Science.gov

Sample records for active tectonic structure

  1. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  2. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Wagner, Lara S.; Fischer, Karen M.; Hawman, Robert B.

    2016-05-01

    The lithospheric structure of the Southeastern United States is a product of earlier episodes of continental collision and breakup. The region is located in the interior of the North American Plate, away from active plate margins. However, there is ongoing tectonism in the region with multiple zones of seismicity, uplifting arches, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the state of stress remain enigmatic. Two important factors are plate strength and preexisting, inherited structures. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Examples include the relatively thick lithospheric mantle of stable North America that abruptly thins beneath the Paleozoic Appalachian orogeny, and the slow upper mantle of the Proterozoic Reelfoot rift. Our results also indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. This provides a viable explanation for seismicity, uplifting, and young intraplate volcanism. We postulate that not only tectonic inheritance but also continuing lithospheric foundering may control the ongoing activity of the region long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  3. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  4. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  5. Quaternary active tectonic structures in the offshore Bajo Segura basin (SE Iberian Peninsula - Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Perea, H.; Gràcia, E.; Alfaro, P.; Bartolomé, R.; Lo Iacono, C.; Moreno, X.; Masana, E.; Event-Shelf Team

    2012-10-01

    The Bajo Segura fault zone (BSFZ) is the northern terminal splay of the Eastern Betic shear zone (EBSZ), a large left-lateral strike-slip fault system of sigmoid geometry stretching more than 450 km from Alicante to Almería. The BSFZ extends from the onshore Bajo Segura basin further into the Mediterranean Sea and shows a moderate instrumental seismic activity characterized by small earthquakes. Nevertheless, the zone was affected by large historical earthquakes of which the largest was the 1829 Torrevieja earthquake (IEMS98 X). The onshore area of the BSFZ is marked by active transpressive structures (faults and folds), whereas the offshore area has been scarcely explored from the tectonic point of view. During the EVENT-SHELF cruise, a total of 10 high-resolution single-channel seismic sparker profiles were obtained along and across the offshore Bajo Segura basin. Analysis of these profiles resulted in (a) the identification of 6 Quaternary seismo-stratigraphic units bounded by five horizons corresponding to regional erosional surfaces related to global sea level lowstands; and (b) the mapping of the active sub-seafloor structures and their correlation with those described onshore. Moreover, the results suggest that the Bajo Segura blind thrust fault or the Torrevieja left-lateral strike-slip fault, with prolongation offshore, could be considered as the source of the 1829 Torrevieja earthquake. These data improve our understanding of present deformation along the BSFZ and provide new insights into the seismic hazard in the area.

  6. Tectonic structure of East Antarctica

    NASA Astrophysics Data System (ADS)

    Leychenkov, German; Grikurov, Garrik; Golynsky, Alexander

    2013-04-01

    First overviews of tectonic structure of the Southern Continent were made by the pioneers of Antarctic earth science investigations almost 100 years ago. Despite rapidly advancing international geological studies under the Antarctic Treaty, the presentations of Antarctic tectonic structure remained largely speculative until the end of the past century when implementation of modern analytical and remote-sensing research technologies enabled compilation of more credible tectonic models of Antarctica. The East Antarctic bedrock consists mainly of the Precambrian crystalline complexes and the Paleozoic-Early Mesozoic platform units. Crystalline Shield is locally complicated by Neoproterozoic aulacogenes and Late Paleozoic to Mesozoic rifts. Shield assemblages reliably recognized in coastal outcrops indicate the predominant occurrence of Archean cratonic nuclei and Mesoproterozoic mobile belts. The undisturbed platform cover strata are exposed in East Antarctica mainly along its boundary with West Antarctica. Tectonic structure of ice-covered regions (more that 99% of the East Antarctic territory) is interpreted using mostly magnetic and bedrock topography data, but other geophysical and geological information (satellite, airborne and over-ice gravity; seismology; active seismics; erratics; detrital zircons dates; etc.) is also important. Archean cratons are geologically documented in western Dronning Maud Land, Enderby Land, Princess Elizabeth Land and in the southern Prince Charles Mts. Their distribution under the ice is marked by a specific magnetic pattern including low-amplitude mosaic and/or high-amplitude long-wavelength anomalies. The most extensive ancient craton being 1000 km across is believed to extend from the southern Prince Charles Mts. to the Gamburtsev Mts. Mesoproterozoic mobile belts are distinguished by elongated high-amplitude magnetic anomalies and are mapped along the costal area as the zone of 250-600 km wide. The Gamburtsev Mts. area is also

  7. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    SciTech Connect

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N.; Karlin, R.; Baskin, R.; Louie, J.; Pullammanappallil, S.

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  8. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  9. Iapetus: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  10. Preliminary Characterization and Classification Scheme for Tectonic Structures on Enceladus

    NASA Astrophysics Data System (ADS)

    Nahm, A.; Kattenhorn, S. A.

    2013-12-01

    The ice shell of Enceladus has experienced widespread and diverse tectonic deformation. Its leading and trailing hemispheres are pervasively fractured and these are separated by older cratered terrains on the sub- and anti-Saturnian hemispheres that exhibit relatively little tectonic deformation. The south polar terrain (SPT) is tectonically complex, geologically active, and is separated from the rest of Enceladus by the south polar dichotomy. The diversity of structures visible on the surface attests to a complicated and perhaps long-lived tectonic history. Currently, no fundamental classification scheme based on formation mechanisms exists for the tectonic structures on Enceladus, as does for Europa, which limits analysis and discussion of tectonic structures and the regional and global tectonic history. Characterization and classification of structures based on their formation mechanisms allows for the stress states (orientation, magnitude, and sense) responsible for their formation to be inferred. Thus, characterizing and classifying structures on Enceladus is a major first step in understanding its tectonic history. Here, we present a preliminary global classification scheme for tectonic structures on Enceladus. The basemap used for our preliminary structure classification was the global Imaging Science Subsystem (ISS) mosaic obtained from Ciclops (110 mpp; http://www.ciclops.org/view/7590/Map_of_Enceladus_-_December_2011?js=1). The structures observed on the surface have been divided into fifteen classes based on morphology. These classes represent the diversity of structure morphology on Enceladus and include the 'tiger stripes' in the SPT, the arcuate ridges that make up the south polar dichotomy, wide fracture complexes, several classes of narrow fractures, curvilinear subparallel fractures, rifts that extend north from the SPT boundary, terrain reminiscent of Ganymede's grooved terrain, and topographic ridges with multiple orientations. The preliminary

  11. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  12. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  13. Active Tectonics and Seismic Potential of Alaska

    NASA Astrophysics Data System (ADS)

    Freymueller, Jeffrey T.; Haeussler, Peter J.; Wesson, Robert L.; Ekström, Göran

    This multidisciplinary monograph provides the first modern integrative summary focused on the most spectacular active tectonic systems in North America. Encompassing seismology, tectonics, geology, and geodesy, it includes papers that summarize the state of knowledge, including background material for those unfamiliar with the region; address global hypotheses using data from Alaska; and test important global hypotheses using data from this region. It is organized around four major themes: • subduction and great earthquakes at the Aleutian Arc, • the transition from strike slip to accretion and subduction of the Yakutat microplate, • the Denali fault and related structures and their role in accommodating permanent deformation of the overriding plate, and • regional integration and large-scale models and the use of data from Alaska to address important global questions and hypotheses. The book's publication near the beginning of the National Science Foundation's EarthScope project makes it especially timely because Alaska is perhaps the least understood area within the EarthScope footprint, and interest in the region can be expected to rise with time as more EarthScope data become available.

  14. Active tectonics and human survival strategies

    NASA Astrophysics Data System (ADS)

    King, Geoffrey; Bailey, Geoffrey; Sturdy, Derek

    1994-10-01

    Tectonic movements continuously remould the surface of Earth in response to plate motion. Yet such deformation is rarely taken into account when assessing landscape change and its impact on human land use, except perhaps as an occasional hazard to human life or a temporary disruption in the longer term patterns of human history. However, active tectonics also create and sustain landscapes that can be beneficial to human survival, forming a complex topography of potentially fertile sedimentary basins enclosed by mountain barriers that can facilitate the control and explotation of food resources, especially animal prey. We discuss the tectonic history of northwest Greece and show how the Paleolithic sites of the region are located to take advantage of tectonically created features at both a local and a regional scale. We suggest that the association of significant concentrations of early Paleolithic sites with tectonically acitve regions is not coincidental and that on the longer time spans of human biological evolution, active tectonics has been an important selective agent contributing to the development of the human species as an intelligent predator.

  15. Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying

    NASA Astrophysics Data System (ADS)

    Giammanco, Salvatore; Melián, Gladys; Neri, Marco; Hernández, Pedro A.; Sortino, Francesco; Barrancos, José; López, Manuela; Pecoraino, Giovannella; Perez, Nemesio M.

    2016-02-01

    This work presents the results of an extensive geochemical survey aimed at measuring soil CO2 effluxes and soil temperatures over a large portion of Mt. Etna's summit area, coupled with an updated structural survey of the same area. The main goals of this study were i) to find concealed or hidden volcano-tectonic structures in the studied area by detecting anomalous soil gas emissions, ii) to investigate the origin of the emitted gas and the mechanism of gas and heat transport to the surface, iii) to produce a structural model based both on the surface geology and on the soil gas data and, lastly, iv) to contribute to the assessment of hazard from slope failure and crater collapses at Mt. Etna. The results revealed many concealed structural lines that followed the major directions of structural weakness in the summit area of Mt. Etna, mostly due to a combined action of gravitational spreading of the volcano and magma intrusions. Both recent and old volcano-tectonic lines were found to act as pathways for the leakage of magmatic gases to the surface. An important role in driving magmatic gases to the surface is also played by fracturing and faulting due to caldera-forming collapses and smaller crater collapses. Correlation between soil CO2 emissions and soil temperature allowed discriminating areas of active shallow hydrothermal circulation along deep fractures (characterized by high values of both parameters, but mostly soil temperature) from those affected by undeveloped fractures that did not reach the surface (characterized by high CO2 emissions at low temperature). The former corresponded to weak zones of the volcano edifice that were frequently site of past eruptions, indicating that those areas keep a high potential for future opening of eruptive fissures. The latter were likely related to sites where new eruptive fissures may open in the near future due to backward propagation of extensional tectonic stress.

  16. Mimas: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  17. Data System for Structural Geology and Tectonics

    NASA Astrophysics Data System (ADS)

    Newman, Julie; Walker, J. Douglas; Tikoff, Basil; Good, Jessica; Michels, Zachary; Ash, Jason; Andrew, Joseph; Williams, Randolph

    2016-04-01

    We are prototyping a Data System for Structural Geology and Tectonics (SG&T) data that is platform independent (from mobile device to desktop) to enable collection and sharing of data from field to laboratory settings. The goals of this effort, funded by US National Science Foundation, are to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successfully implement the development of a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot is an observation or relationship with an area of significance. A Spot can be a single measurement, an aggregate of individual measurements, or even relationships between numerous other Spots. We address the second problem of software design through the use of a graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow and that serves the needs of the community, we are engaging the SG&T community in order to utilize the expertise

  18. The volcanic activity of La Soufrière of Guadeloupe (lesser antilles): structural and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zlotnicki, Jacques; Boudon, Georges; Le Mouël, Jean-Louis

    1992-01-01

    Among observations made on La Soufriére volcano (Guadeloupe) to monitor its its activity are temperature measurements: temperature of fumaroles, hot springs, ground surface, and water inside two boreholes 80 and 90 m deep. Those measurements proved to be of prime importance in understanding mechanisms working in the volcano and governing its activity. They lead with other observations, such as self-potential measurements and geochemical analysis of fumaroles and hot springs, to a possible interpretation of phreatic activity rather different from the one retained earlier which was essentially based on seismic data. In this model the magma reservoir is only in a stable state and, in particular, supplies heat at a constant rate to the overlying geological structures. The cycle of volcanic activity and period of quiescence is interpreted as due to a cycle of clogging and reopening of the system of fractures transferring heat from a lower aquifer to an upper one, and eventually to the atmosphere. The model is discussed in regard of other geophysical observations, in particular seismicity. Some inferences are made concerning a new phase of activity and suitable observations to predicit it.

  19. Seismic images of modern convergent margin tectonic structure

    SciTech Connect

    Von Huene, R.; Miller, J.

    1986-07-01

    An atlas of 14 seismic sections shows major tectonic features across various convergent margins. All sections are at the same scale and have been processed to a research level. Such processing produces clear images of sediment accretion from below. Most margins show sediment subduction. The results of tectonic erosion are seen in midslope areas as buttresses against which the accretion complex is stacked. The images of structures indicating tectonic erosion are about as common as the images of structure indicating accretion.

  20. Northeast Basin and Range province active tectonics: An alternative view

    SciTech Connect

    Westaway, R. )

    1989-09-01

    Slip rates and slip vector azimuths on major active oblique normal faults are used to investigate whether circulation associated with the Yellowstone upwelling plume is driving tectonic deformation in the northeast Basin and Range province. Observed deformation is consistent with this suggestion; the plume is sheared to the southwest by motion of the North American plate. Testable predictions are made for structure and evolution of the region.

  1. Mobilization of evaporites in tectonically active terrains

    NASA Astrophysics Data System (ADS)

    Stiros, Stathis C.

    2015-04-01

    The role of evaporites, mostly halite, during seismic sequences is investigated using evidence from certain earthquakes with magnitude between approximately 6.0 and 7.2 which occurred in the last 60 years in the Zagros Mts. (Iran) and the Ionian Sea (Greece); i.e. two seismically active areas, characterized by evaporite-associated decollements and more shallow decollements combined with mature, along-thrusts intrusions. Studied earthquakes produced either large scale surface deformation, or were covered by high-resolution and accuracy GPS and INSAR data, permitting to fully recognize the deformation pattern. In all cases an "atypical", tectonic deformation pattern was observed, ranging from apparently "impossible" patterns (thrust and normal faults, sub-parallel and homothetic; 1953 Cephalonia earthquake, Greece) to rather diffuse tectonic patterns, even to "phantom" earthquakes (Zagros). Careful analysis and modeling of the surface deformation data, in combination with the available geological, geophysical and seismological data permits to recognize, and even to quantify differences between deformation observed, and that expected in ordinary environments. In particular, it was found that during earthquakes evaporites were mobilized, and this led either to a secondary deformation of the overburden, fully detached from the basement, or to significant aseismic (post-seismic) deformation. Anomalies in the distribution of seismic intensities due to evaporitic intrusions along faults were also observed. Apart from seismological implications (unpredictable post-seismic deformation, possibly also in the far-field), these results deriving from regions at different levels of evaporitic evolution, may prove useful to understand patterns of mobilization of evaporites during periods of tectonic activity.

  2. Vertical tectonics at an active continental margin

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  3. Active tectonic structures and submarine landslides offshore southern Apulia (Italy): a new scenario for the 1743 earthquake and subsequent tsunami

    NASA Astrophysics Data System (ADS)

    Milia, Alfonsa; Iannace, Pietro; Torrente, Maurizio M.

    2017-01-01

    The southern Apulia foreland recorded a strong (Imax=X MCS) earthquake in 1743 and a concomitant tsunami, which struck the southeastern Salento coast. The seismo-genetic fault and the triggering factors of the tsunami are unknown. Three-dimensional interpretation of multichannel seismic profiles calibrated by wells using a GIS software enabled the recognition of the stratigraphic succession, structural framework, and submarine landslides offshore Salento. A thin Pliocene unit overlying the Mesozoic-Cenozoic substrate is covered by a Pleistocene succession separated by a Middle Pleistocene unconformity that formed during the regional uplift of Salento. The latter gave rise to the morphologic conditions for the deposition of a prograding wedge off the Salento coast, with a shelf break located at 150 m depth. Normal faults, mainly oriented NW-SE, displaced the early Lower Pleistocene succession and are buried by younger deposits. Since the Middle Pleistocene, a compressional event gave rise to the Apulia uplift and large folds and basement-involved reverse faults that are active in the eastern part of Apulia. A huge (58 km3) slump affecting the Middle Pleistocene prograding wedge has been documented offshore the southeast coast of Salento. The proposed geological scenario of the 1743 earthquake and subsequent tsunami is (1) an initial strong earthquake (Imax=X MCS) associated with a thrust fault located in the eastern sector of the Apulia offshore, (2) a shacking-induced large-volume slump offshore Otranto, and (3) landslide-triggered tsunamis that struck the Salento coast.

  4. Seismic activation of tectonic stresses by mining

    NASA Astrophysics Data System (ADS)

    Marcak, Henryk; Mutke, Grzegorz

    2013-10-01

    Hard coal mining in the area of the Bytom Syncline (Upper Silesia Coal Basin, Poland) has been associated with the occurrence of high-energy seismic events (up to 109 J; local magnitude up to 4.0), which have been recorded by the local mining seismological network and regional seismological network. It has been noticed that the strongest seismic events occur when the mine longwall alignments coincide with the syncline axis. Data recorded by the improved local seismic network in the Bobrek Mine allow the estimation of the depths of the events’ hypocentres during excavation of longwall panel 3 as it approached the syncline axis. The recorded data were also used to estimate the location of the rupture surface and stress distribution in the seismic focus region. It was concluded that tectonic stresses, particularly horizontal stress components, are essential in the distribution of seismic tremors resulting from reverse faulting. The stresses induced by mining activity are only triggering tectonic deformations. The hypocentres of the strongest seismic events during mining of longwall panel 3/503 were located 300-800 m deeper than the level of coal seam 503.

  5. Active tectonics coupled to fluvial erosion in the NW Himalaya

    NASA Astrophysics Data System (ADS)

    Vannay, J.-C.; Grasemann, B.; Rahn, M.; Frank, W.; Carter, A.

    2003-04-01

    Both syntaxial extremities of the Himalaya show a spatial correlation between active exhumation of deep crustal rocks and the presence of powerful rivers, the Indus and the Tsangpo-Brahmaputra, cutting across the range two of the deepest gorges on Earth. These features strongly suggests that vigorous fluvial erosion can locally enhance isostatic and tectonic uplift, which in turn contributes to heat advection and weakening of the crust, as well as to maintain steep topographic gradients [Zeitler et al., 2001]. In order to test this positive feedback model, we combined structural and geochronological data to constrain the tectono-thermal evolution along the Sutlej (NW India), the third largest river cross-cutting entirely the Himalaya. The Himalayan crystalline core zone exposed along the Sutlej Valley is composed of two gneiss sheets, that were successively underthrusted and tectonically extruded as a consequence of the foreland-directed propagation of deformation in the Indian plate margin. During Early to Middle Miocene, combined thrusting along the Main Central Thrust (MCT) and extension along the Sangla Detachment induced the rapid exhumation and cooling of the amphibolite facies to migmatitic High Himalayan Crystalline Sequence [Vannay &Grasemann, 2001]. Underthrusting beneath the MCT led to the creation of the amphibolite facies Lesser Himalayan Crystalline Sequence (LHCS). The LHCS cooled rapidly from Late Miocene to Pleistocene, as a consequence of tectonic extrusion controlled by thrusting along the Munsiari Thrust, and extension in the MCT hanging wall. This phase is still active, as indicated by: (1) cooling rates in excess of 100^oC/Myr during the past ˜3 Myr in the LHCS; (2) Holocene neo-tectonic activity; (3) present-day hydrothermal activity testifying to elevated near-surface geothermal gradients; and (4) seismic activity along the Munsiari Thrust. Modelling of fluvial erosion in the Himalaya indicate that the Sutlej Valley corresponds to the main

  6. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  7. Structure and Particle Size Distribution of Non-tectonic Faults - Difference from Tectonic Faults

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Chigira, M.

    2009-04-01

    Non-tectonic faults are commonly formed by mass movements but their structures and formative processes have been scarcely studied in spite of their importance in slope development and slope stability. We observed structures of non-tectonic faults and analyzed particle size distribution of the material from the shear zones of non-tectonic faults and compared these results with those of tectonic faults. We clarified the structures of non-tectonic faults in pelitic schist by observing X-ray computer tomography images and cross-sections of paraffin-impregnated core samples that have been recovered from the subsurface by the hybrid drilling technique. We identified structures at various stages of non-tectonic fault development. Shearing within black layers, which are rich in graphite, dominates at an incipient stage. Then, rotation, fracturing, and pulverization of rock proceed, forming breccias and fine fractions in a fracture zone. Fracture zone at an early stage have many open fractures, which indicates a low confining pressure during deformation. With the development of a fracture zone, open fractures decrease and fine fractions increase in amount. Finally shearing deformation would be dominated by cataclastic flow in fine fractions. This stage is at a mature stage, where the structure becomes very similar to that of tectonic faults so that it cannot be distinguished from a tectonic fault by structure only. However, particle size distribution could indicate the formative condition of fine fractions in a fracture zone. We sampled "gauge" from several mature fracture zones in two landslide sites of pelitic schist, and analyzed their particle size distributions from 20 nm to 1 mm by using a laser diffraction particle size analyzer. The ultra micro particles in the fracture zone of a non-tectonic fault can be assumed to be primary particles which are less affected by alteration, and their particle size distributions could reflect the conditions of fracturing. The

  8. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  9. Identifying active structures in the Kayak Island and Pamplona Zones: Implications for offshore tectonics of the Yakutat Microplate, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.

    Within the northern Gulf of Alaska, the Yakutat (YAK) microplate obliquely collides with and subducts beneath the North American (NA) continent at near-Pacific plate velocities. We investigate the extent that thin-skinned deformation on offshore structures located within the western portion of the unsubducted YAK block accommodates YAK-NA convergence. We compare faulting and folding observed on high-resolution and basin-scale multichannel seismic (MCS) reflection data with earthquake locations and surface ruptures observed on high-resolution bathymetric data. Holocene sediments overlying the Kayak Island fault zone (KIZ), previously interpreted as a region of active contraction, are relatively flat-lying, suggesting that active convergence within the KIZ is waning. Seismic reflection profiles east of KIZ show up to ˜200 m of undisturbed sediments overlying older folds in the Bering Trough, indicating that this area has been tectonically inactive since at least the last ˜1.3 Ma. Farther east, MCS profiles image active deformation in surface sediments along the eastern edge of the Pamplona zone (PZ) fold-and-thrust belt, that are collocated with a concentration of earthquake events that continues southwest to Khitrov Ridge and onshore through Icy Bay. These observations suggest that during the late Quaternary offshore shallow deformation style changed from distributed across the western Yakutat block to localized at the eastern edge of the PZ with extrusion of sediments southwest through the Khitrov Ridge area to the Aleutian Trench. This shallow deformation is interpreted as deformation of an accretionary complex above a shallow decollement.

  10. Geological evidence and future detection of active tectonics on Mars.

    NASA Astrophysics Data System (ADS)

    Pio Rossi, Angelo; Hauber, Ernst; Spagnuolo, Mauro; Fueten, Frank; Pondrelli, Monica; Breuer, Doris; Grott, Matthias; Knapmeyer, Martin; Quantin Nataf, Cathy; Unnithan, Vikram

    2013-04-01

    Accumulating evidence shows that recent tectonic deformation affected discrete areas on Mars (e.g. Spagnuolo et al., 2011; Roberts et al., 2012): Steep scarps cut bedrock and unconsolidated deposits, including mass wasting and eolian materials. The crater size frequency-based age estimate for some of these scarps, e.g. in Aureum Chaos is a few Myr only. The case for recent or very recent volcanism is sound on Mars (e.g. Hauber et al., 2011; Neukum et al., 2004), but comparably young tectonics on Mars had not been discovered until recently. Areas with linear or curvilinear, steep fault-like scarps (e.g., in Aureum or Aram Chaos) are relatively far from large volcanic edifices and provinces with recent effusive activity. Hence, a direct volcano-tectonic link, e.g., with Tharsis, seems unlikely. On the other hand, late collapses and subsidence in ~Hesperian or younger chaos/chasma areas could be responsible for the local deformation, which appears to be mainly extensional. Reactivation of older structures is also a possibility. Regardless the actual mechanism and geodynamic setting, present tectonic activity on Mars is a very real possibility, and it would open a range of opportunities for research such as geodynamics, hazards for future exploration, resources and exobiological potential: present faulting in chasmata and chaotic terrains could offer pathways for subsurface fluids to reach the surface or near subsurface, including potential degassing. Future missions such as InSight (NASA) and potentially Mars Network Science Mission (MNSM, ESA) could detect the first signs of Mars's tectonic activity. In addition, ESA ExoMars Trace Gas Orbiter could also investigate any potential outgassing in the vicinity of recently faulted candidate areas. References: Hauber et al. (2011) GLR, 38, 10, 1944-8007, doi:10.1029/2011GL047310 Neukum et al. (2004) Nature, 432, 971-979, doi:10.1038/nature03231 Roberts, G. P., et al. (2012), JGR, 117, E02009, doi:10.1029/2011JE003816

  11. Active tectonics of central-western Caucasus, Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N.; Tibaldi, A.; Alania, V.; Gventsadse, A.; Enukidze, O.; Varazanashvili, O.; Müller, B. I. R.

    2016-11-01

    This work contributes to a better knowledge of potentially seismogenic faults of the Georgia Greater and Lesser Caucasus by evaluating the distribution of earthquake foci, active tectonic stress field, kinematics and geometry of main fault planes. We consider all the information coming from field structural geology, geomorphology, seismological data from historical and instrumental catalogues, seismic reflection sections, as well as new focal mechanism solutions. These data enable recognizing some active ENE-WSW reverse faults in the core of the Greater Caucasus that are parallel to the mountain range. At the southernmost front of the Greater Caucasus, a series of main thrusts dipping towards NNE are active, with up to hundreds-km-long segments; along this thrust zone, a potentially locked segment is present, about 90 km long. The studied section of the Lesser Caucasus has active structures along the northern front given by south-dipping thrusts, as well as in the central core where strike-slip and oblique faults coexist. The Transcaucasian depression between the two mountain ranges shows an ongoing inversion tectonics of the central part of the Rioni Basin where active N- to NE-dipping reverse faults are present, accompanied by clear evidence of uplift of a wide area. The data are coherent with a N-S to NNE-SSW contraction of the central-western Greater Caucasus and Lesser Caucasus. Although in general the seismicity decreases westward in terms of number of earthquakes and magnitude, seismological and geological structural data in the Rioni Basin indicate here a Quaternary propagation of deformation towards the west.

  12. Active tectonics of the western tethyan himalaya above the underthrusting indian plate: The upper sutlej river basin as a pull-apart structure

    NASA Astrophysics Data System (ADS)

    Ni, James; Barazangi, Muawia

    1985-03-01

    Fault-bounded blocks and structural elements were mapped in the eastern Ladakh-Spiti and upper Sutlej River Basin located within the Tethyan Himalaya and to the southwest of the Karakorum fault zone mainly using LANDSAT Multispectral Scanner (MSS) band 5, band 7 (near-infrared) images with detailed analysis of smaller areas by interactive digital processing of false color images, and Returned Beam Vidicon (RBV) imagery in conjunction with available topographical, geological and seismological data. For the first time the Leo Pargil Horst and other nearby fault-bounded blocks located at the northwestern end of the upper Setlej River Basin were clearly revealed on the LANDSAT color composites. Shallow crustal seismicity is systematically related to the NNE-trending and N-trending normal faults of the Leo Pargil and nearby regions. Some of the aftershocks of the Kinnaur earthquake of January 19,1975 ( Ms = 6.8), appear to be associated with movement along the NNE-trending westbound fault of the Leo Pargil Horst and the nearby Kaurik-Chango fault. The main shock, however, is teleseismically located at about 30 km to the northwest of the Kaurik-Chango fault. Fault plane solutions of the main shock and two aftershocks indicate a large component of normal faulting. In map view, the upper Sutlej River Basin has an approximately rhomboidal shape and is located to the southwest of the Karakorum fault system. We suggest that this basin is a pull-apart between the NW-SE oriented, right-lateral, strike-slip Karakorum fault system and the high-angle faults near the southern boundary of the Tethyan Himalaya. The Leo Pargil Horst is the northwestern bounding fault block of this pull-apart. The active tectonic features in this part of the Tethyan Himalaya appear to reflect right-shear within the crust, and this is probably a consequence of oblique underthrusting of the Indian continental plate beneath the western Himalaya and southwestern Tibet during the Neogene and Quaternary

  13. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  14. Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.

    2012-12-01

    An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.

  15. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  16. Accretion tectonics and crustal structure in Alaska

    USGS Publications Warehouse

    Coney, P.J.; Jones, D.L.

    1985-01-01

    The entire width of the North American Cordillera in Alaska is made up of "suspect terranes". Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric

  17. Tectonic structures on Mercury: kinematics and age dating

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Rothery, David; Di Achille, Gaetano; Marchi, Simone; Galluzzi, Valentina; Ferrari, Sabrina; Fassett, Caleb; Cremonese, Gabriele

    2015-04-01

    At a global scale, Mercury is dominated by contractional features manifested as lobate scarps, wrinkle ridges and high-relief ridges. Here, we show that some of these features are associated with strike-slip kinematic indicators, which we identified using flyby and orbital Mercury Dual Imaging System (MDIS) data and digital terrain models. We recognize oblique-shear kinematics along lobate scarps and high-relief ridges by means of (1) map geometries of fault patterns (frontal thrusts bordered by lateral ramps, strike-slip duplexes, restraining bends); (2) structural morphologies indicating lateral shearing (en echelon folding, pop-ups, pull-aparts); and (3) estimates of offsets based on displaced crater rims and differences in elevation between pop-up structures and pull-apart basins and their surroundings. Transpressional faults, documented across a wide range of latitudes, are found associated with reactivated rims of ancient buried basins and, in most cases, linked to frontal thrusts as lateral ramps hundreds of kilometres long. This latter observation suggests stable directions of tectonic transport over wide regions of Mercury's surface. In contrast, global cooling would imply an overall isotropic contraction with limited processes of lateral shearing induced by pre-existent lithospheric heterogeneities. Mantle convection therefore may have played an important role during the early tectonic evolution of Mercury. Estimating absolute model ages for compressional features and comparing it from what it is envisaged with thermal modeling based on cooling alone can be useful in determining if other processes could have been responsible for lobate scarps nucleation. In particular, ages more ancient that the one predicted by the models would imply other kind of tectonic processes ongoing during the early evolution of Mercury . For this reason, we date an extended thrust system, which we term the Blossom Thrust System, located between 80°E and 100°E, and 30°N and 15

  18. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  19. Lithospheric structure on Venus from tectonic modelling of compressional features

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1987-01-01

    In previous studies, extensional models were used that incorporated realistic rheologies in order to constrain lithospheric structure. Lithospheric modelling is considered herein from the standpoint of compressional deformation. Features of presumed compressional tectonic origin are reviewed and a model for compressional folding based on lithospheric strength envelopes are presented that include the effects of both brittle and ductile yielding as well as finite elastic strength. Model predictions are then compared with the widths and spacings of observed tectonic features and it is concluded that the results are consistent with a thin crust overlying a relatively stronger mantle, with thermal gradients probably in the range of 10 to 15 deg/km.

  20. Ground subsidence and associated ground fracturing in urban areas: InSAR monitoring of active tectonic structures (Ciudad Guzman, Colima Graben - Mexico)

    NASA Astrophysics Data System (ADS)

    Bignami, C.; Brunori, C.; Zucca, F.; Groppelli, G.; Norini, G.; Hernandez, N. D.; Stramondo, S.

    2013-12-01

    This study focuses on the observation of a creeping phenomenon that produces subsidence of the Zapotlan basin and ground fracturing in correspondence of the Ciudad Guzmàn (Jalisco - Mexico). The September 21, 2012, the Ciudad Guzmàn has been struck by a phenomenon of ground fracturing of about 1.5 km of length. This event caused the deformation of the roads and the damage of 30 houses, of which eight have been declared uninhabitable. The alignment of fractures is coincident with the escarpments produced in September 19, 1985, in the Ciudad Guzman urban area, when a strong earthquake, magnitude 8.1, struck the Mexican area, causing the deaths of at least 10,000 people and serious damage in Mexico City. In Ciudad Guzmán, about 60% of the buildings were destroyed, with about 50 loss of life. The city is located in the Zapotlan basin (northern Colima graben), a wide tectonic depression where the depth of the infilling sediments is about 1 km. This subsidence cannot be measured outside the urbanized area, but it can be considered as a deformation mechanism of the central part of the basin. In order to detect and mapping the spatio-temporal features of the processes that led to this event, we applied InSAR multi-temporal techniques to analyze a dataset of ENVISAT satellite SAR images, acquired in a time span between 2003-2010. InSAR techniques detect a subsidence of the north-western part of Ciudad Guzmàn of about 15 mm/yr in the time interval 2003-2010. The displacement occurred in September 21, 2012, was detected using two RadarSAT2 acquisitions (2012-03-22 and 2013-03-17). The explanation of surface movements based on interferometric results, ground data and geological field observations, allowed confirming surface effect due to the overexploitation of the aquifers and highlights a subsidence due to anthropogenic causes coupled to buried tectonic structures.

  1. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  2. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  3. Mantle structure and tectonic history of SE Asia

    NASA Astrophysics Data System (ADS)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  4. Impact-related Events on Active Tectonic Regions Defined by Its Age, Shocked Minerals and Compositions

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Hirota, A.; Gorton, M.; Kedves, M.

    2002-03-01

    New type of impact-related event is defined at active tectonic region by using semi-circular structure, bulk XRF compositions with mixed data, shocked quartz grains with the PDFs texture, and Fe-Ni content. Example is discussed in Takamatsu MKT crater in Japan.

  5. Salts as indicators of tectonic activity along Nesson anticline, North Dakota

    SciTech Connect

    Lefever, J.A.; Lefever, R.D.; Anderson, S.B.

    1988-07-01

    The Nesson anticline is the major north-south-trending structure in the North Dakota portion of the Williston basin. The trace of the anticline is marked by nearly continuous production for 110 mi (175 km) from the Canadian border south to Dunn County; production is from 13 different stratigraphic zones. Previous studies have shown that the central and southern parts of the anticline, from Beaver Lodge field south to Rattlesnake Point field, consist of at least nine structurally independent areas, each of which has an individual tectonic history. Isopach patterns indicate that most of the areas underwent their greatest tectonic activity during the Devonian and Early Mississippian, although a few areas were active during the early Mesozoic as well. Ten traceable salts are present along the anticline in the Prairie (Devonian), Charles (Mississippian), Opeche (Permian), Spearfish (Triassic), and Pipe Formations (Jurassic). The isopach patterns of the individual salts indicate contemporaneous tectonic activity through thickening or thinning of the salt. Postdepositional activity is indicated by the absence of a salt; the timing of the activity may be estimated from the presence of compensating section above the level of the salt. Their results indicate that, in addition to the times given above, significant tectonic activity took place along the anticline during the Late Mississippian, late Jurassic, and Early Cretaceous.

  6. Role of structural heritage and global tectonics events in evolution of Algerian Triassic basin: Tectonic inversion and reservoir distribution

    SciTech Connect

    Boudjema, A.; Tremolieres, P.

    1988-01-01

    Fieldwork and subsurface studies (350 bore holes and more than 100 seismic profiles) show the structural evolution of the Triassic Saharian basin. This evolution is controlled by the successive motions of ancient faults of the Paleozoic basement during the different compressional and distensional tectonic phases. These movements led to some tectonic inversions. Depending on the strike of the faults, the present results correspond to normal throw or reverse throw at the level of hydrocarbon reservoirs. These tectonic phases clearly result from relative motions between African, American, and European lithospheric plates. The Triassic basin, a mobile zone between two rigid shields, constitutes a very good indication of the successive motions. The distribution and the nature of hydrocarbon fields are clearly related to the proximity of the faults, the post-tectonic erosion of a part of the source rocks, the burial and maturation of the organic matter, and the age of structural traps.

  7. Characterization of the structure and tectonic of South America

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Lidiak, E. G. (Principal Investigator)

    1981-01-01

    Geologic studies of the South American plate were undertaken. The Guayana shield is reasonably well studied, and although data are sparce, the central Brazilian shield appears similar. Both the Amazon and Parnaiba basins seem to be related to an aulocogen structure. The collection of crustal structure information and the generation of measurement of surface wave dispersion in the shield areascontinues. Long period seismograms are digitized and analyzed. Exisiting crusted and upper mantle studies were indexed. Both MAGSAT scaler and vector magnetic anomaly data were used with regional gravity anomaly data to investigate the regional tectonic features of the South American plate.

  8. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  9. Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, Surendra S.; Kothyari, Girish Ch.

    2015-06-01

    We present the results of integrated studies of geomorphic indices of drainage networks and landforms developed across the mountain front along the Himalayan Frontal Thrust (HFT) between the Dabka and Baur rivers, Kumaun Himalaya. The HFT is a morphogenic structure in nature, creating a 100-m-high E-W trending escarpment that extends ~ 21 km. Geomorphological evidence indicates ~ 10.5 km westward migration of the Dabka River and ~ 5.2 km eastward migration of the Baur River. These migrations are a result of uplift of the hanging wall along the HFT. The HFT is offset by a transverse fault, which suggests that the latter postdates the reactivation of the HFT between 500 and 100 ka. Presence of different levels of strath terraces along the mountain front suggests the active nature of the HFT. To assess the relative tectonic activity, morphometric indices such as stream-gradient (SL) index, mountain front sinuosity (Smf) index, and ratio of valley floor width to valley height (Vf) have been analyzed. Results of the former two are consistent with the tectonic landforms developed in thrust zones. Paleochannels of the Dabka and Baur rivers are characterized by high Vf values while other valleys show low Vf values. Quaternary alluvial sediments have been deformed along the Pawalgarth Thrust, a splay of the HFT. Deformation has resulted in the formation of the Pawalgarh Anticline, a thrust-related asymmetric fold.

  10. Active tectonic studies in the United States, 1987-1990

    SciTech Connect

    Weldon, R.J., II )

    1991-01-01

    The techniques and instrumentation used in active tectonic studies are discussed, and recent results are reviewed. It is suggested that a critical mass of data on several particular regions has been accumulated, making possible critical debates and attempts to assess earthquake hazards. Particular attention is given to studies of the Pacific Northwest region, basin and range deformation studies, and distributed deformation and hidden earthquake sources. Also included is a comprehensive bibliography for the period.

  11. Isotopic structure and tectonics of the central Transantarctic Mountains

    SciTech Connect

    Borg, S.G.; DePaolo, D.J.; Smith, B.M. Lawrence Berkeley Lab., Berkeley, CA )

    1990-05-10

    Regional patterns of Nd, Sr, and O isotopic ratios of {approximately} 500 Ma granite rocks are used to identify the ages and areal extents of three crustal provinces in the central Transantarctic Mountains. One of the provinces is the edge of the East Antarctic Craton, which isotopic analyses show is composed of Archean rocks thrust over Proterozoic rocks. The other two provinces compose the Beardmore microcontinent. Evidence for a former ocean basin between the Beardmore microcontinent and East Antarctica is provided by basalt and gabbro of mid-ocean ridge character, dated by Sm-Nd at {approximately} 760 Ma. The granitic rocks formed over a westward-dipping subduction zone that was active at {approximately} 500 Ma. The isotopic provinces correspond to differences in age and composition of the middle and lower crust at the time of formation of the granite magmas. The boundaries of the isotopic provinces also correspond to discontinuities in provenance, lithology, structural style, and grade of metamorphism of prebatholithic metasedimentary rocks. The isotopic data indicate that the granite magmas were formed mostly by crustal anatexis in the areas west of the Shackleton Glacier. The tectonic history deduced for the Gondwana margin, as represented in the central Transantarctic Mountains, began with deposition of sediments on an Atlantic-type rifted margin at {approximately} 760 Ma. The Beardmore microcontinent was most likely accreted in association with folding of the clastic sedimentary rocks before middle Early Cambrian time (550 Ma). Carbonate sedimentation and volcanism along the eastern margin of the Beardmore microcontinent commenced in Cambrian time. Folding and metamorphism of all older units occurred in late Cambrian time followed by emplacement of granite rocks at {approximately} 500 Ma.

  12. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  13. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  14. Structures in the Deep Mantle: Implications for the Onset of Plate Tectonics and the Viscosity Structure

    NASA Astrophysics Data System (ADS)

    Stein, Claudia; Hansen, Ulrich

    2016-04-01

    Recently deep structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume. In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. In a systematic 2D parameter study of thermochemical convection we discuss the resulting viscosity structure and time of plate initiation.

  15. Structural and stratigraphic controls on the origin and tectonic history of a subducted continental margin, Oman

    NASA Astrophysics Data System (ADS)

    Warren, C. J.; Miller, J. McL.

    2007-03-01

    Eclogites and blueschists exposed in Saih Hatat, Oman, record the subduction and exhumation of continental crustal material beneath the Cretaceous Semail Ophiolite during ophiolite obduction. The eclogite-bearing lower plate, originally part of Oman's distal continental margin, is exposed in two tectonic windows through the less metamorphosed upper plate by a previously mapped low angle, high strain, décollement structure. A major tectonic break, currently poorly exposed, records the juxtaposition of the highest pressure eclogites and garnet blueschists against lower pressure epidote-blueschists. The subsequent exhumation of the entire lower plate to mid crustal levels is marked by a pervasive shearing event associated with a regional greenschist facies overprint. The décollement truncates structures and the metamorphic field gradient in the lower plate, but does not significantly truncate structures or stratigraphy in the upper plate. It is not responsible for the exhumation of the high pressure rocks to mid-crustal levels. Most of the displacement across this structure was accommodated during continuing convergence after the subduction system had ceased to be active, and post ophiolite emplacement onto the platform carbonate sequences. A revised tectonic model is presented which accounts for the structural, geochronological and metamorphic observations.

  16. Rheology, tectonics, and the structure of the Venus lithosphere

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.

    1994-01-01

    Given the absence of ground truth information on seismic structure, heat flow, and rock strength, or short wavelength gravity or magnetic data for Venus, information on the thermal, mechanical and compositional nature of the shallow interior must be obtained by indirect methods. Using pre-Magellan data, theoretical models constrained by the depths of impact craters and the length scales of tectonic features yielded estimates on the thickness of Venus' brittle-elastic lithosphere and the allowable range of crustal thickness and surface thermal gradient. The purpose of this study is to revisit the question of the shallow structure of Venus based on Magellan observations of the surface and recent experiments that address Venus' crustal rheology.

  17. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  18. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  19. Evolution of the structural fault permeability in argillaceous rocks in a polyphased tectonic context

    NASA Astrophysics Data System (ADS)

    Constantin, J.; Peyaud, J. B.; Vergély, P.; Pagel, M.; Cabrera, J.

    Deep argillaceous formations have petrophysical and hydrodynamic properties favourable to long-term radioactive waste confinement (very low intrinsic permeability, high sorption capacity,…). However, these properties may be modified by the development of discontinuities in the host-rock. The tectonic activity is responsible on the one hand for creating the fractures and on the other hand for reactivating them. Today, the calcite crystallisations in faults give evidence of paleofluid flows during the tectonic deformation. The microstructural study shows that faults were alternately and temporarily impermeable, permeable or “semi-permeable” during the tectonic activity. These “hydraulic states” were controlled by the nature and the architecture of the microstructures and by variations in the petrophysical properties of the rock in the core zone (CZ) and damage zone (DZ) of the faults. Within DZ, the structural fault permeability evolution is associated with (1) microcracking and (2) a probable ductile behaviour of the shales. Within CZ, the structural fault permeability is associated with the development of cavities generated by (1) dilation, (2) shearing and openings in extensional stepover and (3) microcracking in pre-existing calcite fillings. During the tectonic evolution, the development of a new structural porosity both in CZ and DZ gave up the faults permeable. The crystallisation sealing of the total structural porosity gave up the faults impermeable. But, when only the CZ was sealed, the fault was “semi-permeable”. Finally, we show that (1) the fluid transfers occurred principally from the DZ to the CZ, (2) the DZ constituted a “storage zone” in fluids for the CZ, (3) the DZ then remained longer permeable than the CZ and became permeable with weaker stress intensity and (4) the sealed discontinuities constituted zones of weakness (fracture reactivation with or without shearing) in the argillaceous material.

  20. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  1. SE Asian-West Pacific Tectonics and Mantle Structure

    NASA Astrophysics Data System (ADS)

    Hall, Robert

    2010-05-01

    It is probably impossible to interpret mantle structure without having a tectonic model first - which immediately raises some difficult questions. Particularly problematic is a reference frame. For Eurasia it is common, and probably reasonable, to assume little Cenozoic movement of the lithosphere relative to the underlying mantle, but can this assumption be justified for the Mesozoic? Even for the Cenozoic a small drift could mean significant misinterpretation of cause and consequence. Bearing this caveat in mind, for SE Asia and the adjacent West Pacific the upper mantle contains a record of little more than the last 15 Ma, with a few exceptions. The obvious features of subduction are recorded, with some interesting details, but some convincing subduction zones are not seen. The upper mantle structure shows us that we cannot yet see such details, such as multiple nearby subduction systems, tearing slabs, or rollback, deeper in the mantle or in parts of the region where resolution of tomographic models is poor. The lower mantle therefore displays only a crude record of tectonic history and probably nothing older than Mesozoic. On the other hand, the tectonic history we find recorded at the surface at the boundaries of SE Asia with the Indian-Australian and Pacific plates is also incomplete and problematical. In many areas the major plates have no clear-cut boundaries, the structure of the upper crust is much more complex than the deeper lithosphere, and for the continental regions it seems that the upper parts of the deforming lithosphere may be completely decoupled, within the crust, from what is beneath. SE Asia is not a plate in any meaningful sense, but is a heterogeneous region of weak and strong parts. There has been a long history of subduction beneath SE Asia. The deep high velocity anomaly in the lower mantle beneath the region appears to be a composite entity that formed by subduction in the Mesozoic and then influenced the position of later subduction

  2. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  3. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  4. Tectonic evolution and mantle structure of the Caribbean

    NASA Astrophysics Data System (ADS)

    van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus

    2013-04-01

    In the broad context of investigating the relationship between deep structure & processes and surface expressions, we study the Caribbean plate and underlying mantle. We investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P-wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser-Antilles slab consists of a northern and southern anomaly, separated by a low velocity anomaly across most of the upper mantle, which we interpret as the subducted North-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northern boundary. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle two large anomaly patterns are

  5. Deep tectonic influence on shallow structures of Allegheny plateau

    SciTech Connect

    Reeves, T.K. Jr.; Morris, J.

    1988-08-01

    The lower plateau area of western Pennsylvania and western West Virginia is underlain by numerous salt-cored anticlinal structures. The locations of these anticlines have been controlled by disturbances in the salt and discontinuities on detachment horizons. These discontinuities were produced by deep-seated faults with ongoing movements that persisted into or through the time of Salina deposition. Tilting of the basin during post-Salina sedimentation caused the salts to mobilize. These highly ductile units began to sag into the deep basin at a very early stage and moved by sliding until they reached the zones where faulting had disrupted the glide surfaces. Seismic examples show how the pileup of salts along these fault-disturbed zones has produced the cores of the modern anticlines. Characteristic movements within these salt pillows have led to such familiar Appalachian features as anticlines that are steeper on the southeastern flank, fracturing and faulting with apparent thrusting in the Onondaga-Oriskany-Helderberg section, and zones of fracture porosity and enhanced producibility in the Devonian shales and shallow reservoirs. An understanding of deep structures and salt deformation features in a shallow prospect area can lead to the discovery of zones of fracture porosity and can improve production in tight formations or permit the avoidance of areas where fracturing is so intense that no effective cap rock remains. Deep structure and salt tectonics can be relevant to shallow development work.

  6. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Alvarado, A.; Audin, L.; Nocquet, J. M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; Jarrín, P.; Quidelleur, X.

