Science.gov

Sample records for active tectonic zone

  1. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  2. Earthquake mechanisms and active tectonics of the Hellenic subduction zone

    NASA Astrophysics Data System (ADS)

    Shaw, Beth; Jackson, James

    2010-05-01

    We use improved focal mechanisms and centroid depth estimates of earthquakes, combined with GPS velocities, to examine the tectonics of the Hellenic subduction zone, and in particular the processes occurring at both ends of the Hellenic Arc. Nubia-Aegean convergence is accommodated by shallowly dipping thrust-faulting along the subduction-zone interface, as well as by steeper splay faults in the overriding material. From a comparison of observed and expected seismic moment release over the last 100 yr, combined with existing knowledge of the longer-term documented historical record, we confirm earlier suggestions that most (80 per cent) of this convergence is accommodated aseismically, that is, that the subduction zone is uncoupled. This conclusion is robust, even allowing for rare very large earthquakes on splay faults, such as that of AD 365, and also allowing for the contribution of small earthquakes. The downgoing Nubian plate deforms by arc-parallel contraction at all depths, from 200 km seaward of Crete to at least 100 km within the subducting slab. Extensional (T) axes of earthquakes are aligned downdip within the descending slab suggesting that, even if the aseismic prolongation of the slab has reached the 670 km mantle discontinuity, it does not transmit stresses to shallower depths. Shallow thrust-faulting earthquakes on the subduction interface show a divergence of slip vectors round the arc, and GPS measurements show that this is accommodated mainly by E-W extension on normal faults in the overriding Aegean material. The eastern end of the subduction zone, south of Rhodes, displays distributed deformation in the overriding material, including a mixture of strike-slip and splay-thrust faulting, and probably involves rotations about a vertical axes. Here slip on the interface itself is by thrust faulting with slip vectors oblique to the arc but parallel to the overall Nubia-Aegean convergence: there is no evidence for slip-partitioning in the traditional

  3. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  5. An Integrated Geospatial System for earthquake precursors assessment in Vrancea tectonic active zone in Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the development of space-based technologies to measure surface geophysical parameters and deformation at the boundaries of tectonic plates and large faults, earthquake science has entered a new era. Using time series satellite data for earthquake prediction, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the pre-define threshold value. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (oC) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. Also are recorded associated geomagnetic and ionospheric distrurbances. Vrancea tectonic active zone in Romania is characterized by a high seismic hazard in European- Mediterranean region, being responsible of strong or moderate intermediate depth and normal earthquakes generation on a confined epicentral area. Based on recorded geophysical parameters anomalies was developed an integrated geospatial system for earthquake precursors assessment in Vrancea active seismic zone. This system integrates derived from time series MODIS Terra/Aqua, NOAA-AVHRR, ASTER, Landsat TM/ETM satellite data multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT as well as geomagnetic and ionospheric data in synergy with in-situ data for surveillance and forecasting of seismic events.

  6. An attempt to monitor tectonic forces in the Vrancea active geodynamic zone: The Baspunar experiment

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita; Plopeanu, Marin

    2013-04-01

    (sparsely) run in the area, have provided inconsistent results on the PCF current dynamics. The Baspunar Geodynamic Observatory (BGO) has been designed and implemented by the Solid Earth Dynamics Department in the Institute of Geodynamics of the Romanian Academy in order to reveal and monitor eventual motions along PCF in the attempt to correlate variations in the slip rate with changes in the seismicity released within Vrancea zone. The first BGO records were strongly affected by changes in the atmospheric parameters. Consequently, technical measures and special corrections for the removal or at least mitigation of the effects created by changes in temperature, air pressure and humidity have been applied to the observations. In order to improve the signal to noise ratio, some mathematical filters have been applied too. The paper is aimed at revealing results of the geodetic observations along with preliminary geodynamic considerations. On the overall, after about two years of monitoring, PCF appears as an active tectonic contact. It mainly behaves as a left-lateral fault, but some short episodes with a reverse slip (dextral) were also pointed out. Correlations with crustal and intermediate-depth earthquakes occurring in both cases within the bending zone of East Carpathians are illustrated and discussed.

  7. The River Network, Active Tectonics and the Mexican Subduction Zone, Southwest Mexico

    NASA Astrophysics Data System (ADS)

    Gaidzik, K.; Ramirez-Herrera, M. T.; Kostoglodov, V.; Basili, R.

    2014-12-01

    Rivers, their profiles and network reflect the integration of multiple processes and forces that are part of the fundamental controls on the relief structure of mountain belts. The motivation of this study is to understand active tectonic processes in the forearc region of subduction zones, by distinguishing evidence of active deformation using the river network and topography. To this end, morphotectonic and structural studies have been conducted on fifteen drainage basins on the mountain front, parallel to the Mexican subduction zone, where the Cocos plate underthrusts the North American plate. The southwest - northeast Cocos plate subduction stress regime initiated ca. 20 MA. NE-SW to NNE-SSW normal faults as well as sub-latitudinal to NW-SE strike-slip faults (both dextral and sinistral) constitute the majority of mesofaults recorded in the field within the studied drainage basins. Occasionally dextral N-S strike-slip faults also occur. The stress tensor reconstruction suggests two main evolution stages of these faults: 1) the older is dominated by a NW-SE to WNW-ESE extensional regime and 2) the younger is a transcurrent regime, with NNE-SSW σ1 axis. The drainage pattern is strongly controlled by tectonic features, whereas lithology is only a subordinate factor, with only one exception (Petatlán river). Generally, major rivers flow from north to south mainly through NE-SW and NNE-SSW normal faults, and/or sub-longitudinal dextral (also locally sinistral) strike-slip faults. In the central and eastern part of the studied area, rivers also follow NW-SE structures, which are generally normal or sinistral strike-slip faults (rarely reverse). In most cases, local deflections of the river main courses are related to sub-latitudinal strike-slip faults, both dextral and sinistral. Within the current stress field related to the active Cocos subduction, both normal and strike-slip fault sets could be reactivated. Our analysis suggests that strike-slip faults, mainly

  8. Late Quaternary tectonic activity and paleoseismicity of the Eastern Messinia Fault Zone, SW Peloponessus (Messinia, Greece).

    NASA Astrophysics Data System (ADS)

    Valkaniotis, Sotirios; Betzelou, Konstantina; Zygouri, Vassiliki; Koukouvelas, Ioannis; Ganas, Athanassios

    2015-04-01

    The southwestern part of Peloponnesus, Messinia and Laconia, is an area of significant tectonic activity situated near the Hellenic trench. Most of the deformation in this area is accommodated by the Eastern Messinia Fault Zone, bordering the western part of Taygetos Mt range and the west coast of Mani peninsula. The Eastern Messinia Fault Zone (EMFZ) is a complex system of primarily normal faults dipping westwards with a strike of NNW-SSE to N-S direction attaining a total length of more than 100 km from the northern Messinia plain in the north to the southern part of Mani peninsula in the south. The continuity of the EMFZ is disrupted by overlapping faults and relay ramp structures. The central part of the EMFZ, from the town of Oichalia to the city of Kalamata, was investigated by detailed field mapping of fault structures and post-alpine sediment formations together with re-evaluation of historical and modern seismicity. Several fault segments with lengths of 6 to 10 km were mapped, defined and evaluated according to their state of activity and age. Analysis of fault striation measurements along fault planes of the fault zone shows a present regime of WSW-ENE extension, in accordance with focal mechanisms from modern seismicity. Known faults like the Katsareika and Verga faults near the city of Kalamata are interpreted as older-generation faults that are re-activated (e.g. the 1986 Ms 6.0 Kalamata earthquake on Verga Fault) as part of a system of distributed deformation. New fault segments, some of them previously unmapped like the Asprohoma fault to the west of Kalamata, and offshore faults like Kitries and Kourtissa, are being assigned to the EMFZ. Moreover, a paleoseismological trench was excavated in the northern part of Pidima fault segment, one of the most prominent active segments of the central part of the EMFZ, in order to examine the paleoearthquake record of the fault system. A significant number of historical and instrumental earthquakes in the area

  9. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Wang, Hai-hong; Luo, Zhi-cai; Ning, Jin-sheng; Liu, Hua-liang

    2015-03-01

    It is significant to identify urban active faults for human life and social sustainable development. The ordinary methods to detect active faults, such as geological survey, artificial seismic exploration, and electromagnetic exploration, are not convenient to be carried out in urban area with dense buildings. It is also difficult to supply information about vertical extension of the deeper faults by these methods. Gravity, reflecting the mass distribution of the Earth's interior, provides an alternative way to detect faults, which is more efficient and convenient for urban active fault detection than the aforementioned techniques. Based on the multi-scale decomposition of gravity anomalies, a novel method to invert multilayer horizontal tectonic stresses is proposed. The inverted multilayer stress fields are further used to infer the distribution and stability of the main faults. In order to validate our method, the multilayer stress fields in the Shenzhen fault zone are calculated as a case study. The calculated stress fields show that their distribution is controlled significantly by the strike of the main faults and can be used to derive depths of the faults. The main faults in Shenzhen may range from 4 km to 20 km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  10. Change in biochemical and morphological characteristics of Lonicera caerulea in tectonically active zone of the Dzhazator River Valley (Altai Mountains)

    NASA Astrophysics Data System (ADS)

    Boyarskikh, I. G.; Khudyaev, S. A.; Platonova, S. G.; Kolotukhin, S. P.; Shitov, A. V.; Kukushkina, T. A.; Chankina, O. V.

    2012-12-01

    Local geophysical and geochemical anomalies affect the polymorphism of taste variations, berry shape, and content of some biologically active substances in Lonicera caerulea leaves in the tectonically active Altai Mountains (Dzhazator River basin).

  11. Plate Tectonics: From Plate Boundary Zone Tectonics To Extensive Intraplate Tectonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.

    2004-12-01

    Plates makes up earth's surface, and tectonic activity is generally concentrated on plate boundary zones. In restrict meaning, plate tectonics of the earth is regarded as mixture of plate boundary zone tectonics and extensive intraplate tectonics. For example, the Asian continent never behaves as rigid plate that was deformed extensively when the Indian continent collided with it. I infer that extensive intraplate tectonics reflects rheological weakening of wet mantle. To demonstrate effect of H2O component on plate strength, one-dimensional rheological profiles of 100 km depth were constructed by assuming 20km thick upper crust and 20km thick lower crust. Temperature-depth profiles were calculated based on one-dimensional steady-state static heat transfer at given surface heat flows. Power law creep and Byerlee_fs law were used to estimate strength in ductile regime and brittle regime respectively. Creep strength for upper crust, lower crust, dry mantle and wet mantle were calculated using creep parameters of granite, granulite, dry dunite and wet dunite. The minimum value between power law creep strength and Byerlee_fs law strength gives the strength of the lithosphere. Strength profile at surface heat flow of 55mW/m2 (continental average is 56.5mW/m2) and strain rate of 10-15/s (intraplate deformation is about 10-15/s - 10-16/s in Asia) shows a significant difference in strength for using dry mantle and wet mantle. In case of dry mantle, the uppermost mantle is quite strong. However, if wet peridotite represent the upper mantle, there is very little strength in the uppermost mantle. The cumulative lithospheric strength, i.e. integral strength from surface to 100km depth, and the cumulative mantle strength, i.e. integral strength from 40km to 100km depth were calculated with changing strain rate. For example, to deform continental lithosphere at strain rate of 10-15/s, wet mantle has a cumulative strength of about 2x1012N/m whereas the cumulative strength of dry

  12. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  13. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  14. Active tectonics of the Andes

    NASA Astrophysics Data System (ADS)

    Dewey, J. F.; Lamb, S. H.

    1992-04-01

    Nearly 90 mm a -1 of relative plate convergence is absorbed in the Andean plate-boundary zone. The pattern of active tectonics shows remarkable variations in the way in which the plate slip vector is partitioned into displacement and strain and the ways in which compatibility between different segments is solved. Along any traverse across the plate-boundary zone, the sum of relative velocities between points must equal the relative plate motion. We have developed a kinematic synthesis of displacement and strain partitioning in the Andes from 47°S to 5°N relevant for the last 5 Ma based upon: (1) relative plate motion deduced from oceanic circuits giving a roughly constant azimuth between 075 and 080; (2) moment tensor solutions for over 120 crustal earthquakes since 1960; (3) structural studies of deformed Plio-Pleistocene rocks; (4) topographic/geomorphic studies; (5) palaeomagnetic data; and (6) geodetic data. We recognize four neotectonic zones, with subzones and boundary transfer zones, that are partitioned in different ways. These zones are not coincident with the 'classic' zones defined by the presence or absence of a volcanic chain or differences in finite displacements and strains and tectonic form; the long-term segmentation and finite evolution of the Andes may not occur in constantly defined segments in space and time. In Segment 1 (47°-39°S), the slip vector is partitioned into roughly orthogonal Benioff Zone slip with large magnitude/large slip-surface earthquakes and both distributed dextral shear giving clockwise rotations of up to 50° and dextral slip in the curved Liquine-Ofqui Fault System giving 5°-10° of anticlockwise fore-arc rotation. In Segment 2 (39°-20°S), the slip vector is partitioned into Benioff Zone slip roughly parallel with the slip vector, Andean crustal shortening and a very small component of dextral slip, including that on the Atacama Fault System. Between 39° and 34°S, a cross-strike dextral transfer, which deflects

  15. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    NASA Astrophysics Data System (ADS)

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  16. Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Géli, L.; Henry, P.; Zitter, T.; Dupré, S.; Tryon, M.; Çağatay, M. N.; de Lépinay, B. Mercier; Le Pichon, X.; Şengör, A. M. C.; Görür, N.; Natalin, B.; Uçarkuş, G.; Özeren, S.; Volker, D.; Gasperini, L.; Burnard, P.; Bourlange, S.; Marnaut Scientific Party

    2008-09-01

    The submerged section of the North Anatolian fault within the Marmara Sea was investigated using acoustic techniques and submersible dives. Most gas emissions in the water column were found near the surface expression of known active faults. Gas emissions are unevenly distributed. The linear fault segment crossing the Central High and forming a seismic gap - as it has not ruptured since 1766, based on historical seismicity, exhibits relatively less gas emissions than the adjacent segments. In the eastern Sea of Marmara, active gas emissions are also found above a buried transtensional fault zone, which displayed micro-seismic activity after the 1999 events. Remarkably, this zone of gas emission extends westward all along the southern edge of Cinarcik basin, well beyond the zone where 1999 aftershocks were observed. The long term monitoring of gas seeps could hence be highly valuable for the understanding of the evolution of the fluid-fault coupling processes during the earthquake cycle within the Marmara Sea.

  17. The tectonic structure of the Song Ma fault zone, Vietnam

    NASA Astrophysics Data System (ADS)

    Wen, Strong; Yeh, Yu-Lien; Tang, Chi-Cha; Phong, Lai Hop; Toan, Dinh Van; Chang, Wen-Yen; Chen, Chau-Huei

    2015-08-01

    Indochina area is a tectonic active region where creates complex topographies and tectonic structures. In particular, the Song Ma fault zone plays an important role in understanding the mechanism and revolution of the collision between the Indian plate and Eurasian plate. In order to have better understanding the seismotectonic structures of the Song Ma fault zone, a three-year project is proposed to study the seismotectonic structures of crust in this region. The main goal of this project is to deploy temporary broad-band seismic stations around/near the shear zone to record high quality microearthquakes. By using the data recorded by the temporary array and the local seismic network, we are able to conduct seismological studies which include using waveform inversion to obtain precise fault plane solutions of microearthquakes, one-dimensional (1-D) velocity structure of the crust in the region as well as the characteristics of seismogeneric zone. From the results of earthquake relocation and focal mechanisms, we find that the spatial distribution of events occurred in Song Ma fault zone forms in several distinct groups which are well correlated local geological structures and further use to gain insights on tectonic evolution.

  18. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  19. Decadal to millennial deformation in the Pamir - Tian Shan collision zone, NW China and surface expression of active tectonics

    NASA Astrophysics Data System (ADS)

    Bufe, A.; Bookhagen, B.; Burbank, D. W.; Bekaert, D. P.; Hussain, E.

    2013-12-01

    The collision between the Pamir and the Tian Shan is a type example of intracontinental collision. GPS studies show that in Northwest China, at the junction between the Tarim basin, the Pamir and the Tian Shan, 7-9 mm/y of north-south shortening are presently accommodated across the boundary between the two orogens. Here, the deformation has mostly stepped out from the high mountain front into the foreland and has formed a complex array of compressional structures. We compare rates of decadal deformation in the area with 104- to 106-year estimates and investigate the extent to which stream profiles and topography reflect the active tectonics in this setting. A dataset of decadal deformation rates around the Tarim-Tian Shan-Pamir junction in Northwest China is obtained from Interferometric Synthetic Aperture Radar (InSAR) time-series analysis. We use the StaMPS/MTI package to combine small-baseline and persistent-scatterer techniques and obtain results that show no significant residual topographic phase correlation. Our data show that deformation has stepped away from the high mountain front and is concentrated on a few structures in the foreland of the Pamir and Tian Shan. Line-of-sight deformation of up to 2-4 mm/y on the Pamir Frontal Thrust (PFT) and the Kashi detachment anticline are observed. No significant displacement of the Main Pamir Thrust can be detected. Within error, the modern deformation rates agree with previously published millennial to million-year estimates along the PFT. However, decadal deformation rates deviate from million-year shortening and rock-uplift rates of anticlines in the foreland of the Tian Shan. It remains unclear whether the discrepancy arises from a recent change to a new persistent uplift rate, or merely from short timescale fluctuation of uplift rate, for example within an earthquake cycle. In an additional step, we extract stream profiles and normalized steepness index (ksn) values for rivers with drainage areas larger than 9

  20. Earthquake Patterns in Diverse Tectonic Zones of the Globe

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Bird, P.; Jackson, D. D.

    2010-06-01

    We extend existing branching models for earthquake occurrences by incorporating potentially important estimates of tectonic deformation and by allowing the parameters in the models to vary across different tectonic regimes. We partition the Earth’s surface into five regimes: trenches (including subduction zones and oceanic convergent boundaries and earthquakes in outer rise or overriding plate); fast spreading ridges and oceanic transforms; slow spreading ridges and transforms; active continental zones, and plate interiors (everything not included in the previous categories). Our purpose is to specialize the models to give them the greatest possible predictive power for use in earthquake forecasts. We expected the parameters of the branching models to be significantly different in the various tectonic regimes, because earlier studies ( Bird and Kagan in Bull Seismol Soc Am 94(6):2380-2399, 2004) found that the magnitude limits and other parameters differed between similar categories. We compiled subsets of the CMT and PDE earthquake catalogs corresponding to each tectonic regime, and optimized the parameters for each, and for the whole Earth, using a maximum likelihood procedure. We also analyzed branching models for California and Nevada using regional catalogs. Our estimates of parameters that can be compared to those of other models were consistent with published results. Examples include the proportion of triggered earthquakes and the exponent describing the temporal decay of triggered earthquakes. We also estimated epicentral location uncertainty and rupture zone size and our results are consistent with independent estimates. Contrary to our expectation, we found no dramatic differences in the branching parameters for the various tectonic regimes. We did find some modest differences between regimes that were robust under changes in earthquake catalog and lower magnitude threshold. Subduction zones have the highest earthquake rates, the largest upper

  1. Tectonic creep in the Hayward fault zone, California

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Bonilla, M.G.

    1966-01-01

    Tectonic creep is slight apparently continuous movement along a fault. Evidence of creep has been noted at several places within the Hayward fault zone--a zone trending northwestward near the western front of the hills bordering the east side of San Francisco Bay. D. H. Radbruch of the Geological Survey and B. J. Lennert, consulting engineer, confirmed a reported cracking of a culvert under the University of California stadium. F. B. Blanchard and C. L. Laverty of the East Bay Municipal Utility District of Oakland studied cracks in the Claremont water tunnel in Berkeley. M. G. Bonilla of the Geological Survey noted deformation of railroad tracks in the Niles district of Fremont. Six sets of tracks have been bent and shifted. L. S. Cluff of Woodward-Clyde-Sherard and Associates and K. V. Steinbrugge of the Pacific Fire Rating Bureau noted that the concrete walls of a warehouse in the Irvington district of Fremont have been bent and broken, and the columns forced out of line. All the deformations noted have been right lateral and range from about 2 inches in the Claremont tunnel to about 8 inches on the railroad tracks. Tectonic creep almost certainly will continue to damage buildings, tunnels, and other structures that cross the narrow bands of active movement within the Hayward fault zone.

  2. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  3. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran

    NASA Astrophysics Data System (ADS)

    Javidfakhr, Bita; Bellier, Olivier; Shabanian, Esmaeil; Siame, Lionel; Léanni, Laëtitia; Bourlès, Didier; Ahmadian, Seiran

    2011-10-01

    The Alborz is a region of active deformation within the Arabia-Eurasia collision zone. The Abr and the Khij Faults are two NE-trending left-lateral strike-slip faults in the eastern Alborz that correspond to the Shahrud fault system extended through an area of about 95 km × 55 km. Tectonic landforms typically associated with active strike-slip faults, such as deflected stream channels, offset ridges and fault scarps are documented along the mentioned faults. Detailed analyses of satellite images and digital topographic data accompanied by field surveys allowed us to measure horizontal offsets of about 420 ± 50 m and 400 ± 50 m for the Abr and Khij Faults, respectively. A total of 8 quartz-rich samples were sampled and dated from two different fan surfaces using in situ-produced 10Be cosmogenic dating method. Minimum exposure ages for the abandonment of the alluvial fan surfaces of 115 ± 14 kyr along the Abr Fault and of 230 ± 16 kyr along the Khij Fault imply that both faults are active with slip rates of about 3-4 mm yr -1 and 1-3 mm yr -1, respectively. The results of our study provide the first direct quantitative geological estimates of slip rate along these two active faults and place a new constraint on slip distribution between the faults in the eastern Alborz. Fault kinematic studies (from fault slip data) indicate a N35°E-trending maximum stress axis comprising a dominant strike-slip regime in agreement with the geomorphological analyses. The left-lateral strike-slip faulting along the Abr and Khij Faults and their associated fault zones in the eastern Alborz can be due to the westward component of motion of the South Caspian Basin with respect to Eurasia and Central Iran.

  4. New evidence for global tectonic zones on Venus

    USGS Publications Warehouse

    Kozak, R.C.; Schaber, G.G.

    1989-01-01

    Venera 15 and 16 spacecraft images show clear evidence of major crustal disruptions on Venus which have been interpreted to indicate crustal divergence. Complementary to the divergent zones are mountain belts that border the continent-like high terrains. The requisite transcurrent motions appear to be manifested as diffuse shear zones. The rift zones form an interconnected transpolar system which ties in with previously recognized equatorial disruption zones, suggesting a global tectonic network. Several independent lines of evidence suggest that the tectonism may be geologically young. -Authors

  5. New evidence for global tectonic zones on Venus

    NASA Technical Reports Server (NTRS)

    Kozak, Richard C.; Schaber, Gerald G.

    1989-01-01

    Venera 15 and 16 spacecraft images show clear evidence of major crustal disruptions on Venus which have been interpreted to indicate crustal divergence. Complementary to the divergent zones are mountain belts that border the continent-like high terrains. The requisite transcurrent motions appear to be manifested as diffuse shear zones. The rift zones form an interconnected transpolar system which ties in with previously recognized equatorial disruption zones, suggesting a global tectonic network. Several independent lines of evidence suggest that the tectonism may be geologically young.

  6. Identifying active structures in the Kayak Island and Pamplona Zones: Implications for offshore tectonics of the Yakutat Microplate, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.

    Within the northern Gulf of Alaska, the Yakutat (YAK) microplate obliquely collides with and subducts beneath the North American (NA) continent at near-Pacific plate velocities. We investigate the extent that thin-skinned deformation on offshore structures located within the western portion of the unsubducted YAK block accommodates YAK-NA convergence. We compare faulting and folding observed on high-resolution and basin-scale multichannel seismic (MCS) reflection data with earthquake locations and surface ruptures observed on high-resolution bathymetric data. Holocene sediments overlying the Kayak Island fault zone (KIZ), previously interpreted as a region of active contraction, are relatively flat-lying, suggesting that active convergence within the KIZ is waning. Seismic reflection profiles east of KIZ show up to ˜200 m of undisturbed sediments overlying older folds in the Bering Trough, indicating that this area has been tectonically inactive since at least the last ˜1.3 Ma. Farther east, MCS profiles image active deformation in surface sediments along the eastern edge of the Pamplona zone (PZ) fold-and-thrust belt, that are collocated with a concentration of earthquake events that continues southwest to Khitrov Ridge and onshore through Icy Bay. These observations suggest that during the late Quaternary offshore shallow deformation style changed from distributed across the western Yakutat block to localized at the eastern edge of the PZ with extrusion of sediments southwest through the Khitrov Ridge area to the Aleutian Trench. This shallow deformation is interpreted as deformation of an accretionary complex above a shallow decollement.

  7. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  8. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  9. Exploring Active Tectonics in the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Carbó-Gorosabel, A.; Córdoba-Barba, D.; Martín-Dívila, J.; Granja-Bruña, J. L.; Llanes Estrada, P.; Muñoz-Martín, A.; ten Brink, U. S.

    2010-07-01

    The devastating 12 January 2010 Haiti earthquake (M = 7.0), which killed an estimated 230,000 people and caused extensive damage to homes and buildings, drew attention to the crucial need for improved knowledge of the active tectonics of the Caribbean region. But even before this disastrous event, interest in understanding the active and complex northeastern Caribbean plate boundary had been increasing, because this region has experienced significant seismic activity during the past century and has an extensively documented record of historical seismicity and tsunamis. Moreover, this is an easily accessible region in which to study the continuity of seismic faults offshore and to try to understand the transitions between strike-slip and convergent tectonic regimes. Interest in the region has led to several studies that have improved scientists' knowledge of subduction zone tectonics and earthquake and tsunami hazard assessments 005BMann et al., 2002; ten Brink et al., 2006, 2009; Grindlay et al., 2005; Manaker et al., 2008; Granja Bruña et al., 2009; Mondziel et al., 2010].

  10. Late Silurian paleomagnetic pole from the Holy Cross Mountains: constraints for the post-Caledonian tectonic activity of the Trans-European Suture Zone

    NASA Astrophysics Data System (ADS)

    Nawrocki, J.

    2000-06-01

    In spite of extensive studies, the tectonic evolution of the most prominent geological boundary in Europe, the Trans-European Suture Zone (TESZ), remains enigmatic. End-member models are either autochthonous, requiring in situ Phanerozoic reworking of the pre-Cambrian crust, or allochthonous, including accretion of mobile Caledonian and Variscan terranes. Continent-scale Variscan right-lateral displacements along the TESZ have been also postulated. A paleomagnetic study of Upper Silurian diabases from the southern part of Holy Cross Mts. (central Poland) was undertaken to test between these models. A primary characteristic magnetization was isolated in these rocks. It passes the fold test and therefore is considered to be Late Silurian in age. The corresponding pole (12°S, 340°S) is concordant with the Ludlovian segment of the apparent polar wander path for Baltica. This result does not support hypotheses about significant post-Caledonian dextral tectonic movements along the TESZ. Tectonic movements and accretion of blocks along the SW edge of Baltica must have occurred before the latest Silurian.

  11. Influence of paired subduction zones: insight into Central Mediterranean tectonics

    NASA Astrophysics Data System (ADS)

    Miller, Meghan Samantha; Moresi, Louis; Faccenna, Claudio; Funiciello, Francesca

    2015-04-01

    The Hellenic and Calabrian slabs are subducting the last remnant of the Ionian oceanic lithosphere into the deep mantle beneath the Central Mediterranean. Seismic tomography studies have provided clear images of the present day morphology of the subducted lithosphere [1]. Tectonic studies have shown that the Calabrian slab has rolled back into its current geometry with episodes of back-arc spreading that have now ceased [2]. Conversely, GPS observations along with tectonic reconstructions show that the Hellenic slab is currently rolling back and appears to have accelerated in the past ~15 My [3], which has resulted in the only region of backarc spreading still active in the Mediterranean. Observations of seismic anisotropy from SKS splitting [4] indicate toroidal flow patterns at the edges of the subducted slabs, which lead to interpretations of mantle convection and flow. Rollback in a confined setting has allowed the two slabs to become a plate-tectonic pushmi-pullyu [5]. The evolution of each slab is necessarily dependent on the other as they are both subducting the same lithosphere in opposite directions and are sufficiently close together that their induced mantle flow patterns must interact strongly. Although this seems to be an oddity in the classical picture of plate tectonics, we note that rollback-dominated subduction is more likely to be important in the highly-confined setting of a closing ocean where the oceanic lithosphere is not always able to develop into a freely-moving plate. Under such conditions, back-to-back pairings of subducting slabs are potentially more common. To investigate this setting, we present preliminary numerical models of paired subduction zones that we have developed using Underworld. We include variations in the strength and buoyancy of the surrounding (over-riding) plates and account for the presence of continentally-derived basement in the Adriatic sea. The geodynamic models allow for exploration into the timing, mechanics

  12. Global tectonic activity map with orbital photographic supplement

    SciTech Connect

    Lowman, P.D. Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  13. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  14. Tectonic evolution of the Palmyra zone, Syria

    SciTech Connect

    O'Keefe, F.X.; Sengor, A.M.C. )

    1988-08-01

    The Palmyra foldbelt extends approximately 350 km northeast from its intersection with the Dead Sea transform near Damascus. The surface expression of this feature is a southeast-verging fold-and-thrust belt that brings rocks as old as Triassic to the surface in fault contact with Upper Cretaceous and Tertiary rocks. The palmyra region is first recognized as a subsiding trough from at least Triassic and possibly Permian time through middle Tertiary. This subsidence increases south-westward, reaching a reported maximum of 6 km of sediment north of Damascus, and is related to right-lateral motion along the eastern margin of the opening southern branch of the Neotethys sea as the Cimmerian continent moved northward away from northeast AFrica during Permian-Triassic time. Extension and subsidence continued through the Jurassic and Cretaceous, interrupted by uplift and erosion from Late Jurassic to Early Cretaceous in the northeastern part of the zone. Compression and inversion of the Palmyra zone begin during Miocene time with the initiation of left-lateral displacement on the Dead Sea transform system related to the continued opening of the Red Sea and the failure of the Gulf of Suez rift system. Approximately 105 km of offset are reported for the Dead Sea transform along the Jordan-Israel border segment, while 60 km are reported in Syria north of Lebanon. The Palmyra foldbelt accommodates this discrepancy through oblique shortening, possibly utilizing pre-existing extensional fault systems.

  15. Precambrrian crustal evolution in the great falls tectonic zone

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer N.

    The Great Falls Tectonic Zone (GFTZ) is a zone of northeast trending geological structures in central Montana that parallel structures in the underlying basement. U-Pb zircon and Nd isotopic data from the Little Belt Mountains (LBM) suggest that the GFTZ formed at ~1.86 to 1.80 Ga due to ocean subduction followed by collision between the Archean Wyoming Province (WP) and Medicine Hat Block (MHB). This study characterizes the GFTZ basement by geochronological and geochemical analysis of crustal xenoliths collected from Montana Alkali Province volcanics and exposed basement rock in the Little Rocky Mountains (LRM). Xenoliths collected from the Grassrange and Missouri Breaks diatremes and volcanics in the Bearpaw and Highwood Mountains have igneous crystallization ages from ~1.7 Ga to 1.9 Ga and 2.4 Ga to 2.7 Ga, and metamorphic ages from ~1.65 Ga to 1.84 Ga. Zircon Lu-Hf and whole-rock Sm-Nd data indicate that the xenoliths originated from reworked older continental crust mixed with mantle-derived components in all cases. Trace element patterns show fluid mobile element enrichments and fluid immobile element depletions suggestive of a subduction origin. Igneous ages in the LRM range older, from ~2.4 Ga to 3.2 Ga. Geochemical evidence suggests that the LRM meta-igneous units also formed in a subduction setting. Detrital zircon ages span the early Paleoproterozoic to Mesoarchean, with abundant 2.8 Ga ages. Zircon U-Pb igneous crystallization age data from xenoliths and the LRM are consistent with U-Pb zircon igneous crystallization ages from the MHB, suggesting that this segment of the GFTZ shares an affinity with concealed MHB crust. Published detrital zircon ages from the northern Wyoming Province reveal more abundant >3.0 Ga ages than the MHB or GFTZ samples. These geochronologic and geochemical data from the xenoliths and LRM samples allow for a refined model for crustal evolution in the GFTZ. Subduction under the Neoarchean to Paleoproterozoic crust of the MHB

  16. The Structural Architecture and Tectonic Inheritance of the Vlora-Elbasan Transfer Zone in Albanides-Albania

    NASA Astrophysics Data System (ADS)

    Abus, E. D.; Dilek, Y.

    2014-12-01

    The Albanides in the Balkan Peninsula are part of the Alpine orogenic belt and host one of the most significant oil fields in SE Europe. The late Mesozoic-Cenozoic evolution of the Albanides has been strongly controlled by the relative movements of Adria or Apulia, a microcontinent with a West Gondwana affinity with respect to Eurasia. In northeastern Albania, the Internal Albanides consist of Paleozoic - Jurassic basement rocks, which involved subduction zone tectonics of the Pindos-Mirdita ocean basin. The External Albanides, on the other hand, represent a fold-and-thrust belt with deformation in a broad zone of oblique convergence. This tectonic domain is divided, from east to west, into five major structural zones: the Krasta-Cukali Zone, the Kruja Zone, the Peri-Adriatic Depression, the Ionian Zone, and the Sazani Zone, which is represented by the Apulian platform carbonates. The zone is characterized by NW-SE-running and SW-verging thrust fault systems that involve a thick series of Mesozoic - Tertiary passive margin carbonates, unconformably overlain by Oligocene clastic units. These two tectonic zones are dissected by the NE-SW-striking Vlora-Elbasan Transfer Zone, which extends eastwards into the Internal Albanides, affecting the structural architecture and the tectonic evolution of the entire mountain belt. This fault zone that has been tectonically active from the Triassic to recent have display diapiric structures along it.

  17. Geophysical Limitations on the Habitable Zone: Volcanism and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim

    2016-04-01

    Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophysical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate if the planet mass as well as the interior structure can set constraints on the occurrence of plate tectonics and outgassing, and therefore affect the habitable zone, using both parameterized evolution models [1] and mantle convection simulations [1,2]. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2), see also [3]. One-plate planets, however, may suffer strong volcanic limitations. The existence of a dense-enough CO2 atmosphere allowing for the carbon-silicate cycle and release of carbon at the outer boundary of the habitable zone may be strongly limited for planets: 1) without plate tectonics, 2) with a large planet mass, and/or 3) a high iron content. Acknowledgements This work has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and results within the collaboration of the COST Action TD 1308. References Noack, L., Rivoldini, A., and Van Hoolst, T.: CHIC - Coupling Habitability, Interior and Crust, INFOCOMP 2015, ISSN 2308-3484, ISBN 978

  18. Age, tectonic evolution and origin of the Aswa Shear Zone in Uganda: Activation of an oblique ramp during convergence in the East African Orogen

    NASA Astrophysics Data System (ADS)

    Saalmann, K.; Mänttäri, I.; Nyakecho, C.; Isabirye, E.

    2016-05-01

    The Aswa Shear Zone (ASZ) is a major NW-SE trending structure of over 1000 km length in East Africa. In Uganda, the ASZ is a steeply NE-dipping, up to 11 km wide mylonitic shear zone that shows multiple stage brittle reactivation. On outcrop-scale, the fabric in the ASZ is characterized by a well-developed NW-SE striking and subvertical or steeply NE or SW dipping mylonitic foliation and a subhorizontal to moderately NW- or SE-plunging stretching lineation. Sinistral kinematics and fabric are very consistent along strike. The strain is heterogeneously distributed and partitioned into lens-shaped lower strain zones dominated by folding and characterized by pure shear, which are surrounded by high strain zones, some of them thick ultramylonites, with intense simple shear combined with flattening and strong transposition of pre-existing fabrics. Ductile shearing occurred during bulk E-W shortening, commenced at amphibolite facies conditions and continued with similar kinematics at greenschist and even lower grade conditions. A number of (sub-)parallel shear zones occur to the NE and SW of the main zone at a distance of up to 20-45 km. They show similar fabrics and kinematics and are thus related to activity along ASZ reflecting strain partitioning into simple shear and pure shear domains on a regional scale. Samples of mylonitic gneisses from the shear zone have been analyzed with U-Pb LA-MC-ICPMS and show Neoarchaean crystallisation ages between 2.66 and 2.61 Ga. Timing of ductile sinistral shearing is poorly constrained by lower intercept ages of 686 ± 62 and 640 ± 44 Ma. The fabric and structural relationship of the ca. 660 Ma Adjumani Granite exposed in the northern segment of ASZ suggest that the age of shear activity can be further limited to ca. 685 and 655 Ma. The Aswa Shear Zone is interpreted as an intra-cratonic, crustal-scale structure close to the northeastern margin of the Congo Craton, possibly inherited from previous continental extension. Early Aswa

  19. Age, tectonic evolution and origin of the Aswa Shear Zone in Uganda: Activation of an oblique ramp during convergence in the East African Orogen

    NASA Astrophysics Data System (ADS)

    Saalmann, K.; Mänttäri, I.; Nyakecho, C.; Isabirye, E.

    2016-05-01

    The Aswa Shear Zone (ASZ) is a major NW-SE trending structure of over 1000 km length in East Africa. In Uganda, the ASZ is a steeply NE-dipping, up to 11 km wide mylonitic shear zone that shows multiple stage brittle reactivation. On outcrop-scale, the fabric in the ASZ is characterized by a well-developed NW-SE striking and subvertical or steeply NE or SW dipping mylonitic foliation and a subhorizontal to moderately NW- or SE-plunging stretching lineation. Sinistral kinematics and fabric are very consistent along strike. The strain is heterogeneously distributed and partitioned into lens-shaped lower strain zones dominated by folding and characterized by pure shear, which are surrounded by high strain zones, some of them thick ultramylonites, with intense simple shear combined with flattening and strong transposition of pre-existing fabrics. Ductile shearing occurred during bulk E-W shortening, commenced at amphibolite facies conditions and continued with similar kinematics at greenschist and even lower grade conditions. A number of (sub-)parallel shear zones occur to the NE and SW of the main zone at a distance of up to 20-45 km. They show similar fabrics and kinematics and are thus related to activity along ASZ reflecting strain partitioning into simple shear and pure shear domains on a regional scale. Samples of mylonitic gneisses from the shear zone have been analyzed with U-Pb LA-MC-ICPMS and show Neoarchaean crystallisation ages between 2.66 and 2.61 Ga. Timing of ductile sinistral shearing is poorly constrained by lower intercept ages of 686 ± 62 and 640 ± 44 Ma. The fabric and structural relationship of the ca. 660 Ma Adjumani Granite exposed in the northern segment of ASZ suggest that the age of shear activity can be further limited to ca. 685 and 655 Ma. The Aswa Shear Zone is interpreted as an intra-cratonic, crustal-scale structure close to the northeastern margin of the Congo Craton, possibly inherited from previous continental extension

  20. Active tectonics in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Sébrier, Michel; Siame, Lionel; Zouine, El Mostafa; Winter, Thierry; Missenard, Yves; Leturmy, Pascale

    2006-01-01

    Review of seismological and structural data coupled with new data on topographical, geomorphology, and Quaternary geology allows delineating the major active faults of the High Atlas. These are the North and South border faults of which fault segmentations correspond to Mw ranging between 6.1 and 6.4. Detail active tectonics analyses were performed on the South Atlas Fault Zone in the Souss and Ouarzazate basins, where deformed Quaternary levels permit to estimate slip rates on individual faults in the order of 0.1 mm yr -1. Such low slip rates imply that large observational time-window is needed to analyze active deformation in low-seismicity regions. However, the complex 3D geometry of reverse or thrust faults may cause difficulty to relate surface observations with the deeper faults that have the potential to nucleate big earthquakes. Further studies are necessary to interpret the Anti Atlas seismicity. To cite this article: M. Sebrier et al., C. R. Geoscience 338 (2006).

  1. Active tectonics and human survival strategies

    NASA Astrophysics Data System (ADS)

    King, Geoffrey; Bailey, Geoffrey; Sturdy, Derek

    1994-10-01

    Tectonic movements continuously remould the surface of Earth in response to plate motion. Yet such deformation is rarely taken into account when assessing landscape change and its impact on human land use, except perhaps as an occasional hazard to human life or a temporary disruption in the longer term patterns of human history. However, active tectonics also create and sustain landscapes that can be beneficial to human survival, forming a complex topography of potentially fertile sedimentary basins enclosed by mountain barriers that can facilitate the control and explotation of food resources, especially animal prey. We discuss the tectonic history of northwest Greece and show how the Paleolithic sites of the region are located to take advantage of tectonically created features at both a local and a regional scale. We suggest that the association of significant concentrations of early Paleolithic sites with tectonically acitve regions is not coincidental and that on the longer time spans of human biological evolution, active tectonics has been an important selective agent contributing to the development of the human species as an intelligent predator.

  2. Tectonic signatures on active margins

    NASA Astrophysics Data System (ADS)

    Hogarth, Leah Jolynn

    High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the

  3. Quantitative Analysis of Spatial Variability of Neo-tectonic Indices along the Sabzpushan Fault Zone within the Zagros Mountains

    NASA Astrophysics Data System (ADS)

    Nezamzadeh, I.; Faghih, A.; Oveisi, B.

    2014-12-01

    The evaluation of geomorphic indices of active tectonics using remote sensing and GIS offer an appropriate method to obtain quantitative data, which is crucial for determining the seismic potential of a fault zone in semiarid areas where tectonic rates are low-to-moderate and quaternary dating is limited. In this study, we investigate poorly understood Sabzpushan Fault Zone (SFZ) within the central part of the Zagros Mountains for spatial variability of neo-tectonic indices. This fault zone is characterized by differential uplift, high neo-tectonic signature and seismic activities in recent past. Field studies have revealed that the SFZ is dividable into three morpho-tectonic segments (northern, middle and southern) with en-echelon array. The neo-tectonic activity of each segment is obtained through DEM analysis using geomorphic indices including the mountain front sinuosity, hypsometric integral, asymmetry factor, stream length-gradient index and valley floor width to valley height ratio. The results illustrate differentiation in the states of activity between those segments at which the middle segment show the highest value. For instance, the mean value of stream-gradient index (SL) of the middle segment is 597.7, whereas this index is 387.5 and 535.4 for the northern and southern segments respectively. This pattern of variation is consistent with recent seismicity, preserved fault scarps, triangular facets and deeply incised valleys along the middle segment of the SFZ.

  4. About independent tectonic position of diatreme fields and zones

    NASA Astrophysics Data System (ADS)

    Khazanovitch-Wulff, Konstantin

    2014-05-01

    Geologists repeatedly made attempts to determine the structural position of diatreme (D) fields on platforms, and in conjunction them with the regional tectonic zones, rifts, aulacogens, deep faults, zones of fracturing, domed structures, etc. However, the options presented such position clearly inconsistent, do not correspond to each other and are the result of extreme subjective interpretation in low volume of geological and geophysical data. Despite ongoing attempts to link D-fields and zones to any tectonic structures, it is clear that these do not have to accommodate of D no relationship (although coincidences are possible). It was established that: - D-fields are not sharply defined geological boundaries, which would be reflected in the structure of the cover or foundation; - localization of D-fields not related to regional faults, nor with their intersection nodes; - D-zones have independent structural position and also not associated with fault zones; - zones of fracturing imposed in some D-fields are due to the formation of D-pipes, not the cause of their location; - formation D-pipes and dome-shaped structures is a single process associated with the intrude force of D-melt; domed structures, corresponding D-fields, formed as a result of simultaneous ("battery") introduction of magmatic melt. This is supported by the fact that these structures do not have deep roots and flatten with the depth (Kaminski et al, 1995) As a result of the analysis and comprehension of these data, the author has developed the following affirmation: the main pattern in the distribution of K-fields and zones lies in their lack of universal spatial relationships with older crustal structures, in their independent ("indifferent") position on these structures. Established pattern can be easily explained from the standpoint of "Bolide model" of the diatremes (including kimberlite) origin, whereby D are result of electrical discharges in the upper horizons of the crust; cause such

  5. Spatial distribution of seismic energy rate of tectonic tremors in subduction zones

    NASA Astrophysics Data System (ADS)

    Yabe, Suguru; Ide, Satoshi

    2014-11-01

    The sizes of deep tectonic tremors have never been accurately evaluated as a physical quantity. Here we estimate tremor size as the band-limited seismic energy rate at 2-8 Hz, with accurate evaluation of the path attenuation and site amplification of seismic waves in four subduction zones: Nankai, Cascadia, Jalisco, and South Chile. The size-frequency statistics of seismic energy rate, which are characterized by the median measure for each subregion, are spatially variable. The spatial variations are categorized into three types, with each type corresponding to a different tremor migration behavior. In type A regions where tremor zone is wider, seismic energy rates are highly variable in the dip direction, and tremor activities are usually initiated in the less energetic tremor zone. Some of them further penetrate into the energetic tremor zone and subsequently migrate for long distances in the strike direction. Type B regions are characterized by relatively narrow tremor zones, minor variations in energy rates in the dip direction, and long-distance migration in the strike direction. Type C regions are characterized by isolated clusters of tremor activities without migration and by independent failure of each small tremor cluster. Given that the spatial distributions of tremor energy rates reflect heterogeneities in the strength of the plate interface, such distributions, which would be controlled by the width of tremor zone, may determine the regional style of slow-earthquake behavior. Some energetic tremor regions act as switches that trigger large slow slip events, especially in type A regions.

  6. Spatial heterogeneities in tectonic stress in Kyushu, Japan and their relation to a major shear zone

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Nakao, Shigeru; Ohkura, Takahiro; Miyazaki, Masahiro; Shimizu, Hiroshi; Abe, Yuki; Inoue, Hiroyuki; Nakamoto, Manami; Yoshikawa, Shin; Yamashita, Yusuke

    2015-10-01

    We investigated the spatial variation in the stress fields of Kyushu Island, southwestern Japan. Kyushu Island is characterized by active volcanoes (Aso, Unzen, Kirishima, and Sakurajima) and a shear zone (western extension of the median tectonic line). Shallow earthquakes frequently occur not only along active faults but also in the central region of the island, which is characterized by active volcanoes. We evaluated the focal mechanisms of the shallow earthquakes on Kyushu Island to determine the relative deviatoric stress field. Generally, the stress field was estimated by using the method proposed by Hardebeck and Michael (2006) for the strike-slip regime in this area. The minimum principal compression stress ( σ3), with its near north-south trend, is dominant throughout the entire region. However, the σ 3 axes around the shear zone are rotated normal to the zone. This result is indicative of shear stress reduction at the zone and is consistent with the right-lateral fault behavior along the zone detected by a strain-rate field analysis with global positioning system data. Conversely, the stress field of the normal fault is dominant in the Beppu-Shimabara area, which is located in the central part of the island. This result and the direction of σ3 are consistent with the formation of a graben structure in the area.

  7. Areas of Active Tectonic Uplift Are Sensitive to Small Changes in Fold Orientations within a Broad Zone of Left-lateral Transpression and Shearing, Dominican Republic and Haiti (Hispaniola)

    NASA Astrophysics Data System (ADS)

    Ambrosius, I.; Mann, P.

    2014-12-01

    Previous GPS studies have shown that the island of Hispaniola is a 250 km-wide zone of active, east-west, left-lateral shearing along two major strike-slip zones: the Septentrional-Oriente fault zone through the northern part of the island and the Enriquillo-Plantain Garden fault zone (EPGFZ) through the southern part of the island. The total interplate rate distributed on both faults is 21 mm/yr. Using a high-resolution DEM, we constructed fluvial channel profiles across transpression-related folds of late Miocene to recent age in the area of central and southern Dominican Republic and Haiti to determine controls of areas of relatively high, moderate, and slow uplift inferred from fluvial channel profiles. Fold axes in this area extend for 50-150 km and exhibit two different trends: 1) folds that occupy the area of the Sierra de Neiba-Chaine des Matheux north of the Enriquillo-Cul-de-Sac Valley and EPGFZ and folds that occupy the area of the Sierra de Bahoruco-Massif de la Selle all exhibit more east-west fold axes trending 110; 2) folds that occupy the area northwest of the EPGFZ in the western Chaine des Matheux and Sierra de Neiba all exhibit fold axes with more northwest trends of 125. River channel profiles show that the second group of more northwesterly-trending fold axes show relatively higher rates of tectonic uplift based on their convex-upward river profiles. Our interpretation for regional variations in river profiles and inferred uplift is that uplift is more pronounced on fold axes trending 15 degrees more to the northwest because their axes are more oblique to the interplate direction of east-west shearing. Longterm uplift rates previously measured from a stairstep of late Quaternary coral terraces at the plunging nose of the westernmost Chaine des Matheux have been previously shown to be occurring at a rate of 0.19 mm/yr. Onland exposures of Holocene corals are found only on one locality within the southern area of folds 30 km west of the epicenter

  8. Shear zones developed between extensional and compressional tectonic regimes: recent deformation of the Burdur Fethiye Shear Zone as a case study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Aktuǧ, Bahadır

    2016-04-01

    The southwestern Turkey is one of the most tectonically active areas of the eastern Mediterranean and therefore is a controversial region from the geodynamic point of view. This complex tectonic regime is dominated by the westward escape of Anatolia related to North Anatolian Fault, Aegean back-arc extension regime due to roll-back of Hellenic Arc, the subduction transform edge propagator (STEP) fault zone related to the motion of Hellenic and Cyprus arcs and compressional regime of Tauride Mountains. In addition to that, an active subduction and seamounts moving towards the north determine the tectonic frame of the Eastern Mediterranean. Many researchers suggest either the existence of a single left lateral fault or the nonexistence of a fault zone between Western Anatolia and Western Taurides. According to the integration of digital elevation data, non-commercial GoogleEarth satellite images and field studies, a 300 km-long 75-90 km-wide NE-SW-trending left lateral shear zone, the Burdur-Fethiye Shear Zone, is located among these tectonic structures. By using GPS velocities and focal mechanism solutions of earthquakes, it is understood that most of the previous studies turn a blind eye to the hundreds of faults related to a left-lateral shear zone which will have an important role in the Mediterrenean tectonics. The Burdur-Fethiye Shear Zone is like a zipper driven by the relative velocity differences due to the Aegean back-arc extensional system and Western Taurides compressional region and presents a high seismic activity. The GPS vectors reflect remarkable velocity differences on land and relatedly the significant topographic differences can be clearly observed. According to the GPS vectors, the Aegean region moves 4-12 mm/yr faster than the wesward escape of the Anatolia towards southwest and the velocities are low in the Western Taurides. The left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3-4 mm/yr in the north side to 8

  9. The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone

    NASA Astrophysics Data System (ADS)

    Berberian, M.; Jackson, J. A.; Qorashi, M.; Talebian, M.; Khatib, M.; Priestley, K.

