shortening rate across the fault is then

  11. Regional Tectonic Framework and Human Activities on the North Central Part of The Mexican Volcanic Belt.

    NASA Astrophysics Data System (ADS)

    Nieto-Obregon, J.

    2001-12-01

    Faults and fractures northeasterly oriented dipping NW and SE, with slips mainly normal with a slight left lateral component, affect a suite of rocks of Mesozoic to Pleistocene age, in the area of El Bajio, in the states of Queretaro, Guanajuato, Michoacan, and Aguascalientes. The faults and fractures have affected the infrastructure of the cities and surroundings of Queretaro, Celaya, Salamanca, Irapuato, Silao, Leon and Aguascalientes. In the city of Queretaro, the Tlacote-Balvanera active fault has developed a scarp and its motion may potentially affect life lines of great importance. In Celaya City a N-S trending fault traverses the city and has produced a step wise scarp more than 1.80 m high, damaging houses, streets and life lines. In Salamanca, a fault trending N 60oE, dipping to the SE extends from Cerro Gordo to the SW traversing the city and affecting with a varying degree its infrastructure. Displacements observed within the urban area reach as much as 50 cm. Close to Irapuato City, in a quarry near La Valencianita village, a N 45oE trending fault dipping to the NW affects a lacustrine sequence bearing calcareous horizons. The fault exhibits a throw of 10 m and passes north of the urban area. A similarly oriented fault traverses the city of Irapuato, and near the Traffic Circle of Puente de Guadalupe, changes its strike to the SE and continues to the city limits. In the city of Silao, a fault oriented N 60oE, traverses the city and continues to the SW up to the localities of Venta de Ramales and La Aldea. Important displacements in urban and rural areas reach more than 60 cm. Outside the city of Leon in the junction of the highways to Aguascalientes and Guadalajara a normal fault plane NE oriented and dipping SE shows striations compatible with a normal left lateral motion. Faulting is associated with old buried scarps controlled by pre existing faults, and over exploited aquifers. Some of these faults however are considered potentially active based on

  12. Active Tectonics of Western Turkmenistan; Implications for the Onset of South Caspian Subduction

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J.; Jackson, J.; Priestley, K.

    2007-12-01

    The Kopeh Dagh and Balkan mountain ranges of West Turkmenistan are actively deforming as a result of Arabia- Eurasia collision. We combine observations of the geomorphology made from satellite and topographic data, with historical and recent seismicity to identify major active faults, and how they contribute to regional shortening. Between 55--57.5°E, partitioned (north-vergent) thrust and right-lateral strike-slip fault segments, comprising the Ashkabad fault zone, accommodate regional shortening and the westward-extrusion of the NW Kopeh Dagh-South Caspian block, relative to Central Iran and Eurasia. Reconstruction of displaced geology indicates 35~km total right-lateral motion across the Ashkabad fault zone. The Balkan region lies along-strike of the Ashkabad fault zone, west of 55°E. Fault plane solutions indicate shortening is partitioned onto the Balkan thrust and right-lateral Kum-Dagh fault zones. Thrust earthquakes are relatively deep (30--45~km) and lie along a north-dipping plane which extends 40±5~km north beneath the Balkan anticline. Receiver function data from Turkmenbashi and Nebit Dagh indicate these earthquakes occur in the base of the crust, and may therefore be related to bending of the NW Kopeh Dagh-South Caspian lithosphere as it is overthrust by Eurasia. Movement on a north-dipping blind thrust fault is consistent with the broad asymmetric (south-vergent) fold structure of the Balkan range. Recent uplift is also indicated by extensional faults which displace Quaternary geomorphology along the range crest. South of the Balkan range, right-lateral shear occurs across the Kum-Dagh fault zone which is expressed as a series of right-stepping anticlines (affecting Pliocene Red Series and younger sediments), forming important traps for hydrocarbons. An important structural change occurs near 55°E. To the west, Eurasia overthrusts the NW Kopeh Dagh- South Caspian block, while to the east the polarity of thrusting changes and the Kopeh Dagh

  13. Tectonic Activity and Processes Preceding the Formation of the Dead Sea Fault Zone

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Pilchin, A. N.

    2007-12-01

    Analysis of geological-geophysical data indicates that at the end of the Proterozoic, blocks of the Arabian Shield (AS) were thrust to the north-west onto the crust of the proto-Mediterranean (PM). This was caused by the pushing of oceanic crust from the south-east forming the Najd faults system (NF). This thrusting took place between 630 and 590 Ma, and is confirmed by the offsets between the Yanbu suture of the AS and Allaqi-Sol Hamid suture of the Nubian Shield (NS), the Bi'r Umq suture of AS and Nakasib suture of NS, and parts of the Yanbu and Nabitah sutures of AS. This caused the separation of AS from NS, and AS from the continental crust to north-east of it with its north-western displacement, resulting in opening of the Persian Gulf. This caused the start of deposition of huge amounts of Vendian-Cambrian evaporites in Saudi Arabia, Oman, Persian Gulf, Zagros, central Iran and other regions. The fact of the formation and preservation of the evaporites, and the common similarities in Vendian-Triassic sedimentary cover of Central Iran, Zagros, Taurus, and Arabian Plate (AP) and common Late Proterozoic-Early Paleozioc magmatic activity, show that these regions did not change their position significantly since then. Results of the DESERT project show that the lowermost part of the crust is present east of the Dead Sea Fault Zone (DSFZ), but it is absent west of it. This could be explained by detachment of the bottom part of the crust west of DSFZ during AP thrusting onto the crust of PM. The lithospheric slice discovered by seismic data between Moho and depth of about 55 km in S. Israel could be a remnant of that crust. During the thrusting, the AP overrode the detached slice. The slice was later remelted during formation of the postorogenic magmatic rocks of 590-530 Ma widespread in Jordan. The formation of three dyke swarms in S. Israel (600-540 Ma), widespread dykes in Sinai (590-530 Ma) and AP (590-530 Ma), as well as high-T-low-P metamorphism between 600

  14. Active tectonics and rheology of slow-moving thrusts in the Tibetan foreland of peninsular India

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, Alastair; Gaonkar, Sharad; Avouac, Jean-Philippe; Hollingsworth, James

    2016-04-01

    Peninsular India is cut by active thrust faults that break in earthquakes in response to the compressive force exerted between India and the Tibetan Plateau. The rate of deformation is low, with 2 +/- 1 mm/yr of shortening being accommodated over the entire N-S extent of the Indian sub-continent. However, the large seismogenic thickness in the region (40-50 km), and the long faults, mean that the rare earthquakes that do occur can have magnitudes up to at least 8. This contribution describes studies of two large Indian earthquakes, and their rheological and hazard implications, using a range of techniques. First, the Mw 7.6 Bhuj (Gujarat) earthquake of 2001 is examined using a combination of seismology, InSAR, and levelling data. A slip model for the earthquake will be presented, which allows the material properties of the fault plane to be examined. Second, a Holocene-age earthquake rupture from central India will be discussed. Geomorphic analysis of the scarps produced by the event suggest a magnitude of 7.6 - 8.4. Both of these earthquakes had unusually large stress-drops, amongst the largest recorded for shallow earthquakes. The information provided by these two events will be combined with calculations for the total compressive force being transmitted through the Indian peninsular in order to suggest that the faults are characterised by a low coefficient of friction (approximately 0.1), and that the stress-drops in the earthquakes are close to complete. In turn, these results imply that the majority of the force being transmitted through the Indian plate is supported by the brittle crust. Finally, the along-strike continuation of the faults will be described, with implications for hazard assessment and material properties throughout India.

  15. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  16. Petrogenesis and geodynamic setting of Early Cretaceous mafic-ultramafic intrusions, South China: A case study from the Gan-Hang tectonic belt

    NASA Astrophysics Data System (ADS)

    Qi, Youqiang; Hu, Ruizhong; Liu, Shen; Coulson, Ian M.; Qi, Huawen; Tian, Jianji; Zhu, Jingjing

    2016-08-01

    A study using whole-rock major-trace elements and Sr-Nd isotopes as well as zircon U-Pb dating has been carried out on Early Cretaceous mafic-ultramafic intrusions from the Gan-Hang tectonic belt (GHTB), South China, to understand the origin of mantle sources and the sequential evolution of the underlying Late Mesozoic lithospheric mantle of this area. The study focused on two intrusions, one at Quzhou and the other at Longyou (see Fig. 1). They are primarily composed of mafic-ultramafic rocks with wide range of chemical compositions. The Quzhou mafic rocks have relatively narrow ranges of SiO2 (48.94-51.79 wt%), MgO (6.07-7.21 wt%), Fe2O3 (10.48-11.56 wt%), CaO (8.20-8.81 wt%), and Mg# (51.7-56.5) with relatively low K2O (0.56-0.67 wt%) and Na2O (3.09-3.42 wt%). By contrast, the ultramafic rocks from Longyou have distinct lower SiO2 (41.50-45.11 wt%) and higher MgO (9.05-9.90 wt%), Fe2O3 (12.14-12.62 wt%), CaO (8.64-10.67 wt%), and Mg# (59.5-61.1) with relatively higher K2O (1.32-1.75 wt%) and Na2O (4.53-5.08 wt%). They are characterized by Ocean Island Basalts (OIB)-type trace element distribution patterns, with a significant enrichment of light rare earth elements (LREE), large ion lithophile elements (LILE, i.e., Rb, Ba, K, and Sr) and high field strength elements (HFSE, i.e., Nb, Ta), and slight depletion of Th, U, Ti, and Y. The intrusions exhibit relatively depleted Sr-Nd isotope compositions, with (87Sr/86Sr)i range of 0.7035 to 0.7055 (143Nd/144Nd)i of 0.51264 to 0.51281 and εNd(t) values of + 3.0 to + 6.6. Zircon U-Pb dating of Longyou and Quzhou intrusions yields consistent magma emplacement ages of 129.0 ± 3.9 to 126.2 ± 2.4 Ma, respectively. The dating results are consistent with the peak of extension in Early Cretacerous throughout the Gan-Hang tectonic belt. Their magmas were principally derived from near-solidus partial melting of pyroxenites with different content of silica, and the pyroxenites were resulted from a juvenile SCLM peridotite

  17. Geochemistry, geothermics and relationship to active tectonics of Gujarat and Rajasthan thermal discharges, India

    NASA Astrophysics Data System (ADS)

    Minissale, A.; Chandrasekharam, D.; Vaselli, O.; Magro, G.; Tassi, F.; Pansini, G. L.; Bhramhabut, A.