    2014-02-01

    The Quito Fault System (QFS) extends over 60 km along the Interandean Depression in northern Ecuador. Multidisciplinary studies support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the N-S segmented, en echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active, and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited N-S direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected at depth to inactive suture to the west. A new GPS data set indicates active shortening rates for Quito blind thrust of up to 4 mm/yr, which decreases northward along the fold system as it connects to the strike-slip Guayllabamba Fault System. The proximity of these structures to the densely populated Quito region highlights the need for additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  7. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Alvarado, Alexandra; Nocquet, Jean-Mathieu; Lagreulet, Sarah; Segovia, Monica; Font, Yvonne; Yepes, Hugo; Mothes, Patricia; Rolandone, Frédérique; Jarrin, Pierre; Quidelleur, Xavier

    2014-05-01

    The Quito Fault System (QFS) is an intraplate reverse fault zone, that extend over 60km along the Interandean Depression in northern Ecuador. Multidisciplinary studies coherently support an interpretation in which two major contemporaneous fault systems affect Quaternary volcanoclastic deposits. Hanging paleovalleys and disruption of drainage networks attest to ongoing crustal deformation and uplift in this region, further confirmed by 15 years of GPS measurements and seismicity. The resulting new kinematic model emphasizes the role of the NS segmented, en-echelon eastward migrating Quito Fault System (QFS). Northeast of this major tectonic feature, the strike-slip Guayllabamba Fault System (GFS) aids the eastward transfer of the regional strain toward Colombia. These two tectonic fault systems are active and the local focal mechanisms are consistent with the direction of relative GPS velocities and the regional stress tensor. Among active features, inherited NS direction sutures appear to play a role in confining the active deformation in the Interandean Depression. The most frontal of the Quito faults formed at the tip of a blind thrust, dipping 40°W, is most probably connected, at depth, to inactive suture to the west. A new GPS dataset indicates active shortening rates for Quito blind thrust of up to 4mm/yr, wich decreases northwards along the fold system as it connects to the strike slip Guayllabamba Fault System. The proximity of these structures to the densely-populated Quito region underlines the need of additional tectonic studies in these regions of Ecuador to generate further hazard assessments.

  8. The Genesis of tectonically and hydrothermally controlled industry mineral deposits: A geochemical and structural study

    NASA Astrophysics Data System (ADS)

    Wölfler, Anke; Prochaska, Walter; Henjes-Kunst, Friedhelm; Fritz, Harald

    2010-05-01

    The study aims to investigate the role of hydrothermal fluids in the formation of talc and magnesite deposits. These deposits occur in manifold geological and tectonical settings such as stockworks and veins within ultramafite hostrocks and monomineralic lenses within marine platform sediments. Along shear zones talc mineralizations may occur as a result of tectonical and hydrothermal activity. To understand the role of the fluids for the genesis of the mineralization, deposits in different geological and tectonical settings are investigated: Talc mineralization within in magnesite in low-grade palaeozoic nappe complexes (Gemerska Poloma, Slovakia): The magnesite body lies within the Gemer unit of the Inner Carpathians consisting of Middle Triassic metacarbonates and Upper Triassic pelagic limestones and radiolarites. The talc mineralization is bound to crosscutting veins. Two metamorphic events can be distinguished, one during Variscan orogeny and one related to the Alpine orogeny leading to the formation of talc along faults in an Mg carbonate body (Radvanec et al, 2004).The origin of the fluids as well as the tectonic events leading to the mineralization is still widely unknown. Talc mineralization in shearzones within Palaeozoic meta sedimentary rocks (Sa Matta, Sardinia): Variscan granitoids intruded Palaeozoic meta sedimentary rocks and were overprinted be NE striking tectonic structures that host talc mineralizations. The origin of Mg and fluids leading to the mineralization is still not answered satisfactorily (Grillo and Prochaska, 2007) and thus a tectonic model for the genesis of the talc deposit is missing. Talc mineralization within UHP pre-Alpine continental crust (Val Chisone, Italy): The talc deposit forms part of the Dora-Maira Massif. Geologicaly the massif derived from a Variscan basement that includes post-Variscan intrusions. The talc mineralization occurs as a sheetlike, conformable body. A possible tectonic emplacement of talc along shear

  9. Tectonic evolution and mantle structure of the Caribbean

    NASA Astrophysics Data System (ADS)

    Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus

    2013-06-01

    investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of

  10. Tectonic Control of Piercement Structures in Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Hadi, S.; Etiope, G.; Inguaggiato, S.

    2014-12-01

    A recent field expedition in Central Java targeted the mapping and sampling of several piercements structures in central Java (Indonesia), most of which have never been documented before. Here, at least seven structures erupting mud water and gas are distributed along a NE-SW alignment that extends for about 10 kilometers. Some of the mapped structures (Bledug Kuwu, Bledug Cangkring Krabagan, Mendikil, Banjarsari, Krewek) have been named after the neighboring local village. None of these have obvious elevation despite the vigorous emission of gas and mud, suggesting that significant caldera collapse is ongoing. Among the most relevant: Bledug Kuwu is certainly the most impressive structure with three main eruption sites in the crater area bursting more than 5 m large hot mud bubbles. Similar characteristics are present at the smaller (200 m in diameter) Bledug Cangkring Krabagan, that is also surrounded by numerous pools and gryphons seeping around the main crater. The smaller sized Mendikil is the only visited structure that, at the moment of the sampling, did not show seepage of hot fluids. Banjarsari and Krewek (up to 200 m wide) are characterized by scattered hot water-dominated pools where gas is vented vigorously. In particular the hot pools are systematically covered by travertine concretions. Water and gas geochemisty confirms the seepage of CO2 dominated gas and water with hydrothermal signature. The investigated structures appear to follow an obvious NE-SW oriented lineament that most likely coincides with a tectonic structure (fault?) that controls their location. Indeed the field observations and the analyses suggest that likely scenario is that this fault (?) acts as a preferential pathway for the expulsion of hydrothermal fluids to the surface. Very little is known about this region, neither is known why several of these structures erupt hot mud despite their significant distance from the two closest volcanic structures (i.e. Mt. Muria 60 km to the NW

  11. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  12. Tectonic and deep structure of the Southeast Iberian margin

    NASA Astrophysics Data System (ADS)

    Viñas Gaza, Marina; Rodríguez Ranero, César; Grevemeyer, Ingo

    2015-04-01

    We combine refraction and wide-angle reflection data (WAS) collected by Geomar/CSIC-Barcelona in 2006 aboard the German R/V Meteor, and multichannel seismic reflection data (MCS), acquired during the TOPOMED-2011 survey with the Spanish R/V Sarmiento de Gamboa, to investigate the tectonic structure and crustal nature of the Southeast Iberian margin and the adjacent Algerian basin. We present a ~240 km-long 2-D P-wave velocity model obtained by traveltime inversion of WAS data and a nearly coincident ~90 km-long MCS poststack time-migrated profile acquired from the Southeast Iberian margin to the Algerian basin in a NNW-SSE direction. We interpret two different basement domains by comparing our velocity model with existing continental and oceanic crust velocity compilations. The first crustal domain covers the oceanic Algerian basin from 20 to ~100 km and shows a total thickness of ~5.5 km. It is characterized by a two-layer velocity structure ranging from 5 to 6 km/s in the upper crust and from 6 to 6.8 km/s in the lower crust. The second crustal domain extends from ~125 to ~180 km under the SE Iberian margin. WAS data indicate a ~20 km crustal thickness suggesting a continental velocity-structure. However, the boundary between continental and oceanic crust appears as a transition zone from ~125 to ~100 km with velocities neither strictly continental nor oceanic. WAS data show crustal thinning from ~18 to 12 km and MCS data corroborate the rapid thinning of continental crust towards the SSE from ~6.5 to ~3 s twt in less than 30 km.

  13. Tectonic structure and evolution of the Atlantic continental margin

    SciTech Connect

    Klitgord, K.D.; Schouten, H.; Hutchinson, D.R.

    1985-01-01

    The Atlantic continental margin developed across the boundary between continental and oceanic crust as rifting and then sea-floor spreading broke apart and separated the North American and African plates, forming the Atlantic Ocean Basin. Continental rifting began in Late Triassic with reactivation of Paleozoic thrust faults as normal faults and with extension across a broad zone of subparallel rift basins. Extension became localized in Early to Middle Jurassic along the zone that now underlies the large marginal basins, and other rift zones, such as the Newark, Hartford, and Fundy basins, were abandoned. Rifting and crustal stretching between the two continents gave way to sea-floor spreading Middle Jurassic and the formation of oceanic crust. This tectonic evolution resulted in formation of distinctive structural features. The marginal basins are underlain by a thinner crust and contain a variety of fault-controlled structures, including half-grabens, seaward- and landward-tilted blocks, faults that die out within the crust, and faults that penetrate the entire crust. This variable structure probably resulted from the late Triassic-Early Jurassic pattern of normal, listric, and antithetic faults that evolved from the Paleozoic thrust fault geometry. The boundary between marginal basins and oceanic crust is marked approximately by the East Coast Magnetic Anomaly (ECMA). A major basement fault is located in the Baltimore Canyon trough at the landward edge of the ECMA and a zone of seaward dipping reflectors is found just seaward of the ECMA off Georges Bank. The fracture zone pattern in Mesozoic oceanic crust can be traced landward to the ECMA.

  14. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  15. Structure and tectonics of a Lower Ordovician forearc ophiolite in central western Maine

    SciTech Connect

    Stetzer, L.M.; Dilek, Y. . Dept. of Geology and Geography)

    1993-03-01

    The Lower Ordovician Boil Mountain ophiolite complex (BMO) in central western Maine occurs in the Gander tectonic zone, nearly 100 km SE of the main Appalachian ophiolite belt, and represents part of the Iapetus oceanic domain. It is exposed in an ENE trending narrow zone immediately south of the Precambrian Chain Lakes massif (CLM). The contact between the CLM and the BMO is characterized by a steeply to vertically south-dipping shear zone composed of several fault planes, which display subhorizontal slickenside lineations with sinistral sense of shearing and counterclockwise rotated porphyroclasts. The BMO consists mainly of pyroxenite, gabbro, diorite, plagiogranite, autobreccia, mafic to felsic volcanic, volcaniclastic, and hemipelagic sedimentary rocks, and contacts between these lithologic units are commonly vertical and faulted. Autobreccia outcrops containing clasts and blocks of serpentinite, diabase, pillowed basalt, and radioalarian chert in a medium-grained hemipelagic matrix indicates deposition penecontemporaneous with ocean floor tectonism during evolution of the ophiolite. Extrusive rocks include basaltic, massive to pillow-lava flows, and andesites, dacites, and rhyolites and are commonly metamorphosed up to a lower-greenschist facies. The BMO is overlain to the SE by a melange-flysch sequence composed mainly of metapelite, metagraywacke, phyllite, and slate with abundant volcanic material suggesting alternated shallow- and deep-water sedimentation in a forearc basin. These relations and the observed structures in the ophiolite indicate its development in an oceanic environment with a low magma budget and active vertical tectonism. The available geochemical data show low Ti, Zr, Y, Cr, and REE contents of volcanic rocks suggesting a depleted magma source in a suprasubduction zone tectonic setting for the ophiolite.

  16. New constraints on the active tectonic deformation of the Aegean

    USGS Publications Warehouse

    Nyst, M.; Thatcher, W.

    2004-01-01

    revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.

  17. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  18. Tectonic types of deepwater basins and structural segmentation of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Pushcharovsky, Yu. M.

    2012-03-01

    Typification of tectonic structures is one of the important lines of tectonic research. Recently, I have published several articles, which are concerned with deepwater oceanic basins. This paper is focused on tectonic typification of deepwater basins of the North Atlantic. They are attributed to three types: perispreading, central thalassogenic, and pericontinental. The first type comprises the Irminger, Iceland, Greenland, and Lofoten basins. The first two basins are associated with the Reykjanes Ridge and the two others, with the Mohns Ridge. The central thalassogenic type is exemplified in the Norwegian Basin, while the pericontinental type in the Rockall Trough. Two systems of basins are distinguished by morphostructural and historical-geological features: the northern system of the Oligocene-Quaternary structures and the southern system of the Paleocene-Quaternary structures. The Greenland-Faroe tectonovolcanic zone serves as their tectonic interface. In the tectonic typology of their deepwater basins, the North Atlantic is closer to the Indian than to other oceans. The present-day configuration of the northern basins is determined by neotectonics. The tectonic movements in the northern system of basins at this stage were more contrasting than in the southern system. This explains the greater depth of the former basins. The spatial position of the deepwater basins belonging to different types determines the tectonic segmentation of the oceanic bottom. The southern, central, and northern latitudinal segments correspond to different geodynamic states of the Earth's interior.

  19. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  20. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  1. Tectonic activity on Pluto after the Charon-forming impact

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Collins, Geoffrey C.

    2015-01-01

    The Pluto-Charon system, likely formed from an impact, has reached the endpoint of its tidal evolution. During its evolution into the dual-synchronous state, the equilibrium tidal figures of Pluto and Charon would have also evolved as angular momentum was transferred from Pluto's spin to Charon's orbit. The rate of tidal evolution is controlled by Pluto's interior physical and thermal state. We examine three interior models for Pluto: an undifferentiated rock/ice mixture, differentiated with ice above rock, and differentiated with an ocean. For the undifferentiated case without an ocean, the Pluto-Charon binary does not evolve to its current state unless its internal temperature Ti > 200K , which would likely lead to strong tidal heating, melting, and differentiation. Without an ocean, Pluto's interior temperature must be higher than 240 K for Charon to evolve on a time scale less than the age of the Solar System. Further tidal heating would likely create an ocean. If New Horizons finds evidence of ancient tidally-driven tectonic activity on either body, the most likely explanation is that Pluto had an internal ocean during Charon's orbital evolution.

  2. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  3. Geomorphic signature of active tectonics in the southern Abruzzi Periadriatic hilly belt (Central Italy)

    NASA Astrophysics Data System (ADS)

    Racano, Simone; Fubelli, Giandomenico; Centamore, Ernesto; Dramis, Francesco

    2016-04-01

    The geo-structural setting of the southern Abruzzi hilly belt that stretches from the northeastern front of the Maiella Massif to the Adriatic coast is characterized by deep-seated northeast verging thrusts masked by a thick cover of Late Pliocene-Middle Pleistocene marine deposits. Most authors consider this area tectonically inactive while only few of them support the hypothesis of its recent activity from the analysis of the river network pattern. Geological and geomorphological investigations carried out in the area have clearly shown the occurrence of surface deformations resulting from the continued activity of compressive tectonics up to recent times. The analysis of the study area by of a 10 m resolution DTM (using the open-source QGIS software) confirmed and supplemented field observations. Particularly significant in this context is the topographic setting of the alluvial strath terraces in the river valleys that develop transversally to the buried thrusts. In correspondence of these structures, topographic highs have grown up displacing the middle-Pleistocene planation surface developed on top of the hilly belt, from the Maiella piedmont to the coastal zone, and diverting laterally the river courses uphill. In the same places, as along the Alento and Foro rivers that cross by antecedence the grown up topographic highs, the long profiles of terraces bend eastward and the height difference between the terrace orders, essentially related all around the area to the Quaternary regional uplift, strongly increases. In some cases, surficial faults have lowered the terraces into graben troughs or have displaced them until assuming an uphill trend. This recent tectonic activity should be taken in account in assessing the seismic hazard of the study area.

  4. Rifts in the tectonic structure of East Antarctica

    NASA Astrophysics Data System (ADS)

    Golynsky, Dmitry; Golynsky, Alexander

    2010-05-01

    It was established that riftogenic and/or large linear tectonic structures in East Antarctica are distributed with a steady regularity with average distance between them about 650 km. All these structures (13) represent objects of undoubted scientific and practical interest and might be considered as immediate objects for conducting integrated geological and geophysical investigations. Analysis and generalization of the RADARSAT satellite system imagery and radio-echosounding survey data collected in the eastern part of Princess Elizabeth Land allow us to distinguish spatial boundaries of previously unknown continental rift system that was proposed to name Gaussberg (Golynsky & Golynsky, 2007). The rift is about 500 km long, and taking into consideration its western continuation in the form of short (fragmented) faults, may exceed 700 km. The elevation difference between depressions and horsts reaches 3 km. The rift structure consists of two sub-parallel depressions separated by segmented horst-like rises (escarpments). Deep depressions within the rift reach more than 800 m bsl near the West Ice Shelf and within the central graben occupied by the Phillipi Glacier. The width of the Gaussberg Rift system varies from 60 km in the south-western area to 150 km near the West Ice Shelf. The Gaussberg rift is considered as a part of the Lambert rift system, which has a complicated structure clearly recognized over both the continent and also its margin. The Gaussberg rift probably exploited a weak zone between the Proterozoic mobile belt and the Archaean Vestfold-Rauer cratonic block. Supposedly it initiated at the turn of Jurassic and Permian epoch or a little bit earlier as in case of the Lambert rift where the Permian graben formation with coal-bearing deposits predetermined the subsequent development of submeridional rift zone. The Gaussberg and also the Scott rift developed in the Queen Marie Land, may be considered as continuations of the Mahanadi Valley rift and

  5. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  6. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  7. Expression of Active Tectonics in Erosional Landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Whipple, K. X.; McDermott, J. A.; Adams, B. A.

    2010-12-01

    Landform analysis has become a standard tool in neotectonic studies. Most commonly the offset, tilting, and warping of abandoned depositional landforms is used to infer deformation rates and patterns. The timescales recorded in deformed landforms importantly bridge the gap between geodetic and geologic methods. Whereas such analyses of static landforms has become well developed, complementary approaches to extract quantitative information about tectonics from erosional landscapes are relatively new, rapidly evolving, and can provide powerful insight. Over the last decade, some useful general rules about the expression of rock uplift rate in erosional landscapes have been developed that can guide and augment studies of the spatial distribution of active rock uplift. At catchment scale, the relationship between landscape form and rock uplift is dictated largely by the response of stream profiles to rock uplift (particularly in rocky landscapes where uplift exceeds soil production), which is largely one of changing channel steepness (gradient adjusted for drainage area). Changes in channel steepness along stream can be either abrupt (discrete slope-break knickpoints) or gradual (expressed as zones of enhanced or reduced river profile concavity) depending on the deformation pattern. Landforms can record information about both spatial and temporal patterns in rock uplift rate. Landscapes in various parts of the Himalaya exemplify both spatial and temporal influences. The Siwalik Hills in the Himalayan foreland are a type locality for the topographic expression of spatial patterns in rock uplift rate. Here an independently known pattern of rock uplift rate over a fault-bend fold affords an opportunity to study landscape response and test landscape evolution models. Once calibrated, such models can be used to evaluate along-strike variability in the rate and pattern of rock uplift far more effectively and efficiently than can be achieved with other methods. Applying these

  8. Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey

    NASA Astrophysics Data System (ADS)

    Sağlam Selçuk, Azad

    2016-10-01

    The eastern part of the Lake Van basin (Van region, Turkey) is controlled by reverse faults, such as the Gürpınar, Everek and Alaköy faults. These represent the major tectonic structures within the Van region and have caused many devastating earthquakes. Based on quantitative analyses, the Quaternary activity and topographic relief control of each of these faults was investigated. The Gürpınar, Everek and Alaköy faults are restricted to the southern slopes of the Güzelsu, Everek, and Karasu basins, respectively. Analyses of the mountain front sinuosity (Smf) and valley floor width-to-height ratio (Vf) suggest high activity along the Gürpınar fault, the Everek fault, and the western part of the Alaköy fault. Furthermore, based on the integration between Smf and Vf, the estimated uplift rates were observed to increase from north to south. The Gürpınar and Everek hanging-wall blocks are characterized by uplift rates of > 0.5 mm yr- 1, whereas the Alaköy fault exhibited a rate of 0.05 to 0.5 mm yr- 1. These faults produce knickpoints or knickzones, complex basin hypsometric curves, and high values of the stream length-gradient index. Based on these geomorphic analyses, it was established that the tectonic activity of both the Gürpınar and Everek faults is greater than that of the Alaköy fault.

  9. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  10. Impact of the Yakutat indentor corner on present-day tectonics and fault activity in SE Alaska - SW Yukon

    NASA Astrophysics Data System (ADS)

    Mazzotti, S.; Marechal, A.; Ritz, J. F.; Ferry, M. A.

    2015-12-01

    We present an active tectonic model of the SE Alaska - SW Yukon region based principally on the integration of recent GPS velocity data and new fault-slip rates derived from geomorphology. In this region, the Yakutat collision results in complex tectonics with patterns of strain localization and strain partitioning that strongly vary across the various mountain ranges and active faults. We propose that deformation and fault activity in the St. Elias and Chugach Mountains are primarily controlled by the eastern syntaxis of the Yakutat collision, which produces a semi-radial tectonic pattern: Velocities, principal horizontal shortening rates, and maximum horizontal stress orientations rotate by 60 - 80 ° around the syntaxis, from roughly parallel to the relative Pacific - North America motion at the front of the collision to roughly orthogonal southeast of the syntaxis. The interaction between this strain pattern and major inherited tectonic structures inland of the collision zone (i.e., Denali and Duke River Faults) results in various reactivation modes of these structures. Specifically, the Denali Fault shows a very pronounced lateral variations of activity from ~12 mm/a of dextral slip rate in its central section to ~1 mm/a of mostly shortening slip rate along its southern section. This marked change of activity is associated with a possible relay system where the Duke River and Totschunda Faults accommodate a major part (8 - 12 mm/a) of the inland strain transfer directly in front of the syntaxis. This new tectonic model retains some questions, in particular regarding the mechanisms of deformation and strain transfer (1) from the syntaxis to the Duke River - Totschunda system and (2) at the junction between Totschunda and Denali Faults. Numerical models of present-day deformation may help address these issues and provide information about relative strength of the various crustal and inherited fault elements of this system.

  11. Crustal structure of Chuan-Dian region derived from gravity data and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Jiang, Wenliang; Zhang, Jingfa; Tian, Tian; Wang, Xin

    2012-12-01

    In this paper, Bouguer gravity data were used to invert crustal structure of the Chuan-Dian region of China. Both multi-scale wavelet analysis and density interface inversive methods were adopted. Three gravity models transverse to major blocks were constructed. Our research indicates that great differences exist in crustal structures between the Eastern Basin and the Western plate, and crustal structures of Chuan-Dian region are closely correlated with tectonic activities of the Eastern Tibetan Plateau. The Western Sichuan platform experienced strong deformation due to eastward extrusion of the Tibetan Plateau. This led to heaving of the upper crust and thickening of the lower crust. The low-density crusts of Western Blocks were deformed by many high-angle faults, and most of these faults cut through to the middle crust. Density structures of upper and middle crusts are restricted by the regional tectonic stress fields and fault zones. The lower crust was deformed by folding, inducing high- and low-density anomalies alternatively. Rocks beneath the Longmenshan sub-block and the Northwestern sub-block of Sichuan were severely broken. For strong eastward extrusion of the plateau, large areas of low-density anomaly were observed in the lower crust. Adjusted by gravity isostasy, the lower crusts of the Chuan-Dian block and the Songpan-Garze block have thickened intensely. Density structures present highly inhomogeneous manner in lateral direction throughout the Western Block. Crustal densities of the Sichuan Basin are much more homogeneous, and the whole lithosphere is denser than that of Western Block. In transitional area between the South China Block and the Chuan-Dian Block, with the decreasing of crustal density, crustal stability is also depressed. In addition, we obtained a detailed map of Moho using variable density model. The Moho topography undulates greatly beneath the Chuan-Dian region. The maximum crustal thickness difference of the Chuan-Dian region is

  12. Measurement and interpretation of diffuse gas emission in tectonic structures associated to volcanoes: the case of Volcán de Fuego de Colima

    NASA Astrophysics Data System (ADS)

    Jácome Paz, M. P.; Delgado Granados, H.; Inguaggiato, S.

    2011-12-01

    Diffuse gas emission is used to understand the behavior of volcanoes during eruptive activity or during passive-degassing periods (i.e. diffuse gas emissions of Stromboli volcano have been observed for 10 years; Inguaggiato 2011). Also, diffuse gas emission is used to study the activity of tectonic structures such as faults in some areas as precursors of seismic events. Volcanoes are always associated to tectonic structures. However, few has been done to understand the volcano-tectonic relationships using diffuse emissions as a tool. For instance, Volcán de Fuego de Colima (VFC) is located in a highly active tectonic area such as the Colima graben where the existence of southward-trending faults have been previously documented as well as east-west trending faults (Macías 2005; Norini et al 2010; Cortés et al 2010). VFC is a historically active volcano with major explosive eruptions (most recent in 1913), refilling of the crater, overtopping with growing lava domes and pyroclastic flow events. However, what is the relationship between the tectonic features across the volcano? Are these structures affecting the activity of the volcano? If so, how are they affecting the eruptive activity? Can the tectonic activity be used to understand the evolution of the volcanic activity? In this work we use the diffuse gas emission to answer these questions. For this end, we measured soil CO2 flux and soil H2S flux along the Tamazula fault at more than 300 stations. Also, samples were collected from springs at VFC. Our preliminary results found no indication of significant tectonic activity around the faults to which VFC is associated. This is the first measurement of this kind at VFC and established a baseline we may compare with in the future.

  13. The role of space-based observation in understanding and responding to active tectonics and earthquakes

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Walters, R. J.; Wright, T. J.

    2016-12-01

    The quantity and quality of satellite-geodetic measurements of tectonic deformation have increased dramatically over the past two decades improving our ability to observe active tectonic processes. We now routinely respond to earthquakes using satellites, mapping surface ruptures and estimating the distribution of slip on faults at depth for most continental earthquakes. Studies directly link earthquakes to their causative faults allowing us to calculate how resulting changes in crustal stress can influence future seismic hazard. This revolution in space-based observation is driving advances in models that can explain the time-dependent surface deformation and the long-term evolution of fault zones and tectonic landscapes.

  14. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  15. Influence of Mesozoic age structure on Miocene tectonic development in NE Anzoategui, Eastern Venezuela Basin

    SciTech Connect

    Sadler, P.; White, S.

    1996-08-01

    Structure within and surrounding the Quiamare-La Ceiba region, Eastern Venezuela Basin, is dominated by two major thrust fault systems. They were generated during Early-Middle Miocene time in response to oblique convergence of the Caribbean and South American plates. They are. respectively, the SE vergent NE-SW oriented Anaco fault system, and the SSE vergent ENE-WSW oriented Pirital fault system. The major structural feature associated with each fault system is a basement cored ramp anticline. New seismic data provides evidence that contributes to a better understanding of the sequence of tectonic development within and surrounding the Quiamare-La Ceiba region. Compressional structures in both the hanging wall and the footwall of the Pirital fault system appear to be inverted normal faults, that were previously active during Mesozoic time along the northern South America passive margin. A conjugate set of strike-slip faults is also present. They are oriented NNW-SSE, parallel to the Urica lineation, and SSW-NNE, respectively. A Mesozoic origin for these faults is suggested. Post-compressional relaxation during Plio-Pleistocene time resulted in the development of shallow, small scale normal faults. These normal faults appear to be localized by structural adjustments along the strike-slip fault sets. Existing oil and gas production within the Quiamare-La Ceiba region is from localized structural closures. Strike-slip faults dissect the prevailing structural grain, and may provide an additional hydrocarbon trapping mechanism.

  16. Seismic structure and tectonics of the Shackleton Fracture Zone (Drake Passage, Scotia Sea)

    NASA Astrophysics Data System (ADS)

    Geletti, Riccardo; Lodolo, Emanuele; Schreider, Anatoly A.; Polonia, Alina

    2005-03-01

    The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction

  17. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  18. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    SciTech Connect

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148 km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.

  19. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  20. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir

    NASA Astrophysics Data System (ADS)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.

    2012-12-01

    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  1. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  2. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    The Säntis nappe is a fold-and-thrust structure in eastern Switzerland consisting of numerous tectonic discontinuities that make rocks vulnerable to rock failure. The Sennwald landslide is one of those events that occurred due to the failure of Lower Cretaceous Helvetic limestones. This study reveals the surface exposure age of the event in relation to geological and tectonic setting, earthquake frequency of the Central Alps, and regional scale climate/weather influence. Our study comprises detailed mapping of landform features, thin section analysis of landslide boulder lithologies, landslide volume estimation, numerical DAN-3D run-out modelling, and the spatial and temporal relationship of the event. In the Sennwald landslide, 92 million m3 of limestones detached from the south-eastern wall of the Säntis nappe and slid with a maximum travel distance of ~4'500 m and a "fahrboeschung" angle of 15° along the SE-dipping sliding plane almost parallel to the orientation of the bedding plane. Numerical run-out modelling results match the extent and the thickness of landslide deposits as observed in the field. The original bedrock stratigraphy was preserved as geologically the top layer in the bedrock package travelled the farthest and the bottom layer came to rest closest to the release bedrock wall during the landslide. Velocities of maximum 90 m/s were obtained from the numerical run-out modelling. Total Cl and 36Cl were determined at ETH AMS facility with isotope dilution methods defined in the literature (Ivy-Ochs et al., 2004). Surface exposure ages of landslide deposits in the accumulation area are revealed from twelve boulders. The distribution of limestone boulders in the accumulation area, the exposure ages, and the numerical run-out modelling support the hypothesis that the Sennwald landslide was a single catastrophic event. The event is likely to have been triggered by at least light to moderate earthquakes (Mw=4.0-6.0). The historical and the last 40-year

  3. Structural analysis and evolution of the Hadong-Sancheong-Hwagae area in the Yeongnam massif, Korea: a NS-trend tectonic frame in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Deok-Seon, Lee; Ji-Hoon, Kang

    2016-04-01

    The Hadong-Sancheong-Hwagae area in the Jirisan province of the Yeongnam massif, Korea, is mainly composed of Precambrian Hadong anorthosite complex (HAC), Precambrian Jirisan metamorphic rock complex (JMRC), Jurassic˜Triassic granitoids which intrude them, and Cretaceous sedimentary rocks which unconformably cover them. Lithofacies distribution and tectonic frame of the Precambrian constituent rocks mainly show a NS trend, unlike a general NE trend of those in the Korean Peninsula. To unravel the geological structures associated with the NS-trend tectonic frame which was built in the HAC and JMRC, we researched the structural characteristics of each deformation phase based on the geometric and kinematic features and the forming sequence of rock structures of the multi-deformed HAC and JMRC. The results indicate that the pre-Late Paleozoic geological structures of this area were formed at least through the following three times of ductile deformation phases. The D1 deformation happened due to the large-scale top-to-the SE shearing, and formed sheath or A-type folds and a regional NE trend of tectonic frame in the HAC and JMRC. The D2 deformation occurred under the EW-directed tectonic compression, and formed a regional NS trend of active and passive folds and Hadong ductile shear zone over 2.3˜1.4 km width, and transposed most of D1 tectonic frame into D1-2 composite tectonic frame. The extensive Hadong shear zone, which was formed in the mylonitization process accompanying the passive folding, was persistently developed along the eastern boundary of HAC and JMRC which corresponds to a limb of passive fold on a geological map scale. It produced a very strong mylonitic structure and stretching lineation. The NE-trend D1 structural elements were mainly reoriented into NS trend by the powerful active and passive folding. The D3 deformation occurred under the NS-trend tectonic compression environment, and formed EW-trend kink or open folds, and partially rearranged

  4. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  5. Applications of Morphochronology to the Active Tectonics of Tibet

    SciTech Connect

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  6. Preliminary study on hydrogeology in tectonically active areas.

    SciTech Connect

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  7. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    SciTech Connect

    Zilberman, E.; Wachs, D. )

    1988-02-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.

  8. Recent structures and tectonic regimes of the stress-strain state of the Earth's crust in the northeastern sector of the Russian Arctic region

    NASA Astrophysics Data System (ADS)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.; Koz'min, B. M.

    2016-11-01

    A comprehensive investigation aimed at determining seismotectonic types of destruction and the stress-strain state of the Earth's crust in the main seismogenerating structures of the Arctic-Asian seismic belt is conducted for the territory of the northeastern sector of the Russian Arctic region. Based on the degree of activity of geodynamical processes, the regional principles for ranking neotectonic structures are elaborated, and neotectonic zoning is carried out based on the substantiated differentiation of the corresponding classes. Within the limits of the Laptev Sea, Kharaulakh, and Lena-Anabar segments, we analyzed I the structural-tectonic position of the most recent structures, II the deep structure parameters, III the parameters of the active fault system, and IV the parameters of the tectonic stress field, as revealed from tectonophysical analysis of Late Cenozoic fault and fold deformations. Based on the seismological data, the mean seismotectonic deformation tensors are calculated to determine, in combination with geological and geophysical data, the orientations of the principal stress axes and to reveal the structural-tectonic regularity for tectonic regimes of the stress-strain state of the Earth's crust in the Arctic sector of the boundary between the Eurasian and North American lithospheric plates.

  9. Volcanic and Tectonic Setting of Hydrothermal Activity on the Southern Mid-Atlantic Ridge, 4° - 11°S

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Haase, K. M.; Koschinsky, A.; Lackschewitz, K.; Yoerger, D. R.

    2006-12-01

    The recurrence rate of volcanism at mid-ocean ridges should drop with spreading rate. Although the southern Mid-Atlantic Ridge, with a spreading full rate of ~3.6 cm/yr, might therefore be expected to show only sporadic magmatic activity, we present information on recently-discovered volcanically, tectonically and hydrothermally active areas south of the equator (at 4°48'S and 9°33'S, see also German et al. 2005; Haase et al. 2005 EOS Trans. AGU 86 (52) Fall Meet. Suppl. Abstr. OS21C-04 & -05). Around the 4°48'S area the median valley floor forms a ~10 km wide, hour-glass shaped, plateau with water depths of around 3000 m. Four closely-spaced vent fields (the high-temperature sites Turtle Pits, Red Lion and Comfortless Cove and the diffuse low-temperature Wideawake site) occur along a flat (total relief 50 m), volcanically and tectonically active 2 km section of this plateau (see German et al. 2005, Haase et al. 2005 op. cit. also Koschinsky et al. this meeting). The Turtle Pits site lies within a small depression associated with a fracture marked by aligned collapse pits. This central depression is surrounded by laminated sheet flows to the north and northwest, whereas jumbled flows are more prevalent to the east. Comfortless Cove is also associated with young volcanics and shows strong tectonic influence on vent location. Red Lion in contrast shows no clear tectonic control - it is characterised by four active chimneys which sit directly on a pillow lava floor. The 9°33'S area is situated on 11 km-thick crust (Bruguier et al. 2003 JGR 108 2093) at 1490 m water depth and is marked by fresh pillow lavas, sheet flows, lava lakes and collapse structures. Low- temperature, diffuse hydrothermal activity is abundant in the area (Haase et al. 2005; Koschinsky et al. 2006 op. cit.) as are larger extinct hydrothermal mounds suggesting more vigourous hydrothermalism in the past. All sites are located east of a large NNW trending escarpment flanking horst and graben

  10. Active tectonics and mud diapirism in the Gulf of Squillace (Crotone Basin, Calabrian Arc, Italy)

    NASA Astrophysics Data System (ADS)

    Artoni, A.; Capozzi, R.; Lorenzini, S.; Oppo, D.; Polonia, A.; Torelli, L.

    2009-04-01

    The Calabrian arc is a prominent accretionary prism in the Mediterranean sea that contains alpine metamorphic rocks and connects the southern Apennine chain of Calabria, to the north, with the Maghrebian chain of Sicily, to the southwest. Recent active deformation inside the prism is testified by the earthquakes records and by submarine mud volcanism. The latter, not yet well defined within the accretionary prism, is generally associated to deeper active tectonic structures. In order to unravel the relationships between mud volcanoes and deeper deformations a study has been carried out in the Gulf of Squillace, located in the central portion of the backstop zone of the Calabrian arc and inside the Crotone basin. The deeper tectono-stratigraphic frame has been defined by using 10 well logs, 330 kms of public seismic reflection lines and three CROP seismic lines (the project for deep crust of Italy) recently processed with prestack depth migration. The study has been carried out within the Italian PRIN 2006 Project: "Tectonic and Sedimentation in the Accretionary Complex at the Front of the Calabrian Arc (Ionian Sea)". Three major tectonic units could be distinguished; from the top to the bottom, they are: 1) a metamorphic basement nappe (Alpine/Calabrian units); 2) a complex and east-verging Apenninic-Maghrebian prism, that can be subdivided in an outer prism sealed by middle Eocene(?)/Oligocene deposits and an inner prism sealed by middle/late Miocene deposits; 3) a deeper Mesozoic to Neogene relatively undeformed block interpreted as a thinned block of continental crust that preserves Mesozoic extensional fault. Subsurface mapping of Alpine/Calabrian and Apenninic-Maghrebian units show that their leading edges are oriented NNE-SSW and their tectonic stack was completed at least in the late Miocene; since then, WNW-ESE trending Catanzaro-Squillace transcurrent faults system and out-of-sequence thrusting started to locally reshape the backstop. The Cantanzaro

  11. Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Alania, V.; Bonali, F. L.; Enukidze, O.; Tsereteli, N.; Kvavadze, N.; Varazanashvili, O.

    2017-03-01

    The Rioni Basin, located between the Greater and Lesser Caucasus in Georgia, is an outstanding example of ongoing inversion tectonics. Marine and continental deposits of Cretaceous-Neogene age have been locally uplifted since the end of Miocene. The uplifted area totals 1300 km2, and Plio-Quaternary river deposits have been raised up to 200 m above the surrounding plains. Inversion tectonics has been accompanied by the development of south-vergent asymmetrical folds and strike-slip faults along the border of the uplifted area. The folds have locally an en-échelon geometry and microtectonic data indicate rotation of the paleostress direction over time, suggesting simple shear deformation. In the interiors of the uplifted area, there are gentle symmetrical folds and one main active south-dipping reverse fault, corresponding to a backthrust. Morphostructural evidence, as well as the tilting of Quaternary strata, the offset of Quaternary alluvial deposits and the presence of crustal seismic activity, indicate that compressional tectonics is still active. The combination of field data with seismic reflection sections shows that inversion tectonics took place through a series of north-dipping blind thrusts and a wedge with passive back-thrusting. Uplift and contraction are more developed along the eastern part of the study area, suggesting the westward propagation of the closure of the Transcaucasian depression.

  12. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  13. Electrical resistivity structure of the Great Slave Lake shear zone, northwest Canada: implications for tectonic history

    NASA Astrophysics Data System (ADS)

    Yin, Yaotian; Unsworth, Martyn; Liddell, Mitch; Pana, Dinu; Craven, James A.

    2014-10-01

    Three magnetotelluric (MT) profiles in northwestern Canada cross the central and western segments of Great Slave Lake shear zone (GSLsz), a continental scale strike-slip structure active during the Slave-Rae collision in the Proterozoic. Dimensionality analysis indicates that (i) the resistivity structure is approximately 2-D with a geoelectric strike direction close to the dominant geological strike of N45°E and that (ii) electrical anisotropy may be present in the crust beneath the two southernmost profiles. Isotropic and anisotropic 2-D inversion and isotropic 3-D inversions show different resistivity structures on different segments of the shear zone. The GSLsz is imaged as a high resistivity zone (>5000 Ω m) that is at least 20 km wide and extends to a depth of at least 50 km on the northern profile. On the southern two profiles, the resistive zone is confined to the upper crust and pierces an east-dipping crustal conductor. Inversions show that this dipping conductor may be anisotropic, likely caused by conductive materials filling a network of fractures with a preferred spatial orientation. These conductive regions would have been disrupted by strike-slip, ductile deformation on the GSLsz that formed granulite to greenschist facies mylonite belts. The pre-dominantly granulite facies mylonites are resistive and explain why the GSLsz appears as a resistive structure piercing the east-dipping anisotropic layer. The absence of a dipping anisotropic/conductive layer on the northern MT profile, located on the central segment of the GSLsz, is consistent with the lack of subduction at this location as predicted by geological and tectonic models.

  14. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  15. Gridino melange zone of the Belomorian eclogite province: Succession of tectonic events and structural position of mafic dyke swarms

    NASA Astrophysics Data System (ADS)

    Babarina, I. I.; Sibelev, O. S.; Stepanova, A. V.

    2014-07-01

    Based on relationships between Paleoproterozoic mafic dykes, lithotectonic complexes, and tectonic structures of the Gridino Zone in the Belomorian eclogite province of the Fennoscandian Shield, deformations have been divided into groups differing in age and the succession of tectonic events has been reconstructed. The formation of Neoarchean eclogite-bearing melange was related to disintegration of large eclogite sheets in the course of near-horizontal ductile flow accompanied by syntectonic granitoid magmatism, multiple migmatization, and granulite-to amphibolite-facies metamorphism. The exotic blocks, including eclogites, were incorporated into TTG gneisses as sheets and lenses up to a few hundreds of meters in thickness and oriented conformably with gneissic banding. As a result of ductile flow, the lithotectonic complexes were transported at the level of discrete brittle-ductile deformations expressed as strike-slip faults and associated folds. Under conditions of a relatively rigid medium, individual structural elements underwent rotation approximately through 90° in plan view. Under the extension regime in the Early Paleoproterozoic, several swarms of mafic dykes were injected into the already cold framework rocks, as is evident from dyke morphology. The dykes crosscut all predated structures, included turned blocks, and are therefore important reference points for subdivision of Neoarchean and Paleoproterozoic processes. The Svecofennian postdyke tectonic activity was accompanied by local shearing and boudinage of metabasic rocks, development of quartz and pegmatite veins along tension cracks, disharmonic folding, and discrete retrograde metamorphism up to amphibolite-facies conditions. The postdyke deformations did not exert a substantial effect on the previously formed regional structure.

  16. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  17. A new structural model of the Pachitea Basin, Peru: Interaction of thick-skinned tectonics and salt detached thrusting

    NASA Astrophysics Data System (ADS)

    Witte, J.; Rebaza, J.; Westlund, D.; Stratton, M.; Alegria, C.

    2015-11-01

    We present four new structural transects, a new seismo-stratigraphic correlation, a refined structural model and new shortening rates for the Pachitea Basin (=PB), Peru. Our results are based on the integration and detailed interpretation of newly acquired industry seismic (2D, 2005 vintage), existing well data, existing and proprietary surface geology data and newly acquired aero magnetic data (2007 vintage). Our assessment confirms the presence of at least four distinct structural styles in the area, thick-skinned structures, thin-skinned detachment thrusting, salt-tectonics and localized strike-slip tectonics. Based on seismo-stratigraphic correlations we conclude that the oldest rocks carried to outcrop by the San Matias (=SM) thrust are of Jurassic age. We interpret the thin-skinned master detachment to be located in varying positions, directly below or above, autochtonous salt pillows. Timing assessment of the SM thrust sheet reveals that it has been active from at least ˜5 Ma to post-2 Ma, supporting regionally published timing data for this latitude. Positive topographic surface expressions indicate ongoing contraction along the mountain front of the Peruvian Eastern Cordillera (=EC). Across the PB we calculate between 2.6% and 5.5% for thick-skinned shortening and at least 25.5% for the thin-skinned shortening. For the SM thrust sheet we calculate a slip-rate of ˜1-1.6 mm/yr, which is in line with published slip rates on individual thrusts from around the world. Observations along the SM thrust system indicate that thin- and thick-skinned systems interact mechanically, and that they have been active intermittently. We conclude that the location of salt pillows as well as pre-existing or growing basement-involved structures helped trigger the SM thrust. Different types of salt bodies are present in the PB, autochtonous pillows, slightly thrusted pillows and allochtonous diapirs. Our results provide new insight into the structural interplay, particularly

  18. Structure and tectonic setting of the eastern Tehachapi Range, California

    SciTech Connect

    Wood, D.J.; Saleeby, J.B.; Silver, L.T. . Division of Geological and Planetary Sciences)

    1993-04-01

    In the easternmost Tehachapi mountains a moderately SE dipping fault zone with an irregular trace juxtaposes high grade ductilely deformed footwall gneisses against a cataclastically deformed granitic hanging wall complex from Tehachapi Valley to the Garlock FZ. The fault zone exhibits evidence of both ductile and brittle deformation. Moderately SE plunging stretching lineations and sense of shear indicators in the footwall suggest normal displacement and the sole of the hanging wall consists of a chloritic breccia. The footwall consists of garnet-amphibolite grade orthogneiss, paragneiss, and marble, locally protomylonitic, folded into presently SW vergent isoclinal folds with a penetrative, NW trending, moderately NE dipping foliation. This gneiss complex hosts a 0.2 to 0.8 km wide, NW tending, shallow NE dipping ductile shear zone, called here the eastern Tehachapi shear zone (ETSZ). The ETSZ appears to post-date much of the isoclinal folding in the gneisses. The ETSZ is inferred to continue north of Tehachapi valley (Ross, 1989) where it steepens and swings to a more northerly trend into the Lake Isabella region where it has been called the proto-Kern Canyon fault zone. A post ETSZ deformation refolded the gneisses into open, upright folds with moderately NE plunging axes. Juxtaposition of the gneisses and the cataclastically deformed granitic hanging wall rocks occurred during and/or after this post ETSZ folding event. In the structurally lowest levels of the gneiss complex exposed along the Garlock fault, quartz diorite orthogneiss becomes increasingly deformed downward with an NE striking, moderately NW dipping mylonitic fabric. The youngest deformation in the areas is a series of WNW trending, regional scale antiforms and synforms which exert a first order control on the topography of the region.

  19. Aeromagnetic interpretation in the south-central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ranganai, Rubeni T.; Whaler, Kathryn A.; Ebinger, Cynthia J.

    2016-11-01

    Regional aeromagnetic data from the south-central Zimbabwe Craton have been digitally processed and enhanced for geological and structural mapping and tectonic interpretation integrated with gravity data, to constrain previous interpretations based on tentative geologic maps and provide new information to link these structural features to known tectonic events. The derived maps show excellent correlation between magnetic anomalies and the known geology, and extend lithological and structural mapping to the shallow/near subsurface. In particular, they reveal the presence of discrete crustal domains and several previously unrecognised dykes, faults, and ultramafic intrusions, as well as extensions to others. Five regional structural directions (ENE, NNE, NNW, NW, and WNW) are identified and associated with trends of geological units and cross-cutting structures. The magnetic lineament patterns cut across the >2.7 Ga greenstone belts, which are shown by gravity data to be restricted to the uppermost 10 km of the crust. Therefore, the greenstone belts were an integral part of the lithosphere before much of the upper crustal (brittle) deformation occurred. Significantly, the observed magnetic trends have representatives craton-wide, implying that our interpretation and inferences can be applied to the rest of the craton with confidence. Geological-tectonic correlation suggests that the interpreted regional trends are mainly 2.5 Ga (Great Dyke age) and younger, and relate to tectonic events including the reactivation of the Limpopo Belt at 2.0 Ga and the major regional igneous/dyking events at 1.8-2.0 Ga (Mashonaland), 1.1 Ga (Umkondo), and 180 Ma (Karoo). Thus, their origin is here inferred to be inter- and intra-cratonic collisions and block movements involving the Zimbabwe and Kaapvaal Cratons and the Limpopo Belt, and later lithospheric heating and extension associated with the break-up of Gondwana. The movements produced structures, or reactivated older fractures

  20. Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Ryberg, T.; Godfrey, N. J.; Okaya, D. A.; Murphy, J. M.