    2000-08-01

    In 1994 a sequence of five earthquakes with Mw 5.5-6.2 occurred in the Sistan belt of eastern Iran, all of them involving motion on blind thrusts with centroid depths of 5-10km. Coseismic ruptures at the surface involved bedding-plane slip on a growing hanging-wall anticline displaying geomorphological evidence of uplift and lateral propagation. The 1994 earthquakes were associated with a NW-trending thrust system that splays off the northern termination of a major N-S right-lateral strike-slip fault. Elevation changes along the anticline ridge suggest that displacement on the underlying thrust dies out to the NW, away from its intersection with the strike-slip fault. This is a common fault configuration in eastern Iran and accommodates oblique NE-SW shortening across the N-S deforming zone, probably by anticlockwise rotations about a vertical axis. This style of fault kinematics may be transitional to a more evolved state that involves partitioning of the strike-slip and convergent motion onto separate subparallel faults.

  10. Mobilization of evaporites in tectonically active terrains

    NASA Astrophysics Data System (ADS)

    Stiros, Stathis C.

    2015-04-01

    The role of evaporites, mostly halite, during seismic sequences is investigated using evidence from certain earthquakes with magnitude between approximately 6.0 and 7.2 which occurred in the last 60 years in the Zagros Mts. (Iran) and the Ionian Sea (Greece); i.e. two seismically active areas, characterized by evaporite-associated decollements and more shallow decollements combined with mature, along-thrusts intrusions. Studied earthquakes produced either large scale surface deformation, or were covered by high-resolution and accuracy GPS and INSAR data, permitting to fully recognize the deformation pattern. In all cases an "atypical", tectonic deformation pattern was observed, ranging from apparently "impossible" patterns (thrust and normal faults, sub-parallel and homothetic; 1953 Cephalonia earthquake, Greece) to rather diffuse tectonic patterns, even to "phantom" earthquakes (Zagros). Careful analysis and modeling of the surface deformation data, in combination with the available geological, geophysical and seismological data permits to recognize, and even to quantify differences between deformation observed, and that expected in ordinary environments. In particular, it was found that during earthquakes evaporites were mobilized, and this led either to a secondary deformation of the overburden, fully detached from the basement, or to significant aseismic (post-seismic) deformation. Anomalies in the distribution of seismic intensities due to evaporitic intrusions along faults were also observed. Apart from seismological implications (unpredictable post-seismic deformation, possibly also in the far-field), these results deriving from regions at different levels of evaporitic evolution, may prove useful to understand patterns of mobilization of evaporites during periods of tectonic activity.

  11. Areas of Unsolved Problems in Caribbean Active Tectonics

    NASA Astrophysics Data System (ADS)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  12. Erosion by tectonic carving in the Concordia Subglacial Fault Zone, East Antarctica

    NASA Astrophysics Data System (ADS)

    Maggi, Matteo; Cianfarra, Paola; Salvini, Francesco

    2016-01-01

    In this work we present the analysis of the footwall morphology of the Concordia subglacial extensional fault in the East Antarctic Craton. The Concordia Fault is a regional fault zone that extends for almost 200 km. The displacement, up to 1800 m, and the listric geometry were recognized by numerical modeling of the resulting hangingwall bedrock morphology and is responsible for the marked asymmetry that characterizes the corresponding scarp in the Concordia Subglacial Trench. The portion of the footwall in the proximity of the master fault exhibits an excavated morphology, about 500 m deep and up to 5 km wide, showing strong correlation with the master fault displacement. We excluded a predominant glacial and fluvial origin of this morphology considering: (i) the sharp topography of the Concordia Fault, suggesting that the fault activity started after the onset of the ice sheet; (ii) the ice-sheet/bedrock contact is characterized by a general negligible erosion/deposition rates still allowing clast removal; (iii) the lack of significant deposits in the Concordia Trench. We hence explored the possibility that this morphology may result from the combined action of fault-induced fracturing and passive clast removal and scattering by flow and plastic deformation within the ice sheet. We introduced the term tectonic carving for this process. Our modeling shows that tectonic carving relates to the relative fracture intensity in the Concordia fracture zone, that corresponds to the envelope of master and secondary fault damage zones. Fracture intensity depends on the frequency and the displacement of secondary faulting and can be approximated by a normal distribution. Using a Monte Carlo modeling approach we selected the set of parameters that best fits the data set with the carving theoretical curve. The final results of the Monte Carlo analysis show a root mean square of about 50 meters, comparable with the data resolution. This analysis demonstrates a method to

  13. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  14. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  15. Controls of shear zone rheology and tectonic loading on postseismic creep

    NASA Astrophysics Data System (ADS)

    MontéSi, Laurent G. J.

    2004-10-01

    Postseismic deformation is well documented in geodetic data collected in the aftermath of large earthquakes. In the postseismic time interval, GPS is most sensitive to creep in the lower crust or upper mantle activated by earthquake-generated stress perturbations. In these regions, deformation may be localized on an aseismic frictional surface or on a ductile shear zone. These two hypotheses imply specific rheologies and therefore time dependence of postseismic creep. Hence postseismic creep constitutes a potential probe into the rheology of aseismic regions of the lithosphere. I present a simple shear zone model of postseismic creep in which the rheology of the creeping element can be varied. In the absence of tectonic loading during the postseismic time interval, the displacement history of the shear zone obeying a power law rheology with stress exponent n follows an analytical relaxation curve parameterized by 1/n. For a frictional surface, postseismic creep follows the same relaxation law in the limit 1/n → 0. A rough estimate of the apparent stress exponent can be obtained from continuous GPS records. Application to data collected after the 1994 Sanriku earthquake yields 1/n ˜ 0.1, which is consistent with dislocation creep mechanisms. However, the records of two other subduction zone events, the 2001 Peru event and the 1997 Kronotski earthquake, and a continental strike-slip earthquake, the 1999 İzmit earthquake, require negative 1/n. Rather than characterizing the shear zone rheology, these negative exponents indicate that reloading of the shear zone by tectonic forces is important. Numerical simulations of postseismic deformation with nonnegligible reloading produce curves that are well fit by the generalized relaxation law with 1/n < 0, although the actual stress exponent of the rheology is positive. While this prevents rheology from being tightly constrained by the studied GPS records, it indicates that reloading is important in the postseismic time

  16. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  17. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  18. Tectonics of ridge-transform intersections at the Kane fracture zone

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Dick, H. J. B.

    1983-03-01

    The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (<200 m), highly fractured, and discontinuous carapace of volcanic rocks overlying a variably deformed and metamorphosed assemblage of gabbroic rocks. Overprinting relationships reveal a complex history of crustal extension and rapid vertical uplift. In contrast, the opposing flanks of the ridge axes, that intersect the non-transform zones appear to be similar in many respects to those examined elsewhere along slow-spreading ridges. In general, a near-axial horst and graben terrain floored by relatively young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with

  19. Tectonic Geomorphology of the Hanging Wall Blocks of the Cimandiri Fault Zone, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, R.

    2014-12-01

    In areas where regional strain is accommodated by broad zones of short and low slip-rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments and undetectable until the next earthquake. In Java, despite the frequency of damaging shallow earthquakes, active faults are diffuse and their characterization is challenging. Among them is the ENE-trending Cimandiri fault. Cumulative displacement along the fault produces prominent ENE-oriented ranges with the east side moving relatively upward and to the north. Along its length, the few hundred meter wide fault zone is expressed in the bedrock by numerous NE, E and NW-trending thrust- and strike slip faults and folds. However, it is unclear which of these structures are active, as the diffuse nature of the fault zone has so far stymied conventional paleoseismic study. To address this, we performed a tectonic geomorphology analysis of the fault zone. We used the 30-m resolution SRTM-DEM to construct longitudinal profiles of 601 bedrock rivers along the ranges and calculated the normalized channel steepness index (ksn). Our preliminary results rely on the assumption that ksn is a reasonable proxy for relative rock uplift rate in a region, assuming variations in rock type and climate are insignificant. While the active traces of the Cimandiri fault are obscured, the spatial variation in ksn allows us to delineate 4 discontinuous hanging wall blocks that vary between E and NE striking along the zone. The largest ksn values are along the central-western block (Cibeber area). The longest block is in the central eastern portion of the fault zone and comprises 45 km of the 100 km long fault zone. The fault bifurcates at its eastern termination and steps into the Lembang fault. The distribution of ksn suggests that reverse motion is more dominant than lateral because of a lack of

  20. Crustal structure and active tectonics in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Brückl, E.; Behm, M.; Decker, K.; Grad, M.; Guterch, A.; Keller, G. R.; Thybo, H.

    2010-04-01

    During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south and underthusting of AD mantle below PA from southwest to northeast. The Moho fragmentation correlates well with major upper crustal structures and is supported by gravity, seismic, and geodetic data. An analysis of crustal thickening suggests that active convergence is associated with continued thrusting and lateral extrusion in the central Eastern Alps and thickening of the Adriatic indenter under the Southern Alps. According to the velocity relations at the triple junction, PA moves relative to EU and AD along ENE and SE striking faults, mainly by strike slip. An eastward directed extensional component is compensated by the lateral extrusion of the central Eastern Alps. The Periadriatic (Insubric) line east of the triple junction and the mid-Hungarian fault zone have relatively recently lost their role as first-order active structures. We favor the idea that the Pannonian fragment and the TISZA block merged to a "soft" microplate surrounded by the Eastern and Southern Alpine, Carpathian, and Dinaric orogens.

  1. Comparative study of pseudotachylyte-bearing and pseudotachylyte-free fault zones from various tectonic regimes

    NASA Astrophysics Data System (ADS)

    Fabbri, O.; Coromina, G.

    2003-04-01

    In order to better understand the mechanics of seismogenic faults, we have conducted a comparative study of pseudotachylyte-bearing and pseudotachylyte-free fault zones. The selected fault zones come from various tectonic settings, tectonic regimes and ages, and are either extinct or inactive. The host rocks consist mostly of granitoids or volcanic rocks (ignimbrites). Pseudotachylyte-bearing shear zones are associated with two fault systems: (1) the Osumi central fault zone (Osumi granodiorite, Kyushu island, forearc domain of southwest Japan), along which normal motion occurred during the Miocene (Fabbri et al., 2000), and (2) the Outer Hebrides Fault System (Outer Hebrides, northwest Scotland), a long-lived fault system characterized by a polyphase Precambrian motion history (Sibson, 1975). Pseudotachylyte-free shear zones come from three fault systems: (1) the Osumi southern fault zone, whose motion is the same as for the central fault zone mentioned above, (2) two strike-slip faults (Kake and Hikimi) of the Western Chugoku Fault System (Honshu island, intra-arc domain of southwest Japan), and (3) the La Serre Median Fault (La Serre horst, Alpine foreland, eastern France), a late Paleozoic low-angle normal-dextral fault. The shear zones are analysed from several viewpoints: geometry of the fault system and of individual fault segments, kinematic history, amount of displacement, organisation of the damaged or core zones, nature, petrography and relative amount of fault-related rocks, evidence for past fluid-rock interactions, etc. The comparison between the two types of faults show that pseudotachylyte-bearing shear zones show very little evidence for fluid rock interactions as a whole, whereas the pseudotachylyte-free fault zones always display extensive evidence of pervasive fluid-rock interactions within or beside the damaged or core zones. Though our dataset is limited, the following explanation can be tentatively proposed. Extensive fluid circulation

  2. Tectonic Features of the Barguzin Depression of the Baikal Rift Zone Using Computer Interpretation of Electrical Soundings Data

    NASA Astrophysics Data System (ADS)

    Nevedrova, N.; Epov, M.; Sanchaa, A.

    2003-12-01

    In 1950s of the twentieth century, extensive geophysical prospecting was carried out in the region of Baikal Rift Zone with the aim to investigate the deep depression structure. The basic method of geophysical exploration was vertical electrical sounding (VES). At that time, the sufficiently complicated structure of the section gave no way of determining the main parameters of separate depositional sequences. With the development of computer techniques it has become the possibility to interpret these complicated data of electrical exploration at the new qualitative level by using programs of mathematical modelling and inversion. At the first stage, interpretation of electrical prospecting data was executed based on solution of the inverse problem within the limit of the horizontally-layered model using the SONET program complex. Moreover, by using both 2D modelling and inversion, it is possible to refine geoelectrical parameters and to conclude that entirely acceptable results can be obtained using 1D inversion. The final results reflect the detailed deep depression structure and it tectonic features. Tectonically active zone with multiple ruptures, which form complicated block structures as in the sedimentary cover so in the base, are under investigation.The sedimentary cover is as thick as 2.5 km according to results of computer interpretation. Fractured zones exhibit the areas with decreased rock resistivity. Reconstruction of a detailed tectonic structure of Barguzin depressions allow better understanding peculiarities of geodynamic processes for the Baikal rift zone in general and for depression in particular.

  3. Modeling the Philippine Mobile Belt: Tectonic blocks in a deforming plate boundary zone

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Hamburger, M. W.; McCaffrey, R.; Bacolcol, T. C.; Aurelio, M. A.

    2007-12-01

    The Philippine Mobile Belt, a seismically active, rapidly deforming plate boundary zone situated along the convergent Philippine Sea/Eurasian plate boundary, is examined using geodetic and seismological data. Oblique convergence between the Philippine Sea Plate and the Eurasian plate is accommodated by nearly orthogonal subduction along the Philippine Trench and the Manila Trench, as well as by strike-slip faulting along the Philippine Fault system. We develop a model of active plate boundary deformation in this region, using elastic block models constrained by known fault geometries, published GPS observations and focal mechanism solutions. We then present an estimate of block rotations, fault coupling, and intra-block deformation, based on the best-fit model that minimizes the misfit between observed and predicted geodetic vectors and earthquake slip vectors. Slip rates along the Philippine fault vary from ~22 - 36 mm/yr in the Central Visayas and about 10 to 40 mm/yr in Luzon, trending almost parallel to the fault trace. In northern Luzon, Philippine Fault splays accommodate transpressional strain. The Central Visayas block experiences convergence with the Sundaland block along the Negros Trench and the Mindoro-Palawan collision zone. On the eastern side of Central Visayas, sinistral strike-slip faulting occurs along the NNW-SSE-trending Philippine Fault. Mindanao Island in southern Philippines is dominated by east-verging subduction along the Cotabato Trench, and strain partitioning (strike- slip faulting with west-verging subduction) in eastern Mindanao along the southern Philippine Fault and Philippine Trench, respectively. Oblique active sinistral strike slip faults in Central and Eastern Mindanao that were hypothesized to be responsible for basin formation are obvious boundaries for tectonic blocks. Located south of Mindanao Island we define an adjoining oceanic block defined by the N-S trending complex dual subduction zone of Sangihe and Halmahera

  4. b values and ω−γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion

    USGS Publications Warehouse

    Hanks, Thomas C.

    1979-01-01

    In this study the tectonic stress along active crustal fault zones is taken to be of the form , where  is the average tectonic stress at depth y and Δσp(x, y) is a seismologically observable, essentially random function of both fault plane coordinates; the stress differences arising in the course of crustal faulting are derived from Δσp(x, y). Empirically known frequency of occurrence statistics, moment-magnitude relationships, and the constancy of earthquake stress drops may be used to infer that the number of earthquakes N of dimension ≥r is of the form N ∼ 1/r2 and that the spectral composition of Δσp(x, y) is of the form , where  is the two-dimensional Fourier transform of Δσp(x, y) expressed in radial wave number k. The γ = 2 model of the far-field shear wave displacement spectrum is consistent with the spectral composition , provided that the number of contributions to the spectral representation of the radiated field at frequency ƒ goes as (k/k0)2, consistent with the quasi-static frequency of occurrence relation N ∼ 1/r2;k0 is a reference wave number associated with the reciprocal source dimension. Separately, a variety of seismologic observations suggests that the γ = 2 model is the one generally, although certainly not always, applicable to the high-frequency spectral decay of the far-field radiation of earthquakes. In this framework, then, b values near 1, the general validity of the γ = 2 model, and the constancy of earthquake stress drops independent of size are all related to the average spectral composition of. Should one of these change as a result of premonitory effects leading to failure, as has been specifically proposed for b values, it seems likely that one or all of the other characteristics will change as well from their normative values. Irrespective of these associations, the far-field, high-frequency shear radiation for the γ = 2 model in the presence of anelastic attenuation may be interpreted as

  5. Tectonic evolution of the El Salvador Fault Zone. Insights from analogue experiments.

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, Jorge; Schreurs, Guido; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio

    2014-05-01

    The El Salvador Fault Zone (ESFZ) is an active, c. 150 km long and 20 km wide segmented, dextral strike-slip fault zone within the El Salvador Volcanic Arc striking N90°-100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Our analysis of structural field data, remote sensing images and morphometric indices reveals a trenchward migration of the volcanic arc and furthermore suggests that not all structures within the ESFZ can be explained within the current tectonic context, but require a phase of extension or an extensional component of deformation at some stage in the evolution of the ESFZ. Such an extension and trenchward migration of the volcanic arc could be related to subduction roll-back of the Cocos Plate beneath the Chortis Block in Mio-Pliocene times. Such a possible evolution leads to open questions that we address in our research: Is the ESFZ a neo-formed fault zone, i.e. did it form during one phase of strike-slip or transtensional deformation, or do the structures in the ESFZ reflect a two-phase evolution, i.e. an early phase of extension overprinted by a later phase of strike-slip or transtension? Did subduction roll-back occur beneath El Salvador? We carried out analogue model experiments to test whether or not an early phase of extension is required to form the present-day fault pattern in the ESFZ. Analogue modeling is an effective tool in testing various hypotheses, as it allows the experimenter to control specific parameters and to test their influence on the resulting structures. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures of the ESFZ and can explain the shallow geometry of the fault zone. This extensional phase is followed by a strike-slip dominated regime, which results in inter

  6. Electrical resistivity structure of the Great Slave Lake shear zone, northwest Canada: implications for tectonic history

    NASA Astrophysics Data System (ADS)

    Yin, Yaotian; Unsworth, Martyn; Liddell, Mitch; Pana, Dinu; Craven, James A.

    2014-10-01

    Three magnetotelluric (MT) profiles in northwestern Canada cross the central and western segments of Great Slave Lake shear zone (GSLsz), a continental scale strike-slip structure active during the Slave-Rae collision in the Proterozoic. Dimensionality analysis indicates that (i) the resistivity structure is approximately 2-D with a geoelectric strike direction close to the dominant geological strike of N45°E and that (ii) electrical anisotropy may be present in the crust beneath the two southernmost profiles. Isotropic and anisotropic 2-D inversion and isotropic 3-D inversions show different resistivity structures on different segments of the shear zone. The GSLsz is imaged as a high resistivity zone (>5000 Ω m) that is at least 20 km wide and extends to a depth of at least 50 km on the northern profile. On the southern two profiles, the resistive zone is confined to the upper crust and pierces an east-dipping crustal conductor. Inversions show that this dipping conductor may be anisotropic, likely caused by conductive materials filling a network of fractures with a preferred spatial orientation. These conductive regions would have been disrupted by strike-slip, ductile deformation on the GSLsz that formed granulite to greenschist facies mylonite belts. The pre-dominantly granulite facies mylonites are resistive and explain why the GSLsz appears as a resistive structure piercing the east-dipping anisotropic layer. The absence of a dipping anisotropic/conductive layer on the northern MT profile, located on the central segment of the GSLsz, is consistent with the lack of subduction at this location as predicted by geological and tectonic models.

  7. Late Holocene Tectonics and Paleoseismicity, Southern Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Clarke, Samuel H., Jr.; Carver, Gary A.

    1992-01-01

    Holocene deformation indicative of large subduction-zone earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault zone. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater.

  8. Late holocene tectonics and paleoseismicity, southern cascadia subduction zone.

    PubMed

    Clarke, S H; Carver, G A

    1992-01-10

    Holocene deformation indicative of large subduction-zone earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault zone. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater. PMID:17756070

  9. Tectonics

    NASA Astrophysics Data System (ADS)

    John Dewey will complete his term as editor-in-chief of Tectonics at the end of 1984. Clark Burchfiel's term as North American Editor will also end. Tectonics is published jointly with the European Geophysical Society. This newest of AGU's journals has already established itself as an important journal bridging the concerns of geophysics and geology.James A. Van Allen, president of AGU, has appointed a committee to recommend candidates for both editor-in-chief and North American editor for the 1985-1987 term.

  10. Quaternary Tectonism in a Collision Zone, Northwest Washington

    NASA Astrophysics Data System (ADS)

    McCrory, P. A.; Wolf, S. C.; Intelmann, S. S.; Danforth, W. W.; Weldon, R. J.; Blair, J. L.

    2004-12-01

    Kinematic, geodetic, and geologic observations define a region with 6-8 mm/y of north-south contraction between the Columbia River and Vancouver Island. We attribute this contraction to differential forearc-block motion within the Cascadia subduction system where the Oregon Coast Range block is moving northward relative to Vancouver Island. The contraction is accommodated by a combination of distributed uplift in the Olympic Mountains, and faulting along the margins of the Coast Range and Vancouver Island blocks. The tide gauge at Neah Bay, which records one of the highest rates of uplift anywhere along the Cascadia subduction margin, suggests that a significant portion of this north-south contraction occurs between the northern Olympic Peninsula and Vancouver Island. The northwest-trending Calawah fault, extending from Makah Bay eastward to near Lake Crescent, appears to mark the modern boundary between the Olympic Mountains block and the Vancouver Island block in northwestern Washington. Onshore, the 80+ km-long Calawah fault displaces late Quaternary glacial sediments and geodetic uplift rates increase abruptly across the fault zone. Offshore in Makah Bay, new multibeam, sidescan-sonar, and high-resolution seismic reflection data image a complex, multi-strand fault zone that offsets the seafloor and moves Cape Flattery rocks seaward. Two parallel, northwest-trending fault strands bound a down-dropped block that in turn terminates along a northward-trending anticlinal fold and thrust fault. These data suggest that the Calawah fault zone currently accommodates contraction both by uplift and by seaward translation of rocks north of the forearc-block boundary. Our geologic mapping in the Cape Flattery area indicates that differential block motion is accommodated by a combination of crustal uplift, folding, and left-lateral, strike-slip faulting.

  11. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and

  12. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  13. Early Miocene Tectonic Activity in the western Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; Geletti, R.; De Santis, L.

    2012-12-01

    In the framework of the Rossmap Italian PNRA work objectives to compile extended and revised digital maps of the main unconformities in Ross Sea, Antarctica, much additional seismic reflection data, that were not available to previous ANTOSTRAT compilation, were incorporated into a new ROSSMAP interpretation. The correlation across almost all of Ross Sea, from DSDP Site 270 and Site 272 in Eastern Basin to northern Victoria Land Basin, of additional early Miocene and late Oligocene horizons that were not part of ANTOSTRAT allows interpretations to be made of fault activity and glacial erosion or deposition at a finer time resolution. New conclusions include that extensional or transtensional fault activity within the zone between Victoria Land Basin and Northern Basin, initiated by 23 Ma or earlier, and continued after 18 Ma. Steep parallel-striking faults in southern Victoria Land Basin display both reverse and normal separation of 17.5 Ma (from Cape Roberts Program-core 1) and post-16 Ma horizons, suggesting an important strike-slip component. This result may be compared with published papers that proposed post-17 Ma extension in southern Victoria Land Basin, 16-17 Ma extension in the AdareTrough, north of the Ross Sea continental shelf, but no Miocene extension affecting the Northern Basin (Granot et al., 2010). Thus, our evidence for extension through the early Miocene is significant to post-spreading tectonic models. Reference Granot R., Cande S. C., Stock J. M., Davey F. J. and Clayton R. W. (2010) Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences. Geochem. Geophys. Geosyst., 8, Q08005, doi:10.1029/2010GC003105.

  14. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  15. Seismic Wave Attenuation Estimated from Tectonic Tremor and Radiated Energy in Tremor for Various Subduction Zones

    NASA Astrophysics Data System (ADS)

    Yabe, S.; Baltay, A.; Ide, S.; Beroza, G. C.

    2013-12-01

    Ground motion prediction is an essential component of earthquake hazard assessment. Seismic wave attenuation with distance is an important, yet difficult to constrain, factor for such estimation. Using the empirical method of ground motion prediction equations (GMPEs), seismic wave attenuation with distance, which includes both the effect of anelastic attenuation and scattering, can be estimated from the distance decay of peak ground velocity (PGV) or peak ground acceleration (PGA) of ordinary earthquakes; however, in some regions where plate-boundary earthquakes are infrequent, such as Cascadia and Nankai, there are fewer data with which to constrain the empirical parameters. In both of those subduction zones, tectonic tremor occurs often. In this study, we use tectonic tremor to estimate the seismic wave attenuation with distance, and in turn use the attenuation results to estimate the radiated seismic energy of tremor. Our primary interest is in the variations among subduction zones. Ground motion attenuation and the distribution of released seismic energy from tremors are two important subduction zone characteristics. Therefore, it is very interesting to see whether there are variations of these parameters in different subduction zones, or regionally within the same subduction zone. It is also useful to estimate how much energy is released by tectonic tremor from accumulated energy to help understand subduction dynamics and the difference between ordinary earthquakes and tremor. We use the tectonic tremor catalog of Ide (2012) in Nankai, Cascadia, Mexico and southern Chile. We measured PGV and PGA of individual tremor bursts at each station. We assume a simple GMPE relationship and estimate seismic attenuation and relative site amplification factors from the data. In the Nankai subduction zone, there are almost no earthquakes on the plate interface, but intra-slab earthquakes occur frequently. Both the seismic wave attenuation with distance and the site

  16. Earthquake Forecasting in Diverse Tectonic Zones of the Globe

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.

    2010-06-01

    We present a simple method for long- and short-term earthquake forecasting (estimating earthquake rate per unit area, time, and magnitude). For illustration we apply the method to the Pacific plate boundary region and the Mediterranean area surrounding Italy and Greece. Our ultimate goal is to develop forecasting and testing methods to validate or falsify common assumptions regarding earthquake potential. Our immediate purpose is to extend the forecasts we made starting in 1999 for the northwest and southwest Pacific to include somewhat smaller earthquakes and then adapt the methods to apply in other areas. The previous forecasts used the CMT earthquake catalog to forecast magnitude 5.8 and larger earthquakes. Like our previous forecasts, the new ones here are based on smoothed maps of past seismicity and assume spatial clustering. Our short-term forecasts also assume temporal clustering. An important adaptation in the new forecasts is to abandon the use of tensor focal mechanisms. This permits use of earthquake catalogs that reliably report many smaller quakes with no such mechanism estimates. The result is that we can forecast earthquakes at higher spatial resolution and down to a magnitude threshold of 4.7. The new forecasts can be tested far more quickly because smaller events are considerably more frequent. Also, our previous method used the focal mechanisms of past earthquakes to estimate the preferred directions of earthquake clustering, however the method made assumptions that generally hold in subduction zones only. The new approach escapes those assumptions. In the northwest Pacific the new method gives estimated earthquake rate density very similar to that of the previous forecast.

  17. Late middle ( ) Miocene Segmentation of an Eocene-early Miocene carbonate megabank on the Northern Nicaragua Rise tied to the tectonic activity at the North America/Caribbean plate boundary zone

    SciTech Connect

    Droxler, A.; Cunningham, A. ); Hine, A.C.; Hallock, P.; Duncan, D. ); Rosencrantz, E.; Buffler, R. ); Robinson, E. )

    1993-02-01

    The Northern Nicaragua Rise (NNR) is comprised today of the eastern Honduras/Nicaragua and southern Jamaica carbonate shelves, and a series of relatively small detached carbonate banks (i.e., Pedro, Rosalind, Serranilla, Diriangen, and Bawika Banks) separated from each other by intervening basins and seaways. The NNR basins and seaways, because of their common north trending orientation, have been previously interpreted as Paleocene, Eocene, and possibly Oligocene rifts, becoming progressively younger from the eastern to the western part of NNR. Results from three recent (1988 and 1992) high resolution seismic surveys within these major seaways and basins, (1) Walton Basin, (2) Pedro Channel, and (3) seaways and Serranilla Basin on the western side of the NNR, show that the present bank and basin configuration evolved from a once continuous megabank that covered the entire length of the NNR, including the Island of Jamaica from Eocene through early Miocene times. In the late middle ( ) Miocene, this megabank progressively broke up into a series of smaller banks, basins and seaways, mainly as the result of tectonic movements related to the overall strike-slip displacement within the North American and Caribbean Plate Boundary Zone of the Cayman Trough. At the same time (late middle Miocene), the most eastern portion of the megabank was uplifted and today forms most of central and south Jamaica. The timing of the megabank segmentation has tentatively been constrained by dating several blocks of shallow water limestone dredged from parts of the megabank outcropping on the sea floor of different seaways.

  18. Recurrent intraplate tectonism in the New Madrid seismic zone

    USGS Publications Warehouse

    Zoback, M.D.; Hamilton, R.M.; Crone, A.J.; Russ, D.P.; McKeown, F.A.; Brockman, S.R.

    1980-01-01

    For the first time, New Madrid seismicity can be linked to specific structural features that have been reactivated through geologic time. Extensive seismic reflection profiling reveals major faults coincident with the main earthquake trends in the area and with structural deformation apparently caused by repeated episodes of igneous activity. Copyright ?? 1980 AAAS.

  19. Tectonic and stratigraphic evolution of the Tjornes Fracture Zone, northern Iceland

    NASA Astrophysics Data System (ADS)

    Fenwick, Rebecca Ann

    Rifted margins and plate boundary tectonics dominate the surface morphology of the ocean basins, in particular the processes that occur in rifted margins and transform fault zones remain poorly understood. Northern Iceland is an ideal area to investigate distributed extensional deformation and the evolution of transform fault zones because of the repeated rift jumps eastward back to the Iceland plume. Studying this continually evolving system allows us the opportunity to understand better the complicated nature of evolving transform faults. Using CHIRP subbottom, MCS, multibeam bathymetry, side-scan sonar, and towcam images we imaged the three basins that comprise the Tjornes Fracture Zone: Eyjafjordur, Skjalfandi, and Oxarfjordur bays. In the Tjornes Fracture Zone, there appears to have been an initial stage of distributed extension accommodation: graben faulting with normal faults accommodating the extension between the newly formed North Volcanic Zone and the southern extent of the Kolbeinsey Ridge. This appears to have been followed and overprinted by more traditional oceanic transform faulting, with the development of the Husavik-Flatey Fault and then the Grimsey Lineament that was subsequently formed with the northward propagation of the North Volcanic Zone. Pockmarks are increasingly being commonly identified along margins, and our data allowed us to investigate controls over their occurrence, morphology and location in Skjalfandi Bay. In this area they have been observed in a band 15-22 km offshore, and in along the Husavik-Flatey fault scarp near shore. Pockmarks along the fault scarp are easily attributed to fluid migration along the fault plan from depth, and we observed an increasing biota density and abundance within these pockmarks. This is likely due to either an increased nutrient flux from depth or increased detrital deposition within the pockmarks. Offshore pockmarks occur in a well-defined band determined by the interplay of the distribution of

  20. Unraveling the geodynamic evolution and tectonic history of the Guatemala Suture Zone: a world-class natural laboratory

    NASA Astrophysics Data System (ADS)

    Flores, K. E.; Brocard, G. Y.; Harlow, G. E.

    2013-12-01

    The Guatemala Suture Zone (GSZ) is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. It is bounded by the Maya Block to the north and by the Chortís Block to the south. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schist, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). This modern plate boundary has accommodated at least ~1100 km of left-lateral strike-slip motion over the Cenozoic and brings into contact the geological provinces described above. Classically, the GSZ has been interpreted as the result of a single progressive collision of a Chortís Block-related island arc with the passive margin of the Maya Block. This model was based on geochemical signatures of basaltic rocks in oceanic crust sequences both north and south of the MFS. However, results from our research challenge this single collision hypothesis. Oceanic and continental high-pressure-low-temperature (HP-LT) rocks astride the MFS have recorded multiple tectonic events revealed by their multiple metamorphic ages (Sm-Nd, U-Pb and Ar-Ar) and distinct PT paths. These tectonic events differ in age north and south of the MFS. Moreover, the continental and oceanic sequences across the MFS are geochemically and stratigraphically distinct, suggesting different tectonic origins. The southern margin of the Maya Block and the northern section of the GSZ can be clearly interpreted as a Cretaceous-Paleocene flexural passive margin tectonically overridden by ultramafic rocks and a Cretaceous island arc sequence. In contrast, the southern section of the GSZ is composed of a Carboniferous-Jurassic active margin tectonically imbricated with ultramafic rocks and a circum-Pacific Jurassic MORB and IAT metavolcano-sedimentary sequence. Thus, based on these results, we identify at

  1. Periodic Vesicle Formation in Tectonic Fault Zones--an Ideal Scenario for Molecular Evolution.

    PubMed

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system. PMID:25716918

  2. Age and tectonic implications of Paleoproterozoic Deo Khe Granitoids within the Phan Si Pan Zone, Vietnam

    NASA Astrophysics Data System (ADS)

    Anh, Hoang Thi Hong; Hieu, Pham Trung; Tu, Vu Le; Son, La Mai; Choi, Sung Hi; Yu, Yongjae

    2015-11-01

    We report the first U-Pb zircon ages of 1855-1873 Ma for the Deo Khe Granitoids (DKG) in the Phan Si Pan Zone (PSPZ) of northern Vietnam. The DKG are medium-grained two-mica granitoids predominantly composed of quartz, K-feldspar, and muscovite. Trace element analyses indicate that the DKG are enriched in large ion lithophile elements but depleted in high field strength elements. Zircons from the granitoids have negative εHf(t) values ranging from -23.6 to -17.5. The magmatic zircons from the DKG have single-stage Hf model ages (TDM1) that range from 3.3 to 2.8 Ga and their εHf(t) data all plot well below the evolution trend of 2800 Ma average juvenile mantle. Observed Hf model ages are contemporaneous with the emplacement of 2.90-2.84 Ga tonalite-trondhjemite-granodiorite (TTG) gneiss observed in a nearby Ca Vinh Complex, suggesting that PSPZ in northern Vietnam is a product of partial melting of Archean crust. A sequence of similar tectonic events including initial emplacement of TTG protolith at 2.8-2.9 Ga, metamorphic development of TTG gneiss at 1.9-2.0 Ga, and magmatic activity at 1.8-2.0 Ga are now recognized both in northern Vietnam and Yangtze block which we interpret to indicate basement rocks in northern Vietnam are similar to those found along southern China.

  3. Tidal sensitivity of tectonic tremors in Nankai and Cascadia subduction zones

    NASA Astrophysics Data System (ADS)

    Yabe, Suguru; Tanaka, Yoshiyuki; Houston, Heidi; Ide, Satoshi

    2015-11-01

    Tectonic tremors in subduction zones, which result from slip at the deep plate interface, are known to exhibit a 12.4 h periodicity in their activity, due to tidal influence. Because tidal stress can be calculated quantitatively, the response of the plate interface can yield quantitative information about its frictional property. The relation between tremor rate and tidal stress is investigated, and an exponential relation is widely confirmed, as observed by previous studies. This study particularly focuses on spatial variations of tidal sensitivity, which are compared with spatial variations of tremor duration and amplitude. The sensitivity is quantitatively defined by the exponent of the exponential relation, which can be related to the parameter aσ, or (a - b)σ in the rate-and-state friction law, where σ is effective normal stress. On the shallower tremor zone, short-duration and large-amplitude tremors occur followed by more sensitive tremors. Meanwhile, deeper tremors with longer duration and smaller amplitude show lower sensitivity, although along-strike variation also exists. Typical and maximum sensitivities estimated here imply values for aσ or (a - b)σ of about 3 and 1 kPa, respectively. These correlations are consistent with a model in which the plate interface consists of a velocity-strengthening background with embedded velocity-weakening regions. The frictional heterogeneity may be statistically characterized by cluster size and density of the velocity-weakening regions and controls the overall slip behavior. The observed depth dependency of tremor duration, amplitude, and sensitivity implies that frictional heterogeneity is controlled by physical quantities varying with depth, such as temperature or fluid amount.

  4. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Taira, Asahiko

    2004-10-01

    Oceanic plateaus, areas of anomalously thick oceanic crust, cover about 3% of the Earth's seafloor and are thought to mark the surface location of mantle plume "heads". Hotspot tracks represent continuing magmatism associated with the remaining plume conduit or "tail". It is presently controversial whether voluminous and mafic oceanic plateau lithosphere is eventually accreted at subduction zones, and, therefore: (1) influences the eventual composition of continental crust and; (2) is responsible for significantly higher rates of continental growth than growth only by accretion of island arcs. The Ontong Java Plateau (OJP) of the southwestern Pacific Ocean is the largest and thickest oceanic plateau on Earth and the largest plateau currently converging on an island arc (Solomon Islands). For this reason, this convergent zone is a key area for understanding the fate of large and thick plateaus on reaching subduction zones. This volume consists of a series of four papers that summarize the results of joint US-Japan marine geophysical studies in 1995 and 1998 of the Solomon Islands-Ontong Java Plateau convergent zone. Marine geophysical data include single and multi-channel seismic reflection, ocean-bottom seismometer (OBS) refraction, gravity, magnetic, sidescan sonar, and earthquake studies. Objectives of this introductory paper include: (1) review of the significance of oceanic plateaus as potential contributors to continental crust; (2) review of the current theories on the fate of oceanic plateaus at subduction zones; (3) establish the present-day and Neogene tectonic setting of the Solomon Islands-Ontong Java Plateau convergent zone; (4) discuss the controversial sequence and timing of tectonic events surrounding Ontong Java Plateau-Solomon arc convergence; (5) present a series of tectonic reconstructions for the period 20 Ma (early Miocene) to the present-day in support of our proposed timing of major tectonic events affecting the Ontong Java Plateau

  5. Modern Tectonic Deformation in the Active Basin-And Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, S.; Wen, X.

    2012-12-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the present tectonic deformation, the southeastern margin of the Datong-Yangyuan basin, the biggest graben basin of the active tectonic province, shows as a turning belt of the extensional rates, suggesting that relatively high tensile strain accumulation could exist there. (3)On the northeastern segment of the studied active basin-and-range province, both the Zhangjiakou-Yanhui graben basin and the Beijing graben basin have also been being in significant extensional and shear deformation. (4) The relocated hypocenter distribution have

  6. Midcontinent U.S. fault and fold zones: A legacy of Proterozoic intracratonic extensional tectonism?

    NASA Astrophysics Data System (ADS)

    Marshak, Stephen; Paulsen, Timothy

    1996-02-01

    The U.S. continental interior (midcontinent) contains numerous fault and fold zones. Seismic and drilling data indicate that some of these zones first formed as Proterozoic-Eocambrian rift faults, but the origin of most remains enigmatic. We propose that the enigmatic fault and fold zones also began as Proterozoic-Eocambrian normal faults. We base our hypothesis on the following: (1) enigmatic zones parallel known rifts, (2) the structural style of enigmatic zones mirrors the structural style of known rifts, (3) the map pattern of some enigmatic zones (e.g., the La Salle deformation belt of Illinois) resembles the map pattern of contemporary rifts, and (4) it is easier to rupture an intact craton by normal faulting than by reverse or strike-slip faulting. These zones, along with known rifts, represent the legacy of widespread extensional tectonism that brittlely broke up the craton into fault-bounded blocks prior to deposition of Phanerozoic platform cover. Once formed, midcontinent fault and fold zones remained weak, allowing cratonic blocks to jostle relative to one another during the Phanerozoic, thereby inverting faults (and creating transpressional or transtensional structural assemblages), localizing seismicity, and channeling (or releasing) ore-generating fluids.

  7. Intraoceanic Arc Tectonic and Sedimentary Processes: Translation from Modern Activity to Ancient Records

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Clift, P. D.

    2013-12-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are used to reconstruct paleogeography, plate motion, collision and accretion events, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records after arc-continent collision is complicated by preservation of evidence for some processes and loss of evidence for others. We examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of oceanic subduction zones. Composition of accreted arc terranes differs as a function of arc-continent collision geometry. ';Forward-facing' collision can accrete an oceanic arc onto either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In ';backward-facing' collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern oceanic subduction zones implies that valuable records of arc processes are commonly destroyed even before collision with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of

  8. Tectonic Activity during the Harappan Civilization

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Nur, A.

    2001-12-01

    The Harappan civilization in South Asia existed between 3,300 and 1,900 BC. Extensive remnants from this era are found in Pakistan and northwestern India. The region is far from plate boundaries and, until recently, has been considered tectonically inactive. A combination of data from current and historic seismicity, marine seismic surveys, and prevalent geologic and tectonic features with archeological findings, historical and scriptural records, and GIS mapping of large scale areas shows: \\begin{enumerate} Occurrence of earthquakes starting from the 26th January, 2001 event to as far back as 2500 BC Existence of an ancient river, Saraswati corroborated with historical records, GIS mapping, marine seismic surveys Sea level changes from archeological excavations of variations in fauna. We show how a cross-disciplinary study can provide ways of filling information gaps and providing new insights. A comparison between isoseismal lines from the Magnitude 8 event of 26th January, 2001 with location of Harappan cities shows that most cities would have been obliterated by such an event. >http://pangea.stanford.edu/ ~manika/harappa.html

  9. Mantle convection, tectonics and the evolution of the Tethyan subduction zone

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Sternai, Pietro; Menant, Armel; Faccenna, Claudio; Becker, Thorsten; Burov, Evguenii

    2014-05-01

    Mantle convection drives plate tectonics and the size, number and thermotectonic age of plates codetermines the convection pattern. However, the degree of coupling of surface deformation and mantle flow is unclear. Most numerical models of lithospheric deformation are designed such that strain is a consequence of kinematic boundary conditions, and rarely account for basal stresses due to mantle flow. On the other hand, convection models often treat the lithosphere as a single-layer stagnant lid with vertically undeformable surface. There is thus a gap between convection models and lithospheric-scale geodynamic models. The transmission of stresses from the flowing mantle to the crust is a complex process. The presence of a ductile lower crust inhibits the upward transmission of stresses but a highly extended crust in a hot environment such as a backarc domain, with no lithospheric mantle and a ductile lower crust in direct contact with asthenosphere, will be more prone to follow the mantle flow than a thick and stratified lithosphere. We review geological observations and present reconstructions of the Aegean and Middle East and discuss the possible role played by basal drag in governing lithospheric deformation. In Mediterranean backarc regions, lithosphere-mantle coupling is effective on geological time scale as shown by the consistency of SKS fast orientations in the mantle with stretching directions in the crust. The long-term geological history of the Tethyan convergent zone suggests that asthenospheric flow has been an important player. The case of Himalaya and Tibet strongly supports a major contribution of a northward asthenospheric push, with no persistent slab that could drive India after collision, large thrust planes being then decoupling zones between deep convection and surface tectonics. The African plate repeatedly fragmented during its northward migration with the separation of Apulia and Arabia. Indeed, extension has been active on the northern

  10. Lithosphere-asthenosphere Structure and Active Tectonics In Central Italy

    NASA Astrophysics Data System (ADS)

    Chimera, G.; Aoudia, A.; Saraò, A.; Panza, G. F.

    We investigate the lithosphere-asthenosphere structure and the active tectonics along a stripe from the Tyrrhenian to the Adriatic with emphasis on the Umbria-Marche area by means of surface-wave tomography, and inversion studies for structure and seismic moment tensor retrieval. The data include seismic waveforms, a large compilation of local group velocities (0.8-4s) and regional phase and group velocity (10-100s) measurements. The local group velocity maps cover the area reactivated by the 1997 Umbria-Marche earthquake sequence. These maps suggest a relation between the lat- eral heterogeneity and distribution of the active faults and related basins. Such relation is confirmed by the non-linear inversion of the local dispersion curves. To image the deeper structure from the Tyrrhenian to the Adriatic coast, we fix the uppermost part of the crust using the Umbria-Marche models along with the CROP03 profile and related shear wave velocity, and invert the additional long period dispersion measure- ments. The results of the inversion show the geometry and lateral heterogeneity of the lithosphere-asthenosphere system. The retrieved models for the Umbria-Marche up- per crust reveal the importance of the inherited compression on the ongoing extension and related seismic activity. The reactivated 1997 normal fault zone displays a thrust fault geometry as evidenced by the lateral extent of the faulted Late Triassic evap- orites that did not yet balance the cumulative normal faulting deformation attesting therefore recent extensional tectonics within the thrust belt. Our data are in favor of a listric geometry of faulting at depth. Source inversion studies of the two main crustal events of September 26 and October 14, 1997 show the dominance of normal faulting mechanisms, whereas selected aftershocks between the reactivated fault segments re- veal that the prevailing deformation at the step-over is of strike-slip faulting type. The rupture of the three distinct and

  11. Salts as indicators of tectonic activity along Nesson anticline, North Dakota

    SciTech Connect

    Lefever, J.A.; Lefever, R.D.; Anderson, S.B.

    1988-07-01

    The Nesson anticline is the major north-south-trending structure in the North Dakota portion of the Williston basin. The trace of the anticline is marked by nearly continuous production for 110 mi (175 km) from the Canadian border south to Dunn County; production is from 13 different stratigraphic zones. Previous studies have shown that the central and southern parts of the anticline, from Beaver Lodge field south to Rattlesnake Point field, consist of at least nine structurally independent areas, each of which has an individual tectonic history. Isopach patterns indicate that most of the areas underwent their greatest tectonic activity during the Devonian and Early Mississippian, although a few areas were active during the early Mesozoic as well. Ten traceable salts are present along the anticline in the Prairie (Devonian), Charles (Mississippian), Opeche (Permian), Spearfish (Triassic), and Pipe Formations (Jurassic). The isopach patterns of the individual salts indicate contemporaneous tectonic activity through thickening or thinning of the salt. Postdepositional activity is indicated by the absence of a salt; the timing of the activity may be estimated from the presence of compensating section above the level of the salt. Their results indicate that, in addition to the times given above, significant tectonic activity took place along the anticline during the Late Mississippian, late Jurassic, and Early Cretaceous.

  12. Comparisons of Source Characteristics between Recent Inland Crustal Earthquake Sequences inside and outside of Niigata-Kobe Tectonic Zone, Japan

    NASA Astrophysics Data System (ADS)

    Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.

    2012-12-01

    After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by

  13. Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, Surendra S.; Kothyari, Girish Ch.

    2015-06-01

    We present the results of integrated studies of geomorphic indices of drainage networks and landforms developed across the mountain front along the Himalayan Frontal Thrust (HFT) between the Dabka and Baur rivers, Kumaun Himalaya. The HFT is a morphogenic structure in nature, creating a 100-m-high E-W trending escarpment that extends ~ 21 km. Geomorphological evidence indicates ~ 10.5 km westward migration of the Dabka River and ~ 5.2 km eastward migration of the Baur River. These migrations are a result of uplift of the hanging wall along the HFT. The HFT is offset by a transverse fault, which suggests that the latter postdates the reactivation of the HFT between 500 and 100 ka. Presence of different levels of strath terraces along the mountain front suggests the active nature of the HFT. To assess the relative tectonic activity, morphometric indices such as stream-gradient (SL) index, mountain front sinuosity (Smf) index, and ratio of valley floor width to valley height (Vf) have been analyzed. Results of the former two are consistent with the tectonic landforms developed in thrust zones. Paleochannels of the Dabka and Baur rivers are characterized by high Vf values while other valleys show low Vf values. Quaternary alluvial sediments have been deformed along the Pawalgarth Thrust, a splay of the HFT. Deformation has resulted in the formation of the Pawalgarh Anticline, a thrust-related asymmetric fold.

  14. Tectonic tremor locations along the western Mexico subduction zone using stacked waveforms of similar events

    NASA Astrophysics Data System (ADS)

    Schlanser, K. M.; Brudzinski, M. R.; Holtkamp, S. G.; Shelly, D. R.

    2011-12-01

    Tectonic (non-volcanic) tremor is difficult to locate due to its emergent nature, but critical to assess what impact it has on the plate interface slip budget. Tectonic tremor has been observed in Jalisco, Colima, and Michoacán regions of southern Mexico using the MARS seismic network. A semi-automated approach in which analyst-refined relative arrival times are inverted for source locations using a 1-D velocity model has previously produced hundreds of source locations. The results found tectonic tremor shift from near the 50 km contour to the 20 km contour going from east to west, with the latter epicenters hugging the coastline. There is little room between the tectonic tremor and the seismogenic zone for a wide intervening slow slip region like what is seen in other region of the Mexican subduction zone, suggesting a potentially different source process than tremor in other regions. This study seeks to refine the tremor source locations by stacking families of similar events to enhance the signal to noise ratio and bring out clear P- and S-wave arrivals even for low amplitude sources at noisier stations. Well-defined tremor bursts within the Jalisco, Colima, and Michoacán region from previous results are being used to define 6 s template waveforms that are matched to similar waveforms through cross-correlation over the entire duration of recording. After stacking the similar events, the clarified arrival times will be used to refine the source locations. Particular attention will be paid to whether the tremor families form a dipping linear feature consistent with the plate interface and if tremor associated with the Rivera plate is as shallow (~20km) as it appears from previous results.

  15. Tectonic framework of the Parkfield-Cholame area, central San Andreas fault zone, California

    SciTech Connect

    Sims, J.D.; Ross, D.C.; Irwin, W.P.