    2003-09-01

    Most thermal spring discharges of Rajasthan and Gujarat in northwestern India have been sampled and analysed for major and trace elements in both the liquid and associated gas phase, and for 18O/ 16O, D/H (in water), 3He/ 4He and 13C/ 12C in CO 2 (in gas) isotopic ratios. Most thermal springs in Rajasthan are tightly associated to the several regional NE-SW strike-slip faults bordering NE-SW ridges formed by Archaean rocks at the contact with Quaternary alluvial and aeolian sedimentary deposits of the Rajasthan desert. Their Ca-HCO 3 immature character and isotopic composition reveals: (1) meteoric origin, (2) relatively shallow circulation inside the crystalline Archaean formations, (3) very fast rise along faults, and (4) deep storage temperatures of the same order of magnitude as discharging temperatures (50-90°C). Thermal spring discharges in Gujarat are spread over a larger area than in Rajasthan and are associated both with the NNW-SSE fault systems bordering the Cambay basin and the ENE-WSW strike-slip fault systems in the Saurashtra province, west of the Cambay basin. Chemical and isotopic compositions of springs in both areas suggest a meteoric origin of deep thermal waters. They mix with fresh or fossil seawater entering the thermal paths of the spring systems through both the fault systems bordering the Cambay basin, as well as faults and fractures occurring inside the permeable Deccan Basalt Trap in the Saurashtra province. The associated gas phase, at all sampled sites, shows similar features: (1) it is dominated by the presence of atmospheric components (N 2 and Ar), (2) it has high crustal 4He enrichment, (3) it shows crustal 3He/ 4He signature, (4) it has low CO 2 concentration, and (5) the only analysed sample for 13C/ 12C isotopic ratio in CO 2 suggests that CO 2 has a strong, isotopically light organic imprint. All these features and chemical geothermometer estimates of spring waters suggest that any active deep hydrothermal system at the base

  18. Active tectonics, paleoseismology and associated methodological challenges posed by the slow moving Alhama de Murcia fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas; Sharp, Warren D.; Arrowsmith, Ramon; Medialdea, Alicia; Rhodes, Edward

    2016-04-01

    The Alhama de Murcia fault (AMF) is a 87 km-long left-lateral slow moving fault and is responsible for the 5.1 Mw 2011 Lorca earthquake. The characterization of the seismic potential of seismogenic strike-slip slow moving faults is necessary but raises huge methodological challenges, as most paleoseismological and active tectonic techniques have been designed on and for fast moving faults. The AMF is used here as a pilot study area to adapt the traditional geomorphological and trenching analyses, especially concerning the precise quantification of offset channels. We: 1) adapted methodologies to slow moving faults, 2) obtained, for the first time, the slip rate of the AMF, and 3) updated its recurrence period and maximum expected magnitude. Morphotectonic studies aim to use the measured tectonic offset of surface channels to calculate seismic parameters. However, these studies lack a standard criterion to score the analysed features. We improved this by differentiating between subjective and objective qualities, and determining up to three objective parameters (lithological changes, associated morphotectonics and shape, and three shape sub-parameters; all ranging from 0 to 1). By applying this methodology to the AMF, we identified and characterized 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size) Digital Elevation Model (DEM) from a point cloud acquired in 2013 by airborne light detection and ranging (lidar). The identified offsets, together with the ongoing datings, are going to be used to calculate the lateral slip rate of the AMF. In three-dimensional trenches, we measured the offsets of a buried channel by projecting the far-field tendency of the channel onto the fault. This procedure is inspired by the widespread geomorphological procedure and aims to avoid the diffuse deformation in the fault zone associated with slow moving faults. The calculation of the 3D tendency of the channel and its projection onto the fault permitted

  19. Edaphics, active tectonics and animal movements in the Kenyan Rift - implications for early human evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Owenga, Peter; Rucina, Stephen; King, Geoffrey C. P.

    2014-05-01

    The quality of soils (edaphics) and the associated vegetation strongly controls the health of grazing animals. Until now, this has hardly been appreciated by paleo-anthropologists who only take into account the availability of water and vegetation in landscape reconstruction attempts. A lack of understanding the importance of the edaphics of a region greatly limits interpretations of the relation between our ancestors and animals over the last few million years. If a region lacks vital trace elements then wild grazing and browsing animals will avoid it and go to considerable length and take major risks to seek out better pasture. As a consequence animals must move around the landscape at different times of the year. In complex landscapes, such as tectonically active rifts, hominins can use advanced group behaviour to gain strategic advantage for hunting. Our study in the southern Kenya rift in the Lake Magadi region shows that the edaphics and active rift structures play a key role in present day animal movements as well as the for the location of an early hominin site at Mt. Olorgesailie. We carried out field analysis based on studying the relationship between the geology and soil development as well as the tectonic geomorphology to identify 'good' and 'bad' regions both in terms of edaphics and accessibility for grazing animals. We further sampled different soils that developed on the volcanic bedrock and sediment sources of the region and interviewed the local Maasai shepherds to learn about present-day good and bad grazing sites. At the Olorgesailie site the rift valley floor is covered with flood trachytes; basalts only occur at Mt. Olorgesailie and farther east up the rift flank. The hominin site is located in lacustrine sediments at the southern edge of a playa that extends north and northwest of Mt. Olorgesailie. The lakebeds are now tilted and eroded by motion on two north-south striking faults. The lake was trapped by basalt flows from Mt. Olorgesailie

  20. Soils and geomorphic evolution of bedrock facets on a tectonically active mountain front, western Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Menges, Christopher M.

    1990-09-01

    Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20- to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10-30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5-1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene. The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20-60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly

  1. Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Montone, Paola; Pirro, Mario; Boschi, Enzo

    2004-04-01

    In this paper we describe evidence of strong tectonic deformation affecting two aqueducts of Roman age (II-III century A.D.). The channels are located approximately 20 km northeast of Rome along the ancient Via Tiburtina. Brittle and ductile deformation affects these two structures, including extensional joint systems, NE-oriented faults, and horizontal distortion. This deformation is consistent with right-lateral movement on major N-striking faults, and represents the first evidence that tectonic deformation took place in historical times in the vicinity of Rome, with local strike-slip movement superimposed on a regional extensional fault system.

  2. Active tectonic influence on the evolution of drainage and landscape: Geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Malik, Javed N.; Mohanty, C.

    2007-03-01

    The Kangra Re-entrant in the NW Himalaya is one of the most seismically active regions, falling into Seismic Zone V along the Himalaya. In 1905 the area experienced one of the great Himalayan earthquakes with magnitude 7.8. The frontal fault system - the Himalayan Frontal Thrust (HFT) associated with the foreland fold - Janauri Anticline, along with other major as well as secondary hinterland thrust faults, provides an ideal site to study the ongoing tectonic activity which has influenced the evolution of drainage and landscape in the region. The present study suggests that the flat-uplifted surface in the central portion of the Janauri Anticline represents the paleo-exit of the Sutlej River. It is suggested that initially when the tectonic activity propagated southward along the HFT the Janauri Anticline grew along two separate fault segments (north and south faults), the gap between these two fault and the related folds allowed the Sutlej River to flow across this area. Later, the radial propagation of the faults towards each other resulted in an interaction of the fault tips, which caused the rapid uplift of the area. Rapid uplift resulted in the disruption and longitudinal deflection of the Sutlej river channel. Fluvial deposits on the flat surface suggest that an earlier fluvial system flowed across this area in the recent past. Geomorphic signatures, like the sharp mountain fronts along the HFT in some places, as well as along various hinterland subordinate faults like the Nalagarh Thrust (NaT), the Barsar Thrust (BaT) and the Jawalamukhi Thrust (JMT); the change in the channel pattern, marked by a tight incised meander of the Beas channel upstream of the JMT indicate active tectonic movements in the area. The prominent V-shaped valleys of the Beas and Sutlej rivers, flowing across the thrust fronts, with Vf values ranging from <1.0-1.5 are also suggestive of ongoing tectonic activity along major and hinterland faults. This suggests that not only is the HFT

  3. Steady-state bedrock river response to tectonic and lithologic variations across active folds at the northwest Himalayan front

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Barnes, J. B.; Kirby, E.; Pavelsky, T. M.