    2001-01-01

    A seismic refraction and low-fold reflection survey, known as the Los Angeles Region Seismic Experiment (LARSE), was conducted along a transect (line 1) extending from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles and San Gabriel Valley basins and San Gabriel Mountains. The chief result of this survey is an interpreted cross section that addresses a number of questions regarding the crustal structure and tectonics of southern California that have been debated for decades and have important implications for earthquake hazard assessment. The results (or constraints) are as follows. (1) The maximum depth of the Los Angeles basin along line 1 is 8 9 km. (2) The deep structure of the Sierra Madre fault zone in the northern San Gabriel Valley is as follows. The Duarte branch of the Sierra Madre fault zone forms a buried, 2.5-km-high, moderately north dipping buttress between the sedimentary and volcanic rocks of the San Gabriel Valley and the igneous and metamorphic rocks of the San Gabriel Mountains. (For deeper structure, see following.) (3) There are active crustal décollements in southern California. At middle-crustal depths, the Sierra Madre fault zone appears to sole into a master décollement that terminates northward at the San Andreas fault and projects southward beneath the San Gabriel Valley to the Puente Hills blind thrust fault. (4) The dip and depth extent of the San Andreas fault along line 1 dips steeply (˜83°) northward and extends to at least the Moho. (5) The subsurface lateral extent of the Pelona Schist in southern California is as follows. Along line 1, the Pelona Schist underlies much, if not all of the San Gabriel Mountains south of the San Andreas fault to middle-crustal depths. North of the San Andreas fault, it is apparently not present along the transect.

  1. Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California

    USGS Publications Warehouse

    Fuis, G.S.; Ryberg, T.; Godfrey, N.J.; Okaya, D.A.; Murphy, J.M.

    2001-01-01

    A seismic refraction and low-fold reflection survey, known as the Los Angeles Region Seismic Experiment (LARSE), was conducted along a transect (line 1) extending from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles and San Gabriel Valley basins and San Gabriel Mountains. The chief result of this survey is an interpreted cross section that addresses a number of questions regarding the crustal structure and tectonics of southern California that have been debated for decades and have important implications for earthquake hazard assessment. The results (or constraints) are as follows. (1) The maximum depth of the Los Angeles basin along line 1 is 8-9 km. (2) The deep structure of the Sierra Madre fault zone in the northern San Gabriel Valley is as follows. The Duarte branch of the Sierra Madre fault zone forms a buried, 2.5-km-high, moderately north dipping buttress between the sedimentary and volcanic rocks of the San Gabriel Valley and the igneous and metamorphic rocks of the San Gabriel Mountains. (For deeper structure, see following.) (3) There are active crustal de??collements in southern California. At middle-crustal depths, the Sierra Madre fault zone appears to sole into a master de??collement that terminates northward at the San Andreas fault and projects southward beneath the San Gabriel Valley to the Puente Hills blind thrust fault. (4) The dip and depth extent of the San Andreas fault along line 1 dips steeply (???83??) northward and extends to at least the Moho. (5) The subsurface lateral extent of the Pelona Schist in southern California is as follows. Along line 1, the Pelona Schist underlies much, if not all of the San Gabriel Mountains south of the San Andreas fault to middle-crustal depths. North of the San Andreas fault, it is apparently not present along the transect.

  2. Lithosphere structure of the Longmenshan tectonic zone and main factors of the 2008 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Hui, F.; Wang, X.; Qing, Z.; Bai, D.; Meixing, H.; Jingqi, L.; Gang, Z.; Yongzhen, Y.

    2013-12-01

    We analysis the lithosphere structure of the Longmenshan tectonic zone and main factors of the 2008 Wenchuan Earthquake from the results of magnetotelluric sounding, gravity and magnetic detection. The comprehensive geophysical profiles were detected across Songpan-Ganzi folded zone, Longmenshan tectonic zone and Western Sichuan foreland basin. Two-dimensional electrical structure shows that the major tectonic units have different electrical characteristics. The Western Sichuan foreland basin is a typical craton model which has higher resistivity and thinner layers of the lithosphere than the Songpan-Ganzi folded zone, low resistivity anomaly zones only exist in horizontal direction on upper crust, the middle lower crust and upper mantle performance for high resistance characteristics, the vertical stratification is not obvious in the Western Sichuan foreland basin . The Songpan-Ganzi folded zone is a typical thickening crust model , which has large-scale low resistivity anomaly layers in the middle and lower crust, and high resistivity abnormal layers in the upper crust. Density detection results shows that the density of the local high resistance body under the Longmenshan Caopo country is relatively high (3.0 g/cm3) , which is likely to be the mantle-derived basic substances from the invasion of the upper crust. Longmenshan tectonic zone has two sets of fault system: one is a shallow fault system mainly consist of brittle shear zone from the surface layer of the earth's crust, another is a deep fault system mainly consist of ductile shear zone cutting the Moho or crust-mantle transition zone. Shallow and deep tectonic action indicates that the tectonism of these areas are different, which is probably caused by the earth's crust and mantle medium motion decoupling. The main source of 5.12 Wenchuan earthquake located in the footwall of Yingxiu fault, however, the earthquake fracture which induced the 5.12 Wenchuan earthquake is not Yingxiu fault but maybe a

  3. Quantifying submarine landslide processes driven by active tectonic forcing: Cook Strait submarine canyon, New Zealand.

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Barnes, P. M.; Pettinga, J. R.

    2006-12-01

    The Cook Strait submarine canyon system is a multi-branched, deeply incised and highly sinuous feature of New Zealand's active margin, covering some 1500km2 of sea floor between the North and South Islands and spanning water depths of between 50 and 2700m. The canyon occurs at the transition from the westward dipping oblique subduction zone adjacent to the SE North Island and the zone of continental transpression in NE South Island. The recent acquisition of high resolution (5-10m) SIMRAD EM300 bathymetric data allows active tectonic and geomorphic processes to be assessed and quantified at a level of detail previously not possible. While multiple active submarine fault traces have been identified in the Cook Strait by previous studies, quantitative information on their activity has been limited. Cook Strait is structurally characterized by westward dipping thrust faults and E-W trending dextral strike slip faults. The multiple large magnitude high frequency earthquake sources define zones of very high ground shaking expected to contribute to triggering of extensive submarine slope failures. Landslide activity within the canyon system is widespread and represents the dominant mass movement process affecting canyon heads and walls, redistributing material into valley fills. Complexes of large (km3) multi-stepped, deep-seated (100m) translational bedding plane failures represented by gently sloping (<3°) evacuated slide-scar areas with associated blocky valley fill deposits are numerous. Steep catchment heads, channel walls and the leading edges of asymmetric thrust-fault driven anticlines are dominated by gulley and rill systems with associated eroded and/or incipient slump features. Large (107m3+) slide blocks are recognized in discrete failures with quantifiable displacement vectors. Tsunamigenic landslides in this environment are inevitable. This study will provide quantification of landslide models including triggering mechanisms, discrete geometries and

  4. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  5. The structural evolution of the western Irish Variscides: an example of obstacle tectonics?

    NASA Astrophysics Data System (ADS)

    Meere, Patrick A.

    1995-06-01

    Detailed mesostructural and strain analysis investigations across the Killarney Mallow Fault, i.e. the traditional Variscan "Front" in southwest Ireland, reveal that this structural line separates two distinct tectonic regimes. North of the Killarney Mallow Fault bulk shortening orthogonal to orogenic strike is estimated to be 12%, all of which is accounted for by late stage buckling. Microscopic strain analysis reveals that there is only local development of a tectonic fabric. South of the front, bulk shortening is ≈ 40% due to combined layer parallel shortening (LPS), buckling and faulting. Variscan deformation is presented as being essentially coaxial. The regional finite strain pattern outlined above is thought to be primarily controlled by the combined effect of a buried basement obstacle in eastern Iveragh and increased sedimentary pile thickness at the western end of the orogen.

  6. Impact effects and regional tectonic insights: Backstripping the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Hayden, T.; Kominz, M.; Powars, D.S.; Edwards, L.E.; Miller, K.G.; Browning, J.V.; Kulpecz, A.A.

    2008-01-01

    The Chesapeake Bay impact structure is a ca. 35.4 Ma crater located on the eastern seaboard of North America. Deposition returned to normal shortly after impact, resulting in a unique record of both impact-related and subsequent passive margin sedimentation. We use backstripping to show that the impact strongly affected sedimentation for 7 m.y. through impact-derived crustal-scale tectonics, dominated by the effects of sediment compaction and the introduction and subsequent removal of a negative thermal anomaly instead of the expected positive thermal anomaly. After this, the area was dominated by passive margin thermal subsidence overprinted by periods of regional-scale vertical tectonic events, on the order of tens of meters. Loading due to prograding sediment bodies may have generated these events. ?? 2008 The Geological Society of America.

  7. The Meers Fault: Tectonic activity in southwestern Oklahoma

    SciTech Connect

    Ramelli, A.R.; Slemmons, D.B.; Brocoum, S.J.

    1987-03-01

    The Meers Fault in Southwestern Oklahoma is capable of producing large, damaging earthquakes. By comparison to historical events, a minimum of M = 6-3/4 to 7-1/4 could be expected. The most recent surface rupturing event occurred in the late Holocene, and it appears that one or more pre-Holocene events preceded it. Surface rupture length is at least 37 km. Displacements comprising the present-day scarp have left-lateral and high-angle reverse components. Vertical separation of the ground surface reaches 5 m, while lateral separation exceeds the vertical by a ratio of about 3:1 to 5:1, reaching about 20 m. Individual events apparently had maximum displacements of several meters. The Meers Fault may be part of a larger active zone. Based on surface expressions, the Washita Valley, Oklahoma and Potter County, Texas Faults may also have ruptures during the late Quaternary, although not as recently as the Meers Fault. Low sun angle photography in Southwestern Oklahoma revealed no evidence of fault activity, other than that of the Meers Fault, although activity may be concealed by poor preservation or ductile surface deformation. This suggests that additional areas of activity may be sparse and rupture infrequently.

  8. 3D decompaction and sequential restoration: a tool to quantify sedimentary and tectonic control on elusive Quaternary structures

    NASA Astrophysics Data System (ADS)

    D'Ambrogi, Chiara; Emanuele Maesano, Francesco

    2015-04-01

    the Po Basin provided a set of detailed pictures that show the topography and the evolution of the infilling at different point during time. As a matter of fact the resulting 3D surfaces describe the basin configuration and the changes and migration of regional depocentres controlled by thrust activity up to the Pleistocene but also allow to highlight the interference of active tectonic and sedimentation in the central portion of the Po basin, an area considered less affected by the main structures (e.g. the Emilia and Ferrara-Romagna arcs). In the analysis of this structure also the foreland tilting has been subtracted from the topography resulting after unfolding and decompaction, for the 6 time intervals; we obtained a residual signal related to the growing anticline, and the uplift rate of the structure during its Pleistocene evolution. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  9. Current Magmato-Tectonic Activity in the Asal-Ghoubbet Rift (Afar Depression, Republic of Djibouti)

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Doubre, C.; Dorbath, L.; Manighetti, I.; Jacques, E.; Geoffroy, L.

    2001-12-01

    The Asal-Ghoubbet rift, the most active, emerged segment of the Aden ridge, opens at 16+/-2 mm/yr. Although normal faulting operates in the rift, it does not accommodate the entire extension, so that dyking must occur at depth. In order to investigate the current relationship between tectonics and magmatism, we installed 11 seismometers (3 3C + one broad band; plus 6 permanent stations) in the northeastern part of the rift, site of the most active faults and of the Fieale volcano caldera, and monitored the seismic activity during 5 months. About 200 small-magnitude (time, <= 3) events could be accurately ( ~ 300m) localized in the emerged part of the rift, using an appropriate velocity model. All fall within the temporary network, forming three major clusters. Nine % of the events spread in the outermost part of the rift northern shoulder, where clear active faults and volcanic structures are lacking. All seem to nucleate at a similar depth, of 6-8 km. Seven % of the events nucleate at a shallow depth ( ~1 km) in the northern Disa Le Mallo subrift, zone of intense active faulting and fissuring. Finally, the majority of events (70%) cluster below the Fieale caldera, at a mean depth of 3 km, hence just above the inferred magma chamber. The analysis of the broader-scale seismological data acquired in the rift over the last 20 years, points to a similar distribution. Thirty five out of 50 focal mechanisms we calculated using P wave polarities, are consistent with a double-couple source model, and reveal predominant normal faulting on NW-SE-striking planes parallel to the faults which structure the rift. Fifteen events, however, show non-double couple radiation pattern, particularly in the Fieale area. These particular events may result from magmatic activity (filling or collapse of the magma chamber) and/or geothermal processes. In the other two areas, where they are also found, their origin is possibly related to fissuring or dyking. One seismic sequence also occurred

  10. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  11. Physical mechanism of the vertical electric field generation over active tectonic faults

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.

    2009-09-01

    The concept of the Global Electric Circuit (GEC) provides an explanation of the existence of a vertical atmospheric electric field and coupling between the ground and ionosphere. Presently, ionospheric physics pays more attention to electric fields and coupling processes in the polar and auroral regions, whereas in other areas the potential difference between the ground and ionosphere usually is not taken into account. Regional processes exist, however, that are able to significantly affect the GEC parameters and through modification of the ionospheric potential to create plasma density irregularities of different scales within the ionosphere. One such source of ionosphere modification is air ionization in the vicinity of active tectonic faults, which takes place due to increased radon emanation. This paper considers the process of local modification of the GEC and corresponding ionospheric variability due to tectonic activity.

  12. Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with

  13. Tectonic History and Mantle Structure of the Sundaland and Indonesian Region

    NASA Astrophysics Data System (ADS)

    Hall, R.; Spakman, W.

    2012-12-01

    The heterogeneous Sundaland region was assembled by closure of Tethyan oceans and addition of continental fragments. Its Mesozoic and Cenozoic history is partly recorded in the mantle, and mantle structure from tomographic imaging can be interpreted using new plate tectonic reconstructions. Continental fragments of east Asian origin, ophiolites and deformed sediments were accreted to eastern Sundaland north of Borneo in the Cretaceous, and a wide zone from Sarawak northwards to South China probably represents subduction at the Pacific margin until about 90 Ma. Eastward rollback at this margin may have contributed to Cretaceous extension and thermal events in Indochina but it is difficult to identify a record of this subduction in the mantle. Continental blocks rifted from western Australia in the Late Jurassic-Early Cretaceous are in Borneo, Java and Sulawesi. West Burma was not one of them; it was already part of SE Asia by the Triassic. The Banda (SW Borneo) block was added to Sundaland at c.110 Ma, and at c.90 Ma the Woyla intra-oceanic arc and Argo (East Java-West Sulawesi) block collided with the Sundaland margin causing subduction to cease. A marked change in deep mantle structure at about 110°E reflects the different subduction histories north of India and Australia since 90 Ma. India and Australia were separated by a transform boundary that was leaky from 90 to 75 Ma and slightly convergent from 75 to 55 Ma. West of this I-A transform, ENE-striking high-velocity anomalies in the lower mantle are interpreted to mark subduction zones active as India moved rapidly north from 80 Ma, with north-directed subduction of Tethys, associated with collision of India with an intra-oceanic arc at c.55 Ma, west of Sumatra, before collision with Asia in the Eocene. In contrast, east of the I-A transform little or none of the Mesozoic history can be identified in the mantle. Between 90 and 45 Ma Australia separated very slowly from Antarctica and there was no significant

  14. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  15. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. Geophysical survey reveals tectonic structures in the Amundsen Sea embayment, West Antarctica

    USGS Publications Warehouse

    Gohl, K.; Eagles, G.; Netzeband, G.; Grobys, J.W.G.; Parsiegla, N.; Schlüter, P.; Leinweber, V.; Larter, R.D.; Uenzelmann-Neben, G.; Udintsev, G.B.

    2007-01-01

    Island Bay (PIB) reveal the crustal thickness and some tectonic features. The Moho is 24-22 km deep on the shelf. NE-SW trending magnetic and gravity anomalies and the thin crust indicate a former rift zone that was active during or in the run-up to breakup between Chatham Rise and West Antarctica before or at 90 Ma. NW-SE trending gravity and magnetic anomalies, following a prolongation of Peacock Sound, indicate the extensional southern boundary to the Bellingshausen Plate which was active between 79 and 61 Ma.

  17. Summary of tectonic and structural evidence for stress orientation at the Nevada Test Site

    USGS Publications Warehouse

    Carr, Wilfred James

    1974-01-01

    A tectonic synthesis of the NTS (Nevada Test Site) region, when combined with seismic data and a few stress and strain measurements, suggests a tentative model for stress orientation. This model proposes that the NTS is undergoing extension in a N. 50 ? W.-S. 50 ? E. direction coincident with the minimum principal stress direction. The model is supported by (1) a tectonic similarity between a belt of NTS Quaternary faulting and part of the Nevada-California seismic belt, for which northwest-southeast extension has been suggested; (2) historic northeast- trending natural- and explosion-produced fractures in the NTS; (3) the virtual absence in the NTS of northwest-trending Quaternary faults; (4) the character of north-trending faults and basin configuration in the Yucca Flat area, which suggest a component of right-lateral displacement and post-10 m.y. (million year) oblique separation of the sides of the north-trending depression; (5) seismic evidence suggesting a north- to northwest-trending tension axis; (6) strain measurements, which indicate episodes of northwest-southeast extension within a net northeast-southwest compression; (7) a stress estimate based on tectonic cracking that indicates near-surface northwest-southeast-directed tension, and two stress measurements indicating an excess (tectonic) maximum principal compressive stress in a northeast-southwest direction at depths of about 1,000 feet (305 m); and (8) enlargement of some drill holes in Yucca Flat in a northwest-southeast direction. It is inferred that the stress episode resulting in the formation of deep alluvium-filled trenches began somewhere between 10 and possibly less than 4 m.y. ago in the NTS and is currently active. In the Walker Lane of western Nevada, crystallization of plutons associated with Miocene volcanism may have increased the competency and thickness of the crust and its ability to propagate stress, thereby modulating the frequency (spacing) of basin-range faults.

  18. Crustal structures across the western Weihe Graben, North China: Implications for extrusion tectonics at the northeast margin of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Tang, Youcai; Zhou, Shiyong; Chen, Y. John; Sandvol, Eric; Liang, Xiaofeng; Feng, Yongge; Jin, Ge; Jiang, Mingming; Liu, Mian

    2015-07-01

    The stable Ordos Plateau, extensional Weihe Graben, and Qinling orogenic belt are located at the northeast margin of the Tibetan Plateau. They have been thought to play different roles in the eastward expanding of the Tibetan Plateau. Peking University deployed a linear seismic array across the western end of the Weihe Graben to investigate the crustal structures of the tectonic provinces of this structure. Receiver function analyses revealed low-to-moderate Poisson's ratios and anticorrelations between Poisson's ratios and topography beneath the Qinling Orogen. These features may indicate a tectonic thickening of the felsic upper crust by folding and thrusting within the Qinling Orogen. We observed a strong horizontal negative signal at the midcrust beneath the Ordos Plateau which may indicate a low-velocity zone. This observation would suggest the stable cratonic Ordos Plateau had been modified due to the compression between the Tibetan Plateau and the Ordos Plateau. We also observed an abrupt 4 km Moho offset across the Weihe Fault, changing from ~44 km beneath the Ordos Plateau to ~40 km beneath the Qinling Orogen. We conclude that the Weihe Fault is a lithosphere-scale fault/shear zone, which extends into the upper mantle beneath the Weihe Graben. It acts as the major boundary separating the stable Ordos Plateau and the active Qinling Orogen.

  19. Structure and tectonic evolution of the Fuegian Andes (southernmost South America) in the framework of the Scotia Arc development

    NASA Astrophysics Data System (ADS)

    Torres Carbonell, Pablo J.; Dimieri, Luis V.; Olivero, Eduardo B.; Bohoyo, Fernando; Galindo-Zaldívar, Jesús

    2014-12-01

    The major structural and tectonic features of the Fuegian Andes provide an outstanding onshore geological framework that aids in the understanding of the tectonic evolution of the Scotia Arc, mainly known from offshore studies. The orogenic history of the Fuegian Andes (Late Cretaceous-Miocene) is thus compared and integrated with the tectonic history of the Scotia Sea. Late Cretaceous-Paleocene structures in the Fuegian Andes suggest a N-directed contraction consistent with an oroclinal bending of the southernmost South America-Antarctic Peninsula continental bridge. This N-directed contraction in the Fuegian Andes continued during the spreading of the West Scotia Ridge, between 40-50 and 10 Ma ago. The onset of major strike-slip faulting in Tierra del Fuego is considered here to be not older than the late Miocene, consistent with the recent history of the North Scotia Ridge; thus forming part of a tectonic regime superposed to the prior contraction in the Fuegian Andes.

  20. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  1. Recent tectonic activity on Mercury revealed by small thrust fault scarps

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Daud, Katie; Banks, Maria E.; Selvans, Michelle M.; Chapman, Clark R.; Ernst, Carolyn M.

    2016-10-01

    Large tectonic landforms on the surface of Mercury, consistent with significant contraction of the planet, were revealed by the flybys of Mariner 10 in the mid-1970s. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission confirmed that the planet's past 4 billion years of tectonic history have been dominated by contraction expressed by lobate fault scarps that are hundreds of kilometres long. Here we report the discovery of small thrust fault scarps in images from the low-altitude campaign at the end of the MESSENGER mission that are orders of magnitude smaller than the large-scale lobate scarps. These small scarps have tens of metres of relief, are only kilometres in length and are comparable in scale to small young scarps on the Moon. Their small-scale, pristine appearance, crosscutting of impact craters and association with small graben all indicate an age of less than 50 Myr. We propose that these scarps are the smallest members of a continuum in scale of thrust fault scarps on Mercury. The young age of the small scarps, along with evidence for recent activity on large-scale scarps, suggests that Mercury is tectonically active today and implies a prolonged slow cooling of the planet's interior.

  2. Tectonic inversion in the Wandel Sea Basin: A new structural model of Kilen (eastern North Greenland)

    NASA Astrophysics Data System (ADS)

    Svennevig, Kristian; Guarnieri, Pierpaolo; Stemmerik, Lars

    2016-12-01

    The seminunatak Kilen in eastern North Greenland, with its complexly deformed Carboniferous-Cretaceous strata, is a key area to understand the tectonic history of the transform plate boundary between eastern North Greenland and Svalbard. Detailed 3-D geological mapping from oblique photogrammetry along with limited ground fieldwork and interpretation of previously published data forms the basis for a new structural model of Kilen. Previous structural models interpreted rhombic-shaped fault patterns as the evidence for strike-slip tectonics. These structures are here interpreted to be the result of a post-Coniacian NE-SW extension with NW-SE trending normal faults followed by later, N-S compression of presumable Paleocene-Eocene age, folding the faults passively and suggesting the presence of a basal detachment. Furthermore, two thrust sheets have been distinguished on Kilen: a lower Kilen Thrust Sheet and an upper Hondal Elv Thrust Sheet separated by a subhorizontal fault: the Central Detachment. The style of deformation and the structures described are interpreted as the result of Paleocene-Eocene N-S directed compression resulting in basin inversion with strike-slip faults only having minor status. This indicates that the Greenland margin as exposed on Kilen and the conjugate Svalbard margin in the West Spitsbergen fold-and-thrust belt are more similar than previously anticipated.

  3. Development of Structural Geology and Tectonics Data System with Field and Lab Interface

    NASA Astrophysics Data System (ADS)

    Newman, J.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.; Andrew, J.; Williams, R. T.; Richard, S. M.

    2015-12-01

    We have developed a prototype Data System for Structural Geology and Tectonics (SG&T). The goal of this effort is to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successful implement the step of developing a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot, in this sense, is analogous to the beam size of analytical equipment used for in situ analysis of rocks; it is the size over which a measurement or quantity is applicable. A Spot can be a single measurement, an aggregation of individual measurements, or even establish relationships between numerous other Spots. We address the second problem through the use of a Graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow, and that serves the needs of the community, we have begun the process of engaging the SG&T community in order to utilize the expertise of a large group of scientists to ensure the

  4. Response of Cenozoic turbidite system to tectonic activity and sea-level change off the Zambezi Delta

    NASA Astrophysics Data System (ADS)

    Castelino, Jude A.; Reichert, Christian; Jokat, Wilfried

    2017-03-01

    Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.

  5. Evaluation of existing knowledge of the tectonic history and lithospheric structure of South America

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Lidiak, E. G. (Principal Investigator)

    1980-01-01

    While data is available on the lithospheric and crustal structure of the Andes region of South America, there is limited knowledge of these aspects of the eastern portion of the continent. For this reason, a surface wave dispersion study of the area was initiated. Long period seismograms were obtained for a tripartite analysis of dispersion. A flow chart of the analysis to be conducted is presented along with a preliminary geologic/tectonic map that was prepared. Efforts to characterize the provinces identified in terms of their geological and geophysical parameters continue.

  6. Structure and tectonics of the Sierra Madre oriental fold-thrust belt near Monterrey, northeastern Mexico

    SciTech Connect

    Johnson, C.A.; Gray, G.G.; Goldhammer, R. )

    1991-03-01

    The Monterrey salient was examined using Landsat TM and MSS images to determine factors controlling the development, distribution, and exposure of Laramide structures. Lateral Mesozoic facies changes influence structural styles and distribution. Exposure of deep foreland structures north of Monterrey is partly related to the location of the Cupido reef trend. Structure along the front of the salient changes abruptly from tectonic wedging to normal overthrusting where deltaic clastics of the Difunta Group grade into incompetent Mendez shale. Salt thickness is an important factor controlling structural development. Areas without evaporites are usually persistent basement highs characterized by less severe deformation. Areas with thin evaporites have complex structural styles, depending on stratigraphy, depth of exposure, and distance from the Sierra Madre thrust front. Thick salt, apparently in a Jurassic rift beneath the salient, facilitated the northward transport of thrust sheets. Late Cretaceous salt movement influenced stratigraphy in La Popa basin where limestone lenses developed in the clastic Difunta Group. Basement topography is the major factor controlling development, style, distribution of structures, and areal distribution of salt and lateral facies changes. The authors propose a tectonic model that explains the large scale structural styles in the region. The Coahuila basement-high block acted as a buttress during Laramide shortening, limiting northward progression of deformation west of Saltillo. East, in the Monterrey salient, the effect of deeper basement and thick salt permitted thrusts to transport material much farther north, resulting in development of a north-south zone of distributed left-lateral shear in the region of Saltillo.

  7. Geological Structure of the Itoigawa - Shizuoka Tectonic Line, Northern Fossa Magna, Central Japan

    NASA Astrophysics Data System (ADS)

    Kim, H.; Iwasaki, T.

    2009-12-01

    Geological structure of two different natures is recognized in the Northern Fossa Magna (NFM). NFM is situated near the zone where the central Japan Island bent geographically and a graben zone formed between the North Alps and the Kanto highland. NFM is characterized by thick Neogene deposits and with active tilting of the crustal blocks and active folding bloc. At the present the sedimentary basin is the Saigawa hill due to the active faulting and folding in the Fossa Magna. Active fault system of Itoigawa-Shizuoka Tectonic Line (ISTL) is an eastward - dip of reverse fault which strikes N-S along the western margin of the NFM. The vertical displacement rate of ISTL is estimated to be maximum 9 mm/yr from the offset amount and the formation age of flexure scarp which appeared in the fluvial terrace [ex. Ikeda et al., (2002)]. Besides, the last event and the reccurrence interval are presumed to be about about 1,500 years aga and 2,000 years, respectively [Okumura (2001)]. In addition the western margin fault of the Nagano basin (NBF) strikes NNE-SSW along the east edge of NFM. The NBF is an eastward-dip of reverse fault, and the Zenkoji earthquake (M7.4) in 1847 was occurred. The purpose of present study is to discuss the geometry of ISTL and geological process of NFM based on the geomorphological and geological survey using the geological dip and strike already obtained at the more than 1,500 data points. Based on these geological data, the geological structure provinceis divided into two types those are a tilt block and a folding belt at west and east sides, respectively. The Western tilting block and an Eastern folding belt trend NS strike and NNE-SSW strike, respectively. As a result of the geomorphic decipherment in alignment with ISTL using the air photograph, flexure scarp of east side upheaval is formed in the fluvial terrace side and it is difficult for the terrace riser which crosses flexure scarp and a valley to observe lateral offset. The tilt block,

  8. Anatomy of mass transport deposits in the Dead Sea: sedimentary processes in an active tectonic hypersaline basin

    NASA Astrophysics Data System (ADS)

    Waldmann, Nicolas; Hadzhiivanova, Elitsa; Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Frank, Ute; Dulski, Peter

    2014-05-01

    Continental archives such as interplate endorheic lacustrine sedimentary basins provide an excellent source of data for studying regional climate, seismicity and environmental changes through time. Such is the case for the sediments that were deposited in the Dead Sea basin, a tectonically active pull-apart structure along the Dead Sea fault (DSF). This elongated basin is characterized by steep slopes and a deep and flat basin-floor, which are constantly shaped by seismicity and climate. In this study, we present initial results on the sedimentology and internal structure of mass transport deposits in the Pleistocene Dead Sea. The database used for this study consists of a long core retrieved at ~300 m water depth in the deepest part of the Dead Sea as part of an international scientific effort under the auspice of the ICDP. Micro-facies analysis coupled by elemental scanning (µXRF), granulometry and petrophysical measurements (magnetic susceptibility) have been carried out on selected intervals in order to decipher and identify the source-to-sink processes and controlling mechanisms behind the formation of mass transport deposits. The findings of this study allowed defining and characterizing the mass transport deposits into separate sedimentary facies according to the lake level and limnological conditions. Investigating sediments from the deep Dead Sea basin allowed better understanding and deciphering the depositional processes in relation with the tectonic forces shaping this basin.

  9. A Tectonic Model for the Midcontinent U.S. Lithosphere Based on Structural Analyses of Mesoproterozoic Through Cenozoic Deformation

    NASA Astrophysics Data System (ADS)

    Harrison, R.; Schultz, A.

    2008-12-01

    Insights into the tectonic fabric of the midcontinent U.S. lithosphere are provided by structural investigations of exposed basement and its supra-crustal sedimentary cover sequences. Mesoproterozoic basement rocks of the St. Francois terrane possess an orthogonal pattern of vertical NW- and NE-trending strike-slip fault zones. The NW trend dominates Mesoproterozoic deformation and is inherent from an older fabric that controlled the location of Mesoproterozoic igneous activity. Two of these NW-trending zones appear to have from 60 to 75 km and 30 to 75 km of accumulative left slip. Pre-Late Cambrian vertical, right-lateral, strike-slip faulting on NW-trending structures in the St. Francois terrane, emplacement of dominantly NE-trending, 1.33 Ga mafic dikes, and uplift and erosion of ~2 to 4 km of rocks represents the assembly and breakup of Rodinia in the rock record of the midcontinent basement. Re-activation of NE-trending structures in the Late Cambrian resulted in formation of the Reelfoot rift and was accompanied by re-activation of vertical NW- trending structures with left-lateral displacement. Faulting in the Paleozoic, Mesozoic, and Cenozoic cover sequences document re-activation of both vertical trends as far-field strike-slip faults during the Acadian, Taconic, Ouachita, Alleghany, and Laramide orogenies. Step overs from one strike-slip fault strand to another during these orogenies produced local uplift along restraining bends and subsidence in pull-apart grabens and basins. The New Madrid seismic zone and other sites of Quaternary deformation in the midcontinent also are attributed to re-activation of inherited vertical fabric. In summary, a tectonic model of the midcontinent lithosphere is best portrayed as consisting of an orthogonal mosaic of vertical zones of shear that presumably penetrate the crust and upper mantle, and are therefore long lived and prone to reactivation under lithospheric stresses. Much worldwide intraplate seismicity is

  10. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  11. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  12. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  13. Tectonic events and structural configuration of the Barinas-Apure Basin

    SciTech Connect

    Portilla, A. )

    1993-02-01

    Among the Sub-Andean basins of northern South America is located the Barinas-Apure basin, in southwestern Venezuela. Through the analysis of high-resolution seismic-profiles and surface geology, three different tectonic events have affected the sediments of this basin: (a) a late Cretaceous-Paleocene event, related with the Larmidian orogenesis, (b) a late Middle Eocene event, related to north-Venezuelan flexure, and (c) a Miocene to Pleistocene event, under the influence of the Andean (Merida) orogenesis. Is the last one, the responsible of the present-day structural configuration on the basin, i.e., an assymetric syncline. Several complex structures and fault-systems are recognized in this basin, they are grouped in pre-Oligocene and Miocene-Pleistocene in origin. Among these, only the pre-Oligocene structures have accumulated important oil reservoirs.

  14. Structural characteristics and tectonics of northeastern Tellus Regio and Meni Tessera

    NASA Technical Reports Server (NTRS)

    Toermaenen, T.

    1992-01-01

    The Tellus Regio-Meni Tessera region is an interesting highland area characterized by large areas of complex ridged terrain or tessera terrain. The area was previously studied from the Venera 15/16 data, typical characteristics of complex tessera terrain of Tellus Regio were analyzed, and a formation mechanism was proposed. Apparent depths of compensation of approximately 30-50 km were calculated from Pioneer Venus gravity and topography data. These values indicate predominant Airy compensation for the area. Regional stresses and lithospheric structures were defined from analysis of surface structures, topography, and gravity data. In this work we concentrate on northeastern Tellus Regio and Meni Tessera, which are situated north and west of Tellus Regio. Structural features and relationships are analyzed in order to interpret tectonic history of the area. Study area was divided into three subareas: northeastern Tellus Regio, Meni Tessera, and the deformed plain between them.

  15. Tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hegewald, Anne; Jokat, Wilfried

    2013-07-01

    interpretation of tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean, is important to enhance our understanding of the tectonic evolution of this region. Therefore, multichannel seismic lines as well as seismic wide-angle reflection and refraction data were acquired in the northern Chukchi region during the RV Polarstern ARK-XXIII/3 summer expedition in 2008. These data have been processed and interpreted for the three main geological provinces (Chukchi Plateau, Chukchi Abyssal Plain, and Mendeleev Ridge) to describe the sedimentary and basement structures of the northern Chukchi region. Furthermore, using the age control of five exploration wells drilled near the coast of Alaska in combination with additional seismic reflection lines located on the Chukchi Shelf, we were able to date sediment horizons within the research area. In total, six sediment horizons with ages between Barremian/Hauterivian and the Top Miocene were identified. Especially, the Top Oligocene horizon forms a pronounce unconformity on the Chukchi Plateau and on the Mendeleev Ridge flanks. The origin of this unconformity can be associated with the opening of the Fram Strait indicating a significant change in the Arctic Ocean current system.

  16. Tectonic structure of the Mid-Atlantic Ridge near 16°30'N

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, Ross; Schouten, Hans; Smith, Deborah K.

    2016-10-01

    The 16°30'N area of the Mid-Atlantic Ridge represents an area of present-day detachment faulting. Here we present shipboard bathymetric, magnetic and gravity data acquired up to 65 km from the ridge axis that reveal a varied tectonic history of this region. Magnetic data are used to calculate spreading rates and examine spreading rate variability along and across the axis. Bathymetric and gravity data are used to infer the crustal structure. A central magnetic anomaly 40% narrower than expected is observed along much of the study area. Misalignment between modern-day spreading center and magnetic anomalies indicates tectonic reorganization of the axis within the past 780 ka. Observed magnetic anomalies show a pattern of anomalous skewness consistent with rotation of magnetic vectors probably associated with detachment faulting. Relatively thin crust north of a small (˜7 km) nontransform offset coincides with a weakly magmatic spreading axis. In contrast, to the south a robust axial volcanic ridge is underlain by thicker crust. Variations in crustal structure perpendicular to the axis occur over tens of kilometers, indicating processes which occur over timescales of 1-2 Ma.

  17. 10 Ma of Igneous Activity in the Transmexican Volcanic Belt: Tectonic and Geomagnetic Implications.

    NASA Astrophysics Data System (ADS)

    Ruiz-Martinez, V. C.; Osete, M. L.; Urrutia-Fucugauchi, J.

    2007-05-01

    A total of 51 sites with geochronological control were sampled in the central and western segments of the Transmexican Volcanic Belt (TMVB). Together with other previously published 69 sites from the eastern segment, they span the spatial and temporal activity of the TMVB. Using now the same reference directions and methodologies, they are analyzed in order (i) to determine the possible occurrence and significance (spatially and temporally) of vertical axis crustal block rotations that have been reported in this region; and (ii) to study the geomagnetic Paleo Secular Variation during the last 10 Ma; to check the previously suggested existence of a "Pacific Dipole Window" extending to Mexico. Paleomagnetic results, backed by statistical tests performed according to their geographical distribution (3 structural segments) or according to their ages (Late Miocene, Pliocene or Quaternary), do not support the notion that large vertical axis block rotations (paleomagnetically detectable) occurred in this arc after Late Miocene times. They suggest that the TMVB could be considered paleomagnetically as an unique tectonic domain under a transtensional regime, where its extension component prevails over its left-lateral component. The mean paleomagnetic directions, obtained in the age ranges 10-5 Ma and 5-0 Ma, do not differ from their respective reference directions. In both datasets, VGPs have been selected using quality Fisher's precision parameters and optimum cutoff angles. This results in a circularly symmetrical data distribution with statistically indistinguishable antipodal normal and reverse polarities. VGP dispersions are consistent with those from globally distributed observations at Mexican latitudes for the Miocene and the Plio- Quaternary. An analysis of all the published paleomagnetic data from the TMVB, when combined all together and selected in the same terms, do not support neither the existence of large crustal block rotations nor the persistence of a

  18. Structural and Thermochronological Constraints on the Coupling Between Exhumation, Denudation and Tectonics in the Himalaya: Insights From the Ama Drime Massif, Tibet- Nepal

    NASA Astrophysics Data System (ADS)

    Jessup, M. J.; Cottle, J. M.; Newell, D. L.; Berger, A. L.; Spotila, J. A.

    2007-12-01

    Focused denudation and mid-crustal flow are coupled in many active tectonic settings, including the Himalaya where exhumation of mid-crustal rocks is accommodated by thrust faults and low-angle detachment systems during crustal shortening. New structural data demonstrates that the most recently active tectonic feature in the Mt. Everest region is the Ama Drime Massif (ADM), a trans-Himalayan antiformal structure that protrudes ~ 70 km north from the crest of the Himalaya and displaces the South Tibetan Detachment system. Previous investigations interpreted the N-S striking shear zones and fault systems that bound either side of the ADM as the Main Central thrust. Our data show that these are 100-300 m thick normal-sense shear zones that are kinematically linked to young brittle faults that offset Quaternary deposits and record active E-W extension. Geochemical tracers in hot springs along the western shear zone indicate devolatilization of crustal rocks suggesting active metamorphism and/or melting beneath the ADM. Integration of high-to low-T thermochronometric methods, including U(-Th-)Pb, Apatite Fission Track and (U-Th)/He, yield important information regarding the timing and rate of exhumation of the ADM. These data reveal that rapid exhumation of material from the mid-crust during E-W extension began in the mid-Miocene and that a high rate of uplift / denudation persisted into the Pliocene. The southern end of the ADM is centered on the Arun River gorge, which previous geomorphological instigations defined as a prime candidate for climate-tectonic coupling. We combine our results with these exiting data to propose that active exhumation of deep crustal rocks of the ADM during E-W extension is coupled with denudation in the Arun River gorge. This model provides important quantitative constraints on the dynamic feedbacks between climate and tectonics in collisional orogens as well as the evolution of trans-Himalayan rivers and antiformal structures.

  19. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  20. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  1. Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Bhushan, Kirti; Singh, Chandrani; Steckler, Michael S.; Akhter, S. Humayun; Seeber, Leonardo; Kim, Won-Young; Tiwari, Ashwani K.; Biswas, Rahul

    2016-06-01

    An understanding of the sedimentary and crustal structure of the Bengal Basin and of the tectonics deforming it remains elusive due to lack of seismic data from Bangladesh. Taking advantage of recently available data from 11 seismic stations deployed over Bangladesh, we determine the crustal structure beneath each station using 2768 high quality receiver functions (RFs). Inversion of the RFs reveals a highly variable thickness of the overlying sediments beneath the Bengal Basin. The thickness of the sediments increases dramatically across the Hinge Zone of the Early Cretaceous passive margin from 3 to 17 km. The thick sediments partly represent progradation of the continental margin due to the influx of clastic sediments from the Himalayas. The Moho shallows across the region. This reflects thinning of the crystalline crust from 38 km in the Indian Craton to 34 km at the Hinge Zone to < 16 km in the Bengal Basin. The thickness of the sediments increases dramatically from 3 to 17 km south of Madhupur tract which reflects the regions of highest influx of clastic sediments from the Himalayan collision zone. RFs display strong dipping reflectors (strike 67°) for a station over Hinge Zone and seem to be associated with the transition from continental to oceanic crust. The thinning of significant crustal thickness (16-19 km) beneath 15-17 km of sediment and associated velocities (> 4.0 km/s) at lower crustal levels supports an influence of the Kerguelen plume igneous activity during rifting. We invert data for a station near the Dauki Fault, which marks the southern boundary of the uplifted Shillong plateau, for dip and anisotropic effects. Our results show the Dauki as a north-dipping thrust fault at Jaflong with a dip angle of 32° and strike (110°) close to its surficial expression. A strong anisotropy (~ 15%) and the sense of shear (plunge: 24°, trend: 79°) compliment the dipping geometry and deformation seems to be related to the initiation of the Dauki Fault.

  2. Deep Structure and Evolution of the Cyprus Arc, With Implications for the Tectonic Evolution of Anatolia

    NASA Astrophysics Data System (ADS)

    Wortel, M. J.; Spakman, W.; Govers, R.; Ben-Avraham, Z.

    2006-12-01

    This study addresses the easternmost segment of the convergent plate boundary in the Mediterranean, encompassing the Cyprus arc and its connection to the Arabia-Eurasia collision zone and the Dead Sea fault. Seismic activity along the arc is limited (certainly relative to the adjacent Hellenic arc). Although marine geophysical surveys have elucidated many pertinent features of the region, the plate boundary configuration is not well understood. Therefore, we use seismic tomography results to study the deep structure of this plate boundary segment. We find that the deep structure of the eastern part of the Cyprus arc, exhibiting a broad zone of sinistral deformation at the surface, is very similar to the eastern segment of the Hellenic subduction zone. A slab related anomaly is missing here in the upper mantle, and this part can be identified as a STEP fault zone (Subduction-Transform Edge Propagator; see Govers and Wortel, EPSL, v. 236, p. 505-523, 2005), allowing S-SW directed slab retreat. We propose that the inception of the STEP fault and the associated back-arc extension is triggered by the continental collision and subsequent slab detachment in the Bitlis suture to the east. From a quantitative analysis of tomographic anomalies in the mantle below the Bitlis suture zone (Hafkenscheid et al., JGR, v. 111, 2006) slab detachment is inferred to have taken place at 8-12 Ma, the younger end of this age range being more pertinent for the westernmost Bitlis segment. Slab detachment creates an edge to the subducting slab, which is a favourable condition for the inception of a STEP fault. The slab in the central part of the Cypus arc has become detached possibly resulting from the collision with the Eratosthenes Seamount in the (Late) Pliocene. Only in the northwestern segment of the arc below the Antalya Basin and the Isparta Angle the slab appears to be continuous. The short duration of the time window between inception of STEP faulting and collision with the

  3. A structural transect in the Lower Dolpo: Insights on the tectonic evolution of Western Nepal

    NASA Astrophysics Data System (ADS)

    Carosi, R.; Montomoli, C.; Visonà, D.

    2007-02-01

    We present the results of a structural transect in Lower Dolpo, cross-cutting the upper part of the Lesser Himalaya (LH), the Higher Himalayan Crystallines (HHC) and the lower part of the Tibetan Sedimentary Sequence (TSS). The MCT zone affects the upper part of the LH as well as the lower part of the HHC and shows a later brittle reactivation. Mean vorticity in the MCT points to non-coaxial deformation. These data, together with available kinematic data along the belt, on the South Tibetan Detachment System (STDS) and in the core of the HHC, point to increasing simple shear toward the tectonic boundaries. A top-to-the-SW high-temperature shear zone (Toijem Shear Zone) is recognized in the middle part of the HHC at the boundary between Units 1 and 2. It developed during the earlier stages of exhumation of the HHC, enhancing the decompression of the hanging wall and the emplacement of leucogranite dykes and sills. Its development could be explained by a change in the velocity profile during the extrusion of the HHC, triggered by first order changes in rock types of the tectonic unit. The STDS is marked by a wide zone of high strain and by a metamorphic jump from amphibolite facies in the carbonate rocks of the upper part of the HHC to greenschist facies marbles in the lower part of the TSS. The development of a pervasive foliation towards the bottom of the TSS indicates increasing strain, related to top down-to-the-NE tectonic transport. A Low P metamorphic event, marked by the growth of post-D1 biotite porphyroblasts at the base of the TSS, is related to the conductive heating from the underlying HHC.

  4. Structural analysis and tectonic implications of a shallow layer-parallel shear zone in the central Apennines (Italy).

    NASA Astrophysics Data System (ADS)

    Tavani, S.; Cifelli, F.

    2009-04-01

    The central Apennines is a Neogenic NE verging fold-and-thrust belt, characterized by inherited lower Liassic structures and by different paleogeographic domains (with different rheological behaviours), which played a first order role in the tectonic evolution of the belt. The N-S trending Olevano-Antrodoco, one of the major thrusts of this area, is commonly interpreted as an oblique out-of-sequence structure, along which the Sabina slope domain (to the west) overthrusted the Latium-Abruzzi carbonate platform domain (to the East), reactivating the original Liassic to Miocenic boundary. Paleomagnetic data indicate that the Sabina domain and the Latium-Abruzzi domain were characterized by the occurrence of opposite vertical-axis rotations, clockwise and counterclockwise, respectively, in the two domains, suggesting a different tectonic evolution of these sectors. However, paleomagnetic data can provide only partial information on the kinematic evolution of this area because rocks suitable for paleomagnetic analysis are not widespread in the Latium-Abruzzi domain. Moreover, rocks exposed in the two domains do not allow performing analyses on sediments of the same ages. In this work, in order to provide additional kinematic and geometric constraints to the tectonic evolution of this part of Central Apennines, a mesostructural study was carried out in a decollement level, exposed in both Sabina and Latium-Abruzzi domains and located at the top of the meso-cenozoic carbonatic sequence. The Anisotropy of Magnetic Susceptibility (AMS) analysis was integrated with the structural analysis, representing an additional rock fabric indicator used to unravel the deformational history of the studied rocks. The analysed decollement was active in the early stages of the belt evolution and consists of a thick shear zone dominated by pressure solution cleavage oblique to bedding. The widespread exposition of this level, allows using the pressure solution cleavage as a regional

  5. Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific

    USGS Publications Warehouse

    Eakins, B.W.; Lonsdale, P.F.

    2003-01-01

    The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 ?? 105 km2 to 1.2 ?? 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17-15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8-6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ???400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a 'northern annex' to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15-8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5??/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate

  6. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  7. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  8. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  9. The structure and tectonics of the intraplate deformation area in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Neprochnov, Yuri P.; Levchenko, Oleg V.; Merklin, Lev R.; Sedov, Vladimir V.

    1988-12-01

    Intense tectonic deformations of sediments and basement unusual for the interior of the oceanic lithosphere plates can be seen on seismic reflection profiles from the northern Central Indian Basin. 10,000-mile long CSP profiles collected by the P.P. Shirshov Institute of Oceanology of the USSR Academy of Sciences allow delineation of a NE-trending area of these deformations. The intraplate deformation area has a complicated tectonic framework, formed by a mosaic of crustal blocks which have been severely deformed or tilted alternating with less deformed parts of the sea floor. The results of a detailed CSP grid survey reveal that these uplifted faulted blocks are bounded by tectonic faults of two genetic types: old nearly meridional fracture zones, and young NE-striking faults. The seismic refraction results indicate an anomalous structure of the crust and upper mantle within these blocks. Seismological observations from Ocean Bottom Seismographs have proved that there is high-level intraplate seismicity in the northern Central Indian Basin. The intraplate deformation area is supposed to correspond to a large-scale zone of shearing strains that formed as a result of the stress difference in the Indo-Australian plate due to the continued collision of the continents of India and Asia along with spreading in the Central Indian Ridge and normal subduction in the Sunda Island Arc. This continental collision led to an increase in compressional stress in the northernmost part of the plate, while its southern part continuously subducted beneath the Sunda Trench. In the complicated transitional zone between these parts of the plate, NE-SW trending shearing stress abated, apparently in the Late Miocene, as a result of folding and faulting of the sediments and basement, observed on seismic reflection profiles. NE-SW trending wrench-fault tectonics affected the system of ancient failures in the spreading oceanic crust (near-meridional transform faults and, perhaps, near

  10. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  11. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes.