    1985-01-01

    Recent geologic mapping of the NW-trending San Andreas fault zone (SAFZ) in the southern Diablo Range reveals details of this structurally complex region. Movement on the fault juxtaposes dissimilar tectonic terranes. The region on the NE side is characterized by complexly folded and faulted rocks of the Franciscan assemblage, the Coast Range ophiolite, and sedimentary rocks of the Great Valley sequence and younger formations. The region on the SW side is characterized by crystalline basement rocks of the Salinia terrane overlain by slightly deformed Pliocene and Pleistocene gravel and Miocene and Pliocene sedimentary rocks. The active trace of the SAFZ is along the SW side of a belt of melange that separates the Salinia terrane from the terranes to the NE. The active main trace is notable for a right step over of about 1 km in the southern part of the area and a 5/sup 0/ left bend in the northern part of the area. The melange consists of highly sheared and deformed rocks of late Cenozoic units, and exotic blocks of granite, gabbro, and marble. Deformation of Late Cretaceous and younger rocks east of the SAFZ varies with their age as follows: 1) Late Cretaceous rocks are strongly deformed and overlain by late Cenozoic rocks with angular unconformity, 2) early(.) and middle Miocene rocks are the most complexly folded, 3) late Miocene and early Pliocene strata are less complexly deformed, and 4) Pliocene and Pleistocene rocks the least deformed. Folding resulted from north-south compression across the SAFZ since early (.) Miocene time.

  16. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy

    USGS Publications Warehouse

    Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B.

    2003-01-01

    The Campanian Plain is an 80 x 30 km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600 ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289-246 ka, 157 ka and 106 ka) have been identified in the Apennine area in the last 300 ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310 km3), occurred in the CVZ 39 ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte. The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift, Initially the venting of volatile-rich type A magma deposited the products to the N-NE of the CVZ. During the eruption, the Acerra graben already affected by a NE-SW fault system, was transected by E-W faults, forming a cross-graben that extended to the gulf of Naples. E-W faults were then further dislocated by NE-SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E-SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the

  17. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; VéTel, W.; Morley, C. K.

    2005-04-01

    Remote sensing data and revised seismic reflection profiles provide new insights about the origin of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern branch of the East African rift system. Contractional structures are dominated by weakly inverted sets of fault blocks within <3.7 Myr old synrift series. Most of reverse extensional faults involve components of oblique-slip, whereas associated hanging wall folds are characterized by large wavelength upright folding. The area of basin inversion is restricted to a 40 × 100 km elongated zone overlying a first-order N140°E trending fault zone in the basement, referred to as the N'Doto transverse fault zone (NTFZ). In the proposed kinematic model, inversion tectonics is assigned to permutation of principal stress axes (σ1/σ2) in addition to the clockwise rotation of extension (from nearly N90°E to N130°E) during Pliocene. The transition from pure extension (Miocene) to a wrench faulting regime (Pliocene) first results in the development of T-type fault networks within a dextrally reactivated shear zone (NTFZ). Inversion tectonics occurred later (<3.7 Ma) in response to a still rotated (˜20°) shortening axis (σ1) oriented N40°E that caused the oblique compression of earlier (NS to N20°E) extensional structures within the NTFZ. The origin of basin inversion and strain concentration in the Turkana rift is thus directly linked to a crustal weakness zone, transverse to the rift axis, and involving steep prerift anisotropies.

  18. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San

  19. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  20. CHARACTER AND REGIONAL SIGNIFICANCE OF GREAT FALLS TECTONIC ZONE, EAST-CENTRAL IDAHO AND WEST-CENTRAL MONTANA.

    USGS Publications Warehouse

    O'Neill, J. Michael; Lopez, David A.

    1985-01-01

    The Great Falls tectonic zone, here named, is a belt of diverse northeast-trending geologic features that can be traced from the Idaho batholith in the Cordilleran miogeocline, across thrust-belt structures and basement rocks of west-central and southwestern Montana, through cratonic rocks of central Montana, and into southwestern-most Saskatchewan, Canada. Geologic mapping in east-central Idaho and west-central Montana has outlined a continuous zone of high-angle faults and shear zones. Recurrent fault movement in this zone and strong structural control over igneous intrusion suggest a fundamental tectonic feature that has influenced the tectonic development of the Idaho-Montana area from a least middle Proterozoic time to the present. Refs.

  1. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  2. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  3. Tomographic imaging of the tectonic tremor zone beneath the San Andreas fault in the Parkfield region

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Zhang, H.; Brown, J. R.

    2012-12-01

    The fine-scale seismic velocity structure around zones of tectonic (nonvolcanic) tremor and low-frequency earthquakes (LFE's) has been imaged successfully in subduction zones. This success is due in part to the occurrence of earthquakes in the subducting slab beneath the zone of tremor and LFE's. Such studies have found the tremor and LFE's to lie within zones of reduced seismic velocity and high Vp/Vs, which have been interpreted to reflect high pore fluid pressure (e.g., Shelly et al., 2006). For the San Andreas fault, the observed tremor and LFE's in the Parkfield region occur at depths greater than 15 km, which is below the deepest conventional earthquakes in the region. This makes tomographic imaging of the tremor zone more challenging. We use a combination of P and S arrival times and corresponding differential times from stacked seismograms of LFE's (Shelly and Hardebeck, 2010) along with absolute and differential times from shallower microearthquakes to image the three-dimensional P- and S- wave velocity structure to ~20 km depth. Our initial results indicate the LFE's near SAFOD lie within or adjacent to zones with slightly reduced P-wave velocity and more sharply reduced S- wave velocity. The estimated Vp/Vs values are approximately 1.85 to 1.95 in these zones. The elevated Vp/Vs values are interpreted to reflect high pore fluid pressure and low effective stress. This is consistent with results from subduction zones and with observations of triggering and tidal modulation of LFE's and tremor on this deep extension of the SAF. We will present refined tomography results that expand the area imaged and include additional LFE arrival time picks from temporary array data. Cross-section from SW to NE through SAFOD at Y=0. Vs is shown by black contours (labeled with km/sec) and colors from red (slow) to blue (fast). Black diamonds are hypocenters of LFE's and earthquakes used in the inversion.

  4. Relations between tectonic zones of the Albanides on the basis of results of geophysical studies

    SciTech Connect

    Frasheri, A. )

    1993-09-01

    The Ablanides are located between the Dinarides of Yugoslavia and the Hellenides of Greece, which together form the southern branch of the Mediterranean Alpine Belt. Our analysis of the Albanides and their extension into the Adriatic Sea integrates surface geological observations, well data, and results of seismological, reflection-seismic, gravity, magnetic, and geoelectric surveys. Evolution of the Albandies began with the Triassic subsidence of their Hercynian substratum under a tensional regime, culminating in crustal separation and opening of the Hellenic-Dinaride oceanic basin. The internal Albanides (IA) formed part of the oceanic Hellenic-Dinaride Basin, whereas the external Albanides (EA) developed out of the westward adjacent passive margin and continental shelf of the Adriatic plate. This was accompanied by the development of a synorogenic foredeep basin. During the tectonic, tarditectonic, and neotectonic phases, progressive westward shift of the foredeep basin axis to its present location in the Adriatic. The EA evolved out of a shelf and continental margin sedimentary prism and a superimposed foredeep wedge, which together form the Alpine-deformed hydrocarbon-bearing Albanian Sedimentary Basin. Reflection-seismic and gravity surveys done in the EA and the Adriatic Sea define distinct structural belts related to different tectonic zones of the Albanian Sedimentary Basin. The most important oil and gas accumulations are found in the Jonian zone and in the Periadriatic depression. The carbonate-dominated Late Triassic to Late Cretaceous series of the lonian, Kruja, and Krasta-Cukali zones contains several rich source rock intervals. In the lonian zone, Late Cretaceous, Paleocene, and Eocene carbonates and oligocene-Miocene flysch-type sandstones form the reservoirs of the main oil and gas accumulations. The Tortonian-Pliocene Molasse-type clastics of the Periadriatic depression also contain source rocks and stratigraphically trapped gas accumulations.

  5. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China

    NASA Astrophysics Data System (ADS)

    Rao, Gang; Lin, Aiming; Yan, Bing; Jia, Dong; Wu, Xiaojun

    2014-12-01

    This study examines the tectonic activity and structural features of active normal faults in the Weihe Graben, central China. The Weihe Graben is an area with a high level of historic seismicity, and it is one of the intracontinental systems that developed since Tertiary in the extensional environment around the Ordos Block. Analysis of high-resolution remote-sensing imagery data, field observations, and radiocarbon dating results reveal the following: i) active normal faults are mainly developed within a zone < 500 m wide along the southern border of the eastern part of the Weihe Graben; ii) the active faults that have been identified are characterized by stepwise fault scarps dipping into the graben at angles of 40°-71°; iii) there are numerous discontinuous individual fault traces, ranging in length from a few tens of meters to 450 m (generally < 200 m); iv) fault zone structures, topographic features, and fault striations on the main fault planes indicate almost pure normal-slip; and v) late Pleistocene-Holocene terrace risers, loess, and alluvial deposits have been vertically offset by up to ~ 80 m, with a non-uniform dip-slip rate (throw-rates) ranging from ~ 2.1 to 5.7 mm/yr, mostly 2-3 mm/yr. Our results reveal that active normal faults have been developing in the Weihe Graben under an ongoing extensional environment, probably associated with the pre-existing graben and spreading of the continental crust, and this is in contrast with the Ordos Block and neighboring orogenic regions. These results provide new insights into the nature of extensional tectonic deformation in intracontinental graben systems.

  6. Seismic Probing of the Base of a Tectonic Plate from Subduction Zone to Trench Outer Rise: Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Kent, G. M.; Lamb, S. H.; Savage, M. K.; Stern, T. A.; Stratford, W. R.

    2015-12-01

    The nature of the base of a tectonic plate (LAB) is the 3rd dimension of plate tectonics. Recent seismic studies of the LAB have revealed planar features that show very different characteristics. In the oceans, the top of the S-wave low velocity zone shows a systematic deepening with plate age that fits plate-cooling models. However, the change in radial anisotropy has a markedly constant depth of ~70 km, regardless of plate age. A recent land-based study (SAHKE 2) of the subducted Pacific Plate in the southern Hikurangi margin has imaged a pair of distinct reflectors defining a ~10 km thick channel parallel to and ~70 km below the top of the ~15° dipping plate. Low velocities indicate that the channel is a zone of partial melt or high volatile content, acting as a weak base to the plate. Receiver function studies along the Japan margin have also imaged layers at these depths, parallel to the top of the plate and dipping up to 45°. We propose probing the base of the tectonic plate by tracing potential LAB seismic reflectors from their dipping portions in the subduction zone to where they bend in the trench outer rise. If the seismically identified boundary represents a 'frozen-in' feature, created at the mid ocean ridge, then it will remain parallel to the top of the plate, and its nature will remain unchanged as it is tracked over the outer rise. Alternatively, if the base of the plate is a thin channel of partial melt, then one would expect thickening of the channel beneath the outer rise due to melt ponding in the core of the flexure; this melt ponding may be the source of volcanic activity. A 500-km survey will trace the Pacific plate LAB from the subduction zone into the trench outer rise. The deeper part of the line coincides with the part of the plate where the ~10 km thick 'melt' channel was clearly imaged with the SAHKE 2 experiment. We show with synthetic experiments that given seismic energy scatter and attenuation comparable to that observed in the

  7. Modern Tectonic Deformation in the Active Basin-and-Range Province Northwest of Beijing, China

    NASA Astrophysics Data System (ADS)

    Mi, Suting; Wen, Xueze

    2013-04-01

    Our study region is the northwest of Beijing, northern north China. The most typical extensional active tectonic area of the China continent, called the active basin-and-range province northwest of Beijing, exist there. This active tectonic province is made up of several NE-trending Quaternary graben basins and horst ranges between basins. An about 1500-year-long written historical record has suggested that there have been no major earthquakes with magnitude 7 or greater occurred in most of the study region since AD 512. So, the characteristic of modern tectonic deformation of the study region and its implication for the future seismic potential of major earthquakes are important scientific issues. In this study, based on data of regional GPS station velocities and active tectonics, combining relocated earthquake distribution, we make a preliminary analysis on the characteristic of the modern tectonic deformation of the study region. We design three zones across deferent segments of the active basin-and-range province to analyze both the present tectonic deformation from the GPS velocity profiles and the major fault's downward-extents from the relocated hypocenters. Our analyses reveal that: (1) Significant NNW-ward and SSE-ward horizontal extension exists on different segments of the active basin-and-range province northwest of Beijing at rates of 2 to 3mm /yr, accompanied with right-lateral shear deformation at 1 to 2mm/yr. (2) On the western and middle segments of the active basin and range province, most of the total horizontal extension and shear deformation happen in the width from the Huangqihai basin to the Datong-Yanggao basin , suggesting that some major faults in this width could have had relatively-high strain build-up. (3) It is possible that one or more basement detachment belts exist under the active basins, and it or they possibly dip(s) southeastern-ward. (4) The modern tectonic extensional rate is up to 2 to 3mm /yr in the study region. However

  8. Fluid chemistry and evolution of hydrothermal fluids in an Archaean transcrustal fault zone network: The case of the Cadillac Tectonic Zone, Abitibi greenstone belt, Canada

    USGS Publications Warehouse

    Neumayr, P.; Hagemann, S.G.; Banks, D.A.; Yardley, B.W.D.; Couture, J.-F.; Landis, G.P.; Rye, R.

    2007-01-01

    Detailed fluid geochemistry studies on hydrothermal quartz veins from the Rouyn-Noranda and Val-d'Or areas along the transcrustal Cadillac Tectonic Zone (CTZ) indicate that unmineralized (with respect to gold) sections of the CTZ contained a distinct CO2-dominated, H2S-poor hydrothermal fluid. In contrast, both gold mineralized sections of the CTZ (e.g., at Orenada #2) and associated higher order shear zones have a H2O-CO2 ?? CH4-NaCl hydrothermal fluid. Their CO2/H2S ratios indicate H2S-rich compositions. The Br/Cl compositions in fluid inclusions trapped in these veins indicate that hydrothermal fluids have been equilibrated with the crust. Oxygen isotope ratios from hydrothermal quartz veins in the CTZ are consistently 2??? more enriched than those of associated higher order shear zones, which are interpreted to be a function of greater fluid/rock ratios in the CTZ and lower fluid/rock ratios, and more efficient equilibration of the hydrothermal fluid with the wall rock, in higher order shear zones. An implication from this study is that the lower metal endowment of the transcrustal CTZ, when compared with the higher metal endowment in higher order shear zones (ratio of about 1 : 1000), may be the result of the lack of significant amounts of H2O-H2S rich fluids in most of the CTZ. In contrast, gold mineralization in the higher order shear zones appear to be controlled by the high H2S activity of the aqueous fluids, because gold was likely transported in a bisulfide complex and was deposited during sulfidation reactions in the wall rock and phase separation in the quartz veins. ?? 2007 NRC Canada.

  9. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone

    NASA Astrophysics Data System (ADS)

    Berberian, M.; Jackson, J. A.; Fielding, E.; Parsons, B. E.; Priestley, K.; Qorashi, M.; Talebian, M.; Walker, R.; Wright, T. J.; Baker, C.

    2001-08-01

    The 1998 March 14 Fandoqa earthquake (Ms6.6) was the penultimate in a series of five substantial earthquakes on the Gowk fault system of southeast Iran since 1981, all of which were associated with co-seismic surface ruptures. We use observations of surface faulting, analysis of P and SH body waves, SAR interferometry and geomorphology to investigate the ruptures in these earthquakes and how they are related both to each other and to the regional active tectonics. The 1998 Fandoqa earthquake produced 23km of surface faulting with up to 3m right-lateral strike-slip and 1m vertical offsets. SAR interferometry and seismic waveforms show that the main rupture plane dipped west at ~50° and had a normal component, although the surface ruptures were more complicated, being downthrown to both the east and the west on steep faults in near-surface sediments. In addition, SAR interferometry shows that a nearby thrust with a similar strike but dipping at ~6°W moved about 8cm in a time interval and in a position that makes it likely that its slip was triggered by the Fandoqa earthquake. The 1998 surface ruptures in the Gowk valley followed part of a much longer (~80km) set of co-seismic ruptures with smaller offsets that were observed after larger earthquakes in 1981 (Mw6.6 and 7.1). The main ruptures in these 1981 earthquakes probably occurred on different, deeper parts of the same fault system, producing only minor reactivation of the shallower faults at the surface. Although the 1981-1998 earthquake sequence apparently ruptured parts of the same fault system repeatedly, these earthquakes had very different rupture characteristics: an important lesson for the interpretation of both palaeoseismological trenching investigations and historical accounts of earthquakes. The regional kinematics, which involve oblique right-lateral and convergent motion, are evidently achieved by a complex configuration of faults with normal, reverse and strike-slip components. Some of the

  10. Young tectonics of a complex plate boundary zone: Indentation, rotation, and escape in Alaska

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Ruppert, N. A.

    2012-12-01

    Convergence of thick crust of the Yakutat block with the southern margin of Alaska is widely recognized as a dominant influence on the tectonics of Alaska since at least late Miocene time. It is less clear how this convergence relates to the distribution, type, and orientation of geologic structures, and to the boundaries between the tectonic provinces that they define. We propose that convergence of Yakutat block includes two distinct components that influence deformation and topography in different ways: 1) The crust of the exposed, southern Yakutat block is too thick to subduct, which has caused the collisional St. Elias orogen. Detachment of the upper part of the mafic basement allows delamination and sinking of the remaining mafic crust and lithospheric mantle. The collisional orogen drives rigid counterclockwise rotation of the southern Alaska block south of the arcuate, right-lateral Denali fault. The western boundary of this block is a zone of distributed contraction in the western Alaska Range and Cook Inlet. 2) The northern part of the Yakutat block is thin enough to subduct but thick and buoyant enough to cause localized flat-slab subduction orthogonal to rotation of the southern Alaska block. Consequences include the gently antiformal Talkeetna Mountains that span the forearc basin, a gap in the magmatic arc, and a basement-involved fold-and-thrust belt in the northern Alaska Range. An arcuate oroclinal hinge from southern Alaska to the northeastern Brooks Range reflects indentation since at least Paleocene time. Traction above the subducted Yakutat block along the southern part of this hinge drives current indentation. North of the subducted Yakutat block, indentation is reflected by left-lateral block rotation that accommodates shortening between the Denali and Tintina faults and by contraction farther north along the northern edge of the arcuate northeastern Brooks Range. Western Alaska accommodates both northward indentation and westward convergence

  11. Active Tectonics in the Ohrid Basin (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Reicherter, K.; Hoffmann, N.; Fernández-Steeger, T.

    2009-04-01

    The Ohrid Basin is a major N-S trending graben structure located on the border of Macedonia and Albania, associated with other basins (Korce basin) in the Dinaride mountain belt. Within the basin an "ancient lake" developed since the Late Miocene/Pliocene with almost 290 m water depth. Since the beginning of basin formation around 700 m of sediment accumulated in the lake, the initial stage of subsidence is triggered either by extension or strike-slip movements. The general geodynamic setting of the Lake Ohrid area can be described with a "basin and range" situation. The multidisciplinary ICDP-SCOPSCO initiative is currently investigating Lake Ohrid and its environs. The central mountain chain, especially the intramontane basins of Late Neogene age, form one of the most active seismic zones in Albania/Macedonia with several moderate earthquakes reported during the last few centuries (Muço 1998; NEIC database, USGS). Major earthquakes occurred during historical times. Lychnidos (the ancient city of Ohrid) was destroyed completely by an earthquake in 526 AD. It was rebuilt by Emperor Justinian (527-565), who was born in the vicinity, and was called by him Justiniana Prima, i.e. the most important of the several new cities that bore his name. The last prominent earthquake took place in on 18th February 1911 at 21.35 close to Lake Ohrid Basin, (M 6.7, corresponding to EMS X; 15 km depth, N 40.9°, E 20,8°). The last earthquake occurred on Jan 8th 2009 with a magnitude of 4.9 close to the lake. Hypocenter depths scatter between 10 and 25 km but some deeper earthquakes occur between 25 and 50 km depth. Very rarely intermediate earthquakes around 100 km depth are observed. Small and moderate earthquakes (< M 5.5) take place predominantly along major fault zones, and are concentrated along the margins of the Ohrid Basin. The Ohrid-Korça Zone is considered to be the region of the highest seismic hazard in the Albanian-Macedonian Corridor based on present-day seismicity

  12. Mesozoic metamorphism and its tectonic implication along the Solonker suture zone in central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang; Chen, Yaping

    2016-09-01

    The Xing'an-Inner Mongolia Orogenic Belt (XIMOB) exposed in the eastern section of the Central Asian Orogenic Belt (CAOB) is generally thought to have resulted from closure of the Paleo-Asian Ocean. However, disputations still exist on the age and detailed tectonic processes involved in its final amalgamation. The Solonker suture zone in the central Inner Mongolia, once recognized as the major paleo-plate boundary recording the terminal collision of the XIMOB, is characterized by extensive regional low-temperature metamorphism of greenschist to epidote-amphibolite facies with local presence of blueschists, which lacks systematic study. Four metabasite and garnet-mica schist samples were studied for determination of metamorphic P-T evolution using pseudosection and conventional thermobarometry. The two metabasite samples from Wulangou and Daqing Pasture contain actinolite, albite, epidote, chlorite and hornblende (in Daqing Pasture) and are estimated to have peak P-T conditions of 5.2-5.9 kbar/415-450 °C in Wulangou and 7.0-7.9 kbar/470-475 °C in Daqing Pasture. Two garnet-mica schist samples from Shuangjing (or Shuangjing schist) contain garnet porphyroblasts, muscovite, quartz, plagioclase, chlorite with or without potassium feldspar, biotite, and calcite, and are modeled to record prograde P-T vectors respectively of 3.0 kbar/482 °C-3.3 kbar/495 °C and 4.2 kbar/478 °C-4.8 kbar/483 °C, followed by near-isothermal decompression. The zircon U-Pb dating analyses suggest that the metamorphism probably occurred soon afterwards in the Early Mesozoic. The peak P-T conditions for the metabasite and garnet-mica schist samples yield thermal gradients respectively of 18-22 °C/km and 26-33 °C/km, being intermediate and low P/T series, and the metamorphic evolution in these rocks characteristic of clockwise P-T paths may correspond to tectonic thickening and thinning processes. The extensive low-temperature metamorphism of intermediate to low P/T types along the

  13. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  14. Gridino melange zone of the Belomorian eclogite province: Succession of tectonic events and structural position of mafic dyke swarms

    NASA Astrophysics Data System (ADS)

    Babarina, I. I.; Sibelev, O. S.; Stepanova, A. V.

    2014-07-01

    Based on relationships between Paleoproterozoic mafic dykes, lithotectonic complexes, and tectonic structures of the Gridino Zone in the Belomorian eclogite province of the Fennoscandian Shield, deformations have been divided into groups differing in age and the succession of tectonic events has been reconstructed. The formation of Neoarchean eclogite-bearing melange was related to disintegration of large eclogite sheets in the course of near-horizontal ductile flow accompanied by syntectonic granitoid magmatism, multiple migmatization, and granulite-to amphibolite-facies metamorphism. The exotic blocks, including eclogites, were incorporated into TTG gneisses as sheets and lenses up to a few hundreds of meters in thickness and oriented conformably with gneissic banding. As a result of ductile flow, the lithotectonic complexes were transported at the level of discrete brittle-ductile deformations expressed as strike-slip faults and associated folds. Under conditions of a relatively rigid medium, individual structural elements underwent rotation approximately through 90° in plan view. Under the extension regime in the Early Paleoproterozoic, several swarms of mafic dykes were injected into the already cold framework rocks, as is evident from dyke morphology. The dykes crosscut all predated structures, included turned blocks, and are therefore important reference points for subdivision of Neoarchean and Paleoproterozoic processes. The Svecofennian postdyke tectonic activity was accompanied by local shearing and boudinage of metabasic rocks, development of quartz and pegmatite veins along tension cracks, disharmonic folding, and discrete retrograde metamorphism up to amphibolite-facies conditions. The postdyke deformations did not exert a substantial effect on the previously formed regional structure.

  15. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  16. Active tectonic studies in the United States, 1987-1990

    SciTech Connect

    Weldon, R.J., II )

    1991-01-01

    The techniques and instrumentation used in active tectonic studies are discussed, and recent results are reviewed. It is suggested that a critical mass of data on several particular regions has been accumulated, making possible critical debates and attempts to assess earthquake hazards. Particular attention is given to studies of the Pacific Northwest region, basin and range deformation studies, and distributed deformation and hidden earthquake sources. Also included is a comprehensive bibliography for the period.

  17. Northeast Basin and Range province active tectonics: An alternative view

    SciTech Connect

    Westaway, R. )

    1989-09-01

    Slip rates and slip vector azimuths on major active oblique normal faults are used to investigate whether circulation associated with the Yellowstone upwelling plume is driving tectonic deformation in the northeast Basin and Range province. Observed deformation is consistent with this suggestion; the plume is sheared to the southwest by motion of the North American plate. Testable predictions are made for structure and evolution of the region.

  18. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  19. The distinct hydrogeological system of the forearc of the Middle America Trench: significance for long-term tectonics and updip limit of the interplate seismogenic zone.

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Grevemeyer, I.; Sahling, H.; Barckhausen, U.; Hensen, C.; Wallmann, K.; Weinrebe, W.

    2008-12-01

    The distribution and flow of fluid has been widely studied at accretionary prisms, but at convergent margins where tectonic erosion affects overriding plates fluid distribution and tectonics are far less understood. Observations along the erosional subduction zone of Middle America Trench indicates a hydrogeological system distinctly different from those that have been described at accretionary prisms. The hydrogeological system has been studied by: 1) compiling an inventory of focused seepage sites at the seafloor using a multiscale mapping approach, sequentially applying methods of increasing spatial resolution during successive ship cruises, 2) mapping the relative distribution of fluid at the plate boundary with seismic data, and 3) calculating the forearc fluid budget after estimating flow rates from thermal structure and pore fluid chemistry. Most fluid originally contained at the plate boundary migrates by focused flow across a fractured overriding plate, contrasting with conceptual models of accretionary margins where the decollement has been inferred to be the main fluid flow conduit. The distribution of fluid created by the hydrogeological system influences the locus of long-term tectonic erosion determining which areas of the margin are tectonically thinned. Where fluid is more abundant along the plate boundary, the overriding plate is being actively thinned, and fractures and subsides to form the continental slope. Also, the transition with depth from aseismic to the area of nucleation of earthquakes along the plate boundary appears related to fluid distribution. Earthquakes nucleate where fluid appears to be less abundant indicating a first order control on subduction zone thrust earthquakes.

  20. Metamorphism of tectonic terranes in the eastern marginal zone of the Appalachian orogen, New England

    SciTech Connect

    Hepburn, J.C.; Olszewski, W.J.; Guidotti, C.V.

    1985-01-01

    Southeastern New England is subdivided into three major fault bounded tectonic terranes, each with a distinctive metamorphic history. The easternmost, the Avalon Terrane, has generally been metamorphosed no higher than the lower greenschist facies. Evidence for pre-Alleghanian metamorphism includes a Proterozoic Z(.) event, contact metamorphism adjacent to Ord.-Dev. alkaline plutons, and granulite facies crustal xenoliths in Mesozoic dikes. To the west the Nashoba Terrane has been deformed and polymetamorphosed to the sill. and 2nd sill. zones between approximately 415 and 450 m.y., based on ages of associated granitic and migmatitic rocks. 730 m.y. assumed basement gneisses (fish Brook) have likely experienced Late PC metamorphism. In the Merrimack Trough, here including the Massabesic Gneiss, the metamorphic grade ranges from the greenschist facies on the east to the 2nd sillimanite zones on the west toward the Massabesic. The two metamorphic events present here must predate the intrusion of the Exeter Diorite (473 m.y .), indicating one or both may be PC. To the east, the fault bounded Rye Formation has also experienced two pre- 470 m.y. metamorphisms (and -sill.) However, the terrane east of the Turtle Head Fault Zone (THFZ) has many similarities to the Boston Platform including general (Late PC.) lower greenschist metamorphism. Also, the area between the Norumbega FZ and the THFZ has experienced high grade metamorphism of probable Silurian age and thus may be similar to the Nashoba Terrane.

  1. Crustal heterogeneities beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India source zone: Seismological evidence for neo-tectonics

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Mishra, O. P.; Rastogi, B. K.; Kumar, Santosh

    2013-01-01

    During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson's ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.

  2. Longriba fault zone in eastern Tibet: An important tectonic boundary marking the westernmost edge of the Yangtze block

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Gao, Rui; Xu, Xiao; Keller, G. Randy; Yin, An; Xiong, Xiaosong

    2015-05-01

    Global Positioning System (GPS) measurements across eastern Tibet reveal a sharp velocity gradient zone located about 150 km west of the Longmen Shan frontal thrust zone, where eastward block motion of Tibet decreases from ~12 mm/yr to ~3 mm/yr over a distance of less than 10 km. In order to investigate the tectonic cause for this rapid change in GPS velocity, together with systematic review on the available geological and geophysical data in easternmost Tibet, we provide new constraints on the tectonic feature of the Longriba fault zone from Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar data. We propose that the NE striking Longriba fault zone is the key structure responsible for the observed sharp gradient in GPS velocities. In addition, the evidence indicates that the Longriba fault zone, instead of the Longmen Shan fault zone, marks the westernmost edge of the Yangtze crustal block. Given the irregular western margin of the Yangtze block, the Longriba fault zone represents part of the actual tectonic boundary between the Songpan-Ganzi terrane and the Yangtze block. The newly identified western edge of the Yangtze block implies a paleocontinent-ocean boundary at depth. This boundary was a potential weak zone and may have been exploited during the formation of the Longriba fault zone. The results of this paper should advance our understanding of the tectonic relationship between the Songpan-Ganzi terrane and Yangtze block and provide additional constraints for studies of the geodynamic response of eastern Tibet to the ongoing India-Eurasia collision.

  3. Evidence for fluid-assisted shear failure in a ductile shear zone: Tectonic tremor in the geologic record?

    NASA Astrophysics Data System (ADS)

    Compton, Katharine

    Recent direct observations of tectonic tremor below the seismogenic zone of large fault zones have emphasized the significance of coeval ductile and brittle processes at high temperatures. Tectonic tremor is defined as long-duration, low-amplitude, and low-frequency seismic signals produced at depths of 18-40 km. Because the source of tremor is currently unknown, the physical conditions and processes that cause tremor are unknown. This study presents observations of an exhumed shear zone system contained within the Saddlebag Lake pendant of the eastern Sierra Nevada, California. The high-strain rocks in this shear zone exhibit multiple episodes of vein formation, indicating a prolonged migration of hydrothermal fluids through the system. Crosscutting relationships and mineral assemblages define discrete sets of variously oriented veins that are folded and boudinaged. I document foliation-parallel quartz veins that show shear displacement parallel to the foliation. Textural evidence for dynamic recrystallization mechanisms, stable isotope data, and fluid inclusion thermobarometry measurements indicate temperatures between 300-680°C and relatively high fluid pressure conditions, greater than ?3, during fracture. Conditions of nucleation of shear fractures within this ductile shear zone suggest these structures may record similar processes to those under which tectonic tremor is observed in other continental transform fault zones. I interpret that these veins formed as shear fractures under increasing differential stress and fluctuations in pore pressure, with failure driven by heterogeneous materials within the shear zone.

  4. Quantitative P-T paths from zoned minerals: Theory and tectonic applications

    NASA Astrophysics Data System (ADS)

    Spear, Frank S.; Selverstone, Jane

    1983-09-01

    An analytical approach to the analysis of zoning profiles in minerals is presented that simultaneously accounts for all of the possible continuous reactions that may be operative in a given assemblage. The method involves deriving a system of simultaneous linear differential equations consisting of a Gibbs-Duhem equation for each phase, a set of linearly independent stoichiometric relations among the chemical potentials of phase components in the assemblage, and a set of equations describing the total differential of the slope of the tangent plane to the Gibbs free energy surface of solid solution phases. The variables are the differentials of T, P, chemical potentials of all phase components, and independent compositional terms of solid solution phases. The required input data are entropies, volumes, the compositions of coexisting phases at a reference P and T, and an expression for the curvature of the Gibbs functions for solid solution phases. Results derived are slopes of isopleths ( dP/dT, dX/dT or dX/dP) which can be used to contour P-T diagrams with mineral composition. To interpret mineral zoning, T and P can be expressed as functions of n independent composition parameters, where n is the variance of the mineral assemblage. The total differentials of P and T are differential equations that can be solved by finite difference techniques using the derivatives obtained from the analytical formulation of phase equilibria. Results calculated from Zone I and Zone IV garnets of Tracy et al. (1976) indicate that Zone I garnets grew while T increased ( ΔT≈+72° C) and P decreased sharply ( ΔP≈-3 kb). Zone IV garnets zoned in response to decreasing T ( ΔT≈-17° C) and P ( ΔP≈-1 kb). A P-T path calculated for a zoned garnet from the Greinerschiefer series, western Tauern Window, Austria, also indicates growth during decompression ( Δ˜-3kb) and heating ( ΔT˜+15° C). A P-T path calculated for the Wissahickon schist (Crawford and Mark 1982) indicates

  5. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  6. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  7. Tectonic reconstruction and geophysical investigations of IOCG occurrences: Great Bear magmatic zone, NT, Canada

    NASA Astrophysics Data System (ADS)

    Hayward, N.; Corriveau, L.; Enkin, R. J.; Montreuil, J.

    2012-12-01

    The Geological Survey of Canada's (GSC) Geomapping for Energy and Minerals (GEM) Program is developing and applying new techniques to iron oxide-copper-gold (IOCG) mineral exploration. The Great Bear magmatic zone (GBmz) is the remnants of a Paleoproterozoic continental magmatic arc (~1.872-1.843 Ga), which hosts IOCG mineralisation, including the Au-Co-Bi-Cu NICO deposit. The arc, which was built upon the Hottah terrane during eastward subduction prior to accretion of the Fort Simpson terrane (Hoffman 1980; Hoffman and Bowring 1984; Hildebrand et al. 1987), is dominated by granodiorites with mafic and volcaniclastic rocks towards the margins. Rapakivi and coarse grained biotite granites (ca. 1.866 - 1.856 Ga, Bowring 1984; Gandhi et al. 2001) mark the final plutonic event (Hildebrand et al. 1987), which was followed by extensive NE-striking brittle conjugate faulting (Tirrul 1984), related to final accretion (Hildebrand at al. 2009; Cook 2011). A tectonic reconstruction of the GBmz, which resets major fault offsets associated with final accretion, is based on the interpretation of a new compilation of high-resolution aeromagnetic data (Hayward and Oneschuk 2011) and geological maps (e.g., Hildebrand 2011; Jackson 2008; Jackson and Ootes 2011). The reconstruction provides a snapshot of the geometry of the GBmz at the time of mineralisation (~1.873 - >1.866 Ga, Davis et al. 2011) and a tectonic model for the late-stage setting and evolution of the arc, important in understanding the context of the mineralisation. The model suggests that the NE-striking faults were preceded by extension, perhaps driven by shifting tectonic motions and slab-rollback (Dewey 1980), and associated with NNE-striking faults. Geophysical models developed for the NICO area, which integrate proprietary high-resolution magnetic and gravity data with GSC physical property data, extracted from 872 samples collected from NICO and other sites across the GBmz, clearly delineate the main ore zone

  8. Comparing the New Madrid Seismic Zone with the Osning Thrust: implications for GIA-induced intraplate tectonics in northern Germany

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Steffen, Holger; Wu, Patrick; Tanner, David; Winsemann, Jutta

    2013-04-01

    Continental intraplate tectonics is a widespread phenomenon that causes significant earthquakes. These earthquakes even occur in areas that are characterized by low strain rates and there are often long intervals between the individual seismic events (Gangopadhyay & Talwani, 2003) that result in a hazard potential. To better understand the controlling factors of intraplate plate earthquakes in northern Germany, we compare the Osning Thrust with the intensively-studied New Madrid Seismic Zone in the Midwest USA. Both areas share major similarities such as a failed rift-basin setting, the presence of intrusive magmatic bodies in the subsurface, tectonic reactivation during the Late Cretaceous, paleo- and historic seismicity and comparable fault parameters. In addition, both areas have a very similar Late Pleistocene deglaciation history. New Madrid was c. 340 km south of the Laurentide ice sheet and ice retreat started around 21 ka and was completed by 8.5 ka (Grollimund & Zoback, 2001). The Osning Thrust was c. 310 km south of the Scandinavian ice sheet and deglaciation began at 24 ka. Both areas show historic seismicity in a similar time frame (New Madrid Seismic Zone: 1811-1812, Johnston & Schweig, 1996); Osning Thrust: 1612 and 1767, Grünthal & Bosse, 1997). We use numerical simulations to identify the timing of potentially GIA-induced fault activity, which are based on the fault stability margin concept of Wu & Hasegawa (1996). From our modelling results it is evident that the fault stability margin changed to negative between 16 and 13 ka for the Osning Thrust, which matches the OSL data of fault-related growth strata (Brandes et al., 2012). For the New Madrid Seismic Zone, the fault stability margin becomes zero between 2.5 ka BP (before 1812) to about 2 ka after the 1812 event, depending on the parameters of the model. This indicates that for both seismic zones, seismicity due to deglaciation was and still is very likely. From this study it can be derived

  9. Tectonic history of the central Sanandaj-Sirjan zone, Iran: Potentially Permian to Mesozoic polymetamorphism and implications for tectonics of the Sanandaj-Sirjan zone

    NASA Astrophysics Data System (ADS)

    Shakerardakani, Farzaneh; Neubauer, Franz; Genser, Johann; Masoudi, Fariborz; Mehrabi, Behzad; Monfaredi, Behzad; Friedl, Gertrude

    2015-04-01

    The determination of metamorphic conditions and of its age is critical to the understanding of the mountain belt formation as metamorphism is an expression of subduction or plate collision. In this study, we report the metamorphic evolution, preliminary Ar-Ar mineral ages and structures from two amphibolite-grade metamorphic units of the Dorud-Azna region in the central part of Sanandaj-Sirjan metamorphic zone and discuss the tectonic implications. The Sanandaj-Sirjan metamorphic zone is nearly parallel to the Main Zagros Reverse Fault and is located above the Neotethyan ophiolitic suture. Structural studies and our previous U-Pb zircon dating work demonstrated that the area comprise three metamorphosed tectonic units, which are from footwall to hangingwall: (1) The Triassic June complex is metamorphosed within greenschist facies conditions, overlain by (2) the amphibolite-grade metamorphic Panafrican Galeh-Doz orthogneiss, which is intruded by some mafic dykes, and (3) the Amphibolite-Metagabbro unit with Carboniferous metagabbro bodies. To the East, the Darijune gabbro intruded within the Permian Kuh-e-June Marble and the mentioned two other metamorphic units. The granitic Galeh-Doz orthogneiss displays two different P-T conditions. The best average estimates for the magmatic mineral assemblage (plagioclase core + amphibole core + K-feldspar + quartz) range between 675 and 710 °C and 3.7 and 4.2 kbar, whilst the temperature of 530 and 625 °C and pressure of 0.7 to 2.8 kbar is consistent with the first metamorphic mineral assemblage. Ar-Ar amphibole ages from the Galeh-Doz orthogneiss give plateau-like steps between 260 and 270 Ma. We interpret this age as the cooling age after an amphibolite facies-grade metamorphism. An amphibole from relatively well preserved dyke within the Galeh-Doz orthogneiss gives staircase pattern with an age of 261 ± 3 Ma in the first step considered similarly as a metamorphic overprint in metamorphic rocks, whereas plateau-like steps

  10. Water-rock interactions in the Median Tectonic Line fault zone, SW Japan revealed by core sample analysis

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Tanaka, N.; Shigematsu, N.

    2012-12-01

    Alteration minerals along the fault zone of the Median Tectonic Line (MTL), the Japan's largest onshore fault, are characterized to understand the crustal faulting at various depth conditions by describing a borehole penetrating the MTL. The borehole was drilled by the Geological Survey of Japan, AIST (GSJ, AIST) to predict the forthcoming Nankai-Tonankai Earthquake at Matsusaka-Iitaka (ITA), SW Japan. The drilling length is 600m. It penetrates the MTL at the depth of 473.9m. The fault plane has an almost E-W strike and dips at 56° to the north. Hangingwall of the MTL consists of Ryoke-derived tonalitic mylonite and footwall of the MTL consists of fractured rocks derived from Sanbagawa metamorphic rocks. Ryoke-derived tonalitic mylonite in the hangingwall suffered more or less later cataclastic deformations. X-ray diffraction patterns of powdered samples derived from ITA borehole were obtained to identify alteration mineral assemblages and estimate alteration conditions. Chlorite, laumontite, white-mica, prehnite and calcite are main alteration minerals in the Ryoke belt above 400m depth, while analcine and stilbite occur as zeolite minerals instead of laumontite between 400m and 473.9m depth. Laumontite is preferentially occurred in the cataclastically deformed zones and calcite often fills fractures and cavities. The fault plane and fractures in the fault zone provide fluid conduit. The presence of laumontite and prehnite indicates that the alteration temperature was more than 200°C, while analcime and stilbite formed at lower temperature than laumontite. These suggest that the zone of hydrothermal alteration less than 200°C was restricted below 400m depth in the ITA borehole. We also applied chlorite geothermometry (Inoue et al., 2009), which yeileds temperatures of about 300°C for mylonitic rocks and those of about 200°C for cataclastic rocks. Immediately beneath the MTL, approximately 40m thick fractured rocks form the major strand of the MTL fault zone

  11. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  12. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  13. Tectonic evolution of the Perth Abyssal Plain's Quiet Zone, Southeast Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ehrlich, Zohar Louis; Granot, Roi; Williams, Simon E.

    2013-04-01

    During the Late Jurassic period, the Greater-Indian plate was torn away from Australia, dissociating East Gondwanaland. The Perth Abyssal Plain (PAP) is the southernmost rift segment along the western Australian margin, and has an onset age of ~136 Ma. New marine magnetic and swath bathymetry data, crossing the entire PAP, were acquired recently on geophysical cruise ss2011v06 aboard the R/V Southern Surveyor. These have lead to the outline of conjugate Indian and Australian M-series isochrons in the east and west PAP, respectively [1]. Yet, most of the PAP was created during the Cretaceous Normal Superchron (CNS, 121-83 Ma), a period of no geomagnetic field reversals, hence no comprehensive tectonic model for the PAP exists . Here we present preliminary findings of an analytic bathymetric and magnetic investigation aimed at elucidating the PAP's quiet zone. Recent discoveries regarding the evolution of the geomagnetic field during the CNS [2] provide new time markers that can be utilized to date the oceanic crust. The magnetic anomaly data exhibit the Q2 anomaly marker (~108 Ma), further constraining the spreading history of the PAP. Together with the ridgelet transform method [3] for automated abyssal hill delineation, we present new constraints on the development of crustal construction processes (spreading location, direction and rates) that took place along the PAP spreading center. References: [1] S.E. Williams, J.M. Whittaker, R. Granot, R.D. Muller (in preparation), New constraints on the seafloor spreading history in the Perth Abyssal Plain. [2] Granot, R., J. Dyment, and Y. Gallet (2012), Geomagnetic field variability during the Cretaceous Normal Superchron, Nature Geoscience, 5(3), 220-223. [3] Downey, N. J. and R. W. Clayton (2007), A ridgelet transform method for constraining tectonic models via abyssal-hill morphology, Geochemistry Geophysics Geosystems, 8, Q03004, doi: 10.1029/2006GC001440.

  14. Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone

    USGS Publications Warehouse

    van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego

    2010-01-01

    Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.

  15. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  16. Geochronology of Early to Middle Paleozoic tectonic development in the Southwest Newfoundland Gander Zone

    SciTech Connect

    Chorlton, L.B.; Dallmeyer, R.D.

    1986-01-01

    U-Pb zircon isotopic ages of 452 +/- 51/13 Ma and 458 +/- 29/22 Ma on metavolcanic rocks indicate that Ordovician and possibly older rocks underlie the Gander zone itself. A temporal framework for the three main stages of regional deformation, corresponding to pre-metamorphic recumbent folding (D/sub 1/) and transpression (D/sub 2/ and D/sub 3/), is presented using U-Pb and /sup 40/Ar//sup 39/Ar dates of granitoid and metamorphic rocks. D/sub 1/ is bracketed as late Ordovician or Silurian. Spatial domains of contrasting /sup 40/Ar//sup 39/Ar biotite and hornblende cooling ages reflect the D/sub 2/ and D/sub 3/ episodes, which led to post-metamorphic cooling following uplift of different segments of the amphibolite facies metamorphic terrane. Early Devonian differential uplift on the Cape Ray Fault in the northeast was associated with D/sub 2/ and caused rapid post-metamorphic cooling through Ar retention temperatures to yield nearly concordant biotite and hornblende ages between 374 and 388 Ma. Reverse and oblique-slip faulting during D/sub 3/ produced oblique northwesterly uplift of the still-buried portion of the amphibolite facies terrane against Devonian strata in the southwest part of the Cape Ray Fault zone. Late Devonian to early Carboniferous post-metamorphic cooling in this segment is confirmed by /sup 40/Ar//sup 39/Ar plateau dates of 345-353 Ma for biotite and 361 Ma for hornblende. K-Ar mineral dates are likewise earliest Devonian and younger, in contrast to numerous pre-Devonian K-Ar ages in the Humber and the Dunnage Zones. The Gander zone, already identified as a wide, Acadian ductile shear belt and noted for widely variable metamorphic grade, might represent a mobile zone where coherent relics of the Iapetus or prior stages of Appalachian history were exhumed during Devonian orogeny, many after Silurian or earlier tectonic burial.

  17. Tectonic geomorphology of the New Madrid seismic zone based on imaging of digital topographic data

    SciTech Connect

    Mayer, L. . Dept. of Geology)

    1993-03-01

    Topographic analysis using digital elevation data of the New Madrid region focuses on topographic features that occur at several spatial scales and can be used to delineate distinct anomalies. In this region, topographic anomalies occur as domal or elongate uplifts and bowl-shaped depressions approximately 1--10 km in size, topographic lineaments, and differences in topographic blocking across 50 km long boundaries. In order to fully explain these topographic anomalies, tectonic processes may be required. Imaging is based on digital topographic data from USGS 30 arc-second, 3 arc-second, and 30 m resolutions. Imaging of these data uses standard imaging processing techniques to examine topography within the contexts of geomorphological hypothesis testing. A good example is the use of thresholding to highlight areas of unusually high elevation given the hypothesis of fluvial landscape architecture. Thresholding delineates topographic features such as the Tiptonville dome which is strongly believed to be tectonic in origin. To determine the pattern of topographic blocking, defined as a pattern that topography assumes when constrained by active forces other than erosion alone, low frequency passing spatial convolutions are used as filters and the resulting data are sliced into blocks according to pseudoelevations that produce a stable block pattern. The resultant blocks are analyzed according to its structural pattern of block size and block orientation. This analysis suggests that a topographic boundary cuts across the Mississippi embayment from near the Newport pluton on the west, to the area south of Memphis on east.

  18. Geochronology of the Baie Verte Peninsula, Newfoundland: implications for the tectonic evolution of the Humber and Dunnage Zones of the Appalachian Orogen

    SciTech Connect

    Dallmeyer, R.D.; Hibbard, J.

    1984-09-01

    U-Pb analyses of zircon from the Burlington Granodiorite suggest intrusion at c. 460-465 Ma. Hornblende and biotite from central portions of the pluton record markedly younger /sup 40/Ar//sup 39/Ar plateau dates (410-420 Ma) which are interpreted to date contact metamorphic effects associated with the widespread emplacement of Silurian-Devonian igneous suites. Northern portions of the Burlington Granodiorite are polydeformed and regionally metamorphosed. Hornblende and biotite from this terrane yield /sup 40/Ar//sup 39/Ar plateau ages of 345-350 Ma. U-Pb analyses of zircon from the Dunamagon Granite indicate emplacement at c. 440-460 Ma, thereby providing an upper limit for tectonic juxtapositioning of the Humber and Dunnage Zones along the Baie Verte Line. Similar ages are also recorded by hornblende and biotite throughout northerly portions of the Mings Bight (Humber Zone) and Pacquet Harbour (Dunnage Zone) Groups. These results indicate that the tectonic evolution of the Baie Verte Line as polygenetic, and involved: (1) regionally significant tectonothermal activity prior to the Middle Ordovician and (2) Middle to Late Paleozoic tectonothermal activity centered along easterly segments of the Baie Verte Line. The regional metamorphism associated with this orogenic activity altered primary U-Pb and Rb-Sr isotopic systems within various igneous suites exposed in northeastern portions of the Burlington Peninsula, which may explain some inconsistent geochronological results previously obtained. 54 references, 6 figures, 5 tables.

  19. Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Goswami, Chandreyee; Mukhopadhyay, Dhruba; Poddar, Bikash Chandra

    2012-03-01

    The impact of neotectonic activity on drainage system has been studied in a large alluvial fan in the eastern Himalayan piedmont area between the Mal River and the Murti River. Two distinct E-Wlineaments passing through this area had been identified by Nakata (1972, 1989) as active faults. The northern lineament manifested as Matiali scarp and the southern one manifested as Chalsa scarp represent the ramp anticlines over two blind faults, probably the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT), respectively. The fan surface is folded into two antiforms with a synform in between. These folds are interpreted as fault propagation folds over the two north dipping blind thrusts. Two lineaments trending NNE-SSW and nearly N-S, respectively, are identified, and parts of present day courses of the Murti and Neora Rivers follow them. These lineaments are named as Murti and Neora lineaments and are interpreted to represent a conjugate set of normal faults. The rivers have changed their courses by the influence of these normal faults along the Murti and Neora lineaments and their profiles show knick points where they cross E-W thrusts. The overall drainage pattern is changed from radial pattern in north of the Matiali scarp to a subparallel one in south due to these conjugate normal faults. The interfluve area between these two rivers is uplifted as a result of vertical movements on the above mentioned faults. Four major terraces and some minor terraces are present along the major river valleys and these are formed due to episodic upliftment of the ground and subsequent down-cutting of the rivers. The uppermost terrace shows a northerly slope north of the Chalsa scarp as a result of folding mentioned above. But rivers on this terrace form incised channels keeping their flow southerly suggesting that they are antecedent to the folding and their downcutting kept pace with the tectonism.