    2011-12-01

    This study examines the response of bedrock channel gradient and width to differences in substrate erodibility and uplift rate along the flanks of active folds in the northwestern Himalaya foreland. Bedrock rivers are a principle driver of topographic evolution in tectonically active landscapes. Several stream power models have been proposed which equate bedrock river incision (E) to a product of channel gradient (S) and upstream drainage area (A) such that, E=KSmAn, where K, m, and n are constants which depend on dominant erosional processes. These models account for changes in channel width (W, a key influence on river incision) by assuming width scales predictably with upstream drainage area such that, W=kwAb, where kw and b are empirical constants. This relationship is often not valid in areas with varying lithology because channel morphology depends in part on the underlying rock strength. Furthermore, the degree to which steady-state channels respond to changes in substrate erodibility has yet to be well tested. In this study, we explicitly account for channel width variations using new quantitative methods to more accurately constrain river incision potential and its relationship to changes in bedrock erodibility and uplift rate in an active steady-state landscape. We focus on the Chandigarh and Mohand anticlines, two active fault-bend folds in the Siwalik Hills in northwestern India. We use digital topography and high resolution (5 m) satellite images to measure channel widths and gradients over ~100 channels draining both flanks resulting in >100,000 width measurements. We then normalize channel widths and slopes to upstream drainage area yielding two sensitive channel morphometrics: normalized width index (kwn) and normalized steepness index (ksn). Our observations show that both kwn and ksn vary systematically with changes in uplift rate and lithology. For example, at locations where channels cross into an erosionally resistant bedrock lithology, mean

  4. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    strong trust faulting which coincides with the nature of the Van fault. We were currently analysing an archive of over 5000 local events recorded by the KOERI seismic network of over 20 broadband stations between 2010 and 2013 in the whole Van Region. The Van Earthquake initiated and caused an increase in seismic activity of the region. Van Earthquake and its important aftershocks fault mechanism solutions show that the region is under compression and reverse faulting is a result of this regime which is effective on the active compressional tectonics of the region. This study was supported by Bogazici University Research Projects Commission under SRP/BAP project No. 6040.

  5. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  6. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network

    NASA Astrophysics Data System (ADS)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.

    2009-02-01

    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  7. Physical Activity in Different Preschool Settings: An Exploratory Study

    PubMed Central

    Gollhofer, Albert

    2014-01-01

    Introduction. Physical activity (PA) in preschoolers is vital to protect against obesity but is influenced by different early-life factors. The present study investigated the impact of different preschool programs and selected family factors on preschoolers' PA in different countries in an explorative way. Methods. The PA of 114 children (age = 5.3 ± 0.65 years) attending different preschool settings in four cities of the trinational Upper Rhine region (Freiburg, Landau/Germany, Basel/Switzerland, and Strasbourg/France) was measured by direct accelerometry. Anthropometrical and family-related data were obtained. Timetables of preschools were analyzed. Results. Comparing the preschool settings, children from Strasbourg and Landau were significantly more passive than children from Basel and Freiburg (P < .01). With regard to the family context as an important early-life factor, a higher number of children in a family along with the mother's and child's anthropometrical status are predictors of engagement in PA. Conclusion. More open preschool systems such as those in Basel, Freiburg, and Landau do not lead to more PA “per se” compared to the highly regimented desk-based system in France. Preliminaries such as special training and the number of caregivers might be necessary elements to enhance PA. In family contexts, targeted PA interventions for special groups should be more focused in the future. PMID:25089207

  8. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.

    2009-04-01

    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  9. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  10. Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Rodríguez-Lara, Virgilio; Schaaf, Peter; Abrams, Michael

    2004-02-01

    Holocene Pelado, Guespalapa and Chichinautzin monogenetic scoria cones and associated lava flows located within the Sierra del Chichinautzin Volcanic Field (SCVF) at the southern margin of Mexico City were mapped and sampled for mineralogical and chemical analyses. With the exception of Parı´cutin volcano in western Mexico, few scoria cones in the Trans-Mexican Volcanic Belt have ever been sampled in greater detail. Chemical analyses of rocks indicate that mafic products (e.g. Guespalapa and Chichinautzin) from individual volcanoes in the Sierra del Chichinautzin are characterized by substantial chemical variability, whereas high-silica andesite volcanoes (e.g. Pelado) are very uniform in composition. These findings have important bearings for regional tephrochronology. As a whole, rock compositions form a continuous coherent calc-alkaline suite, explicable by polybaric fractional crystallization±assimilation associated with successive stagnation at different depths along the ascent path. Trace element and Sr-Nd isotope analyses point toward a <1-km-scale heterogeneous (enriched/depleted) mantle wedge underneath the SCVF. The recently proposed plume-origin for these rocks is not in accord with our data. Instead, magma origin is discussed in relation to the tectonically complex subduction process of the oceanic Cocos Plate underneath the continental North American Plate.

  11. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  12. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it

  13. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Shi, Xingjun; Wang, Tao; Zhang, Lei; Castro, Antonio; Xiao, XuChang; Tong, Ying; Zhang, Jianjun; Guo, Lei; Yang, Qidi

    2014-11-01

    The Late Paleozoic tectonic setting and location of the southernmost boundary of the Central Asian Orogenic Belt (CAOB) with respect to the Alxa Block or Alxa-North China Craton (ANCC) are debated. This paper presents new geochronological, petrological, geochemical and zircon Hf isotopic data of the Late Paleozoic intrusions from the Shalazhashan in northern Alxa and discusses the tectonic setting and boundary between the CAOB and ANCC. Using zircon U-Pb dating, intrusions can be broadly grouped as Late Carboniferous granodiorites (~ 301 Ma), Middle Permian gabbros (~ 264 Ma) and granites (~ 266 Ma) and Late Permian granodiorites, monzogranites and quartz monzodiorites (254-250 Ma). The Late Carboniferous granodiorites are slightly peraluminous and calcic. The remarkably high zircon Hf isotopes (εHf(t) = + 6-+ 10) and characteristics of high silica adakites suggest that these granodiorites were mainly derived from "hot" basaltic slab-melts of the subducted oceanic crust. The Middle Permian gabbros exhibited typical cumulate textures and were derived from the partial melting of depleted mantle. The Middle Permian granites are slightly peraluminous with high-K calc-alkaline and low εHf(t) values from - 0.9 to + 2.9. These granites were most likely derived from juvenile materials mixed with old crustal materials. The Late Permian granodiorites, monzogranites and quartz monzodiorites are characterized as metaluminous to slightly peraluminous, with variable Peacock alkali-lime index values from calc-alkalic to alkali-calcic. These rocks were mainly derived from juvenile crustal materials, as evidenced by their high εHf(t) values (+ 3.3 to + 8.9). The juvenile sources of the above intrusions in the Shalazhashan are similar to those of the granitoids from the CAOB but distinct from the granitoids within the Alxa Block. These findings suggest that the Shalazhashan Zone belongs to the CAOB rather than the Alxa Block and that its boundary with the Alxa block can be

  14. Tectonic Lessons.

    ERIC Educational Resources Information Center

    Wagner, George

    1997-01-01

    Describes how architects expressed the potential of construction design by designing a British Columbia (Canada) elementary school that blends in with the surrounding natural setting while providing a rich enveloping and animated interior. Photographs and line drawings are provided. (GR)

  15. Compositions of micas in peraluminous granitoids of the eastern Arabian shield - Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites

    USGS Publications Warehouse

    du Bray, E.A.

    1994-01-01

    Compositions and pleochroism of micas in fourteen peraluminous alkali-feldspar granites in the eastern part of the Late Proterozoic Arabian Shield are unlike those of micas (principally biotite) in most calc-alkaline granitoid rocks. Compositions of these micas are distinguished by elevated abundances of Li2O, F, and numerous cations and by low MgO abundances. These micas, constituents of highly evolved rare-metal enriched granitoids, represent an iron-lithium substitution series that ranges from lithium-poor siderophyllite to lithium-rich ferroan lepidolite. The eastern Arabian Shield also hosts six epizonal granitoids that contain colorless micas. Compositions of these micas, mostly muscovite, and their host granitoids are distinct from those of the iron-lithium micas and their host granitoids. Compositions of the analyzed micas have a number of petrogenetic implications. The twenty granitoids containing these micas form three compositional groups that reflect genesis in particular tectonic regimes; mica compositions define the same three groups. The presence of magmatic muscovite in six of these shallowly crystallized granitoids conflicts with experimental data indicating muscovite stability at pressures greater than 3 kbar. Muscovite in the Arabian granitoids probably results from its non-ideal composition; the presence of muscovite cannot be used as a pressure indicator. Finally, mineral/matrix partition coefficients are significantly greater than 1.0 for a number of cations, the rare-earth elements in particular, in many of the analyzed iron-lithium micas. Involvement of these types of micas in partial melting or fractionation processes can have a major influence on silicate liquid compositions. ?? 1994 Springer-Verlag.

  16. The mesoproterozoic Beaverhead impact structure and its tectonic setting, Montana-Idaho: 40Ar/39 and U-Pb isotopic constraints

    USGS Publications Warehouse

    Kellogg, K.S.; Snee, L.W.; Unruh, D.M.

    2003-01-01

    New 40Ar/39Ar and uranium-lead (U-Pb) zircon data from the Beaverhead impact structure, first identified by extensive shatter coning of Proterozoic quartzite and gneiss from the Beaverhead Mountains near the Montana-Idaho border, indicate that the structure formed at or after 900 Ma. The 40Ar/39Ar age spectra from fine-grained muscovite and biotite from a breccia zone in high-grade gneiss show significant argon loss but yield dates for highest-temperature steps that cluster between 899 and 908 Ma. The dated minerals probably formed by recrystallization of impact glass, so on both geologic and isotopic grounds, the dates probably represent the minimum age of impact. U-Pb data for zircons from the same breccia are strongly discordant and yield an upper intercept apparent age of 2464 ?? 56 Ma and a lower intercept apparent age of 779 ?? 69 Ma. Another brecciated gneiss about 7 km to the northeast that does not contain secondary mica does contain zircons that yield a concordant apparent age of 2455 ?? 9 Ma. Nearby gneiss that neither is brecciated nor contains shatter cones yields an apparent age of 2451 ?? 46 Ma. The 40Ar/39Ar results constrain the age of the shatter-coned quartzite and indicate that it is >900 Ma and possibly correlative with the Gunsight Formation of the Mesoproterozoic Lemhi Group. The upper intercept U-Pb age of ???2450 Ma from all three dated samples also shows that the Paleoproterozoic basement rocks of the area are among the youngest in the mostly Archean Wyoming province of North America. The impact site lies near the margin of the province, along the northeast-trending Great Falls tectonic zone, and the relatively young crustal age may reflect Early Proterozoic marginal accretion.