    PubMed Central

    Lavin, Matt; Schrire, Brian P; Lewis, Gwilym; Pennington, R Toby; Delgado-Salinas, Alfonso; Thulin, Mats; Hughes, Colin E; Matos, Angela Beyra; Wojciechowski, Martin F

    2004-01-01

    Penalized likelihood estimated ages of both densely sampled intracontinental and sparsely sampled transcontinental crown clades in the legume family show a mostly Quaternary to Neogene age distribution. The mode ages of the intracontinental crown clades range from 4-6 Myr ago, whereas those of the transcontinental crown clades range from 8-16 Myr ago. Both of these young age estimates are detected despite methodological approaches that bias results toward older ages. Hypotheses that resort to vicariance or continental history to explain continental disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. An alternative explanation centring on dispersal that may well explain the geographical as well as the ecological phylogenetic structure of legume phylogenies is Hubbell's unified neutral theory of biodiversity and biogeography. This is the only dispersalist theory that encompasses evolutionary time and makes predictions about phylogenetic structure. PMID:15519969

  12. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  13. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance

    NASA Astrophysics Data System (ADS)

    Eggert, Silke; Walter, Thomas R.

    2009-06-01

    The study of volcanic triggering and interaction with the tectonic surroundings has received special attention in recent years, using both direct field observations and historical descriptions of eruptions and earthquake activity. Repeated reports of clustered eruptions and earthquakes may imply that interaction is important in some subregions. However, the subregions likely to suffer such clusters have not been systematically identified, and the processes responsible for the observed interaction remain unclear. We first review previous works about the clustered occurrence of eruptions and earthquakes, and describe selected events. We further elaborate available databases and confirm a statistically significant relationship between volcanic eruptions and earthquakes on the global scale. Moreover, our study implies that closed volcanic systems in particular tend to be activated in association with a tectonic earthquake trigger. We then perform a statistical study at the subregional level, showing that certain subregions are especially predisposed to concurrent eruption-earthquake sequences, whereas such clustering is statistically less significant in other subregions. Based on this study, we argue that individual and selected observations may bias the perceptible weight of coupling. The activity at volcanoes located in the predisposed subregions (e.g., Japan, Indonesia, Melanesia), however, often unexpectedly changes in association with either an imminent or a past earthquake.

  14. Tectonic history and structural development of the Zallah-Dur al Abd Sub-basin, western Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Abdunaser, Khalifa M.; McCaffrey, Ken J. W.

    2015-04-01

    The Zallah-Dur al Abd Sub-basin area lies in the western part of the Sirt Basin of Libya. 2D seismic data covering an area of about 32,000 km² were studied along with the formation tops from 240 wells. We mapped a complex network of normal and probable strike-slip faults, generally striking NNW-SSE that control the asymmetry of the basin. Subordinate NE-SW structures acted as transverse faults controlling local depocentres that segment the Zallah-Dur al Abd Sub-basin. A number of active faults in the intra-basin area have been identified in seismic sections with generally moderate to high dip angles, and displaying evidence for positive and negative flower structures. The bordering extensional fault (the Gedari fault) passes at depth into a moderately SW-dipping structure crossing most of the Upper Mesozoic to Cenozoic stratigraphic section. Thickness variations adjacent to other major faults suggest also an original extensional system where inherited high-angle faults were reactivated throughout this time. A detailed analysis of the available seismic reflection and drill hole data shows that an obliquely rifted, multi-cyclic, NNW-SSE trending basin developed during the complex Upper Mesozoic Cenozoic rearrangement of Mediterranean tectonics. Multiple phases of rifting can be observed in the study area affecting a number of different horizons from Upper Cretaceous to Eocene. In the study area, the basin was initiated as a result of a Tethyan oblique extensional rift system that began in the Early Cretaceous and peaked in the Late Cretaceous. The basin reached its rift maturation phase during the Upper Cretaceous as a result of the continuing extensional tectonics on the marginal bounding NNW-SSE trending normal growth faults. During the Alpine-related tectonic pulses of Middle-Late Eocene the Sirt Basin underwent compression resulted in northward tilting of the basin, causing abrupt subsidence in the north and uplift on the basin southern shoulders, possibly

  15. A pilot study of the dependence of radon concentration on the tectonic structures, using simple geophysical methods.

    PubMed

    Thinova, L; Fronka, A; Rovenska, K

    2011-05-01

    It is well known that there are great variations in radon concentrations in the soil gas on building sites. The concentration may sometimes vary by more than two orders of magnitude. The tectonic structure of the bedrock is one of the factors that influence the intensity of the radon outflow. The simple ARES geophysical method [automatic resistivity system--main unit with standard accessories, multi-electrode cable sections (MCS5)--eight electrodes per 5 m spacing] was used in various modes (Schlumberger, Dipole-Dipole and Pole-Dipole arrays) for in situ tectonic structure determination. The radon concentration in the soil gas was measured using the same network as for the resistivity measurements. The radon measurements were also followed up by in situ gamma spectrometry measurements. The behaviour of the radon concentration in the soil gas was correlated with the detected tectonic non-homogeneities. This pilot study opened up new questions for future analysis.

  16. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  17. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  18. Sediment yield from the tectonically active semiarid Western Transverse Ranges of California

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.

    2009-01-01

    Sediment yields from the world's rivers are generally highest from steep drainage basins with weak lithology, active tectonics, or severe land-use impacts. Here, we evaluate sediment yields from the Western Transverse Ranges of California in an attempt to explain why they are two- to tenfold greater than the surrounding areas of California. We found that suspended-sediment yields across the gauged basins of the Western Transverse Range during 1969-1999 varied by approximately an order of magnitude (740-5300 t/km2/yr). Similarly, fine-sediment concentrations for normalized discharge rates varied by almost two orders of magnitude (e.g., 1.3-110 g/L for the mean annual flood) for 11 previously unmonitored drainages of the Santa Ynez Mountains. Areas with high sediment yields consistently have weakly consolidated bedrock (Quaternary-Pliocene marine formations) and are associated with the highest rates of tectonic uplift of the region (>5 mm/yr). These regions are important to the sediment discharge budgets, because ???50% of the total suspended-sediment discharge from the Western Transverse Range is estimated to be generated within these regions, even though they represent only ???10% of the total watershed area. Previous estimates of suspended-sediment discharge from the Ventura River have likely been underestimated by ???50% because the gauging station is located immediately upstream of a high sediment yield region. We also found a significant and positive correlation between sediment yield and the percentage of a watershed with grassland and agricultural land use. These results suggest that there is adequate variation within the lithology, tectonics, and land use of the broader Western Transverse Range geologic province to induce large variations in sediment yield at the local scale. ?? 2009 Geological Society of America.

  19. Structure and Deformation on NW Ellesmere Island, Arctic Canada, and Implications for Regional Tectonics

    NASA Astrophysics Data System (ADS)

    Hill, M.; Guest, B.; Beauchamp, B.

    2012-12-01

    Understanding Eurekan tectonics surrounding Ellesmere Island and Greenland, and the "Nares Strait problem" has been a topic of discussion for decades. Initially, the deformation on Ellesmere Island was mapped as a fold and thrust belt in a compressional regime. This was later identified as a "most unusual fold and thrust belt" because this system lacked many characteristics typical of thrust belts, such as low angle fault planes, and older over younger bedding relationships across fault boundaries (De Paor et al., 1989). This led to early suggestions of lateral deformation in the system. More recently left-lateral strike slip deformation as well as reverse dip slip faults in Palaeogene sediments have been observed on NE Ellesmere, identifying a transpressional system (K. Saalmann et al. 2005). A large portion of the mountain belt has only been mapped at a very regional scale. This limits the understanding of the deformation, and more specifically, the orientation of the primary stresses, which provides insight into regional tectonics. A narrow north-south trending valley located on NW Ellesmere Island between Esayoo Bay and Hare Fiord, cross cuts the generally E-W trending Eurekan structures in that area. Within this valley, well-exposed faults were observed, some with well-preserved kinematic indicators. These structures were previously mapped as dip-slip faults, if mapped at all. By mapping a 40km transect within this valley at 1:20,000 scale, each fault zone was studied in detail. We determined that dextral strike-slip is the primary fault type in this area, with some faults showing evidence of dextral-oblique-reverse movement. The fault planes were near vertical, and therefore not typical of dip-slip movement. Additional insight into the direction of the lateral movement was gathered from kinematic indicators, including oblique angled folding on either side of the fault plane, conjugate fractures, and meter scale mullions. The amount of displacement can be

  20. Crustal structure, geophysical models and contemporary tectonism of the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Braile, L. W.; Morgan, P.

    1979-01-01

    A regional analysis of the crust and upper mantle of the Colorado Plateau is presented, using existing geophysical and geological data combined with new surface wave dispersion and groundwater geothermometry data; the tectonic implications of these models are also investigated. Surface wave and seismic refraction data indicate that the crust of the interior of the Colorado Plateau is 44 + or - 3 km thick, and its crustal structure is typical of stable continental areas. Pn velocities, however, appear to be lower (7.8 km/s) than would be expected in a stable region, while silica geothermometry indicates that the average heat flow for the plateau is 55 mW per sq m (1.3 HFU).

  1. Discrimination and Assessment of Induced Seismicity in Active Tectonic Zones: A Case Study from Southern California

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Lindsey, N.; Foxall, W.; Robertson, M.

    2014-12-01

    Earthquakes induced by human activity have become a matter of heightened public concern during recent years. Of particular concern is seismicity associated with wastewater injection, which has included events having magnitudes greater than 5. The causes of the induced events are primarily changes in pore-pressure, fluid volume and perhaps temperature due to injection. Recent research in the US has focused on mid-continental regions having low rates of naturally-occurring seismicity, where induced events can be identified by relatively straightforward spatial and temporal correlation of seismicity with high-volume injection activities. Recent examples include events correlated with injection of wastewater in Oklahoma, Arkansas, Texas and Ohio, and long-term brine injection in the Paradox Valley in Colorado. Even in some of the cases where there appears at first sight to be a clear spatial correlation between seismicity and injection, it has been difficult to establish causality definitively. Here, we discuss methods to identify induced seismicity in active tectonic regions. We concentrate our study on Southern California, where large numbers of wastewater injection wells are located in oil-producing basins that experience moderate to high rates of naturally-occurring seismicity. Using the catalog of high-precision CISN relocations produced by Hauksson et al. (BSSA, 2012), we aim to discriminate induced from natural events based on spatio-temporal patterns of seismicity occurrence characteristics and their relationships to injection activities, known active faults and other faults favorably oriented for slip under the tectonic stress field. Since the vast majority of induced earthquakes are very small, it is crucial to include all events above the detection threshold of the CISN in each area studied. In addition to exploring the correlation of seismicity to injection activities in time and space, we analyze variations in frequency-magnitude distributions, which can

  2. The use of HVSR measurements for investigating buried tectonic structures: the Mirandola anticline, Northern Italy, as a case study

    NASA Astrophysics Data System (ADS)

    Tarabusi, G.; Caputo, R.

    2017-01-01

    The Mirandola anticline represents a buried fault-propagation fold which has been growing during Quaternary due to the seismogenic activity of a blind segment belonging to the broader Ferrara Arc. The last reactivation occurred during the May 2012 Emilia sequence. In correspondence with this structure, the thickness of the marine and continental deposits of the Po Plain foredeep is particularly reduced. In order to better define the shallow geometry of this tectonic structure, and hence its recent activity, we investigated in a depth range which is intermediate between the surficial morphological observations and seismic profiles information. In particular, we carried out numerous passive seismic measurements (single-station microtremor) for obtaining the horizontal-to-vertical spectral ratio. The results of a combined analysis of the peak frequency and its amplitude nicely fit the available geological information, suggesting that this low-cost geophysical technique could be successfully applied in other sectors of wide morphologically flat alluvial plains to investigate blind and completely buried potential seismogenic structures.

  3. Structurally Altered Hard Coal in the Areas of Tectonic Disturbances - An Initial Attempt at Classification

    NASA Astrophysics Data System (ADS)

    Godyń, Katarzyna

    2016-09-01

    As regards the exploitation of hard coal seams, the near-fault zones and faults themselves are considered to be particularly dangerous areas, which is due to a high probability of the occurrence of gasogeodynamic phenomena. Tectonic dislocations running across a seam have a destructive impact on coal. Degradation of the coal structure, particularly visible in the microscale, is reflected in the coal's strength or gas properties. Such "structurally altered" coal is characterized by the presence of numerous fracturings, crushed areas, or dislocations of some of its fragments, and sometimes even the total destruction of the original structure. The present paper provides a detailed analysis and description of near-fault coal obtained from selected seams of the Upper Silesian Coal Basin, completed due to the application of optical methods. Both the type and the degree of changes in the structure of such coal were identified. On this basis, the author attempted to systematize the nomenclature used in relation to selected Upper Silesian hard coal seams, which, in turn, resulted in a proposed classification of the "altered structures" of the near-fault coal.

  4. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  5. Tectonic and Hydrological Activities on Xanadu, Hotei and Tui Regions on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Di Marco, C.; Di Achille, G.; Lunine, J. I.; Flamini, E.; Meriggiola, R.; Poggiali, V.

    2012-12-01

    Xanadu (~10°S, 120°W), Tui (~24°S, 125°W) and Hotei (~26°S, 78°W) regions are three adjacent geomorphic provinces located on Titan's leading hemisphere. The interpretation of the geological activities of these regions is not unique. Radebaugh et al. (2010) proposed that complex geological activity occurred to form the highlands regions of Xanadu where first compression occurred, and subsequently extensional tectonism and erosion by methane precipitation. However, Brown et al. (2011) proposed that Xanadu is a wide and ancient impact crater basin. Nelson et al. (2009) observed surface reflectance variability at the Hotei region suggesting that such surface variability might be due to surface activity potentially related to cryovolcanic activity. Wide lobate features in the Tui and Hotei regions were identified using Cassini VIMS (Barnes et al. 2009) and RADAR observations (Walls et al. 2009) and were interpreted as cryovolcanic flows. However, Moore and Howard (2010) suggested that the observed lobate features in both regions might be paleolakes. We produced a geomorphological map encompassing the Xanadu, Tui and Hotei regions. Our geomorphological analysis is based on the Synthetic Aperture Radar images from the Cassini RADAR. We also used topographic data from radar altimeter and SAR-Topography technique datasets. We show that Xanadu is a dissected plateau whose formation most likely involved crustal uplift produced by compressional tectonic activity. We also show that both the Tui and Hotei regions present characteristics of closed drainage basins with an inflow of liquids from the highlands of Xanadu and a lack of outflow, suggesting that Hotei and Tui are endorheic basins that might contain ephemeral lakes currently appearing as dry lakebeds. Such lakebeds are likely filled with liquid hydrocarbons only during rare periods of significant rainfall and dry out due to evaporation.

  6. Distribution of long-term Quaternary Deformation and Correlation with Pre-existing Tectonic Structures in the Central US

    NASA Astrophysics Data System (ADS)

    Magnani, M.; McIntosh, K. D.; Guo, L.; Hao, Y.

    2012-12-01

    The processes governing earthquakes in intraplate regions are still poorly understood, mostly because the very occurrence of such earthquakes violates plate tectonic theory, recurrence intervals are long, and seismicity occurs in quiescent areas where structures are buried/unexposed. In the central US, most of the seismicity is concentrated along the faults of the New Madrid seismic zone, located in the heart of the Mississippi embayment. However, the clash between the high level of present, historical and prehistorical seismicity, the geodetic vectors, and the puzzling lack of deformation at the surface and in the subsurface suggests that the New Madrid seismic zone might have not been the only fault system active in the region. Indeed, evidence is mounting that Quaternary deformation has been accommodated along structures that are presently aseismic. If seismicity has been migrating throughout the central US during the Quaternary, then what controls the location of seismicity? Here we present the results of ~950 km marine and land high-resolution seismic reflection data acquired along and near the Mississippi River in the Mississippi embayment between 2008 and 2011. The data clearly document Quaternary deformation within the New Madrid seismic zone and at 3 locations well beyond the seismically active region, with displacement of all the unconsolidated sedimentary units from the top of the Paleozoic sedimentary rocks to the base of the Quaternary river alluvium. Beside documenting Quaternary deformation in the region, perhaps one of the most important results of the ~950 km-long seismic survey is that deformation is not uniformly distributed throughout the profile, but is focused along distinct structures, which spatially coincide with the margin of the failed Paleozoic Reelfoot Rift and with the southern margin of the Proterozoic Laurentian continent, marked in this region by the Alabama-Oklahoma transform fault. This spatial correlation indicates a tectonic

  7. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential

  8. Tectonic and structural setting of the northeastern central Gulf of Suez area using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Nakhla, Adel Mokhles

    2016-03-01

    Cumulative qualitative and quantitative analysis of the filtered regional and residual magnetic components of the northeastern central area of the Gulf of Suez, as well as images of the second vertical derivatives of the reduced to the northern magnetic pole map of the total magnetic intensity field images, supplemented with the available geologic information, enabled the precise delineation of the detailed structural configuration of the basement complex, which consequently illustrated the structural deformational pattern of the overlying sedimentary succession. The basement tectonic map reflects a series of N-S to NNW-SSE oriented belts of high and low basement structures. These structures are interrupted by a set of NE-SW crossing diagonal faults having varying throws and creating promising blocks for exploration. An often remarkable correlation between the reduced to the magnetic pole map and the basement relief map is noted, in particular the outline of various oil fields. A larger number of the tilted fault blocks and basement culminations have been outlined and numerous interesting exploration prospects are indicated, which appear to warrant further follow up investigation.

  9. Sea Level Changes and Active Tectonics of the Guerrero Coast, Mexico

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M.; Cundy, A. B.; Sedor, M.; Kostoglodov, V.

    2003-12-01

    Understanding the interaction between sea-level changes and tectonic activity during the Holocene is essential in determining long-term tectonic deformation rates and in identifying prehistorical earthquake events along active margins. The Guerrero coast extends along the active Pacific margin of southwest Mexico and parallels the trench where the Cocos Plate subducts beneath the North American Plate. The last major earthquakes occurred in Guerrero in 1899, 1907, 1909, 1911, and 1957, but none have occurred since the major 1911 (Ms=7.6) earthquake in the northwest segment of the Guerrero seismic gap. The Guerrero gap is currently considered to be matured for a severe earthquake of estimated Mw= 8.1 to 8.4. We present preliminary results of geomorphic field surveying, sediment coring, and geochemical and microfaunal analyses of cored sediments on the Guerrero coast. The Coyuca lagoon strip of the Guerrero coast consists of long barrier beaches, behind which extends a lagoon, beach ridges, extensive swamps, mangrove swamps, salt pans, floodplains, alluvial plains, fluvial terraces, and abandoned meanders. Abandoned meanders and fluvial terraces indicate that the Coyuca River has migrated to the southeast. This migration, and changes in hill elevations near the coast, suggest a southeast tilting of this coastal segment. The morphology of the Guerrero coast has no evidence of long-term coastal uplift. This is consistent with short- term tide gauge measurements (1953-1999) and GPS data (1992-2000) indicative of subsidence rates of ~3 mm/yr (Kostoglodov et al., 2001) in this area. Five cores up to 5.5 m depth were taken nearby the Mitla, Coyuca, Tres Palos and Tecomate lagoons. Core stratigraphies show clear sequences of interbedded peats and clays, interspersed with sand units. The peat-clay sequences are similar to those observed along active margins elsewhere, and indicate fluctuations between marine and brackish/freshwater conditions. Two cores included sediments

  10. Crustal structure and tectonic evolution of the Hecataeus Rise near the Cyprus-Eratosthenes Seamount collision zone

    NASA Astrophysics Data System (ADS)

    Reiche, Sönke; Welford, Kim; Hübscher, Christian; Hall, Jeremy

    2015-04-01

    The Hecataeus Rise represents a plateau-like structure, adjacent to the southern Cyprus margin and directly next to the Cyprus - Eratosthenes Seamount convergence zone, where incipient continent- continent-collision is believed to occur. Newly acquired wide-angle seismic profiles together with a dense grid of seismic reflection and multibeam bathymetric data provide insight into the crustal structure and Miocene-Quaternary structural evolution of this yet underexplored sector along the African-Anatolian plate boundary. Refraction seismic modeling suggests that the Hecataeus Rise is composed of a thick sedimentary cover underlain by an intermediate crust of presumably continental origin. Velocity models show significant lateral velocity variations along the African-Anatolian plate boundary, directly south of the Hecataeus Rise. High-velocity basement blocks coincide with highs in the magnetic field and appear to extend parallel to the margin of the Hecataeus Rise. We relate these high-velocity blocks to the presence of remnant Tethyan oceanic crust along a transform margin. Seismic reflection interpretation suggests that a Miocene period of tectonic compression has significantly deformed the western and southern part of the plateau area. Onshore Cyprus, structural lineaments were presumably active at the same time (Robertson, 1998) and can be traced offshore across the Hecataeus Rise. Post-Messinian convergence was accommodated along the southeastern flank of the Hecataeus Rise, where NE-SW trending anticlinal structures experienced reactivation and significant growth. A prominent intra-Pliocene-Quaternary unconformity in the northwestern part of the plateau area may correlate with the Plio-Pleistocene transition and indicates the near synchronous occurrence of several tectonostratigraphic events. We suggest that these events represent a chain of structural and depositional changes initiated by incipient collision of Eratosthenes Seamount with Cyprus and the

  11. Using Digital Topography to Differentiate Erosionally Exhumed and Tectonically Active Mountains Fronts

    NASA Astrophysics Data System (ADS)

    Frankel, K. L.; Pazzaglia, F. J.

    2003-12-01

    Mountain ranges in the southern Rocky Mountains have departed on unique landscape evolutionary pathways in the late Cenozoic that are directly dependent upon the degree of post-orogenic tectonic activity they have experienced. The topography of Sierra Nacimiento, a Laramide uplift in west-central New Mexico lacking an active range-front fault, is shaped primarily by erosional exhumation that is continuous, but not steady, being driven by distal base level fall from Rio Grande incision and resultant south to north knickpoint migration. In contrast, the topography of the Taos Range, a rift flank uplift in north-central New Mexico is shaped by contrasting active stream incision and aggradation astride an active range front normal fault. The distinction between exhumation-dominated and tectonically-dominated mountain fronts is best quantified by analyses of a new metric we call the drainage basin volume to drainage basin area ratio (V-A ratio) as well as the gradients of first-order streams. Drainage basin volume and area are calculated by constructing topographic envelope maps from 10 m resolution digital elevation models (DEM). The envelope maps are pinned by the watershed divide and cover the maximum elevations in each drainage basin. Subtracting the original DEM from the maximum elevation envelope map produces a topographic residual map from which area and volume data can be obtained. The erosionally exhumed Sierra Nacimiento has a mean V-A ratio of 88 m while the tectonically active Taos Range has a mean V-A ratio of 140 m. Similarly, there are systematic differences in the gradients of first order streams measured both in the range block and approximately 5 km of adjacent piedmont. Streams were defined and subsequently Strahler ordered by a flow accumulation threshold of 250 water-equivalent grid cell units. First order stream channel long profiles were extracted from the DEM at 30 meter increments and gradients were calculated by a FORTRAN program. Gradients of

  12. Tectonics on Triton

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    Tectonic features on Triton have been mapped as part of a larger study of the geology of Triton. Few purely tectonic structures are found on Triton: some grabens and possibly some compressive ridges. However, most of the other structures seen (primarily cryovolcanic in origin) exhibit tectonic control. A regional tectonic network has the following dominant orientations: N-S, E-W, NE-SW, and NW-SE. Most of the orientations are consistent with tidal deformations related to Triton's decreasing orbital radius. Localized quasi-concentric patterns may be due to interior processes such as mantle plumes.

  13. Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India

    USGS Publications Warehouse

    Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.

    2006-01-01

    Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.

  14. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  15. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stöckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc

  16. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  17. An attempt to monitor tectonic forces in the Vrancea active geodynamic zone: The Baspunar experiment

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita; Plopeanu, Marin

    2013-04-01

    (sparsely) run in the area, have provided inconsistent results on the PCF current dynamics. The Baspunar Geodynamic Observatory (BGO) has been designed and implemented by the Solid Earth Dynamics Department in the Institute of Geodynamics of the Romanian Academy in order to reveal and monitor eventual motions along PCF in the attempt to correlate variations in the slip rate with changes in the seismicity released within Vrancea zone. The first BGO records were strongly affected by changes in the atmospheric parameters. Consequently, technical measures and special corrections for the removal or at least mitigation of the effects created by changes in temperature, air pressure and humidity have been applied to the observations. In order to improve the signal to noise ratio, some mathematical filters have been applied too. The paper is aimed at revealing results of the geodetic observations along with preliminary geodynamic considerations. On the overall, after about two years of monitoring, PCF appears as an active tectonic contact. It mainly behaves as a left-lateral fault, but some short episodes with a reverse slip (dextral) were also pointed out. Correlations with crustal and intermediate-depth earthquakes occurring in both cases within the bending zone of East Carpathians are illustrated and discussed.

  18. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  19. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  20. Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Montone, Paola; Pirro, Mario; Boschi, Enzo

    2004-04-01

    In this paper we describe evidence of strong tectonic deformation affecting two aqueducts of Roman age (II-III century A.D.). The channels are located approximately 20 km northeast of Rome along the ancient Via Tiburtina. Brittle and ductile deformation affects these two structures, including extensional joint systems, NE-oriented faults, and horizontal distortion. This deformation is consistent with right-lateral movement on major N-striking faults, and represents the first evidence that tectonic deformation took place in historical times in the vicinity of Rome, with local strike-slip movement superimposed on a regional extensional fault system.

  1. Active Tectonics of Southern Alaska and the Role of the Yakutat Block Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2011-12-01

    GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region's tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, the margin is made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. We present GPS data from across the region and use it to constrain a tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. According to our model, the Yakutat block itself moves NNW at a rate of 50 mm/yr. Along its eastern edge, the Yakutat block is fragmenting into small crustal slivers. Part of the strain from the collision is transferred east of the Fairweather - Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. Further north, the GPS data and model results indicate that the current deformation front between the Yakutat block and southern Alaska runs along the western side of the Malaspina Glacier. The majority of the ~37 mm/yr of relative convergence is accommodated along a narrow band of thrust faults concentrated in the southeastern part of the St. Elias orogen. Near the Bering Glacier, the tectonic regime abruptly changes as crustal thrust faults give way to subduction of the Yakutat block beneath the western St. Elias orogen and Prince William Sound. This change aligns with the Gulf of Alaska shear zone, implying that the Pacific plate may be fragmenting in response to the Yakutat collision. From the Bering

  2. Active tectonics in Southern Alaska and the role of the Yakutat block constrained by GPS measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Julie

    2011-12-01

    GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region's tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, the margin is made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. This thesis presents GPS data from across the region and uses it to constrain a tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. The Yakutat block itself moves NNW at a rate of 50 mm/yr. Along its eastern edge, the Yakutat block is fragmenting into small crustal slivers. Part of the strain from the collision is transferred east of the Fairweather -- Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. Further north, the GPS data and model results indicate that the current deformation front between the Yakutat block and southern Alaska runs along the western side of the Malaspina Glacier. The majority of the ˜37 mm/yr of relative convergence is accommodated along a narrow band of thrust faults concentrated in the southeastern part of the St. Elias orogen. Near the Bering Glacier, the tectonic regime abruptly changes as crustal thrust faults give way to subduction of the Yakutat block beneath the western St. Elias orogen and Prince William Sound. This change aligns with the Gulf of Alaska shear zone, implying that the Pacific plate is fragmenting in response to the Yakutat collision. The Bering Glacier region is

  3. Tectonic reconstructions of the southwestern Great Basin: Stratigraphic tests of structural models

    SciTech Connect

    Prave, A.R. . Dept. of Earth and Atmospheric Sciences); Snow, J.K. . Division of Geology and Planetary Sciences)

    1993-04-01

    Accurate paleogeographic reconstruction of the tectonically dismembered southwestern Great Basin is in large part dependent on the validity of the Wernicke et al. (1988) and Snow and Wernicke (1989) correlations of Mesozoic (pre-Tertiary) contractile deformational features. In order to independently assess these structurally based models and their predictions, carefully chosen stratigraphic data were used as tests. In the northern Death Valley region, sediment dispersal trends in two regionally developed facies of the Lower Cambrian Wood Canyon Formation and Zabriskie Quartzite suggest that otherwise uniformly northwest-directed paleocurrent indicators have undergone vertical axis rotations comparable in direction and magnitude to those predicted for anti-clockwise rotation of the Grapevine Mountains structural block. In the central Death Valley region, stratigraphic differences in upper plate rocks in the proposed Tucki Mountain-northern Nopah Range pierce point prevent the adjacent juxtaposition of those rocks but are permissive of such a correlation. Finally, in the southern Death Valley region, the Levy and Christie-Blick (1989) pre-Mesozoic reconstruction results in overlap of range blocks and juxtaposition of disparate facies in the Proterozoic Pahrump Group rocks. This implies that the Cenozoic deformational vector displacement paths, determined for elsewhere in the southern Great Basin, are not applicable to southern Death Valley and must be reassessed.

  4. Tectonic structure of the Tuscany-Latium Continental Shelf (Tyrrhenian Sea)

    SciTech Connect

    Bartole, R.

    1988-08-01

    An old regional seismic multicoverage reflection survey (Zone E) provides useful information on the shallow structure of the southern Tuscany-northern Latium shelf located between Elba Island and Anzio. Three main seismic units have been recognized on the grid, directly tied to the Matilde-1 offshore drilling and correlated to onshore wells and outcrops. The upper unit, characterized by continuous and generally undisturbed reflectors, is constituted by the postorogenic sedimentary cover of late Neogene-Quaternary age. This sequence unconformably lies on an intermediate unit or, when absent, a basal one. These two units, characterized by good-to-poor seismic response, are constituted by the tectonized geologic units of the Northern and Central Apennines. The intermediate unit corresponds to the Ligurids and Sicilids allochthonous complexes, while the basal unit may be attributable to the Tuscan nappe and/or the Tuscan autochthon in the shelf sector north of the Tiber River mouth, and the Umbro-Sabina units south of the same mouth. The widespread distribution and consistent thickness of the allochthonous cover (up to 1,000 msec two-way traveltime) lying over a structured substratum might be of some interest in hydrocarbon prospecting.

  5. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-01-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  6. Structure and kinematics of a major tectonic contact, Michipicoten greenstone belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1992-01-01

    The Michipicoten greenstone belt, Ontario, experienced a complex history of folding, faulting, and fabric development. Near Wawa, a major east-west contact, here named the Steep Hill Falls (SHF) contact, extends entirely across the belt. The SHF contact is both an angular unconformity and a fault and is interpreted to be a regionally significant tectonic contact separating distinct northern and southern terranes, both of which include volcanic rocks of probable island-arc origin. The amount of horizontal transport involved in bringing the two terranes together along the SHF contact is not known. Mapping and structural analysis suggest that regionally significant horizontal displacements took place, with movement vectors that changed with time. Early faults, folds, and fabrics imply north-south to northeast-southwest (with respect to present directions) convergence, with a vergence reversal occurring during this complex event. The most likely models infer early south vergence and later north vergence. Transecting the earliest structures are younger (but still Archean) northeast-striking steep cleavages with associated upright folds that may relate to northwest-southeast assembly of the Superior Province craton. The craton assembly event thus involved a transport direction at a high angle to that inferred for the earlier assembly of the Michipicoten greenstone belt.

  7. Hazard analysis of active tectonics through geomorphometric parameters to cultural heritage conservation: the case of Paphos in Cyprus

    NASA Astrophysics Data System (ADS)

    Argyriou, A. V.; Sarris, A.; Alexakis, D.; Agapiou, A.; Themistocleous, K.; Lysandrou, V.; Hadjimitsis, D.

    2014-08-01

    Natural hazards, such as earthquakes, can have a large destructive effect on cultural heritage sites conservation. This study aims to assess from a geospatial perspective the risk from natural hazards for the archaeological sites and monuments and evaluate the potential tectonic activity impact on the cultural and historic heritage. Geomorphometric data derivatives that can be extracted from Digital Elevation Models (DEMs) provide information relevant with active tectonics. The specific extracted tectonic information when being used on the basis of analytical hierarchy process and weighted linear combination approach can offer an important robust approach. The ranking of the derived information relatively to specific criteria of weights can enhance the interrelationships and assemblages over neotectonics aspects. The outcomes of that methodological framework can propose an assessment approach for the spatial distribution of neotectonic activity and can become a useful tool to assessing seismic hazard for disaster risk reduction. The risk assessment aspects of such a hazard are being interlinked with the archaeological sites in order to highlight and examine those that are exposed on ongoing tectonic activity and seismic hazard. Paphos area in Cyprus has been used as the test bed for the particular analysis. The results show an important number of archaeological sites being located within zones of high degree of neotectonic activity.

  8. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  9. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    NASA Astrophysics Data System (ADS)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  10. Tectonic features on Titan

    NASA Astrophysics Data System (ADS)

    Cook, C.; Barnes, J.

    2011-10-01

    This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display known stress fields driven or modified by global forces which affect patterns of tectonism. Patterns such as these are seen in Europa's tidal forces, Enceladus' tiger strips, and Ganymede's global expansion. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays visible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored Virgae.

  11. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Michaud, Francois; Proust, Jean-Noël; Dano, Alexandre; Collot, Jean-Yves; Guiyeligou, Grâce Daniella; Hernández Salazar, María José; Ratzov, Gueorgui; Martillo, Carlos; Pouderoux, Hugo; Schenini, Laure; Lebrun, Jean-Frederic; Loayza, Glenda

    2016-10-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  12. Lasting mantle scars lead to perennial plate tectonics

    PubMed Central

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  13. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  14. Lasting mantle scars lead to perennial plate tectonics

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  15. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  16. Structure of North Atlantic upper mantle based on gravity modelling, regional geochemistry and tectonic history

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans

    2016-04-01

    We study the link between deep geodynamic processes and their surface expression in the North Atlantic region which has an anomalous, complex structure compared to other oceans. We calculate a model of residual mantle gravity between the Charlie Gibbs Fracture Zone and Svalbard. The calculations are based on GOCE satellite data the regional crustal model EUNAseis (Artemieva and Thybo, 2013) ; for the crustal and topography effects, and the global totpgraphy and bathymetry model ETOPO1 from NOAA (Amante and Eakis, 2009). Results are complemented by sensitivity analysis of the various parameters' effects on the models. Our results identify strong heterogeneity in the upper mantle residual gravity, expressed as a sharp contrasts at the continent-ocean transition, positive mantle gravity below the continental blocks and negative - below oceanic blocks; the MOR has low-gravity anomaly. By introducing regional geochemical data and analysis of the tectonical history, we identify a strong correlation between residual mantle gravity anomalies and geochemical anomalies in ɛNd and Mg#. This analysis identifies three zones of North Atlantic mantle based on the correlation between upper mantle gravity and ocean floor age. In the area around Iceland, the residual mantle gravity is systematically lower than predicted from the half-space cooling model, and we estimate the thermal anomaly that could cause this shift.

  17. Neogene structural characteristics of Louisiana shelf with emphasis on growth-fault interplay with salt tectonics

    SciTech Connect

    Xue, Fangjian, Xi, Jiebo

    1996-12-31

    Growth faulting and salt tectonics are the most pronounced structural features in the offshore Louisiana. Regional examination of seismic data(4 mile x 4 mile grid) of OCS area Suggests that polyphase halokinesis happened along the whole shelf area during the Neogene sedimentation but with different type of salt movement and faulting in time and space. The sublinear and regularly basinward-dipping lower and middle Miocene faults predominate beneath the present inner shelf region with scarcity of shallow salt features. These fault trends detached on bottom Miocene decollement related ductile shale and salt welds. The shorter and more arcuate-shaped upper Miocene and Pliocene faults complicated by abundant near-surface salt bodies characterize the farther offshore beneath the outer-shelf region. Most of these fault root into or related to salt diapirs, but at the West Cameron and at the South Timberlier, families of growth-faults were developed on the upper Miocene allochthonous salt sheet detachment and played an important role in segmenting salt sheet in this salt raft regime. The more irregularly oriented Pleistocene faults with combination of shallow basinward-dipping and counter-basinward-dipping detachment on top of large and thick upper Pliocene allochthonous salt mass occurred in the present shelf edge and slope region. This study suggest at least three episodes of salt movement occurred at early Miocene, late Miocene-early Pliocene and early Pleistocene and the existence and possible position of large right-slip transfer faults.

  18. Neogene structural characteristics of Louisiana shelf with emphasis on growth-fault interplay with salt tectonics

    SciTech Connect

    Xue, Fangjian, Xi, Jiebo )

    1996-01-01

    Growth faulting and salt tectonics are the most pronounced structural features in the offshore Louisiana. Regional examination of seismic data(4 mile x 4 mile grid) of OCS area Suggests that polyphase halokinesis happened along the whole shelf area during the Neogene sedimentation but with different type of salt movement and faulting in time and space. The sublinear and regularly basinward-dipping lower and middle Miocene faults predominate beneath the present inner shelf region with scarcity of shallow salt features. These fault trends detached on bottom Miocene decollement related ductile shale and salt welds. The shorter and more arcuate-shaped upper Miocene and Pliocene faults complicated by abundant near-surface salt bodies characterize the farther offshore beneath the outer-shelf region. Most of these fault root into or related to salt diapirs, but at the West Cameron and at the South Timberlier, families of growth-faults were developed on the upper Miocene allochthonous salt sheet detachment and played an important role in segmenting salt sheet in this salt raft regime. The more irregularly oriented Pleistocene faults with combination of shallow basinward-dipping and counter-basinward-dipping detachment on top of large and thick upper Pliocene allochthonous salt mass occurred in the present shelf edge and slope region. This study suggest at least three episodes of salt movement occurred at early Miocene, late Miocene-early Pliocene and early Pleistocene and the existence and possible position of large right-slip transfer faults.

  19. Density structure of the lithosphere in the southwestern United States and its tectonic significance

    USGS Publications Warehouse

    Kaban, M.K.; Mooney, W.D.

    2001-01-01

    We calculate a density model of the lithosphere of the southwestern United States through an integrated analysis of gravity, seismic refraction, drill hole, and geological data. Deviations from the average upper mantle density are as much as ?? 3%. A comparison with tomographic images of seismic velocities indicates that a substantial part (>50%) of these density variations is due to changes in composition rather than temperature. Pronounced mass deficits are found in the upper mantle under the Basin and Range Province and the northern part of the California Coast Ranges and adjacent ocean. The density structure of the northern and central/southern Sierra Nevada is remarkably different. The central/southern part is anomalous and is characterized by a relatively light crust underlain by a higher-density upper mantle that may be associated with a cold, stalled subducted plate. High densities are also determined within the uppermost mantle beneath the central Transverse Ranges and adjoining continental slope. The average density of the crystalline crust under the Great Valley and western Sierra Nevada is estimated to be up to 200 kg m~3 higher than the regional average, consistent with tectonic models for the obduction of oceanic crust and uppermost mantle in this region.

  20. Basin architecture, salt tectonics, and Upper Jurassic structural styles, DeSoto Canyon Salt basin, northeastern Gulf of Mexico

    SciTech Connect

    MacRae, G.; Watkins, J.S. )

    1993-10-01

    Despite the Gulf of Mexico being a mature hydrocarbon province, the least understood aspects of the basin's geologic history are undoubtedly those concerning pre-Middle Jurassic tectonic events and their implication for the tectonic and sedimentary evolution of the region. Despite awareness of the importance of continental extension during rifting, there are few quantitative studies that show the influence of crustal extension on basin architecture, the distribution of salt, and Late Jurassic sedimentation in the DeSoto Canyon Salt basin, northeastern Gulf of Mexico. Application of simplified isostatic principles using a lithospheric buoyancy model allow quantification of total tectonic subsidence, crustal thickness, crustal extension, and crust type. An average crustal thickness of 25 km and crustal extension [beta] values between 1.4 and 1.8 suggest the sedimentary succession is underlain by moderately stretched and attenuated continental crust. The widespread distribution and geometry of dipping subsalt reflectors, particularly in the shelfal areas, provide evidence for a Late Triassic-Early Jurassic phase of rifting prior to deposition of Middle Jurassic salt. Although deposition occurred in a slowly subsiding, stable marginal setting, salt movement and associated growth faulting are the most significant tectonic elements affecting the stratigraphic and structural development of the overlying strata.

  1. Lithospheric structure of the Gorringe Bank: Insights into its origin and tectonic evolution

    NASA Astrophysics Data System (ADS)

    JiméNez-Munt, I.; Fernã Ndez, M.; VergéS, J.; Afonso, J. C.; Garcia-Castellanos, D.; Fullea, J.

    2010-10-01

    The Gorringe Bank is a 5000 m high seamount near the Atlantic coast of Iberia characterized by a 9 m high geoid anomaly and a ˜120 mGal Bouguer anomaly relative to the surrounding abyssal plains. It has been linked to a NW directed thrust carrying exhumed upper mantle rocks and transitional crust on top of flexed-down Eurasian oceanic crust along the Tagus Abyssal Plain. However, estimations of crustal shortening have yielded dissimilar results, and the deep structure of the ridge remains highly unknown. We present a restored cross section and a new model of the lithospheric structure based on gravity, geoid, elevation, and the presence of serpentinized peridotites. At least 20 km of shortening took place along a flat-ramp-flat thrust fault, and the density structure of the lithosphere is consistent with mantle serpentinization varying from 70% at the surface to 20% at 14 km depth and 0% at 40 km. The topographic relief and gravity anomalies are explained by assuming a flexural isostatic model with an elastic thickness Te of ˜30 km. The evolution of the Gorringe Bank since the Late Jurassic is interpreted in relation to Eurasia-Africa-North America plate motion in four stages: (1) transtension between Newfoundland-Iberia and Africa, which generated small oceanic basins and mantle exhumation; (2) opening of the North Atlantic and seafloor spreading at the NW side of the exhumed Gorringe, which produced gabbro intrusions and serpentinization; (3) a quiescent tectonic period dominated by subsidence and sediment accumulation; and (4) a transpressional plate boundary between Eurasia and Africa with NW directed subcrustal thrusting and generation of the present Gorringe relief.

  2. Hidden faults in the Gobi Desert (Inner Mongolia, China) - evidence for fault activity in a previously tectonically stable zone

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Haedke, Hanna; Reicherter, Klaus

    2013-04-01

    The Gaxun Nur Basin (GNB, also Ejina Basin, Hei River Basin, Ruoshui Basin) north of the Tibetan Plateau and the Hexi Corridor is an endorheic basin bounded by the Bei Shan ranges in the west, the Gobi Altai mountains in the north and the Badain Jaran sand desert in the east. The basin is fed from the south by the braided drainage system of the Hei He (Hei River) and its tributaries, which originate in the Qilian Shan; terminal lakes like the dried Gaxun Nur and Sogo Nur are and have been temporal. The sedimentary succession of up to 300 m comprises intercalations of not only alluvial deposits but also lake sediments and playa evaporites. The basin has been regarded as tectonically inactive by earlier authors; however, the dating of sediments from an earlier drill core in the basin center provided some implications for tectonic activity. Subsequent remote sensing efforts revealed large lineaments throughout the basin which are now considered as possible fault line fingerprints. We investigated well preserved Yardangs (clay terraces) in the northeastern part of the GNB, in the vicinity of the Juyanze (paleo) lake, and found evidence for Holocene active tectonics (seismites). We present a lithological analysis of the relevant sequences and conclusions on the recent tectonic activity within the study area.

  3. Structural style and tectonic evolution of the easternmost Gulf of Aden conjugate margins (Socotra - Southern Oman)

    NASA Astrophysics Data System (ADS)

    Nonn, Chloe; Leroy, Sylvie; Castilla, Raymi; de Clarens, Philippe; Lescanne, Marc

    2016-04-01

    Observations from distal rifted margins in present day magma-poor rifted margins led to the discovery of hyperextended crust and exhumed sub-continental mantle. This finding allowed to better figure out how thinning process are accommodate by tectonic structures, forming various crustal domains, as the deformation localized towards the future area of breakup. However, some of the current challenges are about clarifying how factors as oblique kinematic, pre-existing structures and volcanism can control the 3D geometry and crustal architecture of the passive margins? A key to better understand the rifting evolution in its entirety is to study conjugate margins. The gulf of Aden is a young oceanic basin (with a global trend about N75°E) oblique to the divergence (about 30°N), separating Arabia from Somalia of less than 800 km. Thanks to its immerged margins and its thin post-rift sediment cover, the gulf of Aden basin is a natural laboratory to investigate conjugate margins and strain localisation throughout the rift history. In this contribution, we focus our interest on offshore Socotra Island (Yemen) and its conjugate in Southeastern Oman. This area extends from Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fault zones (EGAFZ). In the easternmost part of the gulf of Aden, we provide new insights into crustal deformation and emplacement of the new oceanic crust thanks to bathymetric, magnetic, gravimetric data and single-, multi-channel, high speed seismic reflection data collected during Encens-Sheba (2000), Encens (2006) and the more recent Marges-Aden (2012) cruises respectively. The results obtained after compilation of these data, previous geological (field works) and geophysical (receiver functions, Pn-tomography, magnetic anomalies, heat flow) studies on the focused area, allowed us to provide new structural mapping and stratigraphic correlation between onshore and offshore parts of Socotra and Oman margins. We precisely defined and map crustal

  4. Recent Advances in Mars Tectonics

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1999-01-01

    Since the publication of the "Stress and Tectonics on Mars" chapter in the Mars book (the last comprehensive summary of our knowledge on the topic) considerable advances have been made in certain areas of Martian tectonics and significant advances are expected with the return of Mars Global Surveyor data. This abstract will summarize the advances in our knowledge of tectonic features and processes on Mars since the Mars book and point towards new areas of research that can be expected from the Mars Global Surveyor data. Two out of three areas of study that were discussed as future directions of work in the Mars chapter have had significant work directed towards them. One area is the field of structural mapping and understanding the timing of tectonic activity on Mars in the framework of the global stratigraphy. Although the general development and relative timing of the development of the Tharsis province on Mars had been understood for some time, actual placement of mapped tectonic features in a global stratigraphic framework has only recently been completed. The second area of study mentioned in the Mars chapter was the impact of improved topography and gravity on modeling loads and deriving stresses in the Martian lithosphere. Mars Global Surveyor is on the brink of returning vastly improved topographic and gravity fields and these newer data sets can be used to better define the size and shape of Tharsis and to quantify loads and derived stresses in the Martian lithosphere. Additional information is contained in the original extended abstract.

  5. Is the Anegada Passage a sealed structure related to a past tectonic phase? A tectono-structure study of the Northern Lesser Antilles margin based on the Antithesis-1 cruise geophysical data

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Marcaillou, B.; Klingelhoefer, F.; Evain, M.; Jean-Frederic, L.