  20. Serpentine in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-09-01

    Serpentinization is a key phenomenon for understanding the geodynamics of subduction zones in the 10-200 km depth range. Serpentines are a major water carrier, and their rheological properties have a strong influence on deformation partitioning and seismicity at depths. I review experimental investigations that have been conducted on serpentines, with emphasis on the large body of data acquired over the past decade. Determinations of physical properties at the pressure and temperature conditions of subductions allow interpreting geophysical data in active subduction in terms of mineralogy and petrology, and to link the presence of serpentinites with deformation and fluid circulation. The fluid budget can be partially constrained from geophysical data. Elasticity data provide a quantitative basis for mapping serpentinization in the mantle wedge and slab from seismic tomography. Anisotropy suggests the existence of thin serpentinite channels above the plate interface, that account for mechanical decoupling inferred from down-dip limit of the seismogenic zone and heat flow. Strain-rate dependent rheology of antigorite serpentine is consistent with stable deformation of this thin layer or channel over timescales ranging from those of the seismic cycle to those of thermal equilibration and exhumation of high-pressure rocks, and with the geological record of subduction-related deformation. Circulation of serpentinizing fluids depends on the permeability structure, and is imaged by electrical conductivity tomography. It could be controlled by fracturing in the undeformed cold nose of the mantle wedge, and by plastic deformation along the plate interface. Fluid migration mechanisms are similar to those inferred from petrological and geochemical data on exhumed serpentinites. Estimation of the fluid budget associated with serpentine formation will rely on numerical simulations for which coupling of kinetics of hydration and dehydration at scales ranging from grain size up

  1. A missing-link in the tectonic configuration of the Almacık Block along the North Anatolian Fault Zone (NW Turkey): Active faulting in the Bolu plain based on seismic reflection studies

    NASA Astrophysics Data System (ADS)

    Seyitoğlu, Gürol; Ecevitoğlu, Berkan; Kaypak, Bülent; Esat, Korhan; Çağlayan, Ayşe; Gündoğdu, Oğuz; Güney, Yücel; Işık, Veysel; Pekkan, Emrah; Tün, Muammer; Avdan, Uğur

    2015-06-01

    The North Anatolian Fault Zone (NAFZ) starts to branch off in the western Bolu plain. The branches of the NAFZ in this location create the Almacık block which is surrounded by the latest surface ruptures of significant earthquakes that occurred between 1944 and 1999, but its northeastern part remains unruptured. The most recently formed rupture, that was a result of the 1999 November 12 Düzce earthquake, ended to the northwest of the Bakacak Fault. The connection between the Bakacak Fault and the main branch of the NAFZ via the Bolu plain has until now remained unknown. This paper establishes that the route of the missing link runs through the Dağkent, Kasaplar and Bürnük faults, a finding achieved with the help of seismic reflection studies. The paper also argues that the cross cutting nature of these newly determined faults and a stress analysis based on focal mechanism solutions of recent earthquakes demonstrate the termination of the suggested pull-apart nature of the Bolu plain.

  2. Large historical earthquakes and tsunamis in a very active tectonic rift: the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioanna; Papadopoulos, Gerassimos

    2014-05-01

    The Gulf of Corinth is an active tectonic rift controlled by E-W trending normal faults with an uplifted footwall in the south and a subsiding hangingwall with antithetic faulting in the north. Regional geodetic extension rates up to about 1.5 cm/yr have been measured, which is one of the highest for tectonic rifts in the entire Earth, while seismic slip rates up to about 1 cm/yr were estimated. Large earthquakes with magnitudes, M, up to about 7 were historically documented and instrumentally recorded. In this paper we have compiled historical documentation of earthquake and tsunami events occurring in the Corinth Gulf from the antiquity up to the present. The completeness of the events reported improves with time particularly after the 15th century. The majority of tsunamis were caused by earthquake activity although the aseismic landsliding is a relatively frequent agent for tsunami generation in Corinth Gulf. We focus to better understand the process of tsunami generation from earthquakes. To this aim we have considered the elliptical rupture zones of all the strong (M≥ 6.0) historical and instrumental earthquakes known in the Corinth Gulf. We have taken into account rupture zones determined by previous authors. However, magnitudes, M, of historical earthquakes were recalculated from a set of empirical relationships between M and seismic intensity established for earthquakes occurring in Greece during the instrumental era of seismicity. For this application the macroseismic field of each one of the earthquakes was identified and seismic intensities were assigned. Another set of empirical relationships M/L and M/W for instrumentally recorded earthquakes in the Mediterranean region was applied to calculate rupture zone dimensions; where L=rupture zone length, W=rupture zone width. The rupture zones positions were decided on the basis of the localities of the highest seismic intensities and co-seismic ground failures, if any, while the orientation of the maximum

  3. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics

    USGS Publications Warehouse

    Southwick, D.L.; Chandler, V.W.

    1996-01-01

    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  4. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  5. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  6. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  7. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  8. Mapping of crustal scale tectonic boundaries in the Ossa-Morena Zone using reprocessed IBERSEIS reflection seismic data

    NASA Astrophysics Data System (ADS)

    Kashubin, A. S.; Juhlin, C.

    2010-06-01

    The IBERSEIS deep seismic reflection profile imaged crustal scale structures in the SW Iberian Variscan belt, crossing the South Portuguese Zone, the Ossa-Morena Zone and the Central Iberian Zone in Spain. Two subsets of the profile, corresponding to the South Portuguese Zone-Ossa-Morena Zone and the Ossa-Morena Zone-Central Iberian Zone tectonic contacts, have been reprocessed with the aim of investigating the influence of cross-dip and to better image steeply dipping features. Alternative strategies for binning midpoints into common depth point (CDP) bins using different azimuths were examined for synthetic data. We show that the choice of the CDP-processing line and the bin azimuth orientation has a significant impact on the normal moveout and dip-moveout velocities and is crucial to optimizing the quality of the stacked seismic image along the crooked profile. Multi-azimuth binning, normal moveout/dip-moveout, and migration velocity analysis on synthetic and real data show the presence of clear sub-vertical upper crustal structures near the South Portuguese Zone-Ossa-Morena Zone suture, the Aroche fault. This sub-vertical reflectivity that was not imaged earlier, projects into a location in the lower crust with low reflectivity.

  9. Active tectonics and Quaternary landscape evolution across the western Panama block, Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey Scott

    Three aspects of active tectonism are examined across central Costa Rica: (1) fault kinematics; (2) volcanic arc retreat; and (3) spatially variable coastal uplift. Diffuse faulting along the Central Costa Rica Deformed Belt (CCRDB) defines the western margin of the Panama block and aligns with the rough-smooth boundary (RSB) on the subducting Cocos plate. Sub-horizontal subduction of rough, hotspot thickened crust (Cocos Ridge and seamounts) shifts active shortening into the volcanic arc along the CCRDB. Mesoscale faults express variable kinematics across three domains: transtension in the forearc, transcurrent motion across the volcanic arc, and transpression in the back arc. Fault kinematics agree with seismicity and GPS data, and isotopic ages confirm that faulting postdates the late Neogene onset of shallow subduction. Stratigraphic correlation augmented by 40Ar/39Ar dating constrain the timing of Quaternary arc migration from the Neogene Aguacate range to the modern Cordillera Central. The Valle Central basin, between the cordilleras, filled with thick sequences of lavas, pyroclastic flows, and lahars. Middle Pleistocene drainage capture across the Aguacate arc linked the Valle Central with the Pacific slope and ash flows descended onto the coastal Orotina debris fan. Arc retreat reflects slab shallowing and enhanced tectonic erosion as rough crust entered the subduction zone. Differing subduction parameters across the RSB (crustal age, slab dip, roughness) produce marked contrasts in coastal tectonism. Varying uplift rates across coastal faults reflect sub-horizontal subduction of seamount roughness. Three groups (I--III) of fluvial terraces are correlated along the coast by isotopic ages and geomorphic characteristics. Base level fluctuations and terrace genesis reflect interaction between eustatic sea level and spatially variable rock uplift. Low uplift rates (north of RSB), yield one surface per terrace group, whereas moderate rates (south of RSB

  10. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Wagner, Lara S.; Fischer, Karen M.; Hawman, Robert B.

    2016-05-01

    The lithospheric structure of the Southeastern United States is a product of earlier episodes of continental collision and breakup. The region is located in the interior of the North American Plate, away from active plate margins. However, there is ongoing tectonism in the region with multiple zones of seismicity, uplifting arches, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the state of stress remain enigmatic. Two important factors are plate strength and preexisting, inherited structures. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Examples include the relatively thick lithospheric mantle of stable North America that abruptly thins beneath the Paleozoic Appalachian orogeny, and the slow upper mantle of the Proterozoic Reelfoot rift. Our results also indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. This provides a viable explanation for seismicity, uplifting, and young intraplate volcanism. We postulate that not only tectonic inheritance but also continuing lithospheric foundering may control the ongoing activity of the region long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  11. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  12. Acoustic monitoring of earthquakes along the Blanco Transform Fault zone and Gorda Plate and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Dziak, Robert Paul

    Hydroacoustic tertiary (T-) waves are seismically generated acoustic waves that propagate over great distances in the ocean sound channel with little loss in signal strength. Hydrophone recorded T-waves can provide a lower earthquake detection threshold and an improved epicenter location accuracy for oceanic earthquakes than land-based seismic networks. Thus detection and location of NE Pacific ocean earthquakes along the Blanco Transform Fault (BTFZ) and Gorda plate using the U.S. Navy's SOSUS (SOund SUrveillance System) hydrophone arrays afford greater insight into the current state of stress and crustal deformation mechanics than previously available. Acoustic earthquake information combined with bathymetry, submersible observations, earthquake source- parameter estimates, petrologic samples, and water-column chemistry renders a new tectonic view of the southern Juan de Fuca plate boundaries. Chapter 2 discusses development of seismo-acoustic analysis techniques using the well-documented April 1992 Cape Mendocino earthquake sequence. Findings include a hydrophone detection threshold estimate (M ~ 2.4), and T-wave propagation path modeling to approximate earthquake acoustic source energy. Empirical analyses indicate that acoustic energy provides a reasonable magnitude and seismic moment estimate of oceanic earthquakes not detected by seismic networks. Chapters 3 documents a probable volcanogenic T-wave event swarm along a pull-apart basin within the western BTFZ during January 1994. Response efforts yielded evidence of anomalous water-column 3He concentrations, pillow- lava volcanism, and the first discovery of active hydrothermal vents along an oceanic fracture zone. Chapter 4 discusses the detection of a NE-SW trending microearthquake band along the mid-Gorda plate which was active from initiation of SOSUS recording in August 1991 through July 1992, then abruptly ceased. It is proposed that eventual termination of the Gorda plate seismicity band is due to

  13. Multiple reactivation of a crustal-scale weakness zone - the Sveconorwegian Sokna-Saggrenda tectonic contact of southern Norway

    NASA Astrophysics Data System (ADS)

    Scheiber, Thomas; Viola, Giulio; Peters, Max; Bingen, Bernard; Henderson, Iain

    2014-05-01

    The Sokna-Saggrenda tectonic contact (SSTC) is traditionally drawn on maps of southern Norway as the first-order, curved boundary between the Kongsberg-Modum terrane in the east and the Telemark terrane in the west, which were assembled during the Grenvillian-Sveconorwegian orogeny. New field observations along the entire length (120 km) of this deformation zone together with microstructural and textural data from selected transects suggest a more complex structural architecture and evolution than previously assumed. The following five structural elements resulting from several deformation episodes can be distinguished: (1) Amphibolite-facies mineral assemblages occurring together with a prominent E-dipping ductile foliation and a mineral lineation plunging moderately towards the NE. This fabric is associated with top-to-the-SW kinematics and is well preserved west of the SSTC. (2) Static overprint of the dynamically recrystallized quartz microstructure of (1) indicates cessation of deformation at relatively high temperatures. (3) (Ultra-)mylonites thoroughly overprinting the previous structures are confined to large-scale subvertical to moderately E-dipping shear zones bearing a gently SE-plunging stretching lineation. At the micro-scale, these structures are characterized by domains of older statically recrystallized quartz (2), being progressively reworked through dynamic recrystallization into quartz-rich aggregates. In the shear zone centers severe grain size reduction by mechanical comminution and phase mixing indicates granular flow. At the map-scale, the shear zones are arranged geometrically in a sinistral transpressional en-échelon network defining parts of the SSTC. Three crustal blocks can be identified as less-affected units in between these shear zones: the Telemark block, a western Kongsberg block and an eastern Modum block. A tens of kilometer-scale fold structure reorients the main ductile fabric (1) in the northern part of the Modum block and is

  14. Geomorphic signature of active tectonics in the southern Abruzzi Periadriatic hilly belt (Central Italy)

    NASA Astrophysics Data System (ADS)

    Racano, Simone; Fubelli, Giandomenico; Centamore, Ernesto; Dramis, Francesco

    2016-04-01

    The geo-structural setting of the southern Abruzzi hilly belt that stretches from the northeastern front of the Maiella Massif to the Adriatic coast is characterized by deep-seated northeast verging thrusts masked by a thick cover of Late Pliocene-Middle Pleistocene marine deposits. Most authors consider this area tectonically inactive while only few of them support the hypothesis of its recent activity from the analysis of the river network pattern. Geological and geomorphological investigations carried out in the area have clearly shown the occurrence of surface deformations resulting from the continued activity of compressive tectonics up to recent times. The analysis of the study area by of a 10 m resolution DTM (using the open-source QGIS software) confirmed and supplemented field observations. Particularly significant in this context is the topographic setting of the alluvial strath terraces in the river valleys that develop transversally to the buried thrusts. In correspondence of these structures, topographic highs have grown up displacing the middle-Pleistocene planation surface developed on top of the hilly belt, from the Maiella piedmont to the coastal zone, and diverting laterally the river courses uphill. In the same places, as along the Alento and Foro rivers that cross by antecedence the grown up topographic highs, the long profiles of terraces bend eastward and the height difference between the terrace orders, essentially related all around the area to the Quaternary regional uplift, strongly increases. In some cases, surficial faults have lowered the terraces into graben troughs or have displaced them until assuming an uphill trend. This recent tectonic activity should be taken in account in assessing the seismic hazard of the study area.

  15. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  16. Evolution and timing of tectonic events in the Arabia-Eurasia convergence zone as inferred from igneous geochemistry from the EarthChem database

    NASA Astrophysics Data System (ADS)

    Lieu, W. K.; Stern, R. J.

    2011-12-01

    The timing of tectonic events in the Anatolia-Iranian region can be inferred from analysis of igneous rocks. Magmatic activities in the region are generally associated with the convergence of the African-Arabian and Eurasian plates and the subduction of the Neotethys Ocean. Ancillary processes such as subduction of continental crust, delamination of upper plate lithosphere or lower crust, or asthenospheric decompression accompanying post-collisional relaxation also contribute to the composition of igneous rocks. Here we use geochemical data gathered from the EarthChem database to assess broad chemical implications of Cenozoic tectonic activities of the convergence region. We search for geochemical signal of the timing of first contact of the subducting Arabian and overriding Eurasian continental crust. Of particular interest is how igneous rock compositions vary during the transition from pre- to post-contact of the continental crusts. Also, is there a geographic variation along the convergence zone during this tectonic transition? We generate maps and geochemical plots for four different epochs and two different regions since Cenozoic time: Iran and Anatolia in the Eocene, Oligocene, Miocene and Plio-Quaternary. This board, region-scaled analysis of major and trace element patterns suggests the following tectonic events: Subduction-related medium K calc-alkaline igneous rocks reflect Eocene subduction of the Neo-Tethys oceanic lithosphere. Oligocene igneous rocks are characterized by K2O-SiO2 trends scattering to higher silica and alkaline content, which may reflect subduction of stretched continental margin lithosphere and sediments. A bimodal pattern of potash-silica trends during Miocene time may mark the transition from subduction-related to intra-plate magmatism, perhaps signaling contact between the continental crust of Arabia-Africa with Eurasia. Pliocene and younger igneous rocks show an intra-plate and ocean island basalt trend, as the region's activities

  17. The impact of salt tectonics on supra-salt (Lago Mare?) deposits and on the structural evolution of the Cyprus-Eratosthenes collision zone

    NASA Astrophysics Data System (ADS)

    Reiche, Sönke; Hübscher, Christian; Ehrhardt, Axel

    2015-04-01

    Averagely 1.5 km thick Messinian evaporites laterally continue from the Levant Basin, easternmost Mediterranean Sea, into the collision zone between Cyprus and Eratosthenes Seamount where incipient continent-continent-collision is believed to occur. In this study, the impact of Messinian evaporites on the structural evolution of the collision zone is investigated for the first time based on a comprehensive set of seismic reflection profiles. Results show that the collision zone may be subdivided into an eastern and a western domain. In the eastern part, bordered by Eratosthenes Seamount and the Hecataeus Rise, compressionally thickened autochthonous salt is observed. Sub- and supra-salt deposits within this area appear to be in the stage of active accretion. Further west, between Cyprus and Eratosthenes Seamount strongly deformed allochthonous salt has evidently started to advance across sediments of post-Messinian age. In this domain, previously active sediment accretion at the Cyprus margin has now become inactive and shortening is largely accommodated at the leading edge of the allochthonous salt sheet. Such observations bear important implications for the structural interrelation between salt tectonics and the evolution of a young collision zone. On top of highly deformed mobile Messinian evaporites, up to 700 m thick late Messinian supra-salt deposits are mapped within the western part of the Cyprus - Eratosthenes collision zone. Their uppermost 200 m were drilled in the course of ODP Leg 160 (Site 968) and interpreted as Lago Mare sediments, deposited during the final stage of the Messinian Salinity Crisis (Robertson, 1998). These sediments occupy small sub-basins flanked by salt diapirs, indicating a salt-tectonic control on late Messinian sediment deposition. Distribution of these sediments may have further been controlled by sea-level, inferred from rapid eastward thinning and pinchout of Messinian supra-salt deposits towards the Levant Basin

  18. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  19. Molybdenite tricks with titanite give history of the Central Indian Tectonic Zone

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.; Pandit, Manoj K.; Mohanty, Saradaprasad; Corfu, Fernando; Zimmerman, Aaron

    2014-05-01

    The time that the cratonic blocks joined to form peninsular India creating the E-W-trending Central Indian Tectonic Zone (CITZ) is important for tectonic reconstructions and Paleoproterozoic glaciations, and fundamental to understanding how sutures behave through time. An abundance of recent literature highlights ~1.0 Ga as the time of suturing. This late 1.0 Ga meeting of the two cratons, however, is increasingly difficult to reconcile. One of the well-studied and well-mapped terranes in the southern part of the CITZ is the Sausar Belt [1]. The metasedimentary and metavolcanic rocks comprising the extensive Paleoproterozoic Sausar Group are multiply deformed. To examine the history of the Sausar Belt from a new vantage, we employed Re-Os dating of molybdenite, a sulfide that serves faithfully as a single-mineral radiometric clock in both magmatic and metamorphic environments [2]. Molybdenite is rare in the Sausar belt. Samples containing a 1-cm molybdenite patch and coarse-grained, euhedral, clear brown titanite were acquired from two different varieties of calc-silicate rocks near the village of Umri in central India. The molybdenite occurs in a calcite-quartz vein that clearly cross-cuts a strongly deformed calc-silicate host with quartz-biotite and quartz bands at the cm scale. This vein, metamorphic in character, is about 1-cm-wide and slightly deformed. The molybdenite was contained wholly within the vein. To check for possible Re-Os decoupling [2], we split the molybdenite patch into seven subsamples, analyzing each fraction separately; in sum, these seven fractions account for the entire molybdenite crystal. We obtained extremely disparate ages for the individual fractions, ranging from 1.4 to 3.1 Ga. These data were recombined on an atomic basis to calculate the Re-Os age for the entire crystal, a trick we employed after affirming there was no additional sulfide and no additional molybdenite that might compete for Re and Os in our hand-sample of 10 x 15 cm

  20. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří; Běhounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system ($\\varphi$, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  1. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Å PičáK, Aleš; Hanuš, VáClav; VaněK, JiřÃ.­; BěHounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system (ϕ, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  2. Crustal structure and tectonic evolution of the Hecataeus Rise near the Cyprus-Eratosthenes Seamount collision zone

    NASA Astrophysics Data System (ADS)

    Reiche, Sönke; Welford, Kim; Hübscher, Christian; Hall, Jeremy

    2015-04-01

    The Hecataeus Rise represents a plateau-like structure, adjacent to the southern Cyprus margin and directly next to the Cyprus - Eratosthenes Seamount convergence zone, where incipient continent- continent-collision is believed to occur. Newly acquired wide-angle seismic profiles together with a dense grid of seismic reflection and multibeam bathymetric data provide insight into the crustal structure and Miocene-Quaternary structural evolution of this yet underexplored sector along the African-Anatolian plate boundary. Refraction seismic modeling suggests that the Hecataeus Rise is composed of a thick sedimentary cover underlain by an intermediate crust of presumably continental origin. Velocity models show significant lateral velocity variations along the African-Anatolian plate boundary, directly south of the Hecataeus Rise. High-velocity basement blocks coincide with highs in the magnetic field and appear to extend parallel to the margin of the Hecataeus Rise. We relate these high-velocity blocks to the presence of remnant Tethyan oceanic crust along a transform margin. Seismic reflection interpretation suggests that a Miocene period of tectonic compression has significantly deformed the western and southern part of the plateau area. Onshore Cyprus, structural lineaments were presumably active at the same time (Robertson, 1998) and can be traced offshore across the Hecataeus Rise. Post-Messinian convergence was accommodated along the southeastern flank of the Hecataeus Rise, where NE-SW trending anticlinal structures experienced reactivation and significant growth. A prominent intra-Pliocene-Quaternary unconformity in the northwestern part of the plateau area may correlate with the Plio-Pleistocene transition and indicates the near synchronous occurrence of several tectonostratigraphic events. We suggest that these events represent a chain of structural and depositional changes initiated by incipient collision of Eratosthenes Seamount with Cyprus and the

  3. Active tectonics along the Nebrodi-Peloritani boundary in northeastern Sicily (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Pavano, F.; Romagnoli, G.; Tortorici, G.; Catalano, S.

    2015-09-01

    In the epicentral area of the seismic swarm of the June-September 2011, at southern edge of the Calabrian arc in NE Sicily, very recent extensional motions remobilised two main NW-SE dextral faults. The extensional reactivation of strike-slip faults responded to a new regional dynamic, also evidenced by GPS and seismological data. The inverted structures are aligned at the margin of a wide crustal block that is moving apart from the rest of the island and is uplifting faster than the adjacent regions. The active faults terminate to the northwest at the intersection with a prominent NNE trending fault that represents the western boundary of the mobile block. The vertical displacement along this border exactly matches the difference in elevation of the marine terraces resting inside and outside the block, respectively. On the contrary, only part of differential displacement of the marine terraces was actually accommodated as cumulative motion along the two NW oriented inverted faults, across the southwestern boundary of the block. Amounts of the vertical displacement were distributed on distinct fault planes of the previous dextral shear belts. The widespread fracturing is also the best explanation for the seismic swarm of the 2011, whose epicenters spread on a discrete rock volume rather than concentrated along a single fault plane. The diffuse fracturing seems to represent a peculiar style of deformation, connected to the tectonic inversion of previous strike-slip shear zones. Seismic swarm also affects the northern termination of the Calabrian arc where active extensional deformation reactivated previous strike-slip faults. The similarity of the two regions suggests that seismic swarm can be peculiar of extensional belts developed on previous strike-slip shear zones, along which the pre-existing geometry favours the dispersion of the tectonic motion on a network of small linked fault planes.

  4. Impact of the Yakutat indentor corner on present-day tectonics and fault activity in SE Alaska - SW Yukon

    NASA Astrophysics Data System (ADS)

    Mazzotti, S.; Marechal, A.; Ritz, J. F.; Ferry, M. A.

    2015-12-01

    We present an active tectonic model of the SE Alaska - SW Yukon region based principally on the integration of recent GPS velocity data and new fault-slip rates derived from geomorphology. In this region, the Yakutat collision results in complex tectonics with patterns of strain localization and strain partitioning that strongly vary across the various mountain ranges and active faults. We propose that deformation and fault activity in the St. Elias and Chugach Mountains are primarily controlled by the eastern syntaxis of the Yakutat collision, which produces a semi-radial tectonic pattern: Velocities, principal horizontal shortening rates, and maximum horizontal stress orientations rotate by 60 - 80 ° around the syntaxis, from roughly parallel to the relative Pacific - North America motion at the front of the collision to roughly orthogonal southeast of the syntaxis. The interaction between this strain pattern and major inherited tectonic structures inland of the collision zone (i.e., Denali and Duke River Faults) results in various reactivation modes of these structures. Specifically, the Denali Fault shows a very pronounced lateral variations of activity from ~12 mm/a of dextral slip rate in its central section to ~1 mm/a of mostly shortening slip rate along its southern section. This marked change of activity is associated with a possible relay system where the Duke River and Totschunda Faults accommodate a major part (8 - 12 mm/a) of the inland strain transfer directly in front of the syntaxis. This new tectonic model retains some questions, in particular regarding the mechanisms of deformation and strain transfer (1) from the syntaxis to the Duke River - Totschunda system and (2) at the junction between Totschunda and Denali Faults. Numerical models of present-day deformation may help address these issues and provide information about relative strength of the various crustal and inherited fault elements of this system.

  5. Is There any Relationship Between Active Tabriz Fault Zone and Bozkush Fault Zones, NW Iran?

    NASA Astrophysics Data System (ADS)

    ISIK, V.; Saber, R.; Caglayan, A.

    2012-12-01

    Tectonic plate motions and consequent earthquakes can be actively observed along the northwestern Iran. The Tabriz fault zone (TFZ), also called the North Tabriz fault, active right-lateral strike-slip fault zone with slip rates estimated as ~8 mm/yr, has been vigorously deforming much of northwestern Iran for over the past several million years. Historical earthquakes on the TFZ consist of large magnitude, complimentary rupture length and changed the landscape of regions surrounding the fault zone. The TFZ in the city of Bostanabad is more segmented with several strands and joined by a series of WNW-ESE trending faults, called the Bozkush fault zones. The Bozkush fault zones (BFZ's) (south and north), bounding arch-shaped Bozkush mountains, generates not only hundreds of small earthquakes each year but also has provided significant earthquakes that have been historically documented. The rock units deformed within the BFZ's include Eocene-Oligocene volcanic rocks with intercalation limestone, Oligo-Miocene clastic rocks with intercalation gypsiferous marl and Plio-Quaternary volcano-sedimentary rocks, travertine and alluvium. The North and South Bozkush fault zones are characterized by development of structures typically associated with transpression. These include right-lateral strike-slip faults, thrust faults and foldings. Our field studies indicate that these zones include step to sub-vertical fault surfaces trending NW and NE with slickenlines. Slickensides preserve brittle kinematic indicators (e.g., Riedel shear patterns, slickenside marks) suggesting both dextral displacements and top-to-the-NE/NW and-SE/SW sense of shearing. Besides, mesoscopic and microscopic ductile kinematic indicators (e.g., asymmetric porphyroclasts, C/S fabrics) within Miocene gypsum marl show dextral displacements. Fault rocks along most of these faults consist of incohesive fault breccia and gauge. Adjacent to the fault contact evidence of bedding in Oligo-Miocene and Plio

  6. Analogue experiments applied to active tectonics studies: the case of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Seno, S.; Bonini, L.; Toscani, G.

    2010-12-01

    Lithosphere can be divided into three main zones as a function of increasing depth: an aseismic updip zone, the seismogenic zone and a deep aseismic zone. Identifying the location of these zones is a key goal to understand how a specific seismogenic fault works. The evaluation of the seismogenic structures potential in tectonically active regions needs an accurate knowledge of the geometries and kinematic of the faults. In many cases, large seismogenic faults are not clearly and unambiguously expressed at the surface, whereas in other regions with higher deformation rates a clear geological surface evidence is often associated with large earthquakes. Therefore, the characterization of the seismogenic faults and of their mutual interactions it is not always straightforward; in this case, analogue modeling can provide an independent and useful tool for the interpretation of the surface geological data. Analogue modeling applied to earthquake geology is a quite innovative technique: when combined with other datasets (e.g.: seismic tomography, seismic profiles, well-logging data, field geology, morphotectonic and palaeo-seismological data) it can provide significant insights on the long term (i.e. Quaternary) evolution of a seismogenic fault. We carried out a set of analogue models at 1 : 100,000 scale that reproduce in 2D a normal fault with a relatively low dip angle (45°-50°). In our experimental approach different materials have been used to simulate the three main zones in which the lithosphere is separated. Dry sand and wet clay simulate different mechanical behaviour of rocks during seismic cycle. The dry sand, with its negligible cohesion and ductility, represents brittle rocks that deformed by localized faulting during earthquakes. Wet clay, with its slightly greater cohesion and ductility, mimics aseismic updip zone. Glass microbeads simulate aseismic plastic zone. Preliminary results are highlighting a mutual control among the three analogue materials

  7. Earthquakes in the Orozco transform zone: seismicity, source mechanisms, and tectonics

    USGS Publications Warehouse

    Trehu, Anne M.; Solomon, Sean C.

    1983-01-01

    As part of the Rivera Ocean Seismic Experiment, a network of ocean bottom seismometers and hydrophones was deployed in order to determine the seismic characteristics of the Orozco transform fault in the central eastern Pacific. We present hypocentral locations and source mechanisms for 70 earthquakes recorded by this network. All epicenters are within the transform region of the Orozco Fracture Zone and clearly delineate the active plate boundary. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough that forms the northern boundary of the transform zone (region 1). Most focal depths for these events are very shallow, within 4 km of the seafloor; several well-determined focal depths, however, are as great as 7 km. No shallowing of seismic activity is observed as the rise-transform intersection is approached; to the contrary, the deepest events are within 10 km of the intersection. First motion polarities for most of the earthquakes in region 1 are compatible with right-lateral strike slip faulting along a nearly vertical plane, striking parallel to the spreading direction. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity in this region is more scattered than in the first, and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. Pronounced lateral variations in crustal velocity structure are indicated for the transform region from refraction data and measurements of wave propagation directions. The effect of this lateral heterogeneity on hypocenters and fault plane solutions is evaluated by tracing rays through a three-dimensional velocity grid. While findings for events in region 1 are not significantly affected, in region 2, epicentral mislocations of up to 10 km and azimuthal deflections of up to 45° may result from

  8. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    NASA Astrophysics Data System (ADS)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    below sea level), the high velocities are sharply truncated to the south. However, at greater depths, the anomalously high velocities extend another 20 km into the submarine flank, distinguishing this feature as a once extensive rift zone. The presence of dense, coherent intrusive rock may have anchored Mauna Loa's southeastern flank, such that much of the volcano's recent deformation has occurred along the west flank of Mauna Loa. This massive rift zone may also impede the propagation of Kilauea's southwest rift zone, accounting for its lesser development relative to Kilauea's east rift zone. The velocity highs beneath Kilauea's submarine flank likely represent buried seamounts that might obstruct the seaward migration of volcano's south flank, causing the bench uplift at the toe of flank. These new observations lead us to propose that previously unrecognized intrusive complexes within Mauna Loa and Kilauea have significantly affected the past evolution of these volcanoes in the Island of Hawaii, and are likely responsible for the present patterns of deformation on these active volcanoes.

  9. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  10. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  11. Geomorphological features of active tectonics and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Pathak, Vivekanand; Pant, Charu C.; Darmwal, Gopal Singh

    2015-08-01

    The northeastern part of Kumaun Lesser Himalaya, Uttarakhand, India, lying between the rupture zones of 1905, Kangra and 1934, Bihar-Nepal earthquakes and known as `central seismic gap' is a segment of an active fault known to produce significant earthquakes and has not slipped in an unusually long time when compared to other segments. The studied section forms a part of this seismic gap and is seismically an active segment of the Himalayan arc, as compared to the remaining part of the Kumaun Lesser Himalaya and it is evident by active geomorphological features and seismicity data. The geomorphological features of various river valley transects suggest that the region had a history of tectonic rejuvenation which is testified by the deposition of various levels of terraces and their relative uplift, shifting and ponding of river channels, uplifted potholes, triangular facets on fault planes, fault scarps, etc. Further, the seismic data of five-station digital telemetered seismic network along with two stand alone systems show the distribution of earthquakes in or along the analyzed fault transects. It is observed that the microseismic earthquakes (magnitude 1.0-3.0) frequently occur in the region and hypocenters of these earthquakes are confined to shallow depths (10-20 km), with low stress drop values (1.0-10 bar) and higher peak ground velocity (PGV). The cluster of events is observed in the region, sandwiched between the Berinag Thrust (BT) in south and Main Central Thrust (MCT) in north. The occurrences of shallow focus earthquakes and the surface deformational features in the different river valley transect indicates that the region is undergoing neotectonic rejuvenation. In absence of chronology of the deposits it is difficult to relate it with extant seismicity, but from the geomorphic and seismic observations it may be concluded that the region is still tectonically active. The information would be very important in identifying the areas of hazard prone and

  12. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  13. Magma-tectonic interactions in Kīlauea's Southwest Rift Zone in 2006 through coupled geodetic/seismological analysis

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Roman, D. C.; Poland, M. P.

    2015-12-01

    For much of the first 20 years of Kīlauea's 1983-present Pu'u 'Ō'ō eruption, deformation was characterized by subsidence at the volcano's summit and along both the East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). At the end of 2003, however, Kīlauea's summit began a 4-year period of inflation due to a surge in magma supply to the volcano. In 2006, the SWRZ also experienced atypical inflation, which was last observed in 1981-82 during a series of dike intrusions. To investigate the active magma sources and their interactions with faulting in the SWRZ during 2006, we integrate contemporary geodetic data from InSAR and GPS with double-couple fault-plane solutions for volcano-tectonic earthquakes and Coulomb stress modeling. According to the rate of deformation measured in daily GPS data, two distinct periods can be defined, spanning January to 15 March 2006 (period 1) and 16 March to 30 September 2006 (period 2). Geodetic models suggest that, during period 1, deformation, due to pressurization of magma in a vertical prolate-spheroidal conduit, in the south caldera area. In addition, a major seismic swarm occurred in both the SWRZ and ERZ. Our preliminary results also suggest that, during period 2, magma was still overpressurizing the same prolate-spheroid but a subhorizontal sill also intruded further to the southwest in the seismic SWRZ (SSWRZ). The beginning of period 2 also corresponds to a switch from subsidence to inflation of the SWRZ. Faulting in the upper ERZ is primarily strike-slip, with no obvious change in FPS orientation between periods 1 and 2. In contrast, faulting in the upper SSWRZ occurs as dip-slip motion on near-vertical faults. SSWRZ FPS show a mix of orientations including NW- and NE-striking faults, which along with relative earthquake locations, suggest a series of right-stepping fault segments, particularly during period 2. Calculated Coulomb stress changes indicate that faulting in the upper SSWRZ may result from stresses produced by

  14. The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network

    NASA Astrophysics Data System (ADS)

    Protti, Marino; Gu¨ndel, Federico; McNally, Karen

    1994-07-01

    We present here a detailed geometry of the Wadati-Benioff zone under Costa Rica, obtained from seismicity recorded by a dense local seismographic network jointly operated by the Costa Rica Volcanological and Seismological Observatory, National University, and the Charles F. Richter Seismological Laboratory, University of California, Santa Cruz. Underneath the Nicaragua-Costa Rica border the Wadati-Benioff zone smoothly contorts (from steep to shallow dip angles, NW to SE), but does not show evidence of a brittle tear, as postulated by others. However, further to the SE, NE of Puerto Caldera, Costa Rica, the Wadati-Benioff zone does show a segmentation (the Quesada Sharp Contortion) at intermediate depths ( h > 70km). NW of this sharp contortion the deepest portion of the seismically active slab dips at about 80° and reaches maximum depths ranging from 200 km, near the Nicaragua-Costa Rica border, to 135 km under Ciudad Quesada. To the SE the deeper portion of the Wadati-Benioff zone dips at about 60° and the seismicity does not extend below depths ranging from 125 km, behind the volcanic arc, to 50 km, east of Quepos. In southern Costa Rica, east of 83°55'W, we find no evidence of the Wadati-Benioff zone deeper than 50 km. The obtained geometry and other known tectonic features related to the subduction of the Cocos plate under the Caribbean plate along the southern terminus of the Middle America Trench (Nicaragua and Costa Rica) correlate well with along-trench variations in age of the subducted Cocos plate. Some of these tectonic features are: (1) the shallowing of Middle America Trench bathymetry from NW to SE; (2) variations in the energy release within the subducted slab; (3) differences in coupling between Cocos and Caribbean plates; (4) the termination of the Central America Volcanic Chain in central Costa Rica; (5) distinct stress field variations on the overriding Caribbean plate. The subduction of the Cocos Ridge under southern Costa Rica is partially

  15. The Main Shear Zone in Sør Rondane, East Antarctica: Implications for the late-Pan-African tectonic evolution of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Ruppel, Antonia S.; Läufer, Andreas; Jacobs, Joachim; Elburg, Marlina; Krohne, Nicole; Damaske, Detlef; Lisker, Frank

    2015-06-01

    Structural investigations in western Sør Rondane, eastern Dronning Maud Land (DML), provide new insights into the tectonic evolution of East Antarctica. One of the main structural features is the approximately 120 km long and several hundred meters wide WSW-ENE trending Main Shear Zone (MSZ). It is characterized by dextral high-strain ductile deformation under peak amphibolite-facies conditions. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between late Ediacaran to Cambrian times (circa 560 to 530 Ma). The MSZ separates Pan-African greenschist- to granulite-facies metamorphic rocks with "East African" affinities in the north from a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite complex with "Indo-Antarctic" affinities in the south. It is interpreted to represent an important lithotectonic strike-slip boundary at a position close to the eastern margin of the East African-Antarctic Orogen (EAAO), which is assumed to be located farther south in the ice-covered region. Together with the possibly coeval left-lateral South Orvin Shear Zone in central DML, the MSZ may be related to NE directed lateral escape of the EAAO, whereas the Heimefront Shear Zone and South Kirwanveggen Shear Zone of western DML are part of the south directed branch of this bilateral system.

  16. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  17. Continental tectonics in the aftermath of plate tectonics

    NASA Technical Reports Server (NTRS)

    Molnar, Peter

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.

  18. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  19. Anisotropy in the subducted oceanic crust and the overlying continental crust explain the existence of a double tectonic tremor zone in the flat portion of the Mexican subduction zone.

    NASA Astrophysics Data System (ADS)

    Husker, A. L.; Castillo, J. A.; Perez-Campos, X.; Frank, W.; Kostoglodov, V.

    2015-12-01

    Tectonic tremor (TT) in Mexico has a complicated behavior due to the shape of the subducted plate. In the flat section the slab dives from the trench to a depth of 40 km at 150 km from the trench where it turns to be flat. It remains at 40 km depth till about 290 - 300 km from the trench where it continues to steeply dive into the mantle. All TT activity is within the flat slab section. An LFE catalog and the vertically averaged shear wave anisotropy observed from receiver functions at the slab interface are used to divide the region into 4 zones. (1) The Transient Zone located at the corner of the slab when it first arrives at 40 km depth (~130 km - 165 km from the trench) where the majority of LFE's are seen in small bursts that produce TT. (2) The Buffer Zone has almost no LFE and is located ~165 km - 190 km from the trench. (3) The sub-Sweet Spot is located ~190 - 204 km from the trench and seems to share many characteristics of the Sweet Spot, but has less than half the LFE activity observed in the Sweet Spot in addition to different anisotropy. (4) The Sweet Spot has the overwhelming majority of LFE and is located ~204 km - 245 km from the trench. No LFE is found from 245 km to 300 km from the trench despite the plate still being at 40 km depth. The anisotropy percentage in the continental crust drops significantly above the Transient Zone and Sweet Spot suggesting the crust acts as a seal in those two zones permitting trapped fluids to generate TT/LFE activity there as has been observed in other zones. The Buffer Zone coincides with a region of high fluid flow in the crust (Jodicke et al., 2005) suggesting that there is no seal in this zone allowing fluids to escape thereby limiting TT/LFE generation. The convergence of the zone would imply that the anisotropy preferred orientation at the plate interface should be perpendicular to the trench as much of it is. However, the fast azimuth direction rotates to be trench parallel in the region of the large SSE

  20. Role of structural inheritances and major transfer fault-zones in the tectonic history of the Alboran Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Comas, Menchu; Crespo-Blanc, Ana; Balanya, Juan Carlos

    2014-05-01

    reorganization (N-S shortening) of the basin, which encompass wrench tectonics, margin rotations, sub-basin inversions, bending of former extensional structures, and further shale-tectonics. The recent NW-SE and NE-SW trending conjugate wrench-fault system that bound the actual structural domains observed offshore locates over major transfer-faults zones from the Miocene extension. The rotated segments of basin-margins and concomitant structural bending, as well as changes in the tectonic regimen of the transfer-fault systems are expressive of the aftermath of superimposed extensional and compressional processes in the Alboran Basin. The spatial and temporary evolution of the tectonic deformation documented by geological and geophysical observables in the Alboran Sea basin provides new insights into the critical role of the tectonic heritage and major transfer fault-zones in the geodynamic history of the GAS. Acknowledgements: This study was supported by projects RNM-3713, RNM-215, CTM2009-07715 and CGL2009-11384 (MINECO, JA, and FEDER founds, Spain).

  1. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  2. Active tectonic characteristics of river terraces along the Tianquan River, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Cai, Y. M.; Shyu, J. B. H.; Chang, C. P.

    2015-12-01

    The Longmenshan fold-and-thrust belt at the western edge of the Sichuan Basin has long been identified as an active tectonic belt. This has been clearly illustrated by the disastrous Wenchuan and Lushan earthquakes in the recent decade. The two earthquakes, however, have distinctive characters. In the north, the Wenchuan event occurred on major fault zones identified previously. But in the south, the Lushan event was not accompanied by surface ruptures, and the seismogenic structure is still under debate. In order to further understand the neotectonic characteristics of the Lushan earthquake region, we analyzed fluvial terraces, in the hope that such geomorphic features would provide information of active structures of the area. Along the Tianquan River, river terraces are particularly well developed near two cities, Tianquan and Shiyang. Since the terraces appear to be very wide and limited in these two basin-like areas, we suspected that they formed as filled-up lakes. However, after detailed field investigations, we found that underneath these terraces, early Tertiary bedrocks crop out below river sediments that are only several meters thick. This indicates that the Tianquan River has incised into bedrocks. The slope of the terrace surfaces is similar to that of the present-day riverbed, and the river sediments in the terrace outcrops have similar grain size distribution as current riverbed sediments. Therefore, we suggest that the terraces along the Tianquan River are not related to dammed lake, but were produced by tectonic uplift. Combining the age of terrace sediments dated by optically stimulated luminescence (OSL) and detailed topography of the terrace surfaces, we aim to establish a model for the formation mechanism of these two terrace groups. We hope the results of this study would provide more information of neotectonic characteristics of the southwestern Sichuan Basin, as well as future earthquake hazards in this densely populated region.

  3. Relative tectonic activity assessment along the East Anatolian strike-slip fault, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Khalifa, Abdelrahman

    2016-04-01

    The East Anatolian transform fault is a morphologically distinct and seismically active left-lateral strike-slip fault that extends for ~ 500 km from Karlıova to the Maraş defining the boundary between the Anatolian Block and Syrian Foreland. Deformed landforms along the East Anatolian fault provide important insights into the nature of landscape development within an intra-continental strike-slip fault system. Geomorphic analysis of the East Anatolian fault using geomorphic indices including mountain front sinuosity, stream length-gradient index, drainage density, hypsometric integral, and the valley-width to valley height ratio helped differentiate the faulting into segments of differing degrees of the tectonic and geomorphic activity. Watershed maps for the East Anatolian fault showing the relative relief, incision, and maturity of basins along the fault zone help define segments of the higher seismic risk and help evaluate the regional seismic hazard. The results of the geomorphic indices show a high degree of activity, reveal each segment along the fault is active and represent a higher seismic hazard along the entire fault.

  4. Hydrous lithosphere and diffuse crustal accretion and tectonics in the southern Mariana margin: a possible analog for subduction zone infancy and ophiolites

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Fryer, P. B.; Sleeper, J. D.; Stern, R. J.; Kelley, K. A.; Ohara, Y.; Ribeiro, J. M.

    2014-12-01

    The mode of extension and crustal accretion may vary significantly during subduction margin evolution. Mantle water content likely has a strongly influence on this evolution as it strongly affects the mantle solidus and rheology. Effects of mantle hydration on volcanism and tectonics were examined in the southern Mariana margin in 2012 on a R/V Thompson cruise. The southern Mariana margin is actively rifting sub-parallel to the trench forming new crust and lithosphere directly above the de-watering slab (see Ribeiro et al. session T011). Shallow seismicity shows broadly distributed active deformation in the upper plate. Shallow-towed and near-bottom sidescan sonar data map a highly faulted terrain with rotated crustal blocks and distributed volcanic emplacements. The near-bottom sidescan sonar data also image an apparent corrugated core complex structure, the first such described from a convergent margin setting, indicating low-angle normal faulting during the extension. Water content in sampled volcanics is ~2 %, approaching that of the volcanic arc itself. Volcanic rocks from the eastern margin are mostly ~2-4 m.y. old, but younger basaltic volcaniclastics were recovered farther west suggesting that active volcanism may continue. We hypothesize that the broadly distributed volcanism and tectonic activity is due to high mantle water content that weakens the margin lithosphere. Continual water addition from the subducting slab inhibits melting-related dehydration and strengthening as has been proposed for lithosphere formed at mid-ocean ridges. A consequence of a broadening zone of rifting is that extension-related mantle upwelling rates will decrease with time. Surface cooling will thus progressively depress the mantle solidus, perhaps explaining the paucity of current observed volcanism at the margin. The volcano-tectonic processes active today in the southern Mariana margin may be modern analogs of those inferred at subduction zone infancy where broadly

  5. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  6. Geology of the Eel River basin and adjacent region: Implications for late Cenozoic tectonics of the southern Cascadia subduction zone and Mendocino triple junction

    SciTech Connect

    Clarke, S.H. Jr. )

    1992-02-01

    Two upper Cenozoic depositional sequences of principally marine strata about 4,000 m thick overlie accreted basement terranes of the Central and Coastal belts of the Franciscan Complex in the onshore-offshore Eel River basin of northwestern California. The older depositional sequence is early to middle Miocene in age and represents slope basin and slope-blanket deposition, whereas the younger sequence, later Miocene to middle Pleistocene in age, consists largely of forearc basin deposits. Youthful tectonic activity related to Gorda-North American plate convergence indicates an active Cascadia subduction zone and strong partial coupling between these plates. Structures of the northeastern margin of the Eel River basin are principally north-northwest-trending, east-northeast-dipping thrust and reverse faults that form imbricate thrust fans. The Coastal belt fault, the early Tertiary accretionary suture between the Franciscan Central and Coastal belts, can be traced from Arcata Bay northward offshore to the southern Oregon border. It is tentatively extended farther northward based on aeromagnetic data to an offshore position west of Cape Blanco. Thereafter, it may coincide with the offshore Fulmar fault. The Cascadia subduction zone (CSZ) does not join the Mendocino transform fault at the commonly depicted offshore location of the Mendocino triple junction (MTJ). Instead, the CSZ extends southeastward around the southern Eel River basin and shoreward along Mendocino Canyon to join the Petrolia shear zone. Similarly, the Mendocino fault may extend shoreward via Mattole Canyon and join the Cooskie shear zone. These two shear zones intersect onshore north of the King Range, and the area of their intersection is the probable location of the MTJ.

  7. Rheological control on the tectonic evolution of a continental suture zone: the Variscan example from NW Iberia (Spain)

    NASA Astrophysics Data System (ADS)

    Díez Fernández, Rubén; Foster, David A.; Gómez Barreiro, Juan; Alonso-García, Montserrat

    2013-07-01

    The Variscan continental suture zone exposed in NW Iberia is examined to uncover the long-lived rheological control exerted by the strata deposited over the external parts of Gondwana on its geodynamic evolution. The suture occurs within a set of allochthonous terranes whose limits were taken as domain boundaries to interpret the Variscan stacking of Paleozoic continental domains and retrodeform the resulting nappe pile. The suture zone formed due to closure of ocean basins located between Gondwana and Laurussia during the Late Paleozoic and consists of relics of oceanic and transitional crust. The suture zone exhibits a tabular to lens shape due to repeated tectonic events dominated by non-coaxial deformation (thrusts and low-angle normal faults). Thrusting and normal faulting also involved the margins of the continents bounding the suture. The structure of the continental blocks, however, is dominated by folds, particularly large nappe folds with pronounced superimposed flattening. The upper part of the basal allochthonous units comprises a rheologically incompetent domain below the suture zone. This domain is typified by the carbonaceous-rich strata, which are probably Ordovician-Silurian sediments based on U-Pb detrital zircon populations. The rheology of this layer determined the location of the first accretionary thrust that initiated the Late Devonian subduction of the Gondwana margin below the suture zone. By favoring fault development, the upper sequence of the basal allochthonous units as a whole influenced the exhumation of deep-seated continental crust, the transference of the suture zone over Gondwana, and the re-equilibration of the resulting overthickened crust.

  8. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir

    NASA Astrophysics Data System (ADS)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.

    2012-12-01

    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  9. Coastline uplift in Oregon and Washington and the nature of Cascadia subduction-zone tectonics

    SciTech Connect

    West, D.O.; McCrumb, D.R.

    1988-02-01

    Coastline deformation resulting from great shallow thrust earthquakes can provide information concerning the paleoseismicity of a subduction zone and thus information on the nature of potential seismicity. The Cascadia subduction zone is different from most other subduction zones in that it has been quiescent with respect to great earthquakes for at least the past 200 yr. The Washington-Oregon coastline also differs from most other coastlines associated with subduction zones in its lack of uplifted Holocene shoreline features and low overall rate of late Quaternary uplift (0.2-0.6 mm/yr). The uplift differences suggest that repeated great earthquakes have not occurred along the Cascadia subduction zone at least during the late Holocene. Alternatively, if the plate interface has generated earthquakes, the differences may be explained by longer recurrence intervals for great earthquakes, smaller magnitude earthquakes, or a mechanism that does not result in uplift of the coastline where expected.