  17. Active strike-slip faulting history inferred from offsets of topographic features and basement rocks: a case study of the Arima Takatsuki Tectonic Line, southwest Japan

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2002-01-01

    Geological, geomorphological and geophysical data have been used to determine the total displacement, slip rates and age of formation of the Arima-Takatsuki Tectonic Line (ATTL) in southwest Japan. The ATTL is an ENE-WSW-trending dextral strike-slip fault zone that extends for about 60 km from northwest of the Rokko Mountains to southwest of the Kyoto Basin. The ATTL marks a distinct topographic boundary between mountainous regions and basin regions. Tectonic landforms typically associated with active strike-slip faults, such as systematically-deflected stream channels, offset ridges and fault scarps, are recognized along the ATTL. The Quaternary drainage system shows progressive displacement along the fault traces: the greater the magnitude of stream channel, the larger the amount of offset. The maximum dextral deflection of stream channels is 600-700 m. The field data and detailed topographic analyses, however, show that pre-Neogene basement rocks on both sides of the ATTL are displaced by about 16-18 km dextrally and pre-Mio-Pliocene elevated peneplains are also offset 16-17 km in dextral along the ATTL. This suggests that the ATTL formed in the period between the development of the pre-Mio-Pliocene peneplains and deflection of the Quaternary stream channels. The geological, geomorphological and geophysical evidence presented in this study indicates that (1) the ATTL formed after the mid-Miocene, (2) the ATTL has moved as a dextral strike-slip fault with minor vertical component since its formation to late Holocene and (3) the ATTL is presently active with dextral slip rates of 1-3 mm/year and a vertical component of >0.3 mm/year. The formation of the ATTL was probably related to the opening of the Japan Sea, which is the dominant tectonic event around Japan since mid-Miocene. The case study of the ATTL provides insight into understanding the tectonic history and relationship between tectonic landforms and structures in active strike-slip faults.

  18. The Ross Orogen and Lachlan Fold Belt in Marie Byrd Land, Northern Victoria Land and New Zealand: implication for the tectonic setting of the Lachlan Fold Belt in Antarctica

    USGS Publications Warehouse

    Bradshaw, J.D.

    2007-01-01

    Correlation of the Cambrian Delamerian Orogen of Australia and Ross Orogen of the Transantarctic Mountains widely accepted but the extension of the adjacent Lachlan Orogen into Antarctica is controversial. Outside the main Ross-Delamerian belt, evidence of this orogeny is preserved at Mt Murphy in Marie Byrd Land and the in Takaka Terrane of New Zealand. In all pre-break- configurations of the SW Pacific, these two areas are far removed from the Ross-Delamerian belt. Evidence from conglomerates in the Takaka Terrane, however, shows that in Late Cambrian times it was adjacent to the Ross Orogen. This indicates major tectonic displacements within Gondwana after the Cambrian and before break-up. The Lachlan Orogen formed in an extensional belt in a supra-subduction zone setting and the Cambrian rocks of Marie Byrd Land and New Zealand are interpreted as parts of a rifted continental ribbon on the outboard side of the Lachlan belt.

  19. Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides), Northern Turkey: A geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Genç, Ş. Can; Tüysüz, Okan

    2010-07-01

    The Lower to Middle Jurassic Mudurnu formation of the Sakarya Zone (Northern Turkey) was deposited in an extensional basin. This unit crops out along the southern Pontide range and consists of marine sedimentary rocks including debris flows, lignite-bearing clastic rocks and Ammonitico Rosso horizons alternating with mafic and felsic volcanic and volcaniclastic rocks. Magmatic rocks of the Mudurnu formation comprise two compositionally different groups; 1) a mafic group including diabase-microgabbro-basaltic lavas and their pyroclastic equivalents, and 2) a felsic group including granite porphyries and felsic pyroclastic rocks. All the magmatic members of the Mudurnu formation are subalkaline and display a calc-alkaline affinity. They are bimodal, with a significant silica gap between the mafic and felsic members with the exception of a few samples. These magmatic rocks display enrichment in LILE and depletion in Nb, Ta, P and Ti, implying a subduction-related magmatic signature. Melting modelling for the mafic rocks indicates that they originated possibly from subcontinental lithospheric mantle (SCLM) composed of spinel lherzolite. ɛNd(i) values (+ 1.5 to + 4.3) imply that the mafic volcanic and hypabyssal rocks were possibly derived from a time-integrated LREE-depleted mantle source. The initial Sr and Nd isotope values, and ɛNd(i) of the felsic hypabyssal rocks are comparable to the mafic ones. The isotope data point to a genetic relationship between the felsic and mafic members. Results obtained from the geochemical modelling of incompatible versus compatible trace elements show that the felsic rocks were derived from the mafic melts by fractional crystallization (FC) process. In the light of their regional geological setting and these geochemical characteristics, we propose that the magmatic rocks of the Mudurnu formation formed in an extensional basin situated on an active and/or just ended subduction zone during the Jurassic period. The Mudurnu formation

  20. The global tectonic pattern

    NASA Astrophysics Data System (ADS)

    Doglioni, Carlo

    1990-07-01

    The relative motion vectors between the lithosphere and the underlying mantle appear to follow global flow lines which can be constructed by linking axes of extension and compression over the Earth's surface. The flow lines for the last 40 Ma are generally WNW-ESE (E-W), with an undulation of an about 15,000 km wavelength, showing a gradual and progressive variation in orientation. The undulation, which is sharper to the east, may reflect the mantle flow around an unstable rotation axis. The westward motion of the lithospheric plates could be interpreted as a result of differential angular velocity induced by the deceleration of the earth's rotation or, in a toroidal field, by the effects induced by lateral heterogeneities both in the lithosphere and in the mantle. In this light, plate tectonics is a consequence of variable decoupling at the base of the lithosphere as a function of mantle anisotropies. Simply stated, when there is compression or transpression between two plates, it is the eastern plate which moves more rapidly westwards relative to the underlying mantle. If there is extension or transtension, it is the western plate that moves faster westwards. Lithospheric subduction, especially if it dips westward, produces an obstacle to the eastward flow of the mantle. This is referred to as the Nail Effect. The eastward roll-back of the subduction hinge due to the mantle push will generate back-arc extension. Subductions following the mantle flow (E or NE-dipping) are associated to thicker thrust belts with huge exposures of basement rocks in the hinterland and shallow foreland basins. The subductions contrasting the mantle flow (W or SW-dipping) are characterized by shallow thrust belts with deep foreland basin and coeval extension in the back. E-dipping subductions are passive responses to actively thrusting plates: the base plate and intra-lithospheric decollements are connected to the surface and can uplift deep rocks. The W-dipping subductions are

  1. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    NASA Astrophysics Data System (ADS)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  2. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  3. Glaciation in a tectonically active environment: Preliminary observations from the Inylchek and Sary-Dzaz Valleys, Kyrgyz Tian Shan

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Beel, C.; Blomdin, R.; Caffee, M. W.; Chen, Y.; Codilean, A.; Goehring, B. M.; Gribenski, N.; Harbor, J.; Hattestrand, C.; Heyman, J.; Ivanov, M.; Kassab, C.; Li, Y.; Petrakov, D.; Rogozhina, I.; Stroeven, A. P.; Usubaliev, R.; Wetzel, H.

    2012-12-01

    The Tian Shan comprises a series of generally east-northeast trending mountain ranges and intermontane basins in Central Asia, formed in response to northward propagation of stresses associated with the India-Asia collision and focused between the Tarim Basin and the Kazakh Shield. These ranges are typically bounded by seismically active reverse or oblique-slip faults occupying reactivated zones of crustal weakness formed during prior deformational episodes. Neogene deformation distributed across the Tian Shan has resulted in some of the world's highest peaks outside the Himalaya, particularly in eastern Kyrgyzstan along the border with China and Kazakhstan. Major glaciers drain these peaks - one of the largest is the glacier that occupies the Inylchek Valley. This glacier is currently the focus of an intensive monitoring effort by Kyrgyz, German and Austrian groups to understand its mass balance in response to climate change, yet not much is known about its response to previous glaciations. Much of the Inylchek Valley lies along the Atbashi-Inylchek fault (also known as the South Tian Shan Suture), a major left-oblique slip fault that forms the southern boundary of the Sary-Dzaz range. Recent thermochronologic work has shown this range to be uplifting rapidly since ca. 2-3 Ma. This portion of the Inylchek Valley is linear but transitions to a southward-trending releasing bend at its western end, forming what has been mapped as a pull-apart basin. This end of the Inylchek Valley contains a moraine complex that we sampled for surface exposure dating by 10Be and 26Al in 2011. Results for both nuclides from two large boulders on this moraine indicate a preliminary age of approximately 20 ka (Lal/Stone scaling). The southern slope of the Sary-Dzaz range is characterized by a series of ridges and terraces spanning ca. 800 m in altitude from the present valley bottom, yet glaciers within the range and their associated deposits are restricted to the uppermost sections of

  4. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  5. Quarternary tectonics, Task 1

    SciTech Connect

    Bell, J.W.

    1993-09-30

    Activities conducted for the evaluation of the geology and seismotectonics stability of Yucca Mountain as a potential site for the underground disposal of high-level radioactive wastes continued. Tasks concerned with quaternary tectonics include: scheduling of photography of Little Skull Mountain area; the collection and dating of rock varnish samples from the 1932 Cedar Mountain earthquake area for carbon 14 AMS and cation-ratio analysis; collection of samples for thermoluminescence dating from the 1932 Cedar Mountain earthquake area; mapping of the northern area of Crater Flat; and surveying of the May 17, 1993 Eureka the Valley earthquake area.

  6. Age and tectonic setting of subsurface plutonic rocks in south Alabama: Implications for igneous activity along the Alleghanian suture

    SciTech Connect

    Guthrie, G.M. ); Steltenpohl, M.G. . Dept. of Geology); Heatherington, A.L. . Dept. of Geology); Kunk, M.J. ); Defant, M.S. . Dept. of Geology); Salpas, P.A. )

    1994-03-01

    The proposed Alleghanian suture between ancestral North America and Suwannee terrane Gondwana crust trends east-west beneath coastal plain sediments from South Carolina to Alabama. Three distinct intrusive suites in south Alabama have been examined to determine their possible relationships with the suture. The first suite consists of rhyolite, andesite, andesitic breccia, and granodiorite and forms the stratigraphic base of the Suwannee terrane. Calc-alkaline metaluminous granodiorite yields a whole-rock depleted mantle Nd model age of 1,023 Ma, a U-Pb zircon crystallization age of 625 Ma, and a [sup 40]Ar/[sup 39]Ar cooling age (ca. 500 C) of ca. 612 Ma. The second suite comprises felsic granophyre, pyroxenite, and diabase. Metaluminous granophyre follows a calc-alkaline trend with pyroxenite. Trace element ratios (Ta/Yb and Rb/Yb+Ta) indicate a volcanic or syn-collisional arc environment. Biotite separates from granodiorite yield a [sup 40]Ar/[sup 39]Ar cooling age (ca. 300 C) of ca. 329 Ma. Pyroxenite and granophyre Nd model ages are 1,062 and 1,090 Ma, respectively. The third suite comprises high-iron quartz-normative tholeiitic diabase, gabbro, and basalt. These rocks have Ta/Yb and Rb/Yb+Ta ratios similar to within plate magmas, and are correlated with the Lower Jurassic North American diabase suite because of geochemical similarities and intrusive contacts with the Upper Triassic-Lower Jurassic Newark Group.

  7. Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    NASA Astrophysics Data System (ADS)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Zucchetti, Márcia; Noce, Carlos; Baltazar, Orivaldo; da Silva, Luiz; Pinto, Claiton

    2001-07-01

    Quadrilátero Ferrífero region. Deformation related to the west-vergent thrust-and-fold belts of the Brasiliano orogeny is recognized at the eastern margin of the Quadrilátero Ferrífero region. Defining structures as Archean, Trans-Amazonian, and Brasiliano in age is still difficult, although it is accepted that the gold-related Archean structures are best preserved in the central and western parts of the Quadrilátero Ferrífero. The principal source for the Rio das Velhas sedimentary rocks was probably the trondhjemite-tonalite-granodiorite crust that formed in multiple episodes after ~3,500 Ma, and was widely metamorphosed and intruded at 2,880-2,850 Ma. Felsic volcanism at 2,772±6 Ma formed the Rio das Velhas greenstone belt. The volcanic succession was a source for some overlying sedimentary rock units, as indicated by the presence of detrital zircons dated at 2,777-2,771 Ma. Strongly foliated granitic plutons range between 2,712+5/-4 and 2,698±18 Ma. The age of gold mineralization is inferred between 2,698 and 2,670 Ma. A metamorphic overprint during the Trans-Amazonian orogeny is estimated at ~2,050 Ma. There is evidence of local isotopic disturbances because of post-Trans-Amazonian tectonic events, at ~1.8-1.7 and 0.6 Ga.

  8. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Deeds, Daniel A.; Kulongoski, Justin T.; Mühle, Jens; Weiss, Ray F.

    2015-02-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (Cre; ∼30 fmol kg-1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1-9 times Cre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10-980 times Cre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20-100 km) suggests that the SAFS potentially emits (0.3- 1) ×10-1 kg CF4 yr-1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 ×104km2 of granitic rock in California is estimated to release (0.019- 3.2) ×10-1 kg CF4 yr-1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial-interglacial transitions.

  9. Magmatic-Tectonic Evolution of Tharsis

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.

    2000-01-01

    The tectonic history of the western hemisphere region of Mars was dominated by the formation of the Tharsis rise. In this study, we identify local centers of tectonic activity and examine how each of the centers fit into the overall evolution of the Tharsis region.

  10. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Yu, Ho-Shing; Chiang, Cheng-Shing; Shen, Su-Min

    2009-03-01

    The sediment dispersal system in southwestern Taiwan margin consists of two main parts: the subaerial drainage basin and the offshore receiving marine basin. In plan view, this sediment dispersal system can be further divided into five geomorphic units: (1) the Gaoping (formerly spelled Kaoping) River drainage basin, (2) the Gaoping (Kaoping) Shelf, (3) the Gaoping (Kaoping) Slope, (4) the Gaoping (Kaoping) Submarine Canyon and (5) the Manila Trench in the northernmost South China Sea. The Gaoping River drainage basin is a small (3250 km 2), tectonically active and overfilled foreland basin, receiving sediments derived from the uprising Central Range of Taiwan with a maximum elevation of 3952 m. The Gaoping Submarine Canyon begins at the mouth of the Gaoping River, crosses the narrow Gaoping Shelf (~ 10 km) and the Gaoping Slope, and finally merges into the northern termination of the Manila Trench over a distance of ~ 260 km. The SW Taiwan margin dispersal system is characterized by a direct river-canyon connection with a narrow shelf and frequent episodic sediment discharge events in the canyon head. In a regional source to sink scheme, the Gaoping River drainage basin is the primary source area, the Gaoping Shelf being the sediment bypass zone and the Gaoping Slope being the temporary sink and the Manila Trench being the ultimate sink of the sediment from the Taiwan orogen. It is inferred from seismic data that the outer shelf and upper slope region can be considered as a line source for mass wasting deposits delivered to the lower Gaoping Slope where small depressions between diapiric ridges are partially filled with sediment or are empty. At present, recurrent hyperpycnal flows during the flood seasons are temporarily depositing sediments mainly derived from the Gaoping River in the head of the Gaoping Submarine Canyon. On the decadal and century timescales, sediments temporarily stored in the upper reach are removed over longer timescales probably by

  11. Investigating Cenozoic climate change in tectonically active regions with a high-resolution atmospheric general circulation model (ECHAM5)

    NASA Astrophysics Data System (ADS)

    Mutz, Sebastian; Ehlers, Todd; Li, Jingmin; Werner, Martin; Stepanek, Christian; Lohmann, Gerrit

    2016-04-01

    Studies of Cenozoic palaeo-climates contribute to our understanding of contemporary climate change by providing insight into analogues such as the Pliocene (PLIO), and by evaluation of GCM (General Circulation Models) performance using the Mid-Holocene (MH) and the Last Glacial Maximum (LGM). Furthermore, climate is a factor to be considered in the evolution of ecology, landscapes and mountains, and in the reconstruction of erosion histories. In this study, we use high-resolution (T159) ECHAM5 simulations to investigate pre-industrial (PI) and the the above mentioned palaeo-climates for four tectonically active regions: Alaska (St. Elias Range), the US Northwest Pacific (Cascade Range), western South America (Andes) and parts of Asia (Himalaya-Tibet). The PI climate simulation is an AMIP (Atmospheric Model Intercomparison Project) style ECHAM5 experiment, whereas MH and LGM simulation are based on simulations conducted at the Alfred Wegner Institute, Bremerhaven. Sea surface boundary conditions for MH were taken from coupled atmosphere-ocean model simulations (Wei and Lohmann, 2012; Zhang et al, 2013) and sea surface temperatures and sea ice concentration for the LGM are based on GLAMAP project reconstructions (Schäfer-Neth and Paul, 2003). Boundary conditions for the PLIO simulation are taken from the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) project and the employed PLIO vegetation boundary condition is created by means of the transfer procedure for the PRISM vegetation reconstruction to the JSBACH plant functional types as described by Stepanek and Lohmann (2012). For each of the investigated areas and time slices, the regional simulated climates are described by means of cluster analyses based on the variability of precipitation, 2m air temperature and the intra-annual amplitude of the values. Results indicate the largest differences to a PI climate are observed for LGM and PLIO climates in the form of widespread cooling and warming

  12. Active Ways to Teach Health Concepts in the Elementary Setting

    ERIC Educational Resources Information Center

    Gregory, Julie

    2015-01-01

    This article provides three movement-based activities for teaching health concepts to elementary school students. Two activities focus on nutrition concepts and the other focuses on teaching body systems. Diagrams are provided to show the setup of activities, as well as links for accessing materials to help implement the activities.

  13. Tectonic Puzzles.

    ERIC Educational Resources Information Center

    Caballero, Julio Faustino; Harris, Delphia F.

    1996-01-01

    Presents an activity that uses the study of earthquakes to provide a rich educational experience to reinforce and expand students' knowledge of the structure of the Earth, provide an application of physics concepts such as force and energy, and present these topics integrated with a unit on mathematics. (JRH)

  14. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  15. Project ACE Activity Sets. Book I: Grades 3, 4, and 5.

    ERIC Educational Resources Information Center

    Eden City Schools, NC.

    Eleven activity sets suitable for supplementing social studies units in grades 3, 4, and 5 are presented. Each set lists appropriate resources, concepts, general objectives and instructional objectives for each activity within the set. Grade 3 sets are "You Can Help Conserve Our Natural Resources,""Urban Decay and Urban…

  16. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    , are mostly seen at the NE part of the study region. We observe several knick points along the longitudinal channel profiles that mostly fits to the surface trace of the OF. The existence of multiple knick points along the same channel profiles on the southwestern sections of the fault are interpreted to be the result of multiple parallel/sub-parallel branches of the OF in this region. The integrated preliminary results of all applied methods indicate the evidence of a stronger deformation at the northeastern part of the OF, in addition to the OB section. The deformation significantly diffuses to the southwest of the OB, where the main fault bifurcates into several branches. In order to explain the distribution of the deformation style along the OF, we suggest three hypotheses: (a) the OF is confined within a very narrow zone in its most northeastern parts, and the total strain is distributed at its southwestern section (especially to the southwest of the OB), (b) The high asymmetric values, calculated at the northeastern OF, are mainly affected by another major tectonic structure, the North Anatolian Shear Zone, at this region or (c) the combined effect of these two settings. Our further studies, which will include the analyzing the lithological properties of drainage basins, detailed fault mapping, and understanding the cumulative horizontal slip by constructing and comparing the pseudo-palaeotopography at both sides of the fault, are going to provide more detailed information on the activity and the style of deformation along the OF. This study is supported by TÜBİTAK project no. 114Y227. References -AFAD, 2013, Son 48 saatte 48 deprem (48 earthquakes at the last 48 hours) http://www.afad.gov.tr/TR/HaberDetay.aspx?IcerikID=1511&ID=12, Volume 2013. -Aktuǧ, B., Dikmen, Ü., Doǧru, A., and Özener, H., 2013, Seismicity and strain accumulation around Karliova Triple Junction (Turkey): Journal of Geodynamics, v. 67, no. 0, p. 21-29. -Şengör, A. M. C., Görür, N

  17. A tectonically controlled basin-fill within the Valle del Cauca, West-Central Colombia

    SciTech Connect

    Rine, J.M.; Keith, J.F. Jr.; Alfonso, C.A.; Ballesteros, I.; Laverde, F.; Sacks, P.E.; Secor, D.T. Jr. ); Perez, V.E.; Bernal, I.; Cordoba, F.; Numpaque, L.E. )

    1993-02-01

    Tertiary strata of the Valle del Cauca reflect a forearc/foreland basin tectonic history spanning a period from pre-uplift of the Cordillera Central to initiation of uplift of the Cordillera Occidental. Stratigraphy of the Valle del Cauca begins with Jurassic-Cretaceous rocks of exotic and/or volcanic provenance and of oceanic origin. Unconformably overlying these are Eocene to Oligocene basal quartz-rich sandstones, shallow marine algal limestones, and fine-grained fluvial/deltaic mudstones and sandstones with coalbeds. These Eocene to Oligocene deposits represent a period of low tectonic activity. During late Oligocene to early Miocene, increased tectonic activity produced conglomeratic sediments which were transported from east to west, apparently derived from uplift of the Cordillera Central, and deposited within a fluvial to deltaic setting. East-west shortening of the Valle del Cauca basin folded the Eocene to early Miocene units, and additional uplift of the Cordillera Central during the later Miocene resulted in syn-tectonic deposition of alluvial fans. After additional fold and thrust deformation of the total Eocene-Miocene basin-fill, tectonic activity abated and Pliocene-Quaternary alluvial and lacustrine strata were deposited. Within the framework of this depositional and tectonic history of the Valle del Cauca, hydrocarbon exploration strategies can be formulated and evaluated.

  18. Tectonic models for Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, D. W.

    2006-01-01

    Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.

  19. An Introductory Set of Activities Designed to Facilitate Successful Combinatorial Enumeration for Undergraduate Students

    ERIC Educational Resources Information Center

    Lockwood, Elise; Swinyard, Craig A.

    2016-01-01

    In this paper, we present a set of activities for an introduction to solving counting problems. These activities emerged from a teaching experiment with two university students, during which they reinvented four basic counting formulas. Here we present a three-phase set of activities: orienting counting activities; reinvention counting activities;…

  20. Provenance and tectonic setting of middle-upper Devonian sandstones in the Qinling Orogen (Shanyang area): New insights from geochemistry, heavy minerals and tourmaline chemistry

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Wang, Hua; Huang, Chuanyan; Yang, Shuiyuan; Song, Guangzeng

    2016-10-01

    Devonian sandstones in the Shanyang area crop out in the southern part of the Qinling Orogenic Belt. Geochemical analyses show that the sandstones are enriched in Zr and have high Th/U and Rb/Sr ratios indicating the sandstones underwent repeated recycling. Zircon, tourmaline, apatite, rutile and anatase are the predominant heavy minerals while minor minerals include spinel, pyroxene, ilmenite and magnetite. The mineral compositions of detrital tourmaline grains indicate that the alkali compositional subgroup dominates; schorl and dravite are the main tourmaline species. A tourmaline composition environment discrimination diagram shows that about 70% grains are consistent with metapelite, metapsammite, and calc-silicates sources and about 30% of grains are from granitoids and associated pegmatites, and aplites. Metamorphic and granitic rocks in the Qinling Complex area are potential provenance. Overall data from geochemistry, heavy minerals and tourmaline chemistry suggests the Devonian sandstones were extensively recycled in a foreland basin setting rather than at a passive continental margin.

  1. Tectonic Setting and Characteristics of Natural Fractures in Mesaverde and Dakota Reservoirs of the San Juan Basin, New Mexico and Colorado

    SciTech Connect

    LORENZ, JOHN C.; COOPER, SCOTT P.

    2001-01-01

    A set of vertical extension fractures, striking N-S to NNE-SSW but with local variations, is present in both the outcrop and subsurface in both Mesaverde and Dakota sandstones. Additional sets of conjugate shear fractures have been recognized in outcrops of Dakota strata and may be present in the subsurface. However, the deformation bands prevalent locally in outcrops in parts of the basin as yet have no documented subsurface equivalent. The immature Mesaverde sandstones typically contain relatively long, irregular extension fractures, whereas the quartzitic Dakota sandstones contain short, sub-parallel, closely spaced, extension fractures, and locally conjugate shear planes as well. Outcrops typically display secondary cross fractures which are rare in the subsurface, although oblique fractures associated with local structures such as the Hogback monocline may be present in similar subsurface structures. Spacings of the bed-normal extension fractures are approximately equal to or less than the thicknesses of the beds in which they formed, in both outcrop and subsurface. Fracture intensities increase in association with faults, where there is a gradation from intense fracturing into fault breccia. Bioturbation and minimal cementation locally inhibited fracture development in both formations, and the vertical limits of fracture growth are typically at bedding/lithology contrasts. Fracture mineralizations have been largely dissolved or replaced in outcrops, but local examples of preserved mineralization show that the quartz and calcite common to subsurface fractures were originally present in outcrop fractures. North-south trending compressive stresses created by southward indentation of the San Juan dome area (where Precambrian rocks are exposed at an elevation of 14,000 ft) and northward indentation of the Zuni uplift, controlled Laramide-age fracturing. Contemporaneous right-lateral transpressive wrench motion due to northeastward translation of the basin was both

  2. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data

    PubMed Central

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side. PMID:23240075

  3. Active geodynamics of the central Mediterranean Sea: Tensional tectonic evidences in western Sicily from mantle-derived helium

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Favara, R.; Italiano, F.; Nuccio, P. M.; Paonita, A.; Rizzo, A.

    2005-02-01

    We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2-3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.

  4. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  5. Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying

    NASA Astrophysics Data System (ADS)

    Giammanco, Salvatore; Melián, Gladys; Neri, Marco; Hernández, Pedro A.; Sortino, Francesco; Barrancos, José; López, Manuela; Pecoraino, Giovannella; Perez, Nemesio M.

    2016-02-01

    This work presents the results of an extensive geochemical survey aimed at measuring soil CO2 effluxes and soil temperatures over a large portion of Mt. Etna's summit area, coupled with an updated structural survey of the same area. The main goals of this study were i) to find concealed or hidden volcano-tectonic structures in the studied area by detecting anomalous soil gas emissions, ii) to investigate the origin of the emitted gas and the mechanism of gas and heat transport to the surface, iii) to produce a structural model based both on the surface geology and on the soil gas data and, lastly, iv) to contribute to the assessment of hazard from slope failure and crater collapses at Mt. Etna. The results revealed many concealed structural lines that followed the major directions of structural weakness in the summit area of Mt. Etna, mostly due to a combined action of gravitational spreading of the volcano and magma intrusions. Both recent and old volcano-tectonic lines were found to act as pathways for the leakage of magmatic gases to the surface. An important role in driving magmatic gases to the surface is also played by fracturing and faulting due to caldera-forming collapses and smaller crater collapses. Correlation between soil CO2 emissions and soil temperature allowed discriminating areas of active shallow hydrothermal circulation along deep fractures (characterized by high values of both parameters, but mostly soil temperature) from those affected by undeveloped fractures that did not reach the surface (characterized by high CO2 emissions at low temperature). The former corresponded to weak zones of the volcano edifice that were frequently site of past eruptions, indicating that those areas keep a high potential for future opening of eruptive fissures. The latter were likely related to sites where new eruptive fissures may open in the near future due to backward propagation of extensional tectonic stress.

  6. 75 FR 31749 - International Standard-Setting Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... the speed of the Codex standard-setting process, consider the Codex Strategic Plan and the capacity of... of a proposal for a re-evaluation process of substances in light of new data and new scientific... guidelines for the production, processing, labeling and marketing of organically produced foods (CAC/ GL...

  7. Stars and Planets: A New Set of Middle School Activities

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.

    2002-01-01

    A set of lesson plans for grades 6-8 which deal with the sizes and distances of stars and planets using a scale factor of 1 to 10 billion, the life cycle of stars, and the search for planets beyond the solar system. Additional information is contained in the original extended abstract.

  8. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  9. Global vision systems regulatory and standard setting activities

    NASA Astrophysics Data System (ADS)

    Tiana, Carlo; Münsterer, Thomas

    2016-05-01

    A number of committees globally, and the Regulatory Agencies they support, are active delivering and updating performance standards for vision system: Enhanced, Synthetic and Combined, as they apply to both Fixed Wing and, more recently, Rotorcraft operations in low visibility. We provide an overview of each committee's present and past work, as well as an update of recent activities and future goals.

  10. Activity Settings and Daily Routines in Preschool Classrooms: Diverse Experiences in Early Learning Settings for Low-Income Children.

    PubMed

    Fuligni, Allison Sidle; Howes, Carollee; Huang, Yiching; Hong, Sandra Soliday; Lara-Cinisomo, Sandraluz

    2012-06-01

    This paper examines activity settings and daily classroom routines experienced by 3- and 4-year-old low-income children in public center-based preschool programs, private center-based programs, and family child care homes. Two daily routine profiles were identified using a time-sampling coding procedure: a High Free-Choice pattern in which children spent a majority of their day engaged in child-directed free-choice activity settings combined with relatively low amounts of teacher-directed activity, and a Structured-Balanced pattern in which children spent relatively equal proportions of their day engaged in child-directed free-choice activity settings and teacher-directed small- and whole-group activities. Daily routine profiles were associated with program type and curriculum use but not with measures of process quality. Children in Structured-Balanced classrooms had more opportunities to engage in language and literacy and math activities, whereas children in High Free-Choice classrooms had more opportunities for gross motor and fantasy play. Being in a Structured-Balanced classroom was associated with children's language scores but profiles were not associated with measures of children's math reasoning or socio-emotional behavior. Consideration of teachers' structuring of daily routines represents a valuable way to understand nuances in the provision of learning experiences for young children in the context of current views about developmentally appropriate practice and school readiness.

  11. Activity Settings and Daily Routines in Preschool Classrooms: Diverse Experiences in Early Learning Settings for Low-Income Children

    PubMed Central

    Fuligni, Allison Sidle; Howes, Carollee; Huang, Yiching; Hong, Sandra Soliday; Lara-Cinisomo, Sandraluz

    2011-01-01

    This paper examines activity settings and daily classroom routines experienced by 3- and 4-year-old low-income children in public center-based preschool programs, private center-based programs, and family child care homes. Two daily routine profiles were identified using a time-sampling coding procedure: a High Free-Choice pattern in which children spent a majority of their day engaged in child-directed free-choice activity settings combined with relatively low amounts of teacher-directed activity, and a Structured-Balanced pattern in which children spent relatively equal proportions of their day engaged in child-directed free-choice activity settings and teacher-directed small- and whole-group activities. Daily routine profiles were associated with program type and curriculum use but not with measures of process quality. Children in Structured-Balanced classrooms had more opportunities to engage in language and literacy and math activities, whereas children in High Free-Choice classrooms had more opportunities for gross motor and fantasy play. Being in a Structured-Balanced classroom was associated with children’s language scores but profiles were not associated with measures of children’s math reasoning or socio-emotional behavior. Consideration of teachers’ structuring of daily routines represents a valuable way to understand nuances in the provision of learning experiences for young children in the context of current views about developmentally appropriate practice and school readiness. PMID:22665945

  12. Activity Settings and Daily Routines in Preschool Classrooms: Diverse Experiences in Early Learning Settings for Low-Income Children

    ERIC Educational Resources Information Center

    Fuligni, Allison Sidle; Howes, Carollee; Huang, Yiching; Hong, Sandra Soliday; Lara-Cinisomo, Sandraluz

    2012-01-01

    This paper examines activity settings and daily classroom routines experienced by 3- and 4-year-old low-income children in public center-based preschool programs, private center-based programs, and family child care homes. Two daily routine profiles were identified using a time-sampling coding procedure: a High Free-Choice pattern in which…

  13. Input of UAV, DTM photo-interpretation and SAR interferometry on active tectonics applied on the Southern Coastal Range (SE Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Magalhaes, Samuel; Serries, Gregory

    2016-04-01

    Taiwan is an excellent geomorphic laboratory where both extreme climatic events and high active tectonics compete. Moreover many Earth Sciences and Environmental data bases exist nowadays that help to better constrain both structural geology and active deformations. The latter unfortunately is still poorly known in the Cosatal Range of E.Taiwan in terms of geology due to access difficulties, high relief, paucity of roads, tropical vegetation and high climatic events (typhoons and heavy rainfall) and so on. Indirect methods such as photogrammetric survey using UAV's helps a lot to get high resolution topographic DEM and DTM, better than 10cm in planimetry, that helps a lot to get through careful photo-interpretation, a bird's eye view of the geology. Therefore we were able to much update the famous pre-existing geological maps (Wang and Chen, 1993). Moreover, by combining our high resolution topographic results with those of SAR interferometry (database of Champenois et al, EPSL, 2012), we were able to identify, characterise and quantify the differential active features toward the LOS of the Coastal Range (eastern Taiwan). In order to synthetise and to model the deformation of that famous place, we herein constructed more than 500 parallel projected profiles in order to locate, characterize and quantify the active tectonic features and compare them to the topography and the updated photo-interpreted geology (this work). We then were able to reconstruct the structural geometry of the Coastal Range and the Longitudinal Valley in SE Taiwan. Among our results, we reveal and prove : 1. the whole 2cm differential surrection of the Coastal Range ; 2. the differential displacement between both Central and Coastal Ranges ; 3. we explain the location of the Pinantashi river situated within the Lichi melange that correspond to the maximum surrection of the Coastal Range ; 4. we reveal the different units and their relative displacement within the Coastal Range itself ; 5. we

  14. Identification of paleoearthquakes based on geomorphological evidence and their tectonic implications for the southern part of the active Anqiu-Juxian fault, eastern China

    NASA Astrophysics Data System (ADS)

    Jiao, Qisong; Jiang, Wenliang; Zhang, Jingfa; Jiang, Hongbo; Luo, Yi; Wang, Xin

    2016-12-01

    This study utilized an unmanned aerial vehicle (UAV) photogrammetry system to acquire orthoimages and generate a digital elevation model (DEM) covering the southern part of the Anqiu-Juxian fault for geomorphological analysis and paleoearthquake identification. Six offset gullies were identified and analyzed on the orthoimages. Our results indicate that at least three large and several moderate earthquakes have occurred along the fault zone. Knickpoints recognized from the DEM reveal several paleoearthquakes. An average Holocene horizontal slip rate of 2.86 ± 0.35 mm yr-1 was estimated from the offset gullies, which is consistent with previous results from field surveys. The tectonic evolution of this fault zone is most likely related to subduction of the Pacific plate under the Eurasian plate, which gave rise to the right-lateral strike-slip and thrust movement of the Tan-Lu fault zone. This study provided valuable information regarding fault activity and paleoearthquake occurrence along the Anqiu-Juxian fault zone during the Holocene and demonstrated the potential of using UAVs for studies involving tectonic geomorphology.

  15. Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Kanamori, Hiroo; Stock, Joann; Cormier, Marie-Helene; Legg, Mark

    2014-03-01

    Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent-ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific-North America Plate boundary motion today is concentrated on continental fault systems well to the east, and this region of oceanic crust is generally thought to be within the rigid Pacific Plate. Yet, the 2012 December 14 Mw 6.3 earthquake that occurred about 275 km west of Ensenada, Baja California, Mexico, is evidence for continued tectonism in this oceanic part of the Pacific Plate. The preferred main shock centroid depth of 20 km was located close to the bottom of the seismogenic thickness of the young oceanic lithosphere. The focal mechanism, derived from both teleseismic P-wave inversion and W-phase analysis of the main shock waveforms, and the 12 aftershocks of M ˜3-4 are consistent with normal faulting on northeast striking nodal planes, which align with surface mapped extensional tectonic trends such as volcanic features in the region. Previous Global Positioning System (GPS) measurements on offshore islands in the California Continental Borderland had detected some distributed Pacific and North America relative plate motion strain that could extend into the epicentral region. The release of this lithospheric strain along existing zones of weakness is a more likely cause of this seismicity than current thermal contraction of the oceanic lithosphere or volcanism. The main shock caused weak to moderate ground shaking in the coastal zones of southern California, USA, and Baja California, Mexico, but the tsunami was negligible.

  16. 40 CFR 35.3540 - Requirements for funding set-aside activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Requirements for funding set-aside... Requirements for funding set-aside activities. (a) General. If a State makes a grant or enters into a cooperative agreement with an assistance recipient to conduct set-aside activities, the recipient must...

  17. 40 CFR 35.3540 - Requirements for funding set-aside activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Requirements for funding set-aside... Requirements for funding set-aside activities. (a) General. If a State makes a grant or enters into a cooperative agreement with an assistance recipient to conduct set-aside activities, the recipient must...

  18. Geomorphology, tectonics, and exploration

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  19. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting

    NASA Astrophysics Data System (ADS)

    Zheng, Jiahao; Mao, Jingwen; Chai, Fengmei; Yang, Fuquan

    2016-09-01

    The geochronology and geochemistry of granitoids in the Eastern Tianshan, NW China provide important constraints on the timing of iron mineralization, as well as in understanding evolution history of the southern Central Asian Orogenic Belt (CAOB). Here we present results from a detailed study on granitoid rocks from the Cihai iron ore district in the Beishan region, southern part of the Eastern Tianshan. The granitoid rocks are composed of granodiorite, quartz monzonite, granite, and monzonite. Zircon U-Pb analyses yielded the ages of 294.1 ± 2.2 Ma, 286.5 ± 0.7 Ma, 284.3 ± 3.3 Ma, and 265.6 ± 3.0 Ma, respectively, suggesting they were formed in Early-Middle Permian. Among these granitoid rocks, the ages of quartz monzonite and granite are close to the timing of iron mineralization ( 282 Ma), indicating they may provide a source of iron in the Cihai ore district. Geochemically, the granodiorite, granite, and quartz monzonite samples are characterized by high FeOt/(FeOt + MgO) and Ga/Al ratios (0.84-0.94 and 2.28-3.27, respectively), as well as high zircon saturation temperatures (781-908 °C), similar to those of typical A-type granitoids. Isotopically, they display consistently depleted Hf isotopic compositions (εHf(t) = + 1.18 to + 15.37). Geological, geochemical, and isotopic data suggest that the Cihai A-type granitoids were derived from melting of juvenile lower crust. Some Early Permian A-type granitoids were recently identified in the Tarim and Eastern Tianshan with the ages between 294 and 269 Ma. The A-type granitoids in the Eastern Tianshan formed earlier between 294-284 Ma and exhibit characteristics of A2 type granitoids, whereas the A-type granitoids in the Tarim formed later between 277-269 Ma and show A1 granitoids affinity. We suggest that the Permian Tarim mantle plume does not account for the formation of the A-type granitoids in the Eastern Tianshan area, and the Eastern Tianshan was in a non-plume tectonic setting during Early Permian time

  20. Geochemistry of the metavolcanic rocks in the vicinity of the MacLellan Au-Ag deposit and an evaluation of the tectonic setting of the Lynn Lake greenstone belt, Canada: Evidence for a Paleoproterozoic-aged rifted continental margin

    NASA Astrophysics Data System (ADS)

    Glendenning, Michael W. P.; Gagnon, Joel E.; Polat, Ali

    2015-09-01

    The Paleoproterozoic (ca. 1900 Ma) Lynn Lake greenstone belt of northern Manitoba, Canada, has been previously characterized as comprising a series of tectonically juxtaposed intra-oceanic-derived metavolcanic rocks. The results of more recent local and regional studies, however, support a significant contribution of continental crust during formation of the metasedimentary, metavolcanic, and intrusive igneous rocks that comprise the majority of the Lynn Lake greenstone belt. The tectonic model previously proposed for the Lynn Lake greenstone belt, however, did not consider the geodynamics of the Lynn Lake greenstone belt in the context of all available data. In this study, we report the results of outcrop mapping and petrographic analysis, as well as major, minor, and trace element geochemical analyses for 54 samples from the Northern terrane, and integrate and compare the results with data from previously published studies. These data are used to recharacterize the metavolcanic rocks and to develop a new geodynamic model for the formation of the Lynn Lake greenstone belt. Ultramafic to intermediate rocks in the vicinity of the MacLellan Au-Ag deposit are characterized primarily by E-MORB-like trace element characteristics and Th-Nb-La systematics, which are interpreted to be the result of a primary, plume-derived melt interacting with continental lithosphere at a thinned (i.e., rifted) continental margin. Similarly, the majority of the mafic to intermediate rocks that comprise the Lynn Lake greenstone belt are characterized by flat to E-MORB-like trace element patterns and Th-Nb-La systematics, which are consistent with mantle plume-derived, contaminated, oceanic continental rift or rifted margin setting rocks. This study suggests that the metavolcanic rocks of the Lynn Lake greenstone belt were derived via rifting between the Superior and Hearne Cratons, which resulted in the formation and growth of the Manikewan Ocean. Alternatively, the metavolcanic rocks

  1. The provenance and tectonic setting of the Lower Devonian sandstone of the Danlin Formation in southeast Yangtze Plate, with implications for the Wuyi-Yunkai orogeny in South China Block

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Ye, Taiping; Li, Shuangcheng; Yuan, Guohua; Dai, Chuangu; Zhang, Hui; Ma, Yibo

    2016-12-01

    The South China Block was subject to widespread tectonic and magmatic events during the middle Ordovician to earliest Devonian which are collectively called the Wuyi-Yunkai orogeny. Two different hypotheses were formulated about the origin of the orogeny: collisional orogenesis and intracontinental orogenesis. Ages of 215 detrital zircons were obtained from quartz sandstones in the Lower Devonian Danlin Formation exposed in Dushan County, south Guizhou Province. The results show that the detrital zircons came from multiple source areas but with little indication of the Wuyi-Yunkai orogeny. The detrital zircons of early Paleozoic age account only for 1.9% of all samples. These zircons range from 476 to 402 Ma and originated from the early Paleozoic granites situated east of Dushan County. The mean 206Pb/238U age of the two youngest detrital zircons was 404 Ma, which constrains the maximum depositional age of the Danlin Formation. The detrital zircons are mostly within Neoproterozoic age (59.5%) and in the range 997 to 557 Ma. The zircon age pattern, morphology, and trace element characteristics combined with paleogeographic reconstruction interpret that these detrital zircons were supplied from igneous rocks in the Neoproterozoic Sibao and Danzhou Groups within the west Jiangnan orogen to the east of the study area. Mesoproterozoic zircons made up 20.9% of the grains and range from 1569 to 1055 Ma; the ages of most of these zircons coincide with those of zircons indicating the Grenvillian orogeny (1300-1000 Ma) in the Cathaysia Plate. The detrital zircon age data reveal that the study area was located in an intracontinental tectonic setting, both before and after the Wuyi-Yunkai orogeny. Therefore, the Cathaysia Plate was not separated from the Yangtze Plate by an ocean and the study area received sediments primarily from the Cathaysia Plate located to the southeast since the middle Ordovician. By the early Devonian, the sediments were supplied by the west Jiangnan

  2. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M.

    2010-10-01

    The Late Paleozoic to Triassic tectonics of northwestern South America have major implications for the understanding of Laurentia-Gondwana interactions that formed Pangea, and the origin of several tectonostratigraphic terranes dispersed by the break-up of this supercontinent during the formation of the Caribbean. Two mylonitic and orthogneissic granitoid suites have been recognized in the northeastern segment of the Sierra Nevada de Santa Marta, the lower Magdalena basin and the Guajira Serranias, within the Caribbean region of Colombia. For the Santa Marta region U/Pb LAM-ICP-MS analysis yielded zircon crystallization ages of 288.1 ± 4.5 Ma, 276.5 ± 5,1 Ma and 264.9 ± 4.0 Ma, related to the magmatic intrusion. Geochemical and modal variations show a compositional spectrum between diorite and granite, whereas LREE enrichment, Ti and Nb anomalies and geochemical discrimination suggest that this granitoid suite was formed within a magmatic arc setting. Inherited zircons suggest that this Early Permian plutonism was formed with the participation of Neoproterozoic and Grenvillian basement proximal to the South American continent. Evidence of a superimposed Early Triassic (ca. 250 Ma) deformational event in Santa Marta, together with a well defined S-type magmatism in the basement rocks from the adjacent lower Magdalena Valley and Guajira Peninsula regions are related to a major shift in the regional tectonic evolution. It's envisioned that this event records either terrane accretion or strong plate coupling during the final stages of Pangea agglutination. Connections with the main Alleghanian-Ouachitan Pangean orogen are precluded due to their timing differences. The plutons temporally and compositionally correlate with an arc found in the northern Andes and Mexican Gondwana terranes, and represent a broader magmatic event formed at the proto-Pacific margin, outside the nucleus of the Laurentia-Gondwana Alleghanian-Oachitan orogens. Evidence of lower temperature

  3. Congruence Extended: A Setting for Activity in Geometry

    ERIC Educational Resources Information Center

    Spitler, Gail; Weinstein, Marian

    1976-01-01

    An activity-based unit on congruence and similarity is described. The themes underlying the unit are the usefulness of analogy in determining mathematical principles, and the notion that the number of conditions imposed on figures affects the number of factors which must be specified to insure congruence or similarity. (SD)

  4. Setting the Stage for Physical Activity for Secondary Students

    ERIC Educational Resources Information Center

    Ciccomascolo, Lori; Riebe, Deborah

    2006-01-01

    Despite the positive long-term physiological and psychological effects of exercise, many young adults between the ages of 12 and 21 years do not participate in regular physical activity. With the time constraints and other challenges in teaching and assessing students, physical educators need realistic strategies that will help in their efforts to…

  5. Predicting Physical Activity Promotion in Health Care Settings.

    ERIC Educational Resources Information Center

    Faulkner, Guy; Biddle, Stuart

    2001-01-01

    Tested the theory of planned behavior's (TPB) ability to predict stage of change for physical activity promotion among health professionals. Researchers measured attitudes, subjective norms, intentions, perceived behavioral control, and stage of change, then later reassessed stage of change. TPB variables of attitude, subjective norms, perceived…

  6. Astrophysical Cause of Tectonics

    NASA Astrophysics Data System (ADS)

    Mensur, O.

    2016-05-01

    Tectonic earthquakes, of Mw (6 ± 5%)+, are found forming a strengthening-peaking-waning pattern distinguishable from respectively quiescent times so well that the pattern means discovery of a universal natural mechanism that necessitates expanding on classical physics. The pattern is seen only during Earth's alignments to two other heavenly bodies in our solar system lasting for more than 3 days. This empirical proof of astrophysical origins of seismotectonics is immediately obvious and verifiable. The find is consequential due to sheer size of processes and energies involved in defining the pattern that now enables all-or-nothing negative forecasting by foretelling dates without strong quakes. Near co-planarity of a solar system's planets, which is for our solar system typically regarded an oddity, is in fact a necessary condition for active geophysics as a life system.

  7. Tectonics on Triton

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    Tectonic features on Triton have been mapped as part of a larger study of the geology of Triton. Few purely tectonic structures are found on Triton: some grabens and possibly some compressive ridges. However, most of the other structures seen (primarily cryovolcanic in origin) exhibit tectonic control. A regional tectonic network has the following dominant orientations: N-S, E-W, NE-SW, and NW-SE. Most of the orientations are consistent with tidal deformations related to Triton's decreasing orbital radius. Localized quasi-concentric patterns may be due to interior processes such as mantle plumes.

  8. Tectonic features on Titan

    NASA Astrophysics Data System (ADS)

    Cook, C.; Barnes, J.

    2011-10-01

    This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display known stress fields driven or modified by global forces which affect patterns of tectonism. Patterns such as these are seen in Europa's tidal forces, Enceladus' tiger strips, and Ganymede's global expansion. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays visible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored Virgae.

  9. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    USGS Publications Warehouse

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4