    2015-12-01

    The Anegada Passage is a deep NE-SW-trending valley across the arcuate volcanic arc at the transition between the Greater and the Lesser Antilles. The passage includes a set of faults and basins connecting the Virgin Island Basin to the Sombrero Basin. The geodynamic causes, the tectono-sedimentary evolution and the eastward extent of the Anegada passage are still unclear. Various models for the formation of the passage were published: (1) pure extension, (2) dextral or (3) sinsitral transtension. During the geophysical cruise ANTITHESIS-1 (Nov.2013-Jan.2014), we acquired deep penetration multichannel seismic and wide-angle seismic data, high resolution seismic (3.5 khz) data and multibeam swath bathymetry in this poorly-investigated margin segment. These data shed new light on the extent and structure of the Anegada system as well as on its past and current tectonic activity. The crustal thickness and velocity (Vp) structure are consistent with a previously-proposed oceanic origin under hotspot influence. The crustal Vp structure does not significantly vary astride the Anegada Passage suggesting similar nature of the rocks. Thus, the Anegada Passage does not correspond to a possible boundary between differing-origin basements in Greater and Lesser Antilles. The Anegada system extends NE of the Sombrero Basin with a set of newly-observed basins and faults that all together draw an en echelon structure. This fault system widens eastward, with numerous short and shallow E-W-trending faults suggesting an anastomosing system near the accretionary prism. Within the Sombrero Basin, the shallowest undeformed sedimentary unit overlays deformed and fan-shaped deeper units indicating a recently-sealed tectonic activity consistent with the seismic and geodetic records. This low current seismic and tectonic activity indicates that the Anegada Passage formed during a past tectonic phase possibly related to the Bahamas Platform docking against the Greater Antilles subduction

  6. Seismicity, crustal structure, and tectonics near the northern termination of the San Andreas fault

    SciTech Connect

    Knapp, J.S.

    1982-01-01

    Further evidence supporting the supposition that a triple junction has existed near Cape Mendocino in Late Cenezoic time was provided by the discovery of a layer of seismic activity dipping 12/sup 0/ beneath the continent north of the Mendocino fracture. A seismic refraction profile shot along the continental slope and onshore velocity modeling confirms that this layer of earthquakes is confined within subducted oceanic layers 2 and 3. In this region, layer 2 appears to be slightly thickened and layer 3 anomalously thin. Travel time delays from offshore explosions and from teleseismically-recorded earthquakes indicate the presence of a large velocity discontinuity as great as 10% across the Mendocino escarpment represents the juxtaposition of two distinct lithospheric plates. The tectonic development of the region seems, however, to be shifting away from a stable triple junction configuration. Because the spreading direction at the Gorda ridge is no longer parallel to the Mendocino fracture, the Gorda plate is breaking up along a complex series of left-lateral, northeast-trending faults, as suggested by the high level of intraplate seismicity and by some aftershock distributions. By asymmetric spreading, the Gorda and Juan de Fuca ridges are undergoing clockwise rotation to bring them into alignment with the San Andreas-East Pacific rise system, eventually leading to the cessation of subduction beneath the northern California, Oregon, and Washington coasts.

  7. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    USGS Publications Warehouse

    Barbour, Andrew

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength

  8. Structural geology and tectonic significance of foreland thrust belts, Tarim and Junggar basins, northwest China

    SciTech Connect

    McKnight, C.L.; Chu, J.; Corroll, A.R.; Hendrix, M.S.; Wang, X.; Graham, S.A.; Liang, Y.H.; Wang, Z.X.; Xiao, X.

    1989-03-01

    The Kalpin uplift, located on the northwestern margin of the Tarim basin is characterized by a series of thin, southeast-vergent thrust plates modified by strike-slip faults. Each thrust plate repeats a sedimentary sequence consisting of upper Proterozoic through Permian shallow marine to nonmarine carbonates and clastics. Tertiary rocks as young as Neogene are affected by the deformation. The most basinward thrust sheet abuts the Bachu uplift, an older structural feature trending almost perpendicular to the thrusts. Sedimentary rocks as old as late Proterozoic are exposed in the Bachu uplift, which apparently represents a west-vergent Late Silurian to Early Devonian thrust belt. An unconformable Silurian-Devonian contact, the presence of Devonian red beds, and another unconformable contact separating Devonian from Upper Carboniferous strata support the interpretation of a middle Paleozoic deformational event. Another unconformity, at the Carboniferous-Permian boundary, apparently coincides with the time of collision of the Tarim craton with the southern margin of central Asia. The Shihezi fold trend, located in the southern Junggar basin, consists of three lines of surface anticlines trending parallel to the axis of the Urumqi foredeep. A thick sequence of Mesozoic and Cenozoic nonmarine sedimentary rocks accumulated in the growing foredeep. Mesozoic and Paleogene strata are deformed in the southern foldbelt, with Jurassic rocks forming the cores of these thrusted anticlines. The Qigu oil field is located in this southern belt. Deformed Neogene and Quaternary strata are exposed in the thrusted anticlines of the middle and northern foldbelts. The Dushanzi oil field is located in the northern belt. The episodic development of compressional structures in northwestern China documents the accretion of a number of tectonic units to the growing southern margin of central Asia through time.

  9. Structural and tectonic evolution of the eastern Cayman Trough (Caribbean Sea) from seismic reflection data

    SciTech Connect

    Leroy, S.; Mauffret, A.; Pubellier, M.

    1996-02-01

    The eastern Cayman Trough preserves a record of the Late Cretaceous to Paleogene Caribbean history that is largely affected by Neogene strike-slip tectonics of the current plate boundary. We conducted an analysis of seismic data within the eastern Cayman Trough, based upon single and multi-channel seismic reflection profiles collected during the Seacarib II cruise in 1987 and the Casis cruise in 1992. These data show that the basement of the eastern Cayman Trough can be divided into four domains from east to west, with distinct morphologic and sedimentary character and inferred older to younger ages: (1) a province of rifted Mesozoic continental crust exhibiting seven parallel horst blocks striking northeast-southwest; (2) a continent-ocean transition between provinces 1 and 3 that exhibits seamounts, small hills, and sedimentary basins; (3) an Eocene oceanic crust with rough basement but smoother relief than the rifted crust; basement trends are roughly north-south and oblique to the northwest trend in domain 1, and (4) the northern Jamaica slope, which forms an east-west-trending slope, with northward-dipping strata that flank the three deeper water domains of the Cayman Trough. The domains are interpreted to be the product of the Eocene east-west opening of the Cayman Trough as a pull-apart basin in a left-lateral strike-slip setting. Closure of the 1100 km of Eocene and younger oceanic crust of the Cayman Trough places the fault-block province adjacent to the Belize margin of Central America. A Neogene phase of transpression has reactivated structures in the four domains, along with on-land structures described by previous authors in Jamaica. The proximity of the eastern margin of the Cayman Trough to petroliferous, continental rocks in Central America suggests an improved possibility of hydrocarbon potential. Unfortunately, sediment thicknesses of less than 1 km probably are not conducive to hydrocarbon formation.

  10. Late Quaternary loess landscape evolution on an active tectonic margin, Charwell Basin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hughes, Matthew W.; Almond, Peter C.; Roering, Joshua J.; Tonkin, Philip J.

    2010-10-01

    Loess deposits constitute an important archive of aeolian deposition reflecting wider patterns of glacial atmospheric circulation, and more localised interactions between riverine source areas, loess trapping efficiency and geomorphic controls on erosion rate. Conceptual models have been formulated to explain the coeval evolution of loess mantles and associated landscapes (loess landscape models) but none apply to areas of tectonically induced base-level lowering. This study uses an age sequence of alluvial fill terraces in the Charwell Basin, north-eastern South Island New Zealand, which straddles the transpressive Hope Fault, to investigate geomorphic controls on loess landscape evolution in an active tectonic region. We hypothesize that the more evolved drainage networks on older terraces will more effectively propagate base-level lowering by way of a greater areal proportion of steep and convex hillslopes and a smaller proportion of non-eroding interfluves. Eventually, as the proportion of interfluves diminishes and hillslope convexity increases, terraces shift from being net loess accumulators to areas of net loess erosion. We investigate the nature of erosion and the geomorphic thresholds associated with this transition. Morphometric analysis of alluvial terraces and terrace remnants of increasing age demonstrated geomorphic evolution through time, with a decrease in extent of original planar terrace tread morphology and an increase in frequency of steeper slopes and convexo-concave land elements. The number of loess sheets and the thickness of loess increased across the three youngest terraces. The next oldest (ca. 150 ka) terrace remnant had the greatest maximum number of loess sheets (3) and loess thickness (8 m) but the loess mantle was highly variable. A detailed loess stratigraphic analysis and the morphometric analysis place this terrace in a transition between dominantly planar, uniformly loess-mantled landforms and loess-free ridge and valley terrain

  11. Three-dimensional lithospheric electrical structure of Southern Granulite Terrain, India and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Patro, Prasanta K.; Sarma, S. V. S.; Naganjaneyulu, K.

    2014-01-01

    crustal as well as the upper mantle lithospheric electrical structure of the Southern Granulite Terrain (SGT) is evaluated, using the magnetotelluric (MT) data from two parallel traverses: one is an ~ 500 km long N-S trending traverse across SGT and another a 200 km long traverse. Data space Occam 3-D inversion was used to invert the MT data. The electrical characterization of lithospheric structure in SGT shows basically a highly resistive (several thousands of Ohm meters) upper crustal layer overlying a moderately resistive (a few hundred Ohm meters) lower crustal layer which in turn is underlain by the upper mantle lithosphere whose resistivity shows significant changes along the traverse. The highly resistive upper crustal layer is interspersed with four major conductive features with three of them cutting across the crustal column, bringing out a well-defined crustal block structure in SGT with individual highly resistive blocks showing correspondence to the geologically demarcated Salem, Madurai, and Trivandrum blocks. The 3-D model also brought out a well-defined major crustal conductor located in the northern half of the Madurai block. The electrical characteristics of this south dipping conductor and its close spatial correlation with two of the major structural elements, viz., Karur-Oddanchatram-Kodaikanal Shear Zone and Karur-Kamban-Painavu-Trichur Shear Zone, suggest that this conductive feature is closely linked to the subduction-collision tectonic processes in the SGT, and it is inferred that the Archean Dharwar craton/neoproterozoic SGT terrain boundary lies south of the Palghat-Cauvery shear zone. The results also showed that the Achankovil shear zone is characterized by a well-defined north dipping conductive feature. The resistive block adjoining this conductor on the southern side, representing the Trivandrum block, is shown to be downthrown along this north dipping crustal conductor relative to the Madurai block, suggesting a northward movement

  12. Large historical earthquakes and tsunamis in a very active tectonic rift: the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioanna; Papadopoulos, Gerassimos

    2014-05-01

    The Gulf of Corinth is an active tectonic rift controlled by E-W trending normal faults with an uplifted footwall in the south and a subsiding hangingwall with antithetic faulting in the north. Regional geodetic extension rates up to about 1.5 cm/yr have been measured, which is one of the highest for tectonic rifts in the entire Earth, while seismic slip rates up to about 1 cm/yr were estimated. Large earthquakes with magnitudes, M, up to about 7 were historically documented and instrumentally recorded. In this paper we have compiled historical documentation of earthquake and tsunami events occurring in the Corinth Gulf from the antiquity up to the present. The completeness of the events reported improves with time particularly after the 15th century. The majority of tsunamis were caused by earthquake activity although the aseismic landsliding is a relatively frequent agent for tsunami generation in Corinth Gulf. We focus to better understand the process of tsunami generation from earthquakes. To this aim we have considered the elliptical rupture zones of all the strong (M≥ 6.0) historical and instrumental earthquakes known in the Corinth Gulf. We have taken into account rupture zones determined by previous authors. However, magnitudes, M, of historical earthquakes were recalculated from a set of empirical relationships between M and seismic intensity established for earthquakes occurring in Greece during the instrumental era of seismicity. For this application the macroseismic field of each one of the earthquakes was identified and seismic intensities were assigned. Another set of empirical relationships M/L and M/W for instrumentally recorded earthquakes in the Mediterranean region was applied to calculate rupture zone dimensions; where L=rupture zone length, W=rupture zone width. The rupture zones positions were decided on the basis of the localities of the highest seismic intensities and co-seismic ground failures, if any, while the orientation of the maximum

  13. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  14. Spiral tectonics

    NASA Astrophysics Data System (ADS)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  15. Tectonics, structure, and metamorphic evolution of the Himalayan fold-thrust belt, western Bhutan

    NASA Astrophysics Data System (ADS)

    Tobgay, Tobgay

    Field mapping in western Bhutan in combination with U-Pb ages, geochemical data, stratigraphic columns, mineral assemblages and reaction textures, micro- and macro-scale structural observations, and balanced cross sections have allowed us to: (1) evaluate the use of detrital zircon and geochemical signatures for tectonic interpretation, (2) define tectonostratigraphy of litho-units in western Bhutan, particularly the Paro Formation, (3) produce pressure-temperature paths of deformed rocks, and (4) evaluate the magnitudes and rates of shortening through this portion of the Himalayan orogen. We divide the Lesser Himalayan (LH) section into four map units that range from Paleoproterozoic to Ordovician in age. The Paro Formation is interpreted as the distal equivalent of the Jaishidanda Formation based on a similar structural position immediately below the Main Central thrust (MCT) as well as similarity in detrital zircon signatures. Th-Pb ages of metamorphic monazite from Greater Himalayan (GH) rocks and a single age from the upper LH rocks bracket the minimum age of the MCT displacement between 20.4 +/- 1.0 and 15.1 +/- 0.4 Ma. Young monazite ages indicate that GH rocks continued to cool even until ˜10 Ma. A total displacement of ˜230 km achieved over 5 Myr yields a long-term horizontal shortening rate of 4.3 +/- 1.2 cm/yr. In western Bhutan, patterns of metamorphic isograds show an inversion of metamorphic field gradient extending from the upper LH section to the higher structural levels of GH right below the lower-South Tibetan Detachment. In the GH section, deformation postdates peak metamorphic conditions that prevailed at ˜20 Ma. In the Paro Formation, the presence of deformed kyanite at the base of the section and presence of undeformed sillimanite at the upper part of the section suggests burial to the kyanite stability field and syn- to post-deformational growth of sillimanite. A balanced cross-section across western Bhutan illustrates three endmember

  16. Upper crustal structure and Neogene tectonic development of the California continental borderland

    USGS Publications Warehouse

    Bohannon, R.G.; Geist, E.

    1998-01-01

    Multichannel seismic-reflection data, sonobuoy seismic-refraction data, and regional geology are used to define the upper crustal structure of the southern California continental borderland and to delineate the characteristics of the main lithotectonic belts of the region. The Catalina Schist belt is separated on its west side from the gently deformed Nicolas forearc belt by faults that have steep west dips and pronounced normal separations. On its east side the schist belt is bounded by alarge detachment fault that dips gently to the east beneath the west edge of the Peninsular Ranges belt at the coastline near Oceanside. The Catalina Schist was uplifted from middle crustal depths and exposed during a major event of extensional tectonism that started in early Miocene time in conjunction with about 10?? of clockwise rotation of the western Transverse Ranges belt. Part of the uplift of the Catalina Schist could have occurred on the detachment fault, but it is through to have mostly occurred on the steep faults that bound the west edge of the schist belt. A large amount of uplift is required, and it probably involved strong footwall flexural deformation in the wake of the translating and rotating western Transverse Ranges and Nicolas forearc belts. Extension, accompanied by probable large amounts of right slip, continued in the borederland region during and after middle Miocene time. The later stage of extension was accompanied by rapid clockwise rotation of the western Transverse Ranges of at least 90??. Most of the borderland, including the belt of schist that was uplifted in early Miocene time, was further deformed into numerous basins and ridges during this stage of oblique extension. The primary driving force for the deformation is thought to have been derived from the rapid northwest motion of the Pacific plate after it had become coupled to the Farallon plate system, which had previously been subducted beneath the borderland.

  17. Paleomagnetic evidence for proterozoic tectonism in the Kapuskasing Structural Zone, Ontario

    NASA Astrophysics Data System (ADS)

    Symons, D. T. A.; Vandall, T. A.

    1990-11-01

    The Kapuskasing Structural Zone (KSZ) in the Superior Province of north-central Ontario is thought to be an oblique cross-section through Middle Archean crust. Samples from 30 sites in granulite gneisses and anorthosites of the KSZ have been analyzed using alternating field and thermal demagnetization methods. Three remanent magnetization components were found with mean directions of: D = 23°, I = 50° (k =52, α95 = 11°, N = 5 sites) for the A component; D = 73°, I = -68° (k = 50, α95 = 5°, N = 18) for the B component; and D = 332°, I = -59° (k = 53, α95 = 17°, N = 3) for the C component. V. Constanzo-Alvarez and D. J. Dunlop found similar A and B components in less metamorphosed rocks from the same units to the immediate west. They attributed the A component to uplift at 2.55 Ga with subsequent 15° to 30° WNW tilt and the B component to thermochemical overprinting at 1.1 Ga as the KSZ was reactivated during Keweenawan rifting and volcanism. We also attribute the A component to uplift during the 2.55 Ga Kenoran Orogeny with concomitant 10°±5° WNW downward tilting before intrusion of the 2.45 Ga Matachewan dikes, to give its present paleopole of 33°E, 67° (dp = 6°, dm = 9°, N = 13) using data from both studies. We attribute acquisition of the B component to uplift at about 1.88 Ga, as suggested by recent thermal modeling and tectonic syntheses, to give a paleopole of 124°W, 30°N (dp = 7°, dm = 8°, N = 20). The C component is found in only three sites and may be either an hybrid of a 1.1 Ga Keweenawan CRM with the B component or a fault-block tilted B component near the Ivanhoe Lake cataclastic zone.

  18. The Early Proterozoic structural and tectonic history of the south central Lake Superior Region

    NASA Astrophysics Data System (ADS)

    Ueng, Wen-Long C.; Larue, Dave K.

    1988-06-01

    The early Proterozoic tectonic evolution of the south central Lake Superior region is complex, owing to the presence of four tectonostratigraphic terranes, which were affected by six phases of deformation. The four terranes are the passive margin of the Superior craton, two paraautochthonous passive margin terranes (Crystal Falls and Florence-Niagara terranes), and a southern magmatic arc complex which is probably allochthonous with respect to the other terranes. Four of the six deformational episodes accompanied subhorizontal shortening, while two were caused by subvertical shortening. The first and the most penetrative phase of deformation is marked by subhorizontal shortening in a NNE-SSW direction. The second and fourth deformations were characterized by subvertical shortening and did not significantly modify the structural orientations from previous events in the study area. The third, fifth, and sixth deformations mostly caused open folding, and shortening directions were NW, NE, and W, respectively. Because all the terranes in the south central Lake Superior region share parallel deformational histories, it is suggested that the accretion of these terranes occurred during the first deformational episode. After removal of younger deformational effects, including open folding of the suture zone, the tectonostratigraphic assemblages in this region show the following sequence from NNE to SSW: a platformal assemblage overlying sialic basement, a basinal assemblage of tholeiitic volcanic rocks overlain by deep-water turbidites, an assemblage of basin floor deposits (Crystal Falls terrane) with apparently no demonstratably underlying crystalline basement, a fault-bounded terrane with highly strained passive margin strata (Florence-Niagara terrane), and a calc-alkaline magmatic arc assemblage. Such an arrangement of tectonostratigraphic assemblages is comparable with cross sections through Phanerozoic accretionary continental margins and therefore supports an arc

  19. New upper mantle P-velocity model of Eurasia resolves connections to main regional tectonic structures

    NASA Astrophysics Data System (ADS)

    Koulakov, I.; Kaban, M. K.; Cloetingh, S.

    2012-12-01

    We present a new model of P-velocity anomalies in the upper mantle beneath Eurasia constructed by merging several existing models and by computing new results for a number of gap areas. The models were computed based on tomographic inversions of travel-time data from the worldwide catalogues (ISC, 2001). The calculations were performed in a series of overlapping circular areas of 700-1000 km size. All data with rays corresponding to sources and/or stations in the areas traveling through the target volume were, at least partly, used in the inversions. In case of lack of stations and events, the calculations were based on PP-rays with reflection points in the target area. The new model of Eurasia resolves connections between upper mantle structures and main tectonic units. Cratonic blocks in Eurasia, such as the East-European, Siberian, Indian and Arabian cratons are detected in terms of high-velocity patterns down to 250-300 km depth. The subduction zones in the western Pacific, Burma and the Mediterranean are robustly resolved, consistent with previous studies. In zones of continental collision, we observe traces of mantle delamination as drops of high-velocity material in the mantle. Sites of intraplate volcanism in Europe, Siberia, Mongolia and Yakutia coincide with low-velocity areas, interpreted as overheated upper mantle. Digital version of the model can be downloaded at www.ivan-art.com/temp/vis_eurasia.zip. P-velocity anomalies beneath Eurasia at 100 km depth from regional tomographic inversion. Polygons indicate possible locations of cratonic lithosphere blocks; stars mark the areas of Cenozoic volcanism. P-velocity anomalies beneath Eurasia at 300 km depth from regional tomographic inversion. Polygons indicate possible locations of cratonic lithosphere blocks.

  20. Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany

    NASA Astrophysics Data System (ADS)

    Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina

    2015-07-01

    The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.

  1. Thermal structure of the Paris Basin from tectonic-Heat Flow modelling

    NASA Astrophysics Data System (ADS)

    Bonté, Damien; van Wees, Jan-Diederik; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2015-04-01

    Located on the inner part of the Variscan Orogen, the Paris Basin has evolved from the Permo-Carboniferous as an intracratonic basin. The usual description of the sediments in the Paris Basin involves imbricated bowl shaped layers, starting from the Triassic. Due to their discontinuity, depth and complexity the Permian and Carboniferous layers have been commonly left aside. Fortunately, recent studies have been completed to looks specifically at these deeper sedimentary layers. With the development of geothermal energy and the widely use shallow medium enthalpy geothermal resources in the Paris Basin (Dogger) these pre-Mesozoic sediments are of a lot of interest. In this work, we use a tectonic-heat flow modelling methodology to model the present day thermal structure of the Paris Basin. The modelling takes into account the geometry of the layering and the petrophysical parameters (i.e., thermal conductivity, the radiogenic heat production of the sedimentary layers in relation with their facies). In addition, the upper part of the basement is closely considered to allow the description of magmatic intrusions that could have a major impact on the present day temperature (i.e., the variation of the radiogenic heat production). To assess the result of our thermal modelling, the obtained temperature is compared to BHT's (Bottom Hole Temperature) and DST's (Drill Stem Test) values when available. As a result of this modelling, we are able to present present-day temperature within the basin as well as in the shallower part of the basement. The aim of this work is identify the sources of the temperature perturbation. The impact of the sediment's thermal conductivity has already been assed on a previous work, in this work the deeper source of perturbation are of great interest (thermal conductivity and heat production of the pre-Mesozoic sedimentary layers, heat production of magmatic intrusion in the basement, and regional faults in the sediments and basement).

  2. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Wu, Fadong; Zhang, Xujiao; Zeng, Peng; Ma, Pengfei; Song, Yuping; Chu, Hao

    2016-12-01

    Developed in the Anxi-Dunhuang basin, the yardangs of Dunhuang (western China) are clearly affected by tectonic movement. Based on fieldwork, this study ascertained three levels of river terrace in the area for the first time. Through the analysis of river terraces formation and regional tectonic movement, the study ascertained that the river terraces were formed mainly by Late Pleistocene tectonic uplift, which had activated the evolution of yardangs in the study area. By electron spin resonance (ESR) dating and optically stimulated luminescence (OSL) dating, the starting time and periodicity of the evolution of the yardangs were determined. The river terraces designated T3, T2 and T1 began to evolve at 109.0 ˜98.5, 72.9 ˜66.84 and 53.2 ˜38.0 kaBP, respectively, which is the evidence of regional neotectonic movement. And, the formation of the yardangs was dominated by tectonic uplift during the prenatal stage and mainly by wind erosion in the following evolution, with relatively short stationary phases. This research focused on the determination of endogenic processes of yardangs formation, which would contribute to further understanding of yardangs formation from a geological perspective and promote further study of yardang landform.

  3. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    SciTech Connect

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  4. Debris Flow Architecture and Processes in Offshore Trinidad: Implications for basin fill in tectonically active margins

    NASA Astrophysics Data System (ADS)

    Moscardelli, L.; Wood, L.; Mann, P.

    2004-12-01

    The eastern continental margin of Trinidad is situated along the tectonically active oblique converging southeastern boundary of the Caribbean and South American plates and proximal to the Orinoco Delta. Factors that have contributed to gravitational instabilities in the shelf edge include high sedimentation accumulation rates, high frequency sea-level fluctuations during the Quaternary, frequent earthquakes and the abundance of methane hydrate. This volatile mix of factors favor the formation of episodic gravity induced deposits that have affected thousands of square kilometers of the deep marine environment. Debris flows are the predominant type of gravity induced deposits in the area. Multiple episodes of debris flow occurrence have been identified using nearly 10,000 square kilometers of three-dimensional seismic data that cover the entire eastern margin. Units can reach up to 250 meters in thickness and occur over 100's of kilometer square areas. Maps that have been generated for the uppermost flow show significant basal scour, up to 33 meters deep generated during passage of the flow. Scours also show divergent patterns in map view indicating changes in the flow conditions. Flow scour erosional shadows around prominent seafloor mud volcanoes preserving evacuated strata on the downslope side of these obstructions. Internal architecture shows high amplitude discontinuous and chaotic seismic facies, and stacked thrust imbricates association with compressional bends in the flow path. The scale and occurrence frequency of these features suggest that they may form a significant threat to submarine installations and possibly generate tsunamigenic waves that can threaten shipping and coastal communities.

  5. Role of structural inheritances and major transfer fault-zones in the tectonic history of the Alboran Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Comas, Menchu; Crespo-Blanc, Ana; Balanya, Juan Carlos

    2014-05-01

    The geodynamic evolution of the Gibraltar Arc System (GAS), which involves the origin and development of the Alboran back-arc basin, occurred during the Neogene related to the westward moving of the Alboran Domain (the Betic-Rifean hinterland) within a context of NNW-SSE plate-tectonic convergence. In this contribution we document shallow-crustal structures, deformation partitioning, and the different structural domains from the tectonic framework beneath the Alboran Sea. Furthermore, we focus the critical role of inherited crustal structures and major transfer faults within a coherent sequence of Miocene to Recent deformation phases. Early Miocene extensional processes conditioned substantial thinning and the exhumation of the metamorphic Alboran Domain before the opening of the Alboran Basin. Beneath the Alboran Sea, an ENE-SSW directed back-arc extension (from about 16 to 8.5 Ma, late Burdigalian to late Tortonian) affected both the metamorphic basement (the crustal Alboran Domain) and the overlying Miocene sedimentary units. This extension resulted in major low-angle normal faults, and NNW-SSE trending grabens connected by ENE-SSW transtensional transfer-faults, both happening in concomitance with the westward migration (around 200 km) of the Alboran Domain. The geometry of the extensional structures constrains the manner, timing and amount of the coeval crustal thinning. In the late Tortonian (about 8.5 Ma) a dominant N-S directed compressional phase caused inversions of former extensional faults, discrete folding, and strike-slip faulting. This compressional event triggered the spectacular West Alboran shale-diapirism from over-pressured basal units. At the South and Eastern Alboran and at the transition to the Algeria basins, a pervasive period of NW-SE directed compressional deformation (from about 7 Ma onwards) that affected the whole basin is patent. Long lasting compressional conditions since the late Tortonian resulted in a dramatic structural

  6. Active strike-slip faulting history inferred from offsets of topographic features and basement rocks: a case study of the Arima Takatsuki Tectonic Line, southwest Japan

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2002-01-01

    Geological, geomorphological and geophysical data have been used to determine the total displacement, slip rates and age of formation of the Arima-Takatsuki Tectonic Line (ATTL) in southwest Japan. The ATTL is an ENE-WSW-trending dextral strike-slip fault zone that extends for about 60 km from northwest of the Rokko Mountains to southwest of the Kyoto Basin. The ATTL marks a distinct topographic boundary between mountainous regions and basin regions. Tectonic landforms typically associated with active strike-slip faults, such as systematically-deflected stream channels, offset ridges and fault scarps, are recognized along the ATTL. The Quaternary drainage system shows progressive displacement along the fault traces: the greater the magnitude of stream channel, the larger the amount of offset. The maximum dextral deflection of stream channels is 600-700 m. The field data and detailed topographic analyses, however, show that pre-Neogene basement rocks on both sides of the ATTL are displaced by about 16-18 km dextrally and pre-Mio-Pliocene elevated peneplains are also offset 16-17 km in dextral along the ATTL. This suggests that the ATTL formed in the period between the development of the pre-Mio-Pliocene peneplains and deflection of the Quaternary stream channels. The geological, geomorphological and geophysical evidence presented in this study indicates that (1) the ATTL formed after the mid-Miocene, (2) the ATTL has moved as a dextral strike-slip fault with minor vertical component since its formation to late Holocene and (3) the ATTL is presently active with dextral slip rates of 1-3 mm/year and a vertical component of >0.3 mm/year. The formation of the ATTL was probably related to the opening of the Japan Sea, which is the dominant tectonic event around Japan since mid-Miocene. The case study of the ATTL provides insight into understanding the tectonic history and relationship between tectonic landforms and structures in active strike-slip faults.

  7. Marine geophysics. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.

    PubMed

    Sandwell, David T; Müller, R Dietmar; Smith, Walter H F; Garcia, Emmanuel; Francis, Richard

    2014-10-03

    Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins.

  8. Taiwan: a perfect field trip to study active tectonics and erosion processes

    NASA Astrophysics Data System (ADS)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  9. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Walter, T. R.

    2009-04-01

    The study of volcanic triggering and coupling to the tectonic surroundings has received special attention in recent years, using both direct field observations and historical descriptions of eruptions and earthquake activity. Repeated reports of volcano-earthquake interactions in, e.g., Europe and Japan, may imply that clustered occurrence is important in some regions. However, the regions likely to suffer clustered eruption-earthquake activity have not been systematically identified, and the processes responsible for the observed interaction are debated. We first review previous works about the correlation of volcanic eruptions and earthquakes, and describe selected local clustered events. Following an overview of previous statistical studies, we further elaborate the databases of correlated eruptions and earthquakes from a global perspective. Since we can confirm a relationship between volcanic eruptions and earthquakes on the global scale, we then perform a statistical study on the regional level, showing that time and distance between events follow a linear relationship. In the time before an earthquake, a period of volcanic silence often occurs, whereas in the time after, an increase in volcanic activity is evident. Our statistical tests imply that certain regions are especially predisposed to concurrent eruption-earthquake pairs, e.g., Japan, whereas such pairing is statistically less significant in other regions, such as Europe. Based on this study, we argue that individual and selected observations may bias the perceptible weight of coupling. Volcanoes located in the predisposed regions (e.g., Japan, Indonesia, Melanesia), however, indeed often have unexpectedly changed in association with either an imminent or a past earthquake.

  10. Deep seismic structure and tectonics of northern Alaska: Crustal-scale duplexing with deformation extending into the upper mantle

    USGS Publications Warehouse

    Fuis, G.S.; Murphy, J.M.; Lutter, W.J.; Moore, T.E.; Bird, K.J.; Christensen, N.I.

    1997-01-01

    Seismic reflection and refraction and laboratory velocity data collected along a transect of northern Alaska (including the east edge of the Koyukuk basin, the Brooks Range, and the North Slope) yield a composite picture of the crustal and upper mantle structure of this Mesozoic and Cenozoic compressional orogen. The following observations are made: (1) Northern Alaska is underlain by nested tectonic wedges, most with northward vergence (i.e., with their tips pointed north). (2) High reflectivity throughout the crust above a basal decollement, which deepens southward from about 10 km depth beneath the northern front of the Brooks Range to about 30 km depth beneath the southern Brooks Range, is interpreted as structural complexity due to the presence of these tectonic wedges, or duplexes. (3) Low reflectivity throughout the crust below the decollement is interpreted as minimal deformation, which appears to involve chiefly bending of a relatively rigid plate consisting of the parautochthonous North Slope crust and a 10- to 15-km-thick section of mantle material. (4) This plate is interpreted as a southward verging tectonic wedge, with its tip in the lower crust or at the Moho beneath the southern Brooks Range. In this interpretation the middle and upper crust, or all of the crust, is detached in the southern Brooks Range by the tectonic wedge, or indentor: as a result, crust is uplifted and deformed above the wedge, and mantle is depressed and underthrust beneath this wedge. (5) Underthrusting has juxtaposed mantle of two different origins (and seismic velocities), giving rise to a prominent sub-Moho reflector. Copyright 1997 by the American Geophysical Union.

  11. Planetary Tectonics and Volcanism

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The study of tectonic and volcanological processes on the terrestrial planets, with particular emphasis on Venus, in order to better understand the internal structures and thermal and stress histories of these bodies is reported.

  12. New insights into the tectonic inversion of North Canterbury and the regional structural context of the 2010-2011 Canterbury earthquake sequence, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; Ghisetti, Francesca C.; Gorman, Andrew R.

    2016-02-01

    The 2010-2011 Canterbury earthquake sequence highlighted the existence of previously unknown active faults beneath the North Canterbury plains and Pegasus Bay, South Island, New Zealand. We provide new insights into the geometry and kinematics of ongoing deformation by analyzing marine seismic data to produce new maps of regional faults and cross-sectional reconstructions of deformation history. Active faulting and folding extends up to 30 km offshore, and involves reactivation of sets of Late Cretaceous-Paleogene normal faults under NW-SE tectonic compression. The active faults consist predominantly of NE-SW striking, SE-dipping reverse faults, and less commonly E-W to NW-SE faults suitably oriented for strike-slip reactivation. Additionally, newly developing reverse faults obliquely segment and overprint the inherited basement fabric and impose geometric and kinematic complexities revealed by mapping and reverse displacement profiles of markers. The Quaternary reverse slip rates decrease from 0.1-0.3 mm/yr beneath northern Pegasus Bay to <0.05 mm/yr approaching Banks Peninsula. Fault growth modeling involving trishear fault-propagation folding mechanisms successfully restores an evolutionary sequence of progressive fault inversion, revealing a history of reactivated individual faults. Tectonic inversion and overprinting processes beneath Pegasus Bay are immature and <1.2 ± 0.4 Ma old, with no evidence of systematic spatial migration of deformation. Our marine data analyses give insights into the structural context of the 2010-2011 Canterbury earthquake sequence, while the combined onshore to offshore data provide an excellent illustration of fault growth associated with immature inversion tectonics, in which selective fault reactivation results from compressive stress imposed across a complex network of inherited faults.

  13. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  14. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  15. Tectonic evolution, structural styles, and oil habitat in Campeche Sound, Mexico

    SciTech Connect

    Angeles-Aquino, F.J.; Reyes-Nunez, J.; Quezada-Muneton, J.M.; Meneses-Rocha, J.J.

    1994-12-31

    Campeche Sound is located in the southern part of the Gulf of Mexico. This area is Mexico`s most important petroleum province. The Mesozoic section includes Callovian salt deposits; Upper Jurassic sandstones, anhydrites, limestones, and shales; and Cretaceous limestones, dolomites, shales, and carbonate breccias. The Cenozoic section is formed by bentonitic shales and minor sandstones and carbonate breccias. Campeche Sound has been affected by three episodes of deformation: first extensional tectonism, then compressional tectonism, and finally extensional tectonism again. The first period of deformation extended from the middle Jurassic to late Jurassic and is related to the opening of the Gulf of Mexico. During this regime, tilted block faults trending northwest-southwest were dominant. The subsequent compressional regime occurred during the middle Miocene, and it was related to northeast tangential stresses that induced further flow of Callovian salt and gave rise to large faulted, and commonly overturned, anticlines. The last extensional regime lasted throughout the middle and late Miocene, and it is related to salt tectonics and growth faults that have a middle Miocene shaly horizon as the main detachment surface. The main source rocks are Tithonian shales and shaly limestones. Oolite bars, slope and shelf carbonates, and regressive sandstones form the main reservoirs. Evaporites and shales are the regional seals. Recent information indicates that Oxfordian shaly limestones are also important source rocks.

  16. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  17. Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong

    1994-07-01

    A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block

  18. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  19. New view on tectonic structure of Siberian Sector of the Amerasian Basin (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Vinokurov, Yu. I.

    2014-05-01

    In 2012, JSC Sevmorgeo with assistance of several research institutions of Federal Agency of Mineral Resources (Rosnedra) and Ministry of Defense carried out a unique set of offshore seismic and geological studies in the Mendeleev Rise area and adjacent areas of the Amerasia Basin. Two specially re-equipped icebreakers ("Kapitan Dranitsin" and "Dixon") were used in this campaign. The main results of the expedition were 5315 km of multichannel seismic profiles both with long and short streamers (4500 m and 600 m, respectively), 480 km long refraction profile crossing Mendeleev Rise. Seismic acquisition with short streamers was accompanied by deployment of sonobuoys. Geological studies included deep-water drilling and sea-bottom sampling by dredge, gravity corer, grab and by specially equipped research submarine. The newly acquired geological and geophysical data allowed for the following conclusions: 1. The Mendeleev Rise, the adjacent Lomonosov Ridge and Chukchi Plateau are the direct continuations of the East Siberian Sea tectonic structures. It is confirmed by direct tracking of some morphostructures, faults, gravity and magnetic anomalies from the shelf to deep-water highs. 2. The East Arctic Shelf and the adjacent Arctic Ocean represent offshore extent of the Verkhoyansk-Kolyma crustal domain constituted by a mosaic of separate blocks of the Pre-Cambrian basement (Okhotsk, Omulevka, Omolon, Wrangel-Gerald and Central Arctic) and Late Mesozoic orogens. This area differs significantly from the Ellesmerian crustal domain located to the east (including the Northwind Ridge, which coincides with inferred eastern boundary of the Mesozoides). The Central Arctic domain includes structures of the Mendeleev Ridge and the Chukchi Plateau. Western boundary of this block is inferred along the Spur of Geophysicists, which separates the Podvodnikov Basin into two unequal parts with different basement structure. From the south, southwest and west, the Central Arctic domain is

  20. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  1. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  2. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2004-05-01

    Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S-C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.

  3. Ordovician klippen structures of the Sierra de Umango: New insights on Tectonic evolution of the Western Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Meira, Vinícius Tieppo; Campos Neto, Mario da Costa; González, Pablo Diego; Stipp Basei, Miguel Ângelo; Varela, Ricardo

    2012-08-01

    The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas. This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of S1 preserved as internal foliation within interkinematic staurolite porphyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an S2 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The

  4. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  5. Broadband regional waveform modeling to investigate crustal structure and tectonics of the central Andes

    NASA Astrophysics Data System (ADS)

    Swenson, Jennifer Lyn

    We use broadband regional waveform modeling of earthquakes in the central Andes to determine seismic properties of the Altiplano crust. Properties of the shear-coupled P-wavetrain (SPL ) from intermediate-depth events provide particularly important information about the structure of the crust. We utilize broadband seismic data recorded at the BANJO and SEDA stations, and synthetic seismograms computed with a reflectivity technique to study the sensitivity of SPL to crustal and upper mantle parameters at regional distances. We find that the long-period SPL-wavetrain is most sensitive to crustal and mantle Poisson's ratios, average crustal velocity, and crustal thickness. A comprehensive grid search method developed to investigate these four parameters suggests that although trade-offs exist between model parameters, models of the Altiplano which provide the best fit between the data and synthetic seismograms are characterized by low Poisson's ratios, low average crustal velocity and thick crust. We apply our grid search technique and sensitivity analysis results to model the full waveforms from 6 intermediate-depth and 2 shallow-focus earthquakes recorded at regional distances by BANJO and SEDA stations. Results suggest that the Altiplano crust is much thicker (55--65 km) and slower (5.75--6.25 km/s) than global average values. Low crustal and mantle Poisson's ratios together with the lack of evidence for a high-velocity lower crust suggests a bulk felsic crustal composition, resulting in an overall weak crust. Our results favor a model of crustal thickening involving large-scale tectonic shortening of a predominantly felsic crust. To better understand the mechanics of earthquake rupture along the South American subduction zone, we have analyzed broadband teleseismic P-waves and utilize single- and multi-station inversion techniques to constrain source characteristics for the 12 November 1996 Peru subduction zone earthquake. Aftershock locations, intensity reports

  6. Polygonal impact craters on Dione: Evidence for tectonic structures outside the wispy terrain

    NASA Astrophysics Data System (ADS)

    Beddingfield, Chloe B.; Burr, Devon M.; Tran, Liem T.

    2016-08-01

    Plan-view impact crater geometries can be indicative of pre-impact structures within the target material. Impact events that occur on a pre-fractured surface generate craters exhibiting one or more straight rim segments, termed polygonal impact craters (PICs). Impact craters that appear to be PICs are abundant on the surface of Saturn's icy satellite, Dione, both within the wispy terrain, a region with large visible fractures, and also outside the wispy terrain (the 'non-wispy terrain'), where less evidence for fracturing has been observed. In the non-wispy terrain, subtle lineaments are hypothesized to be NE-SW, NW-SE, and E-W trending fractures, suggesting that tectonism may have been an important process in this terrain. Results of previous studies have shown that PIC straight rim segment azimuths ('PIC azimuths') commonly parallel pre-impact fracture azimuths, although disagreements about this relationship exist in the literature. We investigated the hypothesis that fractures, either subtle or nonvisible with available spacecraft images, are present within Dione's non-wispy terrain. Our first step was to assess the relationship between PICs and pre-existing fracture azimuths in the wispy terrain. Our results from this initial assessment show a parallel relationship between PIC azimuths and fracture azimuths. Based on this correlation in the wispy terrain, we find it likely that this relationship would hold true in the non-wispy terrain if PICs are present. We tested for PICs using crater rim azimuth data collected from randomly distributed study locations throughout the non-wispy terrain. From these data, we identified widespread PICs in this terrain, which supports the hypothesis that subtle fractures are also present. Analysis of the PIC azimuth data yield a pattern for these inferred fractures across Dione's surface that is consistent with the hypothesized global deformation that would result from a combination of satellite despinning and volume expansion

  7. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  8. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network

    NASA Astrophysics Data System (ADS)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.

    2009-02-01

    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  9. Structural-tectonic controls and geomorphology of the karst corridors in alpine limestone ridges: Southern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Tîrlă, Laura; Vijulie, Iuliana

    2013-09-01

    The relationship between surface karst development and the geological frame is widely acknowledged in the study of karst landforms. It is of considerable interest especially in alpine environments (e.g. Alpine-Dinaric-Carpathian orogenic system). Karst corridors are generally known as kluftkarren or bogaz and form by solution of limestone along a lithoclase network. The Vânturariţa-Buila Massif (Carpathians, Romania) is a typical alpine karst ridge and a former carbonate platform of Upper Jurassic age in which geologically-controlled karst features have been developing over a geologic timescale. Field research and mapping were useful in extracting geologic features. Joint- and structure-controlled karst corridors are common in the upper section of the mountain, between 1600 and 1850 m. First, a complex system of lithoclases (fissures, joints and faults) occurred; then, surface runoff or meltwater solutionally enlarged them. Tension fractures strike in a northeast-southwest direction, parallel to homoclinal limestone layers. The exposed fault walls often preserve draperies and speleothem remnants. Further, statistical analysis of joint, fault and bogaz orientations has shown the close relation between the three datasets, and morphometric analysis centered only on the karst corridor system. Results derived from the statistical analysis of orientation data show that there is a strong preferred orientation of the bogaz or bogaz-like forms along the directional faults and that they commonly develop in extensional (tectonically active) environments. Additional features typical to fluviokarst are also present — subterranean connections between the karst corridors and the headwalls of the pocket valleys, generating headward recession both by continuous sapping of karst springs at the headwall base followed by collapses. An extremely poor surface drainage network developed in the upper pavement facing southeast, compared to that on the middle and lower sides.

  10. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  11. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a

  12. Importance of active tectonics during karst formation. A Middle Eocene to Pleistocene example of the Lina Moutains (Irian Jaya, Indonesia)

    NASA Astrophysics Data System (ADS)

    Thery, J.-M.; Pubellier, M.; Thery, B.; Butterlin, J.; Blondeau, A.; Adams, C. G.

    1999-05-01

    The Lina Moutains show a typical example of karst formation associated to recent and active tectonics. The limestone samples were collected from giant potholes present beneath the heavy rainforest, during speleological expeditions to the Bird's Head of Irian-Jaya. Micropalaeontological data allow us to give a Middle Pleistocene age for the most recent karst formation. A detailed stratigraphy between the Upper Lutetian and the Middle Pleistocene was recorded, with tectonic events during the Oligocene and Pleistocene. The edge of the resurgence layer was also dated. We also conclude the probable existence of a subterraneous network downhill of the karst within the most recent levels of the Kais Limestone formation. We replace this formation within the tectonic evolution of this area between the Eocene and the Middle Pleistocene, in conjunction with the oblique convergence of the Pacific plate carrying volcanic arc fragments and the Australian margin, which resulted in folding, normal faulting associated with local extension, and wrench motion, which are settings capable of creating uplift of the carbonated platform.

  13. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio

  14. Modeling, visualizing, and understanding complex tectonic structures on the surface and in the sub-surface

    NASA Astrophysics Data System (ADS)

    Wild, Steven

    2012-01-01

    Plate tectonics is a relatively new theory with many details of plate dynamics which remain to be worked out. Moving plates can interact by divergence, lateral sliding, convergence, or collision. At a convergent plate boundary, a lithospheric slab of oceanic crust and upper mantle is subducted at a trench and dips down under a magmatic arc — either oceanic or continental. Textbooks show a static view of convergent boundaries but plate dynamics require that subduction zones and magmatic arcs must migrate with time. Therefore I develop animated models to help convey this motion. Also, convergent plate boundaries cannot continue along strike or down dip indefinitely without changing. Subduction zones change orientation and eventually terminate. They may bend and shear or tear and open a window for asthenospheric flow. Two different convergent plate boundaries are the primary focus of my studies: the Tonga subduction zone where the Pacific plate moving beneath an island arc is torn along the Samoan Island Archipelago, and the Andean subduction zone in central South America where the Nazca plate moves beneath a continental arc. I choose these zones because they exhibit tears or shears, where subduction stops, or changes dip suddenly. To examine these features I use several modeling and visualization techniques. COLLADA (COLLabrative Design Activity) models in Google Earth and Google Earth Application Programming Interface (API) are used for visualizing and teaching of plate boundary systems. The testing of COLLADA models for geoscience concepts showed positive learning gains. Kinematic models are made to study strain rates and possible methods of plate evolution. Dynamic COMSOL numerical models are created to probe temperature and flow fields in the subduction zone. Animated COLLADA models are designed for different models of subduction initiation and development for the Tonga trench for both research and educational purposes. The development of these models led to a

  15. Scattering and absorption mapping of tectonic and feeding structures under the pre-eruptive Mount St. Helens volcano.