  10. Rapid Kinematic and Tectonic Variations Along the 1400-km-long Australia-Woodlark Plate Boundary Zone, Papua New Guinea and Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Mann, P.; Taylor, F. W.; Gahagan, L.; Watson, L.

    2004-12-01

    Previous GPS studies have shown the wide variability in present-day plate motions across the highly arcuate, 1400-km-long Australia-Woodlark plate boundary extending from Papua New Guinea to the Solomon Islands. GPS-determined motions range from orthogonal oceanic spreading in the Woodlark basin, to continental transtension in the 2.5-km-high core complex area of easternmost Papua New Guinea, to continental strike-slip and transpression in 4-km-high mountains of the Papuan Peninsula. We use imagery, earthquake focal mechanisms, coral reef uplift data, and structural mapping studies to establish the along-strike continuity of the active plate boundary fault. Systematic angular changes in the direction of the plate vector along this continuous fault explain its varied tectonic geomorphology, Holocene uplift history, and geologic structure. We use a series of plate reconstructions to illustrate the longer term, Cenozoic evolution of this boundary including: its formation as an arcuate, N- and NE-dipping ophiolitic suture zone during Paleogene time, the progressive "unzippering" of this thrust over the past 6 Ma along a N- and NE-dipping, low-angle normal fault in easternmost Papua New Guinea, and its "zippering" or continued shortening on the suture thrust in the Owen Stanley Ranges of the Papuan Peninsula. Over the 1400-km-length of the fault, the length of segments of oceanic spreading, transtension, and transpression is 250-500 km; the time period separating one tectonic style from the succeeding style encroaching from the east is several million years. This systematic spatial and temporal superposition of tectonic styles, leads to complex - but predictable - along-strike variations in geologic history.

  11. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic.

    NASA Astrophysics Data System (ADS)

    Døssing, Arne; Japsen, Peter; Watts, Anthony; Nielsen, Tove; Jokat, Wilfried; Thybo, Hans

    2016-04-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone - East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of syn-rift deposition in the deep-sea basins and onset of: (i) thermo-mechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf-progradation on the NE Greenland margin. Given an estimated middle-to-late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the East and West Greenland margins. The correlation between margin uplift and plate-motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.

  12. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Døssing, Arne; Japsen, Peter; Watts, Anthony B.; Nielsen, Tove; Jokat, Wilfried; Thybo, Hans; Dahl-Jensen, Trine

    2016-02-01

    Tectonic models predict that following breakup, rift margins undergo only decaying thermal subsidence during their postrift evolution. However, postbreakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone-East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of synrift deposition in the deep-sea basins and onset of (i) thermomechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermomechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf progradation on the NE Greenland margin. Given an estimated middle to late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the east and west Greenland margins. The correlation between margin uplift and plate motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intraplate stresses related to global tectonics.

  13. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology

    NASA Astrophysics Data System (ADS)

    Kakar, Mohammad Ishaq; Kerr, Andrew C.; Mahmood, Khalid; Collins, Alan S.; Khan, Mehrab; McDonald, Iain

    2014-08-01

    The geology of the Muslim Bagh area comprises the Indian passive continental margin and suture zone, which is overlain by the Muslim Bagh Ophiolite, Bagh Complex and a Flysch Zone of marine-fluvial successions. The Muslim Bagh Ophiolite has a nearly-complete ophiolite stratigraphy. The mantle sequence of foliated peridotite is mainly harzburgite with minor dunite and contains podiform chromite deposits that grade upwards into transition zone dunite. The mantle rocks (harzburgite/dunite) resulted from large degrees of partial melting of lherzolite and have also been affected by melt-peridotite reaction. The Muslim Bagh crustal section has a cyclic succession of ultramafic-mafic cumulate with dunite at the base, that grades into wehrlite/pyroxenite with gabbros (olivine gabbro, norite and hornblende gabbro) at the top. The sheeted dykes are immature in nature and are rooted in crustal gabbros. The dykes are mainly metamorphosed dolerites, with minor intrusions of plagiogranites. The configuration of the crustal section indicates that the crustal rocks were formed over variable time periods, in pulses, by a low magma supply rate. The whole rock geochemistry of the gabbros, sheeted dykes and the mafic dyke swarm suggests that they formed in a supra-subduction zone tectonic setting in Neo-Tethys during the Late Cretaceous. The dykes of the mafic swarm crosscut both the ophiolite and the metamorphic sole rocks and have a less-marked subduction signature than the other mafic rocks. These dykes were possibly emplaced off-axis and can be interpreted to have been generated in the spinel peridotite stability zone i.e., < 50-60 km, and to have risen through a slab window. The Bagh Complex is an assemblage of Triassic-Cretaceous igneous and sedimentary rocks, containing tholeiitic, N-MORB-like basalts and alkali basalts with OIB-type signatures. Nb-Ta depletion in both basalt types suggests possible contamination from continental fragments incorporated into the opening Tethyan

  14. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  15. Tectonic Evolution of the Northern Venezuela Margin and the Onset of the Lesser Antilles Subduction Zone

    NASA Astrophysics Data System (ADS)

    Zitter, T.; Rangin, C.

    2013-05-01

    The Lesser Antilles active island arc marks the eastern boundary of the Caribbean plate, where the Atlantic oceanic crust is subducted. Geodynamic history of the Grenada and Tobago basins, accepted as both the back arc and fore arc basins respectively for this convergent zone, is the key for a better understanding of the Antilles arc subduction onset. Still, recent studies propose that these two basins formed as a single paleogene depocenter. Analysis of industrial and academical seismic profiling supports this hypothesis, and shows these basins are two half-graben filled by 15 kilometers of cenozoic sediments. The seismic profiles across these basins, and particularly the Geodinos Bolivar seismic profiles, indicate that the Antilles magmatic arc develops in the midst of the previously-extended Grenada-Tobago basin from Miocene time to present. The pre-cenozoic basement of the Grenada-Tobago basin can be traced from the Aves ridge to the Tobago Island where cretaceous meta-volcanic rocks are cropping out. Therefore, this large basin extension has been initiated in early Paleocene time during stretching or subsidence of the great cretaceous Caribbean arc and long time before the onset of the lesser Antilles volcanic arc. The question arises for the mechanism responsible of this intra-plate extension. The Tobago Ridge consists of the backstop of the Barbados prism. The innermost wedge is particularly well imaged on seismic data along the Darien Ridge, where the isopach paleogene sediments are jointly deformed in latest Oligocene. This deformation is starved with the early miocene piggy-back basin. Hence, we conclude the innermost wedge in contact with the butresss is late Oligocene in age and can be considered as the onset of the subduction along the Antilles arc. These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  16. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio

  17. Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Song, Guangzeng; Wang, Hua; Huang, Chuanyan; Zhang, Lidong; Tang, Jianrong

    2016-09-01

    The geology in the Wuliji area (including the Enger Us and Quagan Qulu areas) is important for understanding the Late Paleozoic tectonics of the Solonker Zone. Ultramafic/mafic rocks in the Enger Us area, previously interpreted as an ophiolitic suture, are actually lava flows and sills in a Permian turbiditic sequence and a small body of fault breccia containing serpentinite. Subduction zone features, such as accretionary complexes, magmatic arc volcanics or LP/HP metamorphism are absent. Early Permian N-MORB mafic rocks and Late Permian radiolarian cherts accompanied by turbidites and tuffeous rocks indicate a deep water setting. In the Quagan Qulu area, outcrops of the Late Carboniferous to Permian Amushan Formation are composed of volcano-sedimenary rocks and guyot-like reef limestone along with a Late Permian volcano-sedimentary unit. A dacite lava in the Late Permian volcano-sedimentary unit yields a zircon U-Pb age of 254 Ma. The gabbros in the Quagan Qulu area are intruded into the Amushan Formation and caused contact metamorphism of country rocks. Sandstones in the Upper Member of the Amushan Formation contain detrital clasts of volcanic fragments and mineral clasts of crystalline basement rocks (i.e. biotite, muscovite and garnet). Geochemical analysis of volcaniclastic sandstones shows a magmatic affinity to both continental island arc (CIA) and active continental margin (ACM) tectonic settings. A Late Permian incipient rift setting is suggested by analyzing the lithostratigraphic sequence and related magmatism in the Wuliji area. The volcano-sedimentary rocks in the Wuliji area experienced a nearly N-S shortening that was probably related to the Early Mesozoic nearly N-S compression well developed in other areas close to the Wuliji area.

  18. The Grenville Front Tectonic Zone: Results from the 1986 Great Lakes Onshore Seismic Wide-Angle Reflection and Refraction Experiment

    NASA Astrophysics Data System (ADS)

    Epili, Duryodhan; Mereu, Robert F.

    1991-09-01

    The Grenville Front, which marks the orogenic boundary between the Archean Superior Structural Province and the much younger Grenville Province to the southeast, is one of the major tectonic features of the Canadian Shield. Within Canada, it is approximately 1900 km in length extending from the north shore of Lake Huron across Ontario and Quebec to Labrador. In 1986, a major coincident onship near-vertical reflection and onshore wide-angle reflection/refraction experiment (GLIMPCE-Great Lakes International Multidisciplinary Program on Crustal Evolution) was conducted along a series of lines across the Great lakes. One of the lines, line J, ran across Georgian Bay and Lake Huron for a distance of 350 km and crossed the Grenville Front Tectonic Zone (GFTZ). The seismic signals from the air gun array source were well recorded by the onshore stations up to distances of 250 km with a seismic trace spacing of 50-62.5 m. The GFTZ had a profound effect on the nature of the reflector patterns observed on the onshore seismic sections. Data recorded by the stations on the east end of the line indicate that the crustal P phases are very complex and form a "shinglelike" pattern of reflected waves. Data recorded by stations at the center and at the western end of the line show that the Pg phases are normal and lack the shinglelike appearance. This character of arrivals was also observed on the corresponding S wave sections. A combined P and S wave forward modeling analysis shows that the GFTZ is composed of bands of reflectors dipping at angles of 20°-35° extending to the lower crust. These reflectors were also well imaged on the coincident near-vertical reflection data. Reflectors under the Britt domain to the east of the GFTZ have a shallower dip than those along the zone. The structure of the crust under the Manitoulin terrane to the west of the GFTZ is laterally homogeneous with a major intracrustal reflector at a depth of 17-20 km below the surface. Poisson's ratio is

  19. Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates

    NASA Astrophysics Data System (ADS)

    Ikari, Matt J.; Ito, Yoshihiro; Ujiie, Kohtaro; Kopf, Achim J.

    2015-11-01

    During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor. This part of the subduction zone also hosts slow slip events (SSE). The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr-1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr-1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation.

  20. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413

  1. Tectonic Geomorphology in the Laboratory: Evolution of landscape along an active thrust, normal and strike-slip fault

    NASA Astrophysics Data System (ADS)

    Graveleau, Fabien; Strak, Vincent; Dominguez, Stéphane; Malavieille, Jacques; Chatton, Marina; Manighetti, Isabelle; Petit, Carole

    2015-04-01

    Tectonically controlled landforms develop morphologic features that provide useful markers to investigate crustal deformation and relief growth dynamics. We present here results of morphotectonic experiments obtained with an innovative approach combining tectonic and surface processes (erosion, transport and sedimentation), coupled with accurate model monitoring techniques. This approach allows for a qualitative and quantitative analysis of landscape evolution in response to active deformation in the three end-member geological settings: compression, extension and strike-slip. Experimental results outline first that experimental morphologies evolve significantly at a short timescale. Numerous morphologic markers form continuously, but their lifetime is generally short because erosion and sedimentation processes tend to destroy or bury them. For the compressional setting, the formation of terraces above an active thrust appears mainly controlled by narrowing and incision of the main channel through the uplifting hanging-wall and by avulsion of deposits on fan-like bodies. Terrace formation is irregular even under steady tectonic rates and erosional conditions. Terrace deformation analysis allows retrieving the growth history of the structure and the fault slip rate evolution. For the extensional setting, the dynamics of hanging-wall sedimentary filling appears to control the position of the base level, which in turn controls footwall erosion. Two phases of relief evolution can be evidenced: the first is a phase of relief growth and the second is a phase of upstream propagation of topographic equilibrium that is reached first in the sedimentary basin. During the phase of relief growth, the formation of triangular facets occurs by degradation of the fault scarp and their geometry (height) becomes stationary during the phase of upstream propagation of the topographic equilibrium. For the strike-slip setting, the complex morphology of the wrench zone, composed of

  2. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  3. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    plate (Sardinia, Corsica, Balearic Islands, Kabylies, Calabria, Peloritani Mountains). The bulk of igneous activity in the central-western Mediterranean is believed to have tapped mantle 'wedge' regions, metasomatized by pressure-related dehydration of the subducting slabs. The presence of subduction-related igneous rocks with a wide range of chemical composition has been related to the interplay of several factors among which the pre-metasomatic composition of the mantle wedges (i.e., fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO 2 and H 2O in the fluid phase released by the subducting plates are the most important. Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) centrifugal wave of both compressive and extensional tectonics starting from a 'pivotal' region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction 'inversion' events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subduction-related magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related 'exotic' (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the

  4. Tectonic stress accumulation in Bohai-Zhangjiakou Seismotectonic Zone based on 3D visco-elastic modelling

    NASA Astrophysics Data System (ADS)

    Wei, Ju; Weifeng, Sun; Xiaojing, Ma; Hui, Jiang

    2016-07-01

    Future earthquake potential in the Bohai-Zhangjiakou Seismotectonic Zone (BZSZ) in North China deserves close attention. Tectonic stress accumulation state is an important indicator for earthquakes; therefore, this study aims to analyse the stress accumulation state in the BZSZ via three-dimensional visco-elastic numerical modelling. The results reveal that the maximum shear stress in the BZSZ increases gradually as the depth increases, and the stress range is wider in the lower layer. In the upper layer, the maximum shear stress is high in the Zhangjiakou area, whereas in the lower layer, relatively high values occur in the Penglai-Yantai area, which may be affected by the depth of the Moho surface. Besides, weak fault zones will be easily fractured when the maximum shear stress is not sufficiently high due to their low strengths, resulting in earthquakes. Therefore, based on the modelling results, the upper layer of the Zhangjiakou area and the lower layer of the Penglai-Yantai area in the BZSZ in North China are more likely to experience earthquakes.

  5. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  6. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities

    SciTech Connect

    Robert McCaffrey; Robert W. King; Suzette J. Payne; Matthew Lancaster

    2013-02-01

    Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strong pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.

  7. Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Schlindwein, V.; Schenke, H.-W.; Jokat, W.

    2011-03-01

    With its remote location in the ice-covered Fram Strait, Lena Trough is a poorly known segment of the global mid-ocean ridge system. It is a prominent member of the ultra-slow spreading mid-ocean ridges but its spreading mechanisms are not well understood. We relocalized teleseismically recorded earthquakes from the past five decades to identify tectonic processes in Lena Trough and the adjacent Spitsbergen Fracture Zone (FZ). During two cruises with RV Polarstern in 2008 and 2009 we deployed seismic arrays on ice floes to record the local seismicity of Lena Trough. We could identify and localize microseismic events which we assume to be present in the entire rift valley. In contrast, our relocalization of teleseismically recorded earthquakes shows an asymmetric epicentre distribution along Lena Trough with earthquakes occurring predominately along the western valley flanks of Lena Trough. In 2009 February/March, several high-magnitude earthquakes peaking in an Mb 6.6 event occurred in an outside-corner setting of the Spitsbergen FZ. This is the strongest earthquake which has ever been recorded in Fram Strait and its location at the outside-corner high of the ultra-slow spreading ridge is exceptional. Comparing the seismicity with the magnetic anomalies and high-resolution multibeam bathymetry, we divide Lena Trough in a symmetrically spreading northern part and an asymmetrically spreading southern part south of the South Lena FZ. We propose that a complex interaction between the former De Geer Megashear zone, which separated Greenland from Svalbard starting at Late Mesozoic/Early Cenozoic times, and the developing rift in the southern Lena Trough resulted an increasing eastward dislocation towards the Spitsbergen FZ between older spreading axes and the recent active spreading axis which we believe to be located west of the bathymetric rift valley flanks in a wide extensional plain.

  8. Pore pressure sensitivities to dynamic strains: Observations in active tectonic regions

    NASA Astrophysics Data System (ADS)

    Barbour, Andrew J.

    2015-08-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydromechanical properties, but accurately assessing how pore fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 to 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas Fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends nonlinearly on the inverse fault-perpendicular distance, with the response decreasing toward the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto Fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the

  9. Tectonic controls on fault-zone permeability in a geothermal reservoir at Dixie Valley, Nevada

    USGS Publications Warehouse

    Hickman, Stephen; Zoback, Mark; Benoit, Richard

    1998-01-01

    To determine factors controlling permeability variations within and adjacent to a fault-hosted geothermal reservoir at Dixie Valley, Nevada, we conducted borehole televiewer observations of wellbore failure (breakouts and cooling cracks) together with hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2 to 3 km. Measurements in highly permeable wells penetrating the main geothermal reservoir indicate that the local orientation of the least horizontal principal stress, Shmin, is nearly optimal for normal faulting on the Stillwater fault. Hydraulic fracturing tests from these wells further show that the magnitude of Shmin is low enough to lead to frictional failure on the Stillwater and nearby subparallel faults, suggesting that fault slip is responsible for the high reservoir productivity. Similar measurements were conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone, located approx. 8 and 20 km southwest of the geothermal reservoir (wells 66-21 and 45-14, respectively). The orientation of Shmin in well 66-21 is near optimal for normal faulting on the nearby Stillwater fault, but the magnitude of Shmin is too high to result in incipient frictional failure. In contrast, although the magnitude of Shmin in well 45-14 is low enough to lead to normal faulting on optimally oriented faults, the orientation of the Stillwater fault near this well is rotated by approx. 40?? from the optimal orientation for normal faulting. This misorientation, coupled with an apparent increase in the magnitude of the greatest horizontal principal stress in going from the producing to nonproducing wells, acts to inhibit frictional failure on the Stillwater fault zone in proximity to well 45-14. Taken together, data from the nonproducing and producing wells thus suggest that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for

  10. Isotopic ages from the Nelson region of South Island New Zealand: crustal structure and definition of the Median Tectonic Zone

    NASA Astrophysics Data System (ADS)

    Kimbrough, D. L.; Tulloch, A. J.; Geary, E.; Coombs, D. S.; Landis, C. A.

    1993-10-01

    Plutonic rocks in the Rotoroa Complex and Drumduan Terrane of South Island, New Zealand yield zircon U/Pb dates of 156 and 142 Ma, respectively, that are interpreted as crystallization ages. Hornblende and biotite 40Ar/ 39Ar dates of 140-130 Ma from the Rotoroa represent either emplacement ages, cooling ages or a metamorphic resetting event. These two units crop out between the Brook Street Terrane and the Separation Point Batholith and lack any clear affinity with tectonostratigraphic terranes of the New Zealand Western or Eastern provinces. The Rotoroa Complex and Drumduan Terrane are interpreted as part of a series of dismembered Mesozoic volcanic-plutonic arc complexes that are sandwiched between terranes of the Western and Eastern provinces, occupying a structural position here referred to as the Median Tectonic Zone (MTZ). Correlative units in Fiordland on the opposite side of the Alpine Fault include the Mackay Intrusives, Darran Complex, Largs Terrane, Lochburn Formation and the Halfway Peak Gabbro. Farther south on Stewart Island the Anglern Complex and Paterson Group are part of the same structural belt. The MTZ is an extension of the original concept of the Median Tectonic Line put forth by Landis and Coombs (1967). Dismemberment and juxtaposition of arc magmatic assemblages in the MTZ with Western and Eastern Province terranes is related to large-scale transcurrent faulting in the Early Cretaceous. Its essential features as a regional tectonostratigraphic terrane were established by ~ 117 Ma as indicated by stitching of the Rotoroa Complex to the Takaka Terrane (Western Province) by the Separation Point Batholith (117-114 Ma). The Echinus Granite yields a 310 Ma U/Pb zircon crystallization age that suggests the granite and associated gneisses are part of the Western Province which may constrain the position of the western margin of the MTZ near Nelson City.

  11. Supra-subduction zone extensional magmatism in Vermont and adjacent Quebec: Implications for early Paleozoic Appalachian tectonics

    USGS Publications Warehouse

    Kim, J.; Coish, R.; Evans, M.; Dick, G.

    2003-01-01

    Metadiabasic intrusions of the Mount Norris Intrusive Suite occur in fault-bounded lithotectonic packages containing Stowe, Moretown, and Cram Hill Formation lithologies in the northern Vermont Rowe-Hawley belt, a proposed Ordovician arc-trench gap above an east-dipping subduction zone. Rocks of the Mount Norris Intrusive Suite are characteristically massive and weakly foliated, have chilled margins, contain xenoliths, and have sharp contacts that both crosscut and are parallel to early structural fabrics in the host metasedimentary rocks. Although the mineral assemblage of the Mount Norris Intrusive Suite is albite + actinolite + epidote + chlorite + calcite + quartz, intergrowths of albite + actinolite are probably pseudomorphs after plagioclase + clinopyroxene. The metadiabases are subalkaline, tholeiitic, hypabyssal basalts with preserved ophitic texture. A backarc-basin tectonic setting for the intrusive suite is suggested by its LREE (light rare earth element) enrichment, negative Nb-Ta anomalies, and Ta/Yb vs. Th/Yb trends. Although no direct isotopic age data are available, the intrusions are broadly Ordovician because their contacts are clearly folded by the earliest Acadian (Silurian-Devonian) folds. Field evidence and geochemical data suggest compelling along-strike correlations with the Coburn Hill Volcanics of northern Vermont and the Bolton Igneous Group of southern Quebec. Isotopic and stratigraphic age constraints for the Bolton Igneous Group bracket these backarc magmas to the 477-458 Ma interval. A tectonic model that begins with east-dipping subduction and progresses to outboard west-dipping subduction after a syncollisional polarity reversal best explains the intrusion of deformed metamorphosed metasedimentary rocks by backarc magmas.

  12. Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction

    NASA Astrophysics Data System (ADS)

    Safonova, Inna; Maruyama, Shigenori; Litasov, Konstantin

    2015-11-01

    This paper presents a model for the generation of hydrous-carbonated plumes (HCPs) in the mantle transition zone (MTZ) linking (i) the Pacific-type convergent margins; (ii) melt generation in the MTZ under the influence of volatiles (water, carbon dioxide) and subducted granitic material and oceanic slabs and (iii) the Meso-Cenozoic intra-plate magmatism in Central Asia. The model is based on four groups of evidences obtained from geology, petrology, seismic tomography and numerical simulations. The double-sided subduction at the Pacific-type margins around post-Miocene Asia supplies hydrated-carbonated oceanic crust and continental crust materials down to the deep mantle, which accumulate in the MTZ at 410-660 km. The delivery of crustal material to the MTZ is provided by the direct subduction of intra-oceanic arcs in the Western Pacific and by the tectonic erosion of convergent margin hanging walls. The U-Th-K-enriched continental material accumulated in the MTZ can serve an additional source of heat. Evidence for the subduction of continental crust materials comes from seismic tomography and numerical modelling data. The subducting oceanic slab consisting of serpentinites, hydrated sediments, carbonates and carbonatized basalts can supply water and carbon dioxide to the deep mantle and metasomatize it. The presence of volatiles, which can reduce melting temperature, and the presence of the subducted crustal material, which may serve an additional heater, can synergistically trigger the generation of HCPs. Those HCPs can induce mantle upwelling, melting of the metasomatized mantle and subducted MORB slabs, ascent of melts, surface rifting and formation of mafic and bimodal volcanic series. In addition, they can contribute to the supercontinent cycle. The HCPs generated in the MTZ beneath Central and East Asia resulted in a shift of the tectonic regime from transpression to transtension and in the formation of numerous Meso-Cenozoic intra-plate volcanic fields.

  13. Active tectonics of the Ganzi-Yushu fault in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Feng; He, Honglin; Densmore, Alexander L.; Li, An; Yang, Xiaoping; Xu, Xiwei

    2016-04-01

    The ongoing convergence between India and Eurasia apparently is accommodated not merely by crustal shortening in Tibet, instead also by motions along strike slip faults which are usually boundaries between tectonic blocks, especially in the Tibetan Plateau. Quantification of this strike slip faulting is fundamental for understanding the collision between India and Eurasia. Here, we use a variety of geomorphic observations to place constraints on the late Quaternary kinematics and slip rates of the Ganzi-Yushu fault, one of the significant strike-slip faults in eastern Tibet. The Ganzi-Yushu fault is an active, dominantly left-lateral strike-slip structure that can be traced continuously for up to 500 km along the northern boundary of the clockwise-rotating southeastern block of the Tibetan Plateau. We analyse geomorphic evidence for deformation, and calculate the late Quaternary slip rates at four sites along the eastern portion of the fault trace. The latest Quaternary apparent throw rates are variable along strike but are typically ~ 1 mm/a. Rates of strike-slip displacement are likely to be an order of magnitude higher, 8-11 mm/a. Trenching at two locations suggests that the active fault behaviour is dominated by strike-slip faulting and reveals several earthquake events with refined information of timing. The 2010 Mw 6.9 Yushu earthquake, which occurred on the northwestern segment of the Ganzi-Yushu fault zone, provides additional evidence for fault activity. These observations agree with GPS-derived estimates, and show that late Quaternary slip rates on the Ganzi-Yushu fault are comparable to those on other major active strike-slip faults in the eastern Tibetan Plateau.

  14. Late Carboniferous-early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, A.; Oberc-Dziedzic, T.; Fanning, C. M.; Protas, A.; Muszyński, A.

    2016-04-01

    The Trans-European Suture Zone (TESZ) links the East and West European Platforms. It is concealed under Meso-Cenozoic cover. Available seismic data show that the lower crustal layer in the TESZ is an attenuated, ~ 200 km wide, SW margin of Baltica. The attenuation occurred when Rodinia broke-up, which gave rise to evolution of the thinned, thus relatively unstable margin of Baltica. It accommodated accretions during Phanerozoic events. We focus on acid magmatism, specifically granitoid, observed close to the SW border of the TESZ in Poland. This border is defined by the Dolsk Fault Zone (DFZ) and the Kraków-Lubliniec Fault Zone (KLFZ) on which dextral wrenching developed as a result of the Variscan collision between Laurussia and Gondwana. The granitoids at the DFZ and KLFZ were dated at ~ 300 Ma. In the Variscan foreland that overlaps the TESZ, orogenic thickening continued to ~ 307-306 Ma, possibly contributed to melting of the thickened upper continental crust (εNd300 = - 6.0 to - 4.5) and triggered the tectonically controlled magmatism. The wrenching on the TESZ border faults caused tensional openings in the basement, which promoted magmatic centers with extrusions of rhyolites and extensive ignimbrites. The Chrzypsko-Paproć and Małopolska magmatic centers were developed at the DFZ and KLFZ, respectively. The magmatic edifices commenced at ~ 302 Ma with relatively poorly evolved granites, which carried both suprasubduction and anorogenic signatures, then followed by more evolved volcanic rocks (up to 293 Ma). Their geochemistry and inherited zircons suggest that the felsic magmas were mainly derived from upper crustal rocks, with some mantle additions, which included Sveconorwegian and older Baltican components. The complex TESZ, with Baltica basement in the lower crust, was susceptible to transient effects of mantle upwelling that occurred by the end of the Variscan orogeny and resulted in an episode of the "flare-up" magmatism in the North German

  15. Tectonic earthquakes of anthropogenic origin

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    2016-03-01

    The enhancement of seismicity induced by industrial activity in Russia in the conditions of present-day anthropization is noted. In particular, the growth in the intensity and number of strong tectonic earthquakes with magnitudes M ≥ 3 (seismic energy 109 J) due to human activity is revealed. These man-made tectonic earthquakes have started to occur in the regions of the East European Platform which were previously aseismic. The development of such seismicity is noted in the areas of intense long-term mineral extraction due to the increasing production depth and extended mining and production. The mechanisms and generation conditions of man-made tectonic earthquakes in the anthropogenically disturbed medium with the changed geodynamical and fluid regime is discussed. The source zones of these shallow-focus tectonic earthquakes of anthropogenic origin are formed in the setting of stress state rearrangement under anthropogenic loading both near these zones and at a significant distance from them. This distance is determined by the tectonic structure of the rock mass and the character of its energy saturation, in particular, by the level of the formation pressure or pore pressure. These earthquakes occur at any time of the day, have a triggered character, and are frequently accompanied by catastrophic phenomena in the underground mines and on the surface due to the closeness to the source zones.

  16. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  17. Applications of Morphochronology to the Active Tectonics of Tibet

    SciTech Connect

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  18. Taiwan: a perfect field trip to study active tectonics and erosion processes

    NASA Astrophysics Data System (ADS)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  19. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  20. Preliminary study on hydrogeology in tectonically active areas.

    SciTech Connect

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  1. Metasomatic Evolution in Tectonically Mixed Zones (Mélange) and Significance for Geochemical Evolution of the Slab-Mantle Interface

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; King, R. L.

    2012-12-01

    Fluid flow focused in highly deformed zones (shear zones), and the physical juxtaposition of chemically disparate rocks (via mechanical mixing) in such zones, can lead to extensive metasomatism, including volume strain, and result in rocks with hybridized compositions little resembling the compositions of the incorporated rock types [1-5]. In the Catalina Schist (California), lawsonite-albite, lawsonite-blueschist, and amphibolite-facies units contain shear zones at scales of meters to kilometers, each containing "blocks" (with more spherical or more tabular dimensions) co-facial in grade with the "matrix" surrounding these blocks [1-3]. Oxygen isotope data for these "mélange" units, and adjacent more "coherent" expanses, indicate enhanced fluid flow in the more strongly deforming mélange zones while fluid flow in coherent domains was dominantly fracture-controlled and episodic. The amphibolite-facies mélange unit shows evidence for km-scale equilibration of varying mineral assemblages with H2O-rich fluids with uniform O and H isotope compositions consistent with a lower-grade metasedimentary source. This unit is believed to have formed largely by mechanical mixing of mafic and ultramafic compositions, partly because of the scarcity of sedimentary blocks. However, the mélange matrix in this unit preserves a number of sedimentary chemical/isotopic characteristics (e.g., Pb isotope compositions [3]) that could reflect the incorporation of sedimentary rocks, with or without fluid-related fractionation, and possibly fluid-mediated additions. Tectonically mixed zones such as these, if volumetrically significant at the slab-mantle interface, could exert disproportionate control on the compositions of hydrous fluids or silicate melts emanating from subducting slabs and entering the forearc to backarc mantle wedge, including those contributing to arc magmatism [1-5]. Geochemical studies of arc lavas should consider the possibility that the "fluids" contributed from

  2. Ti in zircon from the Boggy Plain zoned pluton: implications for zircon petrology and Hadean tectonics

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Williams, I. S.; Wyborn, D.

    2011-08-01

    The understanding of zircon crystallization, and of the Ti-in-zircon thermometer, has been enhanced by Ti concentration measurements of zircon from a small, concentrically zoned pluton in south-eastern Australia, the Boggy Plain zoned pluton (BPZP). Zircon crystals from rocks ranging in composition from gabbro to aplite were analysed for U-Th-Pb dating and Ti concentrations by an ion microprobe. Geochronological data yield a 206Pb/238U age of 417.2 ± 2.0 Ma (95% confidence) and demonstrate the presence of older inherited or xenocrystic zircon. Titanium measurements ( n = 158) yield a mean Ti concentration of 11.7 ± 6.1 ppm (2SD) which corresponds to a mean crystallization temperature of 790°C for an α-TiO2 = 0.74 (estimated using mineral equilibria), or 760°C for an α-TiO2 = 1.0. Apparent zircon crystallization temperatures are similar in all intrusive phases, although the gabbro yields slightly higher values, indicating that crystallization occurred at the same temperature in all rock types. This finding is consistent with previous work on the BPZP, which indicates that liquid-crystal sorting (crystal fractionation) was the dominant control on chemical differentiation, and that late, differentiated liquids were similar in composition for all rock types. A simple forward model approximately predicts the range of crystallization temperatures, but not the shape of the distributions, due to sampling biases and complexities in the cooling and crystallization history of the pluton. The distribution of Ti concentrations has a mode at a higher Ti (higher temperature) than the sample set of Hadean detrital zircon. This is consistent with the hypothesis that the skew to low-T in the Hadean dataset is due to the presence of zircon that crystallized from wet anatectic melts.

  3. Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study

    USGS Publications Warehouse

    Mall, D.M.; Reddy, P.R.; Mooney, W.D.

    2008-01-01

    The Central Indian Suture (CIS) is a mega-shear zone extending for hundreds of kilometers across central India. Reprocessing of deep seismic reflection data acquired across the CIS was carried out using workstation-based commercial software. The data distinctly indicate different reflectivity characteristics northwest and southeast of the CIS. Reflections northwest of the CIS predominantly dip southward, while the reflection horizons southeast of the CIS dip northward. We interpret these two adjacent seismic fabric domains, dipping towards each other, to represent a suture between two crustal blocks. The CIS itself is not imaged as a sharp boundary, probably due to the disturbed character of the crust in a 20 to 30-km-wide zone. The time sections also show the presence of strong bands of reflectors covering the entire crustal column in the first 65??km of the northwestern portion of the profile. These reflections predominantly dip northward creating a domal structure with the apex around 30??km northwest of the CIS. There are a very few reflections in the upper 2-2.5??s two-way time (TWT), but the reflectivity is good below 2.5??s TWT. The reflection Moho, taken as the depth to the deepest set of reflections, varies in depth from 41 to 46??km and is imaged sporadically across the profile with the largest amplitude occurring in the northwest. We interpret these data as recording the presence of a mid-Proterozoic collision between two micro-continents, with the Satpura Mobile Belt being thrust over the Bastar craton. ?? 2008.

  4. The sequence and origin of mineralization in the tectonic zones in the Suwalki Anorthosite Massif, NE Poland

    NASA Astrophysics Data System (ADS)

    Wiszniewska, J.; Cymerman, Z.; Gaweda, A.

    2003-04-01

    The Suwalki Anorthosite Massif (SAM) is emplaced within the Mesoproterozoic rapakivi-type Mazury Complex (ca. 1.56 Ga) of the AMCG affinity. This massif has been subjected by several tectono-hydrothermal events resulted in extensive mineralization. A comprehensive structural study of the SAM requires investigation of numerous (99) boreholes because each well displays several structural components and the combination of these data can be used to summarize SAM evolution. The style of deformation in the SAM area ranges from localised ductile flow, producing shear zones (from a few cm to tens of metre wide) with a mylonitic foliation and a stretching lineation, to brittle fracturing and accompanying brecciation. The SAM features alternating zones of high- and low-strain, both in ductile and brittle conditions. Dip-parallel stretching lineations are inferred to be remnants of the Gothian shortening and ductile thrusting. Almost all shear sense indicators indicate reverse sense of movements. Younger planar fabrics in the fault zones include a well-developed pressure-solution cleavage and or fracture cleavage. Locally, the cleavage become parallel to the fault direction, suggesting rotation of a passive marker during shearing and shortening. The fault zones commonly exhibit newly formed subhorizontal stretching lineations that overprint the former dip-parallel stretching lineations. The kaolinization was the first brittle process, restricted to the close vicinity of the mylonitic structures. The syntectonic C_1 carbonate (calcite or Fe-dolomite) precipitated on the C planes of the S-C composite fabric. C_1 (calcite) carbonate is accompanied by the Fe-Mg chlorite. The further faulting process was accompanied by the crushing, brecciation and pseudotachylite formation. The cracks and fissures are filed by fine grained quartz and C_2 calcite, forming the cement of the tectonic breccias. The following relaxation event caused the opening of the earlier formed cracks and the

  5. Tectonic Transition Between the Southern Extent of the Cascadia Subduction Zone and the Northernmost San Andreas Fault System near Root Creek, Northern California

    NASA Astrophysics Data System (ADS)

    Nicovich, S.; Leroy, T. H.; Hemphill-Haley, M.; Oswald, J. A.

    2013-12-01

    The primary objective of this project is to characterize the transition between Cascadia subduction zone (CSZ)-related structures and the northern-most extent of faults associated with the San Andreas Fault (SAF) transform margin in northwestern California, specifically the transition between the Maacama Fault zone and the Little Salmon Fault. The Little Salmon Fault, a large, northwest-trending thrust fault, arguably near the base of the fold and thrust belt associated with the Cascadia megathrust, extends southwest near the latitude of the Mendocino Triple Junction. The transition from the southern end of the Cascadia subduction zone and related faults to the northward migrating transform margin is poorly understood. Deformation of Neogene sediments near the confluence of Root Creek and the Van Duzen River, approximately 10 miles west of the town of Bridgeville, may provide clues to the broad evolution from compressional tectonic forces of the southernmost CSZ to translational motion of the northern SAF system. This study includes documentation of a faulted and folded strath terrace near the mouth of Root Creek and mapping of adjacent deformed young deposits. Fracture data gathered at this and other nearby sites provides insight into local tectonic strain. Geological mapping incorporates high resolution topographic data and field information about tectonic geomorphological features and the structural characteristics of this transition zone.

  6. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  7. Sinuosity and meander belt scarring: Tectonics and stream dynamics across the Baton Rouge Fault Zone

    NASA Astrophysics Data System (ADS)

    Dunek, P.; Gasparini, N.

    2009-12-01

    This study focuses on the sinuosity of alluvial rivers flowing across the Baton Rogue fault zone (BRFZ). The BRFZ is a little studied normal fault system extending roughly from Baton Rogue, LA east to about the Mississippi border. We hypothesize that the sinuosity is measurably different in channel reaches upstream and downstream of the fault trace. To gather sinuosity data we use two methods. The first is field surveying using a laser range finder and GPS; this method is only used over limited reaches, because covering the entire river system in this way is prohibitively time consuming. The second method uses ArcGIS to analyze LIDAR data that are freely available for the entire state of Louisiana. The LIDAR data have a 5 meter resolution. The largest channels are easily identified by eye in the LIDAR data and can be digitally traced by hand. On most of the smaller rivers, however, it is difficult to discern the exact trace of the channel. In these cases we use the ArcGIS hydrology tools to determine the path of the rivers. In order to check the accuracy we do this twice, once with the LIDAR data and once with the USGS 10 m data. However, the two data sets often produce very different river paths. Upon further investigation it appears that the rivers show a large amount of scarring throughout the meander belt, making it impossible to discern the exact trace of the channel. In fact, field surveying indicates that often times the channel traces from both data sets are incorrect. As a result, in areas where there is no clear channel trace, we calculate a local relief across the meander belt as a proxy for the degree of meandering. We find that in channels where it is possible to calculate sinuosity, there are distinct patterns related to local faulting; in those channels in which we cannot calculate sinuosity, meander belt relief patterns indicate increased channel meandering in proximity to the fault zone. The red and green paths correspond to the USGS 10m and LIDAR

  8. Degree-2 in the Transition Zone and Near the CMB: Bottom up Tectonics?

    NASA Astrophysics Data System (ADS)

    Arevalo, R.; Ghosh, A.; Lekic, V.; Tsai, V. C.; Dziewonski, A. M.; Kellogg, L. H.; Matas, J.; Panero, W. R.; Romanowicz, B.

    2008-12-01

    The 2008 Cooperative Institute for Deep Earth Research (CIDER) program facilitated collaboration between researchers from seismology, geodynamics, mineral physics, and geochemistry to study, model and better understand the interior of the Earth. Through this multidisciplinary approach, we have developed a self- consistent paradigm of mantle structure and dynamics. Geochemical studies necessitate multiple mantle components, a requirement that can be met by a layered mantle structure with the 660-km discontinuity serving as a boundary between a depleted upper mantle and undepleted lower mantle. Seismological studies show strong evidence for reorganization of flow at the 660 km discontinuity, but some tomographic models also suggest a significant mass flux across this depth. We investigate the possibility that the large low-velocity seismic anomalies beneath south Africa and the central Pacific are thermochemical reservoirs that may serve as the undepleted, undegassed mantle end-member commonly seen in intraplate volcanics. These superplumes may represent an extension of the degree-2 heterogeneity dominating the deepest 500-1000 km of the lower mantle, and may comprise >20% of the mantle by volume. A comparison of S-velocity anomalies in the mantle with the slab reconstruction model of Lithgow-Bertelloni and Richards (1998) reveals a high degree-2 correlation between these models; in general, the slab model has much more power in higher harmonics. However, for degree-2, the slab density anomaly integrated over the upper mantle has the same pattern as the velocity anomalies at the bottom of the transition zone, but not at other depths in the upper mantle, suggesting that the transition zone acts as a low-pass filter, preferentially removing shorter wavelengths of mantle flow. The degree-2 velocity anomaly just above the core-mantle boundary (CMB) parallels the last 120 Ma of slab signal integrated over the entire mantle, indicating a long-lived origin of this boundary

  9. Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2012-07-01

    The Noakoh anticline is located in Kermanshah province and is part of the Simply Folded Belt of Zagros. Boundaries of 97 triangular facets and 67 wine-glass (W-G) valleys, which formed on anticline limbs, were delineated using Quickbird satellite imagery. The strata dip (D), area (A), base length (BL), topographic slope (S) of facets, the maximum width (M), outlet width (O) and ratio of maximum width to outlet width (W index) of W-G valleys were analysed in detail. Noakoh anticline was subdivided into 9 tectonic zones on the basis of dip, topographic slopes and width of limbs. Results show that there are strong positive correlations between means of D-BL and S-BL pairs. Poor positive correlations exist between means of D-A and S-A pairs. Among W-G valley metrics, the W index has strong relations with D and S parameters. Based on the results, steep facets with long bases and well developed W-G valleys with narrow outlets and wide upper parts are associated with more rotated limbs having steep slopes. Facets on the northeastern slope have more forest cover, micro-organism activity, karstic features and soil cover, whereas facets on relatively drier southwestern slope are characterized by physical weathering processes and minor karstic landforms. This study demonstrates that, apart from tectonic activity as a major control on the morphometry of facets and valleys, climate and slope aspect have also acted as secondary factors on the development of the studied landforms.

  10. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  11. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  12. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  13. Collapse of the Cretaceous Helvetiafjellet Formation due to tectonic activity at Kvalvågen, eastern Spitsbergen

    NASA Astrophysics Data System (ADS)

    Onderdonk, N.; Midtkandal, I.; Ahokas, J.

    2008-12-01

    A variety of features recording disturbance of Mid-Cretaceous sediments are exposed in coastal cliffs at Kvalvågen, east Spitsbergen. The most striking of these features are large displaced blocks of Helvetiafjellet Formation sandstone (ranging from 5 to 25 meters across) that were dropped down into underlying shale- dominated sediments along normal faults. In addition to the displaced blocks much of the sandstone unit is missing along a 2 km stretch of coastal exposure and must have been slipped out of the plane of exposure. Several hypotheses have been proposed to explain the style and cause of the Cretaceous collapse at Kvalvågen including delta front collapse (Nemec et al., 1988), landslides into a submarine canyon (Steel et al., 2001), and collapse related to magmatic activity (Midtkandal et al., 2007). New structural data and field observations show that the orientations and style of deformation are not entirely consistent with the previous hypotheses and are better explained as the direct result of tectonically produced topography (i.e., a fault scarp). The deformation at Kvalvågen is the result of west-side-down displacement along a north-striking fault that crops out at the southern end of the cliff exposure. Tectonic disturbance in the area began in Hauterivian time and was over by the early Aptian. These outcrops are the only evidence of tectonic activity in the area during the Mid-Cretaceous and may be the result of displacement along a previously unrecognized extension of the Lomfjorden fault zone or related to regional stresses imposed by extensive sill intrusions during the formation of the High Arctic Large Igneous Province.

  14. Tectonic impact of anatexis on collision zones dynamics : insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Labrousse, Loic; Duretz, Thibault; Gerya, Taras

    2013-04-01

    Partial melting reactions constitute a first order weakening process in the continental crust involed in collision zones. It can act as a possible decoupling mechanism within the lithosphere and therefore influence the dynamics of continental subduction-collision. The Western Gneiss Region, Norwegian Caledonides, exhibits a direct relationship between eclogites occurrences and partial melting textures in the surrounding gneiss. This fact implies that partial melting is associated with part of the exhumation of High Pressure (HP) rocks. Several metamorphic reactions produce silicate melts at different PT conditions, depending mainly on the availability of aqueous fluids. Even if most of the partial melting textures observed in hot orogens relate to water-absent dehydration melting, evidences of water-present partial melting of gneiss and eclogites at HP in the Western Gneiss Region, suggest that water-present melting reactions may play a role in fostering HP metamorphic rocks exhumation. Another question arising from experimental rheological studies relies in quantifying the amount of liquid phase necessary to trigger strength drops of migmatites (i.e. the Rheologically Critical Melt Percentage, RCMP). Proposed values span from very low percentages close to 1% up to 20-30%, when migmatites turn to diatexites. In this study, we employ lithospheric scale numerical experiments, to compare the effects of water-present or dehydration partial melting reactions on continental collision systems. The two-dimensional thermo-mechanical experiments explore the extent of melt-weakening by allowing a wide range viscosity variations (9 orders of magnitude). The model set-up is representative of the Scandian collision and its sensitivity to the initial Moho temperature, the value of RCMP, and the buoyancy of the extracted melts, was investigated.

  15. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  16. Indirect estimation of the tectonic evolution of magnetic structures along the Indiavaí-Lucialva Shear Zone, Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Louro, V. H.; Ribeiro, V. B.; Mantovani, M. S.; Geolit Team

    2013-05-01

    The Indiavaí-Lucialva Shear Zone (ILSZ) has a notorious cinematic standard, moving from SW to NE, juxtaposing the Santa Helena Granitic Batholith to the metavolcanosedimentary sets and orthogneisses from the Jauru Domain basement. Along the ILSZ, a sequence of magnetic anomalies of high interference, with each other, and varied polarities occurs, what suggests the presence of different lithologies or times of (re)crystallization of the ferromagnetic minerals from these magnetic structures. In its southernmost portion, the sequence of magnetic anomalies splits in two directions, SW and SE, with the first invading the limits of the Santa Helena batholith and, the latest, accompanying the ILSZ. This study aimed for the comprehension of complex tectonic setting of this region. It analyzed the set of anomalies estimating their lateral limits, depths and directions of total magnetization, with the Enhanced Horizontal Derivatives (EHD), its extrapolation for depth estimative (EHD-Depth), and through an iterative reduction to the magnetic pole, respectively. This procedure allowed the composition of initial models for further inversions of magnetic data which, results, indicate contrasts of magnetic susceptibility in sub-surface. Once known the approximated 3-D shape of the magnetic structures along the ILSZ, the total magnetization intensity of each anomaly was recovered, what consequently allowed, by vector subtraction, to estimate their individual remnant magnetization. The remnant magnetization's inclinations and declinations of the anomalies sources and their latitudes and longitudes permitted the calculus of their respective virtual magnetic paleopoles. When confronted with the South American paleopole wander path and the datings linked to this path, available in the literature, it was possible to have an indirect approximation of the age of (re)crystallization of each magnetic structure near the ILSZ. This procedure indicated an increasing of the ages of the

  17. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    NASA Astrophysics Data System (ADS)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the

  18. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  19. Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Gao, Rui; Guo, Xiaoyu

    2016-04-01

    The eastern Tibetan plateau has been getting more and more attention because it combines active faults, uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus, a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative (THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks, including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the Songpan-Garze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion, which is coincident with the flowing direction indicated from the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.

  20. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  1. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2004-05-01

    Analyses of deflected river channels, offset of basement rocks, and fault rock structures reveal that slip sense inversion occurred on major active strike-slip faults in southwest Japan such as the Yamasaki and Mitoke fault zones and the Median Tectonic Line (MTL). Along the Yamasaki and Mitoke fault zones, small-size rivers cutting shallowly mountain slopes and Quaternary terraces have been deflected sinistrally, whereas large-size rivers which deeply incised into the Mio-Pliocene elevated peneplains show no systematically sinistral offset or complicated hairpin-shaped deflection. When the sinistral offsets accumulated on the small-size rivers are restored, the large-size rivers show residual dextral deflections. This dextral offset sense is consistent with that recorded in the pre-Cenozoic basement rocks. S-C fabrics of fault gouge and breccia zone developed in the active fault zones show sinistral shear sense compatible with earthquake focal mechanisms, whereas those of the foliated cataclasite indicate a dextral shear sense. These observations show that the sinistral strike-slip shear fabrics were overprinted on dextral ones which formed during a previous deformation phase. Similar topographic and geologic features are observed along the MTL in the central-eastern part of the Kii Peninsula. Based on these geomorphological and geological data, we infer that the slip sense inversion occurred in the period between the late Tertiary and mid-Quaternary period. This strike-slip inversion might result from the plate rearrangement consequent to the mid-Miocene Japan Sea opening event. This multidisciplinary study gives insight into how active strike-slip fault might evolves with time.

  2. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  3. Changing Depositional Conditions of the Cretaceous-Paleocene Sediments in the Southern Sakarya Zone and Implications for Tectonic Evolution

    NASA Astrophysics Data System (ADS)

    Baykut, Tanyel; Koral, Hayrettin; Özkar Öngen, İzver

    2016-04-01

    Study area is located between Göynük (Bolu) and Nallıhan (Ankara), NW Anatolia, to the north of the Neotethyan (Izmir-Ankara-Erzincan) Suture Zone. It comprises units ranging from the Jurassic to Miocene ages. Middle Jurassic-Lower Cretaceous age pelagic limestones of the Soǧukçam Formation is the oldest rock, overlain by the Upper Cretaceous Gölpazarı Group. The Gölpazarı Group includes the Cenomanian-Campanian age turbiditic Yenipazar Formation and the Maastrichtian age Taraklı Formation. Over the Taraklı Formation lies conformably the Kızılçay Group, and it exhibits varying facies from north to south of the study area. In the north, there occurs the coral-bearing Lower Paleocene Selvipınar Formation. In the south, instead, there are clastics of the Kızılçay Group overthrust by the Soǧukçam Formation. Clastics and bituminous shales of the Kızılçay Group indicate a terrestrial setting of the study area during the Lower Paleocene-Eocene. The Soǧukçam and Yenipazar Formations represent deep marine conditions, while the Taraklı Formation a shallow one. This indicates the region underwent a rapid uplift due possibly to initial collision and overthrusting. In the post-Maastrichtian age units, the occurrence and lateral transitions of shallow marine and terrestrial sediments suggest a progress of uplift, but at different rates at different locations; at a relatively fast rate in the south and a slow rate in the north. The presence of tectonic features such as E-W oriented folds, overturned folds and faults are related to shortening during a collisional stage that affected the whole region.

  4. Monitoring shallow resistivity changes prior to the 12 May 2008 M 8.0 Wenchuan earthquake on the Longmen Shan tectonic zone, China

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Xie, Tao; Li, Mei; Wang, Yali; Ren, Yuexia; Gao, Shude; Wang, Lanwei; Zhao, Jialiu

    2016-04-01

    An active source measurement of shallow resistivity using fixed-electrode quasi-Schlumberger arrays has been conducted at Pixian, Jiangyou and Wudu stations on the Longmen Shan tectonic zone in western China, with the hope of detecting earthquake-associated changes. For the duration of the monitoring experiment, a gradual decrease of apparent resistivity of up to 6.7% several years prior to the 12 May 2008 M 8.0 Wenchuan earthquake had been recorded clearly at Pixian station, approximately 35 km from the epicenter. The change of apparent resistivity was monitored with a fixed Schlumberger array of AB/MN spacings of 736 m/226 m in the direction of N57.5°E, giving precisions in measured daily averages of 0.16% or less. A coseismic resistivity drop of up to 5.3% was observed at Jiangyou station, using a Schlumberger array of AB/MN spacings of 710 m/90 m in the direction of N10°E. No fluctuation of resistivity was detected at Wudu station at the time of the Wenchuan mainshock. While the focus of this paper is on monitoring or tracking resistivity variations prior to, during, and after the Wenchuan earthquake, we also aim to compare resistivity records of the Wenchuan earthquake to those of the M 7.8 Tangshan and M 7.2 Songpan earthquakes of 1976. Attempts to explain the observed resistivity variations have been made. The results show that the resistivity variations observed at all three stations are in approximate agreement with resistivity-stress behavior deduced from in situ experiments, focal mechanisms, a simplified dynamical model, static stress analyses, and field investigations from along the Longmen Shan fault zone.

  5. Tectonics of a Lateral Transition Between Subduction and Collision: The Zagros-Makran Transfer Deformation Zone (SE Iran)

    NASA Astrophysics Data System (ADS)

    Regard, V.; Bellier, O.; Thomas, J.-C.; Abbassi, M. R.; Mercier, J. L.; Bonnet, S.; Bourlès, D. L.; Braucher, R.; Martinod, J.; Iiees Tectonic Team

    2003-04-01

    Iran coincides with the interaction zone between the Arabian and Eurasian plates that currently converge at about 30 mm/yr. To the West, a continental collision accommodating about 10 mm/yr shortening results in the formation of the Zagros fold and thrust belt. To the East, the Makran is the emerged accretionary prism resulting from the subduction of the Oman oceanic lithosphere beneath the Iranian platelet. A NW-striking deformation zone, the Zendan-Minab fault system, connects the Western Makran and the Eastern Zagros deformation domains. Structural and geomorphic field observations, complemented with SPOT satellite images and aerial photographs analyses have been performed to evaluate the active deformation pattern and to localize the high seismic potential zones. This analysis shows a Zagros-Makran transfer zone characterized by a distributed deformation covering a wide domain: at least three NNW-trending major faults have been identified, the Minab, Zendan and Palami faults; and two N-trending major faults: Sabzevaran and Jiroft faults. Fault slip-vector analyses indicate that the current stress of state is transpressional associated with NE-trending compression. Thanks to offsets, escarpments and uplifted terraces, these faults show geomorphic evidence for Late Quaternary reverse right-lateral slip, that seems relevant for the present-day activity of the Minab deformation domain. Offset measurements associated with 10Be ages indicate that the right lateral displacement rate throughout the entire zone is about 20 mm/yr while maximal fault segment length of about 40 km indicates that the expected maximum earthquake magnitude should be of about Mw=7, in a context of low historical seismicity.

  6. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Yangli; Wang, Xin; Rao, Gang; Wang, Renfu

    2016-06-01

    The recognition of paleo-strike-slip faulting is often difficult, particularly when the associated structures are presently inactive and covered by thick sediments. Fortunately, high-resolution 3D seismic reflection data can provide a powerful tool to solve this problem. In this study, we focus on the structural features and tectonic evolution of Hong-Che fault system, a paleo-strike-slip fault zone recognized in the NW margin of Junggar Basin by using the 2D and 3D seismic data. The results of our analysis demonstrate that: 1) The Middle Triassic to Jurassic dextral transpressional structures were developed along Hong-Che fault zone, which are characterized by the restraining bend on the southern segment, the highly localized shearing deformation on the central segment, and the horsetail splay faulting of a fault tip zone on the northern segment; 2) The Hong-Che fault zone had also experienced the Early Permian rifting and the Late Permian-Early Triassic tectonic inversion, which probably played important roles in controlling the subsequent tectonic deformation; and 3) The demonstrated dextral strike-slip faulting is consistent with the Middle Triassic-Jurassic deformation in the Ke-Bai, Wu-Xia, and Irtysh fault zones, and therefore supports the counterclockwise rotation of Junggar Basin, which might be the far-field effect of the collision between Qiangtang block and Songpan-Ganzi terrane in the Triassic. The results of this study also prove that high-resolution seismic reflection data can serve as a useful tool for investigating the buried paleo-structures.

  7. LWD lithostratigraphy, physical properties and correlations across tectonic domains at the NanTroSEIZE drilling transect, Nankai Trough subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Tudge, J.; Webb, S. I.; Tobin, H. J.

    2013-12-01

    Since 2007 the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has drilled a total of 15 sites across the Nankai Trough subduction zone, including two sites on the incoming sediments of the Philippine Sea plate (PSP). Logging-while-drilling (LWD) data was acquired at 11 of these sites encompassing the forearc Kumano Basin, upper accretionary prism, toe region and input sites. Each of these tectonic domains is investigated for changes in physical properties and LWD characteristics, and this work fully integrates a large data set acquired over multiple years and IODP expeditions, most recently Expedition 338. Using the available logging-while-drilling data, primarily consisting of gamma ray, resistivity and sonic velocity, a log-based lithostratigraphy is developed at each site and integrated with the core, across the entire NanTroSEIZE transect. In addition to simple LWD characterization, the use of Iterative Non-hierarchical Cluster Analysis (INCA) on the sites with the full suite of LWD data clearly differentiates the unaltered forearc and slope basin sediments from the deformed sediments of the accretionary prism, suggesting the LWD is susceptible to the subtle changes in the physical properties between the tectonic domains. This differentiation is used to guide the development of tectonic-domain specific physical properties relationships. One of the most important physical property relationships between is the p-wave velocity and porosity. To fully characterize the character and properties of each tectonic domain we develop new velocity-porosity relationships for each domain found across the NanTroSEIZE transect. This allows the porosity of each domain to be characterized on the seismic scale and the resulting implications for porosity and pore pressure estimates across the plate interface fault zone.

  8. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  9. Underthrusting of passive margin strata into deep crustal hot zones associated with Cretaceous arc magmatism in North America: links and timescales of magmatic vs. tectonic thickening

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Lee, C.; Tollstrup, D. L.; Xie, L.; Wimpenny, J.; Yin, Q.

    2011-12-01

    crust at ~100 Ma, during the peak of Cretaceous arc magmatism. We envision underthrusting of N. American lithosphere beneath the active Sierran arc as the mechanism for transporting these sediments to high P, T conditions, but underthrusting cold continental lithosphere alone cannot explain the xenoliths' high final temperatures. An additional heat source, derived from deep crustal magmatic "hot zones", seems required. We are currently exploring diffusion modeling in garnet porphyroblasts as a way to estimate rates of thickening. Because the protoliths were initially garnet-free, growth of metamorphic garnet can potentially record the length of time it took the metaquartzites to achieve their high P, T conditions. We will also use Ti zonation in detrital zircons as an added constraint on timescales involved in thickening. So far, our results indicate firsthand that tectonic underthrusting of continental supracrustal rocks extends all the way into deep magmatic zones beneath arcs, implying that magmatic differentiation alone is not the only mechanism by which continental crust achieves its felsic composition.

  10. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  11. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  12. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts

  13. Tectonic geomorphology of the Paganica Fault Zone (2009 L’Aquila Earthquake, Italy) for the understanding of its seismic behavior

    NASA Astrophysics Data System (ADS)

    Pucci, S.; Pantosti, D.; de Martini, P.; Civico, R.

    2009-12-01

    The Mw 6.3, April 6, 2009 earthquake occurred on the Paganica fault (PF hereinafter) and it produced a 3 km-long co-seismic surface rupture along its central section, with few centimeters of vertical displacement. The PF, NW-SE striking and SW dipping, is a normal active structure running for a total length of 20 km and, along with antithetic faults on its hanging-wall, it forms the graben of the Middle Aterno River Valley. Extensive 1:10,000-scale geological and geomorphological mapping has been carried out, focusing on the reconstruction of the long-term expression of the PF. Particular attention has been devoted to the study of the deposits infilling this graben with the aim to reconstruct the Quaternary deformational history of the fault. Field mapping was integrated by observations, made on 1:33,000 scale aerial photographs (GAI), 10-m-resolution Digital Elevation Model and standard morphometric derivatives (hill-shaded and slope angle maps, Spatial Analyst™). The whole fault system was studied and variable characteristics of the tectonic deformation affecting the continental deposits at the surface were identified. The PF long-term morphologic signature is represented by a set of prominent scarps formed by the tectonic juxtaposition of Pliocene-middle Pleistocene and late Pleistocene alluvial deposits, and by smaller scarps in late Pleistocene-Holocene deposits. The study of the long-term fault expression results helpful to recognize deformed geomorphologic markers, essential for long-term slip-rate calculations, and to locate and interpret paleoseismological trench sites. In order to calculate the long-term slip rate of the PF, we sampled depositional and erosional surfaces for 14C and OSL (Optically Stimulated Luminescence) dating. The preliminary results are valuable for a comparison with the estimates carried out by paleoseismological investigation of the PF (see abstract Cinti et al., same session). Furthermore, we correlated the 2009 co

  14. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  15. Tectonic significance of serpentinites

    NASA Astrophysics Data System (ADS)

    Guillot, Stéphane; Schwartz, Stéphane; Reynard, Bruno; Agard, Philippe; Prigent, Cécile

    2015-04-01

    At plate boundaries, where deformation is localized along centimetre- to kilometre-scale shear zones, the influence of serpentinite on tectonic processes is linked to its unique rheological properties. In this paper we review the physical properties of serpentinites and their role in tectonic processes. At the ocean-continent transition, serpentinization weakens the upper mantle layer, promoting strain localization and allowing the normal faults in the distal margin to root at low angle. Similarly, at slow to ultra-slow spreading ridges, serpentinite is potentially very abundant at the seafloor and locally associated with domal structures. Extensional deformation is localized in a ~ 100 m thick shear zone at the footwall of detachment zones dominated by serpentine derived minerals. Within subduction zone, the depth of decoupling between the mantle wedge and the subducting slab corresponds to the stability depth of serpentine weak mineral. Dehydration of serpentine has also been hypothesized to play an important role in the origin of double seismic zones, however the exact mechanism through which dehydration promotes seismicity remains a matter of debate. During exhumation of high-pressure or ultrahigh-pressure rocks, the opposite trajectories of exhumation and subduction require a decoupling zone within the subducting slab. A serpentinized layer has the potential to become a decoupling zone between the oceanic crust and underlying lithosphere. The buoyancy of serpentinite also likely contributes to eclogite exhumation. Finally, along major strike-slip faults, serpentinites have been associated with fault creep, as well as low fault strength. The presence of serpentinite blocks along creeping segments of active faults worldwide is therefore likely to originate from fluids deriving from the progressive dehydration of the mantle wedge that move such bodies upward.

  16. Origin and tectonic implication of Triassic eclogite from the Song Ma suture zone between the Indochina and South China blocks

    NASA Astrophysics Data System (ADS)

    Zhang, R. Y.; Lo, C.; Grove, M.; Chung, S.; Iizuka, Y.; Tri, T.

    2011-12-01

    The Song-Ma suture zone in northern Vietnam and Laos marks the collision of the Indochina and South China blocks, which consists of ophiolite, metamorphic sole and meta-sediments. The Song Ma ophiolite consisting of serpentinized peridotite, layered gabbro, basalt and diabase is considered to represent the relics of the Paleothyan lithosphere. In this study, we provide new petrological, geochemical and geochronological data of the Song Ma eclogite for understanding its origin and tectonic implication. The eclogite is closely associated with garnet-phengite quartz schist and garnet amphibolite in the northwestern edge of the suture zone. It consists of porphyroblastic garnet and fine-grained matrix of omphacite, garnet, phengite, quartz and rutile. The porphyroblastic garnet has a large inclusion-rich core and a thin inclusion-free rim; the identified inclusions include quartz, taramite, barroisite, zoisite, epidote and rutile. Garnet porphyroblasts exhibit pronounced compositional zoning: i.e. increase pyrope with decreasing alm, grs and sps components from core (alm53-54Sps3-4Prp18-19Grs24-28) to rim (alm42-45Sps1Prp31-36Grs18-22) suggesting a prograde metamorphic history. Omphacite (Jd33-37) and phengite (Si, 3.34-3.45 pfu) are homogeneous in composition. Most interstitial amphibole in the matrix is retrograde phase. Grt-Cpx-Ph thermobarometer yielded a peak P-T condition of 28 ± 2 kbar and 700 ± 50 oC. All eclogites have basaltic composition: SiO2 ~ 49 wt%, TiO2 ~ 0.8 wt%, MgO ~ 8.6 wt% and FeOtotal 9.4-10.2 wt%. They show flat or slightly LREE-enriched patterns with negative Eu anomaly, and negative Sr and Ti anomalies in spider diagram. Selected major and trace element contents of eclogite, garnet amphibolite and metabasite plotted in the discrimination diagrams of 2Nb-Zr/4-Y and TiO2-FeO/MgO and Th/Yb-Nb/Yb suggest that the protoliths of the Song Ma eclogite and metabasite have MORB-type geochemical affinities. Zircon separates form an eclogite sample show

  17. Paleoseismology, seismic cycle and tectonic coupling of the Lesser Antilles subduction zone : Insights from micro-atolls

    NASA Astrophysics Data System (ADS)

    Weil Accardo, Jennifer; Feuillet, Nathalie; Tapponnier, Paul; Deschamps, Pierre; Cabioch, Guy; Le Cornec, Florence; Jacques, Eric; Galetzka, John; Saurel, Jean-Marie

    2010-05-01

    The Lesser Antilles arc is a region of high seismic hazard, which results from the convergence of American and Caribbean plates at 2cm/yr. Several earthquakes of magnitude ≥ 7 have struck the islands in the past. The largest, latest ones occurred only 4 years apart in the mid-19th century, on January 11, 1839 and February 8, 1843, destroying the towns of Fort-de-France and Pointe-à-Pitre, respectively, and killing several thousand people. Today, an earthquake comparable to that of 1843 might cause tens thousands of casualties in Guadeloupe. In addition to devastating seismic shaking, such earthquakes may trigger large tsunamis. In the Lesser Antilles, the behavior and seismic history of the plate interface remain unknown. Important questions that must be answered are: What is the exact geometry and segmentation of the subduction zone? How large might mega-thrust earthquakes be? What are typical recurrence times for such earthquakes on each segment? Could a large earthquake recur in the next few decades? To better understand and constrain the seismic hazard related to mega-thrust in the Lesser Antilles, we tend to retrieve the history of strain accumulation and relief at the plate interface from alive or dead corals. Certain coral species form micro-atolls that grow just below the intertidal zone and thus "fossilize" with their upper surfaces a history of local relative sea level. The annual coral band (or ring) growth is limited upwards by the so-called Highest Level of Survival (HLS, connected to the elevation of the yearly lowest tide level). When the sea level rises or drops due to tectonic or climatic events, the micro-atoll growth is perturbed. By analyzing in detail the coral aragonite skeleton, and U/Th dating specific events, it is possible to retrieve the history of sea level change through at least parts of several centuries. We identified several sites with living micro-atolls in the islands we visited (Martinique, Guadeloupe, Antigua, Barbuda). In

  18. Study provides data on active plate tectonics in southeast Asia region

    NASA Astrophysics Data System (ADS)

    Wilson, P.; Rais, J.; Reigber, Ch.; Reinhart, E.; Ambrosius, B. A. C.; Le Pichon, X.; Kasser, M.; Suharto, P.; Majid, Dato'Abdul; Yaakub, Dato'Paduka Awang Haji Othman Bin Haji; Almeda, R.; Boonphakdee, C.

    A major geodynamic study has provided significant new information about the location of active plate boundaries in and around Southeast Asia, as well as deformation processes in the Sulawesi region of Indonesia and tectonic activity in the Philippine archipelago. Results also have confirmed the existence of the so-called Sunda Block, which appears to be rotating with respect to adjacent plates.The study, known as the Geodynamics of South and South-East Asia (GEODYSSEA) project, has been a joint venture of the European Commission and the Association of South- East Asian Nations. It began in 1991 and involved a large team of European and Asian scientists and technicians studying the complex geodynamic processes and natural hazards of the region from the Southeast Asia mainland to the Philippines to northern Australia. Earthquakes, volcanic eruptions, tsunamis, and tectonically induced landslides endanger the lives of millions of people in the region, and the tectonic activity behind these natural hazards results from the convergence and collision of the Eurasian, Philippine, and Indo-Australian Plates at relative velocities of up to 10 cm per year.

  19. New evidence for active tectonics at the boundary of the Kashi Depression, China, from time series InSAR observations

    NASA Astrophysics Data System (ADS)

    He, Ping; Wen, Yangmao; Xu, Caijun; Liu, Yang; Fok, H. S.

    2015-06-01

    Kashi Depression is one of the most complex active tectonic areas in the southern flank of Tianshan, China. Due to the lack of ground observations, the boundary of basin mountain transition zone and the interseismic activity of the Tianshan have not been clearly determined. In this study, 48 Envisat Advanced Synthetic Aperture Radar (ASAR) imagery acquired from 2003 to 2010 are used to construct interferograms for measuring high-resolution interseismic deformation in the Kashi Depression area. A global atmospheric model ERA-Interim provided by the European Center for Medium Range Weather Forecast (ECMWF) and a global network orbital correction are applied to remove atmospheric effect, and the long-wavelength orbital errors, respectively, for the interferograms. Interferometric SAR time series with Atmospheric Estimation Model (InSAR TS + AEM) are then used to obtain a deformation rate map for the Kashi Depression area. The InSAR rate map indicates that the north part of South Atushi Fault has ~ 3 mm/year uplift relative to that of the south part. This result manifests the main tectonic deformation potentially occurs along the Southern Atushi Fault. Based on a simple edge dislocation model, the dip angle of 31 ± 0.6°, slip rate of 2.3 ± 0.1 mm/year, and locking depth of 10.6 ± 0.4 km for the Southern Atushi Fault between Tianshan Orogenic Belt and the Kashi Depression are obtained. This modeling result shows in good agreement with the InSAR derived rates. Our results show that the Southern Atushi Fault is the main active fault in block boundary region between the south of Tianshan and the Tarim Basin.

  20. Sub-crustal forcing on the tectonic and topographic evolution of collision-subduction transition zones: possible application to the eastern Tibetan margin

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Avouac, Jean-Philippe; Jolivet, Laurent; Faccenna, Claudio; Gerya, Taras; Becker, Thorsten W.; Menant, Armel

    2016-04-01

    The tectonic and topographic evolution of the eastern Tibetan margin is controlled by the India-Eurasia collision, gravitational collapse of the uplifted reaches and the dynamics of the Sunda and other western Pacific subduction zones, but their relative contributions remain elusive. Because crustal tectonics is the most serious contributor to the vertical ground motion and surface structures, previous models mostly focused on the partitioning between clock-wise rigid rotation or viscous eastward evacuation of the Eurasian crust in response to these driving mechanisms. Some authors further argued that large-scale mantle convection provides support to the topography of the Southeast Asia through vertical stresses and contribute to the overall India-Eurasia convergence. Minor attention, however, has been given to the potential forcing from the asthenospheric return flow owing to differential along-strike slab kinematics related to rollback and tearing of the Indian, Sunda and western Pacific slabs. Here, we analyze 3D numerical geodynamic modeling results involving a collision-subduction system and show that vigorous asthenospheric flow due to differential along-strike slab kinematics may contribute to the surface strain and topography at the collision-subduction transition zone. We argue that protracted northward migration of the Indian slab and indentation front during south to south-westward rollback (late-Eocene to middle-Miocene) or stable (middle-Miocene to present) subduction along the Sunda and western Pacific margins may have produced a similar asthenospheric flow. This flow could have contributed to the Southeast Asia extrusion tectonics and uplift of the terrains around the eastern Himalayan syntaxis and protruding from southeast Tibet. Therefore, we suggest that the tectonics and topographic growth east and southeast of Tibet are controlled not only by crustal and lithospheric deformation but also by the asthenospheric dynamics.

  1. New insights on the seismogenic potential of the Eastern Betic Shear Zone (SE Iberia): Quaternary activity and paleoseismicity of the SW segment of the Carrascoy Fault Zone

    NASA Astrophysics Data System (ADS)

    Martín-Banda, Raquel; García-Mayordomo, Julián.; Insua-Arévalo, Juan M.; Salazar, Ángel E.; Rodríguez-Escudero, Emilio; Álvarez-Gómez, Jose A.; Medialdea, Alicia; Herrero, María. J.

    2016-01-01

    The Carrascoy Fault (CAF) is one of the main active faults that form part of the Eastern Betic Shear Zone, a 450 km fault system that accommodates most of the convergence between the Eurasian (Iberia) and Nubian plates in the Betic Cordillera, south Spain. Although the CAF represents a major earthquake threat to the nearby City of Murcia, studies on its Quaternary tectonics and seismogenic potential are scarce to date. We present evidence that supports the division of the CAF into two overlapping segments with contrasting tectonic structure, Quaternary activity, and landform control: a SW segment, characterized by a broad fold-and-thrust zone similar to the forebergs defined in the Gobi-Altai region, and a NE segment, characterized by a sharp mountain front controlled by strike-slip tectonics. We attribute the differentiation into these two segments to the stresses associated with topography, which in turn is a consequence of the shortening component, at the middle Pleistocene, after circa 217.4 ka. For the SW segment we infer the occurrence of 9 to 11, Mw 6.7 paleoearthquakes in the last 30.2 kyr, and a slip rate of 0.37 ± 0.08 m/kyr. We date the occurrence of the last surface rupture event after 2750 B.P., and we estimate an average recurrence period of major events of 3.3 ± 0.7 kyr.

  2. Caldecott 4th bore tunnel project: influence of ground water flows and inflows triggered by tectonic fault zones?

    NASA Astrophysics Data System (ADS)

    Neuhuber, G.; G. Neuhuber1, W. Klary1, A. Nitschke1, B. Thapa2, Chris Risden3, T. Crampton4, D. Zerga5

    2011-12-01

    The 4th Bore is a highway tunnel on California State Route 24 currently under construction. The 4th Bore is undertaken by the California State Department of Transportation (CALTRANS) and the Contra Costa County Transportation Commission (CCTC) to alleviate traffic congestion on SR24 connecting the cities of Oakland and Orinda in the San Francisco East Bay Area. The cost for the 4th Bore is estimated at $ 390.8 Mill. The 3,249 ft long 4th Bore tunnel will have excavated dimensions of approximately 40 ft height and 49 ft width. A total of 7 cross passages will run between the 3rd and the new 4th bore. Geology and Hydrogeology: The project is located in the Oakland Berkeley Hills of the SF Bay Area. The Caldecott Tunnels lie within the easterly assemblage of the Hayward fault zone province which consists of a sequence of sedimentary and volcanic rocks that accumulated in the interval between about 16 and 8.4 Ma (Miocene). The basal rocks of these Tertiary deposits consist of deep marine basin sediments of the Monterey Group. These rocks are overlain uncomfortably by an interbedded sequence of terrestrial sediments (Orinda Formation) and volcanic rocks (Moraga Formation). The Tertiary rocks have been folded into large amplitude, NW trending folds that are cut by N trending strike and slip faults. The SF Bay Region, which is crossed by 4 major faults (San Gregorio, San Andreas, Hayward, and Calaveras), is considered one of the more seismically active regions of the world. The active Hayward fault lies 0.9mi to the west of the Caldecott Tunnels and is the closest major fault to the project area. The tunnel is at the moment under top heading construction: West Portal (360ft) and East Portal (1,968.5ft). While major faults typically influence groundwater flow, characterization of such influences is extremely difficult because of the heterogeneity of the hydraulic systems and the different lithological parameters and influences. Four major inactive fault zones striking

  3. UAV's for active tectonics : case example from the Longitudinal Valley and the Chishan Faults (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2015-04-01

    Taiwan is a case example to study active tectonics due to the active NW-SE collision of the Philippine and Eurasian Sea Plates as the whole convergence reaches 10cm/y. In order to decipher the structural active tectonics geometry, we used herein UAV's to get high resolution Digital Terrain Model (DTM) in local active tectonics key areas. Classical photo-interpretation where then developped in order to structurally interprete these data, confirmed by field studies. Two location had first been choosen in order to highlight the contribution of such high resolution DTM in SW Taiwan on the Longitudinal Valley Fault (SE Taiwan) on its southern branch from Pinting to Luyeh terraces (Pinanshan) where UAV's lead to better interprete the location of the outcropping active deformations. Combined with available GPS data and PALSAR interferometry (Deffontaines et Champenois et al., submitted) it is then possible to reconstruct the way of the present deformation in this local area. In the Pinting terraces, If the western branch of the fault correspond to an outcroping thrust fault, the eastern branch act as a a growing active anticline that may be characterized and quantified independantly. The interpretation of the UAV's high resolution DTM data on the Chishan Fault (SW Taiwan) reveals also the geometry of the outcropping active faults complex structural behaviour. If the Chishan Fault act as a thrusting in its northern tip (close to Chishan city), it acts as a right lateral strike-slip fault north of Chaoshan (Kaohsiung city) as described by Deffontaines et al. 2014. Therefore UAV's are a so useful tool to get very high resolution topographic data in Taiwan that are of great help to get the geometry of the active neotectonic structures in Taiwan.

  4. Seismicity study of volcano-tectonic in and around Tangkuban Parahu active volcano in West Java region, Indonesia

    NASA Astrophysics Data System (ADS)

    Ry, Rexha V.; Priyono, A.; Nugraha, A. D.; Basuki, A.

    2016-05-01

    Tangkuban Parahu is one of the active volcano in Indonesia located about 15 km northern part of Bandung city. The objective of this study is to investigate the seismic activity in the time periods of January 2013 to December 2013. First, we identified seismic events induced by volcano-tectonic activities. These micro-earthquake events were identified as having difference of P-wave and S-wave arrival times less than three seconds. Then, we constrained its location of hypocenter to locate the source of the activities. Hypocenter determination was performed using adaptive simulated annealing method. Using these results, seismic tomographic inversions were conducted to image the three-dimensional velocity structure of Vp, Vs, and the Vp/Vs ratio. In this study, 278 micro-earthquake events have been identified and located. Distribution of hypocenters around Tangkuban Parahu volcano forms an alignment structure and may be related to the stress induced by magma below, also movement of shallow magma below Domas Crater. Our preliminary tomographic inversion results indicate the presences of low Vp, high Vs, and low Vp/Vs ratio that associate to accumulated young volcanic eruption products and hot material zones.

  5. Contrasting velocity-porosity relationships in differing tectonic regimes, Nankai Trough subduction zone, Japan: implications for pore pressure and effective stress estimation

    NASA Astrophysics Data System (ADS)

    Tudge, J.; Webb, S. I.; Tobin, H. J.

    2012-12-01

    The identification of areas of anomalously high porosity in subduction zones can have implications for fluid pressure, flow paths and the calculation of vertical effective stress in and under accretionary wedges. The relationship between p-wave velocity (Vp) and porosity is particularly useful for the estimation of fluid and solid material budgets in the subduction process because Vp is detectable with seismic reflection and refraction imaging. Data from cores and borehole logging can be used to develop quantitative Vp to porosity transforms, which in turn permit estimation of porosity from seismic reflection and refraction interval velocity. The relationship between Vp and porosity in sediments, however, is intrinsically linked to their burial history and tectonic evolution. Focusing on data from recent IODP drilling for the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) offshore Japan, we investigate the relationship between Vp and porosity for the different tectonic regions of a subduction zone accretionary complex, since universal transforms are shown to fit the data poorly. We demonstrate that each of the tectonic domains, Kumano forearc basin, accretionary wedge, and incoming Shikoku Basin sediments, exhibit very different Vp-porosity relationships. In addition, we show for sediments of the incoming plate (Shikoku Basin) section that correction of the core porosity data for smectite content results in a substantially modified Vp-porosity relationship. We use these new tectonic domain-specific Vp-porosity relationships to calculate estimated porosity from p-wave velocity models derived from seismic reflection data and OBS studies. By applying the specific Vp-porosity relationship in each tectonic region, a better-constrained estimate of distribution of porosity within the subduction zone accretionary prism complex, particularly across the main fault zones and décollement can be made. For example, when this approach is applied to the velocity reversal

  6. Geomorphic signatures of active tectonics in the Trans-Yamuna segment of the western Doon valley, northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Philip, George; Sah, Madho P.

    Being involved in the late orogenic movements of the sub-Himalaya, the Doon valley and its Quaternary formations have received considerable attention from Earth scientists in the study of active tectonics and paleoseismic events. Study of aerial photographs and satellite data, and selected field checks not only confirmed neotectonic features already reported by various authors but also revealed the presence of more such features. In response to active tectonics, these features have affected very young terraces and Quaternary sediments in the Trans-Yamuna segment of the Doon valley in the western sub-Himalaya. In the present study, an attempt has been made to understand the neotectonic implications of these movements on landforms in and around Sataun-Sirmuri Tal. Ground evidence indicates that the area has experienced at least three major tectonic impulses since the generation of the Main Boundary Thrust. The major tectonic disturbances are most likely due to co-seismic activity along the ongoing Himalayan tectonic processes. In this paper, we discuss some of the strong geomorphic signatures, such as lineament and active fault traces, pressure ridges, sag ponds, alluvial fans, river terraces and finally landslides, which are indicative of active tectonics in this area. On the basis of the present-day geomorphic configuration of this sub-Himalayan basin, a possible evolutionary history is also presented.

  7. Active Tectonics In The Rukwa Rift (sw Tanzania): A Study of The Potential For Large Earthquakes In A Continental Rift.

    NASA Astrophysics Data System (ADS)

    Kervyn, F.

    The Rukwa rift is a deep sedimentary basin that is considered as a tectonic trans- fer zone between the Tanganyika and the Malawi troughs. The tectonic evolution of the depression is controlled by the reactivation of proterozoic structures and started with the deposition of the permo-triasic Karoo sediments. In the southeast, the rift is divided into two facing half graben separated by a Precambrian horst, whereas its northwestern part has a more symmetrical graben structure. Although most of the vertical displacement is accommodated by the Lupa eastern boundary fault, onshore shallow seismic profiles have confirmed the co-occurrence of intrabasin synthetic- and strike-slip faults within the sub surface sediments. Both normal and dextral strike-slip movement are indeed observed in the basin in response to the E-W to WNW-SSE ex- tension. The region has a moderate seismic activity and the earthquakes magnitude is generally below M 6.5. However, a M 7.4 earthquake occurred in the Rukwa region in 1910 but its exact location remains uncertain. The current research aimed at the identi- fication of active faults within the recent deposits of the basin by the combination in a GIS of radar interferometric data with topographical and geological maps, geophysical data, and field observations. Radar interferometry (InSAR) was found to be especially suitable for DEM computation in low relief areas where available topographic data are limited in accuracy. Numerous topographic lineaments were observed on InSAR DEM, and follow two main directions, both oblique to the main NW-SE trend of the rift. On the one hand, the GIS analysis confirms that the observed lineaments corre- spond to real natural alignment such like the drainage for example, and are therefore not related to atmospheric artefacts. On the other hand, the field observations revealed that in most cases, the topographic lineaments are very subtle and difficult to identify. However, direct correlations with tectonic

  8. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  9. Growth of a tectonic ridge

    SciTech Connect

    Fleming, R.W.; Messerich, J.A.; Johnson, A.M.

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  10. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    NASA Astrophysics Data System (ADS)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  11. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stöckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc

  12. Similarities and contrasts in tectonic and volcanic style and history along the Colorado plateaus-to-basin and range transition zone in Western Arizona: Geologic framework for tertiary extensional tectonics

    NASA Technical Reports Server (NTRS)

    Young, R. A.; Mckee, E. H.; Hartman, J. H.; Simmons, A. M.

    1985-01-01

    The overall temporal and spatial relations between middle Tertiary volcanism and tectonism from the Basin and Range province onto the edge of the Colorado Plateaus province suggest that a single magnetic-tectonic episode affected the entire region more or less simultaneously during this period. The episode followed a post-Laramide (late Eocene through Oligocene) period of 25 million years of relative stability. Middle Tertiary volcanism did not migrate gradually eastward in a simple fashion onto the Colorado Plateau. In fact, late Oligocene volcanism appears to be more voluminous near the Aquarius Mountains than throughout the adjacent Basin and Range province westward to the Colorado River. Any model proposed to explain the cause of extension and detachment faulting in the eastern part of the Basin and Range province must consider that the onset of volcanism appears to have been approximately synchronous from the Colorado River region of the Basin and Range across the transition zone and onto the edge of the Colorado Plateaus.

  13. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  14. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  15. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  16. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China

    NASA Astrophysics Data System (ADS)

    Zhongyuan, Yu; Peizhen, Zhang; Wei, Min; Qinghai, Wei; Limei, Wang; Bin, Zhao; Shuang, Liu; Jian, Kang

    2015-08-01

    The Da'an-Dedu Fault Zone is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Five earthquakes with magnitudes over 5 that occurred during the past 30 years suggest the fault zone is a seismogenic structure with future seismic potential. The structural pattern, tectonic history, Quaternary activity and seismic potential have previously been unknown due to the Quaternary sedimentary coverage and lack of large historic earthquakes (M > 7). In this paper, we use seismic reflection profiles and drilling from petroleum explorations and shallow-depth seismic reflections to study those problems. The total length of the Da'an-Dedu Fault Zone is more than 400 km; modern seismicity delineates it into 4 segments each with a length of 90-100 km. In cross-section view, the folds and associated faults form a complex structural belt with a width of more than 10 km. Shallow-level seismic reflection across the Da'an-Dedu Fault Zone reveals that the Late Quaternary sediments were folded and faulted, indicating its present tectonic activity. The Da'an-Dedu Fault Zone and Songliao Basin have been subjected to three stages of tectonic evolution: a rifting stage characterized by normal faulting and extension (∼145-112 Ma), a prolonged stage of thermal subsidence (∼112-65 Ma), and a tectonic reversal that has been taking place since ∼65 Ma. Our shallow-level reflection profiles show that the folding and reverse faulting have influenced the Late Quaternary sediments. The seismicity and moderate earthquakes suggest that the tectonic activity persists today. The deformation rate across the Da'an-Dedu Fault Zone, however, is measured to be very slow. In conjunction with the inference that most deformation in NE China may be taken up by the Yilan-Yitong Fault Zone bounding the Songliao Basin to the east, we suggest moderate earthquake potential and thus moderate seismic hazards along the Da'an-Dedu Fault Zone. The geological structures, which

  17. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  18. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  19. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  20. Sedimentology of seismo-turbidites off the Cascadia and northern California active tectonic continental margins, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Gutierrez Pastor, Julia; Nelson, Hans; Goldfinger, Chris; Escutia, Carlota

    2013-04-01

    Holocene turbidites from turbidite channel systems along the active tectonic continental margins of the Cascadia subduction zone (offshore Vancouver Island to Mendocino Triple Junction) and the northern San Andreas Transform Fault (the Triple Junction to San Francisco Bay), have been analyzed for sedimentologic features related to their seismic origin. Centimeter thick silt/sand beds (turbidite base) capped by mud layers (turbidite tail) and interbedded with hemipelagic silty clay intervals with high biogenic content have been characterized by visual core descriptions, grain-size analysis, X-ray radiographs and physical properties. Along the northern California margin in upstream single tributary canyons and channels, most turbidites are uni-pulsed (classic fining up) whereas downstream below multiple tributary canyon and channel confluences, most deposits are stacked turbidites. Because each set of stacked turbidites has no hemipelagic sediment between each turbidite unit and each unit has a distinct mineralogy from a different tributary canyon, we interpret that a stacked turbidite is deposited by several coeval turbidity currents fed by multiple tributary canyons and channels with synchronous triggering from a single San Andreas Fault earthquake. The Cascadia margin is characterized by individual multi-pulsed turbidites that contain multiple coarse-grained sub-units without hemipelagic sediment between pulses. Because the number and character of multiple coarse-grained pulses for each correlative multi-pulsed turbidite is almost always constant both upstream and downstream in different channel systems for 600 km along the margin,we interpret that the earthquake shaking or aftershock signature is usually preserved, for the much stronger Cascadia (≥9 Mw) compared to weaker California (≥8Mw) earthquakes, which result in upstream uni-pulsed turbidites and downstream stacked turbidites. Consequently, both the strongest (≥9 Mw) great earthquakes and downstream

  1. Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions

    PubMed Central

    Nishimune, Hiroshi

    2013-01-01

    Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013

  2. The structural controls of gold mineralisation within the Bardoc Tectonic Zone, Eastern Goldfields Province, Western Australia: implications for gold endowment in shear systems

    NASA Astrophysics Data System (ADS)

    Morey, Anthony A.; Weinberg, Roberto F.; Bierlein, Frank P.

    2007-08-01

    The Bardoc Tectonic Zone (BTZ) of the late Archaean Eastern Goldfields Province, Yilgarn Craton, Western Australia, is physically linked along strike to the Boulder-Lefroy Shear Zone (BLSZ), one of the richest orogenic gold shear systems in the world. However, gold production in the BTZ has only been one order of magnitude smaller than that of the BLSZ (˜100 t Au vs >1,500 t Au). The reasons for this difference can be found in the relative timing, distribution and style(s) of deformation that controlled gold deposition in the two shear systems. Deformation within the BTZ was relatively simple and is associated with tight to iso-clinal folding and reverse to transpressive shear zones over a <12-km-wide area of high straining, where lithological contacts have been rotated towards the plane of maximum shortening. These structures control gold mineralisation and also correspond to the second major shortening phase of the province (D2). In contrast, shearing within the BLSZ is concentrated to narrow shear zones (<2 km wide) cutting through rocks at a range of orientations that underwent more complex dip- and strike-slip deformation, possibly developed throughout the different deformation phases recorded in the region (D1-D4). Independent of other physico-chemical factors, these differences provided for effective fluid localisation to host units with greater competency contrasts during a prolonged mineralisation process in the BLSZ as compared to the more simple structural history of the BTZ.

  3. The Gürün Curl, SE Turkey: a potential link from crustal tectonics to mantle dynamics in the Arabia-Eurasia collision-escape zone

    NASA Astrophysics Data System (ADS)

    Lefebvre, C.; Umhoefer, P. J.; Kaymakci, N.; Meijers, M. J.; Teyssier, C. P.; Whitney, D. L.; Reid, M. R.; Gencalioglu Kuscu, G.; Cosca, M. A.; Brocard, G. Y.; Rojay, B.

    2013-12-01

    The Anatolian plate is an active orogen in which spatial and temporal transitions between subduction, collision, and escape dynamics can be evaluated. Within the scope of the Continental Dynamics - Central Anatolian Tectonics project (CD-CAT), integrated efforts are combined to explore connections between surface and deep mantle as Anatolia transitioned from subduction to escape. In this study, we investigate a portion of this system that is situated between the Central Anatolian Fault Zone in the NW and East Anatolian Fault Zone in the SE. In this area, Paleozoic-Mesozoic platform carbonates, ophiolitic rocks and their Cenozoic volcano-sedimentary cover form a ~50 km wide belt oriented NE-SW in the west and curving toward the east and then toward the south in the east. The core of this structure comprises the Binboğa metamorphic massif and the Göksun ophiolite, and the outer rim is delimited by the Kangal and Malatya basins which are filled with Neogene sediments and volcanics. We call this large structure the 'Gürün Curl' for its curved shape; it is ~200 km long and ~250 km wide. The origin of the Gürün Curl and its potential connection with deep processes are investigated using a multi-disciplinary approach. The main questions we would like to address are the following: what exactly defines this observed curvature? Were the belts originally curved, or were they deformed into the Curl? Was it affected by topographic, crustal and/or lithospheric processes? When and how did it form? Four main fault-zones dissect the Gürün curl: three sub-parallel NNE-SSW oriented left lateral faults (from west to east, the Sariz, Gürün, and Malatya faults) and the ~E-W oriented right lateral Sürgü fault in the south. The kinematics and evolution of these faults are investigated in connection with the development and deformation of Miocene basins throughout the curl (e.g. Gürün, Darende, Elbistan basins) as well as the spatial, temporal, and geochemical evolution of

  4. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  5. Serpentinite slices within a tectonic zone at the base of the Juvavic nappe system in the Northern Calcareous Alps (Austria): characterization and origin

    NASA Astrophysics Data System (ADS)

    Boehm, Katharina; Schuster, Ralf; Wagreich, Michael; Koller, Friedrich; Wimmer-Frey, Ingeborg

    2014-05-01

    The investigated serpentinites are present in an ENE-WSW orientated tectonic zone at the base of Juvavic nappes (Northern Calcareous Alps), situated at the eastern margin of the Eastern Alps (Lower Austria). They form small tectonically squeezed slices, which are embedded in Permotriassic schists and Middle to Upper Triassic limestones. These serpentinites play an important, but not yet understood role in reconstructing Neotethys evolution, Alpine Orogeny and the correlation of Dinarides and Alps. The largest serpentinite body near to Unterhöflein is 400 to 100 meters in size and was investigated by mineralogical (XRD) and petrological/geochemical (XRF) methods. The primary mineral composition is olivine + orthopyroxene + clinopyroxene + chrome spinel. Pseudomorphs of pyroxenes are visible macroscopically, but almost all primary minerals are replaced by serpentine minerals. Former olivine is converted to chrysotile minerals, which show typical reticulate textures, orthopyroxene turned into lizardite pseudomorphs and chrome spinel is almost completely altered to magnetite. Major contents of chrysotile-α, chrysotile-γ and lizardite and minor antigorite, as well as secondary minerals like talc, chlorite and hydrogrossular were identified with XRD. Results from whole rock geochemistry indicate harzburgitic precursor rocks for the serpentinites. According to the low antigorite content, the rocks have only a weak metamorphic imprint and therefore an obduction rather than a subduction history is likely. This leads to the assumption that these serpentinites possibly originate from the Neotethys and not from the Penninic oceanic realm. Further, the tectonic position of the serpentinite slices is in close vicinity to sediments of the Meliata unit which also occur between Juvavic and underlying Tirolic nappe system (Mandl & Ondrejickova, 1993). Additionally, remnants from ophiolite nappes are found reworked into the surrounding Upper Cretaceous Gosau Group. In the latter

  6. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  7. Archaeological evidences of the tectonic activity of Shueib Structure (NW Jordan)

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, Mohammad; Azañón, J. Miguel; Pérez-Peña, J. Vicente; Booth-Rea, Gillermo

    2014-05-01

    Archaeological damage in buried ruins often offers an excellent record of recent tectonic activity. The lower Jordan valley has experienced a continuous occupation in the last 5000 year, being frequent archaeological remains of human settlements along the valley. In this work we studied the Early Neolithic-to-Middle Islamic Periods archaeological site of Tall al-Hammam (Arabic name, ¨Hill of Baths¨). This ruin is located 27 km southwest of Amman city and it constitutes the largest Bronze Age archaeological site in Jordan. It consists of two main parts; the Upper Tall and the Lower Tall. This ruin lies within the southwestern termination of the Shueib structure (SHS); a Cretaceous fold-bend fault structure thought inactive through the entire Cenozoic. The relics, in the lower Tall, show clear fault-related damage in some walls. Two Middle Bronze Age (MBA) walls are displaced 26 and 20 cm respectively, according with a NNE-SSW fault plane. Apart of wall displacements, hundreds of joints and cracks in boulders of the walls are present. They strike generally NW-SE and NE-SW. Both archaeological evidences, boulder fractures and walls distortion, are coherent with the present-day tectonic setting of the Dead Sea Transform Fault in the region, and suggest a Quaternary reactivation of the SHS.

  8. Beyond surface heat flow: An example from a tectonically active sedimentary basin

    NASA Astrophysics Data System (ADS)

    Armstrong, Phillip A.; Chapman, David S.

    1998-02-01

    Thermal anomalies that have important geodynamic implications may not always be recognizable in present-day surface heat-flow patterns. The masking occurs because surface heat flow responds to mantle heat, crustal radioactivity, magmatism, crustal deformation, burial and/or exhumation, and fluid movement, any of which may offset the thermal effects of the others. Sedimentary basins are particularly suited to partitioning heat flow into its various components. We use Taranaki basin, New Zealand, as an example. It has a relatively undeformed (since the Miocene) western region that is used as a control against which the tectonically active eastern region can be compared. Although surface heat flow is roughly constant across Taranaki basin, basal heat flow modeled at lower crustal upper mantle depths varies by a factor of two or more. A combination of low heat-producing crust and the heat sink effects of crustal thickening in the eastern region can account for the basal heat-flow anomalies. The tectonic thermal anomaly would have gone unnoticed without the aid of detailed basin analysis and thermal modeling.

  9. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  10. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  11. Using Digital Topography to Differentiate Erosionally Exhumed and Tectonically Active Mountains Fronts

    NASA Astrophysics Data System (ADS)

    Frankel, K. L.; Pazzaglia, F. J.

    2003-12-01

    Mountain ranges in the southern Rocky Mountains have departed on unique landscape evolutionary pathways in the late Cenozoic that are directly dependent upon the degree of post-orogenic tectonic activity they have experienced. The topography of Sierra Nacimiento, a Laramide uplift in west-central New Mexico lacking an active range-front fault, is shaped primarily by erosional exhumation that is continuous, but not steady, being driven by distal base level fall from Rio Grande incision and resultant south to north knickpoint migration. In contrast, the topography of the Taos Range, a rift flank uplift in north-central New Mexico is shaped by contrasting active stream incision and aggradation astride an active range front normal fault. The distinction between exhumation-dominated and tectonically-dominated mountain fronts is best quantified by analyses of a new metric we call the drainage basin volume to drainage basin area ratio (V-A ratio) as well as the gradients of first-order streams. Drainage basin volume and area are calculated by constructing topographic envelope maps from 10 m resolution digital elevation models (DEM). The envelope maps are pinned by the watershed divide and cover the maximum elevations in each drainage basin. Subtracting the original DEM from the maximum elevation envelope map produces a topographic residual map from which area and volume data can be obtained. The erosionally exhumed Sierra Nacimiento has a mean V-A ratio of 88 m while the tectonically active Taos Range has a mean V-A ratio of 140 m. Similarly, there are systematic differences in the gradients of first order streams measured both in the range block and approximately 5 km of adjacent piedmont. Streams were defined and subsequently Strahler ordered by a flow accumulation threshold of 250 water-equivalent grid cell units. First order stream channel long profiles were extracted from the DEM at 30 meter increments and gradients were calculated by a FORTRAN program. Gradients of

  12. Long and Short-term Hydro-Tectonic Events in the South-Iceland Seismic Zone, Associated with Two Large Earthquakes in June 2000

    NASA Astrophysics Data System (ADS)

    Bjornsson, G.; Flovenz, O. G.; Saemundsson, K.

    2001-12-01

    Two large earthquakes (M 6.6), which struck the S-Iceland Seismic Zone on June 17 and June 21 2000, caused considerable pressure changes in geothermal as well as groundwater reservoirs. These reservoirs range in depth from surface down to a minimum of 2 km. An effort has been made to collect and analyze the hydraulic changes caused by the quakes. Four primary sets of hydraulic events are identified from these data. Firstly, pre-quake fluctuations on a time scale of 23 hours to 6 months. Secondly, immediate pressure changes, perfectly correlated to the focal mechanism of the two quakes. Thirdly, a recovery period of several weeks to months, which in some cases may correlate with a new stress field and, consequently, a change in the shallow crust permeability. These permanent permeability changes have enhanced productivity of two geothermal reservoirs by as much as 1/3. Fourthly, we have identified after-quake local hydraulic perturbations, which may relate to a sudden change in fracture porosity or a change of reservoir status from confined to unconfined. Other events are also of interest, like an ice dammed flooding of a major river in January 2001, near the fault zone of the June 21 quake. This hydraulic load caused lively and synchronized pressure fluctuations in two wells, 15-20 km away. The data collected by the after-quake monitoring program strongly suggest that hydraulic pressure is a valuable parameter in understanding tectonic processes within the S-Iceland seismic zone.

  13. Cabling a Tectonic Plate—Continuous Live Data from the Cascadia Subduction Zone is Enabled through Ocean Networks Canada's NEPTUNE Observatory and the Ocean Observatories Initiative's Cabled Array

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Scherwath, M.; Moran, K.; Wilcock, W. S. D.; Thomson, R.; Davis, E. E.

    2015-12-01

    Ocean Networks Canada (ONC) and the Ocean Observatories Initiative (OOI) have established cabled observatories that span the entire Juan de Fuca plate, from the North-American west coast, across the Cascadia subduction zone, to the Juan de Fuca Ridge. These cabled observatories provide power and high bandwidth internet connectivity to the seafloor, enabling continuous and high resolution real-time data acquisition. This combination serves several important purposes for seismology, geodesy and tectonics: seismograph data from the top of the subduction zone are available in real time to significantly improve the localization in particular of small to intermediate subduction zone earthquakes, typically the precursors of large megathrust events, whose detection was traditionally limited by the sensitivity of land seismographs. In addition, bottom pressure recorders are detecting tsunamis in real-time which helps live updating of tsunami models before far field tsunamis fall on land. Finally, long-term seafloor geodesy experiments can be installed without the need to recover or replace them with fresh batteries but instead bury them deeply such as in boreholes. Most cabled installations on both the Canadian and US observatories are completed and have been streaming live data to shore, readily available to monitoring agencies and researchers (seismometer data is available from IRIS, the Incorporated Research Institute for Seismology).