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Calvet, Marie; Thomas, Christine

    2015-04-01

    Knowing how seismic waves lose their energy in space and frequency is both critical for understating volcanic structures and important to detect eventual changes in their seismic and volcanic activity. We measure both the peak-delay time and the coda quality factor on seismic envelopes recorded at Mount St. Helens volcano between 2000 and 2003, just before its 2004 explosive eruption. By the 2D mapping of these two frequency-dependent quantities we obtain S-wave scattering and absorption maps in the pre-eruptive phase of the volcano. We use a 2D K-means cluster analysis to highlight correlations in the frequency-dependent spatial patterns and interpret the results in terms of tectonic and feeding structures. The transition between the high-velocity and high-scattering Siletz terrane and the low-velocity and high-absorption Cascade arc crust is a persistent signature in the entire frequency range. At high frequencies, we observe strong correlation between high-scattering, high-absorption, and high P-wave heterogeneity (this last tomographically derived between depths of 0 and 10 km). In our interpretation, this correlation is a direct consequence of resonance effects, induced by the presence of melt and fluid inclusions as well as residuals of previous eruptions. The area of maximum heterogeneity is located south-south-west of the central crater: the region shows selective high absorption characteristics at 6 Hz only. If this supports the presence of a previously-inferred aseismic magma chamber intersecting the south-south-western flank of the volcano, the selectivity suggests a depth extension of the magma chamber lower than 1 km. The most important high-scattering and high-absorption signature at high frequencies remains a NNW-SSE suture crossing the volcanic cone and parallel to the St. Helens Seismic Zone. The trend confirms the persistent major role of the main direction of regional structural stress in the uprise of magma/fluid filled materials in the first

  16. Input of UAV, DTM photo-interpretation and SAR interferometry on active tectonics applied on the Southern Coastal Range (SE Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Magalhaes, Samuel; Serries, Gregory

    2016-04-01

    Taiwan is an excellent geomorphic laboratory where both extreme climatic events and high active tectonics compete. Moreover many Earth Sciences and Environmental data bases exist nowadays that help to better constrain both structural geology and active deformations. The latter unfortunately is still poorly known in the Cosatal Range of E.Taiwan in terms of geology due to access difficulties, high relief, paucity of roads, tropical vegetation and high climatic events (typhoons and heavy rainfall) and so on. Indirect methods such as photogrammetric survey using UAV's helps a lot to get high resolution topographic DEM and DTM, better than 10cm in planimetry, that helps a lot to get through careful photo-interpretation, a bird's eye view of the geology. Therefore we were able to much update the famous pre-existing geological maps (Wang and Chen, 1993). Moreover, by combining our high resolution topographic results with those of SAR interferometry (database of Champenois et al, EPSL, 2012), we were able to identify, characterise and quantify the differential active features toward the LOS of the Coastal Range (eastern Taiwan). In order to synthetise and to model the deformation of that famous place, we herein constructed more than 500 parallel projected profiles in order to locate, characterize and quantify the active tectonic features and compare them to the topography and the updated photo-interpreted geology (this work). We then were able to reconstruct the structural geometry of the Coastal Range and the Longitudinal Valley in SE Taiwan. Among our results, we reveal and prove : 1. the whole 2cm differential surrection of the Coastal Range ; 2. the differential displacement between both Central and Coastal Ranges ; 3. we explain the location of the Pinantashi river situated within the Lichi melange that correspond to the maximum surrection of the Coastal Range ; 4. we reveal the different units and their relative displacement within the Coastal Range itself ; 5. we

  17. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  18. Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro

    2017-04-01

    Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the

  19. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    ., Jolivet, L. & Speranza, F., (1998). The role of pre-existing thrust faults and topography on the styles of extension in the Gran Sasso range (central Italy). Tectonophysics 292, 229-254. Falcucci, E., Gori, S., Moro, M., Fubelli, G., Saroli, M., Chiarabba, C., & Galadini, F. (2015). Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy. Tectonophysics, 651, 186-198. Galadini, F. & Giuliani R. (1993), Role of the structural geology analysis in the recent tectonics studies: an example from an area located SW of the Gran Sasso (Central Italy). Ann. Geof., 36 (1), 287-292.

  20. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  1. Regional tectonic evaluation of the Tuscan Apenine, vulcanism, thermal anomalies and the relation to structural units

    NASA Technical Reports Server (NTRS)

    Bodechtel, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.

  2. Lithospheric structure and tectonics from seismic-refraction and other data

    SciTech Connect

    Fuis, G.S.; Mooney, W.D.

    1990-01-01

    The crust of much of California was formed at an Andean-type continental margin during the Mesozoic and early Cenozoic, and was modified by large strike-slip offsets along the San Andreas fault system during the late Cenozoic. Decoupling within the crust, as implied by present upper-crustal tectonic wedging in central California, and decoupling between the crust and mantle, as implied by subduction of lithospheric mantle in southern California, indicates that the San Andreas fault system must change with depth in its location and (or) style of deformation.

  3. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  4. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    NASA Astrophysics Data System (ADS)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  5. Postimpact deposition in the Chesapeake Bay impact structure: Variations in eustasy, compaction, sediment supply, and passive-aggressive tectonism

    USGS Publications Warehouse

    Kulpecz, A.A.; Miller, K.G.; Browning, J.V.; Edwards, L.E.; Powars, D.S.; McLaughlin, P.P.; Harris, A.D.; Feigenson, M.D.

    2009-01-01

    The Eyreville and Exmore, Virginia, core holes were drilled in the inner basin and annular trough, respectively, of the Chesapeake Bay impact structure, and they allow us to evaluate sequence deposition in an impact crater. We provide new high-resolution geochronologic (<1 Ma) and sequence-stratigraphic interpretations of the Exmore core, identify 12 definite (and four possible) postimpact depositional sequences, and present comparisons with similar results from Eyreville and other mid- Atlantic core holes. The concurrence of increases in ??18O with Chesapeake Bay impact structure sequence boundaries indicates a primary glacioeustatic control on deposition. However, regional comparisons show the differential preservation of sequences across the mid-Atlantic margin. We explain this distribution by the compaction of impactites, regional sediment-supply changes, and the differential movement of basement structures. Upper Eocene strata are thin or missing updip and around the crater, but they thicken into the inner basin (and offshore to the southeast) due to rapid crater infilling and concurrent impactite compaction. Oligocene sequences are generally thin and highly dissected throughout the mid-Atlantic region due to sediment starvation and tectonism, except in southeastern New Jersey. Regional tectonic uplift of the Norfolk Arch coupled with a southward decrease in sediment supply resulted in: (1) largely absent Lower Miocene sections around the Chesapeake Bay impact structure compared to thick sections in New Jersey and Delaware; (2) thick Middle Miocene sequences across the Delmarva Peninsula that thin south of the Chesapeake Bay impact structure; and (3) upper Middle Miocene sections that pinch out just north of the Chesapeake Bay impact structure. Conversely, the Upper Miocene-Pliocene section is thick across Virginia, but it is poorly represented in New Jersey because of regional variations in relative subsidence. ?? 2009 The Geological Society of America.

  6. Les manifestations tectoniques synsédimentaires associées à la compression éocène en Tunisie : implications paléogéographiques et structurales sur la marge Nord-AfricaineThe synsedimentary tectonic activity associated to Eocene shortening in Tunisia: implication in the palaeogeographic and structural evolution of the North African Margin

    NASA Astrophysics Data System (ADS)

    El Ghali, Abdessalem; Ben Ayed, Noureddine; Bobier, Claude; Zargouni, Fouad; Krima, Anis

    2003-09-01

    In central Tunisia, a synsedimentary tectonic episode has been pointed out through the tectonic movements affecting the Late Palaeocene-Early Eocene successions. This tectonic episode has controlled, to a large extent, the palaeogeographic setting of the area during that period and confirmed the important effect induced by the Pyrenean shortening phase on the edge of the African plate, which obviously has witnessed a common history with the southern part of the European plate. To cite this article: A. El Ghali et al., C. R. Geoscience 335 (2003).

  7. Crustal Structure at the North Eastern Tip of Rivera Plate, Nayarit- Marias Islands Region: Scenarios and Tectonic Implications. Tsujal Project

    NASA Astrophysics Data System (ADS)

    Danobeitia, J.; Bartolome, R.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Bandy, W. L.; Prada, M.; Cameselle, A. L.; Nunez, D.; Espindola, J. M.; Estrada, F.; Zamora, A.; Gomez, A.; Ortiz, M.

    2014-12-01

    A primarily analysis of marine geophysical data acquired aboard the RRS James Cook in the framework of the project "Characterization of seismic hazard and tsunami associated with cortical contact structure Rivera Jalisco Block Plate (TSUJAL)" is presented. This survey was held in the region of Nayarit-Tres Marias Islands between February and March 2014. The examination of data recorded by 16 OBS 's, deployed along 4 wide angle seismic profiles is presented, using an airgun-array seismic source of 6800 c.i., which allows sampling the crustal structure to the Moho. The profiles are located along the margin off the Marias Islands: a profile of over 200 km NNW-SSE direction and parallel to the western flank of the Islas Marias Islands and three orthogonal thereto. These perpendicular sections sample the lithosphere from the north of Maria Madre Island with a profile of 100 km length, across Maria Magdalena and Mari Cleofas Islands, with a profile of 50 km long, till south of Maria Cleofas with a profile of 100 km long. Coincident multichannel seismic profiles with refraction ones are also surveyed, although shooting with a source of 3,540 c. i., and acquired with a digital "streamer" of 6.0 km long. Simultaneously, multibeam, parametric and potential field data were recorded during seismic acquisition A first analysis shows an anomalously thickened crust in the western flank of the Marias Islands, as indicated by relatively short pre-critical distances of 30-35 km. While the moderate dip of 7 ° of the subduction of the Pacific oceanic plate favors somehow this effect, the existence of a remnant crustal fragment is also likely. Moreover, the images provided by the parametric sounding show abundant mass wasting deposits suggesting of recent active tectonics, possibly generated by earthquakes with moderate magnitude as those reported in the Marias Islands. This set of geophysical data, not only provide valuable information for the seismogenic characterization and

  8. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications

    NASA Astrophysics Data System (ADS)

    Li, Chun-Feng; Zhou, Zuyi; Li, Jiabiao; Hao, Hujun; Geng, Jianhua

    2007-03-01

    The northeastern part of the South China Sea is a special region in many aspects of its tectonics. Both recent drilling into the Mesozoic and new reflection seismic surveys in the area provide a huge amount of data, fostering new understanding of the continental margin basins and regional tectonic evolution. At least four half-grabens are developed within the Northern Depression of the Tainan Basin, and all are bounded on their southern edges by northwestward-dipping faults. One of the largest half-grabens is located immediately to the north of the Central Uplift and shows episodic uplift from the late Oligocene to late Miocene. Also during that period, the Central Uplift served in part as a material source to the Southern Depression of the Tainan Basin. The Southern Depression of the Tainan Basin is a trough structure with deep basement (up to 9 km below sealevel or 6 km beneath the sea bottom) and thick Cenozoic sedimentation (>6 km thick). Beneath the Southern Depression we identified a strong landward dipping reflector within the crustal layer that represents a significant crustal fault. This reflector coincides with a sharp boundary in crustal thicknesses and Moho depths. We show that the northeasternmost South China Sea basin, which may have undergone unique evolution since the late Mesozoic, is markedly different from the central South China Sea basin and the Huatung Basin, both geologically and geophysically. The Cenozoic evolution of the region was largely influenced by pre-existing weaknesses due to tectonic inheritance and transition. The South China Sea experienced multiple stages of Cenozoic extension.

  9. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  10. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  11. A comprehensive view of Late Quaternary fluvial sediments and stratal architecture in a tectonically active basin: Influence of eustasy, climate, and tectonics on the Bengal Basin and Brahmaputra River system

    NASA Astrophysics Data System (ADS)

    Sincavage, R.; Goodbred, S. L.; Williams, L. A.; Pickering, J.; Wilson, C.; Steckler, M. S.; Seeber, L.; Reitz, M. D.; Hossain, S.; Akhter, S. H.; Mondal, D. R.; Paola, C.

    2013-12-01

    More than 130 closely-spaced (~3-5 km) boreholes have been drilled along five transects in the upper Bengal Basin, providing the first detailed record of the stratigraphic architecture and provenance of the entire Late Quaternary fluviodeltaic sedimentary succession of the Ganges-Brahmaputra-Meghna Delta (GBMD). This effort is part of BanglaPIRE, an interdisciplinary, multi-institutional research effort aimed at unraveling the history and mechanisms of river-tectonic-basin interactions in the GBMD and Bengal basin, around which three tectonic plates converge. Following the Younger-Dryas, the onset of a strong summer monsoon coincident with continued eustatic sea-level rise initiated construction of the modern delta and rapid development of a thick (up to 80 m) succession of fluvial and deltaic sediments. These deposits illustrate several (3-4) avulsions and asymmetric occupations of the Brahmaputra River in the tectonically active Sylhet Basin. We hypothesize that the longer occupation periods (10 3 years) may be classified as major river avulsions driven by autogenic fluvial processes, whereas shorter occupation periods (10 2 years) reflect minor distributive events that may have been initiated by allogenic forcing via floods or earthquakes. Subsidence rates in Sylhet Basin, driven by an active foredeep, are relatively high (~5 mm/yr); however, the Brahmaputra River does not regularly migrate towards this side of the delta. Annual widespread flooding of Sylhet Basin may negate the potential topographic attraction for the system to be steered in this direction. Furthermore, a gentle westward topographic tilt of the active thrust front of the Tripura fold belt appears to have forced lateral steering of the Brahmaputra River and initiated erosion of a bench-cut terrace into an adjacent Pleistocene landform. Tectonic effects over longer timescales (10 3 years) are revealed by the presence of sediment with a unique provenance at the core of regional anticlines, which

  12. Edaphics, active tectonics and animal movements in the Kenyan Rift - implications for early human evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Owenga, Peter; Rucina, Stephen; King, Geoffrey C. P.

    2014-05-01

    The quality of soils (edaphics) and the associated vegetation strongly controls the health of grazing animals. Until now, this has hardly been appreciated by paleo-anthropologists who only take into account the availability of water and vegetation in landscape reconstruction attempts. A lack of understanding the importance of the edaphics of a region greatly limits interpretations of the relation between our ancestors and animals over the last few million years. If a region lacks vital trace elements then wild grazing and browsing animals will avoid it and go to considerable length and take major risks to seek out better pasture. As a consequence animals must move around the landscape at different times of the year. In complex landscapes, such as tectonically active rifts, hominins can use advanced group behaviour to gain strategic advantage for hunting. Our study in the southern Kenya rift in the Lake Magadi region shows that the edaphics and active rift structures play a key role in present day animal movements as well as the for the location of an early hominin site at Mt. Olorgesailie. We carried out field analysis based on studying the relationship between the geology and soil development as well as the tectonic geomorphology to identify 'good' and 'bad' regions both in terms of edaphics and accessibility for grazing animals. We further sampled different soils that developed on the volcanic bedrock and sediment sources of the region and interviewed the local Maasai shepherds to learn about present-day good and bad grazing sites. At the Olorgesailie site the rift valley floor is covered with flood trachytes; basalts only occur at Mt. Olorgesailie and farther east up the rift flank. The hominin site is located in lacustrine sediments at the southern edge of a playa that extends north and northwest of Mt. Olorgesailie. The lakebeds are now tilted and eroded by motion on two north-south striking faults. The lake was trapped by basalt flows from Mt. Olorgesailie

  13. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.; Müller, R. Dietmar; Seton, Maria

    2013-09-01

    The tectonic evolution of the circum-Arctic, including the northern Pacific, Siberian and North American margins, since the Jurassic has been punctuated by the opening and closing of ocean basins, the accretion of autochthonous and allochthonous terranes and associated deformation. This complexity is expressed in the uncertainty of plate tectonic models of the region, with the time-dependent configurations and kinematic history remaining poorly understood. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins have implications for mantle structure, which can be used as an additional constraint for refining and evaluating plate boundary models. Here we integrate surface geology and geophysics with mantle tomography models to generate a digital set of tectonic blocks and plates as well as topologically closed plate boundaries with time-dependent rotational histories for the circum-Arctic. We find that subducted slabs inferred from seismic velocity anomalies from global P and S wave tomography models can be linked to various episodes of Arctic subduction since the Jurassic, in particular to the destruction of the South Anuyi Ocean. We present a refined model for the opening of the Amerasia Basin incorporating seafloor spreading between at least 142.5 and 120 Ma, a "windshield" rotation for the Canada Basin, and opening orthogonal to the Lomonosov Ridge for the northern Makarov and Podvodnikov basins. We also present a refined pre-accretionary model for the Wrangellia Superterrane, imposing a subduction polarity reversal in the early Jurassic before accretion to North America at 140 Ma. Our model accounts for the late Palaeozoic to early Mesozoic opening and closure of the Cache Creek Ocean, reconstructed between the Wrangellia Superterrane and Yukon-Tanana Terrane. We suggest that a triple junction may also explain the Mid-Palaeozoic opening of the Slide Mountain, Oimyakon and South Anuyi oceans. Our

  14. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  15. New data on tectonics of Mendeleev Ridge and adjacent geological structures

    NASA Astrophysics Data System (ADS)

    Chernykh, A. A.; Astafurova, E. G.; Glebovsky, V. Yu.; Korneva, M. S.; Egorova, A. V.; Red'ko, A. G.

    2016-09-01

    The comprehensive analysis of potential field data and recent seismic data revealed two systems of fractures bounding horsts and grabens in terms of the Mendeleev Ridge. The northern part of the ridge is marked by development of pull-apart structures indicating the former existence of oblique extension settings. The area between Mendeleev and Alpha ridges is occupied by a wide NW‒SE-extending sinistral strike-slip zone. It is concluded that these ridges are of continental origin representing former parts of Arctida (Hyperborea) in the pre-Cretaceous time. The ridges were separated and their crust significantly altered during Cretaceous tectono-magmatic activation in the region.

  16. Upper Paleozoic tectonics in the Tien Shan (Central Asian Orogenic Belt): insight from new structural data (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Jourdon, Anthony; Petit, Carole; Rolland, Yann; Loury, Chloé; Bellahsen, Nicolas; Guillot, Stéphane; Ganino, Clément

    2016-04-01

    Due to successive block accretions, the polarity of structures and tectonic evolution of the Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are several conflicting models about the polarity of subduction during the Paleozoic, the number of microplates and oceanic basins and the timing of tectonic events in Kyrgyz and Chinese Tien Shan. In this study, we propose new structural maps and cross-sections of Middle and South Kyrgyz Tien Shan (MTS and STS respectively). These cross-sections highlight an overall dextral strike-slip shear zone in the MTS and a north verging structure related to south-dipping subduction in the STS. These structures are Carboniferous in age and sealed by Mesozoic and Cenozoic deposits. In detail, the STS exhibits two deformation phases. The first one is characterized by coeval top-to-the north thrusting and top-to-the-South normal shearing at the boundaries of large continental unit that underwent High-Pressure (Eclogite facies) metamorphism. We ascribe this phase to the exhumation of underthrusted passive margin units of the MTS. The second one corresponds to a top to the North nappe stacking that we link to the last collisional events between the MTS and the Tarim block. Later on, during the Late Carboniferous, a major deformation stage is characterized by the deformation of the MTS and its thrusting over the NTS. This deformation occurred on a large dextral shear zone between the NTS and the MTS known as Song-Kul Zone or Nikolaiev Line as a "side effect" of the Tarim/MTS collision. Based on these observations, we propose a new interpretation of the tectonic evolution of the CAOB. The resulting model comprises the underthrusting of the MTS-Kazakh platform beneath the Tarim and its exhumation followed by the folding, shortening and thickening of the internal metamorphic units during the last collisional events which partitioned the deformation between the STS and the MTS. Finally, the docking of the large Tarim Craton

  17. The role of basement tectonics in the control of sedimentary facies, structural patterns and salt plug emplacements in the Zagros fold belt of southwest Iran

    NASA Astrophysics Data System (ADS)

    McQuillan, Harry

    Extensive field observations over a large tract of continuous rock outcrops in the Zagros Mountain Range of southwest Iran have yielded a wealth of stratigraphic and structural detail. In the region structural anomalies are frequently associated with similar facies distribution patterns. In the eastern portion of the region emergent salt plugs of infra-Cambrian age exhibit the same alignment patterns. Such trends bear no apparent genetic relationship to the Tertiary folding responsible for the present fold belt grain of the Zagros Range but rather indicate affinity with linear basement features which are readily observable on Landsat imagery and air photographs. Superimposed on the eastern region's mode of facies trends and structure are localized variations which are directly attributed to pulses of salt diapiric activity. Thus stratigraphic data acquired from deep sections associated with salt domes can lead to erroneous overviews of regional facies distributions while anomalous dome-shaped structural features associated with elongate fold, so common to the fold belt, can only be attributed to near surface diapiric structures. The recognition of features related to basement tectonics and the realization of their implication in the control and modification of geological processes is an important adjunct to the search for hydrocarbon accumulations in the region. Indeed it can be shown that renewed movements on basement trends directly affect ooil production patterns as a consequence of the enhancement of fracture porosity and permeability in Tertiary carbonate reservoir structures. These constitute some of the world's largest oil-producing fields.

  18. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  19. The impact of salt tectonics on supra-salt (Lago Mare?) deposits and on the structural evolution of the Cyprus-Eratosthenes collision zone

    NASA Astrophysics Data System (ADS)

    Reiche, Sönke; Hübscher, Christian; Ehrhardt, Axel

    2015-04-01

    Averagely 1.5 km thick Messinian evaporites laterally continue from the Levant Basin, easternmost Mediterranean Sea, into the collision zone between Cyprus and Eratosthenes Seamount where incipient continent-continent-collision is believed to occur. In this study, the impact of Messinian evaporites on the structural evolution of the collision zone is investigated for the first time based on a comprehensive set of seismic reflection profiles. Results show that the collision zone may be subdivided into an eastern and a western domain. In the eastern part, bordered by Eratosthenes Seamount and the Hecataeus Rise, compressionally thickened autochthonous salt is observed. Sub- and supra-salt deposits within this area appear to be in the stage of active accretion. Further west, between Cyprus and Eratosthenes Seamount strongly deformed allochthonous salt has evidently started to advance across sediments of post-Messinian age. In this domain, previously active sediment accretion at the Cyprus margin has now become inactive and shortening is largely accommodated at the leading edge of the allochthonous salt sheet. Such observations bear important implications for the structural interrelation between salt tectonics and the evolution of a young collision zone. On top of highly deformed mobile Messinian evaporites, up to 700 m thick late Messinian supra-salt deposits are mapped within the western part of the Cyprus - Eratosthenes collision zone. Their uppermost 200 m were drilled in the course of ODP Leg 160 (Site 968) and interpreted as Lago Mare sediments, deposited during the final stage of the Messinian Salinity Crisis (Robertson, 1998). These sediments occupy small sub-basins flanked by salt diapirs, indicating a salt-tectonic control on late Messinian sediment deposition. Distribution of these sediments may have further been controlled by sea-level, inferred from rapid eastward thinning and pinchout of Messinian supra-salt deposits towards the Levant Basin

  20. Tectonic investigation of Central Anatolia, Turkey, using geophysical data

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila

    2009-07-01

    Central Anatolia in Turkey includes a number of internal basins and quite complex geology, but only three major faults can be observed on the surface. There are limited amount of investigations on the tectonic development, structure and history of this area. In this study, tectonic model of the Central Anatolia was investigated using geophysical data and it was compared with recently suggested tectonic models. Existence of two strike-slip faults that have orientations similar to the North Anatolian and East Anatolian Faults in the triple-junction area around the Bingol-Karliova region (eastern Turkey), led some geoscientists to consider the probability of another tectonic escape model in Central Anatolia. Strike-slip characteristics and slip directions of the Sereflikochisar-Aksaray and Ecemis Faults, and the geographical proximity of them are main reasons to consider this model. In this study, the tectonic escape model was investigated and criticized in detail using regional aeromagnetic, gravity, seismic and seismological data. Tectonic developments, faults and their relevance in tectonic setting of the Tuzgolu Basin, together with the comparison of the tectonic escape, and most recent wrench tectonic issues are comprehensively discussed. According to results of this study, existence of tectonic escape between the Sereflikochisar-Aksaray and Ecemis Faults, and geological reasons behind the model are found contradictory requiring geological and geophysical proofs. Moreover, strike direction of the Sereflikochisar-Aksaray Fault is also controversial. Instead of this, a recent model, the regional wrench tectonics appears more reasonable for Central Anatolia that was also supported by the GPS measurements, previous paleomagnetic studies and some recent papers. Geophysical investigation results pointed out that the counter-clockwise rotational movement of the Kirsehir Block to the east of Tuzgolu Basin has been driven by the Kirikkale-Erbaa and Sereflikochisar

  1. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  2. Molecular tectonics: formation and structural studies on a 2-D directional coordination network based on a non-centric metacyclophane based tecton and zinc cation.

    PubMed

    Ehrhart, Jérôme; Planeix, Jean-Marc; Kyritsakas-Gruber, Nathalie; Hosseini, Mir Wais

    2010-02-28

    The combination of tectons based on the [1111]metacyclophane backbone blocked the 1,3-alternate conformation bearing two imidazoly or pyrazolyl groups located on the same side with metal halide complexes leads to the formation of either discrete metallmacrobicycles or infinite 1-D coordination networks. The same backbone bearing two sets of two different coordinating poles composed of two pyridyl and two pyrazolyl units, owing to its non-centrosymmetric nature, forms a directional 2-D network packed in an anti-parallel fashion.

  3. Volcano-tectonic evolution of the Western Afar margin: new geochronological and structural data

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Ayalew, Dereje; Denèle, Yoann

    2013-04-01

    The rift system in NW-Afar (Ethiopia) is part of the Nubia-Somalia-Arabia triple junction located above the Afar hot spot active mainly since Oligocene times. It represents a unique natural laboratory for field study of superficial and deep lithospheric structure and process interactions during the transition between rifting and oceanic spreading in magma-rich setting. Most past field studies in Afar focused on the recognition and correlation of Afar's volcano-stratigraphic record and led to models of margin development that stress out the major trends of volcanic structures and give accordingly the following chronological "big picture". (1) 2km-thick flood basalt province emplaced at ca. 30 Ma due to hot spot activity over Jurassic to Permian sedimentary rocks and basement. (2) Rifting started around 25-20 Ma with half graben and great escarpment formation along with localization of volcanic activity in highly faulted narrower basins followed by lithospheric flexure. (3) The deformation migrated toward the rift centre with the emplacement around 8-5 Ma of bi-modal volcanics later faulted. (4) A second pulse of flood-basalt, the so-called Stratoid series, started at 4 Ma, until 1 Ma. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the marginal graben to the Manda-Hararo active rift axis. In the newly explored Sullu Adu ranges, which were previously thought to be made of 8 Ma Dahla Basalts Fm., we mapped normal faults arrays affecting a complex magmatic series. We dated highly tilted 30 Ma pre-rift basic and silicic volcanic rocks that are unconformably overlain by syn-rift volcanics (25 to 8 Ma). This pattern is in some places either masked by unconformable thick stratoid cover or strongly eroded by dense river drainage. However, it is preserved enough to suggest a lower-than-expected extension ratio and/or the presence of major normal faults controlling seaward-dipping reflectors (SDR) emplacement

  4. Geometry, thermal structure and kinematics of the metamorphic dome of Ikaria (eastern Cyclades, Greece): implication for Aegean tectonics

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Laurent, Valentin; Augier, Romain; Jolivet, Laurent; Lahfid, Abdeltif; Arbaret, Laurent; Rabillard, Aurélien

    2014-05-01

    The Aegean domain has been characterized since the Oligocene by extensional tectonics caused by the southward retreat of the African slab subducting beneath Eurasia. Structures and associated kinematics relative to this extensional tectonics are well constrained in the western Cyclades and the Menderes massif of western Turkey. Major extensional detachments such as the North Cycladic Detachment System (NCDS) or the Simav Detachment have accommodated the exhumation of a series of metamorphic core complexes (MCC) from Andros-Tinos-Mykonos in the west to the northern Menderes massif in the east. However, the transition between the NCDS and the Simav Detachment is currently not understood. This transition is located above a large-scale tear in the Aegean slab and its effects on the kinematics of deformation and P-T-t evolution of the overlying thinned crust are not known. The geology of Ikaria Island, located in this region, remains poorly known and the few existing studies are strikingly conflicting. This work attempts to clarify the geology of Ikaria by a new geological mapping and structural field study coupled with a thermometric study by Raman spectrometry of carbonaceous material (RSCM). Foliation over the whole island defines a structural dome, lately intruded by intrusive granitic bodies. Lineation shows a ca. N-S ductile stretching associated with an overall top-to-the-North sense of shear. Final exhumation of the dome was thus completed by a system of two top-to-the-North detachments, operating in the ductile and then the brittle fields. The proposed tectono-metamorphic evolution of the dome is consistent with the evolution of the northern Aegean area, suggesting that Ikaria belongs to the Aegean MCC and that the NCDS continues eastward. Besides, the distribution of RSCM temperatures within the dome and the presence of migmatites in the western part of the island comply with the description of migmatite-cored MCC such as Naxos or Mykonos. A better

  5. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  6. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-05-17

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  7. Precise Landslide Displacement Time Series from Continuous GPS Observations in Tectonically Active and Cold Regions: A Case Study in Alaska

    NASA Astrophysics Data System (ADS)

    Cuddus, Y.; Wang, G.

    2014-12-01

    Over the past 15 years, Global Positioning System (GPS) has been frequently used as a scientific tool to detect potential earth mass movements and to track creeping landslides. In this study, we investigated four-years of continuous GPS data (September 2006-July 2010) recorded at a landslide site in Alaska. This GPS station (AC55) was installed on an un-identified creeping site by the Plate Boundary Observatory (PBO) project, which was funded by the U.S. National Science Foundation. The landslide moves with a steady horizontal velocity of 5.5 cm/year toward NEE, and had a subsidence rate of 2.6 cm/year. There was a considerable correlation between annual snow loading and melting cycles and seasonal variations of the landslide displacements. The seasonal movements vary year to year with an average peak-to-peak amplitude of 1.5 cm and 1.0 cm in horizontal and vertical directions, respectively. This study addresses three challenging issues in applying GPS for landslide monitoring in tectonically active and cold regions. The three challenges include (1) detecting GPS-derived positions that could be contaminated by the snow and ice accumulated on GPS antennas during cold seasons, (2) establishing a precise local reference frame and assessing its accuracy, and (3) excluding local seasonal ground motions from GPS-derived landslide displacements. The methods introduced in this study will be useful for GPS landslide monitoring in other tectonically active and/or cold regions.

  8. Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2012-07-01

    The Noakoh anticline is located in Kermanshah province and is part of the Simply Folded Belt of Zagros. Boundaries of 97 triangular facets and 67 wine-glass (W-G) valleys, which formed on anticline limbs, were delineated using Quickbird satellite imagery. The strata dip (D), area (A), base length (BL), topographic slope (S) of facets, the maximum width (M), outlet width (O) and ratio of maximum width to outlet width (W index) of W-G valleys were analysed in detail. Noakoh anticline was subdivided into 9 tectonic zones on the basis of dip, topographic slopes and width of limbs. Results show that there are strong positive correlations between means of D-BL and S-BL pairs. Poor positive correlations exist between means of D-A and S-A pairs. Among W-G valley metrics, the W index has strong relations with D and S parameters. Based on the results, steep facets with long bases and well developed W-G valleys with narrow outlets and wide upper parts are associated with more rotated limbs having steep slopes. Facets on the northeastern slope have more forest cover, micro-organism activity, karstic features and soil cover, whereas facets on relatively drier southwestern slope are characterized by physical weathering processes and minor karstic landforms. This study demonstrates that, apart from tectonic activity as a major control on the morphometry of facets and valleys, climate and slope aspect have also acted as secondary factors on the development of the studied landforms.

  9. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  10. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  11. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  12. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Erlström, M.; Thomas, S. A.; Deeks, N.; Sivhed, U.

    1997-04-01

    Southernmost Sweden, Bornholm and the surrounding Baltic Sea region are located on a large-scale releasing bend in the dextral strike-slip system of the Tornquist Zone, with its resulting pull-apart basins. The well constrained geology of Scania and Bornholm has been combined with detailed on- and offshore borehole data and three proprietary marine seismic surveys. This in conjunction with supplementary BABEL deep seismic reflection findings allows a combined 3D interpretation of sediment/structure interactions. As a result, a regional interpretation has emerged which gives a new understanding of the interplay between structural movement on a complex strike-slip fault system (Tornquist Zone) and its intrazonal depressions (Vomb Trough and Colonus Shale Trough) as well as the sedimentation history of associated areas of sediment accumulation (Rønne and Arnager Grabens, Höllviken Halfgraben, Hanö Bay Basin and Skurup Platform). Detailed sequential litho- and seismo-stratigraphic descriptions have been possible by combination of the various data sets. This resulted in the clarification or recognition of previously unknown structural limits to sub-basins and highs in the study area. A 3D chronological (4D) model for the development of the region is proposed. This model takes into account the long-lived structural history combining elements of strike-slip, extension and inversion tectonics. The deep-seated faulting controlling these structures is integrated with the deep structure as revealed by the BABEL line in this area.

  13. New multi-beam bathymetric map of the Ionian Sea (Central Mediterranean): Evidence for active sedimentary and morpho-tectonic processes along the Africa-Eurasia plate boundary

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Kopp, H.; Krastel, S.; Bohrmann, G.; Garlan, T.; Zaragosi, S.; Klaucke, I.; Wintersteller, P.; Loubrieu, B.; Le Faou, Y.; San Pedro, L.; Dominguez, S.; Rovere, M.; Mercier De Lepinay, B. F.

    2015-12-01

    A combined dataset of multi-beam bathymetry, based on 5 recent marine geophysical surveys since 2010 as well as a compilation of earlier surveys, now spans the vast majority of the Ionian Sea and the active margin of East Sicily and Calabria. (The new surveys are: R/V Meteor cruise 86, 2010 PI - S. Krastel; MocoSed R/V PourquoiPas 2012 PI - T. Garlan; Circee R/V Suroit 2013 PI - M.-A. Gutscher; R/V Meteor cruise 111, 2014 PI's - H. Kopp, M.-A. Gutscher; R/V Meteor cruise 112, 2014 PI - G. Bohrmann). This new compilation of mostly unpublished bathymetric data is presented as a 2 arc-sec (60m) grid and reveals fine-scale structures on the seafloor in unprecedented detail. These include the deeply incised Malta-Hyblean Escarpment, numerous submarine canyons, broad regions of relatively flat seafloor dominated by fields of sediment waves, the gently undulating anticlinal fold-and-thrust belts of two accretionary wedge complexes related to the Hellenic subduction (W Mediterranean ridge) and to the Calabrian arc. These accretionary wedges intersect and overlap and define two of the three sides of the triangular Ionian abyssal plain. The internal structure of these morpho-tectonic provinces as well as the transition zones between them is also imaged by high-resolution 72-channel seismic reflection profiles. Together these data offer new insights into the interaction and competition between active sedimentary and tectonic processes shaping this part of the Central Mediterranean. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).

  14. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  15. Using Earthscope data to separate the influences of inherited lithospheric structures and more recent tectonics in driving the dynamics of the western United States

    NASA Astrophysics Data System (ADS)

    Gilbert, H. J.; Flesch, L. M.

    2009-12-01

    Geodynamic models of continental scale deformation are highly dependent on the assumed model parameters. Here we utilize crustal structure determined using EarthScope data from the Transportable Array data and previously deployed seismic stations in the western United States to construct forward dynamic models to determine the role played by previous tectonic events in driving present-day surface motions. We stack receiver functions in common conversion point bins of variable diameter to constrain crustal structure. With this method smaller scale features can be resolved in regions of dense sampling while sufficient sampling in areas with sparse coverage comes from averaging over larger bins. This procedure produces a detailed image the crust that covers the tectonically active portion of the western United States. The general trends in structure follow ancient structural boundaries with the Archean Wyoming Province possessing crust near 40 km thick. The crust within the Snake River Plains however thickens relative to the surrounding Archean crust to more than 45 km. The Proterozoic age crust in the Yavapai Province reaches more than 50 km in some locations. The increased thickness of this crust may have resulted from events that occurred during the Proterozic. However, much of the thicker crust within this province also corresponds to the locations of Laramide uplifts, suggesting that the Proterozic lithosphere may be weaker and more readily deform during episodes of compression. Further to the south, the Mazatzal Province possesses thinner crust near 30 km. Crustal thicknesses vary from more than 50 km in the Rocky Mountains to less than 30 km in the southern Basin and Range. Terrain boundaries appear to be primarily responsible for trends in crustal structure, which have then been overprinted by Cenozoic extension and volcanism that thinned the crust just as Laramide uplifts correlate with areas of thickened crust. These crustal thicknesses serve as an input to

  16. Middle-Late Eocene structure of the southern Levant continental margin — Tectonic motion versus global sea-level change

    NASA Astrophysics Data System (ADS)

    Segev, Amit; Schattner, Uri; Lyakhovsky, Vladimir

    2011-03-01

    During the Paleogene greenhouse episode Earth experienced the warmest period of the Cenozoic while global sea level rose by more than 100 m. However, geological evidence from the Levant margin, northwestern Arabian plate, indicates that throughout this period seabed deepening exceeded 1000 m. Lithology from Israel, Syria, Lebanon and Jordan is mainly pelagic and neritic, interfered by occasional fossil sub-marine slumps. In order to understand this dissimilarity we quantify the vertical tectonic motion of the Levant continental margin through the Paleogene. The margin began to take shape during the Late Permian and it was reactivated during the Oligocene. Based on information from outcrops, drillholes, seismic reflection and refraction, gravity, and previous publications, a multi-layered model of the Levant lithosphere was established. Layers include the Moho, top of the crystalline basement and covering sediments up to the Late Eocene. The model was restored horizontally by 100 km along the younger Dead Sea transform. Assuming local isostatic compensation, vertical restoration yielded the paleo-bathymetry which prevailed across northwestern Arabia during the Middle-Late Eocene. Results show that following the margin subsidence the Cretaceous Levantine platform became ramp shaped during the Eocene. Most parts of the central Levant were submerged under ~ 200 to ~ 1800 m of water, while the paleo-bathymetric gradients ranged from ~ 2° at the shelf to ~ 6° at the slope. The apparent dissimilarity between sea level and our tectonic-based calculations is up to an order of magnitude. These differences may be resolved by accounting for vertical tectonic motions and sediment supply rates. Our results stress the importance of the presented crustal structure. As opposed to the backstripping procedure, the structural map of the top Eocene interface was constructed upwards from the well established top Turonian (Judea Group) interface since only scarce and sporadic outcrops

  17. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  18. Tectonics of the circum-Troodos sedimentary cover of Cyprus, from rock magnetic and structural observations

    NASA Astrophysics Data System (ADS)

    Lagroix, France; Borradaile, Graham J.

    2000-04-01

    The calcareous sedimentary cover of the Troodos Ophiolite Complex dips gently away from the Troodos Complex. It has rare, usually open folds and, locally, stylolitic cleavage ( S1). Stylolitic cleavage is ˜50% more effective than primary bedding-stylolites in removing matrix and the variation in the S1 vergence directions are compatible with gravitational sliding radially away from the Troodos range and into sedimentary basins. Two different types of magnetic fabric, anisotropy of magnetic susceptibility (AMS) and anisotropy anhysteretic remanence (AARM), reveal the sequence of preferred orientations of different minerals, and the vergence of their magnetic foliations with respect to bedding reveals the sense of over-shearing of the stratigraphic sequence. AMS defines crystallographic alignments of clay minerals and dimensional alignments of magnetite in the limestones. AARM isolates the preferred dimensional orientation of magnetite. Although traces of magnetite dominate the bulk susceptibility, its anisotropy is low in comparison with phyllosilicates so that AMS essentially records the clay-fabric. Throughout the study area, AMS foliation indicates S-vergence and AMS lineation indicates N-S extension. AMS foliation-vergence indicates shearing of the entire sedimentary cover southward from Troodos. This motion is attributed to gravity sliding controlled by regional uplift to the north. In contrast, AARM foliation indicates a subsequent ESE vergence due to later WNW-ESE extension. The NNE, AARM lineation is a composite of bedding and tectonic fabric contributions that do not directly yield a faithful extension direction. The shapes of the magnetic fabrics indicate that AMS (clay) fabrics have a broad range of shapes about the neutral ellipsoid shape, whereas AARM (magnetite) fabrics are bimodal, with equally developed bedding-oblate and tectonic linear-planar ( L= S) components. Hysteresis properties, plotted on a new three-dimensional diagram, show clearly that

  19. Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Bruhn, R. L.

    1984-01-01

    Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.

  20. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  1. Quaternary tectonic activity in NW Jordan: Insights for a new model of transpression-transtension along the southern Dead Sea Transform Fault

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, M.; Pérez-Peña, J. V.; Azañón, J. M.; Booth-Rea, G.; Abed, A.; Atallah, M.; Galve, J. P.

    2016-12-01

    The Dead Sea Transform Fault (DSTF) constitutes the transform plate boundary between the African and Arabian plates. The southern part of this fault has been traditionally divided into two main segments, the Wadi Araba Fault (WAF) and the Jordan Valley Fault (JVF), connected through the Dead Sea continental pull-apart basin. Active tectonic studies in NW Jordan have traditionally focused on these DSTF structures and have neglected other prominent structures in the region, such as the Amman Hallabat Structure (AHS) and Shueib Structure (SHS) fault systems, which have been considered inactive since the Cretaceous. However, some recent studies have suggested a possible local reactivation of the southern parts of these structures. In this work, we carried out a detailed geological study of the NE Dead Sea Basin to analyze the Quaternary activity of the AHS and SHS based on field observations and structural analyses. Our findings have revealed that the AHS and SHS structures present clear Quaternary activity and accommodate a small part of the deformation of the southern DSTF. In the Quaternary, the southwestern part of the AHS has acted as the northernmost continuation of the WAF, whereas the SHS has acted as a transfer fault associated with NW-SE normal faults with low to moderate throws (meters to decameters) that connect this structure to the JVF. These NW-SE normal faults constitute the northeastern border of the Dead Sea depression (Jericho Valley). They produce a topographic front and separate the sediments of the Jordan Valley in the hanging wall from the Mesozoic sedimentary sequence located in the footwall.

  2. Libby thrust belt and adjacent structures - new factors to consider in thrust tectonics of northwestern Montana

    SciTech Connect

    Harrison, J.E.; Cressman, E.R.

    1985-05-01

    About 40 mi (65 km) west of the Rocky Mountain trench and at least 9 mi (15 km) above the sole detachment of the Rocky Mountain thrust belt is a zone of Cretaceous-Tertiary thrust faults up to 25 mi (40 km) wide in middle Proterozoic and Cambrian rocks. This zone (the Libby thrust belt) extends northward from the Lewis and Clark line to the northwest corner of Montana. Within the Libby thrust belt is a series of complex ramps, horsts, splays, and folds that accommodate a tectonic shortening of about 6.2 mi (10 km). Backsliding has occurred on some listric thrust faults, and middle Tertiary(.) extensional horst-and-graben faults offset or join most thrust faults. On the east, the lead thrust ramps up onto the broad open Purcell anticlinorium. On the west, the Libby thrust belt is overridden in the north by the lead thrust of the Yaak plate (whose central part is the broad, open Sylvanite anticline), and in the south, it is overridden by the Moyie thrust (which trends northwest and also overrides the west edge of the Yaak plate). Geologic cross sections suggest that the Belt rocks have overridden the Cambrian at shallow depths only and that Cambrian and younger Phanerozoic strata probably do not occur at greater depths beneath and west of the Purcell anticlinorium. This interpretation differs significantly from interpretations that suggest intercalation of major wedges of Paleozoic and Belt rocks at depth in this same area.

  3. Computer Simulation Of Shock-Wave Propagation In Anisotropic Tectonic Structures

    NASA Astrophysics Data System (ADS)

    Gouliaev, V. I.; Lugovoy, P. Z.

    1997-07-01

    The problem of short shock waves propagating in anisotropic elastic layered media is investigated on a basis of the ray method. To determine the geometric parameters of the shock wave front, an analog of the eikonal equation is deduced whereby the first order partial differential equations are obtained. At each step of the numerical process we calculate for each numerical zone the orientation of the wave front, the types of quasi-longitudinal and quasi-shear waves and the directions and values of their propagation velocities. Thereafter, transition to the next step in the evolution of the shock wave front is carried out. Calculation of the stress intensity on the wave front and the value of the impulse carried by the wave is performed on the basis of conditions of energy and momentum conservation in a specified region. The outlined approach is used to study the reflection and penetration of shock and seismic waves through anisotropic media interfaces, and to investigate their propagation in natural tectonic wave guides.

  4. Subsurface structure and tectonic style of the NE Outer Carpathians (Poland) on the basis of integrated 2D interpretation of geological and geophysical images

    NASA Astrophysics Data System (ADS)

    Kuśmierek, Jan

    2010-02-01

    Integration of the information from surface and subsurface geological exploration (maps and well sections) and results of geological reinterpretation of more than ten archival seismic sections and several dozen magnetotelluric soundings (MT; published and archival) implies a new structural picture of the Carpathian tectogene, interpreted to depths exceeding 10 km. The tectonics of nappes and their basement is illustrated by four regional cross-sections (derived from geological and petroleum-exploration traverses) and examples of detailed interpretation of zones with complicated structure, as well as results of testing the initial structural models with application of the balanced cross-section method and gravimetric modelling. In the tectonics, a complicated system of overthrusts and detachments of sedimentary covers (from their heterogeneous basement) represents a predominant feature. It induced, within particular nappes and tectonically altered structural-facies units, specific systems of narrow folds with diversified geometries. Broad folds of the intermediate structural stage, which are gently sloping in the hinterland of the nappes, were interpreted on the basis of geophysics as paraautochthonous elements. They cover deep-seated faults with large throws, which obliquely or subvertically dip to the SW and were distinguished in the basement on the grounds of extreme contrasts at the resistivity boundaries. Zones of dramatically low resistivities, which separate blocks of the uplifted basement, were interpreted as tectonic sutures with geometry rebuilt in the stage of the Neogene lithosphere subduction. Therefore, the structural layout of the sedimentary cover is characterized by more gently dipping nappe overthrusts of the sequential type and secondary, out-of-sequence thrust slices, most frequently imbricate ones. The flysch covers resting over the tectonic sutures, particularly in margins of inherited structural depressions, are characterized by more

  5. Active tectonics evaluation from geomorphic indices for the central and the southern Longmenshan range on the Eastern Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Mingxing; Zeilinger, Gerold; Xu, Xiwei; Tan, Xibin; Wang, Qingliang; Hao, Ming

    2016-08-01

    We applied the geomorphic indices (hypsometry and stream length gradient) to evaluate the differential uplift of the central and southern Longmenshan, a mountain range characterized by rapid erosion, strong tectonic uplift, and devastating seismic hazards. The results of the geomorphic analysis indicate that the Beichuan-Yingxiu fault and the Shuangshi-Dachuan fault act as major tectonic boundaries separating areas experiencing rapid uplift from slow uplift. The results of the geomorphic analysis also suggest that the Beichuan-Yingxiu fault is the most active fault with the largest relative uplift rates compared to the rest of the faults in the Longmenshan fault system. We compared reflected relative uplift rates based on the hypsometry and stream length gradient indices with geological/geodetic absolute rates. Along-strike and across-strike variations in the hypsometry and stream length gradient correlate with the spatial patterns derived from the apatite fission track exhumation rates, the leveling-derived uplift rate, and coseismic vertical displacements during the 2008 Wenchuan earthquake. These data defined multiple fault relationships in a complex thrust zone and provided geomorphic evidence to evaluate the potential seismic hazards of the southern Longmenshan range.

  6. Thermal basin modelling of the Arauco forearc basin, south central Chile — Heat flow and active margin tectonics

    NASA Astrophysics Data System (ADS)

    Kuhn, Philipp P.; Echtler, Helmut; Littke, Ralf; Alfaro, Guillermo

    2010-11-01

    The Arauco basin is part of the coastal forearc domain in South-Central Chile. During its evolution since the Late Cretaceous it was subject to multiple deposition cycles and the erosion of lower bathyal to beach and lagoon sediments. These different environments were established in alternating accretional and erosive subduction tectonic settings along the South Andean active margin. Whereas the general development is well understood, inconsistencies arise regarding the origin of the high thermal maturity of Eocene coals and the estimates of vertical movements of the whole area during the Cenozoic. Thermal modelling of this forearc basin provides new insights regarding its thermal evolution and evaluation of the magnitudes of subsidence and inversion. Results are based on the analysis of coal samples from surface outcrops, mines and drill cores of ten onshore wells from ENAP/Sipetrol. Newly derived vitrinite reflectance (VR r) measurements indicated a temperature in the range of 135-150 °C for the oldest sediment unit of the Arauco basin, which was reached in post Eocene times. Furthermore, 1D basin modelling techniques indicate scenarios that could explain the coalification values in the basin's sediments. The models were calibrated against VR r data from drill core samples supplied by ENAP/Sipetrol. A Miocene and an Oligocene subsidence/inversion scenario were considered, while neither could be securely discarded based on the modelling results. Furthermore, it can be shown that the current thermal maturity was not reached by an increased heat flow (HF) or a deep subsidence only. Consequently, a structural inversion accompanied by the erosion of ~ 3.0 ± 0.4 km depending on the locality in combination with a high HF of ~ 64 ± 4 mW/m 2 is the best explanation of the available data. The HF, which is high for a forearc setting, can be attributed to the increased temperature of the relatively young subducted Nazca Plate and an additional influence of ascending hot

  7. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance

    NASA Astrophysics Data System (ADS)

    Berra, F.; Felletti, F.

    2011-04-01

    The Lower Permian succession of the Central Southern Alps (Lombardy, Northern Italy) was deposited in fault-controlled continental basins, probably related to transtensional tectonics. We focussed our study on the stratigraphic record of the Lower Permian Orobic Basin, which consists of a 1000 m thick succession of prevailing continental clastics with intercalations of ignimbritic flows and tuffs (Pizzo del Diavolo Formation, PDV) resting on the underlying prevailing pyroclastic flows of the Cabianca Volcanite. The PDV consists of a lower part (composed of conglomerates passing laterally to sandstones and distally to silt and shales), a middle part (pelitic, with carbonates) and an upper part (alternating sandstone, silt and volcanic flows). Syndepositional tectonics during the deposition of the PDV is recorded by facies distribution, thickness changes and by the presence of deformation and liquefaction structures interpreted as seismites. Deformation is recorded by both ductile structures (ball-and-pillow, plastic intrusion, disturbed lamination, convolute stratification and slumps) and brittle structures (sand dykes and autoclastic breccias). Both the sedimentological features and the geodynamic setting of the depositional basin confidently support the interpretation of the described deformation features as related to seismic shocks. The most significant seismically-induced deformation is represented by a slumped horizon (about 4 m thick on average) which can be followed laterally for more than 5 km. The slumped bed consists of playa-lake deposits (alternating pelites and microbial carbonates, associated with mud cracks and vertebrate tracks). The lateral continuity and the evidence of deposition on a very low-angle surface along with the deformation/liquefaction of the sediments suggest that the slump was triggered by a high-magnitude earthquake. The stratigraphic distribution of the seismites allows us to identify time intervals of intense seismic activity

  8. Tectonic evolution of a continental subduction-exhumation channel: Variscan structure of the basal allochthonous units in NW Spain

    NASA Astrophysics Data System (ADS)

    DíEz FernáNdez, RubéN.; MartíNez CataláN, José Ramón; Arenas MartíN, Ricardo; Abati Gómez, Jacobo

    2011-06-01

    A regional study starting from detailed geological mapping has been carried out in the Malpica-Tui Complex of Galicia in NW Spain. The complex is formed by two units representing pieces of the external edge of Gondwana, subducted and exhumed during the Variscan collision. The study shows that synsubduction and early synexhumation structures in continental subduction channels tends to be obscured and even erased once exhumation is complete. Detailed structural analysis, matched with the knowledge of the history, and available data for other Galician basal units have elucidated the major structures developed during the subduction-exhumation process. The results include evidence of the plate convergence causing early Variscan continental subduction of the Gondwana margin. Subduction was followed by exhumation driven by ductile thrusting within the subduction channel, which, in turn, provoked crustal duplication in the subducted slab and modified the initial tectonometamorphic architecture of the subduction wedge. The next step was accretion to the adjacent continental domains, placing the subduction wedge on top of unsubducted parts of the Gondwana margin via ductile thrusting. Thrusting was preceded by progressive propagation of a train of recumbent folds toward the foreland that affected the previous structural stack. Subsequent transference of oceanic (Rheic) and peri-Gondwanan terranes to the Gondwana margin took place by out-of-sequence thrusting followed by crustal extensional collapse and strike-slip tectonics.

  9. Tectonic constraints on the development and individualization of the intermontane Ronda basin (external Betics, southern Spain): a structural and geomorphologic approach.

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel; Barcos, Leticia

    2014-05-01

    As a result of progressive shortening and orogenic wedge thickening, marine foreland basins tend to emerge and divide. We have analyzed possible recent tectonic activity within the late evolution stage of the Ronda basin, an intermontane basin located in the external wedge of the Gibraltar Arc, formerly connected with the Betic foreland basin and infilled by marine Upper-Miocene sediments. We analyze (1) the structures responsible for the basinward relief drop along the arc strike and the different topography of their boundaries; (2) qualitative and quantitative geomorphologic indices to asses which structures could present recent activity; and 3) the structures causing the division of the former Betic foreland basin and the isolation of the Ronda basin. Within the deformational history of the Ronda basin, late structures that control high topographic gradients and generate remarkable fault scarps group into three main types: (a) Extensional structures represented by NW-SE striking normal faults, clustered close to the current SW and NE boundaries of the basin. They usually dip towards the basin and their vertical displacement is maximum up to 1,5 km. These structures partially affect the basal unconformity of the Upper Miocene basin infill and are scarcely developed inside the basin infill. (b) Shortening structures developed both in the basin infill and in the outcropping basement near the Northeastern and Southwestern basin boundaries. They are represented by NE-SW directed plurikilometric box-folds and reverse faults, responsible for the alternation of sierras (altitudes 1000-1500 m) and valleys. (c) Strike-slip dominated structural associations where WSW-ENE lateral faults combined with folds and normal and reverse faults defined a NE-SW directed deformation band constituting the NW basin boundary. This band includes some sierras up to 1.100 m. Regarding the relief of the Ronda basin area, the abrupt slopes of the outcropping basement (heights between 500

  10. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  11. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.

  12. Crustal structure of Tolfa domes complex (northern Latium - Italy) inferred from receiver functions analysis: an interplay between tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.

    2010-12-01

    The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above

  13. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Audin, Laurence; Winter, Thierry; Alvarado, Alexandra; Pilatasig Moreno, Luis; Taipe, Mercedes; Reyes, Pedro; Kauffmann, Paul; Yepes, Hugo

    2015-05-01

    The Pallatanga fault (PF) is a prominent NNE-SSW strike-slip fault crossing Central Ecuador. This structure is suspected to have hosted large earthquakes, including the 1797 Riobamba event which caused severe destructions to buildings and a heavy death toll (more than 12,000 people), as well as widespread secondary effects like landsliding, liquefaction and surface cracking. The scope of this study is to evaluate the seismic history of the fault through a paleoseismological approach. This work also aims at improving the seismotectonic map of this part of the Andes through a new mapping campaign and, finally, aims at improving the seismic hazard assessment. We show that the PF continues to the north of the previously mapped fault portion in the Western Cordillera (Rumipamba-Pallatanga portion) into the Inter-Andean Valley (Riobamba basin). Field evidences of faulting are numerous, ranging from a clear geomorphological signature to fault plane outcrops. Along the western side of the Riobamba basin, the strike-slip component seems predominant along several fault portions, with a typical landscape assemblage (dextral offsets of valleys, fluvial terrace risers and generation of linear pressure ridges). In the core of the inter-Andean valley, the main fault portion exhibits a vertical component along the c. 100 m-high cumulative scarp. The presence of such an active fault bounding the western suburbs of Riobamba drastically increases the seismic risk for this densely inhabited and vulnerable city. To the east (Peltetec Massif, Cordillera Real), the continuation of the Pallatanga fault is suspected, but not definitely proved yet. Based on the analysis of three trenches, we state that the Rumipamba-Pallatanga section of the PF experienced 4 (maybe 5) Holocene to Historical strong events (Mw > 7). The coseismic behavior of the fault is deduced from the occurrence of several colluvial wedges and layers associated with the fault activity and interbedded within the organic

  14. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  15. Respective roles of the weathering profile and the tectonic fractures in the structure and functioning of crystalline thermo-mineral carbo-gaseous aquifers

    NASA Astrophysics Data System (ADS)

    Dewandel, B.; Alazard, M.; Lachassagne, P.; Bailly-Comte, V.; Couëffé, R.; Grataloup, S.; Ladouche, B.; Lanini, S.; Maréchal, J.-C.; Wyns, R.

    2017-04-01

    Crystalline thermo-mineral and carbo-gaseous (CTMCG) hydrosystems are well known for their economic importance in fields such as thermal, spa activities and natural mineral water (NMW) bottling. Such systems are usually associated with strong structural complexity, which is rarely characterised in detail or robustly. This research focuses on a CTMCG hydrosystem associated with a peri-alpine graben. A multidisciplinary approach with a very large set of data and methods - geological modelling with geophysics and geological data from outcrops and several boreholes, hydrodynamic data, hydrochemistry, hydrogeological and geochemical modelling - reveals very novel results and allows a robust conceptual model to be constructed. The aquifer at the origin of the carbo-gaseous natural mineral water is the 100-125 m-thick fractured stratiform layer of the weathering profile of the crystalline rock (granite). It forms a rather large and thick inertial aquifer that can be numerically modelled, in a similar fashion to a porous medium. The majority of tectonic faults length act as impervious boundaries that divide this aquifer into around ten elongated compartments that were precisely delineated. These tectonic faults are permeable only along two small areas that were also precisely located. These permeable zones feed some aquifer compartments with deep, highly mineralised carbo-gaseous water, which mixes with ;fresher; water and forms the exploited NMW. These results can be generalised and in particular show a strong opposition between low-inertia CTMCG hydrosystems without a subsurface reservoir, as the weathering profile was eroded, and high-inertia hydrosystems such as the one studied.

  16. Orogen-perpendicular structures in the central Tasmanides and implications for the Paleozoic tectonic evolution of eastern Australia

    NASA Astrophysics Data System (ADS)

    Abdullah, Rashed; Rosenbaum, Gideon

    2017-01-01

    The curvilinear E-W structures of the southern Thomson Orogen are approximately orthogonal to the general N-S structural trend of the Tasmanides of eastern Australia. The origin of these orogen-perpendicular structures and their implications to tectonic reconstructions of eastern Gondwana are not fully understood. Here we use geophysical data to unravel the geometry, kinematics and possible timing of major structures along the boundary between the Thomson Orogen and the southern Tasmanides (Delamerian and Lachlan orogens). Aeromagnetic data from the southern Thomson Orogen show WNW, E-W and/or ENE trending structural grains, corresponding to relatively long wavelength linear geophysical anomalies. Kinematic analyses indicate strike-slip and transpressional deformation along these geophysically defined faults. Structural relationships indicate that faulting took place during the Benambran (Late Ordovician to Middle Silurian) and Tabberabberan (late Early to Middle Devonian) orogenies. However, some of the described crustal-scale structures may have developed in the Cambrian during the Delamerian Orogeny. Interpretation of deep seismic data shows that the crust of the southern Thomson Orogen is substantially thicker than the Lachlan Orogen crust, which is separated from the Thomson Orogen by the north-dipping Olepoloko Fault. A major lithospheric-scale change across this boundary is also indicated by a contrast in seismic velocities. Together with evidence for the occurrence of Delamerian deformation in both the Koonenberry Belt and northeastern Thomson Orogen, and a significant contrast in the width of the northern Tasmanides versus the southern Tasmanides, it appears that the southern Thomson Orogen may represent the locus of orogen-perpendicular segmentation, which may have occurred in response to along-strike plate boundary variations.

  17. The role of pre-existing tectonic structures and magma chamber shape on the geometry of resurgent blocks: Analogue models

    NASA Astrophysics Data System (ADS)

    Marotta, Enrica; de Vita, Sandro

    2014-02-01

    the geometry of the intruding magma body, and the related deformation is partially controlled by pre-existing tectonic and/or volcano-tectonic structures.

  18. Structure of northeastern New Mexico from deep seismic reflection profiles: Implications for the Proterozoic tectonic evolution of southwestern North America

    NASA Astrophysics Data System (ADS)

    Eshete, Tefera Gashu

    2001-09-01

    Previous geologic, geochronologic, structural, isotope, and xenolith studies have shown that the Precambrian rocks of northern New Mexico belong to the Yavapai and Mazatzal provinces. The boundary between the provinces is a wide zone defined on its northern edge by the northern extent of 1.65 Ga deformation and southern edge by the southern most extent of Yavapai crust (pre-1.7 Ga). However, the nature of the Precambrian province boundary at depth, its evolution through time, and the tectonic processes that affected the interior of these provinces, are not well understood. In order to obtain new information concerning these problems, processing and interpretation of reflection seismic data was conducted on data collected during the 1999 Continental Dynamics-Rocky Mountain (CD-ROM) project and data obtained from industry. In this study I present new information on the crustal structure of northern New Mexico provided by processing and interpretation of three seismic reflection profiles (NM-1, TB-1 and TB-2).The seismic data present evidence for Precambrian crustal growth and amalgamation, followed by subsequent reactivation of Precambrian structures. A seismic profile and gravity modeling across the NM-1 show a strongly reflective high-density (2850 kg-m-3) dome-shaped body in the middle to lower crust. On the basis of the absence of a hanging-wall antiform, the occurrence of normal sense of deflection of reflectors in the footwall, possibly Moho pullup, and geological information such as an exposed Proterozoic extensional shear zone in the Sandia Mountains, this feature is interpreted to represent a 1.4 Ga? extensional shear zone which resulted in rotation of ˜1.65 Ga imbricate thrust zones. Layered reflectivity directly below the top of Precambrian basement on profiles TB-1 and the eastern part of TB-2, based on geophysical and geological information from nearby areas is interpreted as a sequence of ˜1.4 Ga volcanic and sedimentary rocks within the Proterozoic

  19. Genetic structural provinces and salt tectonics of the Cenozoic offshore US Gulf of Mexico: A preliminary analysis

    SciTech Connect

    Peel, F.J.; Travis, C.J.; Hossack, J.R.

    1996-12-31

    Structures in the Cenozoic section of the U.S. Gulf of Mexico margin are thin-skinned, gravity-driven, and powered by the deposition of sediment on the shelf and upper slope. Deformation driven by sedimentation takes the form of salt displacement (including diapirism, salt withdrawal, and salt canopy formation), plus seaward gravity spreading and sliding. Lateral flow of salt gives rise to the emplacement of large-scale salt canopies of different ages. Lateral tectonic movement of both sediment and salt results in linked systems on a wide range of scales. We identify four structural provinces that contain distinct groups of structural elements believed to be genetically related: (1) far-eastern Gulf, in which no major Cenozoic deformation is seen; (2) eastern Gulf, defined mainly by a middle-late Miocene linked system of extension and contraction; (3) central Gulf, in which Oligocene updip extension was absorbed within a preexisting giant salt canopy; and (4) western Gulf, defined by several Paleogene-middle Miocene linked systems of extension and contraction. The ages and extents of each linked system match the major foci of sediment input to the shelf.

  20. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications

    USGS Publications Warehouse

    Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.

    2003-01-01

    Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.

  1. Tectonic significance of serpentinites

    NASA Astrophysics Data System (ADS)

    Guillot, Stéphane; Schwartz, Stéphane; Reynard, Bruno; Agard, Philippe; Prigent, Cécile

    2015-04-01

    At plate boundaries, where deformation is localized along centimetre- to kilometre-scale shear zones, the influence of serpentinite on tectonic processes is linked to its unique rheological properties. In this paper we review the physical properties of serpentinites and their role in tectonic processes. At the ocean-continent transition, serpentinization weakens the upper mantle layer, promoting strain localization and allowing the normal faults in the distal margin to root at low angle. Similarly, at slow to ultra-slow spreading ridges, serpentinite is potentially very abundant at the seafloor and locally associated with domal structures. Extensional deformation is localized in a ~ 100 m thick shear zone at the footwall of detachment zones dominated by serpentine derived minerals. Within subduction zone, the depth of decoupling between the mantle wedge and the subducting slab corresponds to the stability depth of serpentine weak mineral. Dehydration of serpentine has also been hypothesized to play an important role in the origin of double seismic zones, however the exact mechanism through which dehydration promotes seismicity remains a matter of debate. During exhumation of high-pressure or ultrahigh-pressure rocks, the opposite trajectories of exhumation and subduction require a decoupling zone within the subducting slab. A serpentinized layer has the potential to become a decoupling zone between the oceanic crust and underlying lithosphere. The buoyancy of serpentinite also likely contributes to eclogite exhumation. Finally, along major strike-slip faults, serpentinites have been associated with fault creep, as well as low fault strength. The presence of serpentinite blocks along creeping segments of active faults worldwide is therefore likely to originate from fluids deriving from the progressive dehydration of the mantle wedge that move such bodies upward.

  2. Geophysical Imaging of Active Tectonics: A Case Study From the Inter Andean Valley, Ecuador

    NASA Astrophysics Data System (ADS)

    Call, C.; Meltzer, A.; Alvardo, A.

    2004-12-01

    The Inter Andean Valley is a Pliocene-Quaternary basin filled with volcanic, lacustrine, fluvial and marine sedimentary deposits. A series of faults sometimes collectively referred to as the Delores-Guayaquil Mega Shear (DGM) traverses the length of the Inter Andean Valley posing a seismic hazard to a number of cities including the capitol, Quito. The DGM is a large right-lateral fault system similar in scale and seismicity to the San Andres Fault system which is understudied, especially in the subsurface. A site characterization study utilizing ground penetrating radar (GPR) and near-surface seismic reflection profiling was conducted in two areas of the Inter Andean Valley where geomorphic evidence suggests active faulting. One area, Nono Valley, exhibits extensional characteristics through basin bounding fault and the second area, Saquisili, has a structure consistent with the geometry of a fault propagation fold. Both areas are covered with thinly layered volcanic ash which is clearly seen in outcrop and the GPR profiles. Saquisili, in addition to the ash layers, has a nonuniform layer of pumice near the surface which was revealed in the drilled holes for the seismic source, which helps to account for the quick attenuation of the higher frequencies. The GPR profiles also image abrupt terminations and offset of horizontal layers, often associated with active faulting. We used a 48 channel multichannel seismograph with 30Hz geophones and a 20ft spacing to collect 24 fold common-midpoint profiles using a Betsy Seis-Gun firing 12 gauge blanks. Preliminary seismic data indicates that the frequency content ranged between 20 and 100 Hz with higher frequencies being systematically filtered out with depth. Seismic velocities range between 740 and 2600 m/s, producing a vertical resolution between 2 and 32.5m to a depth of approximately 900m. The GPR data was collected using a GSSI SIR-2 data accusation system with a 100 MHz antenna. The GPR signal penetrated between 120ns

  3. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  4. Task 1 quarternary tectonics

    SciTech Connect

    Bell, J.W.

    1994-12-31

    Activities on the task of quarternary tectonics for the Yucca Mountain Site investigations are described. Technical topics include: A preliminary reveiw of Bare Mountain Trench; A preliminary detailed lineament map of the Southwestern part of the proposed repository; A discussion on the 1994 Double Spring Flat, Nevada earthquake; and evidence for temporal clustering.

  5. Structural and Tectonic Geology of the Namche Barwa-Gyala Peri Antiform, Southeastern Tibet

    NASA Astrophysics Data System (ADS)

    Kidd, W. S.; Lim, C.; Zeitler, P. K.; Enkelmann, E.; Booth, A. L.; Chamberlain, C. P.; Tang, W.; Liu, Y.; Craw, D.

    2006-12-01

    The Namche Barwa-Gyala Peri antiform is shown by our field mapping and lab results to have two parts, separated by a major north-dipping crustal-scale shear zone and fault, the Nam-la thrust zone. The oldest detected parts of this thrust zone are amphibolite-grade ductile shear involved with abundant dioritic migmatites; it later progressed through s/c mylonites, and into brittle faulting localised on the northern side of the zone. Cooling ages show that the northern part of the NB-GP antiform was very recently and rapidly exhumed, suggesting that the thrust is linked to this exhumation and still active. South and southwest of the Nam-la thrust and migmatite zone, biotite cooling ages of 4-10Ma show that growth of this extension of the Namche Barwa antiformal structure was minimal after the latest Miocene. The Nam-la thrust crosses the Tsangpo at the first major knickpoint and passes northwest into the marginal thrust fault and shear zone bounding the Gyala Peri massif. Older ductile shear is expressed in the steeply-dipping bordering zones of both sides of the NB-GP antiform and we interpret this largely to be from the original Himalayan underthrusting fabrics, reoriented by the antiform. Most ductile shear indicators seen in Lhasa block gneisses and the Himalayan Tethyan metasediments near the attenuated Indus-Tsangpo ophiolitic suture southwest of the NB- GP massif are thrust sense, either related to the early-Miocene Gangdese thrust, or to earlier Himalayan thrusting. The hypothesis of an extensional detachment fault within the Lhasa block between basement gneisses and amphibolite-grade metasediments is rejected on the basis of our observations in the field. Evidence for north-down normal sense shear associated with amphibolite-greenschist facies rocks along the attenuated Indus-Tsangpo ophiolitic suture has been seen in a few places, possibly evidence of mid-Miocene STDS-related extension. Within the western side of the overall Namche Barwa antiform, a belt of

  6. Extensional salt tectonics in the partially inverted Cotiella post-rift basin (south-central Pyrenees): structure and evolution

    NASA Astrophysics Data System (ADS)

    López-Mir, Berta; Muñoz, Josep Anton; García-Senz, Jesús

    2015-03-01

    The Cotiella Massif in the south-central Pyrenees hosts upper Cretaceous gravity-driven extensional faults which were developed in the Bay of Biscay-Pyrenean paleorift margin of the Atlantic Ocean. They accommodate up to 6 km of post-rift carbonates above relict upper Triassic salt. Subsequent Pyrenean contractional deformation preserved the main extensional features, but most of the upper Triassic salt was expulsed and then dissolved, leaving little indications of the original salt volume. Nonetheless, several distinctive salt-related features are still recognizable both at outcrop and at basin scale, providing an exposed analogue for salt-floored extensional basins developed on passive margins. Based on field research, we re-interpret the tectonic evolution of the area and suggest that passive diapirs were coeval with gravity-driven extension during the development of the Cotiella basin. The given interpretations are supported with detailed geological maps, original structural data, cross sections and outcrop photographs. The discovery of previously unknown post-rift salt structures in the Cotiella Massif is an extra element to consider in the paleogeographic reconstructions of the upper Cretaceous passive margin of the Bay of Biscay-Pyrenean realm and consequently helps in our understanding of the evolution of current Atlantic-type margins.

  7. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  8. Tectonic Puzzles.

    ERIC Educational Resources Information Center

    Caballero, Julio Faustino; Harris, Delphia F.

    1996-01-01

    Presents an activity that uses the study of earthquakes to provide a rich educational experience to reinforce and expand students' knowledge of the structure of the Earth, provide an application of physics concepts such as force and energy, and present these topics integrated with a unit on mathematics. (JRH)

  9. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Lacan, Pierre; Tavera, Hernando; Bondoux, Francis

    2008-11-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw = 8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, at a longer time scale, a recurrent Quaternary transtensive tectonic activity of the CFS is expressed by offset river gullies and alluvial fans. The presence of such extensional fault systems trending orthogonal to the trench along the Coastal Cordillera in southern Peru is interpreted to reflect a strong coupling between the two plates. In this particular case, stress transfer to the upper plate, at least along the coastal fringe, appears to have induced crustal seismic events that were initiated mainly during and after the 2001 earthquake. The seafloor roughness of the subducting plate is usually thought to be a cause of segmentation along subduction zones. However, after comparing and discussing the role of inherited structures within the upper plate to the subduction zone segmentation in southern Peru, we suggest that the continental structure itself may exert some feedback control on the segmentation of the subduction zone and thus participate to define the rupture pattern of major subduction earthquakes along the southern Peru continental margin.

  10. Post 12 Ma tectonic activity of the Subalpine Molasse resolved by combining thermochronology and critical wedge analysis

    NASA Astrophysics Data System (ADS)

    von Hagke, C.; Oncken, O.; Ortner, H.; Cederbom, C.

    2012-04-01

    Thermochronological studies in the Northern Alpine Foreland Basin show that the folded and thrusted part of the basin, the Subalpine Molasse (SM), has been tectonically active during the last 12 Ma (Cederbom, C. E. et al., 2011; von Hagke, C. et al., in review). However, the amount of erosion and timing of thrusting is so far only reported from the Swiss Molasse basin. To test whether this is a local signal and whether climate contributed to this thrusting, we report thermochronological data from a profile south of Lake Constance and analyse the results in the framework of critical taper theory. We selected the Bregenzerach stream as suitable study area because it is one of the few profiles, which provides excellent outcrops in all stratigraphic units of the SM and is located east of the Jura fold and thrust belt, north of the Eastern Alps. We present new apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) data. In contrast to the Central Alps, the new data do not show full resetting of the AFT system. This demonstrates that the eastern SM has experienced less erosion than the central SM. The AHe system in contrast, shows complete resetting also in the eastern SM. We observe age-offsets across the same thrusts which have been reactivated in the central SM. This confirms that the SM of the Eastern Alps must have been tectonically active until at least 5 Ma, as is also known from the central SM. This implies reactivation of thrusts, which formed originally in mid to late Miocene times. From critical taper analysis, reactivation of thrusting (assuming constant dip of the basal detachment through time) can only be obtained (1) by an increase of basal detachment strength or (2) a decrease of surface slope. An increase of detachment strength through time is either possible due to jumping of the detachment to another stratigraphic level or a change in pore fluid pressure. A decrease in surface slope is either tectonic- or erosion-controlled. We show that today the

  11. Provenance and sediment-dispersal system in tectonically active rapidly evolving foreland basin, Western Interior

    SciTech Connect

    Khandaker, N.I.; Vondra, C.F.

    1989-03-01

    The Upper Cretaceous Frontier Formation, along the mobile edge of the Western Interior foreland basin, is composed mainly of clastic sediments and was deposited during the initial Late Cretaceous transgressive-regressive phases of the Western Interior seaway across Wyoming. The formation contains many persistent bentonite beds and several sandstone packages in its lower part and a thin, lenticular lithic wacke-polymictic conglomerate association at its upper contact (Torchlight Sandstone Member). Abundant granule to cobble-sized clasts of andesite, granite, chert, and quartzite are set in a poorly sorted sand-to-granule grade volcaniclastic matrix. There is a lithologic continuity of this volcaniclastic unit across the Bighorn Mountains into the Powder River basin. A high-energy distributary complex of sizable areal extent is invoked for the deposition of this linear conglomerate facies. Geochemical investigations of the whole-rock andesite clasts and bentonite allowed more precise definition of character, tectonic setting, and evolutionary stages of sedimentary distributive provinces. Bentonites and andesites are strongly enriched in strontium and barium, but only mildly enriched in heavy rare earth elements and high field-strength elements. These analyzed rocks have trace element characteristics similar in a general way to those of typical orogenic volcanics; they show some significant differences in detail. Composition of volcaniclasts and paleocurrent data indicate a proximal sediment source for the extrabasinal detritus within the Frontier Formation. The possibility of a contribution from a Mesozoic volcanic center in the neighborhood of southwestern Montana is strongly favored. The products of this volcanism constitute an assemblage of deep crustal to mantle( ) derived rocks, and their composition record time-integrated enrichment in light over heavy rare earth elements.

  12. Variations of fluvial tufa sub-environments in a tectonically active basin, Pleistocene Teruel Basin, NE Spain

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Alonso-Zarza, Ana M.; Rodríguez-Berriguete, Álvaro; Meléndez, Alfonso

    2015-12-01

    The Pleistocene Tortajada fluvial deposit occurs in the eastern active margin of the Teruel Basin. It developed in the early stages of opening of the basin and at present is disconnected to the Alfambra River. The preserved deposits show that the fluvial system consisted in three different sub-environments including: Upper Terraces, Ponds and Cascades. The main facies are framestones of stems, phytoclastic rudstone, framestone of bryophytes, peloidal and filamentous stromatolites, mudstone and detrital (conglomerates and slope-breccias) facies. These facies are arranged in three different sequence types, all of them showing a lower detrital term followed by pond and, in cases, cascade deposits. The microfacies analyses reveal that both biotic and abiotic processes performed an important role in the deposition within the river. Isotopic analyses (δ18O from - 8.58‰ to - 6.70‰ VPDB and δ13C from - 7.44‰ to - 3.97‰ VPDB) are indicative of meteoric water within a hydrologically open system. The carbonate hinterland rocks, together with a semi-arid to sub-humid climate favored carbonate accumulation within the river. Our results point out that the location, morphology and sedimentary sequences of the Tortajada fluvial system had an important tectonic control. The situation of the main and secondary faults controlled the paleomorphology of the river floor. Thus cascades are found in areas of important step faults, whereas the spaces between faults were occupied by fluviatile/lacustrine areas. In addition the development of the different sedimentary sequences was also a reflection of movements of these faults. In short, our study may confirm that tectonism is an important control on tufa development.

  13. 4D Arctic: A Glimpse into the Structure and Evolution of the Arctic in the Light of New Geophysical Maps, Plate Tectonics and Tomographic Models

    NASA Astrophysics Data System (ADS)

    Gaina, Carmen; Medvedev, Sergei; Torsvik, Trond H.; Koulakov, Ivan; Werner, Stephanie C.

    2014-09-01

    Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic's crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic's lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous-Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha-Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province—HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.

  14. 4D Arctic: A Glimpse into the Structure and Evolution of the Arctic in the Light of New Geophysical Maps, Plate Tectonics and Tomographic Models.

    PubMed

    Gaina, Carmen; Medvedev, Sergei; Torsvik, Trond H; Koulakov, Ivan; Werner, Stephanie C

    Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic's crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic's lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous-Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha-Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province-HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.

  15. Active tectonics in Eastern Lunana (NW Bhutan): Implications for the seismic and glacial hazard potential of the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Meyer, M. C.; Wiesmayr, G.; Brauner, M.; HäUsler, H.; Wangda, D.

    2006-06-01

    Paleoseismological investigations, brittle fault analysis, and paleostrain calculations combined with the interpretation of satellite imagery and flood wave modeling were used to investigate the seismic and associated glacial hazard potential in Eastern Lunana, a remote area in NW Bhutan. Seismically induced liquefaction features, cracked pebbles, and a surface rupture of about 6.8 km length constrain the occurrence of M ≥ 6 earthquakes within this high-altitude periglacial environment, which are the strongest earthquakes ever been reported for the Kingdom of Bhutan. Seismicity occurs along conjugate sets of faults trending NE-SW to NNW-SSE by strike-slip and normal faulting mechanism indicating E-W extension and N-S shortening. The strain field for these conjugate sets of active faults is consistent with widespread observations of young E-W expansion throughout southern Tibet and the north Himalaya. We expect, however, that N-S trending active strike-slip faults may even reach much farther to the south, at least into southern Bhutan. Numerous glacial lakes exist in the investigation area, and today more than 100 × 106 m3 of water are stored in moraine-dammed and supraglacial lakes which are crosscut by active faults. Strong earthquakes may trigger glacial lake outburst floods, and the impact of such flash floods may be worst 80 km downstream where the valley is broad and densely populated. Consequently, tectonic models of active deformation have to be closely linked with glacial hazard evaluation and require rethinking and modification.

  16. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  17. Seismotectonics of Northeastern Sicily and Southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the Central Mediterranean geodynamics

    NASA Astrophysics Data System (ADS)

    Scarfì, Luciano; Barberi, Graziella; Musumeci, Carla; Patanè, Domenico

    2016-04-01

    The purpose of this study is to gain a better understanding on the tectonic structures featuring in a crucial sector of central Mediterranean area, including the Aeolian Islands, southern Calabria and northeastern Sicily, where the convergence between Eurasian and African plates has given rise to a complicated collisional/subduction complex. A high quality dataset of about 3000 earthquakes has been exploited for local earthquake tomography and focal mechanisms computation. Results depict undiscovered details of a network of faults which enables the contemporary existence of adjacent compressional and extensional domains. In particular, tomographic images, seismic events distribution and focal mechanisms pinpoint the geometry and activity of a lithospheric-scale tear faults system which, with a NW-SE trend through Sicily and the Tyrrhenian and Ionian Seas, represents the southern edge of the Ionian subduction trench zone. At crustal depth, this tearing is well highlighted by a rotation of the maximum horizontal stress, moving across the area from west toward east. In addition, the shallow normal fault regime, characterising the northeastern Sicily mainland, south of the NW-SE lineament, changes in the deeper part of the crust. Indeed, a NE-SW earthquake distribution, NW gently dipping, and inverse fault solutions indicate a still active contractional deformation in the eastern Sicily, caused by the Africa-Eurasia convergence and well framed with the current compressive regime along the southern Tyrrhenian zone and at the front of the Sicilian Chain-Foreland.

  18. Seismotectonics of northeastern Sicily and southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the central Mediterranean geodynamics

    NASA Astrophysics Data System (ADS)

    Scarfı, L.; Barberi, G.; Musumeci, C.; Patanè, D.

    2016-03-01

    The purpose of this study is to gain a better understanding on the tectonic structures featuring in a crucial sector of central Mediterranean area, including the Aeolian Islands, southern Calabria, and northeastern Sicily, where the convergence between Eurasian and African Plates has given rise to a complicated collisional/subduction complex. A high-quality data set of about 3000 earthquakes has been exploited for local earthquake tomography and focal mechanisms computation together with available source mechanisms from published catalogues. The results depict new details of a network of faults which enables the concurrent existence of adjacent compressional and extensional domains. In particular, tomographic images, seismic events distribution, and focal mechanisms pinpoint the geometry and activity of a lithospheric-scale tear faults system which, with a NW-SE trend through Sicily and the Tyrrhenian and Ionian Seas, represents the southern edge of the Ionian subduction trench zone. At crustal depth, this tearing is well highlighted by a rotation of the maximum horizontal stress, moving across the area from west toward east. In addition, the shallow normal fault regime, characterizing the southern Calabria and northeastern Sicily mainland, south of the NW-SE lineament, changes in the deeper part of the crust. Indeed, a NE-SW earthquake distribution, gently dipping NW, and inverse fault solutions indicate a still active contractional deformation in eastern Sicily, caused by the Africa-Eurasia convergence and well framed with the current compressive regime along the southern Tyrrhenian zone and at the front of the Sicilian Chain-Foreland.

  19. Tectonic structure of Alaska as evidenced by ERTS imagery and ongoing seismicity

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. At least three seismically active faults were identified which had not been previously mapped. One of these passes near the proposed site of a hydroelectric project on the Susitna River. Evidence of the state's past deformational history was obtained, indicating that right lateral offset has occurred sequentially from the northern part of the state to the southern. An apparent fault passes near Fairbanks, and is presumably the source of much seismic activity in the area.

  20. Active Tectonics of Western Turkmenistan; Implications for the Onset of South Caspian Subduction

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J.; Jackson, J.; Priestley, K.

    2007-12-01

    The Kopeh Dagh and Balkan mountain ranges of West Turkmenistan are actively deforming as a result of Arabia- Eurasia collision. We combine observations of the geomorphology made from satellite and topographic data, with historical and recent seismicity to identify major active faults, and how they contribute to regional shortening. Between 55--57.5°E, partitioned (north-vergent) thrust and right-lateral strike-slip fault segments, comprising the Ashkabad fault zone, accommodate regional shortening and the westward-extrusion of the NW Kopeh Dagh-South Caspian block, relative to Central Iran and Eurasia. Reconstruction of displaced geology indicates 35~km total right-lateral motion across the Ashkabad fault zone. The Balkan region lies along-strike of the Ashkabad fault zone, west of 55°E. Fault plane solutions indicate shortening is partitioned onto the Balkan thrust and right-lateral Kum-Dagh fault zones. Thrust earthquakes are relatively deep (30--45~km) and lie along a north-dipping plane which extends 40±5~km north beneath the Balkan anticline. Receiver function data from Turkmenbashi and Nebit Dagh indicate these earthquakes occur in the base of the crust, and may therefore be related to bending of the NW Kopeh Dagh-South Caspian lithosphere as it is overthrust by Eurasia. Movement on a north-dipping blind thrust fault is consistent with the broad asymmetric (south-vergent) fold structure of the Balkan range. Recent uplift is also indicated by extensional faults which displace Quaternary geomorphology along the range crest. South of the Balkan range, right-lateral shear occurs across the Kum-Dagh fault zone which is expressed as a series of right-stepping anticlines (affecting Pliocene Red Series and younger sediments), forming important traps for hydrocarbons. An important structural change occurs near 55°E. To the west, Eurasia overthrusts the NW Kopeh Dagh- South Caspian block, while to the east the polarity of thrusting changes and the Kopeh Dagh

  1. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  2. Active Seismicity and Tectonics in Central Asia from Seismological Data Recorded in the Pamir and Tien Shan Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Sippl, Christian; Schurr, Bernd; Schneider, Felix M.; Yuan, Xiaohui; Mechie, James; Minaev, Vladislav; Abdybachaev, Ulan A.; Gadoev, Mustafo; Oimahmadov, Ilhomjon

    2010-05-01

    Active tectonics in the Pamir mountains in central Asia, the westernmost part of the India-Eurasia collision zone, are controlled by ongoing convergence (about 20 mm/yr), causing substantial crustal shortening and compressional deformation. This leads to high seismicity rates throughout the region. Whereas seismic activity along the rim of the Pamir plateau is mostly compressional and concentrated along the Main Pamir Thrust, the distribution and focal mechanisms of earthquakes in its interior are more diffuse, with extensional events occurring along North-South trending rift zones (Kara Kul, Wachan). Seismicity in the south-western Pamir and in the Hindu Kush features frequent intermediate-depth earthquakes, reaching hypocentral depths of 300 km, which is rare for regions not obviously related to active subduction of oceanic lithosphere. These mantle earthquakes, which are not observed beneath the Himalayas and Tibet further east, form a rather well-defined Wadati-Benioff zone that was readily interpreted as subducted lithosphere present below the current collisional orogen. Earlier seismological studies showed the presence of a northward-dipping lithospheric slab under the Hindu Kush and a southward-dipping one beneath the Pamirs, with a small seismic gap in-between. Different hypotheses concerning the nature of these slabs (oceanic or continental lithosphere) and tectonic geometry in general (two slabs subducting in opposite directions or a single, hugely contorted slab) have been proposed in literature. Political instability in the region in the last two decades hampered on-site studies and field work, leaving many key issues poorly understood. In the framework of the multidisciplinary project TIPAGE (Tien Shan Pamir Geodynamic Programme), for the first time, new field campaigns collecting high quality data have been made possible. Local seismicity in the Pamir and Tien Shan mountain ranges (Tajikistan and Kyrgyzstan) is currently being recorded by a temporary

  3. An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Hauksson, E.; Aminzadeh, F.; Ampuero, J.-P.

    2015-10-01

    Changes in seismicity rates, whether of tectonic or of induced origin, can readily be identified in regions where background rates are low but are difficult to detect in seismically active regions. We present a novel method to identify likely induced seismicity in tectonically active regions based on short-range spatiotemporal correlations between changes in fluid injection and seismicity rates. The method searches through the entire parameter space of injection rate thresholds and determines the statistical significance of correlated changes in injection and seismicity rates. Applying our method to Kern County, central California, we find that most earthquakes within the region are tectonic; however, fluid injection contributes to seismicity in four different cases. Three of these are connected to earthquake sequences with events above M4. Each of these sequences followed an abrupt increase in monthly injection rates of at least 15,000 m3. The probability that the seismicity sequences and the abrupt changes in injection rates in Kern County coincide by chance is only 4%. The identified earthquake sequences display low Gutenberg-Richter b values of ˜0.6-0.7 and at times systematic migration patterns characteristic for a diffusive process. Our results show that injection-induced pressure perturbations can influence seismic activity at distances of 10 km or more. Triggering of earthquakes at these large distances may be facilitated by complex local geology and faults in tectonically active regions. Our study provides the first comprehensive, statistically robust assessment of likely injection-induced seismicity within a large, tectonically active region.

  4. Jurassic extension and Cenozoic inversion tectonics in the Asturian Basin, NW Iberian Peninsula: 3D structural model and kinematic evolution

    NASA Astrophysics Data System (ADS)

    Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura

    2016-09-01

    We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.

  5. Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting

    NASA Astrophysics Data System (ADS)

    Dubbini, M.; Cianfarra, P.; Casula, G.; Capra, A.; Salvini, F.

    2010-12-01

    A semipermanent Global Positioning System (GPS) network of 30 vertices known as the Victoria Land Network for Deformation Control (VLNDEF) was set up in the Austral summer of 1998 in northern Victoria Land (NVL), including Terra Nova Bay (TNB), Antarctica. The locations were selected according to the known Cenozoic fault framework, which is characterized by a system of NW-SE regional faults with right-lateral, strike-slip kinematics. The TNB1 permanent GPS station is within the VLNDEF, and following its installation on a bedrock monument in October 1998, it has been recording almost continuously. The GPS network has been surveyed routinely every two summers, using high-quality, dual-frequency GPS receivers. In this study we present the results of a distributed session approach applied to the processing of the GPS data of the VLNDEF. An improved reference frame definition was implemented, including a new Euler pole, to compute the Antarctic intraplate residual velocities. The projection of the residual velocities on the main faults in NVL show present-day activities for some faults, including the Tucker, Leap Year, Lanterman, Aviator, and David faults, with right-lateral strike-slip kinematics and local extensional and compressional components. This active fault pattern divides NVL into eight rigid blocks, each characterized by its relative movements and rigid rotations. These show velocities of up to several millimeters per year, which are comparable to those predicted by plate tectonic theory at active plate margins.

  6. Tectonic Structure of the Middle America Pacific Margin and Incoming Cocos Plate From Costa Rica to Guatemala

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Weinrebe, W.; Grevemeyer, I.; Phipps Morgan, J.; Vannucchi, P.; von Huene, R.

    2003-12-01

    A new multibeam bathymetry and magnetic survey with R/V SONNE in summer 2003 has mapped the continental margin and incoming plate of NW Nicaragua, El Salvador and Guatemala, extending existing coverage from offshore Costa Rica and part of Nicaragua to a full coverage map of about 1200 km long by 100 km wide area along the plate boundary. The incoming plate along Nicaragua, El Salvador and Guatemala is of similar age and was formed at superfast spreading rates; however, its morphology changes drastically along strike. The seafloor-spreading inherited morphology is very smooth along Nicaragua, but with ridges up to 800 m high in Guatemala, with a transition across El Salvador. The development and dimensions of the dominant inherited fabric seems to be related to discontinuities at the paleospreading center. A series of troughs oblique to the main fabric may indicate the location of pseudofaults and correspond to areas where the seafloor fabric is most prominent. Bending of the oceanic plate into the trench reactivates the inherited fabric forming a well pervasive faulting system along the oceanic trench slope. The continental slope displays three morphotectonic units that roughly correspond to the upper, middle and lower slope, although the across slope width of each unit is fairly variable. Small canyons and gullies that form at the sudden dip change across the shelf break carve the upper slope. The canyons coalesce and become shallower as the dip decreases downslope. Locally some large canyons continue into the slope toe. The middle slope is a rough terrain variable in width and dip sculptured by pervasive normal faulting and locally by mass wasting processes. The lower slope is formed by en echelon terraces striking similar to the rough terrain of the incoming plate and mimicking the half graben morphology of the underthusting plate. The three morphotectonic slope domains represent differences in tectonic activity, with more stable upper slope, a middle slope

  7. The structure of the Ishtar Terra central and eastern parts and some tectonic problems of Venus

    NASA Technical Reports Server (NTRS)

    Bazilevskiy, A. T.

    1986-01-01

    Moving from the Maxwell Montes to the eastern edge of Ishtar Terra there is a gradual shift in submeridional meandering folded ranges in the western section of the area to straight intersecting disjunctive systems of connected faults and sublatitudinal shifts. These disjunctive systems evidently transform older structures; the major axis of the stresses created by them is primarily oriented sublatitudinally. Relative to younger structures, in the western they occupy a higher hypsometric position. The reason for the formation of this entire system may be a large astenospheric flow wihch rise in the region of Lakashmi Planum and Maxwell Montes and which spreads and plunges in an easterly direction, taking with it deformed blocks of the lithosphere.

  8. High resolution magnetic field mapping of complex magmatic rock suites and associated tectonic structures in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, Marina; Kilian, Rolf

    2013-04-01

    Magmatic and metamorphic rocks of the southernmost Andes (50 to 55°S) document a complex magmatic and tectonic history of an active continental margin during the past >140 Ma [1]. However, the regional distribution of the multiple magmatic intrusive rock suites and younger systems of basaltic dykes as well as the tectonic control of associated hydrothermal systems are widely unexplored. Since the rocks are often bare exposed they represent an ideal test site for a magnetic field investigation with significant implication for future aeromagnetic mapping. Thus we performed a high resolution near-surface grid of measurements with a scalar and vector magnetometer at selected sites which include different intrusive rocks, tectonic lineaments and hydrothermal alteration with an associated mineralization. The magnetic signature corresponding to the Natural Remanent Magnetisation (NRM) was measured on Mesozoic and Cenozoic gabbroid to granitic plutons with large range chemical and mineralogical variations [1], on distinct basaltic dykes, as well as on mylonites, gneisses and hornfels rocks. The whole-rock chemistry of the selected rock types was determined by Atomic Absorption Spectroscopy and X-ray Fluorescence. The analysed and mapped rocks include the SiO2 range from 45 to 76 wt.%, FeO (tot) contents from 2 to 18 wt.% and Ti2O contents from 0.2 to 2.5 wt.%. The mineral assemblages were analysed by polarization microscopy, with an electron microprobe and X-ray diffraction. In the plutonic rocks the whole rock chemistry often is related to the amount of magnetite and NRM intensities [2]. However, measured magnetic intensities let us estimate the degree of chloritization and associated demagnetisation by magnetite alteration and transformation to maghemite and/or iron-hydroxides. For Miocene basaltic dyke systems of decimetre to several meters extension within granitic plutons, a high resolution magnetic mapping has been also performed. We expected a relationship of

  9. Structural Framework of the Sub-Himalaya and its tectonic evolution along Kameng river section: Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Goswami, T.; Bezbaruah, D.; Sarmah, R. K.

    2012-04-01

    The structural style or architecture of the Neogene-Quaternary foreland basin is studied in the Kameng River section of Arunachal Pradesh. The Kimi, Dafla-Subansiri, and Kimin formations correspond to Lower, Middle and Upper Siwaliks. The outcrop scale structures from the Main Boundary Thrust (MBT) towards S shows an overall ramp and flat geometry. The intervening strata between two parallel thrust faults (roof thrust and floor thrust) are sub-parallel. The individual subsidiary faults in imbricate fashion (horses) occur as planar units with straight sides. These duplex structures are significant manifestation of the processes involved in the internal domain of the Siwalik rocks and they represent the mechanism of the slip transfer processes from one glide horizon at depth to another at shallower depth. This process of slip transfer and formation of horses are responsible for the formation of structural thickening, duplex growth and mass addition to the moving thrust complex. In the present area the Siwalik strata showing duplex structures have undergone structural thickness in their internal domain mainly in Dafla formation. The lithology in the foreland basin dominantly composed of the sandstones (Greywacke and lithic -arenite), siltstone, claystone, carbonaceous shale, boulder beds in the upper part. In the microscopic scale, the lithological response in the structural development is well documented as pressure solution seams, elongated quartz and feldspar grains, bent micas, kinked biotites, strained quartz grains, healed grains, and micro-fractures. The basement asperities play a significant role as the moving thrust front produced a major lateral ramp. The differential movement of the mountain front on both sides of the ramp is visible in the field as the mountain front of the western part of the Kameng River move more southeastward compared to the eastern part. The tectonic evolution of the area initiated with the development of the MBT, which resulted in

  10. Structure of the Millen Schist Belt (Antarctica): Clues for the tectonics of northern Victoria Land along the paleo-Pacific margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Crispini, Laura; Federico, Laura; Capponi, Giovanni

    2014-04-01

    Northern Victoria Land (Antarctica) belonged to the active proto-Pacific margin of Gondwana, which was the site of convergence during the Paleozoic. This study provides new insights into the structural architecture of northern Victoria Land, focusing on the boundary area between the Bowers and Robertson Bay terranes, i.e., in the Millen Schist Belt. It is a high-strain equivalent of the adjoining terranes, presently delimited by the Leap Year and the Handler faults. Our study reveals that these two faults overprint a preexisting transitional deformational boundary and are associated with a significant syntectonic circulation of fluids and mineralization. The Millen Schist Belt consists of two lithotectonic packages, juxtaposed along the Crosscut-Aorangi duplex thrust system, related to late Ross deformation. As there is increasing evidence of a post-Ross contractional event in northern Victoria Land, we suggest that the structural architecture of the Bowers-Robertson Bay terrane boundary results from a long-lasting SW-NE contractional regime, during the Ross-Delamerian Orogeny and still active afterward. This points to an extension of the Australian Lachlan Orogeny in Antarctica. The similarity of the structural architecture, the gold mineralization, the rock type, and the age supports the correlation of the Bowers and the Robertson Bay terranes with the Stawell Zone of the Lachlan Fold Belt. In our new tectonic scenario the Lanterman Fault (northern Victoria Land) plays the same role as the Moyston Fault (southeastern Australia), and the Leap Year and Handler faults correlate with the "intra-zone faults" of the Stawell Zone (e.g., the Ararat-Stawell Fault Zone).

  11. Database of Active Structures From the Indo-Asian Collision

    NASA Astrophysics Data System (ADS)

    Styron, Richard; Taylor, Michael; Okoronkwo, Kelechi

    2010-05-01

    The ongoing collision of India and Asia has produced a vast system of folds and faults, many of which are active today, as evidenced by such recent deadly earthquakes as the 12 May 2008 Sichuan quake [Parsons et al., 2008]. Understanding these events requires knowledge of the region’s geologic structures. Taylor and Yin [2009] have assembled HimaTibetMap-1.0, a multiformat, comprehensive database of first-order active structures in central Asia that may aid researchers, educators, and students in their studies of Indo-Asian tectonics. For example, this database may be used by seismologists, geodesists, and modelers to identify structures in particular locations that contribute to active deformation, or it may be used by teachers to illustrate concepts such as continental collision or distributed deformation of continents.

  12. Active tectonics of North Haji Abad (Hormozgan region) in south of Iran

    NASA Astrophysics Data System (ADS)

    shafiei bafti, amir

    2014-05-01

    Zagros Active Fold -thrust Belt is situated in the northern margin of the Arabian Plat and formed due to shortening, thickening and uplift of tethys sedimentary basin between Arabian and Iranian plates. In this study, the rate of uplift in the northern margin of the Zagros Mountains in southern Iran are examined. The Zagros fault zone in this region is composed of a set faults, including Deragah, Haji Abad, Tezerj and several other faults and also we call these branches from F1 to F8. These segments puts from northwest to the East- Southeast. Based on field surveys and Geological maps, we prepared a structural map from major faults of Zagros fault system for identify faults pattern and estimating of uplift rate movements in Zagros fault. Three methods used to calculation of uplift rate: A: Asymmetry index Accordance with the procedure, in studied area, northeast drainage are longer than of southwest drainage and east minor drainages also longer than the west side drainages, Uplifting in this region is characterized by mentioned asymmetry factor. The amount of this index is AF=71.81. B. Interaction between the faults movements and erosion process We comparison contrast between uplifting movement rates and erosion rates in different parts of studied region by Smf and other indexes. Average amount of Smf=1.1. C. Evaluation of Uplift rate of alluvial terraces was performed by sediment ages and terraces height. We surveyed Quaternary facieses which have ages between 17,000 and 30,000 years old. the rate of uplifting for each fault is follows : Deragah fault and F8 fault between 1.0 to 1.85mm per year and F7, F6, F5, and F4 faults, have a rate Uplifting between 0.6 to 1.0 mm per year and the rate of Uplift for other faults is between 0.04 to 0.06 mm per year. According to our studies, uplift rates in north -east and south-west more than other regions The minimum rate at different stations are about 0.5mm/y to 0.93mm/y and its maximum is 0.88 mm/y to 1.47mm/y.

  13. Tracing the evolution of crustal-scale, transient permeability in a tectonically active, mid-crustal, low-permeability environment by means of quartz veins

    NASA Astrophysics Data System (ADS)

    Sintubin, M.

    2013-12-01

    In mid-crustal, low-permeability environments pervasive fluid flow is primarily driven by the production of internally-derived metamorphic fluids, causing a near permanent state of near-lithostatic fluid-pressure conditions. In a tectonically active crust, these overpressured fluids will generate intermittently an enhanced permeability that will facilitate fluid flow through the crust. The High-Ardenne slate belt (Belgium, France, Germany) can be considered as a fossil (late Palaeozoic) analogue of such mid-crustal, low-permeability environment at the brittle-plastic transition (depth range from 7 to 15 km). Low-grade metamorphic (250°C-350°C), predominantly fine-grained, siliciclastic metasediments were affected by a contraction-dominated deformation, materialized by a pervasive slaty cleavage. Quartz veins, abundantly present in the slate belt, are used as a proxy for the enhanced permeability. Detailed structural, petrographical, mineralogical and geochemical studies of different quartz-vein occurrences has enabled to reconstruct the evolution of the crustal-scale permeability , as well as to constrain the coupled fluid-pressure and stress-state evolution throughout the orogenic history. Extensive veining on a regional scale seems confined to periods of tectonic stress inversion, both at the onset (compressional stress inversion) and in the final stages (extensional stress inversion) of orogeny. Firstly, compressional stress inversion is expressed by pre-orogenic bedding-normal extension veins, consistently arranged in parallel arrays, followed by early orogenic bedding-parallel hybrid veins. Fluid-inclusion studies demonstrate near-lithostatic to supralithostatic fluid pressures, respectively. Secondly, discordant veins, transecting the pre-existing cleavage fabric, are interpreted to be initiated shortly after the extensional stress inversion, reflecting the late-orogenic extensional destabilisation of the slate belt. Veining again occurred at high fluid

  14. Upper plate responses to active spreading ridge/transform subduction: The tectonics, basin evolution, and seismicity of the Taita area, Chile Triple Junction

    SciTech Connect

    Flint, S.; Prior, D. ); Styles, P.; Murdie, R. ); Agar, S.; Turner, P. )

    1993-02-01

    Integrated field geophysical, structural and stratigraphic studies are attempting to elucidate the mechanisms and consequences of the Late Miocene-present day subduction of the Chile Ridge triple junction system. Preliminary data indicate a shallow plane of seismicity at about 15 km to 20 km depth below the Taitao peninsula. The depths correspond to the predicted depth range of subducted upper ocean crust. The calculated Bouguer anomaly map cannot be explained by the upper plate geology, suggesting that gravity is influenced by heterogeneities in the subducting oceanic plate. Seismic data imply that a subducted transform system underlying the inner Taitao Peninsula is still an active structure. A series of Middle-Late Tertiary sedimentary basins lie inboard of the triple junction. Within the Cosmelli basin, abrupt marine to continental facies transitions give clear evidence of base level changes. The amount of basinward shift of facies across sequence boundaries gets progressively greater up stratigraphy, indicating progressively greater base level changes. The lower part of the basin fill is folded and then thrusted eastward as a series of imbricates, while the overlying, greater thickness of fluvial sediments are only gently tilted westwards. We provisionally interpret this geometry to indicate that the early basin fill was deforming due to contractional tectonics while the later basin fill was being deposited. This complex basin history may reflect initiation and development of triple junction subduction.

  15. Structural geology and tectonic implications of a part of the northern Stillwater Range, Nevada

    SciTech Connect

    Plank, G.L.

    1996-06-01

    The east flank of the Stillwater Range adjacent to the Dixie Valley geothermal area near Fallon, Nevada, hosts one of the best exposures of Mesozoic thrust faults in the Basin and Range province. The rangefront comprises four imbricate lithologic packages. The Triassic Star Peak Group sits structurally lowest beneath Triassic phyllite of the Fencemaker-B allochthon. Bedded quartz arenite of the Jurassic Boyer Ranch Formation lies above the phyllite along the Boyer thrust. Rocks of the Humboldt Igneous Complex sit structurally highest in brittle fault contact with both the arenite and phyllite. The Fenoemaker thrust is a major Jurassic structure in west-central Nevada which places Triassic basinal strata northeastward over shelf carbonates of the Star Peak Group, which depositionally overlie the Golconda allochthon. Locally, the Fencemaker thrust lies within a high strain zone characterized by mylonitic marble, phlogopite-bearing calcareous argillite schist, boudinaged siliciclastics, and phyllonite. Consistently southeast-dipping penetrative foliations and down-dip stretching lineations in these Triassic metasedimentary rocks are, however, inconsistent with northeast directed thrusting. This suggests that northwest vergent thrusting also occurred here, possibly along the Willow Creek thrust. In contrast to the Fencemaker thrust, the Boyer thrust is characterized by close folds in the hanging wall, a narrow zone of fault gouge, and crenulation of footwall foliations, indicating a less ductile regime. East dipping Tertiary extensional faults expose these thrusts along the Stillwater rangefront and displace the thrust sheets downdip beneath Dixie Valley. The geometry of these thrust sheets in the subsurface is critical to the production of geothermal wells in the area.

  16. Structural Style and Tectonic Evolution of the Domeyko Range, North Chilean Precordillera

    NASA Astrophysics Data System (ADS)

    Amilibia, A.; Sabat, F.; McClay, K.; Munoz, J.; Roca, E.; Chong, G.

    2007-05-01

    The structure of the Domeyko Precordillera is dominated by a number of elongated N-S trending basement ridges. These ridges were exhumed by steep reverse N-S faults that deformed the Mesozoic-Cenozoic cover. The vergence of the fault system varies along the strike, conferring an apparent doubly-vergent pop-up geometry to the axial zone. New structural data show that these geometries resulted from the reactivation and inversion of both the Triassic and the Late Jurassic - Early Cretaceous extensional faults. Typical basement short-cut faults are present. Basement faults uplifted the Paleozoic rocks of the hanging wall and transferred part of the shortening to the Mesozoic - Cenozoic cover of the footwall. Both thick and thin-skinned fault systems have a common origin and root in a rear basement fault. Fieldwork provided little evidence of strike-slip movement in these N-S basement faults. Tertiary porphyry intrusion emplacement was strongly controlled by basement faults that facilitated ascension of magma and its intrusion into the sedimentary cover as sills in the hanging wall anticlines. The Late Eocene-Early Oligocene giant porphyry copper bodies (Chuquicamata, La Escondida, El Salvador) located in the Domeyko Range show an adakitic affinity. This affinity together with structural evidence indicates that porphyry emplacement occurred at the end of the basement-involved contractional stage and points to the existence of a flat-slab subducting beneath the Central Andes (22°-26° SL). The eastward migrating compressional regime in the upper plate from the Late Cretaceous onward could be attributed to the shallowing of this slab.

  17. Electrical resistivity structure at the northern margin of the Tibetan Plateau and tectonic implications

    NASA Astrophysics Data System (ADS)

    Xiao, Qibin; Zhao, Guoze; Dong, Zeyi

    2011-12-01

    The ENE-WSW-striking Altyn Tagh Fault (ATF) and the WNW-ESE-trending western Qilian Mountains define the northern margin of the Tibetan Plateau. New magnetotelluric data were collected along three profiles crossing the eastern section of the ATF and the southern Qilian Mountains. The basic sounding bandwidth ranged from 0.003 to 7000 s. The transverse electric and transverse magnetic mode data sets were inverted into resistivity sections using a conventional two-dimensional (2D) inversion code, and data at periods of 0.3333-5464 s were inverted using a commonly employed three-dimensional (3D) code. The 3D results constrain the interpretation of the 2D models, and the final interpretative resistivity models show that lithospheric structures are spatially variable along the ATF and across southern Qilian. In profiles across the ATF, the main fault is imaged as a vertical resistivity boundary, and the high-resistivity body in the western profile extends about 15 km deeper than the corresponding body in the eastern profile. Positive flower structures are apparent in the western profile but are only weakly visible in the eastern profile. These observations suggest that the depth of the ATF is spatially variable. Mantle resistivity images indicate a relatively cold and rigid Tarim lithosphere, which is consistent with a geodynamic model of oblique subduction of the Tarim Basin below the ATF. A high-resistivity body in the crust of southernmost Qilian indicates a huge thick-skinned structure. Low-resistivity bodies at the crust-mantle boundary south of the main ATF are presumed to form a weak layer beneath northern Tibet.

  18. Geologic structure and tectonics of inner continental borderland of northern Baja California

    SciTech Connect

    Legg, M.R.; Victor, W.O.; Francisco, S.V.

    1987-05-01

    Detailed marine geophysical surveys of the inner California continental borderland west of northern Baja California show that the region is underlain by two major, northwest-trending, Quaternary, dextral wrench fault systems. The San Clemente fault system lies along the western part of the inner borderland and is delineated by the San Clemente and San Isidro fault zones. Together, these fault zones connect to form a long (300 km), narrow (5-10 km), continuous zone of faulting that is very similar to the larger San Andreas fault system onshore. The Agua Blanca fault system is a complex zone of shear delineated by three or more subparallel wrench fault zones in the eastern part of the inner borderland. The westernmost San Diego Trough-Bahia Soledad fault zone consists of relatively long (50 km), continuous, main fault traces which cut the Quaternary sediments of the nearshore basin trough. The Coronado Bank-Agua Blanca fault zone is more complicated, with numerous discontinuous, subparallel, right- and left-stepping, anastomosing fault traces which are associated with significant structural relief. A nearshore zone of faults, marked by the Newport-Inglewood-Rose Canyon fault zone in the north and the Estero-Descanso fault zone in the south, parallels the coast and defines the eastern boundary of the California continental borderland structural province. All of these eastern fault zones merge into the transpeninsular Agua Blanca fault, and their N30/sup 0/W trend differs substantially from the trend of the major peninsular ranges fault zones.

  19. Salt tectonics and gravity driven deformation: Structural guidelines for exploration in passive margin

    SciTech Connect

    Mauduit, T.; Gwenael G.; Brun, J.P.

    1995-08-01

    The West African Margin, (Gulf of Guinea) presents spectacular examples of gravity driven deformation above a salt decollement (i.e. growth faulting, rafts, diapirs and contractional structures) which have been documented by numerous Oil and Gas investigations. Seismic data demonstrate that the variation of deformation styles in space and time appear to be function of: regional geometry of the margin (i.e. value of basal slope and presence/absence of residual reliefs below the salt layers) and, mode, rate and repartition of sedimentation. The role and effects of the above parameters were analyzed using laboratory modeling investigation based on basic structural patterns identified through seismic data. Models are built with sand and silicone putty, that respectively represent the frictional behavior of upper Cretaceous-Cenozoic cover and the viscous behavior of the upper Aptian salt. They are scaled to fit observed natural configurations. Results are compared with examples from the Gulf of Guinea on the basis of seismic data. This approach allowed to better understand the evolution of the margin and therefore the reservoir distributions and traps geometries.

  20. Sedimentation, structure and tectonics of the Umpqua group (paleocene to early eocene), southwestern Oregon

    NASA Astrophysics Data System (ADS)

    Ryberg, P. T.

    A major change in sedimentary and structural style occurs in Eocene strata exposed along the southern margin of the Oregon Coast Range. Lithofacies of the early Tertiary Umpqua Group are described, mapped and assigned to likely depositional environments. Submarine fan and slope facies (upper Roseburg Formation) overlie Paleocene basaltic basement rocks to the north, whereas fluvial, deltaic and shallow marine facies (Lookingglass Formation) overlie Franciscan equivalent strata to the south along the flank of the Klamath Mountains. These two depositional systems are gradational into one another, and were prograding northwestward until about 52 Ma. Means of clast compositions from sandstones and conglomerates from both the Roseburg and Lookingglass Formations suggest derivation from identical recycled orogen or arc continent collision sources in the Klamath Mountains.

  1. Structure, stratigraphy, and tectonics of the Dixie Valley geothermal site, Dixie Valley, Nevada

    SciTech Connect

    Plank, G.L.

    1995-12-31

    Tens of millions of dollars have been spent drilling high-temperature wells within or in the vicinity of the Dixie Valley geothermal reservoir which have ultimately proven to be unproductive. Because the potential exists for further development of the field(s), it is important to assess the details of rock geometry and type on both sides of the range front fault which seems to delineate in some fashion the geothermal reservoir. There exists a large body of industry surface and subsurface geological and geophysical data in the area of the geothermal site. Exploration and production to date have proven at least one large geothermal field to exist in Dixie Valley, and there remains the potential for others to be found in parts of the valley which have seen little or no deep drilling to date. However, a number of wells with temperatures high enough for power generation have been unsuccessful in penetrating the fractures required for production. These wells occur both between other successful production or injection wells and outside the boundaries of the known reservoir. From the relatively large number of these dry wells and dry legs it is readily apparent that an improved knowledge and understanding of the details of the local geology should be obtained before additional drilling is undertaken. The geology is complex and most new wells continue to add to the apparent complexity. A new strategy for enhancing the resolution of the geothermal reservoir involves the detailed mapping of the footwall of the range front fault, exposed along the east face of the Stillwater Range, in order to infer the structure of the slip face of the hanging wall. After detailed maps and structural models are well established and projected beneath the geothermal site, seismic reflection data will be reprocessed in support of the hypothesized subsurface architecture.

  2. Structural evolution of the Rieserferner Pluton: insight into the localization of deformation and regional tectonics implications

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio

    2016-04-01

    The Rieserferner pluton (RFP, Eastern Alps, 32.2±0.4 Ma, Romer et al. 2003) represents a relatively deep intrusion (12-15 km; Cesare, 1994) among Periadriatic plutons. The central portion of the RFP consists of dominant tonalites and granodiorites that show a sequence of solid-state deformation structures developed during pluton cooling and exhumation. This sequence includes: (1) quartz veins, filling two set of steeply-dipping joints trending respectively E-W and NW-SE, commonly showing a millimetric grain size and associated with strike-slip displacement. (2) Quartz- and locally epidote-filled shallowly E-dipping joint set, commonly exploited as discrete derived from both the quartz veins and the host tonalite. These mylonites show a composite sense of shear with a first stage of left-lateral strike-slip followed by a top-to-E dip-slip (normal) movement. The synmylonitic assemblage includes biotite + plagioclase + white mica + epidote ± sphene ± garnet. (3) Set of N-S-trending steeply-dipping joints. These joints are concentrated in zones 1-2 m wide, separated by otherwise un-jointed domains a few tens to hundred meters wide, and are commonly exploited as brittle-ductile faults with dominant dip-slip (normal) kinematics. The mineral assemblage of fault rocks includes white mica + calcite ± chlorite ± quartz. The joints/faults are locally involved in folding. (4) Mafic dikes, dated at 26.3±3 Ma (Steenken et al., 2000), locally injecting the N-S trending set of joints. (5) Cataclasite- and pseudotachylyte-bearing faults also forming a set of steeply-dipping N-S-trending structures. These faults are commonly associated with epidote veins surrounded by bleaching haloes. (6) Zeolite-bearing faults marked by whitish cataclasites, fault gouges and mirror-like surfaces. These faults have a complex oblique- to strike-slip kinematics with an overall N-S trending lineation. As observed in other plutons (e.g. Adamello; Pennacchioni et al., 2006), the network of

  3. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  4. Paleozoic structure of Middle Tien Shan (Kyrgyzstan Central Asian Orogenic Belt): Insights on the polarity and timing of tectonic motions, subductions, and lateral correlations

    NASA Astrophysics Data System (ADS)

    Jourdon, Anthony; Loury, Chloé; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    The structure and Palaeozoic tectonic evolution in Kyrgyz and Chinese Tien Shan Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are numerous and conflicting models about the polarity of tectonic motions in the Paleozoic, the number of continental blocks and oceanic basins involved and the timing of tectonic events. In this study we propose new maps and structural cross-sections of Middle and South Kyrgyz Tien Shan (TS). These cross-sections allow us to highlight an overall South-verging structure in the Middle TS, with a thick-skin style involving the crystalline basement. This deformation occurred during the Early Carboniferous, and is sealed by an Upper Carboniferous unconformity. We ascribe this structure to an Upper Plate deformation linked to north-dipping subduction below Middle TS. In contrast, the South TS exhibits a north-verging structure, linked to south-dipping subduction, which is evidenced by an accretionary prism, a volcanic arc, and high-pressure rocks (Loury et al., 2015), and is correlated to similar structures in the Chinese TS (e.g., Charvet et al., 2011). Based on these observations, we propose a new interpretation of the tectonic evolution of the Middle and South TS CAOB. The resulting model comprises a long-lived north-dipping subduction of the Turkestan Ocean below the Middle TS-Karazakh Platform and a short-lived south-dipping subduction of a marginal back-arc basin below the Tarim. Consequently, the South TS is interpreted as a rifted block from the Tarim. Finally, the docking of the large Tarim Craton to the CAOB corresponds to a rapid collision phase (320-300 Ma). This put an end to the long-lived Paleozoic subduction history in the CAOB. Charvet, J., Shu, L., et al., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54, 166-184. Loury, C. , Rolland, Y., Guillot S., Mikolaichuk, A.V., Lanari, P., Bruguier, O., D.Bosch, 2015. Crustal-scale structure of South Tien Shan

  5. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  6. Crustal and upper mantle structure beneath the NE Tibetan Plateau and its tectonic implication

    NASA Astrophysics Data System (ADS)

    Li, H.; Zheng, D.; Shen, Y.; Ouyang, L.; Li, X.; Tan, J.

    2015-12-01

    The crustal and upper mantle velocity structures in the northeastern Tibetan Plateau are obtained from joint analysis of receiver functions and Rayleigh wave dispersion curves derived from teleseismic earthquake arrivals and ambient noise seismic data. The resulting velocity model reveals a close correlation between the thick (>60 km) crust and the presence of an intra-crustal low-velocity zone, which is detected beneath the Qiangtang and Songpan-Ganzi terranes as well as the northwestern Qilian orogen. However, the high Vp/Vs ratio is found only beneath the Qiangtang and Songpan-Ganzi terranes. The crustal low-velocity zone is not observed beneath the west Qinling and southeastern Qilian orogens, which have a relatively thin (~50 km) crust, indicating that crustal channel flow is not the primary mechanism by which the northeastern Tibetan plateau grows. In contrast to the widespread low velocities in the mid-to-lower crust beneath the Qiangtang and Songpan-Ganzi terranes, the upper mantle in these two regions shows alternating high and low velocity anomalies. A continuous low-velocity zone from the mid-to-lower crust down to 140 km beneath the eastern Kunlun fault suggests an induced local mantle upwelling after the delamination of the lithosphere.

  7. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  8. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  9. Exploration of tectonic structures with GOCE in Africa and across-continents

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla

    2015-03-01

    The gravity anomaly field over the whole Earth obtained by the GOCE satellite is a revolutionary tool to reveal geologic information on a continental scale for the large areas where conventional gravity measurements have yet to be made. It is, however, necessary to isolate the near-surface geologic signal from the contributions of thickness variations in the crust and lithosphere and the isostatic compensation of surface relief. Here Africa is studied with particular emphasis on selected geological features which are expected to appear as density inhomogeneities. These include cratons and fold belts in the Precambrian basement, the overlying sedimentary basins and magmatism, as well as the continental margins. Regression analysis between gravity and topography shows coefficients that are consistently positive for the free air gravity anomaly and negative for the Bouguer gravity anomaly. The error and scatter on the regression are smallest in oceanic areas, where it is a possible tool for identifying changes in crustal type. The regression analysis allows the large gradient in the Bouguer anomaly signal across continental margins to be removed. After subtracting the predicted effect of known topography from the original Bouguer anomaly field, the residual field shows a continent-wide pattern of anomalies that could be attributed to regional geological structures. A few of these are highlighted, such as those representing Karoo magmatism, the Kibalian foldbelt, the Zimbabwe Craton, the Cameroon and Tibesti volcanic deposits, the Benue Trough and the Luangwa Rift. A reconstruction of the pre-break up position of Africa and South America (the plates forming West Gondwana) is made for the residual GOCE gravity field. The reconstruction allows the positive and negative anomalies to be compared across the continental fragments, and so helps identify common geologic units that extend across both the now-separate continents.

  10. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    USGS Publications Warehouse

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of

  11. The Structural Control and Tectonic Evolution of the Campbellton Region, northern New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Craggs, Simon D.

    The Campbellton region is transected by a network of ENE-trending dextral transcurrent faults and NNE-trending high-angle reverse faults. A fieldwork-based study was conducted to determine the region's kinematic response to Middle Paleozoic deformation in order to assess the potential for the occurrence of a structural hydrocarbon trap. Detailed study of five major faults (the Black Lake, Squaw Cap, Sugar Loaf, Sellarsville and Sellarsville East faults) and their associated damage zones indicate that during the Middle Paleozoic the region was part of a larger dextral transpressive system that extended north into the Gaspe Peninsula. The timing and style of fault development suggest that boundary conditions present during deformation restricted lateral extension of the region, which indicates that the Middle Silurian Salinic Orogeny had only a minor effect on rocks of the study area. The Sellarsville and Sellarsville East faults are thought to have moved first, during the Acadian Orogeny, as back thrusts within a NW-propagating foreland thrust belt. This was followed by dextral transcurrent movement along the ENE-trending faults and counter-clockwise rotation of the Sellarsville block. Damage-zone assessment suggests that, in general, all the faults acted as a partial barrier to flow during deformation. Many of the essential elements for hydrocarbon-trap development are in place within the study area. While sporadic distribution of reservoir rocks of the Upper Silurian West Point Formation limits our ability to locate hydrocarbon target sites, two areas have been identified where major lineaments interact with anticlinal hinges, and potential reservoir rocks are overlain by volcanic rocks of the Lower Devonian Val d'Amour Formation.

  12. Continental tectonics in the aftermath of plate tectonics

    NASA Technical Reports Server (NTRS)

    Molnar, Peter

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.

  13. Episodic activity of a dormant fault in tectonically stable Europe: The Rauw fault (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Verbeeck, Koen; Wouters, Laurent; Vanneste, Kris; Camelbeeck, Thierry; Vandenberghe, Dimitri; Beerten, Koen; Rogiers, Bart; Schiltz, Marco; Burow, Christoph; Mees, Florias; De Grave, Johan; Vandenberghe, Noël

    2017-03-01

    Our knowledge about large earthquakes in stable continental regions comes from studies of faults that generated historical surface rupturing earthquakes or were identified by their recent imprint in the morphology. Here, we evaluate the co-seismic character and movement history of the Rauw fault in Belgium, which lacks geomorphological expression and historical/present seismicity. This 55-km-long normal fault, with known Neogene and possibly Early Pleistocene activity, is the largest offset fault west of the active Roer Valley Graben. Its trace was identified in the shallow subsurface based on high resolution geophysics. All the layers within the Late Pliocene Mol Formation (3.6 to 2.59 Ma) are displaced 7 m vertically, without growth faulting, but deeper deposits show increasing offset. A paleoseismic trench study revealed cryoturbated, but unfaulted, late glacial coversands overlying faulted layers of Mol Formation. In-between those deposits, the fault tip was eroded, along with evidence for individual displacement events. Fragmented clay gouge observed in a micromorphology sample of the main fault evidences co-seismic faulting, as opposed to fault creep. Based on optical and electron spin resonance dating and trench stratigraphy, the 7 m combined displacement is bracketed to have occurred between 2.59 Ma and 45 ka. The regional presence of the Sterksel Formation alluvial terrace deposits, limited to the hanging wall of the Rauw fault, indicates a deflection of the Meuse/Rhine confluence (1.0 to 0.5 Ma) by the fault's activity, suggesting that most of the offset occurred prior to/at this time interval. In the trench, Sterksel Formation is eroded but reworked gravel testifies for its former presence. Hence, the Rauw fault appears as typical of plate interior context, with an episodic seismic activity concentrated between 1.0 and 0.5 Ma or at least between 2.59 Ma to 45 ka, possibly related to activity variations in the adjacent, continuously active Roer Valley

  14. Evolution of the Late Pleistocene Aspe River (Western Pyrenees, France). Signature of climatic events and active tectonics

    NASA Astrophysics Data System (ADS)

    Nivière, Bertrand; Lacan, Pierre; Regard, Vincent; Delmas, Magali; Calvet, Marc; Huyghe, Damien; Roddaz, Bernard

    2016-03-01

    We make use of the cosmogenic nuclide 10Be exposure to date an alluvial terrace of the Aspe River in the foothills of the northwestern Pyrenees. Initially ascribed to the Rissian glaciation, our dating shows that the terrace was abandoned at 18 ± 2 kyr. In reference to the Late Pleistocene climatic chronology, two kinds of terraces can be distinguished: high-standing fill terraces probably deposited during glacial events and lower cut-in-fill and strath terraces cut during the postglacial river incision. A part of the terrace aggradations could have occurred during the Würmian glacial episodes. Hence, the dated terrace fits in with the prevailing view of incision during climate transitions. Our study also shows that elevation is not a good criterion of terrace correlation, which should be better carried out on the basis of absolute dating. In addition, this dating also suggests a potential Late Pleistocene fault reactivation of the Mail Arrouy thrust in this tectonically active area of the Western Pyrenees.

  15. Crustal structure and tectonic framework of the Canadian Arctic margin: New insights on the development of the Amerasia Basin

    NASA Astrophysics Data System (ADS)

    Oakey, G. N.; Saltus, R. W.; Chian, D.; Jackson, H. R.; Shimeld, J.; Brozena, J. M.; Funck, T.; Dahl-Jensen, T.

    2013-12-01

    A significant volume of new Arctic geophysical data have been collected over the last decade during collaborative Canadian, American, and Danish research expeditions. These data have been integrated with pre-existing geophysical data sets (e.g., US Naval Research Lab airborne gravity and magnetic surveys) to constrain models for the crustal structure and tectonic evolution of the Amerasia Basin. 2-D gravity and magnetic models have been generated for cross-sections of the Canadian margin, Chukchi Plateau, Alpha Ridge and Lomonosov Ridge. The models are constrained using seismic reflection and refraction data. The models illustrate the variability of different segments of the rifted margins as well as the distribution of magnetized crust and volcanic units. Density values for all of the models are based on standard velocity-density relationships. The models support the velocity analysis of the sonobuoy data that true oceanic crust is present only in a narrow central portion of Canada Basin and that most of the basin is underlain by hyper-extended continental crust and/or 'transitional' crust with localized high-velocity/density sub-crustal layers. Moho depths beneath Canada Basin range from 18 to 22 km. Moho depths beneath the Alpha Ridge are considerably deeper (25 to 30 km) than those in the adjacent Canada Basin. The upper crust of Alpha Ridge is modeled with continental densities in the upper crust underlain by a thick lower crust with an intermediate density. This crustal character is consistent with the formation of the Alpha Ridge by intrusion of a large igneous province (the High Arctic Large Igneous Province - HALIP) into continental crust.

  16. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    USGS Publications Warehouse

    Miller, John J.; von Huene, Roland; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  17. Tectonic evolution of northwestern Imbrium of the Moon that lasted in the Copernican Period

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi; Haruyama, Junichi; Morota, Tomokatsu; Ohtake, Makiko; Matsunaga, Tsuneo

    2016-09-01

    The formation ages of tectonic structures and their spatial distributions were studied in the northwestern Imbrium and Sinus Iridum regions using images obtained by Terrain Camera and Multiband Imager on board the SELENE spacecraft and the images obtained by Narrow Angle Camera on board LRO. The formation ages of mare ridges are constrained by the depositional ages of mare basalts, which are either deformed or dammed by the ridges. For this purpose, we defined stratigraphic units and determined their depositional ages by crater counting. The degradation levels of craters dislocated by tectonic structures were also used to determine the youngest limits of the ages of the tectonic activities. As a result, it was found that the contractions to form mare ridges lasted long after the deposition of the majority of the mare basalts. There are mare ridges that were tectonically active even in the Copernican Period. Those young structures are inconsistent with the mascon tectonics hypothesis, which attributes tectonic deformations to the subsidence of voluminous basaltic fills. The global cooling or the cooling of the Procellarum KREEP Terrane region seems to be responsible for them. In addition, we found a graben that was active after the Eratosthenian Period. It suggests that the global or regional cooling has a stress level low enough to allow the local extensional tectonics.[Figure not available: see fulltext.

  18. Crustal structure of the Amundsen Sea Embayment, West Antarctica: Implications for its tectonic evolution from a geophysical dataset.

    NASA Astrophysics Data System (ADS)

    Kalberg, Thomas; Gohl, Karsten

    2013-04-01

    The Amundsen Sea Embayment of West Antarctica is a centrepiece in understanding the history of the New Zealand - Antarctica breakup. This region plays a key role in plate kinematic reconstruction of the southern Pacific from the collision of the Hikurangi Plateau with the Gondwana subduction margin to the evolution of the West Antarctic Rift System. During two RV Polarstern cruises in 2006 and 2010, a large geophysical dataset was collected consisting of seismic refraction and reflection profiles, shipborne gravity and helicopter magnetic measurements. The data provide constraints on the crustal architecture, the structural evolution and the tectonic block formation during and after the Cretaceous continental breakup. We present two continental rise-to-shelf P-wave velocity models which were derived from forward travel-time modelling of ocean bottom hydrophone recordings which provide an insight into the crustal and upper mantle architecture beneath the Amundsen Sea Embayment for the first time. The sedimentary sequences and the basement were constrained by seismic reflection data. A 2-D density-depth model supports and complements the P-wave modelling. Observed P-wave velocities show 10 to 14 km thick crust of the continental rise and up to 28 km thick crust beneath the middle and inner shelf. The crust of the continental rise is characterized by a small gradient in thickness. Including horst and graben structures this can be associated with wide-mode rifting. A high velocity zone with velocities ranging between 7.1 and 7.6 km/s indicate magmatic underplating of variable thickness along the entire transect. We classify this margin as one of volcanic type rather than magma poor because of the high-velocity zone and seaward dipping reflectors observed from the seismic reflection data. We discuss the possibility of a serpentinized upper mantle caused by seawater penetration at the Marie Byrd Seamounts. The crustal structure, distinct zones in potential field

  19. Extensional tectonics on continents and the transport of heat and matter

    NASA Technical Reports Server (NTRS)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  20. Tectonic interpretation of the 13 february 2001, mw 6.6, El Salvador Earthquake: New evidences of coseismic surface rupture and paleoseismic activity.

    NASA Astrophysics Data System (ADS)

    Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.

    2009-04-01

    In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.

  1. Tectonics of the central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.

    1989-01-01

    Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.

  2. Identification and interpretation of tectonic features from ERTS-A imagery. [correlation of tectonic and structural properties with known mineral deposits in Nevada, California, and Arizona

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A set of criteria characterizing known mineralized areas are: (1) occurrence at structural bends, discontinuities, complex deformations along fault zones and intersections; (2) complex terrain textures produced by fracture intersections; (3) color and tone anomalies produced by igneous intrusives, alteration effects, and oxidation. Significant fracture systems which appear to be most commonly related to mineralization in central and northeastern Nevada trend northeast-southwest, north-south, and north-northwest. In the area from Goldfield and Beatty, Nevada, to south of Las Vegas, ERTS-1 and Skylab imagery have been examined together to study an apparent correlation of mineralized areas with suspected hydrothermal alteration effects. It was observed that areas of mineralization are of complex structure, usually cut by many fractures, and sometimes have a similar mottled or variegated appearance. Although the Beatty-Rhyolite mining district is now largely inactive, several analogous areas not known to be mineralized have been identified. Identification of specific mineral prospects within general targets requires extensive field work and detailed geophysical exploration.

  3. Structure and Tectonics of Subophiolitic Mélanges in the Western Hellenides (Greece) and Implications for Ophiolitic Root Zones in the Balkans

    NASA Astrophysics Data System (ADS)

    Ghikas, Constandina; Dilek, Yildirim; Rassios, Anne E.

    2010-05-01

    The Jurassic Vourinos ophiolite is part of the Western Hellenide ophiolite belt in Greece and rests tectonically on the Pelagonian ribbon continent. The Vourinos and coeval Pindos ophiolite to the west display suprasubduction-zone geochemical affinities, and represent remnants of oceanic lithosphere formed in a rifted incipient arc-forearc setting within the Pindos Basin. In structurally descending order, and from west to east, the subophiolitic mélange beneath the Vourinos ophiolite contains the Agios Nikolaos Formation (ANF) and a rift assemblage, both of which display ENE-vergent thrust faults, shear zones, and folds. The ANF comprises schistose mudstone with pebbles, cobbles, and boulders of arenite and wacke derived from the crystalline basement of Pelagonia. Imbricated along ENE-directed thrust faults and metamorphosed up to lower amphibolite facies, the ANF represents continental rise deposits of the rifted Pelagonian margin. The rift assemblage includes blocks of basaltic lavas, ribbon chert, micritic cherty limestone, metagabbro, dolerite dikes, and serpentinite breccia that are commonly in thrust contact with each other and are tectonically imbricated with the Pelagonian carbonates; however, primary intrusive and depositional contacts are locally well preserved. Gabbro and dolerite dikes are locally intrusive into the recrystallized carbonates and metapelitic rocks of Pelagonia. Lavas display mid-ocean ridge basalt-within plate basalt affinities and represent Upper Triassic rift units that erupted during the separation of Pelagonia from Apulia. Gabbro, dolerite, and serpentinite breccia are the products of a magmatic rifting episode prior to the onset of seafloor spreading in the Pindos Basin. The Vourinos subophiolitic mélange thus consists of passive margin and rift assemblages that were tectonically overridden by the Vourinos ophiolite in the middle Jurassic. Its internal structure and evolutionary history represent a tectonic mélange character of

  4. Select problems in planetary structural geology: Global-scale tectonics on Io, regional-scale kinematics on Venus, and local-scale field analyses on Earth with application to Mars

    NASA Astrophysics Data System (ADS)

    Jaeger, Windy L.

    2005-11-01

    Io's mountains are cataloged in order to investigate their formation. Of the 101 mountains imaged with sufficient coverage and resolution for further analysis, 4 are volcanoes, and 97 are tectonic massifs. Of the 97 tectonic mountains, >=40 abut paterae (volcanic or volcano-tectonic depressions). This juxtaposition is unlikely to be coincidental as the probability of it occurring by chance is ~1.08%. The observed mountain-patera association may be due to orogenic faults acting as conduits for magma ascent, thus fueling patera formation near mountains. As resurfacing buries a shell of material from Io's surface to the base of the lithosphere, its effective radius is reduced and it heats up. The volume change due to subsidence and thermal expansion is calculated as a function of lithospheric thickness. Conservation of volume dictates that this material is uplifted at Io's surface. By estimating the total volume of mountains, Io's average lithospheric thickness is constrained to >=12 km. A kinematic analysis of Nefertiti Corona, Venus, reveals that the corona's interior moved east as a relatively coherent thrust sheet with most deformation occurring on the distal margin. Additionally, an en-echelon array indicates a history of semi-brittle deformation on the northern side of Nefertiti's tectonic annulus. Regional heating from the thermal diapir that formed Nefertiti probably reduced the crustal viscosity and enabled the semi-brittle deformation. The "Odessa Craters" in the Channeled Scabland of eastern Washington State are basaltic ring structures (BRSs) 50-500 m in diameter that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive basaltic dikes. It is postulated that they formed as follows: phreatovolcanic activity disrupted a relatively thin, active lava flow forming rootless cones; the lava flow inflated around the cones; tensile stresses caused concentric fracturing; dikes exploited the fractures and fed lava to

  5. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    prevent the ultimate closure of the Pacific basin and thus the cessation of subduction. More noteworthy is where subduction is not initiating. First, there is no evidence for subduction initiation anywhere within the Atlantic basin (excluding the Caribbean and Scotia), despite the mature 100-200 my age of passive-margin oceanic lithosphere. The formation of the Alpine-Himalayan chain represents the cessation of roughly 10,000 km of subduction at about 35-50 ma, Yet, no new subduction zones have initiated south of India or Africa, the two major continents that participated in the collision. These examples illustrate that subduction does not immediately initiate following a continent-continent collision, and may lag by 10s if not 100s of millions of years. The stoppage of plate tectonics, or even a dramatic reduction in subduction flux, would have significant thermal consequences for the mantle. It would effectively mark a temporary switch to "stagnant-lid" tectonics, analogous to that found on Venus, resulting in a significant increase in global mantle potential temperature (30- 100°C per 100 my) and a possibly widespread increase in magmatic activity. Such a hiatus may have occurred in the Mid-Proterozoic (1.1-1.6Ga), an era characterized by the virtual absence of orogenic activity, the longest-lived passive margin (600 My), and the production of enigmatic "anorogenic" granites found over thousands of kilometers in a belt presently stretching from southwestern to northeastern North America.

  6. Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Krastel, Sebastian; Tomonaga, Yama; Schmincke, Hans-Ulrich; Sumita, Mari; Meydan, Ayşegül Feray; Çağatay, M. Namık; Toker, Mustafa; Kim, Seong-Pil; Kong, Gee-Soo; Horozal, Senay

    2017-01-01

    The structural evolution of Lake Van Basin, eastern Turkey, was reconstructed based on seismic reflection profiles through the sedimentary fill as well as from newly acquired multibeam echosounder data. The major sub-basins (Tatvan Basin and Northern Basin) of Lake Van, bound by NE-trending faults with normal components, formed during the past 600 ka probably due to extensional tectonics resulting from lithospheric thinning and mantle upwelling related to the westward escape of Anatolia. Rapid extension and subsidence during early lake formation led to the opening of the two sub-basins. Two major, still active volcanoes (Nemrut and Süphan) grew close to the lake basins approximately synchronously, their explosive deposits making up >20 % of the drilled upper 220 m of the ca. 550-m-thick sedimentary fill. During basin development, extension and subsidence alternated with compressional periods, particularly between 340 and 290 ka and sometime before 14 ka, when normal fault movements reversed and gentle anticlines formed as a result of inversion. The 14 ka event was accompanied by widespread uplift and erosion along the northeastern margin of the lake, and substantial erosion took place on the crests of the folds. A series of closely spaced eruptions of Süphan volcano occurred synchronously suggesting a causal relationship. Compression is still prevalent inside and around Lake Van as evidenced by recent faults offsetting the lake floor and by recent devastating earthquakes along their onshore continuations. New, high-resolution bathymetry data from Lake Van reveal the morphology of the Northern Ridge and provide strong evidence for ongoing transpression on a dextral strike-slip fault as documented by the occurrence of several pop-up structures along the ridge.

  7. Pleistocene calcrete deposits from southern Spain as indicators of climatic conditions and tectonic activity

    NASA Astrophysics Data System (ADS)

    Herrero, Maria J.; Insua-Arevalo, Juan M.; Garcia-Mayordomo, Julian; Martin-Banda, Raquel

    2014-05-01

    Quaternary calcrete horizons are common weathering products in arid and semi-arid regions of southern Spain. We have analysed a calcrete profile developed within poorly sorted gravels of an alluvial fan. These deposits were sourced from the Carrascoy Range, a fault generated mountain front located in the Internal Zones of the Betic Cordillera (South Spain). During the Pleistocene the climate in southern Spain was dry, either in the form of semi-arid/arid conditions or as seasonal moisture deficits. Alluvial channel incision trends appeared to be disrupted by episodes of alluvial aggradation produced during cold and dry glacial periods. At the top of the aggradational phases, pedogenic processes operated profusely, and, as a result, several calcretes (stage V mature calcrete profiles) were formed. We have analysed one of these calcrete profiles that appears subvertical within the forelimb of a regional fold in relation to the Carrascoy Fault activity. The calcrete consist of a densely cemented hardpan horizon (20 to 40 cm thick) overlain by a thin, 2-cm thick laminar crust. Below the hardpan horizon, carbonate concentrations gradually decrease to clast-coating textures. Calcretes form progressively and a wide range of carbonate phases occur within a single horizon, being the laminar crust the final stage of evolution within a mature pedogenic calcrete deposit, and, therefore, the carbonate within it postdates all the cement phases within the profile. The location of the latest cement phase of the calcrete deposit has been estimated by microscopic observations (to establish their suitability for dating) together with a detailed sedimentological analysis of the calcrete profile in the field. The laminar crust consists of less than 1 mm thick laminae characterized by the alternation of layers of micrite and layers of micrite with ooids, detrital grains and clays indicating environmental conditions in which sedimentation rates were low and episodic. By using radiometric

  8. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  9. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

    USGS Publications Warehouse

    Nelson, R.M.; Kamp, L.W.; Matson, D.L.; Irwin, P.G.J.; Baines, K.H.; Boryta, M.D.; Leader, F.E.; Jaumann, R.; Smythe, W.D.; Sotin, C.; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Pearl, J.C.; Hapke, B.W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R.Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.

    2009-01-01

    Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March–April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).

  10. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Kamp, L. W.; Matson, D. L.; Irwin, P. G. J.; Baines, K. H.; Boryta, M. D.; Leader, F. E.; Jaumann, R.; Smythe, W. D.; Sotin, C.; Clark, R. N.; Cruikshank, D. P.; Drossart, P.; Pearl, J. C.; Hapke, B. W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R. Y.; McCord, T. B.; Mennella, V.; Nicholson, P. D.; Sicardy, B.

    2009-02-01

    Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km 2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March-April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H 2O, CO 2, and CH 4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH 3 frost over a water ice substrate. NH 3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH 3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).

  11. Insights into active tectonics of eastern Taiwan from analyses of geodetic and geologic data

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Jeng; Johnson, Kaj M.; Fukuda, Jun'ichi; Yu, Shui-Beih

    2010-03-01

    About 50 mm/yr of convergence between the Philippine Sea and Eurasian plates is absorbed in eastern Taiwan, and it remains unclear how the convergence is partitioned among active faults. The Longitudinal Valley fault (LVF), the most seismically active fault in eastern Taiwan, creeps at the surface in the south and not in the north; however, it is unclear how much of the fault is locked or creeping at depth. To address these problems, we model Holocene and interseismic deformation of elastic lithospheric blocks moving over a viscoelastic asthenosphere in eastern Taiwan. Through a fully probabilistic scheme, we invert GPS, interferometric synthetic aperture radar, creepmeter, and Holocene marine terrace data for block motions, fault slip rates, and distribution of interseismic creep. The data are explained with four blocks separated by three faults, Central Range fault, LVF, and an offshore fault. The model explains the essential features of interseismic and Holocene deformation. We find that 35-55 mm/yr of slip on the offshore fault is necessary to fit marine terrace uplift rates, which is a larger fraction of the plate convergence than previously recognized. The LVF has a Holocene slip rate of 20-30 mm/yr with approximately equal magnitudes of reverse-slip and left-lateral strike-slip components. Only about half of the surface area of the Longitudinal Valley fault appears to be locked. The southern segment of the LVF creeps at a rate of 5-28 mm/yr down to a depth of 15-20 km, while the northern segment is locked from the surface to a depth of 20 km.

  12. Geodetic and geological evidence of active tectonics in south-western Sicily (Italy)

    <