  14. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  15. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase 2): Volume 2

    SciTech Connect

    Payne, J.; Bandy, B.; Altis, S.; Lee, M.C.; Dwan, S.F.; Ku, K.; Hilde, T.W.C.

    1989-02-01

    The objectives of this study represent a continuation and refinement of the objectives addressed in Phase 1. This study focuses on trying to define the tectonics of sediment subduction at the trench axis through the use of accepted plate tectonic principles and the application of new subduction theory. The fundamental methods include: (1) compilation of all available bathymetric data from our Global Marine Geophysical Data Collection for all major ocean trenches, (2) generation of stacked bathymetric profiles and corresponding navigational maps, and structural maps, (3) selection and analysis of appropriate seismic reflection and refraction profiles and additional supporting data such as side-scan sonar, SEABEAM, magnetic, gravity and drilling data, and (4) detailed study study of selected trench regions in which data quality and/or quantity is exceptional. Phase 2 of this project represents a unique compilation and synthesis of existing data for the world's deep ocean trenches. The analysis of data and discussion of results in the context of current literature aids our understanding of the sediment distribution and nature of sediment deformation through various stages of plate convergence, the determination of whether sediments are subducted or accreted, and the evaluation of the controlling factors for sediment subduction and/or accretion. A discussion on petroleum and natural gas hydrate resource potential is included.

  16. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase 2): Volume 1

    SciTech Connect

    Payne, J.; Bandy, B.; Altis, S.; Lee, M.C.; Dwan, S.F.; Ku, K.; Hilde, T.W.C.

    1989-02-01

    This is volume one of three volumes. The objectives of this study represent a continuation and refinement of the objectives addressed in Phase I. This study focuses on trying to define the tectonics of sediment subduction at the trench axis through the use of accepted plate tectonic principles and the application of new subduction theory. The fundamental methods include: (1) compilation of all available bathymetric data from our Global Marine Geophysical Data Collection for all major ocean trenches, (2) generation of stacked bathymetric profiles and corresponding navigational maps, and structural maps, (3) selection and analysis of appropriate seismic reflection and refraction profiles and additional supporting data such as side-scan sonar, SEABEAM, magnetic, gravity and drilling data, and (4) detailed study of selected trench regions in which data quality and/or quantity is exceptional. Phase II of this project represents a unique compilation and synthesis of existing data for the world's deep ocean trenches. The analysis of data and discussion of results in the context of current literature aids our understanding of the sediment distribution and nature of sediment deformation through various stages of plate convergence, the determination of whether sediments are subducted or accreted, and the evaluation of the controlling factors for sediment subduction and/or accretion. A discussion is included on forearc petroleum and natural gas hydrate resource potential. 128 figs.

  17. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase 2): Volume 3

    SciTech Connect

    Payne, J.; Bandy, B.; Altis, S.; Lee, M.C.; Dwan, S.F.; Ku, K.; Hilde, T.W.C.

    1989-02-01

    The objectives of this study represent a continuation and refinement of the objectives addressed in Phase 1. This study focuses on trying to define the tectonics of sediment subduction at the trench axis through the use of accepted plate tectonic principles and the application of new subduction theory. The fundamental methods include: (1) compilation of all available bathymetric data from our Global Marine Geophysical Data Collection for all major ocean trenches, (2) generation of stacked bathymetric profiles and corresponding navigational maps, and structural maps, (3) selection and analysis of appropriate seismic reflection and refraction profiles and additional supporting data such as side-scan sonar, SEABEAM, magnetic, gravity and drilling data, and (4) detailed study of selected trench regions in which data quality and/or quantity is exceptional. Phase 2 of this project represents a unique compilation and synthesis of existing data for the world's deep ocean trenches. The analysis of data and discussion of results in the context of current literature aids our understanding of the sediment distribution and nature of sediment deformation through various stages of plate convergence, the determination of whether sediments are subducted or accreted, and the evaluation of the controlling factors for sediment subduction and/or accretion. A major emphasis in our analysis of the data was to try and map the seaward-of-the-trench distribution of faults and associated surface roughness. Illustrations and an extensive bibliography are included in the report.

  18. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  19. Geodetic component of the monitoring of tectonic and hydrogeological activities in Kopacki Rit Nature Park

    NASA Astrophysics Data System (ADS)

    Dapo, Almin; Pribicevic, Bosko

    2013-04-01

    Based on the European and global experience, the amplitude change in the structural arrangement caused by recent tectonic movements, can be most accurately determined by repeated precise GPS measurements on specially stabilized geodetic and geodynamic points. Because of these reasons, the GPS method to determine the movements on specially stabilized points in the Nature park Kopacki rit is also applied in this project. Kopacki rit Nature Park is the biggest preserved natural flooded area on the Danube. It is spread over 23 000 hectares between the rivers Danube and Drava and is one of the biggest fluvial wetland valleys in Europe. In 1993 it was listed as one of internationally valuable wetlands according to the Ramsar Convention. By now in Kopacki rit there have been sights of about 295 bird species, more than 400 species of invertebrates and 44 types of fish. Many of them are globally endangered species like, white tailed eagle, black stork and prairie hawk. It's not rare to come across some deer herds, wild boars or others. Today's geological and geomorphological relations in the Nature park Kopacki rit are largely the result of climate, sedimentary, tectonic and anthropogenic activity in the last 10,000 years. Unfortunately the phenomenon of the Kopacki rit Nature park is in danger to be over in the near future due to those and of course man made activities on the Danube river. It is trough scientific investigations of tectonic and hydrogeological activities that scientist from University of Zagreb are trying to contribute to wider knowledge and possible solutions to this problem. In the year 2009 the first GPS campaign was conducted, and the first set of coordinates of stabilized points was determined which can be considered zero-series measurements. In 2010 a second GPS campaign was conducted and the first set of movements on the Geodynamic Network of Kopacki Rit Nature Park was determined. Processing GPS measurements from 2009 and 2010 was carried out in a

  20. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    earthquake activity shows that this region is tectonically still active (Mosar, 1999) with numerous earthquakes. The exposure ages imply that the rock failure occurred during the middle Holocene, a period of increased neotectonic activity in Eastern Alps suggested by Prager et al. (2007). This time period also coincides with notably wet climate, which has been suggested as an important trigger for landslides around this age across the Alps (Zerathe et al., 2014).

  1. The strain and textural history of thin-skinned tectonic zones: examples from the Assynt region of the Moine thrust zone, NW Scotland

    NASA Astrophysics Data System (ADS)

    Coward, M. P.

    The Moine thrust zone at Assynt is a classical example of a foreland propagating, thin-skinned thrust zone, ideal for an examination of thrust-related folds, deformation textures and strains and complex incremental strain history. Divergent transport directions, oblique trending folds, duplex zones and extensional strains normal to the main transport direction may all be explained in terms of thrust propagation, leading to the development of oblique to lateral ramps. The majority of thrusts cut up section from basement to cover in the transport direction but there is also localised extensional flow and thinning of the thrust sheets. In northern Assynt, the thrust zone involves a wide vertical zone of sinistral shear, within which forethrusts, backthrusts and associated folds and cleavages are oblique to the general transport direction. It is suggested that north of this shear, the thrusts moved further, probably under a thicker cover, while to the south, movement was more intermittent, probably under a thinner cover. This variation is probably due to a change in thrust geometry in the Moines, east of the Moine thrust zone, causing a variation in gravitational potential along the length of the Moine thrust.

  2. Active strike-slip faulting history inferred from offsets of topographic features and basement rocks: a case study of the Arima Takatsuki Tectonic Line, southwest Japan

    NASA Astrophysics Data System (ADS)

    Maruyama, Tadashi; Lin, Aiming

    2002-01-01

    Geological, geomorphological and geophysical data have been used to determine the total displacement, slip rates and age of formation of the Arima-Takatsuki Tectonic Line (ATTL) in southwest Japan. The ATTL is an ENE-WSW-trending dextral strike-slip fault zone that extends for about 60 km from northwest of the Rokko Mountains to southwest of the Kyoto Basin. The ATTL marks a distinct topographic boundary between mountainous regions and basin regions. Tectonic landforms typically associated with active strike-slip faults, such as systematically-deflected stream channels, offset ridges and fault scarps, are recognized along the ATTL. The Quaternary drainage system shows progressive displacement along the fault traces: the greater the magnitude of stream channel, the larger the amount of offset. The maximum dextral deflection of stream channels is 600-700 m. The field data and detailed topographic analyses, however, show that pre-Neogene basement rocks on both sides of the ATTL are displaced by about 16-18 km dextrally and pre-Mio-Pliocene elevated peneplains are also offset 16-17 km in dextral along the ATTL. This suggests that the ATTL formed in the period between the development of the pre-Mio-Pliocene peneplains and deflection of the Quaternary stream channels. The geological, geomorphological and geophysical evidence presented in this study indicates that (1) the ATTL formed after the mid-Miocene, (2) the ATTL has moved as a dextral strike-slip fault with minor vertical component since its formation to late Holocene and (3) the ATTL is presently active with dextral slip rates of 1-3 mm/year and a vertical component of >0.3 mm/year. The formation of the ATTL was probably related to the opening of the Japan Sea, which is the dominant tectonic event around Japan since mid-Miocene. The case study of the ATTL provides insight into understanding the tectonic history and relationship between tectonic landforms and structures in active strike-slip faults.

  3. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  4. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  5. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  6. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    NASA Astrophysics Data System (ADS)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion

  7. Holocene canyon activity under a combination of tidal and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu; Micallef, Aaron; Stevens, Craig; Stirling, Mark

    2013-04-01

    The majority of submarine canyon systems that are active during sea level highstands are coupled to terrestrial or littoral sediment transport systems (e.g. high sediment-yield rivers, wave-base sediment disturbance). However, non-coupled canyon systems can also exhibit sedimentary activity. Characterising the nature, origin, and spatial and temporal influence of the processes responsible for this sedimentary activity is important to understand the extent of sediment and carbon transfer to the deep sea, the impact of sedimentary flows on biological colonisation and diversity, and the control of recent seafloor processes on canyon morphology. The Cook Strait canyon system, between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially-coupled system. Sediment transport on the continental shelf, associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data reveals a system where oceanographic (tidal) and tectonic (earthquake) processes are moving sediment from the continental shelf, through the upper canyon, and finally to the deep ocean. Sediment accumulation rates may reach several mm/yr in the upper canyons, with data suggesting minimum rates of 0.5 mm/yr. We demonstrate that tidal currents are sufficient to mobilise fine to medium sand around and within the upper canyon

  8. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region

  9. Normal faulting along the western side of the Matese Mountains: Implications for active tectonics in the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Dichiarante, Anna Maria; Auciello, Eugenio; Saroli, Michele; Stoppa, Francesco

    2016-01-01

    We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4-5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3-0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano - Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW-SE and progressively bending to the E-W in its southern part, and a 7 km-long segment striking E-W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over). An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese - Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2-3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic

  10. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Deeds, Daniel A.; Kulongoski, Justin T.; Mühle, Jens; Weiss, Ray F.

    2015-02-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (Cre; ∼30 fmol kg-1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1-9 times Cre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10-980 times Cre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20-100 km) suggests that the SAFS potentially emits (0.3- 1) ×10-1 kg CF4 yr-1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 ×104km2 of granitic rock in California is estimated to release (0.019- 3.2) ×10-1 kg CF4 yr-1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial-interglacial transitions.

  11. Evidence for Tectonic Activity During the Mature Harappan Civilization, 2600-1800 BCE

    NASA Astrophysics Data System (ADS)

    Grijalva, K. A.; Kovach, R. L.; Nur, A. M.

    2006-12-01

    level, along with tectonic uplift from great Makran subduction zone earthquakes, can explain the conundrum of why these sites are now tens of kilometers inland. Dislocation modeling demonstrates that several great subduction earthquakes in the historical past could easily have raised the Harappan settlements to their current inland positions above sea level. The examples presented demonstrate that earthquakes affected the demise of several Harappan sites either by direct shaking damage, altering the water supply, or by changing the relative sea level.

  12. Kinematics of the Torcal Shear Zone: Transpressional tectonics in a salient-recess transition at the northern Gibraltar Arc

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Balanyá, J. C.; Díaz-Azpiroz, M.; Expósito, I.; Jiménez-Bonilla, A.

    2015-11-01

    Complex strain patterns in the Gibraltar Arc derive from the interaction between the westward drift - and concomitant back-arc extension - of the arc hinterland (Alboran Domain) and the Europe-Africa convergence. In order to explore strain partitioning modes within the arc and the role played by large-scale oblique structures, we have studied the kinematics of the Torcal Shear Zone located at the northern branch of the Gibraltar Arc. The Torcal Shear Zone is a 70 km-long, E-W brittle-ductile shear zone that underwent overall dextral transpression during the Late Miocene to Quaternary time. Within the Torcal Shear Zone strain is highly partitioned at multiple scales into shortening, oblique, extensional and strike-slip structures. Moreover, strain partitioning is heterogeneous along-strike giving rise to four distinct structural domains. In the central sector the strain is pure-shear dominated, although narrow sectors parallel to the shear walls are simple-shear dominated. A single N99°E-N109°E trending horizontal velocity vector (V→) could explain the kinematics of the entire central sector of the Torcal Shear Zone. Lateral domains have different strain patterns and are comparable to splay-dominated and thrust-dominated strike-slip fault tips. The Torcal Shear Zone provokes the subvertical extrusion of the External Betics units against the Alboran Domain and a dextral deflection of the structural trend. Moreover, the estimated V→ points to the importance of the westward motion of the hinterland relative to the external wedge and fits well with the radial outward thrusting pattern identified in the arc.

  13. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Pe-Piper, Georgia; Piper, David J. W.; Guo, Zhaojie

    2014-12-01

    The Baijiantan and Darbut ophiolites in West Junggar are exposed in steep fault zones (>70°) containing serpentinite mélange, in contact on either side with regionally distributed Upper Devonian-Lower Carboniferous ocean floor peperitic basalts and overlying sedimentary successions. The ophiolitic mélanges show classic structural features created by strike-slip faulting and consistent shear sense indicators of left-slip kinematics. Sandstone blocks within the mélanges resemble the surrounding sediments in lithology and age, indicating that the ophiolitic mélanges consist of locally derived rocks. The ophiolitic mélanges therefore originated from left-slip fault zones within a remnant basin and are not plate boundaries nor subduction suture zones. Sandstone is the youngest lithology involved in the mélange and provides a maximum age for the mélange of 322 Ma, whereas stitching plutons are younger than 302 Ma. Multiple clusters in zircon ages from single gabbro blocks in the mélange at ~375, ~360, ~354, and ~340 Ma are inconsistent with accretionary incorporation of subducting ocean crust but rather suggest that episodic movement of the faults provided pathways for magma from the mantle into magma chambers. Late Paleozoic tectonic evolution of West Junggar involved Late Devonian to Carboniferous relative motion between the Junggar block and West Junggar ocean basin, which triggered the left-slip fault zones within a remnant ocean basin, along which the oceanic crust was disrupted to form linear ophiolitic mélanges. Final filling of this remnant ocean basin and its dismemberment by strike-slip faulting occurred in the late Carboniferous, followed by crustal thickening by juvenile granites at the Carboniferous-Permian boundary.

  14. Active zones of mammalian neuromuscular junctions: formation, density, and aging

    PubMed Central

    Nishimune, Hiroshi

    2012-01-01

    Presynaptic active zones are synaptic vesicle release sites that playessential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization utilize presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2, and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. PMID:23252894

  15. Geodetic evidence for tectonic activity on the Strymon Fault System (NE Greece)

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, Vasiliki; Gianniou, Michail; Saltogianni, Vasso; Stiros, Stathis

    2014-05-01

    Geological, seismological and geodetic data have provided so far limited evidence of crustal deformation in northeast Greece (Thrace and East Macedonia); hence, the active tectonics of this area remains largely unknown. Here, we use monthly GPS solutions from 21 permanent stations of the Hellenic GPS Network (HEPOS) to shed light in the kinematics of NE Greece. Analysis of our dataset, that collectively spans a period of five years, shows that displacement vectors that derive from either side of the natural depression of the Strymon (Struma) Valley differ significantly in orientation and magnitude. The latter testify to a clear left-lateral displacement along the Strymon Fault System (SFS) with a mean fault displacement rate of ~3.7 mm/yr, while the area west of it behaves like a quasi-rigid tectonic block. The polarity of shear along the SFS appears to have changed, from right-lateral to left-lateral, during the last ~5 Ma, a period that coincides with the onset of faulting along the prolongation of the fast-moving (>20 mm/yr) North Anatolian Fault into the north Aegean. Thus, left-lateral slip along the SFS may occur in conjunction with, and in response to, right-lateral oblique slip along the North Aegean Trough, indicating that faulting in north Aegean is intimately linked in space and time. If the interseismic strain stored currently across the SFS (~3.7 mm/yr) is released seismically through large magnitude earthquakes, it may have serious implications in the seismic hazard of this densely populated region, which also accommodates important civil infrastructure.

  16. Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, central Japan

    USGS Publications Warehouse

    Sone, Hiroki; Shimamoto, Toshihiko; Moore, Diane E.

    2012-01-01

    We studied a serpentinite-bearing fault zone in Gokasho-Arashima Tectonic Line, Mie Prefecture, central Japan, characterizing its internal structures, mineral assemblage, permeability, and frictional properties. The fault core situated between the serpentinite breccia and the adjacent sedimentary rocks is characterized by a zone locally altered to saponite. The clayey gouge layer separates fault rocks of serpentinite origin containing talc and tremolite from fault rocks of sedimentary origin containing chlorite but no quartz. The minerals that formed within the fault are the products of metasomatic reaction between the serpentinite and the siliceous rocks. Permeability measurements show that serpentinite breccia and fault gouge have permeability of 10−14–10−17 m2 and 10−15–10−18 m2, respectively, at 5–120 MPa confining pressure. Frictional coefficient of the saponite-rich clayey fault gouge ranged between 0.20 and 0.35 under room-dry condition, but was reduced to 0.06–0.12 when saturated with water. The velocity dependence of friction was strongly positive, mostly ranging between 0.005 and 0.006 in terms of a–b values. The governing friction law is not constrained yet, but we find that the saponite-rich gouge possesses an evolutional behavior in the opposite direction to that suggested by the rate and state friction law, in addition to its direct velocity dependence.

  17. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    of seafloor spreading) are adjustment zones that accommodate strains in the lithosphere. Further, the interlocked pattern of the Australian and Pacific plates the past 42 Million years (with their absolute plate motions near 90° to each other) is taken as strong evidence that large thermally driven "roller" convection cells previously inferred as the driving mechanism in earlier interpretations of continental drift and plate tectonics, have not been active in the Earth's mantle the past 42 Million years, if ever. This report also presents estimates of the changes in location and magnitude of the Earth's axis of total plate tectonic angular momentum for the past 62 million years.

  18. Late Proterozoic evolution of the northern part of the Hamisana zone, northeast Sudan - Constraints on Pan-African accretionary tectonics

    NASA Technical Reports Server (NTRS)

    Miller, M. M.; Dixon, T. H.

    1992-01-01

    This paper describes deformation fabrics developed in the northern part of the Hamisana zone in northeast Sudan. New structural data are presented which establish a structural chronology that characterizes distinct events of accretion, folding, and thrust faulting and reactivation of accretion-related faults. The structural data point to an intraplate compressional origin for the Hamisana zone. A review of available isotopic age data is carried out, and it is concluded that Pan-African accretionary processes may have been analogous to Phanerozoic ophiolite and island arc accretion in the western North American Cordillera, where penetrative deformation occurred in response to periodic intraplate shortening events, rather than an ultimate collision of unrelated crustal fragments.

  19. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  20. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase I). Final technical report

    SciTech Connect

    Hilde, T.W.C.

    1984-08-01

    The objective was to determine the fate of sediments at convergent lithospheric plate boundaries. The study focuses on the structures of the Circum-Pacific trenches and shallow portions of the associated subduction zones. Sediment distribution and the nature of sediment deformation was defined through the various stages of plate convergence to determine if the sediments are subducted or accreted. The controlling factors for sediment subduction and/or accretion were determined. 50 figs. (ACR)

  1. Groundwater study using drill holes in the Abukuma granitic province, NE Japan: chemical and isotopic features in the fracture zone around the geological tectonic line

    NASA Astrophysics Data System (ADS)

    Takahashi, H. A.; Tsukamoto, H.; Kazahaya, K.; Takahashi, M.; Morikawa, N.; Yasuhara, M.; Inamura, A.; Handa, H.; Nakamura, T.

    2010-12-01

    Chemical and isotopic features of groundwater in a granitic province are considered to be controlled by water origin, water-rock reaction and/or fracture connection in rocks. Under the depth of a weathering layer, groundwater is existed only in cracks of granite, and its chemical nature or origin has been poorly understood because of difficulties on collection of water samples preserving its natural conditions. On the other hand, a geological tectonic line in a granitic province might provide an influence to groundwater as a path for ascending deep fluid. We conducted a study for chemical processes of groundwater in cracks with investigation of an influence of tectonic line by drilling three bore holes at two sites in a same rock body; Miharu site is located ca. 1.2km west from the Morioka-Shirakawa tectonic line, and Shirasawa site is ca. 5km west. In situ sampling of waters in cracks of granite are done with the single and double packer methods. The drill holes were made 305m and 135m at the Miharu site and 230m at the Shirasawa site. Using these bole holes, groundwater features in the fracture zone around the geological tectonic line can be compared with those outside it. Chemical type of groundwater has a variety with depth; the shallower groundwater is categorized as Ca-HCO3- type with slight NO3 contamination whereas deeper groundwater has Na-HCO3- type. Stable isotope composition of water showed that all the sample water is meteoric origin. Those have significantly low values (ca. 10‰ of δD lower than shallow groundwater) obviously indicating that the groundwater does not originate from the present meteoric water. Groundwater with low δD and δ18O values is likely recharged in an ice age consistent with the 14C date showing the age of carbon ranging from 10000 to 15000 yrBP. The vertical trends of chemical and isotopic components are similar between the two holes at the Miharu site, but different between the two sites, Miharu and Shirasawa. The

  2. Geomorphic assessment of the tectonic activity of Qiulitagh fold-belt, Kuqa foreland basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Saint Carlier, Dimitri; Graveleau, Fabien; Delcaillau, Bernard; Hurtrez, Jean-Emmanuel; Vendeville, Bruno

    2014-05-01

    The Qiulitagh fold belt is an anticline structure located in the Kuqa fold-and-thrust belt (southern Tian Shan, China), whose active folding is well documented by structural and palaeomagnetic studies (Chen et al., 2007; Hubert-Ferrari et al., 2007; Li et al., 2012; Wang et al., 2011). The topography of Quilitagh fold belt can be divided into two SW-NE parallel ridges: 1) a 90 km long northern ridge, composed of the Northern Qiulitagh anticline and the Yakelike anticline, and 2) a 165km long southern ridge, composed of the Southern Qiulitagh anticline and the Mishikantage anticline. Due to the current absence of vegetation and relative homogeneity of outcropping lithologies (mainly Neogene detrital sandstone and silstone), these anticlines provide exceptional field cases for investigating the dynamic relationships between fold growth mechanisms, the subsurface structures, the geomorphic entities and the drainage network evolution. We used free topographic and satellite image datasets to carry out a morphometric study of the Quilitagh fold-belt and investigate the kinematics of active folding. Topographic datasets include Digital Elevation Models (DEM) from the NASA SRTM V.4.0 and ASTER programs, whereas satellite images are extracted from Landsat 7 shots and Google Earth. These datasets were incorporated in GIS software where three scales of observation were investigated: 1) a global fold scale, 2) a drainage basin scale and 3) a valley scale. At the drainage basin scale, we selected about 250 items and quantified several geomorphic indices of relative active tectonic growth. These are the basin mean slope, hypsometric integral, basin asymmetry and local relief. We also used published seismic profiles to link the 3D subsurface geometry of the salt-related Qiulitagh fold belt with the geomorphic signal. Results indicate that the morphometry of Quilitagh drainage basins (hypsometry, drainage basin asymmetry, local relief, valley incision, steepness index) change

  3. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  4. Present-day submarine hydrothermal activity in the Taupo-Rotorua Zone (Bay of Plenty, New Zealand)

    SciTech Connect

    Osipenko, A.B.; Egorov, Yu.O.; Fazlullin, S.M.; Gavrilenko, G.M.; Shul`kin, V.I.; Chertkova, L.V.

    1994-09-01

    We made detailed descriptions of the structure and material composition of sedimentary and water columns in the vicinity of active submarine hydrothermal activity in the southern part of the Bay of Plenty (North Island, New Zealand). Geophysical methods revealed that the hydrothermal system is confined to a tectonically distinct zone with a sedimentary cover characterized by complex structure. Chemical and mineralogical investigations confirmed that the activity of underwater vents exerts no substantial regional influence on the composition and features of ore mineralization in these formations. It is shown that essentially hydrothermal formations distinguishable within areas of otherwise monotypic sediments directly coincide with zones of hydrothermal discharge in the ocean floor. The absence of pronounced hydrothermal anomalies, together with the presence of {open_quotes}tongues{close_quotes} of anomalous concentrations of water-soluble gases suggests that the discharges are primarily hydrothermal in character.

  5. Triggered tremors beneath the seismogenic zone of an active fault zone, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Miyazaki, Masahiro; Matsumoto, Satoshi; Shimizu, Hiroshi

    2015-11-01

    Non-volcanic tremors were induced by the surface waves of the 2012 Sumatra earthquake around the Hinagu fault zone in Kyushu, Japan. We inferred from dense seismic observation data that the hypocenters of these tremors were located beneath the seismogenic zone of the Hinagu fault. Focal mechanisms of the tremors were estimated using S-wave polarization angles. The estimated focal mechanisms show similarities to those of shallow earthquakes in this region. In addition, one of the nodal planes of the focal mechanisms is almost parallel to the strike direction of the Hinagu fault. These observations suggest that the tremors were triggered at the deeper extension of the active fault zone under stress conditions similar to those in the shallower seismogenic region. A low-velocity anomaly beneath the hypocentral area of the tremors might be related to the tremor activity.

  6. Topography and tectonics of the central New Madrid seismic zone: Results of numerical experiements using a three-dimensional boundary element program

    NASA Technical Reports Server (NTRS)

    Gomberg, Joan; Ellis, Michael

    1994-01-01

    We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.

  7. Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: an overview ( USA).

    USGS Publications Warehouse

    Hill, D.P.; Bailey, R.A.; Ryall, A.S.

    1985-01-01

    Geological, chronological, and structural studies of the Long Valley-Mono/Inyo Craters area document a long history of related volcanic eruptions and earthquakes controlled by regional extensional tectonics of the Basin and Range province. This activity has persisted for hundreds of thousands of years and is likely to continue. The Long Valley magma chamber had a volume approaching 3000 km3 prior to its climatic caldera-forming eruption 0.7 ma but has been reduced to less than a third of this volume by cooling, eruption, and crystallization. Although current unrest is concentrated in the S moat of Long Valley caldera, the Inyo/Mono Craters probably hold a greater potential for producing an eruption in the foreseeable future. The Inyo/Mono Craters have erupted at 500-year intervals over the past 2000-3000 years, whereas the Long Valley magma chamber has erupted at about 200,000-year intervals over the past 700,000 years. In either case, a major earthquake near the caldera could strongly influence the course of volcanic activity.-from Authors

  8. Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying

    NASA Astrophysics Data System (ADS)

    Giammanco, Salvatore; Melián, Gladys; Neri, Marco; Hernández, Pedro A.; Sortino, Francesco; Barrancos, José; López, Manuela; Pecoraino, Giovannella; Perez, Nemesio M.

    2016-02-01

    This work presents the results of an extensive geochemical survey aimed at measuring soil CO2 effluxes and soil temperatures over a large portion of Mt. Etna's summit area, coupled with an updated structural survey of the same area. The main goals of this study were i) to find concealed or hidden volcano-tectonic structures in the studied area by detecting anomalous soil gas emissions, ii) to investigate the origin of the emitted gas and the mechanism of gas and heat transport to the surface, iii) to produce a structural model based both on the surface geology and on the soil gas data and, lastly, iv) to contribute to the assessment of hazard from slope failure and crater collapses at Mt. Etna. The results revealed many concealed structural lines that followed the major directions of structural weakness in the summit area of Mt. Etna, mostly due to a combined action of gravitational spreading of the volcano and magma intrusions. Both recent and old volcano-tectonic lines were found to act as pathways for the leakage of magmatic gases to the surface. An important role in driving magmatic gases to the surface is also played by fracturing and faulting due to caldera-forming collapses and smaller crater collapses. Correlation between soil CO2 emissions and soil temperature allowed discriminating areas of active shallow hydrothermal circulation along deep fractures (characterized by high values of both parameters, but mostly soil temperature) from those affected by undeveloped fractures that did not reach the surface (characterized by high CO2 emissions at low temperature). The former corresponded to weak zones of the volcano edifice that were frequently site of past eruptions, indicating that those areas keep a high potential for future opening of eruptive fissures. The latter were likely related to sites where new eruptive fissures may open in the near future due to backward propagation of extensional tectonic stress.

  9. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  10. Geomorphic impacts of active tectonics on a river course, the case of Klissoura gorge, central Greece.

    NASA Astrophysics Data System (ADS)

    Tsanakas, Konstantinos; Fubelli, Giandomenico; Karymbalis, Efthimios

    2014-05-01

    The delicate balance of the natural processes within the river systems can be easily tipped making them very sensitive to changes occurring on the earth surface. Fluvial systems are therefore profoundly influenced by endogenic processes such as active tectonics as well as global sea level fluctuations following the climatic variations during the Quaternary. This study deals with the geomorphological evolution of the broader area of the abandoned gorge of Klissoura which is located in central Greece. This 130 m deep and roughly 3 km long gorge is a characteristic example of an old drainage course preserved on the footwall blocks of two normal faults which confine both outlets of the deeply incised valley. The gorge has formed by a river that once had a N-S flow direction discharging into the Gulf of Patras. Acheloos River and the much smaller Ermitza Remma Stream are the two recent primary watercourses which drain the area close to the abandoned gorge. Both the dimensions and morphological characteristics of the abandoned deep valley indicate that the gorge has formed by a large river with high discharge in order to incise into the limestone bedrock. In order to investigate the tectonic constrains and determine the geomorphic and climatic processes that compelled the lower reaches of Acheloos River to abandon the gorge and find an outlet following its present course a GIS based analysis at a scale of 1:50.000 was applied in the drainage basin of Acheloos River. Additionally, to reconstruct the palaeolandscape and the earth surface processes, a detailed morphometric and geomorphic analysis of the abandoned gorge was also performed at a scale of 1:5.000 coupled with field observations and stratigraphic analysis of the deposits outcropping on the valley sides within the gorge as well as on both outlets. The geomorphic analysis led to the conclusion that the primary course of the gorge abandonment and diversion and reverse of the drainage is the uplift of the footwall

  11. New constraints on the Pan-African tectonics and the role of the Mwembeshi Zone in Central Zambia: Deformation style and timing of two orthogonal shortening events

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Lehmann, Jeremie; Saalmann, Kerstin; Milani, Lorenzo; Kinnaird, Judith; Charlesworth, Guy; Rankin, William; Frei, Dirk

    2014-05-01

    dextral strike-slip zones. East of the granite, D2 resulted in E-W trending open folds that refolded the D1 structures. This folding becomes more intense and the folds are tighter when approaching the MwZ to the south. Along the MwZ, the molasse rocks, deposited after D1 (post ~528 Ma, based on new detrital-zircon ages), recorded high-strain greenschist facies coaxial deformation and the formation of E-W trending isoclinal folds with a steep south-dipping axial planar cleavage. This study shows that the area north of the MwZ is characterised by two orthogonal contraction events. The newly described D1 event of E-W shortening in the Hook area cannot be correlated with any of the published Pan-African tectonic models for the Lufilian Arc and Zambezi Belt. The D2 event of N-S shortening affected the region in response to the final docking between the Lufilian Arc and the Zambezi Belt. The strongest effect of this event was observed along the MwZ, which, during this stage, was a zone of intense coaxial deformation.

  12. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the

  13. Salt tectonics and thermal imprint along an inverted passive margin: the Montcaou anticline, Chaînons Béarnais, North Pyrenean Zone

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Aubourg, Charles; Cuyala, Jean-Baptiste; Hoareau, Guilhem; Callot, Jean-Paul; Péré, Eve; Labaume, Pierre; Ducoux, Maxime

    2016-04-01

    Resulting from the late Cretaceous-Tertiary Iberia-Eurasia convergence, the building of the Pyrenean belt followed a pre-orogenic period of rifting where the Eurasian margin was extremely stretched. The geometry and the evolution of this paleo-margin, now constituting the North Pyrenean Zone, remain however controversial. Although localized high-temperature deformation and isolated peridotite bodies have been related to crustal thinning, processes controlling the distribution of these hot paleo-temperatures and mantle outcrops are still unknown. In this study we investigate the possible role of salt tectonics, recognized in the Aquitanian basin and the Pyrenean foreland, on the development of such thermal anomalies and the exhumation of peridotites bodies. We thus performed a detailed structural and thermal characterization of the region of the Montcaou anticline (Chaînon Béarnais, North Pyrenean Zone) where salt structures have been already described. We propose balanced geological cross-sections along this anticline displaying a peridotite body in its core, embedded in Triassic evaporitic deposits. In addition, to assess the thermal imprint occurring in this area, we measured a wide set of paleo-temperature proxies, using RAMAN spectrometry on carbonaceous material. Intensively folded Jurassic and lower Cretaceous sedimentary formations (with evidences of overturned sedimentary sections), erosional unconformities and strong thickness variations in Urgonian limestones associated to the Montcaou anticline suggest a salt ridge or diapir growth since upper Aptian times. Superimposition of Pyrenees-related compressional deformation then allowed salt structure tilting and propagation of top-to-the-north thrust faults. In this region, the distribution of thermal anomalies (up to 420 °C), as well as occurrences of high-temperature scapolite minerals, seems correlated with these salt structures. Indeed, high thermal conductivity of salt material could enhance the

  14. Teleseismic P and S Delay Times within Tectonically Active and Stable North America

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.

    2009-12-01

    We have measured teleseismic P and S relative delay times within 1) Stable North America (SNA) using waveforms from IRIS PASSCAL seismic arrays MOMA (Fischer et al., 1995), ABBA (Roecker and Beavan, 1995), Abitibi (Hearn and Mareschal, 1996), and FLED (Wysession and Fischer, 2001), and 2) Tectonically-active North America (TNA) using Earthscope's Transportable Array (TA). To study the contribution of mantle structure to these delays we subtracted delays predicted for topography and crustal structure, using CRUST 2.0 (Bassin et al., 2000). Preliminary analyses of delay times from earthquakes with Mw>=6.5 show surprising differences between the heterogeneity of the mantle beneath SNA and TNA. While the range of delay times is expectedly small for an intra-shield array such as Abitibi, the range of delay times from Proterozoic basement in the midwest to Paleozoic margin in New England is much larger and slightly exceeds that for the TA in TNA. This suggests that that the mantle of SNA is slightly more heterogeneous than TNA, despite there being relatively little surface expression of this heterogeneity. Patterns of P and S relative delay times measured in TNA correlate better with surface tectonics, suggesting that the mantle in TNA has a greater effect on the surface geology than in SNA. The central and southern Basin and Range are characterized by positive delays. As shown in previous studies, the Snake River Plain is also well delineated by positive delays. These delays exhibit a significant peak at station H17A in Yellowstone National Park. Teleseismic P and S waves arriving at stations in the Rocky Mountains are much faster, including in northern Idaho and western Washington, but not in western Oregon. For both SNA and TNA, the measured S and P delay times have a significant linear correlation, with S delays at approximately 3 times the P delays, which confirms the dominant effect of mantle temperature on mantle velocity structure. However, the slope of this

  15. Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2013-11-01

    tectonic activities.

  16. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  17. Gravity Data from the Teboursouk Area ("Diapirs Zone", Northern Tunisia): Characterization of Deep Structures and Updated Tectonic Pattern

    NASA Astrophysics Data System (ADS)

    Hachani, Fatma; Balti, Hadhemi; Kadri, Ali; Gasmi, Mohamed

    2016-04-01

    Located between eastern segments of the Atlas and Tell-Rif orogenic belts, the "Dome zone" of northern Tunisia is characterized by the juxtaposition of various structures that mainly controlled the long geodynamic history of this part of the south-Tethyan Margin. To better understand the organization and deep extension of these structures, gravity data from the Teboursouk key area are proposed. These data include the plotting of Bouguer anomaly map and related parameters such as vertical and horizontal gradients, upward continuation and Euler solution. Compared to geological and structural maps available, they allow the identification of new deep structures and greater precision regarding the characteristics and organization of known ones; consequently, an updated structural pattern is proposed.

  18. Comparative analysis of geodynamic activity of the Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan convergence zone

    NASA Astrophysics Data System (ADS)

    Chelidze, Tamaz; Eppelbaum, Lev

    2013-04-01

    The Alpine-Himalayan convergence zone (AHCZ) underwent recent transverse shortening under the effect of collisional compression. The process was accompanied by rotation of separate microplates. The Caucasian and Eastern Mediterranean regions are segments of the of the AHCZ and are characterized by intensive endogenous and exogenous geodynamic processes, which manifest themselves in occurrence of powerful (with magnitude of 8-9) earthquakes accompanied by development of secondary catastrophic processes. Large landslides, rock falls, avalanches, mud flows, etc. cause human deaths and great material losses. The development of the aforesaid endogenous processes is set forth by peculiarities of the deep structure of the region and an impact of deep geological processes. The Caucasus is divided into several main tectonic terranes: platform (sub-platform, quasi-platform) and fold-thrust units. Existing data enable to perform a division of the Caucasian region into two large-scale geological provinces: southern Tethyan and northern Tethyan located to the south of and to the north of the Lesser Caucasian ophiolite suture, respectively. The recent investigations show that the assessments of the seismic hazard in these regions are not quite correct - for example in the West Caucasus the seismic hazard can be significantly underestimated, which affects the corresponding risk assessments. Integrated analysis of gravity, magnetic, seismic and thermal data enables to refine the assessment of the seismic hazard of the region, taking into account real rates of the geodynamic movements. Important role play the last rheological constructions. According to Reilinger et al. (2006) tectonic scheme, the West flanking of the Arabian Plate manifests strike-slip motion, when the East Caucasian block is converging and shortening. The Eastern Mediterranean is a tectonically complex region located in the midst of the progressive Afro-Eurasian collision. The recent increasing geotectonic

  19. Regional and global variations in the temporal clustering of tectonic tremor activity

    NASA Astrophysics Data System (ADS)

    Idehara, Koki; Yabe, Suguru; Ide, Satoshi

    2014-12-01

    The temporal distribution of tremor activity exhibits a highly non-Poissonian behavior, and its maximum period of non-Poissonian clustering statistically describes the recurrence interval of major tremor bursts. Here, we examine variations in the temporal clustering properties of tremor activity by assessing their characteristic times, which are determined by the maximum period of the non-Poissonian distribution. By applying a two-point correlation integral to some of the world's major tremor zones, including Shikoku, Kii-Tokai, and Kyushu in Japan; Cascadia, Jalisco, and Guerrero in Mexico; southern Chile; Taiwan; and Manawatu in New Zealand, we reveal local spatial variations in the temporal clustering properties in each tremor zone and show global-scale variations in tremor activity. The spatial variation in local tremor activity is characterized by a gradual transition in the along-dip direction and shorter-wavelength heterogeneities in the along-strike direction, possibly associated with a spatial change in frictional conditions at the plate interface and rheological conditions in the surrounding materials. The characteristic time correlates positively with locally measured median tremor duration, implying an inherent correlation between the moment release rate and the recurrence interval of tremors.

  20. Relative earthquake location for remote offshore and tectonically active continental regions using surface waves

    NASA Astrophysics Data System (ADS)

    Cleveland, M.; Ammon, C. J.; Vandemark, T. F.

    2015-12-01

    Earthquake locations are a fundamental parameter necessary for reliable seismic monitoring and seismic event characterization. Within dense continental seismic networks, event locations can be accurately and precisely estimated. However, for many regions of interest, existing catalog data and traditional location methods provide neither accurate nor precise hypocenters. In particular, for isolated continental and offshore areas, seismic event locations are estimated primarily using distant observations, often resulting in inaccurate and imprecise locations. The use of larger, moderate-size events is critical to the construction of useful travel-time corrections in regions of strong geologic heterogeneity. Double difference methods applied to cross-correlation measured Rayleigh and Love wave time shifts are an effective tool at providing improved epicentroid locations and relative origin-time shifts in these regions. Previous studies have applied correlation of R1 and G1 waveforms to moderate-magnitude vertical strike-slip transform-fault and normal faulting earthquakes from nearby ridges. In this study, we explore the utility of phase-match filtering techniques applied to surface waves to improve cross-correlation measurements, particularly for smaller magnitude seismic events. We also investigate the challenges associated with applying surface-wave location methods to shallow earthquakes in tectonically active continental regions.

  1. Not so simple "simply-folded Zagros": The role of pre-collisional extensional faulting, salt tectonics and multi-stage thrusting in the Sarvestan transfer zone (Fars, Iran)

    NASA Astrophysics Data System (ADS)

    Carminati, Eugenio; Aldega, Luca; Bigi, Sabina; Minelli, Giorgio; Shaban, Ali

    2016-03-01

    The Sarvestan plain is bounded by highly elevated anticlines associated with thrusts or transpressional faults and hosts the NNW-SSE Sarvestan transfer zone. Surface and subsurface geological data, and 22 seismic lines allowed us to reconstruct the 3D geometry of the area. Mixed layer illite-smectite and 1D burial and thermal modelling were used to constrain the complex geological evolution of the Sarvestan plain where inherited structures strongly controlled the geometry of syn- to post-collisional contractional structures. Paleozoic-Mesozoic rifting related extension generated E-W and NNW-SSE normal fault systems. Such faults were associated with changes in the thickness of the sedimentary cover. Lateral facies changes were later induced by the Cretaceous obduction of ophiolites, cropping out some tens of km north of the study area. During the Miocene the footwall and the hanging wall of the Sarvestan Fault had different thermal evolution. This is tentatively explained by flow of Cambrian salt from the plain area towards the hanging wall of the Sarvestan Fault, associated with salt diapirism during Lower-Middle Miocene time. Salt tectonics is invoked also to explain, at least in part, the development of the overturned anticline in the hanging wall of the Sarvestan Fault. An early phase of contractional deformation occurred in the Middle Miocene (since 15 My, i.e., after the deposition of the Agha Jari Fm) generating the E-W oriented folds buried below the plain, likely inverting inherited normal faults. The erosion of these structures was followed by the deposition of the Bakhtiari Fm conglomerates in Middle-Late Miocene times. A later phase of contractional tectonics generated the thrust faults and the anticlines bounding the Sarvestan plain some 6-5 My ago. The Sarvestan dextral transpressional fault, that likely acted as a strongly oblique ramp of the Maharlu thrust, mainly structured in this period, although its activity may have continued until present.

  2. Active tectonic data calling for the re-evaluation of the seismic hazard along the Vienna Basin Transform Fault

    NASA Astrophysics Data System (ADS)

    Decker, K.; Hinsch, R.; Peresson, H.; Wagreich, M.

    2003-04-01

    The Vienna Basin Transform Fault is a slow moving active fault passing through the most populated and most productive region of Austria with 2.4 million inhabitants producing c. 45% of the Austrian GDP. Active faulting in this highly vulnerable environment is accompanied by historically moderate seismicity (Imax ~ 8-9) in a narrow NE-striking zone paralleling the fault. Novel tectonic data such as maps of active faults and computed seismic slip deficits indicate that previous hazard analyses for the surrounding of Vienna may both underestimate the probability of severe earthquakes and the maximum credible earthquake. Slip rates of the fault in the Vienna Basin are derived from an actively subsiding pull-apart structure filled with up to 140 m Quaternary sediments. 1.5 to 2 km sinistral displacement, which accumulated during basin formation in the last 400 (?) ky corresponds to a slip rate of 1.6 - 2.5 mm/y. This is in good agreement with GPS data showing 2 mm slip per year and precise leveling proving surface subsidence up to 1 mm/y. The data, however, strongly contrast from slip rates computed from cumulative seismic moments of earthquakes. Seismic energy release only accounts for c. 0.2 mm/yr slip proving a seismic slip deficit for the historical time window of about 750 y. In addition, seismic slip calculations for arbitrarily selected fault sectors reveal large differences between the fastest (0.5 mm/yr) and slowest (0.02 mm/yr) seismically moving sector. We relate these to the locking of fault segments. Both results indicate that the seismic cycle exceeds the length of available seismological observation and larger earthquakes than those recorded need to be expected along the fault. Additional data to call for hazard re-evaluation come from the integration of subcrop data, Quaternary thickness, earthquake data, geophysical data (Gegenleitner et al., this vol.) and geomorphology, which results in a detailed map of active faults. The map depicts a major NE

  3. Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India

    NASA Astrophysics Data System (ADS)

    Kothyari, Girish Ch.; Rastogi, B. K.; Morthekai, P.; Dumka, Rakesh K.

    2016-02-01

    An earthquake of 2006 Mw 5.7 occurred along east-west trending Gedi Fault (GF) to the north of the Kachchh rift basin in western India which had the epicenter in the Wagad upland, which is approximately 60 km northeast of the 2001 Mw 7.7 earthquake site (or epicenter). Development of an active fault scarp, shifting of a river channel, offsetting of streams and uplift of the ground indicate that the terrain is undergoing active deformation. Based on detailed field investigations, three major faults that control uplifts have been identified in the GF zone. These uplifts were developed in a step-over zone of the GF, and formed due to compressive force generated by left-lateral motion within the segmented blocks. In the present research, a terrace sequence along the north flowing Karaswali river in a tectonically active GF zone has been investigated. Reconstructions based on geomorphology and terrace stratigraphy supported by optical chronology suggest that the fluvial aggradation in the Wagad area was initiated during the strengthening (at ~ 8 ka) and declining (~ 4 ka) of the Indian Summer Monsoon (ISM). The presence of younger valley fill sediments which are dated ~ 1 ka is ascribed to a short lived phase of renewed strengthening of ISM before present day aridity. Based on terrace morphology two major phases of enhanced uplift have been estimated. The older uplift event dated to 8 ka is represented by the Tertiary bedrock surfaces which accommodated the onset of valley-fill aggradation. The younger event of enhanced uplift dated to 4 ka was responsible for the incision of the older valley fill sediments and the Tertiary bedrock. These ages suggest that the average rate of uplift ranges from 0.3 to 1.1 mm/yr during the last 9 ka implying active nature of the area.

  4. Fold-related fractures - a brittle tectonic case study of the Helvetic zone in Vorarlberg (western Austria) and Upper Allgäu (Bavaria)

    NASA Astrophysics Data System (ADS)

    Zerlauth, M.

    2012-04-01

    Michael Zerlauth1,2 , Marcel Schulz1,2 , Hugo Ortner1 , Bernhard Fügenschuh1, Christian Zangerl2 1 Institut für Geologie und Paläontologie, Leopold Franzens Universität, 6020 Innsbruck, Austria 2 alpS-Gmbh, 6020 Innsbruck, Austria In the eastern Alps the Helvetic units exposed at the surface form a narrow belt restricted to the westernmost part of Austria and the northerly adjacent southernmost part of Bavaria. The Helvetic zone represents a Tertiary fold-and-thrust belt made up of Jurassic to Cretaceous shelf sediments deposited on the European margin of the Eurasian plate. In the course of an industry-funded project, the potential of these units for deep hydro-geothermal energy is investigated. Potential targets for hydrothermal exploration are more or less thick carbonate sequences that can be traced throughout the Helvetic zone, namely the Late Jurassic Quinten Limestone and the Early Cretaceous Schrattenkalk-Fm. In depths of at least 3000m below sea level, that have to be drilled to gain water with at least 90°C, uncemented fractures at any scale are the only cavities within these carbonates to be expected. Therefore, brittle structures are studied at differing scales of observation; aerial photos and surface outcrops are analyzed as well as thin sections. All the data obtained so far were collected in areas deformed homogenously: measuring stations were located outside large scale shear zones and either in fold-limbs or hinge zones. A constantly geometrical relationship between the orientation of the various fractures, the sedimentary layering and the trace of the axial planes can be inferred, as already stated by Hancock (1985). Besides extension fractures, veins and stylolithes, conjugated hybrid and shear fractures are quite common, indicating layer-parallel shortening normal to the axial planes as well as axial elongation. Hence, all of the structures observed can be genetically linked with thrusting and folding during regional N-S compressional

  5. Extensional tectonics on continents and the transport of heat and matter

    NASA Technical Reports Server (NTRS)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  6. Tectonics of the Middle Triassic intracontinental Xuefengshan Belt, South China: new insights from structural and chronological constraints on the basal décollement zone

    NASA Astrophysics Data System (ADS)

    Chu, Yang; Faure, Michel; Lin, Wei; Wang, Qingchen; Ji, Wenbin

    2012-11-01

    In orogenic belts, a basal décollement zone often develops at depth to accommodate the shortening due to folding and thrusting of the sedimentary cover. In the Early Mesozoic intracontinental Xuefengshan Belt of South China, such a décollement zone is exposed in the core of anticlines formed by the emplacement of the late-orogenic granitic plutons. Our detailed, multi-scale structural analysis documents a synmetamorphic ductile deformation. In the basal décollement, the Neoproterozoic pelite and sandstone, and the intruding Early Paleozoic granites were deformed and metamorphosed into mylonites and orthogneiss, respectively. The metamorphic foliation contains a NW-SE stretching lineation associated with top-to-the-NW kinematic indicators. The ductile shearing of these high-strained rocks can be correlated with NW-verging folds and thrusts recognized in the Neoproterozoic to Early Triassic sedimentary cover. Monazite U-Th-Pbtot chemical dating, and zircon SIMS U-Pb dating provide age constraints of the ductile shearing between 243 and 226 Ma, and late-orogenic granite emplacement around 235-215 Ma. In agreement with recent geochronological data, these new results show that the Xuefengshan Belt is an Early Mesozoic orogen dominated by the NW-directed shearing and thrusting. At the southeastern boundary of the Xuefengshan Belt, the Chenzhou-Linwu fault separates the Early Mesozoic domain to the NW from the Early Paleozoic domain to the SE. The tectonic architecture of this belt was possibly originated from the continental underthrusting to the SE of the South China block in response to northwest-directed subduction of the Paleo-Pacific plate.

  7. Constraining the age of Liuqu Conglomerate, southern Tibet: Implications for tectonic evolution of the Indus-Yarlung Suture Zone

    NASA Astrophysics Data System (ADS)

    Li, G.; Sandiford, M.; Kohn, B.

    2014-12-01

    The depositional age and provenance of the Liuqu Conglomerate (LC), distributed along the Indus-Yarlung suture zone (IYSZ) in South Tibet, remain controversial, leading to different interpretations, such as a Paleogene basin deposited during India-Asia collision (Wang et al., 2010) or the result of the collision between India and an intra-oceanic arc (Aitchison et al., 2007). Here, we report low-temperature thermochronometry data (apatite fission track, apatite and zircon U-Th/He) for the LC in the Xigaze area, to constrain its depositional age, provenance and burial-exhumation history. Five samples from Liuqu yielded consistent AFT ages of ~6-8Ma, and dispersed single-grain AFT ages of six samples range from ~ 140 to 5 Ma, and single grain AFT ages for grains with >0.4 Cl (wt%) content was calculated three age-peaks of ~16.4 ±3.0, 37.3 ± 6.4 and 89.5 ± 22.2 Ma. Four groups of detrital ZHe ages, including 18 scattered single grain ages in the range of ~20 - 107.9 Ma, yielded four age peaks of ~20, 37, 66 and 104 Ma. We interpret the AHe ages of the LC as having been completely thermally reset, while AFT ages have been partially annealed and ZHe ages have not been thermally reset, suggesting that the post-depositional maximum temperature of the LC was > 80 °C and < 110°C. Collectively, our results indicate that the Liuqu Conglomerate was probably deposited in the Early Miocene time, similar to the Qiuwu-Dazhuka conglomerates which are located in the northern part of the IYSZ, as one component of the Gangrinboche Group, and was derived from the Xigaze forearc basin, Yarlung-Zangbo suture zone, as well as the Tethyan Himalaya. Furthermore, the Liuqu Conglomerate was exhumed to the surface by post-depositional incision of a tributary of the Yarlung Zangbo river by the Late Miocene time.Aitchison, J. C.; Ali, J. R., and Davis, A. M. 2007, When and where did India and Asia collide?: J. Geophys. Res. v. 112: B05423, doi:10.1029/2006JB004706.Wang, J.G., Hu, X.M., Wu

  8. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  9. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  10. Analysis of Landsat TM data for active tectonics: the case of the Big Chino Fault, Arizona

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano

    1994-12-01

    The Big Chino Valley is a 50 km-long tectonic depression of the Basin and Range province of the South- western United States. It is bordered on the NE side by an important normal fault, the Big Chino Fault. The activity of the latter has been hypothesised on the basis of the presence of a 20 m-high fault scarp and on local geomorphological studies. Moreover, a magnitude 4.9 earthquake occurred in southern Arizona in 1976 has been attributed to this fault. The climate in the Big Chino Valley is semi-arid with average rainfall of about 400 mm per year; a very sparse vegetation cover is present, yielding a good possibility for the geo-lithologic application of remote sensing data. The analysis of the TM spectral bands shows, in the short wave infrared, a clear variation in the reflected radiance across the fault scarp. Also the available radar (SLAR) images show a marked difference in response between the two sides of the fault. An explanation of this phenomena has been found in the interaction between the geomorphic evolution, the pedological composition, and the periodic occurrence of coseismic deformation along the fault. Other effects of the latter process have been investigated on colour D- stretched images whose interpretation allowed to detect two paleoseismic events of the Big Chino Fault. This work demonstrates that important information on the seismological parameters of active faults in arid and semiarid climates can be extracted from the analysis of satellite spectral data in the visible and near -infrared.

  11. Erosional flux from tectonically active landscapes: Case studies from Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Allen, Philip; Gheorghiu, Delia; Rodes, Angel

    2016-04-01

    Erosion and sediment supply are fundamentally important controls on landscape evolution, governing the denudation of relief, the stratigraphy deposited in basins, and the ultimate destruction of orogens. However, quantifying the rates, timescales, and predominant processes of erosion remains a major challenge in many tectonically active areas. Here, we use Southern Italy as a case study to demonstrate how these challenges can be overcome. We present 15 new 10Be catchment-averaged erosion rates, for systems distributed along 5 active normal faults for which we have excellent constraints on throw rates along strike and uplift history. These footwall catchments have a total relief of up to 1800 m and throw rates up to 1.4 mm/yr. We show that sediment supply estimates based on the 10Be erosion rates agree well with sediment supply predictions based on the fault throw profiles. Our results suggest that about 80% of the material uplifted by the faults is being eroded at a similar magnitude to the fault throw rates, offering new insights into the topographic balance of uplift and erosion in this area. These findings imply that active normal faulting is the primary control on sediment supply in Southern Italy. Our field observations suggest that landslides are an important source of sediment in our study area, and are largely driven by incision in response to fault activity. Using a field-calibrated landslide inventory, we estimate landslide-derived sediment flux for our sampled catchments. These estimates correlate well with total sediment flux estimates, demonstrating quantitatively that landslides must be a major source of sediment. Their erosional signal is adequately captured by the 10Be analyses most likely because of the high frequency of small landslides and their high spatial density in these catchments (typically >10% of the total area), which ensures sufficient sediment mixing. Finally, we use our results to calibrate the BQART model of sediment supply, enabling

  12. Active tectonics, paleoseismology and associated methodological challenges posed by the slow moving Alhama de Murcia fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas; Sharp, Warren D.; Arrowsmith, Ramon; Medialdea, Alicia; Rhodes, Edward

    2016-04-01

    The Alhama de Murcia fault (AMF) is a 87 km-long left-lateral slow moving fault and is responsible for the 5.1 Mw 2011 Lorca earthquake. The characterization of the seismic potential of seismogenic strike-slip slow moving faults is necessary but raises huge methodological challenges, as most paleoseismological and active tectonic techniques have been designed on and for fast moving faults. The AMF is used here as a pilot study area to adapt the traditional geomorphological and trenching analyses, especially concerning the precise quantification of offset channels. We: 1) adapted methodologies to slow moving faults, 2) obtained, for the first time, the slip rate of the AMF, and 3) updated its recurrence period and maximum expected magnitude. Morphotectonic studies aim to use the measured tectonic offset of surface channels to calculate seismic parameters. However, these studies lack a standard criterion to score the analysed features. We improved this by differentiating between subjective and objective qualities, and determining up to three objective parameters (lithological changes, associated morphotectonics and shape, and three shape sub-parameters; all ranging from 0 to 1). By applying this methodology to the AMF, we identified and characterized 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size) Digital Elevation Model (DEM) from a point cloud acquired in 2013 by airborne light detection and ranging (lidar). The identified offsets, together with the ongoing datings, are going to be used to calculate the lateral slip rate of the AMF. In three-dimensional trenches, we measured the offsets of a buried channel by projecting the far-field tendency of the channel onto the fault. This procedure is inspired by the widespread geomorphological procedure and aims to avoid the diffuse deformation in the fault zone associated with slow moving faults. The calculation of the 3D tendency of the channel and its projection onto the fault permitted

  13. Au-Ag polymetallic mineralization within tectonically weak zones along the southwestern edge of the Colorado Plateau

    SciTech Connect

    Wenrich, K.J.; Silberman, M.L. )

    1993-04-01

    The Music Mountain mining district lies at the base of the Grand Wash Cliffs, a major fault-line scarp along the Grand Wash fault, which marks the SW margin of the Colorado Plateau. Nearly vertical Au-Ag polymetallic quartz veins parallel, and are in contact with, altered diabase and granite porphyry dikes that cut Proterozoic granite, schist, and gneiss. The gold-bearing veins range in thickness from an inch to several feet and contain significant amounts of sulfide minerals. Diabase dikes and quartz veins in the district and to the north consistently strike N42[degree]W to N57[degree]W, which is one of the most prevalent fracture orientation throughout NW Arizona. In the Gold Basin-Lost Basin districts to the north, the Au occurs in such pegmatite-quartz veins that strike NE. Thirty miles east along Diamond Creek, quartz veins and diabase dikes strike N45[degree]E and are associated with Au and Ag anomalies in stream-sediments and panned concentrates. To the west major Au-Ag polymetallic quartz veins of the Wallapai mining district show consistent strikes from N30[degree] to 60[degree]W. K-Ar ages of hydrothermal alterations of 4 NW oriented diabase dikes that have quartz veins along them, range from 935 [+-] 35 to 755 [+-] 21 Ma. Sericite from altered granite porphyry, adjacent to a mineralized vein, gave a K-Ar age of 72 [+-]2 Ma. All geochemical sites (within a 1,000 mi[sup 2] area) determined to be anomalous in Au lie within 2 mi of either the Grand Wash or Hurricane faults. The Hurricane and Grand Wash faults, major Precambrian fault zones that were reactivated in the Phanerozoic, appear to be good exploration targets for Au-rich quartz veins associated with pegmatite or diabase dikes, many of which may be buried beneath the thick alluvium of Hualapai Valley.

  14. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  15. Geochemical and Tectonic Evidence for the Role of Crustal Thickening and Forearc Subduction Erosion in Miocene to Recent Andean Southern Volcanic Zone Magmas

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Godoy, E.

    2002-12-01

    Key to understanding temporal and spatial variations in Andean-type margin magmas is identifying their mantle and crustal sources in well constrained tectonic settings. A study of Andean Southern Volcanic Zone (SVZ) Early Miocene to Recent magmas in an west to east transect near 34° S points to a linked role for crustal thickening and forearc subduction erosion. The whole rock and isotopic chemistry of these magmas show a trend from Early Miocene tholeiitic sequences with low pressure pyroxene-bearing residual mineral assemblages and more depleted isotopic signatures (87Sr/^{86}Sr ~ 0.7036; ɛ Nd ~ +6 to +4; 206Pb/^{204}Pb ~ 18.5) to Pliocene/Recent high-K calc-alkaline sequences with high pressure garnet-bearing residual mineral assemblages and enriched isotopic signatures (87Sr/^{86}Sr ~ 0.7042; ɛ Nd ~ +1 to 0; 206Pb/^{204}Pb ~ 18.6). Relatively abrupt breaks in this sequence at ~ 19 to 15 Ma and ~ 7 to 4 Ma coincide with an early Miocene extensional to compressional deformational switch and major Late Miocene out-of-sequence thrusting that accompany eastward shifts of ~ 35 and ~ 50 km of the arc front and peaks in uplift history. These changes are consistent with peaks in forearc subduction erosion that introduce continental crust into subcrustal magma sources and in backarc shortening that enhance MASH processes in a thickening crust. Shifts to higher pressure chemical signatures and isotopic enrichment as frontal arc magmatism wanes in the west and migrates eastward fit with continental crust entering subcrustal magma sources. The projections of extinct arc fronts near 34° S into chemically equivalent units to the south indicate an ~ 35 km shift of the arc front north of 36.5° S at ~ 19 to 15 Ma and another ~ 50 km shift north of 34.5° S between ~ 7 to 4 Ma. These SVZ shifts coincide with major tectonic changes along the Andean margin that are best related to variations in plate convergence parameters.

  16. Syn-Tectonic Progressive and Retrogressive Metamorphism in ALS-Bearing Schists,Southeast Hamadan,Sanandaj-Sirjan Zone,Iran

    NASA Astrophysics Data System (ADS)

    Nozaem, Reza

    2010-05-01

    . The last one (F5) was generated during retrograde metamorphism(M2), is rarely recognised and cut the previous generations.(S5) is developed as kink band and in some places crenulation schistosity and well recogniseable with post-tectonic automorphic growth of Chlorites. The majore episodes of deformation are during F1 to F3 and the pick of metamorphism is synchroneous with F4. As a result, Porphyroblasts growth are synchronous to deformation stages indicate syn-deformational metamorphism. Key words:Iran,Sanandaj-Sirjan zone,deformation,metamorphism, structural analysis

  17. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  18. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  19. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  20. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    Seychelles microcontinent from India, sedimentary basin development in western Rajasthan and the alkaline magmatism of Mundwara, Sarnu-Dandali and elsewhere are considered to be the products of Reunion plume activity in western India. However, basin development began in western Rajasthan in the Jurassic period and no plume has been suggested for this. The continual extensional tectonic regime caused deep fractures in the continental and oceanic lithosphere. The Cambay-Sanchor-Barmer rift developed in continental lithosphere. The Mundwara, Sarnu-Dandali and Barmer magmatism with nephelinite-carbonatite affinity at the basin margin represents a typical rift-tectonic setting. The tectonic setting and crustal development during the K-T period in western Rajasthan represents an extensional tectonic regime rather than the manifestation of Reunion plume activity.

  1. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  2. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    SciTech Connect

    Zilberman, E.; Wachs, D. )

    1988-02-01

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor, which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.

  3. The relationships between volcanism, tectonism and hydrothermal activity on the Mid-Atlantic Ridge south of the equator

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; German, C. R.; Haase, K. M.; Lackschewitz, K. S.; Melchert, B.; Connelly, D.; Parson, L. M.

    2009-04-01

    Using data from the complete bathymetric and side-scan (TOBI) coverage of the Mid-Atlantic Ridge 2-14 °S collected since 2004 in conjunction with the results of extensive prospecting for hydrothermal systems in this area we attempt to formulate a general model for the interplay between volcanism, tectonics and hydrothermalism on a slow-spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) A deep, tectonically-dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults (b) a shallower, segment-centre bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis and (c) a very shallow, inflated axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

  4. Estimate of the post-Last Glacial Maximum tectonic subsidence and attempt to elucidate the subsurface geometry of the active Shanchiao Fault in the Taipei metropolis, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.; Teng, L. S.

    2011-12-01

    The Taipei Metropolis, home to some 10 million people, is subject to seismic hazard originated from not only ground shaking in thick alluvial deposits due to distant faults or sources scattered throughout the Taiwan region, but also active faulting directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Plio-Pleistocene arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for the areal extent and magnitude of its recent activity. Based on the growth faulting analysis in the Wuku profile in the central portion of the fault, one key horizon - the top of the Jingmei Conglomerate which was an alluvial fan formed rapidly when a major drainage reorganization occurred during the Last Glacial Maximum - serves to be the marker of tectonic subsidence since its inception around 23 ka. A determination and compilation of the depths of the Jingmei Conglomerate top horizon from nearly 500 borehole records within the Taipei Basin demonstrates that the hanging-wall deforms in a roll-over fashion and the offset is largest in the Wuku-Luzhou area in the central portion of the fault and decreases toward the southern tip of the fault. A geologic profile across the fault zone in the Luzhou area reveals the similar main-branch fault half-negative flower structural pattern observed in the Wuku profile, a phenomenon we interpreted to be originated from the geometry of the basin basement and the strong rheological contrast between unconsolidated basin sediments and basement rocks. We also attempt to resolve the poorly-known subsurface geometry of the Shanchiao Fault by simple elastic dislocation models. The surface deformation recorded by the above compilation is representative of the latest Quaternary period as it spans probably more than 10 earthquake

  5. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    USGS Publications Warehouse

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times CreCre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits (0.3–1)×10−1 kg(0.3–1)×10−1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼7.5×104 km2∼7.5×104 km2 of granitic rock in California is estimated to release (0.019–3.2)×10−1 kg(0.019–3.2)×10−1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

  6. 78 FR 4155 - Agency Information Collection Activities: Application for Foreign Trade Zone and/or Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Foreign Trade Zone and/or Status Designation, and Application for Foreign Trade Zone Activity Permit... Application for Foreign Trade Zone Admission and/or Status Designation, and Application for Foreign Trade Zone... Foreign Trade Zone Admission and/or Status Designation, and Application for Foreign Trade......

  7. New multi-beam bathymetric map of the Ionian Sea (Central Mediterranean): Evidence for active sedimentary and morpho-tectonic processes along the Africa-Eurasia plate boundary

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Kopp, H.; Krastel, S.; Bohrmann, G.; Garlan, T.; Zaragosi, S.; Klaucke, I.; Wintersteller, P.; Loubrieu, B.; Le Faou, Y.; San Pedro, L.; Dominguez, S.; Rovere, M.; Mercier De Lepinay, B. F.

    2015-12-01

    A combined dataset of multi-beam bathymetry, based on 5 recent marine geophysical surveys since 2010 as well as a compilation of earlier surveys, now spans the vast majority of the Ionian Sea and the active margin of East Sicily and Calabria. (The new surveys are: R/V Meteor cruise 86, 2010 PI - S. Krastel; MocoSed R/V PourquoiPas 2012 PI - T. Garlan; Circee R/V Suroit 2013 PI - M.-A. Gutscher; R/V Meteor cruise 111, 2014 PI's - H. Kopp, M.-A. Gutscher; R/V Meteor cruise 112, 2014 PI - G. Bohrmann). This new compilation of mostly unpublished bathymetric data is presented as a 2 arc-sec (60m) grid and reveals fine-scale structures on the seafloor in unprecedented detail. These include the deeply incised Malta-Hyblean Escarpment, numerous submarine canyons, broad regions of relatively flat seafloor dominated by fields of sediment waves, the gently undulating anticlinal fold-and-thrust belts of two accretionary wedge complexes related to the Hellenic subduction (W Mediterranean ridge) and to the Calabrian arc. These accretionary wedges intersect and overlap and define two of the three sides of the triangular Ionian abyssal plain. The internal structure of these morpho-tectonic provinces as well as the transition zones between them is also imaged by high-resolution 72-channel seismic reflection profiles. Together these data offer new insights into the interaction and competition between active sedimentary and tectonic processes shaping this part of the Central Mediterranean. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).

  8. Paleomagnetic and structural evidence for localized tectonic rotation associated with fault drag in the northeastern Mojave Desert: Implications for the late Cenozoic tectonic evolution of the Eastern California shear zone

    NASA Technical Reports Server (NTRS)

    Macconnell, D. F.; Mccabe, C.; Dokka, R. K.; Chu, M.

    1994-01-01

    Paleomagnetic data, coupled with detailed geological analysis of the southeastern Goldstone Lake region, indicate that lower Miocene volcanic and epiclastic rocks of the Pink Canyon area have been folded, faulted and tectonically rotated approximately 28.4 + or - 9.0 deg clockwise about a vertical axis. The Coyote Canyon Fault is locally folded about a vertical axis approximately 25 deg in a clockwise sense in the Pink Canyon area. Timing relationships indicate that rotation is post-early Miocene; regional relationships imply that deformation is late Miocene to Holocene in age. These relationships imply that tectonic rotation is local rather than regional in extent as proposed by some tectonic models. The results of this study are generally consistent with the Dokka and Travis model and the subsequently revised Dokka model of strain partitioning in the northeastern Mojave Desert block.

  9. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  10. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-01-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  11. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  12. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  13. Importance of active tectonics during karst formation. A Middle Eocene to Pleistocene example of the Lina Moutains (Irian Jaya, Indonesia)

    NASA Astrophysics Data System (ADS)

    Thery, J.-M.; Pubellier, M.; Thery, B.; Butterlin, J.; Blondeau, A.; Adams, C. G.

    1999-05-01

    The Lina Moutains show a typical example of karst formation associated to recent and active tectonics. The limestone samples were collected from giant potholes present beneath the heavy rainforest, during speleological expeditions to the Bird's Head of Irian-Jaya. Micropalaeontological data allow us to give a Middle Pleistocene age for the most recent karst formation. A detailed stratigraphy between the Upper Lutetian and the Middle Pleistocene was recorded, with tectonic events during the Oligocene and Pleistocene. The edge of the resurgence layer was also dated. We also conclude the probable existence of a subterraneous network downhill of the karst within the most recent levels of the Kais Limestone formation. We replace this formation within the tectonic evolution of this area between the Eocene and the Middle Pleistocene, in conjunction with the oblique convergence of the Pacific plate carrying volcanic arc fragments and the Australian margin, which resulted in folding, normal faulting associated with local extension, and wrench motion, which are settings capable of creating uplift of the carbonated platform.

  14. Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Kanamori, Hiroo; Stock, Joann; Cormier, Marie-Helene; Legg, Mark

    2014-03-01

    Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent-ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific-North America Plate boundary motion today is concentrated on continental fault systems well to the east, and this region of oceanic crust is generally thought to be within the rigid Pacific Plate. Yet, the 2012 December 14 Mw 6.3 earthquake that occurred about 275 km west of Ensenada, Baja California, Mexico, is evidence for continued tectonism in this oceanic part of the Pacific Plate. The preferred main shock centroid depth of 20 km was located close to the bottom of the seismogenic thickness of the young oceanic lithosphere. The focal mechanism, derived from both teleseismic P-wave inversion and W-phase analysis of the main shock waveforms, and the 12 aftershocks of M ˜3-4 are consistent with normal faulting on northeast striking nodal planes, which align with surface mapped extensional tectonic trends such as volcanic features in the region. Previous Global Positioning System (GPS) measurements on offshore islands in the California Continental Borderland had detected some distributed Pacific and North America relative plate motion strain that could extend into the epicentral region. The release of this lithospheric strain along existing zones of weakness is a more likely cause of this seismicity than current thermal contraction of the oceanic lithosphere or volcanism. The main shock caused weak to moderate ground shaking in the coastal zones of southern California, USA, and Baja California, Mexico, but the tsunami was negligible.

  15. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  16. Neurotransmitters couple brain activity to subventricular zone neurogenesis

    PubMed Central

    Young, Stephanie Z.; Taylor, M. Morgan; Bordey, Angélique

    2011-01-01

    Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local GABA and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep, and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments. PMID:21395856

  17. The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece

    NASA Astrophysics Data System (ADS)

    Kiratzi, A.; Sokos, E.; Ganas, A.; Tselentis, A.; Benetatos, C.; Roumelioti, Z.; Serpetsidaki, A.; Andriopoulos, G.; Galanis, O.; Petrou, P.

    2008-06-01

    We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW-ESE trend. The previous strong sequence close to Lake Trichonis occurred in June-December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW-SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW-SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E-W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW-SE normal fault that strikes at a ˜ 45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the

  18. Incipient Crustal Stretching across AN Active Collision Belt: the Case of the Siculo-Calabrian Rift Zone (central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Tortorici, G.; Romagnoli, G.; Pavano, F.

    2012-12-01

    In the Central Mediterranean, the differential roll-back of the subducting Nubia Plate caused the Neogene-Quaternary extrusion of the Calabrian arc onto the oceanic Ionian slab, and the opening of the oceanic Tyrrhenian Basin, in the overriding Eurasia Plate. The differential motion at the edges of the arc was largely accommodated along transform faults that propagated across the orogenic belt. Since the Late Quaternary, the southern edge of the arc has been replaced by the roughly N-S oriented Siculo-Calabrian Rift Zone (SCRZ) that formed as the NNW-directed normal faults of NE Sicily, crossing the orogenic belt, have linked the NNE-oriented Tyrrhenian margin of southern Calabria with the NNW-trending Africa-Ionian boundary of southeastern Sicily. Our study focused on the Sicily shoulder of the SCRZ, where the transition zone between the extensional belt and the still active Nubia-Eurasia convergent margin is characterized by two distinct mobile crustal wedges, both lying on an upwarped Mantle, where a re-orientations of the σ1 is combined with volcanism (e.g. Etna, Aeolian islands) and a huge tectonic uplift. In southeastern Sicily, the Hyblean-Etnean region evolved, since about 0.85 Ma, as an indipendent crustal wedge, moving towards the NNW and pointing to the active Mt. Etna volcano. A local ENE crustal stretching accompanied the traslation of the block and pre-dated the ESE-oriented extension governing the propagation of the southernmost branch of the SCR, which started at about 330 ka B.P.. Similarly, the Peloritani-Aeolian region, flanked by the 125 ka-old NE-Sicily branch of the rift zone, represents a mostly submerged crustal wedge that migrates towards the NE, diverging from the rest of the Sicily collision zone and pointing to the Stromboli volcano. The Peloritani-Aeolian block is characterized by the occurrence of a wide central NE-oriented collapsed basin contoured by an actively uplifting region, whose tectonic boundaries are evidenced by a sharp

  19. Early Cretaceous tectono-magmatic activity and tectonic implications along the Sulu Orogenic Belt - case study of the Dashan complex

    NASA Astrophysics Data System (ADS)

    Liu, Yanghe; Liu, Junlai; Shi, Xiaoxiao; Yuan, Fengjie; Ni, Jinlong; Wu, Wenbin; Chen, Xiaoyu

    2016-04-01

    The tectonic extension of the eastern Eurasian continent during the Early Cretaceous resulted in widespread occurrence of metamorphic core complexes, wide rifts and related magmatic emplacement, among which the Dashan complex of the Jiaonan orogenic belt is a typical example. The complex is a complex massif of several types of granitic rocks. The core of the complex is composed of massive porphry-bearing biotite-hornblende granitoid without any evidence of ductile deformation. Mylonitized augen quartz monzonite and granodiorite constitute the margin of the complex. A transition zone is composed of porphyritic biotite-hornblende monzonite with weakly orientated K-feldspar phenocryst and mafic microgranular enclave. The foliations along the northwestern margin of the complex dip to NW at with dip angles of about 38°, and along the southwestern and northeastern margins to SE with dip angles of about 45°. Stretching lineations are constantly plunging WNW-ESE with pitch angles between 10° and 40°, which is consistent with the orientation of lineations in the other regions in eastern China. The granites,porphyritic monzogranite and the mafic microgranular enclaves in monzogranite are dated of ca.126Ma. The similarities in ages of crystallization of the monzogranite and its MME's implies the existence of magmatic mixing processes. Meanwhile, the mylonitized augen quartz monzonite and granodiorite along the margins of the complex possess crystallization ages of 129.8±1.1Ma and 132.7±2.8Ma, respectively. The petrographical zonation , structural characteristics and the systematical zircon U-Pb geochronology of the granitic rocks may suggest that the Dashan complex has experienced multistage emplacement under the same tectonic extension setting. In despite of the location of the complex near the Tanlu fault zone, the remarkable consistency of the orientations of stretching lineation of the Dashan complex to those from the other parts of the eastern China area implies

  20. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  1. 78 FR 16701 - Agency Information Collection Activities: Application for Foreign Trade Zone and/or Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Foreign Trade Zone and/or Status Designation, and Application for Foreign Trade Zone Activity Permit... approval in accordance with the Paperwork Reduction Act: Application for Foreign Trade Zone Admission and/or Status Designation, and Application for Foreign Trade Zone Activity Permit (CBP Forms 214,...

  2. Identification and interpretation of tectonic features from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. An important fault zone, which is strongly suspected of being seismically active, was identified on RBV images, ERTS E-1013-17305 (101, 201, and 301), in northeastern Utah. This fault zone is not shown on the Geological Map of the United States nor on the Tectonic Map of North America. When the epicenters of historic earthquakes and their magnitudes were plotted on an overlay corresponding to the scene, a major earthquake cluster up to magnitude 4.9 was found through which the fault zone passes. This suspected active fault zone runs in a northwest-southwest direction cutting across the Patmos Mountains and the southwestern side of the East Tavaputs Plateau from near the junction of the Colorado River with the Dolores River to and beyond the town of Dragerton, Utah. The fault zone which will subsequently be referred to as the Dragerton fault zone appears to be an element of a major tectonic lineament which includes the Moab fault, Salt Valley, Spanish and Lisbon Valleys. Because of the limited imagery coverage received so far, the extent of this lineament or its tectonic significance cannot be ascertained. It is suspected, however, that it constitutes a major crustal break in the Colorado Plateau.

  3. Long-lasting tectonic activities of the Lepontine Dome. New evidence from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Elfert, Simon; Reiter, Wolfgang; Spiegel, Cornelia

    2013-11-01

    To investigate the Neogene exhumation history of the central European Alps, we apply low-temperature thermochronology in combination with thermal history modelling. Fission track and (U-Th-Sm)/He ages on apatites from the central Lepontine Dome (Ticino, Switzerland) indicate higher exhumation rates in the centre of the dome and rather moderate exhumation at the northern and southern boundaries since Neogene times. We present a model for explaining the latest stage exhumation of the central Lepontine Dome and show that (I) both episodic and continuous exhumations are found on small-scale throughout the Neogene, (II) compressional tectonics control the exhumation until the Late Neogene, (III) the exhumation regime changes between 6 and 4 Ma and (IV) increasing hinterland exhumation rates at the Mio-Pliocene boundary cannot be related to tectonic structures of the dome and they are thus explained by climatic changes.

  4. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    velocity on the crests of convection cells driven by rising heat. The magnitude of these sinking mass anomalies is inferred also to be sufficient to overcome basal plate and transform fault frictions. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites of seafloor spreading) are adjustment zones that accommodate strains in the lithosphere. Further, the interlocked pattern of the Australian and Pacific plates the past 42 Million years (with their absolute plate motions near 90° to each other) is taken as strong evidence that large thermally driven "roller" convection cells previously inferred as the driving mechanism in earlier interpretations of continental drift and plate tectonics, have not been active in the Earth's mantle the past 42 Million years, if ever. This report also presents estimates of the changes in location and magnitude of the Earth's axis of total plate tectonic angular momentum for the past 62 million years.

  5. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  6. Integrating geology and geomorphology; the key to unlocking Quaternary tectonic framework of the San Andreas Fault zone in the San Gorgonio Pass region, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2012-12-01

    The San Gorgonio Pass (SGP) region of southern California is a locus of long-continued Quaternary deformation and landscape evolution within a structural complexity, colloquially referred to as a knot in the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complex history of geologic events involved in the formation and resolution of this structural knot. We recognize five morphologically distinct terrains in and around SGP; the San Gorgonio Block (SGB), Yucaipa Ridge (YRB), Pisgah Peak (PPB), Kitching Peak (KPB), and Devil's Garden blocks (DGB). Morphometric analyses, including drainage density, hypsometry, topographic profiles, and stream-power measurements and discontinuities, consistently demonstrate distinctions between the blocks. Our focus in this study is on the KPB and PPB terrains, both developed in crystalline rocks of San Gabriel Mountains type. KPB is bounded on the north by the Mission Creek strand of the SAF and on the east by the Whitewater Fault; PPB is bounded on the north by the San Bernardino strand of the SAF, which continues southeastward into the core of SGP and there separates PPB from KPB. KPB has significantly greater topographic relief than PPB, and the two blocks have internal morphometric and geologic characteristics that differ significantly. Canyons in KPB lack thick Quaternary alluvial fills, and hillslopes have shed numerous bedrock landslides. Canyons in PPB contain large volumes of Middle-Pleistocene through Holocene alluvium, associated with areally extensive relict geomorphic surfaces. We use the geomorphic differences, along with geologic factors, to reconstruct tectonically driven landscape evolution over the last 100-200 Ka years. The KPB and PPB both are bounded southward by contractional structures of the San Gorgonio Pass Fault zone (SGPFZ), but geologic complexity within this zone differs markedly south of each block. South of KPB, the SGPFZ consists of multiple thrust-fault strands, some

  7. Tectonic conditionality endogenic geoecological processes on a shelf

    NASA Astrophysics Data System (ADS)

    Kholmiansky, Mikhail; Anokhin, Vladimir; Kholmianskaia, Galina

    2014-05-01

    Influence on a sea ecosystem of deep tectonic structures and processes is considered. From the point of view of studying endogenic geoecological processes and the phenomena ensuring origin of «endogenic» ecological dangers, us the following interests, first of all: a structurally-tectonic structure, a lithologic-stratigraphic section, hydro- and lithodynamic, a hydrology, seismic activity, endogenic ingress of heavy metals, a structure cryolithozone The map of endogenic dangers to water area Barents and Karasky seas is made. In the list of the endogenic dangers which have been taken out on the map, have entered: - Areas of heavy metals endogenic origins; - Zones of hyperactivity of corrosion processes; - Zones of the raised seismological activity; - Areas active roiling at seismological influences; - Zones of negative influence on biogene communities, - Characteristics of influence of natural electric field on lithodynamic processes. The most part flooded at the bottom of technogenic objects is located within the tectonic zones characterised by raised intensity of corrosion processes. The tectonic reasons, in the big degree, cause dynamics of the deep hydro-geological processes providing receipt in hydrosphere of the sea highly mineralized waters, negatively influencing on a biogenic component of an ecosystem. The most vulnerable are the biogenic forms living in deeper sites of the sea. On the map are allocated and ranked some zones endogenic hydro-geological dangers to biogenic communities. At displays of seismological activity endogenic tectonic nature process roiling the ground deposits, menacing to normal dwelling biota, leading to death ground invertebral organisms, to sharp pauperisation of a forage reserve benthos feeder will have fishes, to sharp reduction of population nectobentofages and predators. At last, infringement of a hydrochemical mode in aggregate with endogenic receipts can strengthen aforementioned negative processes. The geoecological map of

  8. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  9. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  10. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  11. Coseismic fault zone deformation caused by the 2014 Mw=6.2 Nagano-ken-hokubu, Japan, earthquake on the Itoigawa-Shizuoka Tectonic Line revealed with differential LiDAR

    NASA Astrophysics Data System (ADS)

    Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.

    2015-12-01

    The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.

  12. Control of salt tectonics by young basement tectonics in Brazil`s offshore basins

    SciTech Connect

    Szatmari, P.; Mohriak, W.

    1995-08-01

    The Campos basin (offshore SE Brazil) is one of the most successful areas of oil exploration in South America. Discovered 20 years ago, its production (500,000 b/d) and reserves (2.9 billion barrels) are second only to Venezuela`s. This richness is due, to a large extent, to intense salt tectonics and the abundance of turbidites. Reactivated basement structures onshore provide a unique opportunity to understand the role of young basement tectonics in controlling salt tectonics and petroleum occurrence. The mountains of SE Brazil, over 1500 m high, formed by the reactivation of late Precambrian thrust and wrench zones under E-W compression, presumably caused by Mid-Atlantic ridge push. Coastal mountain ranges, up to 3000 m high, are limited to the segment of the Atlantic between the Vitoria-Trindade hotspot chain and the Rio Grande Rise. The coastal ranges formed as this segment of oceanic crust and adjacent continental margin were pushed WSW along a reactivated Precambrian wrench zone. To the north of this segment, salt tectonics is mostly due to basinward sliding on a tilted salt layer. Along the coastal ranges, to this is added basinward escape of the salt from beneath prograding sediments derived from the rising mountains. Extension above the salt tends to be compensated by compression farther basinward. Salt canopies, frequent in the Gulf of Mexico, occur only near the Abrolhos hotspot, where high temperatures during volcanic activity sharply reduced the viscosity of the salt.

  13. Analysis of tectonic features in US southwest from Skylab photographs

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.

    1975-01-01

    The author has identified the following significant results. Skylab photographs were utilized to study faults and tectonic lines in selected areas of the U.S. Southwest. Emphasis was on elements of the Texas Zone in the Mojave Desert and the tectonic intersection in southern Nevada. Transverse faults believed to represent the continuation of the Texas Zone were found to be anomalous in strike. This suggests that the Mojave Desert block was rotated counterclockwise as a unit with the Sierra Nevada. Left-lateral strike-slip faults in Lake Mead area are interpreted as elements of the Wasatch tectonic zone; their anomalous trend indicates that the Lake Mead area has rotated clockwise with the Colorado Plateau. A tectonic model relating major fault zones to fragmentation and rotation of crustal blocks was developed. Detailed correlation of the high resolution S190B metric camera photographs with U-2 photographs and geologic maps demonstrates the feasibility of utilizing S190B photographs for the identification of geomorphic features associated with recent and active faults and for the assessment of seismic hazards.

  14. Escape tectonics and the extrusion of Alaska: Past, present, and future

    USGS Publications Warehouse

    Redfield, T.F.; Scholl, D. W.; Fitzgerald, P.G.; Beck, M.E., Jr.

    2007-01-01

    The North Pacific Rim is a tectonically active plate boundary zone parts of which may be characterized as a laterally moving orogenic stream. Crustal blocks are transported along large-magnitude strike-slip faults in western Canada and central Alaska toward the Aleutian-Bering Sea subduction zones. Throughout much of the Cenozoic, at and west of its Alaskan nexus, the North Pacific Rim orogenic Stream (NPRS) has undergone tectonic escape. During transport, relatively rigid blocks acquired paleomagnetic rotations and fault-juxtaposed boundaries while flowing differentially through the system, from their original point of accretion and entrainment toward the free face defined by the Aleutian-Bering Sea subduction zones. Built upon classical terrane tectonics, the NPRS model provides a new framework with which to view the mobilistic nature of the western North American plate boundary zone. ?? 2007 The Geological Society of America.

  15. Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India

    NASA Astrophysics Data System (ADS)

    Bora, Sita; Kumar, Santosh; Yi, Keewook; Kim, Namhoon; Lee, Tae Ho

    2013-07-01

    The northern part of Central India Tectonic Zone (CITZ) is delineated by an arc-shaped supracrustal belt commonly referred to as Mahakoshal Belt, which is considered as a product of intense rifting of sialic crust that occurred at ca 2400-2600 Ma. Several granitoid plutons intrude the Parsoi Formation of Mahakoshal Belt. Among these, an elliptical small stock-like granitoid body trending E-W is exposed in and around Jhirgadandi region of Mahakoshal Belt, referred herein as Jhirgadandi Pluton. It is composed of minor amount of mafic rocks (diorite) and predominant granitoids. Country-rock pelitic xenoliths and microgranular enclaves (ME) are commonly hosted in granitoids but are absent in diorite. The ME exhibit typical magmatic texture with a Bt(±Cpx ± Hbl)-Pl-Kf-Qtz-Mag-Ap assemblage, similar to that in host granitoids but with contrasting mineral proportions. Whole-rock molar Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of diorite (0.63-0.72), ME (0.69-1.21) and granitoids (0.83-1.05) suggest their nature largely metaluminous (I-type) to rarely peraluminous (S-type) granitoids. On most binary plots involving silica, two distinct compositional paths can be recognized; one formed by an array of differentiating diorite and ME, and another by fractionating granitoids gradually depleting in compatible elements. It is most likely that ME were generated by progressive and concurrent mixing of coeval pristine mafic (diorite) and granitoid magmas and fractionation processes. However, coherent and identical trace elements (except for Sr, Th, Y and Ni) and REE patterns for ME-granitoid pairs most likely suggest partial to near-complete chemical equilibration through varying degrees of diffusion process across the ME - partly crystalline host granitoid boundary. High-precision U-Pb SHRIMP zircon 206Pb/238U ages for ME (1758 ± 19 Ma) and host granitoid (1753 ± 9.1 Ma) from Jhirgadandi Pluton further support the notion that they were coeval. The obtained age (˜1750 Ma) of

  16. North Chilean forearc tectonics and cenozoic plate kinematics

    NASA Astrophysics Data System (ADS)

    Buddin, Tim S.; Stimpson, Ian G.; Williams, Graham D.

    1993-04-01

    The continental forearc of northern Chile has been subjected to contemporaneous extension and compression. Here, cross-sections constructed across the forearc are presented which show that since initial shortening, deformation of the forearc has occurred in two tectonically distinct areas. These inner and outer forearc areas are separated by the strain discontinuity of the Atacama fault system and the tectonically neutral Central Depression. The outer forearc, the Coastal Cordillera, exhibits extensional tectonics, with large (up to 300 m) normal fault scarps preserved. These faults cut the earlier thrusts responsible for the elevation of Jurassic rocks at the coast above their regional elevation. The normal faults have been re-activated, displacing Quaternary salt deposits in the Salar Grande. This re-activation of the basement faults is probably due to the subduction of anomalously thick oceanic crust, producing an isostatic imbalance in the outer forearc. In the inner forearc, cross-sections through the Sierra del Medio and Cordillera de Domeyko show that structures of the Pre-Cordillera are best explained by a thick-skinned thrust system, with localized thin-skinned tectonics controlled by evaporite detachment horizons. Current forearc deformation features indicate a strong degree of correlation between subduction zone geometry and forearc tectonics. The timing of Cenozoic tectonism also fits well with established plate motion parameters, and the spatial and temporal variation in the state of stress of the forearc shows a close relationship throughout the Cenozoic to the plate kinematics and morphology of the subducting Nazca plate.

  17. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Harvest Zone Codes for Use With Vessel... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 8 Table 8 to Part 679—Harvest Zone Codes for Use With Vessel Activity Reports Harvest Zone Description A1 BSAI EEZ off Alaska A2 GOA EEZ off Alaska B State waters...

  18. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  19. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time. PMID:23803848

  20. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  1. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  2. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  3. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  4. Tectonic structure of East Antarctica

    NASA Astrophysics Data System (ADS)

    Leychenkov, German; Grikurov, Garrik; Golynsky, Alexander

    2013-04-01

    First overviews of tectonic structure of the Southern Continent were made by the pioneers of Antarctic earth science investigations almost 100 years ago. Despite rapidly advancing international geological studies under the Antarctic Treaty, the presentations of Antarctic tectonic structure remained largely speculative until the end of the past century when implementation of modern analytical and remote-sensing research technologies enabled compilation of more credible tectonic models of Antarctica. The East Antarctic bedrock consists mainly of the Precambrian crystalline complexes and the Paleozoic-Early Mesozoic platform units. Crystalline Shield is locally complicated by Neoproterozoic aulacogenes and Late Paleozoic to Mesozoic rifts. Shield assemblages reliably recognized in coastal outcrops indicate the predominant occurrence of Archean cratonic nuclei and Mesoproterozoic mobile belts. The undisturbed platform cover strata are exposed in East Antarctica mainly along its boundary with West Antarctica. Tectonic structure of ice-covered regions (more that 99% of the East Antarctic territory) is interpreted using mostly magnetic and bedrock topography data, but other geophysical and geological information (satellite, airborne and over-ice gravity; seismology; active seismics; erratics; detrital zircons dates; etc.) is also important. Archean cratons are geologically documented in western Dronning Maud Land, Enderby Land, Princess Elizabeth Land and in the southern Prince Charles Mts. Their distribution under the ice is marked by a specific magnetic pattern including low-amplitude mosaic and/or high-amplitude long-wavelength anomalies. The most extensive ancient craton being 1000 km across is believed to extend from the southern Prince Charles Mts. to the Gamburtsev Mts. Mesoproterozoic mobile belts are distinguished by elongated high-amplitude magnetic anomalies and are mapped along the costal area as the zone of 250-600 km wide. The Gamburtsev Mts. area is also

  5. The model of the Uzon-Geizernaya volcano-tectonic depression and Kikhpinych volcano, Kamchatka, from the joint analysis of microseismic sounding data and local geodynamic activity

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorbatikov, A. V.; Stepanova, M. Yu.

    2015-05-01

    The model of the magmatic system beneath the Uzon-Geizernaya volcano-tectonic depression and adjacent Kikhpinych volcano in Kamchatka is constructed to a depth of 30 km based on the microseismic sounding data. For doing this, measurements of the natural microseismic field by the Guralp CMG-6TD portable broadband seismometer were carried out at 60 points along three profiles with a total length of about 28 km. The revealed structural heterogeneities were interpreted in the common context with the previous geological, geological-morphological, and petrological results. The area of a shallow crystallized magmatic reservoir is identified and spatially localized below the depression. The zones of the presumed concentration of the basaltic melts probably responsible for the local geodynamic activation of the region during the past 15 years are revealed as the peripheral magmatic chamber of the Kikhpinych volcano at a depth of 5-12 km and a deeper (15-20 km) magma storage. The geometry of the identified deep structures is consistent with the local microseismicity and the model of the contemporary magmatic intrusion into the upper crustal layers, which is based on the data of satellite interferometry.

  6. Tectonic interpretation of the 13 february 2001, mw 6.6, El Salvador Earthquake: New evidences of coseismic surface rupture and paleoseismic activity.

    NASA Astrophysics Data System (ADS)

    Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.

    2009-04-01

    In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.

  7. Modeling the influence of tectonic extrusion and volume loss on the geometry, displacement, vorticity, and strain compatibility of ductile shear zones

    NASA Astrophysics Data System (ADS)

    Baird, Graham B.; Hudleston, Peter J.

    2007-10-01

    Oblate strains are often observed in meso-scale ductile shear zones and this is generally taken to indicate narrowing across the shear zone during formation. Volume loss is one mechanism that could produce shear zone narrowing. However, not all shear zones display characteristics consistent with volume loss, and in such cases, the narrowing must be accomplished by the extrusion of material from within the shear zone. To explore the relationship between shear zone geometry, volume loss, and extrusion, shear zones were mathematically modeled. Results demonstrate the important influence of pure shear and volume loss on controlling the geometry, displacement, and vorticity of ductile shear zones. Further, volume loss does not preclude extrusion unless, for a given volume loss, the strain is of a specific geometry. Extrusion is a likely mechanism important in shear zone development, even if volume loss occurs. Extrusion presents strain compatibility problems because, unlike crustal-scale shear zones, meso-scale ductile shear zones do not possess a free surface. If extrusion occurs, bulk strain compatibility can be maintained if shear zones interlink in anastomosing arrays or change in thickness, though not all shear zone systems display such characteristics. Modeling results elucidate the deformation style of shear zone in the northwest Adirondacks in NY and in the Kebnekaise region in northern Sweden.

  8. Topographic Expression of Active Tectonics in the Absence of Physical Erosion in the External Dinarides of Croatia

    NASA Astrophysics Data System (ADS)

    Casale, G.; Paulson, K.; Salamonsen, E.; Bennett, R. A.; Surkovic, M.

    2010-12-01

    The Dinarides of Croatia and Bosnia-Herzegovina form part of the actively deforming Adria-Eurasia boundary, but their topography differs greatly from similar sized active orogens such as the neighboring Northern Apennines. The Dinarides include two distinct regions with contrasting surface drainage patterns: the surface drainage of the External Dinarides is a series of disconnected internally drained basins, whereas the Internal Dinarides much more closely resemble the Northern Apennines with well connected basins and waterways. We used SRTM DEMs to characterize surface drainage in the Dinarides and found a strong correlation between mapped rock-type and surface connectivity. Specifically, disconnected internally drained basins are restricted to carbonate lithologies prevelant in the External Dinarides, which are often susceptible to chemical dissolution, whereas heterogenous rock types found in the Internal Dinarides are associated with typical dendritic drainages. The extent of the carbonate-dominated topography characterizing the External Dinarides is further divided into areas of distinctly higher (300-700 m) and (<100 m) lower relief despite the inability of the low topography of the Dinarides to concentrate precipitation and thus chemical erosion. Therefore, the topographic variation between these two areas is either controlled by the contrasting solubility of various carbonate lithologies, or active tectonics. To test for contrasting solubility, we analyzed a suite of samples from both ridge and valley forming sites using a microprobe and ICP-MS. We found that the weight percent Ca was indistinguishable between our samples and that of pure calcite. We then expanded our investigation by incorporating spectral analysis of ASTER imagery across the entire external Dinarides, with similar results. We conclude that the large scale topography of the External Dinarides is not the result of lithologic heterogeneity, and is instead controlled by tectonics. Our

  9. Tectonic burial and exhumation cycles tracked by muscovite and K-feldspar 40Ar/39Ar thermochronology in a strike-slip fault zone, central Turkey

    NASA Astrophysics Data System (ADS)

    Idleman, Lauren; Cosca, Michael A.; Heizler, Matthew T.; Thomson, Stuart N.; Teyssier, Christian; Whitney, Donna L.

    2014-02-01

    Muscovite and K-feldspar 40Ar/39Ar ages from the eastern margin of the Niğde massif in central Anatolia track the timing of initial exhumation, reburial, and final exhumation and cooling of metamorphic rocks deformed within a strike-slip fault zone. Although the ages of initial and final cooling were known from previous studies, our new results document the timing of the reheating/reburial event. Muscovite from four of eight gneiss samples have Late Cretaceous 40Ar/39Ar ages that date initial cooling at ~ 75 Ma. The remaining samples have perturbed spectra that climb to Late Cretaceous ages with increasing extraction temperatures during analysis. These perturbed samples are located beneath a faulted unconformity overlain by Paleogene sedimentary deposits that were derived in part from the metamorphic rocks, then buried, metamorphosed, and deformed under greenschist facies conditions. Samples close to the faulted unconformity are more perturbed than structurally deeper samples. The age of the thermal perturbation is determined at 30 ± 5 Ma using multi-diffusion domain modeling of K-feldspar 40Ar/39Ar data from two gneiss samples, one located close to the unconformity and one at a structurally deeper level. Muscovite 40Ar/39Ar results and modeled K-feldspar temperature-time histories show that the eastern margin of the Niğde massif experienced a reheating event that peaked at ~ 30 Ma. The thermal pulse has been attributed to reburial associated with transpression in the Ecemiş segment of the Central Anatolian Fault Zone along the eastern margin of the Niğde massif. Activity of this fault zone may represent a far-field expression of the onset of collision of Arabia with Eurasia in SE Anatolia.

  10. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  11. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  12. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  13. 78 FR 14963 - Foreign-Trade Zone 163-Ponce, Puerto Rico; Authorization of Production Activity; Zimmer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Foreign-Trade Zones Board Foreign-Trade Zone 163--Ponce, Puerto Rico; Authorization of Production Activity; Zimmer Manufacturing BV (Medical Devices); Ponce, Puerto Rico On November 1, 2012, CODEZOL, C.D., grantee of FTZ 163, submitted a notification of proposed production activity to the Foreign-Trade Zones...

  14. 33 CFR 3.70-20 - Activities Far East Marine Inspection Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Activities Far East Marine... SECURITY GENERAL COAST GUARD AREAS, DISTRICTS, SECTORS, MARINE INSPECTION ZONES, AND CAPTAIN OF THE PORT ZONES Fourteenth Coast Guard District § 3.70-20 Activities Far East Marine Inspection Zone....

  15. Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1989-01-01

    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation.