Science.gov

Sample records for active temperature control

  1. Active structural vibration control: Robust to temperature variations

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  2. High Temperature Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2006-01-01

    A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal.

  3. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  4. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  5. High temperature sensor/microphone development for active noise control

    NASA Technical Reports Server (NTRS)

    Shrout, Thomas R.

    1993-01-01

    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to

  6. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  7. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  8. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells.

    PubMed

    Lauterboeck, L; Hofmann, N; Mueller, T; Glasmacher, B

    2015-12-01

    Cryopreservation is a technique that has been extensively used for storage of multipotent mesenchymal stromal cells (MSCs) in regenerative medicine. Therefore, improving current cryopreservation procedures in terms of increasing cell viability and functionality is important. In this study, we optimized the cryopreservation protocol of MSCs derived from the common marmoset Callithrix jacchus (cj), which can be used as a non-human primate model in various pathological and transplantation studies and have a great potential for regenerative medicine. We have investigated the effect of the active control of the nucleation temperature using induced nucleation at a broad range of temperatures and two different dimethylsulfoxide concentrations (Me2SO, 5% (v/v) and 10%, (v/v)) to evaluate the overall effect on the viability, metabolic activity and recovery of cells after thawing. Survival rate and metabolic activity displayed an optimum when ice formation was induced at -10 °C. Cryomicroscopy studies indicated differences in ice crystal morphologies as well as differences in intracellular ice formation with different nucleation temperatures. High subzero nucleation temperatures resulted in larger extracellular ice crystals and cellular dehydration, whereas low subzero nucleation temperatures resulted in smaller ice crystals and intracellular ice formation. PMID:26499840

  9. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  10. A new approach for freezing of aqueous solutions under active control of the nucleation temperature.

    PubMed

    Petersen, Ansgar; Schneider, Hendrik; Rau, Guenter; Glasmacher, Birgit

    2006-10-01

    An experimental setup for controlled freezing of aqueous solutions is introduced. The special feature is a mechanism to actively control the nucleation temperature via electrofreezing: an ice nucleus generated at a platinum electrode by the application of an electric high voltage pulse initiates the crystallization of the sample. Using electrofreezing, the nucleation temperature in pure water can be precisely adjusted to a desired value over the whole temperature range between a maximum temperature Tn(max) close to the melting point and the temperature of spontaneous nucleation. However, the presence of additives can inhibit the nucleus formation. The influence of hydroxyethylstarch (HES), glucose, glycerol, additives commonly used in cryobiology, and NaCl on Tn(max) were investigated. While the decrease showed to be moderate for the non-ionic additives, the hindrance of nucleation by ionic NaCl makes the direct application of electrofreezing in solutions with physiological salt concentrations impossible. Therefore, in the multi-sample freezing device presented in this paper, the ice nucleus is produced in a separate volume of pure water inside an electrode cap. This way, the nucleus formation becomes independent of the sample composition. Using electrofreezing rather than conventional seeding methods allows automated freezing of many samples under equal conditions. Experiments performed with model solutions show the reliability and repeatability of this method to start crystallization in the test samples at different specified temperatures. The setup was designed to freeze samples of small volume for basic investigations in the field of cryopreservation and freeze-drying, but the mode of operation might be interesting for many other applications where a controlled nucleation of aqueous solutions is of importance. PMID:16887112

  11. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  12. 100 s extraction of negative ion beams by using actively temperature-controlled plasma grid

    SciTech Connect

    Kojima, A. Hanada, M.; Yoshida, M.; Tobari, H.; Kashiwagi, M.; Umeda, N.; Watanabe, K.; Grisham, L. R.

    2014-02-15

    Long pulse beam extraction with a current density of 120 A/m{sup 2} for 100 s has been achieved with a newly developed plasma grid (PG) for the JT-60SA negative ion source which is designed to produce high power and long pulse beams with a negative ion current of 130 A/m{sup 2} (22 A) and a pulse length of 100 s. The PG temperature is regulated by fluorinated fluids in order to keep the high PG temperature for the cesium-seeded negative ion production. The time constant for temperature controllability of the PG was measured to be below 10 s, which was mainly determined by the heat transfer coefficient of the fluorinated fluid. The measured decay time of the negative ion current extracted from the actively temperature-controlled PG was 430 s which was sufficient for the JT-60SA requirement, and much longer than that by inertial-cooling PG of 60 s. Obtained results of the long pulse capability are utilized to design the full size PG for the JT-60SA negative ion source.

  13. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  14. Active Control of the Operating Temperature in a Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gaj; Powers, Edward I. (Technical Monitor)

    2001-01-01

    The operating temperature of a loop heat pipe (LHP) with multiple evaporators is a function of the total heat load, heat load distribution among evaporators, condenser temperature and ambient temperature. Because of the many variables involved, the operating temperature also showed more hystereses than an LHP with a single evaporator. Tight temperature control can be achieved by controlling its compensation chamber (CC) temperatures at the desired set point. This paper describes a test program on active control of the operating temperature in an LHP with two evaporators and two condensers. Temperature control was achieved by heating one or both CC's. Tests performed included start-up, power cycle, sink temperature cycle, CC temperature cycle, and capillary limit. Test results show that, regardless one or two CC's were heated to the set point temperature, one of CC's was always flooded with liquid. The loop could operate successfully at the desired set point temperature under most conditions, including some fast transients. At low heat loads, however, the CC temperature could suddenly increase above the set point temperature, possibly due to a sudden change of the vapor content inside the evaporator core.

  15. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  16. Modeling of electric resistance of shape memory alloys: self-sensing for temperature and actuation control of active hybrid composites

    NASA Astrophysics Data System (ADS)

    Nissle, Sebastian; Hübler, Moritz; Gurka, Martin

    2016-04-01

    For actuation purposes active hybrid structures made of fiber reinforced polymers (FRP) and shape memory alloys (SMA) enable substantial savings concerning weight, space and cost. Such structures allow realizing new functions which are more or less impossible with commonly used systems consisting of the structure and the actuator as separated elements, e.g. morphing winglets in aeronautics. But there are also some challenges that still need to be addressed. For the successful application of SMA FRP composites a precise control of temperature is essential, as this is the activating quantity to reach the required deformation of the structure without overloading the active material. However, a direct measurement of the temperature is difficult due to the complete integration of SMA in the hybrid structure. Also the deformation of the structure which depends on the temperature, the stiffness of the hybrid structure and external loads is hard to determine. An opportunity for controlling the activation is provided by the special behavior of the electrical resistance of SMA. During the phase transformation of the SMA - also causing the actuation travel - the resistance drops with rising temperature. This behavior can be exploited for control purposes, especially as the electrical resistance can be easily measured during the activation done by Joule heating. As shown in this contribution, theoretical modelling and experimental tests provide a load-independent self-sensing control-concept of SMA-FRP-hybrid-structures.

  17. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons.

  18. In vitro influence of temperature on the biological control activity of the fungus Duddingtonia flagrans against Haemonchus contortus in sheep.

    PubMed

    Buske, Rodrigo; Santurio, Janio Morais; de Oliveira, Clarissa Vasconcelos; Bianchini, Liziane Aita; da Silva, José Henrique Souza; de la Rue, Mario Luiz

    2013-02-01

    Recently, research for alternative methods to combat gastrointestinal parasites has increased, and the biological control activity of the fungus Duddingtonia flagrans stands out. In this study, the possible influence of temperature on the nematophagous activity of D. flagrans, after gastrointestinal passage, against Haemonchus contortus in sheep was analysed. Four female sheep, between 2 and 3 years of age and weighing between 40 and 50 kg, were used. Two sheep were parasitised with H. contortus, while two other sheep were dewormed. Before the collection of faeces, one of the dewormed animals received a dosage of 1 × 10(6) chlamydospores of D. flagrans, lyophilised in gelatin capsules, for three consecutive days. The faeces were collected with collector bags, mixed, and then separated as samples with (fungus; 800 eggs per gram (EPG) of faeces) or without fungus (control; 900 EPG). Each sample (five replicates) was maintained in a biochemical oxygen demand incubator under different temperatures (5, 10, 15, 20, 25, 30, or 35 °C) for 21 days, followed by determination of the larval recovery. Compared to the control group, the best temperature for fungal action was 30 °C, while no larvae were recovered at 5 °C. At 10 °C, fungal action was detected, yet there was no significant difference in the percent larval reduction between all temperatures, demonstrating that larval presence seems to be the main factor affecting the nematophagous action of D. flagrans. Temperature does not appear to be a limiting factor in the biological control activity of D. flagrans against H. contortus, but larval presence, which was not observed at 5 °C, is mandatory. At low temperatures, which are typically suboptimal conditions for fungal and larval development, the lyophilised D. flagrans reduced the number of H. contortus larvae, which demonstrates the biological control potential and the potential use of D. flagrans in the subtropics.

  19. Automatic temperature control

    SciTech Connect

    Sheridan, J.P.

    1986-07-22

    An automatic temperature control system is described for maintaining a preset temperature in an enclosed space in a building, comprising: heating and cooling means for conditioning the air in the enclosed space to maintain the preset temperature; exterior thermostat means outside the building for sensing ambient exterior temperature levels; interior thermostat means in the enclosed space, preset to the preset temperature to be maintained and connected with the heating and cooling means to energize the means for heating or cooling, as appropriate, when the preset temperature is reached; means defining a heat sink containing a volume of air heated by solar radiation, the volume of the heat sink being such that the temperature level therein is not affected by minor or temporary ambient temperature fluctuations; and heat sink thermostat means in the heat sink sensing the temperature in the heat sink, the heat sink thermostat means being connected in tandem with the exterior thermostat means and operative with the exterior thermostat means to switch the interior thermostat means to either a first readiness state for heating or a second readiness state for cooling, depending upon which mode is indicated by both the exterior and heat sink thermostat means, whereby the system automatically switches between heating and cooling, as required, in response to a comparison of exterior and heat sink temperatures.

  20. Central control of body temperature.

    PubMed

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  1. Central control of body temperature

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  2. Central control of body temperature.

    PubMed

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  3. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  4. Temperature control by the blood temperature monitor.

    PubMed

    Schneditz, Daniel; Ronco, Claudio; Levin, Nathan

    2003-01-01

    The rationale of temperature control during hemodialysis (HD) is to prevent heat accumulation, which increases body temperature and enhances hypotensive susceptibility. Treatments where thermal energy is neither delivered nor removed from the patient through the extracorporeal circulation (so-called extracorporeal thermoneutral treatments) lead to a marked increase in body temperature and to considerable heat accumulation during HD. Since this accumulation of heat cannot be explained by increased heat production, it must be related to reduced heat dissipation through the body surface. Peripheral vasoconstriction, and cutaneous vasoconstriction in particular, compensating for the ultrafiltration-induced decrease in blood volume is considered an important component in this setting. Therefore, to maintain temperature homeostasis, thermal energy has to be cleared from the patient by the extracorporeal system because cutaneous clearance of thermal energy is compromised intradialytically. The focus on dialysate temperature alone does not properly address the problem of controlled extracorporeal heat removal because dialysate temperature is only one of the variables involved in that process. These difficulties can be addressed by changing from the control of dialysate temperature to control of body temperature. Control of body temperature and temperature homeostasis is achievable by the physiologic feedback control system realized in the temperature control mode (T-mode) of the blood temperature monitor (BTM). The delivery of isothermic dialysis, that is, dialysis where body temperature is controlled to remain constant during the treatment, has impressively improved hemodynamic stability in hypotension prone patients.

  5. Temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf

    2013-06-01

    Retinal photocoagulation lacks objective dosage in clinical use, thus the commonly applied lesions are too deep and strong, associated with pain reception and the risk of visual field defects and induction of choroidal neovascularisations. Optoacoustics allows real-time non-invasive temperature measurement in the fundus during photocoagulation by applying short probe laser pulses additionally to the treatment radiation, which excite the emission of ultrasonic waves. Due to the temperature dependence of the Grüneisen parameter, the amplitudes of the ultrasonic waves can be used to derive the temperature of the absorbing tissue. By measuring the temperatures in real-time and automatically controlling the irradiation by feedback to the treatment laser, the strength of the lesions can be defined. Different characteristic functions for the time and temperature dependent lesion sizes were used as rating curves for the treatment laser, stopping the irradiation automatically after a desired lesion size is achieved. The automatically produced lesion sizes are widely independent of the adjusted treatment laser power and individual absorption. This study was performed on anaesthetized rabbits and is a step towards a clinical trial with automatically controlled photocoagulation.

  6. Engine Cylinder Temperature Control

    DOEpatents

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  7. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. PMID:23859813

  8. Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field

    NASA Astrophysics Data System (ADS)

    Shao, Xuefei; Fu, Yiming; Chen, Yang

    2015-05-01

    Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.

  9. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    SciTech Connect

    Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  10. Thermionic converter temperature controller

    DOEpatents

    Shaner, Benjamin J.; Wolf, Joseph H.; Johnson, Robert G. R.

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  11. Thermionic Converter Temperature Controller

    SciTech Connect

    Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

    1999-08-23

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  12. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage.

    PubMed

    Juul, Sissel; Iacovelli, Federico; Falconi, Mattia; Kragh, Sofie L; Christensen, Brian; Frøhlich, Rikke; Franch, Oskar; Kristoffersen, Emil L; Stougaard, Magnus; Leong, Kam W; Ho, Yi-Ping; Sørensen, Esben S; Birkedal, Victoria; Desideri, Alessandro; Knudsen, Birgitta R

    2013-11-26

    We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12 double-stranded B-DNA helices that constituted the edges of the structure. The double stranded helices were interrupted by short single-stranded thymidine linkers constituting the cage corners except for one, which was composed by four 32 nucleotide long stretches of DNA with a sequence that allowed them to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 °C while ensuring retainment of the cargo in the central cavity of the cage at 4 °C. The entrapped enzyme was catalytically active inside the DNA cage and was able to convert substrate molecules penetrating the apertures in the DNA lattice that surrounded the central cavity of the cage. PMID:24168393

  13. Temperature-controlled resistor

    NASA Technical Reports Server (NTRS)

    Perkins, T. G.

    1969-01-01

    Electrical resistance of a carbon-pile resistor is controlled by the compression or relaxation of a pile of carbon disks by a thermally actuated bimetallic spring. The concept is advantageous in that it is direct-acting, can cover a wide range of controllable characteristics, and can handle considerable power directly.

  14. An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls.

    PubMed

    Céa, B; Lefèvre, D; Chirurgien, L; Raimbault, P; Garcia, N; Charrière, B; Grégori, G; Ghiglione, J F; Barani, A; Lafont, M; Van Wambeke, F

    2015-09-01

    We simultaneously measured bacterial production (BP), bacterial respiration (BR), alkaline phosphatase activity (phos) and ectoaminopeptidase activity (prot) in relation to biogeochemical parameters, nutritive resources and in situ temperature over a 1-year survey at the long-term observatory the SOLEMIO station (Marseille bay, NW Mediterranean Sea). Despite its proximity to the coast, oligotrophic conditions prevailed at this station (yearly mean of Chl a = 0.43 μg dm(-3), NO3 = 0.55 μmol dm(-3) and PO4 = 0.04 μmol dm(-3)). Episodic meteorological events (dominant winds, inputs from the Rhone River) induced rapid oscillations (within 15 days) in temperature and sometimes salinity that resulted in rapid changes in phytoplankton succession and a high variability in C/P ratios within the particulate and dissolved organic matter. Throughout the year, BP ranged from 0.01 to 0.82 μg C dm-(3) h-(1) and bacterial growth efficiency varied from 1 to 39%, with higher values in summer. Enrichment experiments showed that BP was limited most of the year by phosphorus availability (except in winter). A significant positive correlation was found between in situ temperature, BP, BR and phos. Finally, we found that temperature and phosphate availability were the main factors driving heterotrophic bacterial activity and thus play a fundamental role in carbon fluxes within the marine ecosystem.

  15. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO2 films prepared at low temperature

    NASA Astrophysics Data System (ADS)

    Elgh, Björn; Yuan, Ning; Cho, Hae Sung; Magerl, David; Philipp, Martine; Roth, Stephan V.; Yoon, Kyung Byung; Müller-Buschbaum, Peter; Terasaki, Osamu; Palmqvist, Anders E. C.

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  16. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO{sub 2} films prepared at low temperature

    SciTech Connect

    Elgh, Björn; Yuan, Ning; Palmqvist, Anders E. C.; Cho, Hae Sung; Terasaki, Osamu; Magerl, David; Philipp, Martine; Müller-Buschbaum, Peter; Roth, Stephan V.; Yoon, Kyung Byung

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  17. A Proposed Methodology to Control Body Temperature in Patients at Risk of Hypothermia by means of Active Rewarming Systems

    PubMed Central

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (Tcore) decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia. PMID:25485278

  18. A proposed methodology to control body temperature in patients at risk of hypothermia by means of active rewarming systems.

    PubMed

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (Tcore) decreases by 0.5-1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia.

  19. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  20. Automatic temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Bever, Marco; Baade, Alex; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2012-06-01

    Laser coagulation is a treatment method for many retinal diseases. Due to variations in fundus pigmentation and light scattering inside the eye globe, different lesion strengths are often achieved. The aim of this work is to realize an automatic feedback algorithm to generate desired lesion strengths by controlling the retinal temperature increase with the irradiation time. Optoacoustics afford non-invasive retinal temperature monitoring during laser treatment. A 75 ns/523 nm Q-switched Nd:YLF laser was used to excite the temperature-dependent pressure amplitudes, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. A 532 nm continuous wave Nd:YAG laser served for photocoagulation. The ED50 temperatures, for which the probability of ophthalmoscopically visible lesions after one hour in vivo in rabbits was 50%, varied from 63°C for 20 ms to 49°C for 400 ms. Arrhenius parameters were extracted as ΔE=273 J mol-1 and A=3.1044 s-1. Control algorithms for mild and strong lesions were developed, which led to average lesion diameters of 162+/-34 μm and 189+/-34 μm, respectively. It could be demonstrated that the sizes of the automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.

  1. Biophysical control of leaf temperature

    NASA Astrophysics Data System (ADS)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  2. Fuzzy Logic Controller for Low Temperature Application

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  3. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  4. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  5. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  6. Multichannel temperature control for solar heating

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1978-01-01

    Multiplexer/amplifier circuit monitors temperatures and temperature differences. Although primarily designed for cycle control in solar-heating systems, it can also measure temperatures in motors, ovens, electronic hardware, and other equipment.

  7. Temperature Effects and Compensation-Control Methods

    PubMed Central

    Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng

    2009-01-01

    In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509

  8. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  9. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  10. Precision temperature controller for laser diodes

    NASA Astrophysics Data System (ADS)

    Doermann, Alex; Troxel, Daylin; Jones, Tyler; Erickson, Christopher; Durfee, Dallin

    2010-10-01

    I will present the motivation, theory of operation, and some of the results found with the temperature controller used in Dr. Durfee's lab. I will also present my goal and possible data of the temperature drift as I attempt to make if more effective than a commercial temperature controller already in the lab.

  11. Versatile microcomputer-based temperature controller

    SciTech Connect

    Yarberry, V.R.

    1980-09-01

    The wide range of thermal responses required in laboratory and scientific equipment requires a temperature controller with a great deal of flexibility. While a number of analog temperature controllers are commercially available, they have certain limitations, such as inflexible parameter control or insufficient precision. Most lack digital interface capabilities--a necessity when the temperature controller is part of a computer-controlled automatic data acquisition system. We have developed an extremely versatile microcomputer-based temperature controller to fulfill this need in a variety of equipment. The control algorithm used allows optimal tailoring of parameters to control overshoot, response time, and accuracy. This microcomputer-based temperature controller can be used as a standalone instrument (with a teletype used to enter para-meters), or it can be integrated into a data acquisition system (with a computer used to pass parameters by way of an IEE-488 instrumentation bus).

  12. Temperature controller for crystal resonators

    NASA Technical Reports Server (NTRS)

    Turlington, T. R.

    1980-01-01

    Controller operates on less than 5W prime power and heats crystal from -10 C to 75 C in less than 45s. Unit is faster and more accurate (to within 0.7 C) than other inexpensive controllers and faster and less expensive than very precise controllers in vacuum flasks.

  13. A proportional temperature controller with automatic shutoff

    NASA Astrophysics Data System (ADS)

    Lucich, G. M.; Holland, P. W.

    1980-08-01

    A sensitive, proportional temperature controller useful in the temperature range from 40 to 400 C with an accuracy of plus or minus 0.1 C is described. It is potentially useful for regulating temperatures in air chambers, liquid baths, furnaces and reaction vessels and for other applications. This instrument was developed to control the duration and temperature of the heating cycle of a charcoal filled adsorber that is part of a special helium analyzer. The controller was made from commercially available parts and can be easily modified to provide continuous temperature control. The circuit is solid state and employs no electromechanical devices. Over a 2 year period of use as a component of the special helium analyzer, this temperature controller performed successfully and required no maintenance.

  14. Variable temperature seat climate control system

    DOEpatents

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  15. Control of household refrigerators. Part 1: Modeling temperature control performance

    SciTech Connect

    Graviss, K.J.; Collins, R.L.

    1999-07-01

    Commercial household refrigerators use simple, cost-effective, temperature controllers to obtain acceptable control. A manually adjusted airflow damper regulates the freezer compartment temperature while a thermostat controls operation of the compressor and evaporator fan to regulate refrigerator compartment temperature. Dual compartment temperature control can be achieved with automatic airflow dampers that function independently of the compressor and evaporator fan thermostat, resulting in improved temperature control quality and energy consumption. Under dual control, freezer temperature is controlled by the thermostat while the damper controls refrigerator temperature by regulating airflow circulation. A simulation model is presented that analyzes a household refrigerator configured with a conventional thermostat and both manual and automatic dampers. The model provides a new paradigm for investigating refrigerator systems and temperature control performance relative to the extensive verification testing that is typically done by manufacturers. The effects of each type of control and damper configuration are compared with respect to energy usage, control quality, and ambient temperature shift criteria. The results indicate that the appropriate control configuration can have significant effects and can improve plant performance.

  16. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  17. Phase Change Fabrics Control Temperature

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  18. Microprocessor controlled temperature chassis. Final report

    SciTech Connect

    Hill, L.L.

    1985-03-01

    The objective of the microprocessor-controlled temperature chassis was to control temperature more reliably than the existing system and to be flexible and general-purpose enough to support many temperature-controlling needs. For the evaluation of the chassis, an HMC thermal chuck was controlled. It was found that this chuck could be quickly brought to temperature and maintained within one degree Celcius. The accuracy and flexibility of the system was achieved by the use of a microprocessor which is much more powerful than discrete hardware. The hardwre for the chassis is configured in three blocks: control, interface, and feedback. The software was written in Intel 8085 assembly language, then downloaded into ROMs contained on the microprocessor board.

  19. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    SciTech Connect

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Grisham, L. R.

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  20. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  1. Controlling temperature in magnetic hyperthermia with low Curie temperature particles

    NASA Astrophysics Data System (ADS)

    Astefanoaei, Iordana; Dumitru, Ioan; Chiriac, Horia; Stancu, Alexandru

    2014-05-01

    Hyperthermia induced by the heating of magnetic particles (MPs) in alternating magnetic field receives a considerable attention in cancer therapy. An interesting development in the studies dedicated to magnetically based hyperthermia is the possibility to control the temperature using MPs with selective magnetic absorption properties. This paper analyzes the temperature field determined by the heating of MPs having low Curie temperature (a FeCrNbB particulate system) injected within a malignant tissue, subjected to an ac magnetic field. The temperature evolution within healthy and tumor tissues was analyzed by finite element method simulations in a thermo-fluid model. The cooling effect produced by blood flowing in blood vessels was considered. This effect is intensified at the increase of blood velocity. The FeCrNbB particles, having the Curie temperature close to the therapeutic range, transfer the heat more homogeneous in the tumor keeping the temperature within the therapeutic range in whole tumor volume. Having the possibility to automatically control the temperature within a tumor, these particle type opens new research horizons in the magnetic hyperthermia.

  2. Variable-thermoinsulation garments with a microprocessor temperature controller.

    PubMed

    Kurczewska, Agnieszka; Leánikowski, Jacek

    2008-01-01

    This paper presents the concept of active variable thermoinsulation clothing for users working in low temperatures. Those garments contain heating inserts regulated by a microprocessor temperature controller. This paper also presents the results of tests carried out on the newly designed garments.

  3. Coiling Temperature Control in Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  4. Internal Temperature Control For Vibration Testers

    NASA Technical Reports Server (NTRS)

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  5. Controlling Transistor Temperature During Burn-In

    NASA Technical Reports Server (NTRS)

    Scott, B. C.

    1986-01-01

    Boiling refrigerant provides simple temperature control for newly manufactured power transistors. Heat-transfer liquid is Fluorinert FC-77 (or equivalent). Liquid boils at 100 degrees C, which is specified temperature at which transistor cases should be maintained during burn-in with this technique.

  6. Smart building temperature control using occupant feedback

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  7. Uranium casting furnace automatic temperature control development

    SciTech Connect

    Lind, R.F.

    1992-05-31

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs.

  8. Temperature control in deep tumor treatment

    NASA Astrophysics Data System (ADS)

    Jeong, Sang w.; Liu, Hong; Chen, Wei R.

    2003-10-01

    Tumor cells are more sensitive to temperature increase than normal tissue. Hyperthermia has been used as a potential modality for cancer treatment. Another benefit from the thermal interruption of tumor cells is the immunological reactions, caused by inflammation and other mechanisms, and more interestingly caused by antigen(s) release. The temperature control is crucial both in direct tumor destruction through acute thermal effect and in immune reactions. Low temperature may not achieve the desired tumor cell killing. High temperature could result in over heating of the tumor, hence introducing undesirable damage to surrounding normal tissue. High temperature could completely denature the cell proteins, hence rendering tumor antigen(s) useless in immunological stimulation. A combination of an 805-nm laser and in-situ indocyanine green (ICG) solutions were used in treating rat tumors. Temperature measured at different locations showed that the effective photothermal interaction could reach as deep as 1 cm below the treatment surface and the temperature inside the tumor can be controlled by the laser and dye parameters. Multiple beams were also used to irradiate the tumor. When the tumor is free of ICG, the temperature increase of the tumor was less significant under the laser irradiation with a power density of 0.33 W/cm2; tumor tissue at a depth of 1 cm only experienced a 7°C-temperature increase. However, when the tumor contained ICG solution, the temperature at 1-cm depth experienced more than 15°C-temperature increase. Multiple-fiber irradiation further enhanced the photothermal selectivity. Furthermore, when one fiber was used, the edge of the tumor experienced less impact by the laser beam, while multiple beams resulted in an almost uniform temperature increase over the entire tumor.

  9. Temperature cascade control of distillation columns

    SciTech Connect

    Wolff, E.A.; Skogestad, S.

    1996-02-01

    This paper examines how difficult control tasks are enhanced by introducing secondary measurements, creating control cascades. Temperature is much used as secondary measurement because of cheap implementation and quick and accurate response. Distillation is often operated in this manner due to slow or lacking composition measurements, although the benefits have hardly been investigated closely, especially for multivariable control applications. The authors therefore use distillation as the example when quantifying improvements in interaction and disturbance rejection. They also give analytical expressions for the secondary controller gain. The improvements are reached through simple cascade operation of the control system and require no complicated estimator function.

  10. On the temperature control in self-controlling hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mahyar

    2016-10-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.

  11. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  12. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  13. Multiphoton cryo microscope with sample temperature control

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2013-02-01

    We present a multiphoton microscope system which combines the advantages of multiphoton imaging with precise control of the sample temperature. The microscope provides online insight in temperature-induced changes and effects in plant tissue and animal cells with subcellular resolution during cooling and thawing processes. Image contrast is based on multiphoton fluorescence intensity or fluorescence lifetime in the range from liquid nitrogen temperature up to +600°C. In addition, micro spectra from the imaged regions can be recorded. We present measurement results from plant leaf samples as well as Chinese hamster ovary cells.

  14. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  15. Remote temperature-set-point controller

    DOEpatents

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  16. Feedwater temperature control methods and systems

    DOEpatents

    Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip

    2014-04-22

    A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.

  17. Smart building temperature control using occupant feedback

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  18. Voltammetry under a Controlled Temperature Gradient

    PubMed Central

    Krejci, Jan; Sajdlova, Zuzana; Krejci, Jan; Marvanek, Tomas

    2010-01-01

    Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference. PMID:22163578

  19. Temperature-controlled acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Cselyuszka, Norbert; Sečujski, Milan; Engheta, Nader; Crnojević-Bengin, Vesna

    2016-10-01

    Conventional approaches to the control of acoustic waves propagating along boundaries between fluids and hard grooved surfaces are limited to the manipulation of surface geometry. Here we demonstrate for the first time, through theoretical analysis, numerical simulation as well as experimentally, that the velocity of acoustic surface waves, and consequently the direction of their propagation as well as the shape of their wave fronts, can be controlled by varying the temperature distribution over the surface. This significantly increases the versatility of applications such as sound trapping, acoustic spectral analysis and acoustic focusing, by providing a simple mechanism for modifying their behavior without any change in the geometry of the system. We further discuss that the dependence between the behavior of acoustic surface waves and the temperature of the fluid can be exploited conversely as well, which opens a way for potential application in the domain of temperature sensing.

  20. Temperature-controlled fluidic device A concept

    NASA Technical Reports Server (NTRS)

    Rehsteiner, F. H.

    1970-01-01

    Symmetrical fluidic device directly converts electrical signals to mechanical signals in the form of a fluid-flow parameter. This device eliminates or reduces effects of all undesirable parameters on the departure angle, leaving it a function of the controlled wall and jet temperatures.

  1. Low-Cost Programmed Oven Temperature Controller.

    ERIC Educational Resources Information Center

    Clubine, Gerald D.

    1982-01-01

    A remote, programed oven temperature controller unit was built for about $425.00. Specifications, circuit diagrams, design details, and operations are discussed. Detailed information including complete schematics, parts list, and detailed theory of operation may be obtained by contacting the author. (Author/SK)

  2. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  3. TG wave autoresonant control of plasma temperature

    SciTech Connect

    Kabantsev, A. A. Driscoll, C. F.

    2015-06-29

    The thermal correction term in the Trivelpiece-Gould (TG) wave’s frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either “pegged” at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up)

  4. Remote temperature-set-point controller

    DOEpatents

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  5. Electric control of magnetism at room temperature

    PubMed Central

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  6. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  7. Temperature controlled dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Sanedrin, R. G.; Amro, N. A.; Rendlen, J.; Nelson, M.

    2010-03-01

    Dip-pen nanolithography (DPN) has emerged as a powerful tool for creating sophisticated micron- and nanoscale features of various molecules, such as small organic molecules, on a variety of substrates. Despite significant advances in recent years, the influence of temperature on molecular transport for nanostructure fabrication has not been fully explored. Herein, it is shown how the dimensions of patterned organic nanostructures can be controlled by using a cooling/heating module. This method allows nanometer-sized feature fabrication of a variety of small organic molecules, including 'inks' that have been deemed very difficult to write under ambient conditions. Features with dimensions as small as 30 nm have been successfully reproduced using the newly developed temperature control device in conjunction with DPN.

  8. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  9. Development of a predictive model for Salmonella spp. reduction in meat jerky product with temperature, potassium sorbate, pH, and water activity as controlling factors.

    PubMed

    Juneja, Vijay K; Valenzuela-Melendres, Martin; Heperkan, Dilek; Bautista, Derrick; Anderson, David; Hwang, Cheng-An; Peña-Ramos, Aida; Camou, Juan Pedro; Torrentera-Olivera, Noemi

    2016-11-01

    The objective of this study was to develop a predictive model for the inactivation of Salmonella spp. in ground beef jerky as a function of temperature (T), pH, potassium sorbate (PS), and final water activity (aw). Following a central composite design, ground beef was combined with PS (0 to 0.3%, w/w), pH adjusted from 5 to 7, inoculated with a cocktail of 6 serotypes of Salmonella spp. and heat processed at temperatures between 65 and 85°C until the final aw ranging from 0.65 to 0.85 was achieved. Surviving Salmonella cells were enumerated on tryptic soy agar overlaid with xylose lysine deoxycholate agar (pre-tempered to 47°C) after incubation for 48h at 30°C. Bacterial inactivation was quantified in terms of logarithmic reductions of Salmonella counts (log10CFU/g) and inactivation rate (log10(CFU/g)/h). The results indicated that pH, PS and T significantly (p<0.05) interacted to inactivate Salmonella in beef jerky. Decreasing meat pH significantly (p<0.05) increased the efficacy of PS and T to reduce the levels of Salmonella spp. Beef jerky processed at 82°C, pH5.5, with 0.25% PS to a final aw of 0.7 resulted in a maximum Salmonella logarithmic reduction of 5.0log10CFU/g and an inactivation rate of 1.3log10(CFU/g)/h. The predictive model developed can be used to effectively design drying processes for beef jerky under low humidity conditions and thereby, ensuring an adequate degree of protection against risks associated with Salmonella spp. PMID:27427870

  10. Development of a predictive model for Salmonella spp. reduction in meat jerky product with temperature, potassium sorbate, pH, and water activity as controlling factors.

    PubMed

    Juneja, Vijay K; Valenzuela-Melendres, Martin; Heperkan, Dilek; Bautista, Derrick; Anderson, David; Hwang, Cheng-An; Peña-Ramos, Aida; Camou, Juan Pedro; Torrentera-Olivera, Noemi

    2016-11-01

    The objective of this study was to develop a predictive model for the inactivation of Salmonella spp. in ground beef jerky as a function of temperature (T), pH, potassium sorbate (PS), and final water activity (aw). Following a central composite design, ground beef was combined with PS (0 to 0.3%, w/w), pH adjusted from 5 to 7, inoculated with a cocktail of 6 serotypes of Salmonella spp. and heat processed at temperatures between 65 and 85°C until the final aw ranging from 0.65 to 0.85 was achieved. Surviving Salmonella cells were enumerated on tryptic soy agar overlaid with xylose lysine deoxycholate agar (pre-tempered to 47°C) after incubation for 48h at 30°C. Bacterial inactivation was quantified in terms of logarithmic reductions of Salmonella counts (log10CFU/g) and inactivation rate (log10(CFU/g)/h). The results indicated that pH, PS and T significantly (p<0.05) interacted to inactivate Salmonella in beef jerky. Decreasing meat pH significantly (p<0.05) increased the efficacy of PS and T to reduce the levels of Salmonella spp. Beef jerky processed at 82°C, pH5.5, with 0.25% PS to a final aw of 0.7 resulted in a maximum Salmonella logarithmic reduction of 5.0log10CFU/g and an inactivation rate of 1.3log10(CFU/g)/h. The predictive model developed can be used to effectively design drying processes for beef jerky under low humidity conditions and thereby, ensuring an adequate degree of protection against risks associated with Salmonella spp.

  11. Rapid control of mold temperature during injection molding process

    SciTech Connect

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min; Cakmak, Mukerrem; Sorrentino, Andrea

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  12. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger....

  13. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger....

  14. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger....

  15. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger....

  16. Heliotropic leaf movements in common beans controlled by air temperature.

    PubMed

    Fu, Q A; Ehleringer, J R

    1989-11-01

    Heliotropic leaf movements were examined in common beans (Phaseolus vulgaris cv Blue Lake Bush) under outdoor and laboratory conditions. Heliotropic leaf movements in well-watered plants were partly controlled by temperature, and appeared to be independent of atmospheric humidity and CO(2) concentration. When environmental conditions were held constant in the laboratory, increased air temperature caused bean leaves to orient more obliquely to a light source. Ambient CO(2), intercellular CO(2), and net photosynthesis were not correlated with the temperature-induced changes in heliotropic movements, nor did they significantly affect these movements directly. The effect of air temperature on leaf movements need not be mediated through a change in leaf water potential, transpiration, or leaf conductance. Air temperature modified laminar orientation in light through its effect on tissue temperature in the pulvinal region, not that of the lamina or petiole. However, under darkness the temperature effects on leaf movements were not expressed. Active heliotropic movements in response to air temperature allowed lamina temperature to remain close to the thermal optimum of photosynthesis. This temperature effect underlies a commonly observed pattern of leaf movements under well-watered conditions: a tendency for leaves to face the sun more obliquely on hot days than cool days. PMID:16667127

  17. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  18. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  19. Throttling Cryogen Boiloff To Control Cryostat Temperature

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

  20. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  1. Temperature control during laser vessel welding.

    PubMed

    Springer, T A; Welch, A J

    1993-02-01

    A technique is described for the computer control of temperature during laser vessel welding. The technique is based on the use of thermal feedback from a calibrated IR sensor. The utilization of thermalfeedback makes it possible for welding to be performed at a quasiconstant temperature. An experimentalsystem based on this concept has been developed and evaluated in mock anastomoses with vasculartissue. A computer simulation of laser vessel welding with a one-dimensional heat conduction model hasbeen performed. Model parameters have been adjusted so that the relative effect of laser penetrationdepth and tissue dehydration as well as the role of thermal feedback in limiting the peak surfacetemperature can be studied. The results of the mock anastomoses are discussed in light of the computer model.

  2. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  3. Water Temperature Controls in Arctic Basins

    NASA Astrophysics Data System (ADS)

    Neilson, B. T.; King, T.; Schmadel, N. M.; Heavilin, J.; Overbeck, L. D.; Kane, D. L.

    2015-12-01

    Understanding the dynamics of heat transfer mechanisms in arctic rivers is critical for forecasting the effects of climate change on river temperatures. Building on the collection of key data and a dynamic river temperature model that accounts for heat fluxes found important in temperate climates, we were able to identify portions of an arctic basin and hydrologic conditions for which heat flux dynamics differ from those found in temperate systems. During the open water season, similarities in heat flux influences include dominant shortwave radiation, greater surface exchanges than bed exchanges and greater influences of lateral inflows in the lower order portions of the basin. Differing from temperate systems, the heat flux contribution of net longwave radiation is consistently negative and both latent heat and bed friction are negligible. Despite these differences, accounting for the bulk lateral inflows from the basin resulted in accurate predictions during higher flows. Under lower flow conditions, however, lateral inflows were limited and resulting temperature predictions were poor. Work in a temperate system demonstrated that spatial variability in hydraulics influencing stream residence times are necessary for accurate river temperature predictions. Because heat fluxes at the air-water interface become increasingly dominant at low flows and these fluxes are sensitive to parameters representing the water surface area to volume ratio, similar to temperate systems, we expect that high-resolution representations of stream geometry and hydraulics are important both for accurate flux and residence time estimates. Furthermore, given the highly dynamic nature of flows in arctic basins, we anticipate that detailed information regarding spatially variable hydraulic characteristics (e.g., channel width, depth, and velocity) is critical for accurate predictions in low arctic rivers through a large range of flow conditions. Upon identifying key processes controlling

  4. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  5. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  6. Temperature controlled machine perfusion system for liver.

    PubMed

    Obara, H; Matsuno, N; Shigeta, T; Hirano, T; Enosawa, S; Mizunuma, H

    2013-06-01

    Organ preservation using machine perfusion is an effective method compared with conventional preservation techniques using static cold storage. A newly developed MP preservation system to control perfusate temperatures from hypothermic to subnormothermic conditions is introduced. This system is useful not only for liver preservation, but also for evaluation of graft viability for recovery. This novel method has been proposed for preservation of porcine liver grafts. An innovative preservation system is especially important to obtain viable organs from extended criteria or donation after cardiac death donors. In this study, we introduce a new machine perfusion preservation system (NES-01) to evaluate graft viability for recovery of liver functions, using porcine grafts.

  7. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  8. Pb-Free Soldering Iron Temperature Controller

    NASA Astrophysics Data System (ADS)

    Hamane, Hiroto; Wajima, Kenji; Hayashi, Yoichi; Komiyama, Eiichi; Tachibana, Toshiaki; Miyazaki, Kazuyoshi

    Recently, much importance has been attached to the environmental problem. The content of two directives to better control the management of waste electronic equipment was approved. The two directives are the Waste from Electrical and Electronic Equipment (WEEE) and the Restriction of Hazardous Substances (RoHS). These set phase-out dates for the use of lead materials contained in electronic products. Increasingly, attention is focusing on the potential use of Pb-free soldering in electronics manufacturing. It should be noted that many of the current solding irons are not suitable for Pb-free technology, due to the inferior wetting ability of Pb-free alloys compared with SnPb solder pastes. This paper presents a Pb-free soldering iron temperature controller using an embedded micro-processor with a low memory capacity.

  9. Thermal Switch for Satellite Temperature Control

    NASA Technical Reports Server (NTRS)

    Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.

    1995-01-01

    An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.

  10. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  11. Active Control of Environmental Noise

    NASA Astrophysics Data System (ADS)

    Wright, S. E.; Vuksanovic, B.

    1996-02-01

    Most of the current research on active noise control is confined to restricted spaces such as earphones, active silencers, air-conditioning ducts, truck cabins and aircraft fuselages. In this paper the basic concepts of environmental noise reduction by using active noise control in unconfined spaces are explored. The approach is to develop a controlled acoustic shadow, generated by a wall of secondary sources, to reduce unwanted sound in the direction of a complaint area. The basic acoustic theory is considered, followed by computer modelling, and some results to show the effectiveness of the approach. EA Technology and Yorkshire electric in the United Kingdom are supporting this work.

  12. INTRAPULPAL TEMPERATURE VARIATION DURING BLEACHING WITH VARIOUS ACTIVATION MECHANISMS

    PubMed Central

    Michida, Sílvia Masae de Araujo; Passos, Sheila Pestana; Marimoto, Ângela Regina Kimie; Garakis, Márcia Carneiro Valera; de Araújo, Maria Amélia Máximo

    2009-01-01

    Objectives: The aim of this study was to evaluate the intrapulpal temperature variation after bleaching treatment with 35% hydrogen peroxide using different sources of activation. Material and Methods: Twenty-four human teeth were sectioned in the mesiodistal direction providing 48 specimens, and were divided into 4 groups (n=12): (G1) Control - Bleaching gel without light activation, (G2) Bleaching gel + halogen light, (G3) Bleaching gel + LED, (G4) Bleaching gel + Nd:YAG Laser. The temperatures were recorded using a digital thermometer at 4 time points: before bleaching gel application, 1 min after bleaching gel application, during activation of the bleaching gel, and after the bleaching agent turned from a dark-red into a clear gel. Data were analyzed statistically by the Dunnet's test, ANOVA and Tukey's test (α=0.05). Results: The mean intrapulpal temperature values (°C) in the groups were: G1: 0.617 ± 0.41; G2: 1.800 ± 0.68; G3: 0.975 ± 0.51; and G4: 4.325 ± 1.09. The mean maximum temperature variation (MTV) values were: 1.5°C (G1), 2.9°C (G2), 1.7°C (G3) and 6.9°C (G4). When comparing the experimental groups to the control group, G3 was not statistically different from G1 (p>0.05), but G2 and G4 presented significantly higher (p<0.05) intrapulpal temperatures and MTV. The three experimental groups differed significantly (p<0.05) from each other. Conclusions: The Nd:YAG laser was the activation method that presented the highest values of intrapulpal temperature variation when compared with LED and halogen light. The group activated by LED light presented the lowest values of temperature variation, which were similar to that of the control group. PMID:19936522

  13. Temperature, activity, and lizard life histories

    SciTech Connect

    Adolph, S.C.; Porter, W.P. )

    1993-08-01

    Lizard life-history characteristics vary widely among species and populations. Most authors seek adaptive or phylogenetic explanations for life-history patterns, which are usually presumed to reflect genetic differences. However, lizard life histories are often phenotypically plastic, varying in response to temperature, food availability, and other environmental factors. Despite the importance of temperature to lizard ecology and physiology, its effects on life histories have received relatively little attention. The authors present a theoretical model predicting the proximate consequences of the thermal environment for lizard life histories. Temperature, by affecting activity times, can cause variation in annual survival rate and fecundity, leading to a negative correlation between survival rate and fecundity among populations in different thermal environments. Thus, physiological and evolutionary models predict the same qualitative pattern of life-history variation in lizards. They tested their model with published life-history data from field studies of the lizard Sceloporus undulatus, using climate and geographical data to reconstruct estimated annual activity seasons. Among populations, annual activity times were negatively correlated with annual survival rate and positively correlated with annual fecundity. Proximate effects of temperature may confound comparative analyses of lizard life-history variation and should be included in future evolutionary models. 125 refs., 6 figs., 1 tab.

  14. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  15. Individual room temperature control: A peaceful solution to thermostat wars

    SciTech Connect

    Pieper, C.A. )

    1994-01-01

    This article addresses the problem of maintaining thermal comfort in individual rooms using an individual room temperature control concept to provide greater occupant comfort and potentially reduce energy consumption. The topics of the article include occupant temperature control methods, multi-room zone control, HVAC system operation, computer simulation, and the results of using individual room temperature control.

  16. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  17. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  18. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  19. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  20. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  1. Methods of Controlling the Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2008-01-01

    The operating temperature of a loop heat pipe (LHP) is governed by the saturation temperature of its compensation chamber (CC); the latter is in turn determined by the balance among the heat leak from the evaporator to the CC, the amount of subcooling carried by the liquid returning to the CC, and the amount of heat exchanged between the CC and ambient. The LHP operating temperature can be controlled at a desired set point by actively controlling the CC temperature. The most common method is to cold bias the CC and use electric heater power to maintain the CC set point temperature. The required electric heater power can be large when the condenser sink is very cold. Several methods have been developed to reduce the control heater power, including coupling block, heat exchanger and separate subcooler, variable conductance heat pipe, by-pass valve with pressure regulator, secondary evaporator, and thermoelectric converter. The paper discusses the operating principles, advantages and disadvantages of each method.

  2. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  3. Effect of temperature change on anammox activity.

    PubMed

    Lotti, T; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    Autotrophic nitrogen removal appears as a prerequisite for the implementation of energy autarchic municipal wastewater treatment plants. Whilst the application of anammox-related technologies in the side-stream is at present state of the art, the feasibility of this energy-efficient process in main-stream conditions is still under investigation. Lower operating temperatures and ammonium concentrations, together with a demand for high and stable nitrogen removal efficiency, represent the main challenges to overcome for this appealing new frontier of the wastewater treatment field. In this study, we report the short-term effect of temperature on the maximum biomass specific activity of anaerobic ammonium oxidizing (anammox) bacteria as evaluated by means of batch tests. The experiments were performed on anammox biomass sampled from two full-scale reactors and two lab-scale reactors, all characterized by different reactor configurations and operating conditions. The results indicate that for the anammox conversion, the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e., θ) as typically applied for other biological processes. The temperature effect is increasing at lower temperatures. Adaptation of anammox bacteria after long-term cultivation at 20 and 10°C was observed. Implications for modeling and process design are finally discussed.

  4. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  5. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  6. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  7. Actively Controlled Components. Chapter 2

    NASA Technical Reports Server (NTRS)

    Horn, W.; Hiller, S.-J.; Pfoertner, H.; Schadow, K.; Rosenfeld, T.; Garg, S.

    2009-01-01

    Active Control can help to meet future engine requirements by an active improvement of the component characteristics. The concept is based on an intelligent control logic, which senses actual operating conditions and reacts with adequate actuator action. This approach can directly improve engine characteristics as performance, operability, durability and emissions on the one hand. On the other hand active control addresses the design constrains imposed by unsteady phenomena like inlet distortion, compressor surge, combustion instability, flow separations, vibration and noise, which only occur during exceptional operating conditions. The feasibility and effectiveness of active control technologies have been demonstrated in lab-scale tests. This chapter describes a broad range of promising applications for each engine component. Significant efforts in research and development remain to implement these technologies in engine rig and finally production engines and to demonstrate today s engine generation airworthiness, safety, reliability, and durability requirements. Active control applications are in particular limited by the gap between available and advanced sensors and actuators, which allow an operation in the harsh environment in an aero engine. The operating and performance requirements for actuators and sensors are outlined for each of the gas turbine sections from inlet to nozzle.

  8. Fuel processor temperature monitoring and control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  9. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  10. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  11. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b)...

  12. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b)...

  13. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b)...

  14. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b)...

  15. 30 CFR 77.314 - Automatic temperature control instruments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b)...

  16. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  17. Temperature Regulator for Actively Cooled Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max (Inventor); Kelly, H. Neale (Inventor)

    1995-01-01

    In active cooling of a structure it is beneficial to use a plurality of passages for conducting coolant to various portions of the structure. Since most structures do not undergo isotropic thermal loads it is desirable to allow for variation in coolant flow to each area of the structure. The present invention allows for variable flow by a variation of the area of a portion of each of the coolant passages. Shape memory alloys and bi-material springs are used to produce passages that change flow area as a function of temperature.

  18. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  19. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  20. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  1. Proppant-flowback control in high-temperature wells

    SciTech Connect

    1998-06-01

    Proppant flowback following fracturing treatments can be controlled by use of resin-coated proppant, inorganic fibers, or polymer strips. Each of these technologies has limitations. Resin-coated proppants cannot be used above 374 F and require an activator below 158 F. Thermoplastic strips cannot be used at temperatures above their melting point. Glass fibers have been used successfully for proppant-flowback control, but they cannot be used at reservoir temperatures below 302 F, they provide only short-term control in carbonate reservoirs, and they cannot be used in an environment where they would be exposed to HF. A new high-performance fiber for proppant-flow-back control has been developed to overcome these limitations. In laboratory testing, these fibers were resistant to steam, diesel, xylene, HCl, and mud acid at temperatures up to 482 F for periods up to 7 months. Field testing in deep, hot, carbonate reservoirs confirmed the performance of the new fiber. Case histories of gas wells are given.

  2. TEMPERATURE ACTIVATION OF CERTAIN RESPIRATORY ENZYMES OF STENOTHERMOPHILIC BACTERIA

    PubMed Central

    Gaughran, Eugene R. L.

    1949-01-01

    The results of this study of the effect of temperature on the respiratory mechanism of five stenothermophilic bacteria may be summarized as follows:— 1. The respiratory mechanism and its various components of the stenothermophilic bacteria were found to function at temperatures below the minimum temperature for growth of these organisms. In every case the rates of the individual reactions involved in the respiratory chain increased exponentially with temperature until the temperature at which inactivation became apparent was reached. 2. The mean activation energies, calculated from the "best" value for the slope of the straight lines resulting from a plot of log rate against the reciprocal of the absolute temperature were: Dehydrogenases: 28,000 to 28,500 calories per gram molecule. Glucose, fructose, galactose, mannose, xylose, arabinose, maltose, lactose, sucrose, glycine, β-alanine, monosodium glutamate, (asparagine). 19,500 to 20,500 calories per gram molecule. Ethyl alcohol, succinate, pyruvate, lactate, acetate. 19,500 to 20,500 calories per gram molecule. Ethyl alcohol, succinate, pyruvate, lactate, acetate. 15,000 calories per gram molecule. Formate. Cytochrome oxidase and cytochrome b and c (substrate: p-phenylenediamine): 16,800 calories per gram molecule. Cytochrome oxidase and cytochrome c (substrate: hydroquinone): 20,200 calories per gram molecule. Catalase: 4,100 calories per gram molecule. Complete aerobic respiratory system (plus added glucose): 29,500 calories per gram molecule. 3. The identity of the energies of activation of the respiratory system and its enzymic components at temperatures above and below the minimum temperature for growth of the stenothermophilic bacteria was demonstrated. 4. An attempt has been made to indicate a relationship between the nature of the substrate and the activation energy by grouping substrates on the basis of common µ values obtained for their dehydrogenation by resting cell preparations of

  3. Temperature control system for water-perfused suits

    NASA Technical Reports Server (NTRS)

    Brengelmann, G. L.; Mckeag, M.; Rowell, L. B.

    1977-01-01

    A system used to control skin temperature in human subjects wearing water-perfused garments is described. It supplies 8 l/min at 10 psi with water temperature controlled within plus or minus 0.1 C. Temperature control is facilitated by a low circulating thermal mass and a fast responding heater based on a commercially available quartz heat lamp. The system is open so that hot or cold water can be added from the building mains to produce rates of change of water temperature exceeding 5 C/min. These capabilities allow semiautomatic control of skin temperature within plus or minus 0.1 C of desired wave forms.

  4. [Development and application of new temperature control moxibustion device].

    PubMed

    Yang, Liu; Jiang, Hao; Wang, Lifang; Ma, Haili

    2015-07-01

    To develop a new temperature control moxibustion device so as to improve the clinical therapeutic effect of moxibustion. According to the thermal effect of moxibustion, with the designs such as the modern electronic equipment (temperature control system) adopted and in combination of smoke filtration device and oxygen mask device, a new temperature control moxibustion device was developed. The new temperature control moxibustion device may achieve the automatic regulation of temperature and distance and avoid the pollution and irritation of smoke and flavor, etc. As a result, the traditional moxibustion therapy can better play its efficacy and display its safety and convenience in practice.

  5. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass temperature controller. 870.4250 Section 870.4250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature...

  6. Vapor-modulated heat pipe for improved temperature control

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  7. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  8. Remote control of magnetostriction-based nanocontacts at room temperature

    PubMed Central

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  9. Remote control of magnetostriction-based nanocontacts at room temperature

    NASA Astrophysics Data System (ADS)

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-09-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

  10. Remote control of magnetostriction-based nanocontacts at room temperature.

    PubMed

    Jammalamadaka, S Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U Mohanan; Chelvane, J Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  11. High-precision temperature control and stabilization using a cryocooler.

    PubMed

    Hasegawa, Yasuhiro; Nakamura, Daiki; Murata, Masayuki; Yamamoto, Hiroya; Komine, Takashi

    2010-09-01

    We describe a method for precisely controlling temperature using a Gifford-McMahon (GM) cryocooler that involves inserting fiber-reinforced-plastic dampers into a conventional cryosystem. Temperature fluctuations in a GM cryocooler without a large heat bath or a stainless-steel damper at 4.2 K are typically of the order of 200 mK. It is particularly difficult to control the temperature of a GM cryocooler at low temperatures. The fiber-reinforced-plastic dampers enabled us to dramatically reduce temperature fluctuations at low temperatures. A standard deviation of the temperature fluctuations of 0.21 mK could be achieved when the temperature was controlled at 4.200 0 K using a feedback temperature control system with two heaters. Adding the dampers increased the minimum achievable temperature from 3.2 to 3.3 K. Precise temperature control between 4.200 0 and 300.000 K was attained using the GM cryocooler, and the standard deviation of the temperature fluctuations was less than 1.2 mK even at 300 K. This technique makes it possible to control and stabilize the temperature using a GM cryocooler.

  12. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  13. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  14. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  15. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  16. Design and analysis of intelligent temperature control and temperature compensating system of CAT for hydrogen clock

    NASA Astrophysics Data System (ADS)

    Lu, Hua-Yu

    2006-03-01

    This paper presents a new design of temperature control system of hydrogen clock. By integrating three temperature control units into one system, the design can reduce size of circuit and simplify temperature control. This design includes two parts: hardware and software. In the hardware design, we select 32 bits ARM (Advanced Risc Machine) processor LPC2132, which is powerful and helpful to reduce the complexity of circuit board. In the software design, we introduce real time operation system UCOS-II (Micro Controller Operation System). By using it, we can enhance real time performance of the temperature control system. In addition, voltage of varactor which controls CAT (cavity auto tuning) in hydrogen clock may drift out of normal range, and the voltage drift will influence frequency stability and drift rate of hydrogen clock directly. Therefore, we bring forward an idea of temperature compensating for CAT, which based on the new temperature control system.

  17. A thermosensory pathway that controls body temperature.

    PubMed

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  18. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  19. A temperature control algorithm of immersion liquid for immersion lithography

    NASA Astrophysics Data System (ADS)

    He, Junwei; Li, Xiaoping; Lei, Min; Chen, Bing; Wang, Jinchun

    2014-03-01

    Immersion lithography is one of the main technologies used to manufacture integrated circuits with the shortest feature size. In immersion lithography, temperature of immersion liquid is strictly constrained and its allowable range is less than +/-0.01°C at 22°C. To meet this requirement, a temperature control algorithm adopted by the test rig which controls the temperature of the immersion liquid with process cooling water (PCW) via heat exchangers is proposed. By adjusting the flow rate of PCW through the heat exchangers, the control system varies the amount of heat exchanged, and the temperature of the immersion liquid can be properly controlled. The temperature control rig is a multi-disturbed, timevariant, non-linear and time-delayed system and its transfer function varies with the inlet temperature and flow rates of the streams through the heat exchangers. Considering the characteristics of the system, a cascade-connected fuzzy PID feedback algorithm is designed.

  20. Active load control using microtabs

    NASA Astrophysics Data System (ADS)

    Yen, Dora Te-Lun

    2001-11-01

    Micro-electro-mechanical (MEM) translational tabs are introduced for enhancing and controlling the aerodynamic loading on lifting surfaces. These microtabs are mounted near the trailing edge of lifting surfaces, retract and extend approximately normal to the surface and have a maximum deployment height on the order of the boundary-layer thickness. Deployment of the device effectively modifies the camber distribution of the lifting surface and hence, the lift generated. The effect of the microtabs on lift is shown to be as powerful as conventional control surfaces with lift changes of 30%--50% in the linear range of the lift curve using a tab with a height of 1% of airfoil chord placed at 5% of chord upstream of the trailing edge on the lower surface. A multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication techniques has been taken to develop and test a "proof of concept" model. Flow simulations, using a Reynolds-averaged Navier Stokes solver, have been conducted to optimize the size and placement of the devices based on trailing edge volume constraints. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices create macro-scale changes in aerodynamic loading. Application of this rather simple but innovative lift control system based on microfabrication techniques introduces a robust, dynamic control device and will allow for the miniaturization of conventional high lift and control systems. The result is a significant reduction in typical control system weight, complexity and cost. Also due to the minute size of these tabs, their activation and response times are much faster than that of conventional trailing edge devices. The "proof of concept" tab design, fabrication techniques, computational and experimental setup, and test results using a representative airfoil are presented in this research. (For more information, see

  1. Water temperature controls in low arctic rivers

    NASA Astrophysics Data System (ADS)

    King, Tyler V.; Neilson, Bethany T.; Overbeck, Levi D.; Kane, Douglas L.

    2016-06-01

    Understanding the dynamics of heat transfer mechanisms is critical for forecasting the effects of climate change on arctic river temperatures. Climate influences on arctic river temperatures can be particularly important due to corresponding effects on nutrient dynamics and ecological responses. It was hypothesized that the same heat and mass fluxes affect arctic and temperate rivers, but that relative importance and variability over time and space differ. Through data collection and application of a river temperature model that accounts for the primary heat fluxes relevant in temperate climates, heat fluxes were estimated for a large arctic basin over wide ranges of hydrologic conditions. Heat flux influences similar to temperate systems included dominant shortwave radiation, shifts from positive to negative sensible heat flux with distance downstream, and greater influences of lateral inflows in the headwater region. Heat fluxes that differed from many temperate systems included consistently negative net longwave radiation and small average latent heat fluxes. Radiative heat fluxes comprised 88% of total absolute heat flux while all other heat fluxes contributed less than 5% on average. Periodic significance was seen for lateral inflows (up to 26%) and latent heat flux (up to 18%) in the lower and higher stream order portions of the watershed, respectively. Evenly distributed lateral inflows from large scale flow differencing and temperatures from representative tributaries provided a data efficient method for estimating the associated heat loads. Poor model performance under low flows demonstrated need for further testing and data collection to support the inclusion of additional heat fluxes.

  2. Control of flowering by ambient temperature.

    PubMed

    Capovilla, Giovanna; Schmid, Markus; Posé, David

    2015-01-01

    The timing of flowering is a crucial decision in the life cycle of plants since favourable conditions are needed to maximize reproductive success and, hence, the survival of the species. It is therefore not surprising that plants constantly monitor endogenous and environmental signals, such as day length (photoperiod) and temperature, to adjust the timing of the floral transition. Temperature in particular has been shown to have a tremendous effect on the timing of flowering: the effect of prolonged periods of cold, called the vernalization response, has been extensively studied and the underlying epigenetic mechanisms are reasonably well understood in Arabidopsis thaliana. In contrast, the effect of moderate changes in ambient growth temperature on the progression of flowering, the thermosensory pathway, is only starting to be understood on the molecular level. Several genes and molecular mechanisms underlying the thermosensory pathway have already been identified and characterized in detail. At a time when global temperature is rising due to climate change, this knowledge will be pivotal to ensure crop production in the future. PMID:25326628

  3. Development of magnetostrictive active members for control of space structures

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-01-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  4. Model of local temperature changes in brain upon functional activation.

    PubMed

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  5. Pressure-Sensitive System for Gas-Temperature Control

    NASA Technical Reports Server (NTRS)

    Cesaro, Richard S; Matz, Norman

    1948-01-01

    A thermodynamic relation is derived and simplified for use as a temperature-limiting control equation involving measurement of gas temperature before combustion and gas pressures before and after combustion. For critical flow in the turbine nozzles of gas-turbine engines, the control equation is further simplified to require only measurements upstream of the burner. Hypothetical control systems are discussed to illustrate application of the control equations.

  6. On line diagnostics and self-tuning method for the fluidized bed temperature controller

    NASA Astrophysics Data System (ADS)

    Porzuczek, Jan

    2016-03-01

    The paper presents the method of on-line diagnostics of the bed temperature controller for the fluidized bed boiler. Proposed solution is based on the methods of statistical process control. Detected decrease of the bed temperature control quality is used to activate the controller self-tuning procedure. The algorithm that provides optimal tuning of the bed temperature controller is also proposed. The results of experimental verification of the presented method is attached. Experimental studies were carried out using the 2 MW bubbling fluidized bed boiler.

  7. Vertebrate blood cell volume increases with temperature: implications for aerobic activity.

    PubMed

    Gillooly, James F; Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures.

  8. Effects of controllable vs. uncontrollable stress on circadian temperature rhythms.

    PubMed

    Kant, G J; Bauman, R A; Pastel, R H; Myatt, C A; Closser-Gomez, E; D'Angelo, C P

    1991-03-01

    The effects of sustained stress on body temperature were investigated in rats implanted with mini-transmitters that permitted remote measurement of body temperature. Temperature was first monitored during control conditions. Following the control period, rats were either shaped to avoid/escape signalled around-the-clock intermittent footshock (controllable stress) or yoked to the controlling rats such that the controlling rat and the yoked rat received shock of the same duration, but only the controlling rat could terminate shock by pulling a ceiling chain. Under control conditions, rats demonstrated regular rhythms in body temperature which averaged 1 degree higher during the 12-h dark cycle than the light cycle. Stress disrupted the rhythm and markedly decreased the night-day difference in temperature, especially in the yoked rats in which almost no difference between light and dark cycle temperature was seen. The disruption was most marked for the first days of stress. A regular temperature rhythm was reestablished following about 5 days of stress although the stress condition continued. Leverpressing for food was also affected by the stress conditions with both stress groups leverpressing less than controls and the uncontrollable stress group pressing less than the controllable stress group. These data offer additional evidence of the increased pathophysiological effects of uncontrollable as compared to controllable stress.

  9. Design of a computerized, temperature-controlled, recirculating aquaria system

    USGS Publications Warehouse

    Widmer, A.M.; Carveth, C.J.; Keffler, J.W.; Bonar, Scott A.

    2006-01-01

    We built a recirculating aquaria system with computerized temperature control to maintain static temperatures, increase temperatures 1 ??C/day, and maintain diel temperature fluctuations up to 10 ??C. A LabVIEW program compared the temperature recorded by thermocouples in fish tanks to a desired set temperature and then calculated the amount of hot or cold water to add to tanks to reach or maintain the desired temperature. Intellifaucet?? three-way mixing valves controlled temperature of the input water and ensured that all fish tanks had the same turnover rate. The system was analyzed over a period of 50 days and was fully functional for 96% of that time. Six different temperature treatments were run simultaneously in 18, 72 L fish tanks and temperatures stayed within 0.5 ??C of set temperature. We used the system to determine the upper temperature tolerance of fishes, but it could be used in aquaculture, ecological studies, or other aquatic work where temperature control is required. ?? 2005 Elsevier B.V. All rights reserved.

  10. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  11. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.

    ERIC Educational Resources Information Center

    Kaya, Azmi

    1982-01-01

    Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…

  1. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  2. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  3. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  4. System for controlling the operating temperature of a fuel cell

    DOEpatents

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  5. Warm-Sensitive Neurons that Control Body Temperature.

    PubMed

    Tan, Chan Lek; Cooke, Elizabeth K; Leib, David E; Lin, Yen-Chu; Daly, Gwendolyn E; Zimmerman, Christopher A; Knight, Zachary A

    2016-09-22

    Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP. PMID:27616062

  6. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  7. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  8. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-03-14

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented.

  9. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  10. Infrared Sensor-Based Temperature Control for Domestic Induction Cooktops

    PubMed Central

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  11. Local flow control for active building facades

    NASA Astrophysics Data System (ADS)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  12. Implementation of Temperature Sequential Controller on Variable Speed Drive

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2008-10-01

    There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.

  13. Battery pack/controller for high temperature applications

    NASA Astrophysics Data System (ADS)

    Wolfenbarger, F. M.

    At temperatures in excess of 300 C, standard conductive wirelines cannot be used for signal or power transmission in geothermal wells. At such temperatures, a mechanical slickline can be used to raise and lower instrumentation, but the instrumentation control and power must then be self contained. This paper reviews the development of a battery and timing circuit to control a motor in a Los Alamos National Laboratory sampling tool. The battery pack-controller circuitry enclosed in a dewar was used in the Salton Sea Scientific Drilling Project (SSSDP) for temperatures approaching 400 C.

  14. Control of temperature for health and productivity inoffices

    SciTech Connect

    Seppanen, Olli; Fisk, William J.; Faulkner, David

    2004-06-01

    Indoor temperature is one of the fundamental characteristics of the indoor environment. It can be controlled with different accuracy depending on the building and its HVAC system. The purpose of this study was to evaluate the potential benefits of improved temperature control, and apply the information for a cost-benefit analyses. The indoor temperature affects several human responses, including thermal comfort, perceived air quality, sick building syndrome symptoms and performance in work. In this study we focused on the effects of temperature on performance in work. We collected and analyzed the literature relating the performance in work and temperature. The results of multiple studies are relatively consistent and show an average relationship of 2% decrement in work performance per degree C when the temperature is above 25 C. Less data were available on the performance in low temperatures. However, studies show a strong effect on manual tasks with temperatures below thermal neutrality as soon as the temperature of hands decreased due to control of blood flow. When the estimated productivity decrement from elevated temperatures was applied to data from a study of night-time ventilative cooling, the estimated value of productivity improvements were 32 to 120 times greater than the cost of energy to run fans during the night.

  15. Cortical control of thermoregulatory sympathetic activation.

    PubMed

    Fechir, M; Klega, A; Buchholz, H G; Pfeifer, N; Balon, S; Schlereth, T; Geber, C; Breimhorst, M; Maihöfner, C; Birklein, F; Schreckenberger, M

    2010-06-01

    Thermoregulation enables adaptation to different ambient temperatures. A complex network of central autonomic centres may be involved. In contrast to the brainstem, the role of the cortex has not been clearly evaluated. This study was therefore designed to address cerebral function during a whole thermoregulatory cycle (cold, neutral and warm stimulation) using 18-fluordeoxyglucose-PET (FDG-PET). Sympathetic activation parameters were co-registered. Ten healthy male volunteers were examined three times on three different days in a water-perfused whole-body suit. After a baseline period (32 degrees C), temperature was either decreased to 7 degrees C (cold), increased to 50 degrees C (warm) or kept constant (32 degrees C, neutral), thereafter the PET examination was performed. Cerebral glucose metabolism was increased in infrapontine brainstem and cerebellar hemispheres during cooling and warming, each compared with neutral temperature. Simultaneously, FDG uptake decreased in the bilateral anterior/mid-cingulate cortex during warming, and in the right insula during cooling and warming. Conjunction analyses revealed that right insular deactivation and brainstem activation appeared both during cold and warm stimulation. Metabolic connectivity analyses revealed positive correlations between the cortical activations, and negative correlations between these cortical areas and brainstem/cerebellar regions. Heart rate changes negatively correlated with glucose metabolism in the anterior cingulate cortex and in the middle frontal gyrus/dorsolateral prefrontal cortex, and changes of sweating with glucose metabolism in the posterior cingulate cortex. In summary, these results suggest that the cerebral cortex exerts an inhibitory control on autonomic centres located in the brainstem or cerebellum. These findings may represent reasonable explanations for sympathetic hyperactivity, which occurs, for example, after hemispheric stroke.

  16. Synchronous temperature rate control for refrigeration with reduced energy consumption

    SciTech Connect

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  17. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    PubMed

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity. PMID:26625075

  18. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    PubMed

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  19. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  20. Control of equilibrium pressure-temperature conditions in cryogenic storage

    NASA Technical Reports Server (NTRS)

    Ford, W.; Voss, J.

    1970-01-01

    Metered vent controls the pressure within a liquid hydrogen tank. Vent size is chosen to permit a gas flow which corresponds to the boil-off rate necessary to maintain the desired bulk temperature of the cryogen.

  1. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  2. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-01

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.

  3. Circadian rhythm of temperature preference and its neural control in Drosophila

    PubMed Central

    Kaneko, Haruna; Head, Lauren M.; Ling, Jinli; Tang, Xin; Liu, Yilin; Hardin, Paul E.; Emery, Patrick; Hamada, Fumika N.

    2012-01-01

    A daily body temperature rhythm (BTR) is critical for the maintenance of homeostasis in mammals. While mammals use internal energy to regulate body temperature, ectotherms typically regulate body temperature behaviorally [1]. Some ectotherms maintain homeostasis via a daily temperature preference rhythm (TPR) [2], but the underlying mechanisms are largely unknown. Here, we show that Drosophila exhibit a daily circadian clock dependent TPR that resembles mammalian BTR. Pacemaker neurons critical for locomotor activity are not necessary for TPR; instead, the dorsal neuron 2s (DN2s), whose function was previously unknown, is sufficient. This indicates that TPR, like BTR, is controlled independently from locomotor activity. Therefore, the mechanisms controlling temperature fluctuations in fly TPR and mammalian BTR may share parallel features. Taken together, our results reveal the existence of a novel DN2- based circadian neural circuit that specifically regulates TPR; thus, understanding the mechanisms of TPR will shed new light on the function and neural control of circadian rhythms. PMID:22981774

  4. Temperature rise during experimental light-activated bleaching.

    PubMed

    Klaric, Eva; Rakic, Mario; Sever, Ivan; Tarle, Zrinka

    2015-02-01

    The purpose of this study was to evaluate the surface and intrapulpal temperatures after treatments with different bleaching gels subjected to different types of light activation. A K-type thermocouple and infrared thermometer were used to measure the temperature increase during the 15- or 30-min treatment period. Light-emitting diode with a center wavelength of 405 nm (LED405), organic light-emitting diode (OLED), and femtosecond laser were tested and compared to ZOOM2. The tooth surface was treated with five bleaching agents and Vaseline which served as a control.The generalized estimating equation (GEE) model was applied for testing the differences in temperature increase. The ZOOM2 light source led to the largest increase in mean pulpal and tooth surface temperatures of 21.1 and 22.8 °C, followed by focused femtosecond laser which increased the pulpal and surface temperatures by up to 15.7 and 16.8 °C. Treatments with unfocused femtosecond laser, LED405, and OLED induced significantly lower mean temperature increases (p < 0.001 for each comparison with ZOOM2 and focused femtosecond laser), both in the pulp chamber (up to 2.7, 2.5, and 1.4 °C) and at the tooth surface (up to 3.2, 3.4, and 1.8 °C). Significant differences between pulp chamber and tooth surface measurements were obtained for all types of bleaching gel, during treatments with ZOOM2 (p < 0.001), LED405 (p < 0.001), and unfocused (p < 0.001) and focused femtosecond laser (p ≤ 0.002). Different bleaching agents or Vaseline can serve as an isolating layer. Focused femtosecond laser and ZOOM2 produced large temperature increases in the pulp chamber and at the tooth surface. Caution is advised when using these types of light activation, while LED405, OLED, and unfocused femtosecond laser could be safely used.

  5. Hydrogeologic controls on baseflow temperature distributions: Implications for stream temperature response to climate variability

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Smith, Z.

    2012-12-01

    Ground water temperature distributions in the near surface are not uniform and are the complex result of a variety of near- and sub-surface processes. Heat from the atmosphere is input into the ground via conduction at the ground surface and advection of infiltrating water. These processes produce predictable distributions of temperature that have been used to investigate current and past climatic conditions, determine ground water velocities, and assess basin-scale heat transport in sedimentary systems. The purpose of this investigation is to test a hypothesis that timing and nature of ground water recharge (advection of heat into the subsurface) is a significant control on the temporal and spatial distribution of heat in the shallow subsurface. The advective movement of heat imposes a dominant control on the 3-dimensional subsurface temperature distribution and strongly affects stream baseflow temperatures. We present observational data supporting a strong hydrogeologic control on subsurface water temperatures. These temperature distributions are modified by advection and are significantly different than theoretical distributions in a conduction-dominated environment. The temperature distributions with depth and space are controlled by the aquifers internal hydrogeologic structure and connections to recharge areas. Synthetic modeling is used to address the following questions: (1) how quickly do ground water temperatures respond to a changing climate, and how quickly do they reach a new equilibrium following perturbation; (2) what is the role of recharge water temperature and timing on subsurface temperature distributions; and (3) how do these factors influence baseflow temperatures in stream systems of varying size. Two-dimensional numerical models are developed using Comsol Multiphysics to perform a sensitivity analysis of basin-scale temperature response and coupling to surface water. In nested ground water flow systems, discharge areas farther down the

  6. Enhanced Temperature Control Method Using ANFIS with FPGA

    PubMed Central

    Zhou, Jun-Tin

    2014-01-01

    Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS) using a field-programmable gate array (FPGA) to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV) inductively-coupled plasma- (ICP-) type etcher. PMID:24715808

  7. Enhanced temperature control method using ANFIS with FPGA.

    PubMed

    Huang, Chiung-Wei; Pan, Shing-Tai; Zhou, Jun-Tin; Chang, Cheng-Yuan

    2014-01-01

    Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS) using a field-programmable gate array (FPGA) to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV) inductively-coupled plasma- (ICP-) type etcher. PMID:24715808

  8. Enhanced temperature control method using ANFIS with FPGA.

    PubMed

    Huang, Chiung-Wei; Pan, Shing-Tai; Zhou, Jun-Tin; Chang, Cheng-Yuan

    2014-01-01

    Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS) using a field-programmable gate array (FPGA) to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV) inductively-coupled plasma- (ICP-) type etcher.

  9. Heat pipes for spacecraft temperature control: Their usefulness and limitations

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.; Stipandic, E.

    1972-01-01

    Heat pipes are used in spacecraft to equalize the temperature of structures and maintain temperature control of electronic components. Information is provided for a designer on: (1) a typical mounting technique, (2) choices available in wick geometries and fluids, (3) tests involved in flight-qualifying the design, and (4) heat pipe limitations. An evaluation of several heat pipe designs showed that the behavior of heat pipes at room temperature does not necessarily correlate with the classic equations used to predict their performance. They are sensitive to such parameters as temperature, fluid inventory, orientation, and noncondensable gases.

  10. Measurement of workpiece temperature during welding for welding robot control

    NASA Astrophysics Data System (ADS)

    Illegrams, P. F. A.

    MIG/MAG welding robot seam tracking system based on a symetrically noncontact temperature measurement is presented. Using literature in formation on temperature distribution during welding, a model for the prediction of the behavior of a pyrometer twin is constructed. The temperature difference between the measuring points constitutes the signal for a position control of the twin holding welding torch. As temperature measurement is made impossible by radiation originating from the welding arc, this is done during intermittent welding in time intervals in which the welding arc is switched off.

  11. Fluorescence-based temperature control for polymerase chain reaction.

    PubMed

    Sanford, Lindsay N; Wittwer, Carl T

    2014-03-01

    The ability to accurately monitor solution temperature is important for the polymerase chain reaction (PCR). Robust amplification during PCR is contingent on the solution reaching denaturation and annealing temperatures. By correlating temperature to the fluorescence of a passive dye, noninvasive monitoring of solution temperatures is possible. The temperature sensitivity of 22 fluorescent dyes was assessed. Emission spectra were monitored and the change in fluorescence between 45 and 95°C was quantified. Seven dyes decreased in intensity as the temperature increased, and 15 were variable depending on the excitation wavelength. Sulforhodamine B (monosodium salt) exhibited a fold change in fluorescence of 2.85. Faster PCR minimizes cycling times and improves turnaround time, throughput, and specificity. If temperature measurements are accurate, no holding period is required even at rapid speeds. A custom instrument using fluorescence-based temperature monitoring with dynamic feedback control for temperature cycling amplified a fragment surrounding rs917118 from genomic DNA in 3min and 45s using 35 cycles, allowing subsequent genotyping by high-resolution melting analysis. Gold-standard thermocouple readings and fluorescence-based temperature differences were 0.29±0.17 and 0.96±0.26°C at annealing and denaturation, respectively. This new method for temperature cycling may allow faster speeds for PCR than currently considered possible.

  12. Ion Temperature Control of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.

    2005-01-01

    We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.

  13. A liquid cooled garment temperature controller based on sweat rate

    NASA Technical Reports Server (NTRS)

    Chambers, A. B.; Blackaby, J. R.

    1972-01-01

    An automatic controller for liquid cooled space suits is reported that utilizes human sweat rate as the primary input signal. The controller is so designed that the coolant inlet temperature is inversely proportional to the subject's latent heat loss as evidenced by evaporative water loss.

  14. Temperature control system for a J-module heat exchanger

    DOEpatents

    Basdekas, Demetrios L.; Macrae, George; Walsh, Joseph M.

    1978-01-01

    The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.

  15. Optimization to Low Temperature Activity in Psychrophilic Enzymes

    PubMed Central

    Struvay, Caroline; Feller, Georges

    2012-01-01

    Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts. PMID:23109875

  16. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  17. Heat pipe temperature control utilizing a soluble gas absorption reservior

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1976-01-01

    A new gas-controlled heat pipe design is described which uses a liquid matrix reservior, or sponge, to replace the standard gas reservior. Reservior volume may be reduced by a factor of five to ten for certain gas-liquid combinations, while retaining the same level of temperature control. Experiments with ammonia, butane, and carbon dioxide control gases with methanol working fluid are discussed.

  18. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  19. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    PubMed

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size.

  20. Phasic temperature control appraised with the Ceres-Wheat model.

    PubMed

    Volk, T; Bugbee, B; Tubiello, F

    1997-01-01

    Phasic control refers to the specification of a series of different environmental conditions during a crop's life cycle, with the goal of optimizing some aspect of productivity. Because of the enormous number of possible scenarios, phasic control is an ideal situation for modeling to provide guidance prior to experiments. Here we use the Ceres-Wheat model, modified for hydroponic growth chambers, to examine temperature effects. We first establish a baseline by running the model at constant temperatures from 10 degrees C to 30 degrees C. Grain yield per day peaks at 15 degrees C at a value that is 25% higher than the yield at the commonly used 23 degrees C. We then show results for phasic control limited to a single shift in temperature and, finally, we examine scenarios that allow each of the five phases of the life cycle to have a different temperature. Results indicate that grain yield might be increased by 15-20% over the best yield at constant temperature, primarily from a boosted harvest index, which has the additional advantage of less waste biomass. Such gains, if achievable, would help optimize food production for life support systems. Experimental work should first verify the relationship between yield and temperature, and then move to selected scenarios of phasic control, based on model predictions. PMID:11540452

  1. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  2. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  3. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  4. Daily rhythms of activity and temperature of Macaca nemestrina

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Sickles, S. A.

    1982-01-01

    The activity and temperature rhythms of pig-tailed macaques (Macaca nemestrina) maintained in LD 16:8 at 25 C in specially designed restraint chairs have been examined. Activity was monitored via a sensor that was attached to the restraint chair. Temperature was monitored at the axilla, ankle and ear. All variables showed prominent day-night variations, and except for ankle temperature, had highest values during the daytime. These results show that the regulation of the daily rhythm of body temperature involves anatomical sites that are utilized in a temporally distinct fashion.

  5. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  6. Positron plasma diagnostics and temperature control for antihydrogen production.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lindelöf, D; Rizzini, E Lodi; Macrí, M; Madsen, N; Manuzio, G; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; van der Werf, D P

    2003-08-01

    Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.

  7. Recent advances in active noise control

    NASA Astrophysics Data System (ADS)

    Guicking, D.

    Advances in the field of active noise control over the last few years are reviewed. Some commercially available products and their technical applications are described, with particular attention given to broadband duct noise silencers, broadband active headphones, waveform synthesis, and LMS controllers. Recent theoretical and experimental research activities are then reviewed. These activities are concerned with duct noise, structural sound, interior spaces, algorithms, echo cancellation, and miscellaneous applications.

  8. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  9. Hypothalamic and dietary control of temperature-mediated longevity

    PubMed Central

    Tabarean, Iustin; Morrison, Brad; Marcondes, Maria Cecilia; Bartfai, Tamas; Conti, Bruno

    2009-01-01

    Temperature is an important modulator of longevity and aging in both poikilotherms and homeotherm animals. In homeotherms, temperature homeostasis is regulated primarily in the preoptic area (POA) of the hypothalamus. This region receives and integrates peripheral, central and environmental signals and maintains a nearly constant core body temperature (Tcore) by regulating the autonomic and hormonal control of heat production and heat dissipation. Temperature sensitive neurons found in the POA are considered key elements of the neuronal circuitry modulating these effects. Nutrient homeostasis is also a hypothalamically regulated modulator of aging as well as one of the signals that can influence Tcore in homeotherms. Investigating the mechanisms of the regulation of nutrient and temperature homeostasis in the hypothalamus is important to understand how these two elements of energy homeostasis influence longevity and aging as well as how aging can affect hypothalamic homeostatic mechanisms. PMID:19631766

  10. Temperature and Structure of Active Eruptions from a Handheld Camcorder

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.

    2014-11-01

    A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.

  11. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  12. Thermal study of battery charge control by temperature derivative reduction

    NASA Astrophysics Data System (ADS)

    Halkjaerjacobsen, P.; Schmidt, K. A.; Otto, S.; Dudley, G. J.; Spruijt, H. J. N.

    1989-08-01

    A battery charge control technique, invented at ESTEC in 1983, which relies upon the changes in the battery cell temperature time derivative which accompany the onset of overcharge is described. A thermally realistic portion of a typical flight battery is constructed and tested in parallel with detailed thermal modeling in order to develop the technique further. Comparisons between thermal model and test results are presented and show satisfactory agreement. Optimum positions for the temperature sensors within the battery are identified, taking into account sensitivity to cell temperature changes as well as to thermal perturbations due to external effects.

  13. Pyrometric temperature control system for microwave processing of materials

    SciTech Connect

    Pert, E.; Calame, J.P.; Gershon, D.; Carmel, Y.; Calame, J.P.

    1998-12-31

    Accurate temperature measurements and uniform processing of a material with microwaves can be difficult with thermocouples that perturb the electromagnetic field. Arcing and field intensification is particularly a problem with low loss materials that do not couple well. Optical pyrometers offer a non-invasive alternative, but are generally restricted to surface temperature measurements and are usually non-linear over the temperature range of interest. Improved accuracy over the entire range of interest is possible with an integrated approach using a pc to calibrate the pyrometer against a thermocouple reference. A pyrometer-retrofitted microwave processing system that can measure and control from 40 C to 1,600 C is presented.

  14. Temperature control system for optical elements in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  15. Sensor Development for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  16. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  17. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  18. Controlled synthesis of pentagonal gold nanotubes at room temperature.

    PubMed

    Bi, Yingpu; Lu, Gongxuan

    2008-07-01

    Large quantities of pentagonal gold nanotubes have been synthesized by reducing chloroauric acid with silver nanowires in an aqueous solution of hexadecyltrimethylammonium bromide (CTAB) at room temperature. These gold nanotubes possess perfect structures, smooth surfaces, highly crystalline walls, and similar cross-sections to that of the silver template. In this process, the CTAB participation was found to be crucial for shape-controlled synthesis of pentagonal gold nanotubes. In the absence of CTAB, loose and hollow gold structures were routinely generated, while bundled gold nanotubes with rough surfaces were obtained by replacing the CTAB with poly(vinyl pyrrolidone) (PVP). The possible formation mechanism of pentagonal gold nanotubes has also been discussed on the basis of various growth stages studied by field-emission scanning electron microscopy (FE-SEM) images. In addition, the catalytic properties of these hollow nanostructures for hydrogen generation reaction from HCHO solution have also been investigated. They showed higher activity than that of spherical gold nanoparticles. PMID:21828702

  19. Ambient temperature and activation of implantable cardioverter defibrillators

    NASA Astrophysics Data System (ADS)

    McGuinn, L.; Hajat, S.; Wilkinson, P.; Armstrong, B.; Anderson, H. R.; Monk, V.; Harrison, R.

    2013-09-01

    The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.

  20. Temperature: a prolonged confounding factor on cholinesterase activity in the tropical reef fish Acanthochromis polyacanthus.

    PubMed

    Botté, Emmanuelle S; Smith-Keune, Carolyn; Jerry, Dean R

    2013-09-15

    Cholinesterase activity usually decreases in fish exposed to anticholinesterase compounds such as organophosphate and carbamate pesticides. Here we show that tropical reef fish Acanthochromis polyacanthus (or spiny damsel) also exhibits a decrease in ChE activity when exposed to elevated temperature from 28°C to 32°C or 34°C after 4 days. We further demonstrate that the decline persists even after 7 days of recovery at control temperature. This is the first report of a drop in ChE activity in fish as temperature increases. Our results strongly suggest the need for long-term monitoring of water temperature in the field prior to sampling A. polyacanthus for toxicology studies, as temperature is a prolonged and confounding factor for ChE activity in this species.

  1. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  2. Computer-controlled cryogenic-temperature controller. Final report, September 1982-January 1984

    SciTech Connect

    Perrin, R.E.

    1990-01-10

    In laboratories which do materials characterization it is necessary to have a temperature controller which can be computer controlled, is accurate to within .1-.2K, can control temperature from 15-350K with a drift of no more than .1, and is relatively unaffected by the presence of a magnetic field on the sample container. The subject controller uses two thermometers to meet these requirements. One is a commercially available calibrated silicon diode manufactured expressly for this type of application. The second thermometer is used for control. Once the sample has reached the setpoint according to the calibrated thermometer the control thermometer's value is sampled and used as the new setpoint. Since the control thermometer should be insensitive to a mag field the sample will remain at the desired temperature when the magnetic field is applied. Cryogenic, Computer control, Magnetic field, Cryogenics, Cryogenic storage devices.

  3. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  4. Temperature Controlled Laser Joining of Aluminum to Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Weller, Daniel; Simon, Jörg; Stritt, Peter; Weber, Rudolf; Graf, Thomas; Bezençon, Cyrille; Bassi, Corrado

    Reliable joining of 6000 series aluminum alloy to galvanized steel is a challenge for current manufacturing technologies. To control and limit the formation of brittle intermetallic phases, mixing of both metals in liquid state has to be avoided. It has been shown that laser weld-brazing is a possible process. Thereby the aluminum and zinc layer of the galvanized steel are molten and the steel remains solid during the process. In addition, to avoid zinc degassing, the aluminum melt bath temperature has to be below zinc boiling temperature of 907°C. To meet these requirements a temperature controlled laser process was developed, allowing to join the two materials without flux and filler material. The thickness of the intermetallic layer shows a dependency on the set temperature used to control the process. At optimum set temperature the thickness of intermetallic phases can be limited to about 5 μm. Tensile strengths of the joints of up to 75% of the aluminum base material were achieved.

  5. Voluntary muscle activation is impaired by core temperature rather than local muscle temperature.

    PubMed

    Thomas, Melissa M; Cheung, Stephen S; Elder, Geoff C; Sleivert, Gordon G

    2006-04-01

    Fatigue during hyperthermia may be due in part to a failure of the central nervous system to fully activate the working muscles. We investigated the effects of passive hyperthermia on maximal plantar flexor isometric torque (maximal isometric voluntary contraction) and voluntary activation to determine the roles of local skin temperature, core temperature, and peripheral muscle temperature in fatigue. Nine healthy subjects were passively heated from 37.2 to 39.5 degrees C (core temperature) and then cooled back down to 37.9 degrees C using a liquid-conditioning garment, with the right leg kept at a thermoneutral temperature throughout the protocol, whereas the left leg was allowed to heat and cool. Passive heating resulted in significant decreases in torque from [mean (SD)] 172 N x m (SD 39) to 160 N x m (SD 44) and in voluntary activation from 96% (SD 2) to 91% (SD 5) in the heated leg, and maximal isometric voluntary contraction decreased similarly from 178 N xm (SD 37) to 165 N x m (SD 38) and voluntary activation from 97% (SD 2) to 94% (SD 5) in the thermoneutral leg. The initiation of cooling, which produced a rapid decrease in skin temperature and cardiovascular strain [heart rate reserve decreased from 58% (SD 12) to 31% (SD 12)], did not immediately restore either torque or voluntary activation. However, when core temperature was lowered back to normal, torque and voluntary activation were restored to baseline values. It was concluded that an increase in core temperature is a factor responsible for reducing voluntary activation during brief voluntary isometric contractions and that temperature-induced changes in the contractile properties of muscle and local thermal afferent input from the skin do not contribute significantly to the decrement in torque.

  6. Research on temperature control with numerical regulators in electric resistance furnaces with indirect heating

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2016-02-01

    The paper is an analysis of two-positions (hysteresis) regulators, self-tuned PID controller and PID controller for temperature control used for indirect heat resistance furnaces. For PID controller was used three methods of tuning: Ziegler-Nichols step response model, Cohen-Coon tuning rules and Ziegler-Nichols tuning rules. In experiments it used an electric furnace with indirect heating with active power of resistance of 1 kW/230V AC and a numerical temperature regulator AT-503 type (ANLY). It got a much better temperature control when using the Cohen-Coon tuning rules method than those of Ziegler-Nichols step response method and Ziegler-Nichols tuning rules method.

  7. A Reliable, Inexpensive Proportional Temperature Controller and Differential Thermometer.

    ERIC Educational Resources Information Center

    Badger, Robert C.

    1978-01-01

    Describes the construction of an inexpensive, highly reliable, milli-degree temperature controller and differential thermometer from an extremely stable thermistor and other readily available materials. Actual construction time is relatively short for both devices. Illustrations are included. (Author/MA)

  8. Control of matric water potential by temperature differential

    NASA Technical Reports Server (NTRS)

    Palmer, R. J. Jr; Nienow, J. A.; Friedmann, E. I.

    1987-01-01

    A method for controlling relative humidity based on temperature differentials, rather than on salt solutions, is described. This method has the following advantages: (1) it does not exhibit the anomalous CO2 solution effects that we have found to occur with salt solutions; (2) humidity is continuously adjustable without sample removal; (3) circulation of the atmosphere results in short equilibration times.

  9. 93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Temperature and humidity control in indirect calorimeter chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-chamber, indirect calorimeter has been a part of the Environmental Laboratory at the U.S. Meat Animal Research Center (MARC) for over 25 yr. Corrosion of the animal chambers and unreliable temperature control forced either major repairs or complete replacement. There is a strong demand for...

  11. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  12. Improving active space telescope wavefront control using predictive thermal modeling

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  13. Temperature Controlled Vessel for Equation of State Measurements

    NASA Astrophysics Data System (ADS)

    Rupp, Ted D.; Gehr, Russell J.; Stahl, David B.; Sheffield, Stephen A.; Robbins, David L.

    2002-07-01

    We have designed and constructed a vessel capable of heating and cooling hazardous samples used in the laser-driven miniflyer experiments. For cooling, either liquid or gaseous nitrogen may be used. For heating, an electric element is used. The accessible temperature range is -100 degC to 300 degC. O-ring containment seals in the inner containment vessel establish temperature limits. The outer level of containment uses copper gaskets and commercial vacuum components. The vessel may be operated with a gas atmosphere or a vacuum. Temperature is monitored using two thermocouples, one on the heater and one on the inner containment vessel. A controller module monitors one thermocouple to reach and maintain the desired temperature. Using this vessel we can perform equation of state or spall strength measurements on hazardous materials in different phases or near solid-solid or solid-liquid phase transitions. Initial data taken with this system will be presented.

  14. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  15. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  16. A Temperature-Controlled Chamber Based on Vortex Cooling

    SciTech Connect

    Krider, John; Nguyen, Hogan; /Fermilab

    2007-11-01

    We describe the construction and performance of a temperature-controlled chamber, based on a 'vortex' cooler. The chamber is capable of operation between room temperature and -42 C. The only nontrivial infrastructure requirement is dry compressed gas at 100 psi and 8 cfm. The chamber is economical, easy to operate and to build using commercially available parts. Since the refrigerant is compressed air, the chamber has minimal environmental impact. It does not generate mechanical vibrations nor electrical noise. It is suitable for testing electronically sensitive and low-power electronics at cold temperatures. We measured the reserve cooling capacity of the cold plate to be 17 watts at -27 C. At the limiting temperature of -42 C, reserve cooling power reduces to zero.

  17. Evening physical activity alters wrist temperature circadian rhythmicity

    PubMed Central

    Rubio-Sastre, Patricia; Gómez-Abellán, Purificación; Martinez-Nicolas, Antonio; Ordovás, José María; Madrid, Juan Antonio; Garaulet, Marta

    2015-01-01

    The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45 min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028 ± 0.01 °C versus control: 0.038 ± 0.016 °C; p<0.05) less pronounced second-harmonic (power) (evening: 0.41 ± 0.47 versus morning: 1.04 ± 0.59); and achrophase delay (evening: 06:35 ± 02:14 h versus morning: 04:51 ± 01:11 h; p>0.05) as compared to MPA and C. Performing PA in the late evening might not be as beneficial as in the morning. PMID:24517176

  18. Characterization of a temperature-controlled FAIMS system.

    PubMed

    Barnett, David A; Belford, Michael; Dunyach, Jean-Jacques; Purves, Randy W

    2007-09-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) focuses and separates gas-phase analyte ions from chemical background, offering substantial improvements in the detection of targeted species in biological matrices. Ion separations have been typically performed at atmospheric pressure and ambient temperature, although routine small molecule quantitation by LC-MS (and thus LC-FAIMS-MS) is generally performed at liquid flow rates (e.g., in excess of 200 microL/min) in which atmospheric pressure ionization sources (e.g., APCI and ESI) need to be run at elevated temperatures to enhance ion desolvation. Heat from the ionization source and/or the mass spectrometer capillary interface is shown to have a significant impact on the performance of a conventional FAIMS electrode set. This study introduces a new FAIMS system that uses gas heating/cooling to quickly reach temperature equilibrium independent of the external temperature conditions. A series of equations and balance plots, which look at the effect of temperature and other variables, on the normalized field strength (E/N), are introduced and used to explain experimental observations. Examples where the ion behavior deviates from the predicted behavior are presented and explanations based on clusters or changes in ion-neutral interactions are given. Consequences of the use of temperature control, and in particular advantages of using different temperature settings on the inner and outer electrodes, for the purpose of manipulating ion separation are described. PMID:17662612

  19. Simple chamber for temperature-controlled planar chromatography.

    PubMed

    Zarzycki, Paweł K

    2002-09-20

    This article describes a construction of a simple developing device designed for temperature control of thin-layer chromatographic plates. The plates can be developed by the ascending technique under temperature gradient or non-gradient conditions. Saturated or unsaturated chamber conditions can be easily selected. The effects that give rise to pseudo-non-linear Van't Hoff plots, e.g. a temperature irregularity inside the chamber or heat evolving during solvent adsorption near the migrating front of the mobile phase are minimized. The preliminary temperature-retention studies show that the device is suitable for temperatures ranging from -20 to 60 degrees C. Using a binary mobile phase mixture (methanol-water, 70:30, v/v) the velocity of the mobile phase front on the HPTLC RP-18W plates at different temperatures was investigated. Under these conditions the retention profiles of four natural estrogens (estetrol, estriol, 17beta-estradiol and estrone) were examined. The application of the described device for temperature-retention studies is also discussed. PMID:12350114

  20. Vertebrate blood cell volume increases with temperature: implications for aerobic activity

    PubMed Central

    Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures. PMID:24765580

  1. Computational Study on Temperature Control Systems for Thermoelectric Refrigerators

    NASA Astrophysics Data System (ADS)

    Astrain, D.; Martínez, A.; Gorraiz, J.; Rodríguez, A.; Pérez, G.

    2012-06-01

    Thermoelectric refrigeration has the outstanding advantage of allowing accurate temperature control. However, on the market there are thermoelectric refrigerators which include on/off temperature control systems, because of their simplicity and low cost. The major problem with this system is that, when the thermoelectric modules are switched off, the heat stored in the heat exchanger at the hot end of the modules goes back into the refrigerator, forming a thermal bridge. In this work, we use a computational model, presented and validated in previous papers, to study alternative control systems. A new system is introduced based on idling voltages; that is, once the temperature of the refrigerator reaches the lower limit, the thermoelectric modules are not switched off but supplied with minimum voltage. Computational results prove that this system reduces the electric power consumption of the refrigerator by at least 40% with respect to that obtained with on/off control systems, and the coefficient of performance increases close to the maximum provided by any other control system.

  2. Temperature control for high pressure processes up to 1400 MPa

    NASA Astrophysics Data System (ADS)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  3. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  4. Active vibration control of lightweight floor systems

    NASA Astrophysics Data System (ADS)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  5. Stimulation of bioluminescence in Noctiluca sp. using controlled temperature changes.

    PubMed

    Han, Jing; Li, GuiJuan; Liu, HuanYing; Hu, HaoHao; Zhang, XueGang

    2013-01-01

    Bioluminescence induced by multifarious stimuli has long been observed and is remains under investigation because of its great complexity. In particular, the exact mechanism underlying bioluminescence is not yet fully understood. This work presents a new experimental method for studying Noctiluca sp. bioluminescence under temperature change stimulation. It is a study of Noctiluca sp. bioluminescence using controlled temperature changes in a tank. A characteristic of this experiment is the large volume of water used (1 m(3) in a tank of 2 × 1 × 1 m). Temperature changes were controlled by two methods. In the first, a flask filled with hot water was introduced into the tank and in the second, a water heater was used in the tank. Temperature changes were recorded using sensors. Noctiluca sp. bioluminescence was recorded using a Canon 5D Mark II and this allowed the characteristics of Noctiluca sp. bioluminescence under temperature change stimulation to be monitored.

  6. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    PubMed Central

    Mak, W.C.; Olesen, K.; Sivlér, P.; Lee, C.J.; Moreno-Jimenez, I.; Edin, J.; Courtman, D.; Skog, M.; Griffith, M.

    2015-01-01

    Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation. PMID:26096147

  7. Substrate temperature measurement and control during thermal plasma CVD

    SciTech Connect

    Zhuang, Q.D.; Guo, H.; Han, Q.Y.; Heberlein, J.V.R.; Pfender, E.

    1993-09-01

    A technique is proposed for substrate temperature control, with emphasis on temperature uniformity across substrate. The technique includes a substrate holder design employing non-uniform water cooling and a means of substrate attachment featured by controlled thermal contact resistance for a given heat flux distribution from the plasma. The technique was applied to deposit diamond films over a 5 cm diameter area in a DC thermal plasma reactor, and proved adequate. Performance of single-color (0.655 {mu}m) and two-color (2.1 and 2.4 {mu}m) pyrometers were evaluated against DC thermo.] plasma radiation. It was found that both line and continuum emission of plasma jets caused large errors in temperature measurement of the single-color pyrometer. The two-color pyrometer, however, is shown to be less sensitive to the plasma radiation. The way the substrate temperature was controlled and monitored in this study is in general applicable to other TPCVD processes where intense local heating and a bright plasma background exist.

  8. Coiling Temperature Control Using Temperature Measurement Method for the Hot Rolled Strip in the Water Cooling Banks

    NASA Astrophysics Data System (ADS)

    Nakagawa, Shigemasa; Tachibana, Hisayoshi; Honda, Tatsuro; Uematsu, Chihiro

    In the hot strip mill, the quality of the strip greatly depends on the cooling process between the last stand in the finishing mill and the coilers. Therefore, it is important to carefully control the coiling temperature to regulate the mechanical properties of the strip. To realize high accuracy of coiling temperature, a new coiling temperature control using temperature measurement method for the hot rolled strip in the water cooling banks has been developed. The features of the new coiling temperature control are as follows: (i) New feedforward control adjusts ON/OFF swiching of cooling headers according to the strip temperature measured in the water cooling banks. (ii) New feedforward control is achieved by dynamic control function. This coiling temperature control has been in operation successfully since 2008 at Kashima Steel Works and improved the accuracy of coiling temperature of high strength steel considerably.

  9. Controlling local temperature in water using femtosecond optical tweezer

    PubMed Central

    Mondal, Dipankar; Goswami, Debabrata

    2015-01-01

    A novel method of directly observing the effect of temperature rise in water at the vicinity of optical trap center is presented. Our approach relies on changed values of corner frequency of the optical trap that, in turn, is realized from its power spectra. Our two color experiment is a unique combination of a non-heating femtosecond trapping laser at 780 nm, coupled to a femtosecond infrared heating laser at 1560 nm, which precisely controls temperature at focal volume of the trap center using low powers (100-800 µW) at high repetition rate. The geometric ray optics model quantitatively supports our experimental data. PMID:26417491

  10. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction

    PubMed Central

    Garrigues, Alvar R.; Wang, Lejia; del Barco, Enrique; Nijhuis, Christian A.

    2016-01-01

    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads. PMID:27211787

  11. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction

    NASA Astrophysics Data System (ADS)

    Garrigues, Alvar R.; Wang, Lejia; Del Barco, Enrique; Nijhuis, Christian A.

    2016-05-01

    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.

  12. Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes.

    PubMed

    Marquez, Ana; Perez-Serratosa, Maria; Varo, M Angeles; Merida, Julieta

    2014-08-01

    In this paper, the influence of temperature during the controlled dehydration of Tempranillo red grapes has been studied. Two experiments at fixed temperatures of 30 and 40 °C, and a third experiment alternating temperatures of 40 and 15 °C every 12 h were carried out. The must from grapes dried at 40 °C presented the reddest color, and the highest anthocyanin concentration and antioxidant activity. A possible hypothesis could be that the high temperature induced a continuous water evaporation from the grapes, preventing the oxygen entry. At the same time, the dehydration resulted in broken skins, which facilitated the transfer of colored compounds to the pulp, increasing the red color of the musts. However, when the temperature dropped, oxygen could penetrate through the skin and the browning reactions started. As a result, the must obtained from gra pes dehydrated by alternating high and low temperatures presented the least anthocyanin content and the least red color. PMID:25030077

  13. Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes.

    PubMed

    Marquez, Ana; Perez-Serratosa, Maria; Varo, M Angeles; Merida, Julieta

    2014-08-01

    In this paper, the influence of temperature during the controlled dehydration of Tempranillo red grapes has been studied. Two experiments at fixed temperatures of 30 and 40 °C, and a third experiment alternating temperatures of 40 and 15 °C every 12 h were carried out. The must from grapes dried at 40 °C presented the reddest color, and the highest anthocyanin concentration and antioxidant activity. A possible hypothesis could be that the high temperature induced a continuous water evaporation from the grapes, preventing the oxygen entry. At the same time, the dehydration resulted in broken skins, which facilitated the transfer of colored compounds to the pulp, increasing the red color of the musts. However, when the temperature dropped, oxygen could penetrate through the skin and the browning reactions started. As a result, the must obtained from gra pes dehydrated by alternating high and low temperatures presented the least anthocyanin content and the least red color.

  14. Optoacoustic temperature determination and automatic coagulation control in rabbits

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Luft, Susanne; Baade, Alex; Bever, Marco; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2011-03-01

    Retinal laser photocoagulation is an established treatment method for many retinal diseases like macula edema or diabetic retinopathy. The selection of the laser parameters is so far based on post treatment evaluation of the lesion size and strength. Due to local pigment variations in the fundus and individual transmission the same laser parameters often lead to an overtreatment. Optoacoustic allows a non invasive monitoring of the retinal temperature increase during retinal laser irradiation by measuring the temperature dependent pressure amplitudes, which are induced by short probe laser pulses. A 75 ns/ 523 nm Nd:YLF was used as a probe laser at a repetition rate of 1 kHz, and a cw / 532 nm treatment laser for heating. A contact lens was modified with a ring-shaped ultrasonic transducer to detect the pressure waves at the cornea. Temperatures were collected for irradiations leading to soft or invisible lesions. Based on this data the threshold for denaturation was found. By analyzing the initial temperature increase, the further temperature development during irradiation could be predicted. An algorithm was found to calculate the irradiation time, which is needed for a soft lesion formation, from the temperature curve. By this it was possible to provide a real-time dosimetry by automatically switching off the treatment laser after the calculated irradiation time. Automatically controlled coagulations appear softer and more uniformly.

  15. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  16. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  17. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  18. Plasmid vector with temperature-controlled gene expression

    SciTech Connect

    Kravchenko, V.V.; Yamshchikov, V.F.; Pletnev, A.G.

    1986-02-01

    In plasmid pBR327, a fragment 169 b.p. long including promotor p/sub 3/ of the bla gene has been deleted. The deletional derivative so obtained (pSP2) has been used to construct a recombinant plasmid bearing a fragment of phage lambda DNA with the p/sub R/ promotor and the gene of the temperature-sensitive repressor cI. It has been shown that the plasmid vector so constructed (pCE119) with promotor cR performs repressor-cI-controlled transcription of the bla gene, as a result of which induction for an hour at 42/sup 0/C leads to an almost 100-fold increase in the amount of product of the bla gene as compared with that at 32/sup 0/C. The possibility of the use of plasmid cPE119 for the expression of other genes has been demonstrated for the case of the semisynthetic ..beta..-galactosidase gene of E. coli. In this case, on induction of the cells with recombinant plasmid pCEZ12 for 3 hours at 42/sup 0/C, a 300-fold increase in the amount of active ..beta..-galactosidase, as compared with that at 32/sup 0/C, was observed. It is important to point out that under these conditions (at 42/sup 0/C), at least 99% of the cells containing the plasmid retain the phenotype lacZ/sup +/, which indicates the stability of the proposed vector system

  19. Influence of temperature on the activity of anammox granular biomass.

    PubMed

    Sobotka, D; Czerwionka, K; Makinia, J

    2016-01-01

    The aim of this study was to determine a short-term and long-term effect of temperature on the anammox rate and determination of temperature coefficients in the Arrhenius and Ratkowsky equations. The short-term effects of temperature on the anammox granular biomass were investigated in batch tests at ten different temperatures in the range of 10-55 °C. The maximum overall nitrogen removal rate of 1.3 gN gVSS(-1)·d(-1) was observed at 40 °C (VSS: volatile suspended solids). The minimum rate, close to 0 gN gVSS(-1)·d(-1), was observed for the limits of the analyzed temperature range (10 and 55 °C). The activity tests carried out at 55 °C showed an irreversible loss of the activity due to the observed biomass lysis. Subsequently to the batch tests, a sequencing batch reactor (SBR) was operated at different temperatures (from 30 to 11 °C) to determine the long-term effects of temperature. The system was successfully operated at 15 °C, but when temperature was decreased to 11 °C, nitrite started to accumulate and the system lost its stability. The temperature coefficient (θ) was 1.07 for the batch tests carried out in the temperature range of 10-40 °C. In contrast, during the long-term SBR operation, substantially different θ had to be estimated for two temperature ranges, 1.07 (T = 15-30 °C) and 1.65 (T = 11-15 °C).

  20. Influence of temperature on the activity of anammox granular biomass.

    PubMed

    Sobotka, D; Czerwionka, K; Makinia, J

    2016-01-01

    The aim of this study was to determine a short-term and long-term effect of temperature on the anammox rate and determination of temperature coefficients in the Arrhenius and Ratkowsky equations. The short-term effects of temperature on the anammox granular biomass were investigated in batch tests at ten different temperatures in the range of 10-55 °C. The maximum overall nitrogen removal rate of 1.3 gN gVSS(-1)·d(-1) was observed at 40 °C (VSS: volatile suspended solids). The minimum rate, close to 0 gN gVSS(-1)·d(-1), was observed for the limits of the analyzed temperature range (10 and 55 °C). The activity tests carried out at 55 °C showed an irreversible loss of the activity due to the observed biomass lysis. Subsequently to the batch tests, a sequencing batch reactor (SBR) was operated at different temperatures (from 30 to 11 °C) to determine the long-term effects of temperature. The system was successfully operated at 15 °C, but when temperature was decreased to 11 °C, nitrite started to accumulate and the system lost its stability. The temperature coefficient (θ) was 1.07 for the batch tests carried out in the temperature range of 10-40 °C. In contrast, during the long-term SBR operation, substantially different θ had to be estimated for two temperature ranges, 1.07 (T = 15-30 °C) and 1.65 (T = 11-15 °C). PMID:27191575

  1. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  2. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  3. Parallel circuits control temperature preference in Drosophila during ageing.

    PubMed

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Lai, Jason Sih-Yu; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β'- and β-systems. The β'-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β'-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence.

  4. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures

    PubMed Central

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2015-01-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100. PMID:26601179

  5. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  6. Controlled-expansion superalloy resists oxidation at high temperatures

    SciTech Connect

    Wanner, E.A.; DeAntonio, D.A. )

    1993-01-01

    Controlled-thermal-expansion superalloys are vital materials for aircraft gas turbine engines, where their dimensional stability over a wide temperature range permits small clearances between rotating and stationary components. However, they must be coated for service at temperatures above 540 C (1,000 F) because they lack oxidation resistance. In Carpenter's new Thermo-Span superalloy, chromium is added to the composition, providing oxidation resistance without the need for a protective coating. Although its composition is otherwise similar to conventional controlled-expansion superalloys, the Co/Ni ratio in the matrix was rebalanced, and other small changes were made. As a result, the physical and mechanical properties of Thermo-Span alloy differ slightly from those of conventional alloys such as Carpenter's CTX-909 alloy.

  7. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    PubMed

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2015-05-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100. PMID:26601179

  8. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    PubMed

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2015-05-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

  9. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  10. ACTH and. cap alpha. -melanotropin in central temperature control

    SciTech Connect

    Lipton, J.M.; Glyn, J.R.; Zimmer, J.A.

    1981-11-01

    Adrenocorticotropin (ACTH) and ..cap alpha..-melanotropin (..cap alpha..-MSH) occur in brain tissue known to be important to temperature control. These peptides cause hypothermia if they are injected centrally in sufficient doses, but they do not act on the central set point of temperature control. Instead they appear to inhibit central pathways for heat conservation and production. In addition to their hypothermic capability, these peptides are antipyretic when given centrally in doses that have no effect on normal body temperature. ACTH has previously been associated with fever reduction in both clinical and experimental studies, and it may be that endogenous central ACTH is important for limitation of maximal fever. The hypothermic and antipyretic effects of ACTH do not depend on stimulation of the adrenal cortex because they are also observed in adrenalectomized rabbits. Nor is the antipyretic effect limited to the rabbit inasmuch as a comparable effect has been demonstrated in the squirrel monkey. The two peptides may be involved in central mediation of normal thermoregulation and fever, perhaps limiting the febrile response and other rises in body temperature by acting as neurotransmitters or neuromodulators in central thermoregulatory pathways.

  11. Chemical control of nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1985-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic end-capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, so as to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic-capped reactant.

  12. Chemical approach for controlling nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1985-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl end-capped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C. by controlling the available concentration of the maleic end-capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, to increase Diels-Alder retrogression of the norbornenyl-capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic-capped reactant.

  13. Chemical approach for controlling nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1985-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic endcapped reactant. This control is achieved by adding sufficient amounts of said maleic reactant or by chemical modification of either copolymer, to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or hold initiation and polymerization to a rate compatible with the availability of the maleic capped reactant.

  14. Chemical approach for controlling nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1984-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, so as to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic capped reactant.

  15. Chemical control of rate and onset temperature of nadimide polymerization

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1985-01-01

    The chemistry of norbornenyl capped imide compounds (nadimides) is briefly reviewed with emphasis on the contribution of Diels-Alder reversion in controlling the rate and onset of the thermal polymerization reaction. Control of onset temperature of the cure exotherm by adjusting the concentration of maleimide is demonstrated using selected model compounds. The effects of nitrophenyl compounds as free radical retarders on nadimide reactivity are discussed. A simple copolymerization model is proposed for the overall nadimide cure reaction. An approximate numerical analysis is carried out to demonstrate the ability of the model to simulate the trends observed for both maleimide and nitrophenyl additions.

  16. Ambient temperature and activation of implantable cardioverter defibrillators.

    PubMed

    McGuinn, L; Hajat, S; Wilkinson, P; Armstrong, B; Anderson, H R; Monk, V; Harrison, R

    2013-09-01

    The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.

  17. Control system for Fermilab`s low temperature upgrade

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  18. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  19. A facility for precise temperature control applications in microgravity

    NASA Astrophysics Data System (ADS)

    Glicksman, M. E.; Lograsso, T. A.; Tirmizi, S. H.; Hahn, R. C.; Winsa, E.

    The general design, main components, and operation of the isothermal dendritic growth apparatus (IDGA) designed for microgravity experimentation are described. The four major subsystems of the IDGA are a temperature controlled thermostatic bath capable of milli-kelvin stability, a photographic data collection system, a crystal growth chamber, and a growth detection system to initiate data collection. Some of the specific experiments that could utilize the capabilities of the IDGA are dendritic growth in alloys, monotectic systems, life science experiments, and technological applications.

  20. Temperature-time issues in bioburden control for planetary protection

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.

    2004-01-01

    Heat energy, administered in the form of an elevated temperature heat soak over a specific interval of time, is a well-known method for inactivating organisms. Sterilization protocols, from commercial pasteurization to laboratory autoclaving, specify both temperature and time, as well as water activity, for treatments to achieve either acceptable reduction of bioburden or complete sterilization. In practical applications of planetary protection, whether to reduce spore load in forward or roundtrip contamination, or to exterminate putative organisms in returned samples from bodies suspected of possible life, avoidance of expensive or potentially damaging treatments of hardware (or samples) could be accomplished if reciprocal relationships between time duration and soak temperature could be established. Conservative rules can be developed from consideration of empirical test data, derived relationships, current standards and various theoretical or proven mechanisms for thermal damage to biological systems.

  1. Temperature-Time Issues in Bioburden Control for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Heat energy, administered in the form of an elevated temperature heat soak over a specific interval of time, is a well-known method of inactivating organisms. Ster- ilization protocols, from commercial pasteurization to laboratory autoclaving, specify both the temperature and the time, as well as water activity, for treatments to achieve either acceptable reduction of bioburden or complete sterilization. In practical applications of planetary protection, whether to reduce spore load in for- ward or roundtrip contamination, or to exterminate putative organisms in returned samples from planetary bodies suspected of possible life, avoidance of expensive or potentially damaging treatments of hardware (or samples) could be accomplished if reciprocal relationships between time duration and soak temperature could be established. Conservative rules can be developed from consideration of empirical test data, derived relationships, current standards and various theoretical or proven mechanisms for thermal damage to biological systems.

  2. Environmental microbiology as related to planetary quarantine. [water activity and temperature effects on bacterial spore survival

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1972-01-01

    The survival of Bacillus subtilis var. niger spores suspended in solutions of sucrose and glycerol at calculated water activities and varying temperatures was studied. The overall results indicated that as the water activity of the liquid decreased from .99 to .85, the heat resistance of the spores increased. The nature of the substance controlling the water activity, and the history of the spores prior to treatment also had an affect on their heat resistance.

  3. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  4. Low temperature limits photoperiod control of smolting in atlantic salmon through endocrine mechanisms

    USGS Publications Warehouse

    McCormick, S.D.; Moriyama, S.

    2000-01-01

    We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10??C or ambient temperature (2??C from January to April followed by seasonal increase) under simulated natural day length. At 10??C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na+K+-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na+K+-ATPase activity under both photoperiods occurred later at ambient temperature than at 10??C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10??C and remained elevated for 5-9 wk; the same photoperiod treatment at 2??C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10??C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10??C. Plasma triiodothyronine was initially higher at 10??C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na+K+-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.

  5. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    NASA Astrophysics Data System (ADS)

    Shaw, George J.; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R.; Holland, Christy K.

    2007-06-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T <= 35 °C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy Eeff of 42.0 ± 0.9 kJ mole-1. Eeff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole-1. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  6. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  7. Mission control activity during STS-61 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  8. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  9. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Teske, R. G.; Mayfield, E. B.

    1981-01-01

    Starting with the integrated emission measure distributions of solar active regions, the distribution of the maximum temperature parameter which characterizes individual plasma loops is determined. The observed emission measure distributions were determined by combining EUV and X-ray data from two separate experiments on ATM/Skylab. The present work sets some limits on such an approach. It is found that the distribution of maximum temperature has approximately the same shape as the integrated emission measure distributions, a result which is expected since most of the loop emission measure is near their maximum temperatures.

  10. [Septal Activation and Control of Limbic Structures].

    PubMed

    Fedotova, I R; Frolov, A A

    2015-01-01

    Coherent activation of limbic system structures as the main function of theta-rhythm is widely discussed in the literature. However until now does not exist the common view on its generation in these brain structures. The model of septal theta-rhythmic activation and control of limbic structures is suggested basing on the literature and own experimental data.

  11. Enzymatic Activity Measurement at High Temperature by Pulse Heating of Micro Reactor with On-Chip Micro Heater

    NASA Astrophysics Data System (ADS)

    Arata, Hideyuki; Noji, Hiroyuki; Fujita, Hiroyuki

    The activity of an enzyme, captured in a micro chamber array, at elevated temperature has been successfully measured thanks to the rapid temperature control enabled by an on-chip micro heater. The enzyme, β-Galactosidase, survived short exposure (4 seconds) to high temperature at which it was severely damaged by longer exposure. Its activity at the higher temperature (around 60°C) was shown to be 4.2 times greater than that at 23°C. Furthermore, the degree of accelerated activity is expected to be controlled by changing the frequency of the heat pulses.

  12. Active control of bearing preload using piezoelectric translators

    NASA Technical Reports Server (NTRS)

    Nye, Ted W.

    1990-01-01

    In many spacecraft applications, mechanisms are required to perform precision pointing operations or to sometimes dither about or track a moving object. These mechanisms perform in a predictable and repeatable manner in benign temperature environments. Severe thermal gradients experienced in actual space applications however, cause assemblies to expand and contract around their bearings. This results in unpredictable changes in bearing preload, and hence bearing friction. This becomes a limitation for servos controlling pointing accuracy. Likewise, uncontrollable vibrations may couple into fixed preload (hence, fixed stiffness) mechanisms and limit pointing accuracy. Consequently, a complex problem faced today is how to design mechanisms that remain insensitive to changing thermal and vibrational spacecraft environments. Research presented involves the simplified modeling and test results of an actuator module that used piezoelectrically preload controlled bearings. The feasibility of actively controlling bearing preload was demonstrated. Because bearing friction is related to preload, a thermally active system designed with aluminum components and a 440 C bearing, was friction tested at temperatures ranging from 0 to 70 C (32 to 158 F). Effectiveness of the translators were demonstrated by mapping a controllable friction range throughout tested temperatures. It was learned that constant preload for this system could be maintained over an approximate 44 C (79 F) temperature span. From testing, it was also discovered that at the more deviate temperatures, expansions were so large that radial clearances were taken up and the duplex bearing became radially preloaded. Thus, active control of bearing preload is feasible but may be limited by inherent geometry constraints and materials used in the system.

  13. Top-down control analysis of the effect of temperature on ectotherm oxidative phosphorylation.

    PubMed

    Chamberlin, M E

    2004-10-01

    Top-down control and elasticity analysis was conducted on mitochondria isolated from the midgut of the tobacco hornworm (Manduca sexta) to assess how temperature affects oxidative phosphorylation in a eurythermic ectotherm. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored at 15, 25, and 35 degrees C. State 4 respiration displayed a Q(10) of 2.4-2.7 when measured over two temperature ranges (15-25 degrees C and 25-35 degrees C). In state 3, the Q(10)s for respiration were 2.0 and 1.7 for the lower and higher temperature ranges, respectively. The kinetic responses (oxygen consumption) of the substrate oxidation system, proton leak, and phosphorylation system increased as temperature rose, although the proton leak and substrate oxidation system showed the greatest thermal sensitivity. Whereas there were temperature-induced changes in the activities of the oxidative phosphorylation subsystems, there was no change in the state 4 membrane potential and little change in the state 3 membrane potential. Top-down control analysis revealed that control over respiration did not change with temperature. In state 4, control of respiration was shared nearly equally by the proton leak and the substrate oxidation system, whereas in state 3 the substrate oxidation system exerted over 90% of the control over respiration. The proton leak and phosphorylation system account for <10% of the temperature-induced change in the state 3 respiration rate. Therefore, when the temperature is changed, the state 3 respiration rate is altered primarily because of temperature's effect on the substrate oxidation system.

  14. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator.

    PubMed

    Van Brecht, A; Aerts, J M; Degraeve, P; Berckmans, D

    2003-11-01

    Around the optimal incubator air temperature only small spatiotemporal deviations are allowed. However, air speed and air temperature are not uniformly distributed in the total volume of the incubator due to obstruction of the eggs and egg trays. The objectives of this research were (1) to quantify the spatiotemporal gradients in temperature and velocity and (2) to develop and validate a control algorithm to increase the uniformity in temperature during the entire incubation process. To improve the uniformity of air temperature, the airflow pattern and the air quality need to be controlled more optimally. These data show that the air temperature between the eggs at a certain position in a large incubator is the result of (1) the mean air temperature of the incubator; (2) the exchange of heat between the egg and its micro-environment, which is affected by the air speed at that certain position; (3) the time-variable heat production of the embryo; and (4) the heat influx or efflux as a result from the movement of hot or cold air in the incubator toward that position, which is affected by the airflow pattern. This implies that the airflow pattern needs to be controlled in a more optimal way. To maximize the uniformity of air temperature, an active and adaptive control of the three-dimensional (3-D) airflow pattern has been developed and tested. It was found to improve the spatiotemporal temperature distribution. The chance of having a temperature reading in the interval from 37.5 to 38.1 degrees C increased by 3% compared to normal operating conditions.

  15. AMR (Active Magnetic Regenerative) refrigeration for low temperature

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkwon

    2014-07-01

    This paper reviews AMR (Active Magnetic Regenerative) refrigeration technology for low temperature applications that is a novel cooling method to expand the temperature span of magnetic refrigerator. The key component of the AMR system is a porous magnetic regenerator which allows a heat transfer medium (typically helium gas) to flow through it and therefore obviate intermittently operating an external heat switch. The AMR system alternatingly heats and cools the heat transfer medium by convection when the magneto-caloric effect is created under varying magnetic field. AMR may extend the temperature span for wider range than ADR (Adiabatic Demagnetization Refrigerator) at higher temperatures above 10 K because magneto-caloric effects are typically concentrated in a small temperature range in usual magnetic refrigerants. The regenerative concept theoretically enables each magnetic refrigerant to experience a pseudo-Carnot magnetic refrigeration cycle in a wide temperature span if it is properly designed, although adequate thermodynamic matching of strongly temperature-dependent MCE (magneto-caloric effect) of the regenerator material and the heat capacity of fluid flow is often tricky due to inherent characteristics of magnetic materials. This paper covers historical developments, fundamental concepts, key components, applications, and recent research trends of AMR refrigerators for liquid helium or liquid hydrogen temperatures.

  16. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  17. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  18. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  19. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  20. Temperature-controlled autocollimator with ultrahigh angular measuring precision

    SciTech Connect

    Yuan Jie; Long Xingwu; Yang Kaiyong

    2005-12-15

    A temperature-controlled autocollimator with ultrahigh angular measuring precision is proposed in this article, which is different from our previous publication [J. Yuan and X. W. Long, Rev. Sci. Instrum. 74, 1362 (2003)]. The autocollimator consists of a zoom lens illuminating a charge-coupled device (CCD). This design provides a compact size and increased stability without compromising precision. Moreover, this design makes it possible to detect a target mirror with either plane reflectors or spherical reflectors. Devices for shock absorption and heat insulation were implemented to diminish external interferences. A special temperature-control system for the autocollimator is designed to control the temperature of the autocollimator. The temperature of the autocollimator fluctuates less than {+-}0.01 deg. C. The CCD camera's noise is a fatal obstacle that prevents us from achieving an ultrahigh angular measuring precision. In this article, the influence of the CCD camera's noise on the measuring resolution is analyzed theoretically in detail. Based on the analysis, some special noise-suppressing methods to eliminate the influence of the CCD camera's noise are proposed. Both the influence of the CCD camera's noise and the noise-suppressing methods have not been discussed in our previous publication [J. Yuan and X. W. Long, Rev. Sci. Instrum. 74, 1362 (2003)]. By using the methods mentioned above, the measuring precision of the autocollimator has been greatly improved and the requirements on the external condition have been greatly reduced. The method is proved to be reliable by a prototype experiment. Two-axis angular displacement can be measured simultaneously and a measuring precision of 0.005 arcsec has been achieved, which is currently the highest measuring precision in the world.

  1. Ocean versus atmosphere control on western European wintertime temperature variability

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ayako; Palter, Jaime B.; Lozier, M. Susan; Bourqui, Michel S.; Leadbetter, Susan J.

    2015-12-01

    Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean-atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air-sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air-sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic

  2. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  3. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  4. Implementation of active magnetic bearing digital controller

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Fang, Jiancheng; Liu, Gang

    2006-11-01

    An active magnetic bearing digital controller is presented. This system is based on high-speed floating-point digital signal processor (DSP) and field programmable gate array (FPGA). The active vibration control algorithms are coded in C language where is possible to reduce the probabilities of software errors occurring and to reduce the debugging time for those errors and are executed by the high-speed floating-point DSP. This paper describes the implementation of the controller. The proposed digital control system can meet the requirement of enough throughput which is difficult using a single fixed-pointing DSP, realize integration of magnetic bearings controller and have the merits of easily to maintain and be applied in other magnetic bearings systems. The system has been applied successfully in several actual magnetic bearings systems at Beijing University of Aeronautics and Astronautics and the experimental results verify its feasibility.

  5. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  6. Active vibration control in microgravity environment

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The low gravity environment of the space station is suitable for experiments or manufacturing processes which require near zero gravity. An experiment was fabricated to test the validity of the active control process and to verify the flow and control parameters identified in a theoretical model. Zero gravity is approximated in the horizontal plane using a low friction air bearing table. An analog control system was designed to activate calibrated air jets when displacement of the test mass is sensed. The experiment demonstrates that an air jet control system introduces an effective damping factor to control oscillatory response. The amount of damping as well as the flow parameters, such as pressure drop across the valve and flow rate of air, are verified by the analytical model.

  7. Follower Control of MIMO Temperature Controller for the Same Settling Loci

    NASA Astrophysics Data System (ADS)

    Hamane, Hiroto; Hyodo, Yoshikazu; Hayashi, Yoichi; Miyazaki, Kazuyoshi

    This paper presents a system starting strategy for a multi channel temperature control system. Generally, each channel of MIMO temperature system is almost independent and the settling times and loci are different. In this case, energy loss, quality deterioration and product decrease are caused due to the different heat conduction of each channel. This paper developed a novel system starting method “FOLLOWER control", which can be automatic stating to solve the above product problems. Experiments showed that the proposed control system strategy could be successfully and also be easily applied in practice.

  8. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  9. Tooth whitening and temperature rise with two bleaching activation methods

    NASA Astrophysics Data System (ADS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-02-01

    Objectives: To measure the tooth whitening and the surface and intra-pulpal temperature increase in vitro on extracted upper human incisors after chemical, zoom light and diode laser activated bleaching. Materials and Methods: Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n=10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel. Group II was bleached with high intensity advanced power zoom activation light, for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 watt diode laser for three applications of 30 sec each. Degree of whitening was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and intrapulpal. Results: The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Conclusions: Chemical bleaching produces the same whitening effect as zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than zoom AP light. Diode lasers used to activate bleaching gels are not considered dangerous to the vitality of dental pulps using power settings of 2W.

  10. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    NASA Astrophysics Data System (ADS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-01

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  11. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    SciTech Connect

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-27

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  12. Low temperature dry etching of chromium towards control at sub-5 nm dimensions

    NASA Astrophysics Data System (ADS)

    Staaks, Daniel; Yang, XiaoMin; Lee, Kim Y.; Dhuey, Scott D.; Sassolini, Simone; Rangelow, Ivo W.; Olynick, Deirdre L.

    2016-10-01

    Patterned chromium and its compounds are crucial materials for nanoscale patterning and chromium based devices. Here we investigate how temperature can be used to control chromium etching using chlorine/oxygen gas mixtures. Oxygen/chlorine ratios between 0% and 100% and temperatures between -100 °C and +40 °C are studied. Spectroscopic ellipsometry is used to precisely measure rates, chlorination, and the thickness dependence of n and k. Working in the extremes of oxygen content (very high or very low) and lower temperatures, we find rates can be controlled to nanometers per minute. Activation energies are measured and show that etch mechanisms are both temperature and oxygen level dependent. Furthermore, we find that etching temperature can manipulate the surface chemistry. One surprising consequence is that at low oxygen levels, Etching rates increase with decreasing temperature. Preliminary feature-profile studies show the extremes of temperature and oxygen provide advantages over commonly used room temperature processing conditions. One example is with higher ion energies at -100 °C, where etching products deposit.

  13. Low temperature dry etching of chromium towards control at sub-5 nm dimensions.

    PubMed

    Staaks, Daniel; Yang, XiaoMin; Lee, Kim Y; Dhuey, Scott D; Sassolini, Simone; Rangelow, Ivo W; Olynick, Deirdre L

    2016-10-14

    Patterned chromium and its compounds are crucial materials for nanoscale patterning and chromium based devices. Here we investigate how temperature can be used to control chromium etching using chlorine/oxygen gas mixtures. Oxygen/chlorine ratios between 0% and 100% and temperatures between -100 °C and +40 °C are studied. Spectroscopic ellipsometry is used to precisely measure rates, chlorination, and the thickness dependence of n and k. Working in the extremes of oxygen content (very high or very low) and lower temperatures, we find rates can be controlled to nanometers per minute. Activation energies are measured and show that etch mechanisms are both temperature and oxygen level dependent. Furthermore, we find that etching temperature can manipulate the surface chemistry. One surprising consequence is that at low oxygen levels, Etching rates increase with decreasing temperature. Preliminary feature-profile studies show the extremes of temperature and oxygen provide advantages over commonly used room temperature processing conditions. One example is with higher ion energies at -100 °C, where etching products deposit.

  14. Low temperature dry etching of chromium towards control at sub-5 nm dimensions.

    PubMed

    Staaks, Daniel; Yang, XiaoMin; Lee, Kim Y; Dhuey, Scott D; Sassolini, Simone; Rangelow, Ivo W; Olynick, Deirdre L

    2016-10-14

    Patterned chromium and its compounds are crucial materials for nanoscale patterning and chromium based devices. Here we investigate how temperature can be used to control chromium etching using chlorine/oxygen gas mixtures. Oxygen/chlorine ratios between 0% and 100% and temperatures between -100 °C and +40 °C are studied. Spectroscopic ellipsometry is used to precisely measure rates, chlorination, and the thickness dependence of n and k. Working in the extremes of oxygen content (very high or very low) and lower temperatures, we find rates can be controlled to nanometers per minute. Activation energies are measured and show that etch mechanisms are both temperature and oxygen level dependent. Furthermore, we find that etching temperature can manipulate the surface chemistry. One surprising consequence is that at low oxygen levels, Etching rates increase with decreasing temperature. Preliminary feature-profile studies show the extremes of temperature and oxygen provide advantages over commonly used room temperature processing conditions. One example is with higher ion energies at -100 °C, where etching products deposit. PMID:27606715

  15. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  16. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature

    PubMed Central

    Kokolus, Kathleen M.; Capitano, Maegan L.; Lee, Chen-Ting; Eng, Jason W.-L.; Waight, Jeremy D.; Hylander, Bonnie L.; Sexton, Sandra; Hong, Chi-Chen; Gordon, Christopher J.; Abrams, Scott I.; Repasky, Elizabeth A.

    2013-01-01

    We show here that fundamental aspects of antitumor immunity in mice are significantly influenced by ambient housing temperature. Standard housing temperature for laboratory mice in research facilities is mandated to be between 20–26 °C; however, these subthermoneutral temperatures cause mild chronic cold stress, activating thermogenesis to maintain normal body temperature. When stress is alleviated by housing at thermoneutral ambient temperature (30–31 °C), we observe a striking reduction in tumor formation, growth rate and metastasis. This improved control of tumor growth is dependent upon the adaptive immune system. We observe significantly increased numbers of antigen-specific CD8+ T lymphocytes and CD8+ T cells with an activated phenotype in the tumor microenvironment at thermoneutrality. At the same time there is a significant reduction in numbers of immunosuppressive MDSCs and regulatory T lymphocytes. Notably, in temperature preference studies, tumor-bearing mice select a higher ambient temperature than non-tumor-bearing mice, suggesting that tumor-bearing mice experience a greater degree of cold-stress. Overall, our data raise the hypothesis that suppression of antitumor immunity is an outcome of cold stress-induced thermogenesis. Therefore, the common approach of studying immunity against tumors in mice housed only at standard room temperature may be limiting our understanding of the full potential of the antitumor immune response. PMID:24248371

  17. Temperature Controlled Vessel for Equation of State Measurements

    NASA Astrophysics Data System (ADS)

    Rupp, Ted D.; Gehr, Russell J.; Stahl, David B.; Sheffield, Stephen A.; Robbins, David L.

    2001-06-01

    We have designed and constructed a vessel capable of heating and cooling hazardous samples used in the laser-driven miniflyer experiments. For cooling, either liquid or gaseous nitrogen may be used. For heating, an electric element is used. The accessible temperature range is -100° C to 300° C. O-ring containment seals in the internal sample container establish temperature limits. The last level of containment uses copper gaskets and commercial vacuum components. The vessel may be operated with a gas atmosphere or a vacuum. Temperature is monitored using two thermocouples, one on the heater and one on the sample container. A controller module monitors one thermocouple to reach and maintain the desired temperature. Using this vessel we can perform equation of state or spall strength measurements on hazardous materials in different phases or near solid-solid or solid-liquid phase transitions. Initial data taken with this system will be presented. This work was supported by the DOE Enhanced Surveillance Campaign through contract DE-AC04-76-DP00613.

  18. Simulation studies for multichannel active vibration control

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  19. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  20. Lower temperature limits for activity of several Ixodid ticks (Acari: Ixodidae): effects of body size and rate of temperature change.

    PubMed

    Clark, D D

    1995-07-01

    Uncoordinated activity threshold temperature, the temperature below which ticks can no longer seek a host in a coordinated manner, and the activity threshold temperature, when all activity ceases, were examined for three species of ticks found in coastal sections of New York. The mean uncoordinated activity threshold and activity threshold temperatures were determined for nymphal, female and male Ixodes scapularis Say, nymphal, female, and male Amblyomma americanum (L.), and for female and male Dermacentor variabilis (Say). Only the uncoordinated activity threshold and activity threshold temperatures for adult I. scapularis were significantly correlated to the rate of temperature decrease. The mean uncoordinated activity threshold and activity threshold temperatures were significantly correlated to the mean size of each tick species.

  1. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices. PMID:25572664

  2. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  3. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  4. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  5. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  6. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    PubMed

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  7. To the problem of electron temperature control in plasma

    SciTech Connect

    Galechyan, G.A.; Anna, P.R.

    1995-12-31

    One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2} laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.

  8. Low Temperature Carrier Transport Properties in Isotopically Controlled Germanium

    NASA Astrophysics Data System (ADS)

    Itoh, Kohei

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled ^{74}Ge and ^{70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the (^{74 }Ge) / (^{70}Ge) ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples we have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition. We have also performed infrared absorption spectroscopy studies of compensated Ge samples, investigating the line broadening mechanism due to random electric fields arising from ionized impurity centers. In the study of neutral impurity scattering, we find excellent agreement between the low temperature experimental mobility and phase shift calculations for the hydrogen atom scaled to shallow impurities in semiconductors. In the ionized impurity scattering study, none of the theories we have tested so far explains our low temperature experimental mobilities in highly compensated Ge (K>0.3). We discuss possible problems associated with the theories, in particular, the treatment of the screening mechanism. In the study of low temperature hopping conduction, we show results of temperature dependent resistivity measurements as a function of both the net-carrier concentration and the compensation

  9. Adaptive temperature profile control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1991-01-01

    An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  10. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  11. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes. PMID:27627349

  12. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  13. Effects of activation energy and activation volume on the temperature-dependent viscosity of water

    NASA Astrophysics Data System (ADS)

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10-23m3 ), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  14. Performance of a flight qualified, thermoelectrically temperature controlled QCM sensor with power supply, thermal controller and signal processor

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.

    1980-01-01

    A thermoelectrically temperature controlled quartz crystal microbalance (QCM) system was developed for the measurement of ion thrustor generated mercury contamination on spacecraft. Meaningful flux rate measurements dictated an accurately held sensing crystal temperature despite spacecraft surface temperature variations from -35 C to +60 C over the flight temperature range. An electronic control unit was developed with magentic amplifier transformer secondary power supply, thermal control electronics, crystal temperature analog conditioning and a multiplexed 16 bit frequency encoder.

  15. Active disturbance rejection controller for chemical reactor

    SciTech Connect

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  16. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  17. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  18. Wall temperature control of low-speed body drag

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  19. Low temperature carrier transport properties in isotopically controlled germanium

    SciTech Connect

    Itoh, K.

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled {sup 75}Ge and {sup 70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [{sup 74}Ge]/[{sup 70}Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  20. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  1. Lithology and temperature: How key mantle variables control rift volcanism

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  2. Temperature-controlled optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.

  3. Spacecraft active thermal control subsystem design and operation considerations

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.

    1986-01-01

    Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.

  4. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  5. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  6. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  7. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  8. Robust isothermal electric control of exchange bias at room temperature.

    PubMed

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N; Vescovo, Elio; Belashchenko, Kirill D; Dowben, Peter A; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  9. Temperature control in a solar collector field using Filtered Dynamic Matrix Control.

    PubMed

    Lima, Daniel Martins; Normey-Rico, Julio Elias; Santos, Tito Luís Maia

    2016-05-01

    This paper presents the output temperature control of a solar collector field of a desalinization plant using the Filtered Dynamic Matrix Control (FDMC). The FDMC is a modified controller based on the Dynamic Matrix Control (DMC), a predictive control strategy widely used in industry. In the FDMC, a filter is used in the prediction error, which allows the modification of the robustness and disturbance rejection characteristics of the original algorithm. The implementation and tuning of the FDMC are simple and maintain the advantages of DMC. Several simulation results using a validated model of the solar plant are presented considering different scenarios. The results are also compared to nonlinear control techniques, showing that FDMC, if properly tuned, can yield similar results to more complex control algorithms.

  10. Temperature control in a solar collector field using Filtered Dynamic Matrix Control.

    PubMed

    Lima, Daniel Martins; Normey-Rico, Julio Elias; Santos, Tito Luís Maia

    2016-05-01

    This paper presents the output temperature control of a solar collector field of a desalinization plant using the Filtered Dynamic Matrix Control (FDMC). The FDMC is a modified controller based on the Dynamic Matrix Control (DMC), a predictive control strategy widely used in industry. In the FDMC, a filter is used in the prediction error, which allows the modification of the robustness and disturbance rejection characteristics of the original algorithm. The implementation and tuning of the FDMC are simple and maintain the advantages of DMC. Several simulation results using a validated model of the solar plant are presented considering different scenarios. The results are also compared to nonlinear control techniques, showing that FDMC, if properly tuned, can yield similar results to more complex control algorithms. PMID:26472112

  11. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  12. Active control of automotive fan noise

    NASA Astrophysics Data System (ADS)

    Gerard, Anthony; Berry, Alain; Masson, Patrice

    2002-11-01

    Active control for globally reducing the noise radiated by automotive axial engine cooling fans is investigated. First, an aeroacoutic model of the fan is combined with acoustic directivity measurements to derive a distribution of equivalent dipole sources on the fan surface. The results reveal that the fan behaves like a distributed dipole at blade passage tones when the upstream flow through the fan is spatially nonuniform. Numerical simulations of active noise control in the free field have been carried out using the previous aeroacoustic model of the fan and a dipole secondary source in front of the fan. The numerical results show that a single dipole control source is effective in globally controlling the sound radiation of the fan at the blade passage frequency and its first harmonic. Last, an experimental investigation of active control is presented. It consists of a SISO feedforward configuration with either a LMS algorithm (for FIR filters) or a back-retropopagation algorithm (for neural networks) using the Simulink/Dspace environment for real-time implementation.

  13. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  14. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  15. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    USGS Publications Warehouse

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  16. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    NASA Astrophysics Data System (ADS)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-02-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (˜110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  17. Self-Activated Healable Hydrogels with Reversible Temperature Responsiveness.

    PubMed

    Chang, Ruixue; Wang, Xuemeng; Li, Xu; An, Heng; Qin, Jianglei

    2016-09-28

    The self-healable polymer hydrogel along with reversible temperature responsiveness was prepared through self-catalyzed dynamic acylhydrazone formation and exchange without any additional stimulus or catalyst. The hydrogel was prepared from a copolymer of N-isopropylacrylamide and acylhydrazine P(NIPAM-co-AH) cross-linked by PEO dialdehyde. Besides self-healed under catalysis of acid and aniline, the hydrogel can also self-heal activated by excess of acylhydrazine groups. Without interference of catalyst during the hydrogel formation and self-healing, this kind of hydrogel prepared from biocompatible polymers can be used in more areas including biotechnology and be more persistent. The hydrogel with a large part of the PNIPAM segment also showed temperature responsiveness around body temperature influenced by the variation in group ratio. This self-healable hydrogel has great potential application in areas related to bioscience and biotechnology. PMID:27589014

  18. Top-down control analysis of temperature effect on oxidative phosphorylation.

    PubMed Central

    Dufour, S; Rousse, N; Canioni, P; Diolez, P

    1996-01-01

    The effects of temperature on the control of respiration rate, phosphorylation rate, proton leakage rate, the protonmotive force and the effective ATP/O ratio were determined in isolated rat liver mitochondria over a range of respiratory conditions by applying top-down elasticity and control analyses. Simultaneous measurements of membrane potential, oxidation and phosphorylation rates were performed under various ATP turnover rates, ranging from state 4 to state 3. Although the activities of the three subsystems decreased with temperature (over 30-fold between 37 and 4 degrees C), the effective ATP/O ratio exhibited a maximum at 25 degrees C, far below the physiological value. Top-down elasticity analysis revealed that maximal membrane potential was maintained over the range of temperature studied, and that the proton leakage rate was considerably reduced at 4 degrees C. These results definitely rule out a possible uncoupling of mitochondria at low temperature. At 4 degrees C, the decrease in ATP/O ratio is explained by the relative decrease in phosphorylation processes revealed by the decrease in depolarization after ADP addition [Diolez and Moreau (1985) Biochim. Biophys. Acta 806, 56-63]. The change in depolarization between 37 and 25 degrees C was too small to explain the decrease in ATP/O ratio. This result is best explained by the changes in the elasticity of proton leakage to membrane potential between 37 and 25 degrees C, leading to a higher leak rate at 37 degrees C for the same value of membrane potential. Top-down control analysis showed that despite the important changes in activities of the three subsystems between 37 and 25 degrees C, the patterns of the control distribution are very similar. However, a different pattern was obtained at 4 degrees C under all phosphorylating conditions. Surprisingly, control by the proton leakage subsystem was almost unchanged, although both control patterns by substrate oxidation and phosphorylation subsystems were

  19. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  20. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  1. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  2. Apparent activation volume for creep of copper and alpha brass at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1989-01-01

    Experimental measurements of the apparent activation volume for creep, V-asterisk, of Cu and Cu-30 pct Zn conducted at intermediate temperatures showed two types of strain dependencies. At the lower temperatures and higher stresses, V-asterisk decreased with increasing creep strain, while at higher temperatures and lower stresses, V-asterisk was essentially independent of strain. The low temperature-high stress behavior for Cu and Cu-30 pct Zn was found to be consistent with the dominance of a dislocation intersection mechanism. The high temperature-low stress data for the pure metals suggest that the rate-controlling process involves the nonconservative motion of jogs on screw dislocations. For the latter conditions, an additional contribution from solute drag-limited dislocation glide also appears to be important in governing the creep behavior of the alloy.

  3. Temperature-activated layer-breathing vibrations in few-layer graphene.

    PubMed

    Lui, Chun Hung; Ye, Zhipeng; Keiser, Courtney; Xiao, Xun; He, Rui

    2014-08-13

    We investigated the low-frequency Raman spectra of freestanding few-layer graphene (FLG) at varying temperatures (400-900 K) controlled by laser heating. At high temperature, we observed the fundamental Raman mode for the lowest-frequency branch of rigid-plane layer-breathing mode (LBM) vibration. The mode frequency redshifts dramatically from 81 cm(-1) for bilayer to 23 cm(-1) for 8-layer. The thickness dependence is well described by a simple model of coupled oscillators. Notably, the LBM Raman response is unobservable at room temperature, and it is turned on at higher temperature (>600 K) with a steep increase of Raman intensity. The observation suggests that the LBM vibration is strongly suppressed by molecules adsorbed on the graphene surface but is activated as desorption occurs at high temperature.

  4. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  5. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  6. Active temperature and velocity correlations produced by a swimmer suspension

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, C.; Soto, R.

    2013-05-01

    The agitation produced in a fluid by a suspension of microswimmers in the low Reynolds number limit is studied. In this limit, swimmers are modeled as force dipoles all with equal strength. The agitation is characterized by the active temperature defined, as in kinetic theory, as the mean square velocity, and by the equal-time spatial correlations. Considering the phase in which the swimmers are homogeneously and isotropically distributed in the fluid, it is shown that the active temperature and velocity correlations depend on a single scalar correlation function of the dipole-dipole correlation function. By making a simple medium-range order model, in which the dipole-dipole correlation function is characterized by a single correlation length k0-1 it is possible to make quantitative predictions. It is found that the active temperature depends on the system size, scaling as L4-d at large correlation lengths L≪k0-1, while in the opposite limit it saturates in three dimensions and diverges logarithmically with the system size in two dimensions. In three dimensions the velocity correlations decay as 1/r for small correlation lengths, while at large correlation lengths the transverse correlation function becomes negative at maximum separation r˜L/2, an effect that disappears as the system increases in size.

  7. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  8. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  9. Water-temperature data acquisition activities in the United States

    USGS Publications Warehouse

    Pauszek, F.H.

    1972-01-01

    Along with the growing interest in water quality during the last decade, the need for data on all types of water-quality parameters has also increased. One parameter of particular interest, because of its many ramifications, is temperature. It influences many of the chemical and physical processes that take place in water. The solubility of gases--for example, oxygen and carbon dioxide--and the solution of mineral matter in water are functions of temperature. Such physical properties as density and viscosity vary with temperature. Oxidation of organic materials, as well as algal and bacterial growth, is promoted or retarded by favorable or unfavorable temperatures. Further, temperature bears on the utility of water: as a source of public water supplies; for industrial use, particularly if the water is used for cooling; and in the field of recreation involving contact sports, fishing, and fish culture. In recent years, temperature changes resulting from inflow of heated industrial waste, particularly effluent from power generating plants, have increased the need for temperature data to determine the degree of change, its effect on ecology, and the effect of any remedial action. Thus, because of the many extensive and intensive effects, a large amount of temperature data is collected on surface and ground waters by many agencies throughout the country. Moreover, because of its importance, there is a widespread interest in temperature even by those who are not active collectors of the data themselves. The industrialist, the manager, the public official, and others at one time or another may have need for temperature data and may well raise the questions: Who is collecting temperature data? What is the extent of the activity? Where are the data being collected? The purpose of this report is to answer these questions. The information in the report is confined to the activities of Federal and non-Federal agencies. It is based on information furnished to the Office of

  10. Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control.

    PubMed

    Smårs, S; Gustafsson, L; Beck-Friis, B; Jönsson, H

    2002-09-01

    Earlier studies indicated that the activity in the initial phase of composting may be reduced when the temperature rises too fast under low pH conditions. A compost reactor experiment on household waste was designed to test whether the degradation time could be reduced by actively preventing the temperature from rising until the pH had reached a certain value. This experiment was performed by monitoring pH in the condensate from the cooled compost gas. The results from 3 + 3 runs with and without temperature control confirmed our hypothesis and a considerable reduction in composting time was achieved. One possible explanation for the results is that the microbes active in the low pH phase are hampered by high temperature. The abrupt rise in pH when the fatty acids are consumed seems to be a good marker of the point when temperature control can be discontinued.

  11. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  12. Influence of Saline on Temperature Profile of Laser Lithotripsy Activation

    PubMed Central

    Silva, Igor N.; Donalisio da Silva, Rodrigo; Gustafson, Diedra; Sehrt, David; Kim, Fernando J.

    2015-01-01

    Abstract Purpose: We established an ex vivo model to evaluate the temperature profile of the ureter during laser lithotripsy, the influence of irrigation on temperature, and thermal spread during lithotripsy with the holmium:yttrium-aluminum-garnet (Ho:YAG) laser. Materials and Methods: Two ex vivo models of Ovis aries urinary tract and human calcium oxalate calculi were used. The Open Ureteral Model was opened longitudinally to measure the thermal profile of the urothelium. On the Clinical Model, anterograde ureteroscopy was performed in an intact urinary system. Temperatures were measured on the external portion of the ureter and the urothelium during lithotripsy and intentional perforation. The lithotripsy group (n=20) was divided into irrigated (n=10) and nonirrigated (n=10), which were compared for thermal spread length and values during laser activation. The intentional perforation group (n=10) was evaluated under saline flow. The Ho:YAG laser with a 365 μm laser fiber and power at 10W was used (1J/Pulse at 10 Hz). Infrared Fluke Ti55 Thermal Imager was used for evaluation. Maximum temperature values were recorded and compared. Results: On the Clinical Model, the external ureteral wall obtained a temperature of 37.4°C±2.5° and 49.5°C±2.3° (P=0.003) and in the Open Ureteral Model, 49.7°C and 112.4°C with and without irrigation, respectively (P<0.05). The thermal spread along the external ureter wall was not statically significant with or without irrigation (P=0.065). During intentional perforation, differences in temperatures were found between groups (opened with and without irrigation): 81.8°±8.8° and 145.0°±15.0°, respectively (P<0.005). Conclusion: There is an increase in the external ureteral temperature during laser activation, but ureteral thermal values decreased when saline flow was applied. Ureter thermal spread showed no difference between irrigated and nonirrigated subgroups. This is the first laser lithotripsy thermography study

  13. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae)

    PubMed Central

    2014-01-01

    Background Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. Methods We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). Results L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Conclusions Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular

  14. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  15. Thermal control systems for low temperature Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Wright, J. P.; Trucks, H.

    1976-01-01

    Greater sensitivity and longer life for future space sensor systems place more stringent demands on cooling system technology. Results are presented for a study designed to determine and evaluate low-temperature thermal control system concepts for various cooling categories in the range 3-200 K and to generate hardware development plans for undeveloped viable system concepts. The study considered Shuttle launched payloads in the 1980-1991 time frame, with 1-5 yr of life. Cooling concepts are categorized as open-cycle (expendable), closed-cycle (mechanical), solid-state, and radiative. Particular attention is given to the concepts of multistage heat pipe radiator, diode heat pipe radiator, and radiator guarded cryostat. Results are given for parametric analyses of the Vuilleumier refrigerator, the rotary reciprocating refrigerator, the solid hydrogen refrigerator, the solid hydrogen/multistage radiator hybrid cooler, and the magneto-Peltier hybrid cooler.

  16. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  17. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  18. The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior.

    PubMed

    Schlader, Zachary J; Simmons, Shona E; Stannard, Stephen R; Mündel, Toby

    2011-05-01

    The present study independently evaluated temperature and thermal perception as controllers of thermoregulatory behavior in humans. This was accomplished using a self-paced exercise and heat stress model in which twelve physically active male subjects exercised at a constant subjective rating of perceived exertion (16, 'hard--very hard') while their face was thermally and non-thermally cooled, heated, or left alone (control trial). Thermal cooling and heating were achieved via forced convection, while non-thermal cooling and heating were accomplished via the topical application of menthol and capsaicin solutions. Evidence for thermoregulatory behavior was defined in terms of self-selected exercise intensity, and thus exercise work output. The results indicate that, in the absence of changes in temperature, non-thermal cooling and warming elicited thermal sensory and discomfort sensations similar to those observed during thermal cooling and warming. Furthermore, the perception of effort was maintained throughout exercise in all trials, while the initial and final exercise intensities were also similar. Thermal and non-thermal cooling resulted in the highest work output, while thermal warming the lowest. Non-thermal warming and control trials were similar. Heart rate, mean skin and core (rectal) temperatures, and whole body and local (neck) sweat rates were similar between all trials. These data indicate that changes in temperature are not a requirement for the initiation of thermoregulatory behavior in humans. Rather, thermal sensation and thermal discomfort are capable behavioral controllers.

  19. Temperature controlled junction behavior of polyaniline/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Dhingra, Mansi; Shrivastava, Sadhna; Asokan, K.; Annapoorni, S.

    2016-05-01

    Organic-Inorganic hybrid materials have remained an active field of research both from the point of understanding the interfaces and for device purpose. In the present work, Zinc Oxide (ZnO) - Polyaniline (PANI) interface obtained by drop casting PANI nanofibres on sputtered ZnO thin film is investigated. The study of layer by layer deposition of organic and inorganic materials to form interface, is a very important issue related to carrier transport, charge separation, structural connectivity and interfacial defects. I-V characteristics were performed for different thickness of the underlying ZnO layer. The effect of temperature on the I-V characteristics is also investigated. Hall measurements were performed to estimate the charge carrier concentration of the n-ZnO and the p-PANI. Morphology and thickness of the interface was studied using SEM imaging technique. These interfaces could be explored for different applications in areas like sensors and optoelectronics.

  20. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  1. Active control of locomotion facilitates nonvisual navigation.

    PubMed

    Philbeck, J W; Klatzky, R L; Behrmann, M; Loomis, J M; Goodridge, J

    2001-02-01

    In some navigation tasks, participants are more accurate if they view the environment beforehand. To characterize the benefits associated with visual previews, 32 blindfolded participants were guided along simple paths and asked to walk unassisted to a specified destination (e.g., the origin). Paths were completed without vision, with or without a visual preview of the environment. Previews did not necessarily improve nonvisual navigation. When previewed landmarks stood near the origin or at off-path locations, they provided little benefit; by contrast, when they specified intermediate destinations (thereby increasing the degree of active control), performance was greatly enhanced. The results suggest that the benefit of a visual preview stems from the information it supplies for actively controlled locomotion. Accuracy in reaching the final destination, however, is strongly contingent upon the destination's location during the preview.

  2. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  3. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  4. Biological control of surface temperature in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    BY far the dominant variable parameter controlling the absorption cross-section for short-wavelength solar radiation incident on the ocean surface is the concentration of photosynthetic pigment contained in phytoplankton cells1,2. The abundance of phytoplankton depends on the intensity of incident radiation and on the supply of essential nutrients (nitrogen in particular). A higher abundance increases absorption of radiation and thus enhances the rate of heating at the ocean surface. In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer3,4 and leads to a marked increase in phytoplankton growth. Using remotely sensed data on ocean colour, we show here that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. Thus we show that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  5. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  6. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  7. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; Taylor, Shawn; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance ( 0.001 in. error).

  8. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error).

  9. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pressure and temperature control: General. 154.701 Section 154.701 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  10. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure and temperature control: General. 154.701 Section 154.701 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  11. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pressure and temperature control: General. 154.701 Section 154.701 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  12. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure and temperature control: General. 154.701 Section 154.701 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  13. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure and temperature control: General. 154.701 Section 154.701 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  14. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures.

    PubMed

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-22

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  15. Pentacene on Ni(111): room-temperature molecular packing and temperature-activated conversion to graphene.

    PubMed

    Dinca, L E; De Marchi, F; MacLeod, J M; Lipton-Duffin, J; Gatti, R; Ma, D; Perepichka, D F; Rosei, F

    2015-02-21

    We investigate, using scanning tunnelling microscopy, the adsorption of pentacene on Ni(111) at room temperature and the behaviour of these monolayer films with annealing up to 700 °C. We observe the conversion of pentacene into graphene, which begins from as low as 220 °C with the coalescence of pentacene molecules into large planar aggregates. Then, by annealing at 350 °C for 20 minutes, these aggregates expand into irregular domains of graphene tens of nanometers in size. On surfaces where graphene and nickel carbide coexist, pentacene shows preferential adsorption on the nickel carbide phase. The same pentacene to graphene transformation was also achieved on Cu(111), but at a higher activation temperature, producing large graphene domains that exhibit a range of moiré superlattice periodicities.

  16. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration. PMID:26604397

  17. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration.

  18. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  19. Hot roller embossing system equipped with a temperature margin-based controller

    SciTech Connect

    Kim, Seyoung Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  20. An automated temperature controller for the advanced Hall effect experimental data acquisition system

    NASA Astrophysics Data System (ADS)

    Page, D. J.

    1982-03-01

    The purpose of this study was the development of an automated temperature controller to interface with the automated data acquisition system and the experiment. The temperature controller is designed to control the temperature of the silicon sample to within 0.005 degrees kelvin in the temperature range of 4.2 to 300 degrees Kelvin. The control algorithm measures the thermal impulse response of the system and uses this information to adjust and control the temperature. An MC6809 microprocessor with 10K bytes of EPROM and 640 bytes of RAM is used to implement the controller. The control algorithm and other software was developed to enable the controller to control temperature. A number of problems with the present controller design are identified and recommendations for improvements to the design are made.

  1. Passive and active control of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush

  2. Active optics control development at the LBT

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  3. High-speed microfluidic thermal stimulator for temperature-activated ion channel studies

    NASA Astrophysics Data System (ADS)

    Pennell, Thomas; Wang, Jianbin; Hua, Susan Z.

    2007-04-01

    In this paper we have designed and built a microfluidic thermal chip that provides rapid temperature changes in the solution combined with accurate temperature control. The thermal chip was designed to facilitate the patch-clamp to study temperature dependent activities of ion channels. The device consists of a fluid channel for perfusing solution connected to an accessible reservoir for making patch-clamp measurements on individual cells. A thin film platinum heater was used to generate rapid temperature change and the temperature was monitored using a thin film resistor. The thermal chip was constructed using SU-8 materials on glass wafer to minimize the heat loss to the substrate and channel walls. The chip was characterized for various flow rates ranging from 0.0093 mL/min to 0.0507 mL/min with heater power ranging from 2.7 to 19.4 mW. The heating element is capable of alternating the temperature ranging from bath temperature (20°C) to 90°C at maximum heating rate of 1°C/10 ms. Using the chip, patch clamp recordings were made on cultured HEK cells as the temperature was rapidly varied. The results demonstrated that the thermal chip could be used as a thermal clamp for many thermosensitive ion channel studies.

  4. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  5. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; Teske, R. G.

    1980-01-01

    The emission measure distribution across the range 4.5 log T 6.5 was derived for several coronal active regions by combining EUV line fluxes with broadband X-ray fluxes. The distributions of the maximum temperature was then derived using a numerical model. It is shown that the emission measure distribution can be represented over the full range 5.6 log Tm 6.5 by the superposition of simple loop models, if the models incorporate a substantial rise in their individual emission measure distributions near the maximum temperature. The unresolved loops may have substantial area ratios, since it is this ratio that fixes the extent of the rise in the emission measure distribution. Since the bulk of the emission measure is then contributed from the loop tops, the distribution of maximum temperatures has approximately the same shape as does the integrated emission measure distributions. The EUV and X-ray data used were obtained by from two separate experiments on ATM/Skylab.

  6. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  7. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  8. Thermoelectric devices and diamond films for temperature control of high density electronic circuits

    NASA Astrophysics Data System (ADS)

    Vandersande, Jan W.; Ewell, Richard; Fleurial, Jean-Pierre; Lyon, Hylan B.

    1994-08-01

    The increased speeds of integrated circuits is accompanied by increased power levels and the need to package the IC chips very close together. Combined, these spell very high power densities and severe thermal problems at the package level. Conventional packaging materials have difficulty dealing with these thermal management problems. However, it is possible to combine both active and passive cooling by using thin film bismuth-telluride thermoelectric coolers (microcoolers) and diamond substrates for the temperature control of these high density electronic circuits. The highest power components would be mounted directly onto thin film thermoelectric elements, which would maintain the temperature of these components from a few degrees to tens of degrees below that of the diamond substrate. This allows these components to operate within their required temperature range, effectively manage temperature spikes and junction temperatures, and increase clockspeed. To optimize the design of the thermoelectric cooler and operate at maximum efficiency, diamond films acting as thermal lenses would also be used to spread the heat from the small power device to the larger coolers. In those instances where the devices are all operating above ambient temperature, high thermal conductivity diamond films alone are sufficient to cool these devices, by effectively conducting the heat throughout the board.

  9. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  10. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  11. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  12. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes.

    PubMed

    Kamp, Heather D; Higgins, Darren E

    2011-08-01

    Facultative bacterial pathogens must adapt to multiple stimuli to persist in the environment or establish infection within a host. Temperature is often utilized as a signal to control expression of virulence genes necessary for infection or genes required for persistence in the environment. However, very little is known about the molecular mechanisms that allow bacteria to adapt and respond to temperature fluctuations. Listeria monocytogenes (Lm) is a food-borne, facultative intracellular pathogen that uses flagellar motility to survive in the extracellular environment and to enhance initial invasion of host cells during infection. Upon entering the host, Lm represses transcription of flagellar motility genes in response to mammalian physiological temperature (37°C) with a concomitant temperature-dependent up-regulation of virulence genes. We previously determined that down-regulation of flagellar motility is required for virulence and is governed by the reciprocal activities of the MogR transcriptional repressor and the bifunctional flagellar anti-repressor/glycosyltransferase, GmaR. In this study, we determined that GmaR is also a protein thermometer that controls temperature-dependent transcription of flagellar motility genes. Two-hybrid and gel mobility shift analyses indicated that the interaction between MogR and GmaR is temperature sensitive. Using circular dichroism and limited proteolysis, we determined that GmaR undergoes a temperature-dependent conformational change as temperature is elevated. Quantitative analysis of GmaR in Lm revealed that GmaR is degraded in the absence of MogR and at 37°C (when the MogR:GmaR complex is less stable). Since MogR represses transcription of all flagellar motility genes, including transcription of gmaR, changes in the stability of the MogR:GmaR anti-repression complex, due to conformational changes in GmaR, mediates repression or de-repression of flagellar motility genes in Lm. Thus, GmaR functions as a thermo

  13. MRI-guided therapeutic ultrasound: Temperature feedback control for extracorporeal and endoluminal applicators

    NASA Astrophysics Data System (ADS)

    Salomir, Rares

    2005-09-01

    Therapeutic ultrasound is a mini-invasive and promising tool for in situ ablation of non-resectable tumors in uterus, breast, esophagus, kidney, liver, etc. Extracorporeal, endoluminal, and interstitial applicators have been successfully tested to date. Magnetic resonance imaging (MRI) is the only available technique providing non-invasive temperature mapping, together with excellent contrast of soft tissue. Coupling of these two technologies offers the advantage of both: (1) on line spatial guidance to the target region, and (2) thermal dose control during the treatment. This talk will provide an overview of the author's experience with automatic, active feedback control of the temperature evolution in tissues, which has been demonstrated with MRI compatible extracorporeal transducers (focused beam) or endoluminal applicators (plane waves). The feedback loop is based on fast switching capabilities of the driving electronics and real time data transfer out of the MR scanner. Precision of temperature control was typically better than 1°C. This approach is expected to improve the efficacy of the treatment (complete tumor ablation) and the thermal security of the critical regions crossed by the acoustic beam. It also permits one to reach an under-lethal heating regime for local drug delivery using thermosensitive liposomes or gene expression control based on hsp promoters.

  14. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  15. A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity.

    PubMed

    Yin, Yanzhen; Jiao, Shufei; Lang, Chao; Liu, Junqiu

    2014-05-21

    Glutathione peroxidase (GPx) protects cells from oxidative damage by scavenging surplus reactive oxygen species (ROS). Commonly, an appropriate amount of ROS acts as a signal molecule in the metabolism. A smart artificial GPx exhibits adjustable catalytic activity, which can potentially reduce the amount of ROS to an appropriate degree and maintain its important physiological functions in metabolism. To construct an optimum and excellent smart artificial GPx, a novel supramolecular microgel artificial GPx (SM-Te) was prepared based on the supramolecular host-guest interaction employing the tellurium-containing guest molecule (ADA-Te-ADA) and the cyclodextrin-containing host block copolymer (poly(N-isopropylacrylamide)-b-[polyacrylamides-co-poly(6-o-(triethylene glycol monoacrylate ether)-β-cyclodextrin)], PPAM-CD) as building blocks. Subsequently, based on these building blocks, SM-Te was constructed and the formation of its self-assembled structure was confirmed by dynamic light scattering, NMR, SEM, TEM, etc. Typically, benefitting from the temperature responsive properties of the PNIPAM scaffold, SM-Te also exhibited similar temperature responsive behaviour. Importantly, the GPx catalytic rates of SM-Te displayed a noticeable temperature responsive characteristic. Moreover, SM-Te exhibited the typical saturation kinetics behaviour of a real enzyme catalyst. It was proved that the changes of the hydrophobic microenvironment and the pore size in the supramolecular microgel network of SM-Te played significant roles in altering the temperature responsive catalytic behaviour. The successful construction of SM-Te not only overcomes the insurmountable disadvantages existing in previous covalent bond crosslinked microgel artificial GPx but also bodes well for the development of novel intelligent antioxidant drugs. PMID:24652520

  16. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  17. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  18. Application of a digital computer to data acquisition and shield temperature control of a high-temperature, adiabatic calorimeter

    SciTech Connect

    Cash, W.M.; Stansbury, E.E.; Moore, C.F.; Brooks, C.R.

    1981-06-01

    The use of a digital computer, operating under real-time, time-sharing mode, for the operation of a high-temperature (300--1300 K), adiabatic calorimeter is described. The specimen temperature and power to the specimen heater are logged continuously, from which the heat capacity is calculated for specified temperature intervals (e.g., 20 K). The determinate error in the calculated heat capacity is about +- 0.6%. The temperature control of the adiabatic shields is quite comparable with that obtained previously with analog controllers. The temperature difference between the specimen and a shield can be maintained to about +- 0.1 K. The heat capacity of a pure titanium specimen has been measured from 320 to 1020 K using the computer and also using the analog control. No discernible difference in results can be seen. The heat capacity data scatter about +- 1% from a smooth curve fitted through the 325 data points.

  19. Waste activated sludge treatment based on temperature staged and biologically phased anaerobic digestion system.

    PubMed

    Yu, Jingwen; Zheng, Mingxia; Tao, Tao; Zuo, Jiane; Wang, Kaijun

    2013-10-01

    The concept of temperature staged and biological phased (TSBP) was proposed to enhance the performance of waste-activated sludge anaerobic digestion. Semi-continuous experiments were used to investigate the effect of temperature (35 to 70 degrees C) as well as the hydraulic retention time (HRT) (2, 4 and 6 days) on the acidogenic phase. The results showed that the solubilization degree of waste-activated sludge increased from 14.7% to 30.1% with temperature increasing from 35 to 70 degrees C, while the acidification degree was highest at 45 degrees C (17.6%), and this was quite different from the temperature impact on hydrolysis. Compared with HRT of 2 and 6 days, 4 days was chosen as the appropriate HRT because of its relatively high solubilization degree (24.6%) and acidification degree (20.1%) at 45 degrees C. The TSBP system combined the acidogenic reactor (45 degrees C, 4 days) with the methanogenic reactor (35 degrees C, 16 days) and the results showed 84.8% and 11.4% higher methane yield and volatile solid reduction, respectively, compared with that of the single-stage anaerobic digestion system with HRT of 20 days at 35 degrees C. Moreover, different microbial morphologies were observed in the acidogenic- and methanogenic-phase reactors, which resulted from the temperature control and HRT adjustment. All the above results indicated that 45 degrees C was the optimum temperature to inhibit the activity of methanogenic bacteria in the acidogenic phase, and temperature staging and phase separation was thus accomplished. The advantages of the TSBP process were also confirmed by a full-scale waste-activated sludge anaerobic digestion project which was an energy self-sufficient system.

  20. The use of infrared thermography to detect the skin temperature response to physical activity

    NASA Astrophysics Data System (ADS)

    Tanda, G.

    2015-11-01

    Physical activity has a noticeable effect on skin blood flow and temperature. The thermal regulatory and hemodynamic processes during physical activity are controlled by two conflicting mechanisms: the skin vasoconstriction induced by the blood flow demand to active muscles and the skin vasodilation required by thermoregulation to increase warm blood flow and heat conduction to the skin. The time-evolution of skin temperature during exercise can give useful information about the adaptation of the subject as a function of specific type, intensity and duration of exercise. In this paper, infrared thermography is used to investigate the thermal response of skin temperature during running exercise on treadmill for a group of seven healthy and trained runners. Two different treadmill exercises are considered: a graded load exercise and a constant load exercise; for both exercises the duration was 30 minutes. Within the limits due to the relatively small size of the sample group, results typically indicate a fall in skin temperature during the initial stage of running exercise. As the exercise progresses, the dynamics of the skin temperature response depends on the type of exercise (graded versus constant load) and probably on the level of training of the subject.

  1. Locomotor activity and body temperature in selected mouse lines differing greatly in feed intake.

    PubMed

    Sojka, P A; Griess, R S; Nielsen, M K

    2013-08-01

    Locomotor activity, body temperature, feed intake, and BW were measured on 382 mature male mice sampled from lines previously selected (25 generations) for either high (MH) or low (ML) heat loss and an unselected control (MC). Animals were from all 3 independent replicates of the 3 lines and across 4 generations (68 through 71). Locomotor activity and body temperatures were obtained using implanted transmitters with data collection over 4 d following a 3-d postsurgery recovery period. Data were collected every minute and then averaged into 30-min periods, thus providing 192 data points for each mouse. Least-squares means for feed intake adjusted for BW (Feed/BW, feed·BW(-1)·d(-1), g/g) were 0.1586, 0.1234, and 0.1125 (±0.0022) for MH, MC, and ML, respectively, with line being a highly significant source of variation (P < 0.0003). Line effects for locomotor activity counts, transformed to the 0.25 power for analysis, were significantly different, with MH mice being 2.1 times more active than ML mice (P < 0.003); MC mice were intermediate. Differences in body temperature were significant for both line (P < 0.03) and day effects (P < 0.001), with a 0.32°C difference between the MH and ML lines. Fourier series analysis used the combined significant periodicities of 24, 18, 12, 9, 6, and 3 h to describe circadian cycles for activity and body temperature. All 3 lines expressed daily peaks in body temperature and locomotor activity ∼3 h into darkness and ∼2 h after lights were turned on. There was a stronger relationship between locomotor activity and Feed/BW (P < 0.0001) than between body temperature and Feed/BW (P < 0.01); differences between lines in locomotor activity and body temperature explained 17% and 3%, respectively, of differences between lines in Feed/BW. Thus, line differences in locomotor activity contribute to line differences in maintenance, but approximately 80% of the differences between the MH and ML selection lines in Feed/BW remains

  2. A high-temperature shape memory alloy sensor for combustion monitoring and control

    NASA Astrophysics Data System (ADS)

    Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.

    2005-05-01

    Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a

  3. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  4. Low temperature activation of Au/Ti getter film for application to wafer-level vacuum packaging

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Moulin, Johan; Lani, Sébastien; Hallais, Géraldine; Renard, Charles; Bosseboeuf, Alain

    2015-03-01

    Non-evaporable getter (NEG) thin films based on alloys of transition metals have been studied by various authors for vacuum control in wafer-level packages of micro electro mechanical systems (MEMS). These materials have typically a relatively high activation temperature (300-450 °C) which is incompatible with some temperature sensitive MEMS devices. In this work we investigate the potential of Au/Ti system with a thin or ultrathin non oxidizable Au layer as a low activation temperature getter material. In this bilayer system, gettering activation is produced by thermal outdiffusion of titanium atoms through the gold film. The outdiffusion kinetics of titanium was modelled and characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS) at various temperatures. Results confirm that Au/Ti bilayer is a promising getter material for wafer-level packaging with an activation temperature below 300 °C for 1 h annealing time.

  5. Energy Consumption and Control Response Evaluations of AODV Routing in WSANs for Building-Temperature Control

    PubMed Central

    Booranawong, Apidet; Teerapabkajorndet, Wiklom; Limsakul, Chusak

    2013-01-01

    The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved. PMID:23807689

  6. Energy consumption and control response evaluations of AODV routing in WSANs for building-temperature control.

    PubMed

    Booranawong, Apidet; Teerapabkajorndet, Wiklom; Limsakul, Chusak

    2013-06-27

    The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.

  7. Role of HSF activation for resistance to heat, cold and high-temperature knock-down.

    PubMed

    Nielsen, Morten Muhlig; Overgaard, Johannes; Sørensen, Jesper Givskov; Holmstrup, Martin; Justesen, Just; Loeschcke, Volker

    2005-12-01

    Regulation of heat shock proteins (Hsps) by the heat shock factor (HSF) and the importance of these proteins for resistance to heat stress is well documented. Less characterized is the importance of Hsps for cold stress resistance although Hsp70 is known to be induced following long-term cold exposure in Drosophila melanogaster. In this study, a temperature-sensitive HSF mutant line was used to investigate the role of HSF activation following heat hardening, rapid cold hardening (RCH) and long-term cold acclimation (LTCA) on heat and cold resistance, and this was correlated with Hsp70 expression. In addition, the effect of HSF activation on high-temperature knock-down resistance was evaluated. We found a significantly decreased HSF activation in the mutant line as compared to a corresponding control line following heat hardening, and this was correlated with decreased heat resistance of the mutant line. However, we did not find this difference in HSF activity to be important for resistance to cold stress or high-temperature knock-down. The findings indicate that induction of stress genes regulated by HSF, such as Hsps, although occurring following LTCA, are not of major importance for cold stress resistance and neither for RCH nor high-temperature knock-down resistance in D. melanogaster. PMID:16169555

  8. Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature

    NASA Technical Reports Server (NTRS)

    Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.

    1974-01-01

    A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.

  9. In Situ Microstructural Control and Mechanical Testing Inside the Transmission Electron Microscope at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Baoming; Haque, M. A.

    2015-08-01

    With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.

  10. [Feeding activity, spontaneous activity and body core temperature of saddle-back tamarins (Saguinus fuscicollis)].

    PubMed

    Petry, H

    1991-02-01

    Eating behaviour and spontaneous activity (videometry) as well as deep body temperature (radiotelemetry) of 3 adult Saddle Back Tamarins (Saguinus fuscicollis) were investigated (singly housed, environmental temperature 28 degrees C, relative air humidity 60%, light 6:00-18:00 h, drinking-water and pelleted colony diet ad lib.). The experimental animals (1 female, 2 males; 3-8 years old), born in captivity, showed only some slight individual differences within their inborn species pattern, with regard to the 3 measured parameters. The monkeys were, like wild-living individuals, strictly light-active. They moved in the day-time nearly uninterrupted without special rhythm and slept remarkably deep through the whole night. Food intake occurred during the whole day with varying intensity. The body temperature of the 3 monkeys showed individual daytime-means between 38.8-39.9 degrees C, whereby the temperature fluctuated dependent on their moving activity with a range of about +/- 0.5 degrees C. At night the body temperature of the animals averaged between 35.9-36.6 degrees C.

  11. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it. PMID:25242545

  12. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  13. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Self-reactive liquid, sample 3223 OP2 3 Self-reactive liquid, sample, temperature control 3233 OP2 3... 49 Transportation 2 2014-10-01 2014-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter...

  14. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Self-reactive liquid, sample 3223 OP2 3 Self-reactive liquid, sample, temperature control 3233 OP2 3... 49 Transportation 2 2013-10-01 2013-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter...

  15. How the body controls brain temperature: the temperature shielding effect of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Sukstanskii, Alexander L; Yablonskiy, Dmitriy A

    2006-11-01

    Normal brain functioning largely depends on maintaining brain temperature. However, the mechanisms protecting brain against a cooler environment are poorly understood. Reported herein is the first detailed measurement of the brain-temperature profile. It is found to be exponential, defined by a characteristic temperature shielding length, with cooler peripheral areas and a warmer brain core approaching body temperature. Direct cerebral blood flow (CBF) measurements with microspheres show that the characteristic temperature shielding length is inversely proportional to the square root of CBF in excellent agreement with a theoretical model. This "temperature shielding effect" quantifies the means by which CBF prevents "extracranial cold" from penetrating deep brain structures. The effect is crucial for research and clinical applications; the relationship between brain, body, and extracranial temperatures can now be quantitatively predicted.

  16. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    PubMed

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA. PMID:26583919

  17. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-01

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  18. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  19. Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Jaeger, Michael D.

    2013-01-01

    A design of an Active Magnetic Regenerative Refrigeration (AMRR) system has been developed for space applications. It uses an innovative 3He cryogenic circulator to provide continuous remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. A critical component technology for this cooling system is a highly efficient active magnetic regenerator, which is a regenerative heat exchanger with its matrix material made of magnetic refrigerant gadolinium gallium garnet (GGG). Creare Inc. is developing a microchannel GGG regenerator with an anisotropic structured bed for high system thermal efficiency. The regenerator core consists of a stack of thin, single-crystal GGG disks alternating with thin polymer insulating layers. The insulating layers help minimize the axial conduction heat leak, since GGG has a very high thermal conductivity in the regenerator s operating temperature range. The GGG disks contain micro channels with width near 100 micrometers, which enhance the heat transfer between the circulating flow and the refrigerant bed. The unique flow configuration of the GGG plates ensures a uniform flow distribution across the plates. The main fabrication challenges for the regenerator are the machining of high-aspect-ratio microchannels in fragile, single-crystal GGG disks and fabrication and assembly of the GGG insulation layers. Feasibility demonstrations to date include use of an ultrashort- pulse laser to machine microchannels without producing unacceptable microcracking or deposition of recast material, as shown in the figure, and attachment of a thin insulation layer to a GGG disk without obstructing the flow paths. At the time of this reporting, efforts were focused on improving the laser machining process to increase machining speed and further reduce microcracking.

  20. Temperature Control During Therapeutic Hypothermia for Newborn Encephalopathy Using Different Blanketrol Devices

    PubMed Central

    Kilbride, Howard; Shepherd, Edward; McDonald, Scott A.; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D.

    2014-01-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33°C and 34°C (target 33.5°C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6°C±1.0°C for B2 vs. 33.9°C±1.2°C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33°C and 34°C was similar for B2 compared to B3 cohorts (94.8%±0.1% vs. 95.8%±0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia. PMID:25285767

  1. Temperature and humidity control of simulated human breath

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Subsystem was developed for breathing metabolic simulator which adjusts temperature and humidity of air to levels of human exhaled breath. Temperature-humidity subsystem is described, consisting of aluminum enclosure with 400 watt heat sheet glued to bottom, vertical separators, inlet connection, and check valve.

  2. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.

    PubMed

    Seaton, Daniel D; Smith, Robert W; Song, Young Hun; MacGregor, Dana R; Stewart, Kelly; Steel, Gavin; Foreman, Julia; Penfield, Steven; Imaizumi, Takato; Millar, Andrew J; Halliday, Karen J

    2015-01-01

    Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to cycling DOF factor 1 (CDF1) and flavin-binding, KELCH repeat, F-box 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of phytochrome-interacting factor 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions. PMID:25600997

  3. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature

    PubMed Central

    Seaton, Daniel D; Smith, Robert W; Song, Young Hun; MacGregor, Dana R; Stewart, Kelly; Steel, Gavin; Foreman, Julia; Penfield, Steven; Imaizumi, Takato; Millar, Andrew J; Halliday, Karen J

    2015-01-01

    Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions. PMID:25600997

  4. Further Characterization of an Active Clearance Control Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2007-01-01

    A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.

  5. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  6. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    NASA Astrophysics Data System (ADS)

    Balaguru, Karthik; Leung, L. Ruby; Yoon, Jin-ho

    2013-12-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north-south demarcation are considered rather than the basin as a whole.

  7. Automated control and monitoring of thermal processing using high temperature, short time pasteurization.

    PubMed

    Schlesser, J E; Armstrong, D J; Cinar, A; Ramanauskas, P; Negiz, A

    1997-10-01

    High temperature, short time pasteurization was used to evaluate a computer-based system for controlling the pasteurization process, acquiring data, and monitoring records. Software was used for the control of hot water temperature, flow rate through the centrifugal timing pump, and diversion of under-processed product. Three types of control strategies were conducted: single loop, cascade, and multivariable. The single loop control strategy showed the most rapid responses to temperature changes, but the temperature response curve was slowest to return to its set point. The cascade control strategy showed slower recoveries to temperature changes, but the temperature response curve was smoother. The multivariable control strategy responded slightly faster than the cascade control strategy, and the temperature response curve was slightly smoother than the cascade control strategy. The multivariable control strategy was able to control the flow diversion valve by the use of a lethality controller. The data acquisition system, used to monitor the data obtained from the high temperature, short-time pasteurization system, was within +/- 0.1 degree C of the temperature recorded by the safety thermal limit recorder. Reliability was determined by examining the changes in the position of the flow diversion valve to identify process deviations and by comparing the changes to the event marker on circular charts. The data acquisition system was an effective alternative for monitoring the completeness of data.

  8. Amplitude Scaling of Active Separation Control

    NASA Technical Reports Server (NTRS)

    Stalnov, Oksana; Seifert, Avraham

    2010-01-01

    Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.

  9. Ribosome-dependent activation of stringent control.

    PubMed

    Brown, Alan; Fernández, Israel S; Gordiyenko, Yuliya; Ramakrishnan, V

    2016-06-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  10. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1995-04-01

    The temperature at which ice-nucleating bacteria are grown causes differences of 100- to 10,000-fold in the fraction of cells that nucleate ice at a given temperature (ice nucleation frequency). Ice nucleation frequencies of cells of Pseudomonas syringae grown at temperatures that ranged from 9 to 33 degrees C were examined in order to more accurately characterize physiological effects on ice nuclei active at temperatures of from about -2 to -10 degrees C, the temperature range for this phenotype. Large differences in ice nucleation frequency occurred at all but the lowest assay temperatures in cells of P. syringae grown in the temperature range of 15 to 33 degrees C. These differences in ice nucleation frequency may be attributed, at least in part, to post-translational factors. Because other studies have indicated that ice nuclei active at the lowest assay temperatures may reflect the amount of ice nucleation protein produced, while higher nucleation temperatures reflect aggregates of this ice nucleation protein, data was normalized to the frequency of ice nuclei active at the lowest ice nucleation temperatures (which also correspond to the most abundant nuclei). This was done in order to develop a baseline of comparison for cells grown at different temperatures that more clearly shows possible post-translational effects such as aggregation of the nucleation protein. After this normalization was performed, and in contrast to the results noted above, the number of ice nuclei in cells grown at 9, 15, and 20 degrees C that were active at different assay temperatures was very similar. Differences in ice nucleation frequency that occurred over all assay temperatures in cells grown between 9 and 20 degrees C may be attributed to differences in the total number of nuclei present in the population of cells. The large effects of growth temperature on nucleation frequency have important implications for estimating numbers of ice nucleating bacteria in environmental samples

  11. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  12. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  13. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  14. Active controlled studies in antibiotic drug development.

    PubMed

    Dane, Aaron

    2011-01-01

    The increasing concern of antibacterial resistance has been well documented, as has the relative lack of antibiotic development. This paradox is in part due to challenges with clinical development of antibiotics. Because of their rapid progression, untreated bacterial infections are associated with significant morbidity and mortality. As a consequence, placebo-controlled studies of new agents are unethical. Rather, pivotal development studies are mostly conducted using non-inferiority designs versus an active comparator. Further, infections because of comparator-resistant isolates must usually be excluded from the trial programme. Unfortunately, the placebo-controlled data classically used in support of non-inferiority designs are largely unavailable for antibiotics. The only available data are from the 1930s and 1940s and their use is associated with significant concerns regarding constancy and assay sensitivity. Extended public debate on this challenge has led to proposed solutions by some in which these concerns are addressed by using very conservative approaches to trial design, endpoints and non-inferiority margins, in some cases leading to potentially impractical studies. To compound this challenge, different Regulatory Authorities seem to be taking different approaches to these key issues. If harmonisation does not occur, antibiotic development will become increasingly challenging, with the risk of further decreases in the amount of antibiotic drug development. However with clarity on Regulatory requirements and an ability to feasibly conduct global development programmes, it should be possible to bring much needed additional antibiotics to patients.

  15. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  16. Modeling in situ soil enzyme activity using continuous field soil moisture and temperature data

    NASA Astrophysics Data System (ADS)

    Steinweg, J. M.; Wallenstein, M. D.

    2010-12-01

    the field treatments at any of the dates, however season explained the majority of the variance in enzyme activity for cellobiohydrolase, xylosidase, N-acetyl glucosaminidase and leucine amino peptidase (p<0.01). Changes in seasonal climate appear to have a large effect on enzyme potentials and are likely masking any treatment effects. To model in-situ enzyme activities over the course of a year, daily measurements collected on soil moisture and temperature were used to estimate the collision frequency and activation energy. Our results suggest that collision frequency is largely affected by soil moisture and activation energy affected by soil temperature. Thus, soil enzyme activities are controlled not only by the size of the enzyme pool, but are also strongly affected by temperature and by moisture. Currently, there are no suitable technologies to measure in-situ activities in real-time, but we can make progress in understanding the ecology of enzymes through the combination of lab assays, field sensors, and modeling.

  17. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    NASA Astrophysics Data System (ADS)

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  18. Temperature control of thermal radiation from composite bodies

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  19. Temperature Control Method in the Snow Road Construction

    NASA Astrophysics Data System (ADS)

    Serebrenikova, Yu; Lysyannikov, A.; Kaizer, Yu; Zhelykevich, R.; Plakhotnikova, M.; Lysyannikova, N.; Merko, M.; Merko, I.

    2016-06-01

    The paper substantiates the process of heat treatment before the snow compaction in snow road construction. The methods to measure the temperature of snow as a moving dispersed material have been considered in the paper.

  20. Seasonal mean temperature changes control future heat waves

    NASA Astrophysics Data System (ADS)

    Argüeso, Daniel; Di Luca, Alejandro; Perkins-Kirkpatrick, Sarah E.; Evans, Jason P.

    2016-07-01

    Increased temperature will result in longer, more frequent, and more intense heat waves. Changes in temperature variability have been deemed necessary to account for future heat wave characteristics. However, this has been quantified only in Europe and North America, while the rest of the globe remains unexplored. Using late century global climate projections, we show that annual mean temperature increases is the key factor defining heat wave changes in most regions. We find that commonly studied areas are an exception rather than the standard and the mean climate change signal generally outweighs any influence from variability changes. More importantly, differences in warming across seasons are responsible for most of the heat wave changes and their consideration relegates the contribution of variability to a marginal role. This reveals that accurately capturing mean seasonal changes is crucial to estimate future heat waves and reframes our interpretation of future temperature extremes.

  1. Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    Recent work in robust control with real parameter uncertainties has focused on absolute stability and its connections to real mu theory. In particular, the research has investigated the Popov stability criterion and its associated Lur'e-Postnikov Liapunov functions. State space representations of this Popov stability analysis tests are included in an H2 design formulation to provide a powerful technique for robust controller synthesis. This synthesis approach uses a state space optimization procedure to design controllers that minimize an overbound of an H2 cost functional and satisfy stability analysis tests based on the Popov multiplier. The controller and stability multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K algorithm of mu synthesis. While previous work has demonstrated this synthesis approach on benchmark control problems, the purpose of this paper is to use Popov controller synthesis to design robust compensators for the Middeck Active Control Experiment (MACE).

  2. Effects of body core temperature and brain dopamine activity on timing processes in humans.

    PubMed

    Rammsayer, T H

    1997-08-22

    In a placebo-controlled study, the effects of experimentally induced increase in body core temperature and of the dopamine antagonist haloperidol on judgments of an apparent second, a speeded-tapping task, and temporal discrimination of intervals in the range of milliseconds and seconds were investigated in 40 healthy male subjects. A 0.7 degree C-increase in body core temperature due to 3-h exposure to an ambient temperature of 52 degrees C did not cause any statistically significant changes in timing tasks. Unlike heat exposure, 3 mg of haloperidol caused a pronounced impairment of performance on the temporal discrimination of intervals in the range of milliseconds and seconds (P < 0.01 and P < 0.001, respectively) as well as speeded tapping (P < 0.05). For temporal discrimination of intervals in the range of seconds, a significant interaction between ambient temperature and haloperidol could be established (P < 0.05) indicating that haloperidol caused a significant performance decrement only in subjects exposed to an ambient temperature of 28 degrees C but not in those exposed to 52 degrees C. The overall pattern of results suggests that temporal processing of intervals in the range of milliseconds can be considered a function of dopaminergic activity in the basal ganglia while temporal processing of longer intervals appears to be cognitively mediated. Furthermore, the hypothesis that timing processes in humans are modulated by changes in body core temperature could not be established.

  3. Ferromagnetic resonance in nanostructures with temperature-controlled interlayer interaction

    NASA Astrophysics Data System (ADS)

    Polishchuk, D. M.; Tykhonenko-Polishchuk, Yu. O.; Kravets, A. F.; Tovstolytkin, A. I.; Dzhezherya, Yu. I.; Pogorily, A. M.; Korenivski, V.

    2016-09-01

    This study is a comprehensive analysis of a multilayer F1/f(d)/F2pin structure's magnetic resonance properties, wherein F1 and F2pin are the free and exchange-coupled strong magnetic layers, and f is the weakly magnetic layer with a Curie point in the room temperature region. Depending on the magnetic state of the spacer f (ferromagnetic or paramagnetic) the exchange interaction between the F2 and F2pin layers becomes a function of the temperature, which opens up opportunities for practical applications. The obtained results show that the interlayer exchange coupling can be enhanced by decreasing the thickness of the spacer d, or by lowering the temperature. Strengthening the exchange coupling leads to a stronger manifestation of unidirectional anisotropy in the ferromagnetic resonance layer F1, as well as to a broadening of the resonance line that is atypical for thin films. The observed features are analyzed in the context of comparing the effects of two different natures: the influence of the spacer d and the influence of the temperature. Thus, the behavior of changes to the unidirectional anisotropy remains the same given variation of both the thickness of the spacer and the temperature. However the broadening of the magnetic resonance line is more sensitive to changes in the interlayer interaction caused by variation of d, and is less susceptible to changes caused by temperature.

  4. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity

    PubMed Central

    Adams, Heather E.; Crump, Byron C.; Kling, George W.

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production (14C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients. Bacterial cell numbers also increased in response to temperature and nutrient additions with cell-specific carbon uptake initially increasing and then declining after 2 days. Bacterial community composition (BCC; determined by means of 16S denaturing gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in incubation temperature and the addition of nutrients, within 2 days in some cases. While the bacteria in these habitats responded to nutrient additions with rapid changes in productivity and community composition, water temperature controlled the speed of the metabolic response and affected the resultant change in bacterial community structure, constraining the potential responses to pulsed nutrient subsidies associated with storm events. In all cases, at higher nutrient levels and temperatures the effect of initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction of temperature, and nutrients controlling activity in these aquatic systems. PMID:25873916

  5. Tuning the local temperature during feedback controlled electromigration in gold nanowires

    SciTech Connect

    Xiang, An; Hou, Shimin Liao, Jianhui

    2014-06-02

    Feedback controlled electromigration (FCE) in metallic nanowires has been widely used for various purposes. However, the control of the local temperature during FCE remains a challenge. Here, we report that the environment temperature can be used as a knob to tune the local temperature during FCE in gold nanowires. FCE was performed in gold nanowires at various environment temperatures ranging from 4.2 K to 300 K. We find that the dissipated power normalized by the cross section area of the nano constriction is linearly proportional to the environment temperature. Interestingly, the estimated local maximum temperature parabolically depends on the environment temperature. A minimum in the local temperature can be reached if an appropriate environment temperature is chosen. Our findings are well supported by the finite element simulation. Moreover, the data indicates the coupling between FCE triggering current density and local temperature.

  6. A novel design of a temperature-controlled FT-ICR cell for low-temperature black-body infrared radiative dissociation (BIRD) studies of hydrated ions

    NASA Astrophysics Data System (ADS)

    Balaj, O. Petru; Berg, Christian B.; Reitmeier, Stephan J.; Bondybey, Vladimir E.; Beyer, Martin K.

    2009-01-01

    A novel design for a temperature-controlled ICR cell is described for use in black-body infrared radiative dissociation (BIRD) studies of weakly bound systems like water clusters. Due to several improved design features, it provides a very uniform black-body radiation environment, and at the same time maintains efficient pumping for a low collision rate on the order of 10-2 s-1. At the lowest temperatures reached, nominally 89 K cell plate temperature, water evaporation effectively ceases, while intracluster reactions in V+(H2O)n with a small activation energy are still observed. BIRD rate constants for Ag+(H2O)n, n = 4-6, are shown in the temperature range T = 160-320 K. For n = 6, a linear Arrhenius plot with R2 = 0.9943 is obtained without any calibration, confirming the suitability of the cell for quantitative BIRD studies.

  7. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity

    USGS Publications Warehouse

    Rattner, B.A.

    1982-01-01

    Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.

  8. Temperature-dependent fumigant activity of essential oils against twospotted spider mite (Acari: Tetranychidae).

    PubMed

    Lim, Eu Gene; Roh, Hyun Sik; Coudron, Thomas A; Park, Chung Gyoo

    2011-04-01

    Fumigant activity of 34 commercial essential oils was assessed on female adults and eggs of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) at three temperatures (5, 15, and 25 degrees C). Common thyme, cinnamon, and lemongrass oils were equally effective on twospotted spider mite adults showing 85.8-100% mortality at 5 and 10 microl/liter air at 25 degrees C. At a lower temperature of 15 degrees C, lemongrass and peppermint resulted in > or =90% mortality of adults at 10 microl/liter air. Only lemongrass was relatively active at 5 microl/liter air, at 15 degrees C. At 5 degrees C, lemongrass and peppermint caused significantly higher adult mortality than controls but only at 10 microl/liter air. Common thyme oil showed the highest ovicidal activity at 5 microl/liter air at 25 degrees C. Among the main components of common thyme and lemongrass oils, citral was lethal to twospotted spider mite adults at all tested temperatures. Carvacrol, thymol, and citral caused the same inhibitory effects on the hatch of twospotted spider mite eggs at 25 degrees C. However, citral was more active than other compounds to twospotted spider mite eggs at 15 degrees C. Therefore, we conclude that citral has the best potential for development as a fumigant against twospotted spider mite on agricultural products harvested late in the growing season.

  9. Wide-Temperature Electronics for Thermal Control of Nanosats

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis; Gerber, Scott

    2000-01-01

    This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.

  10. Integrated temperature measurement and control in polymer microfluidic systems

    NASA Astrophysics Data System (ADS)

    Kimball, Christopher Robert

    Methods for integrating electrical components in low cost polymer microfluidic systems are presented. These methods include deposition and photolithographic patterning of thin-film metal layers on polycarbonate and poly(methyl methacrylate), and the embedding of pre-fabricated and diced chips. The design and performance of Resistive Temperature Detectors (RTDs) fabricated with these methods is also discussed. The fabrication and testing of two polymer microfluidic systems is presented. The first system contains a two-dimensional array of RTDs in a microchannel capable of measuring the temperature distribution within the fluid. The second system employs Temperature Gradient Gel Electrophoresis (TGGE) for the detection of mutations in DNA samples. A compact mathematical model of the thermal effects caused by an integrated microheater is presented and validated with experimental measurements. This model may be applied to a wide variety of polymer microsystems which contain heaters and/or temperature sensors. The design of bubble pumps, hot plate chemical sensors, temperature gradient gel/capillary electrophoresis systems, flow sensors, etc. will be aided by this model.

  11. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  12. Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans.

    PubMed

    Shibasaki, Manabu; Aoki, Ken; Morimoto, Keiko; Johnson, John M; Takamata, Akira

    2009-12-01

    Plasma hyperosmolality delays the response in skin blood flow to heat stress by elevating the internal temperature threshold for cutaneous vasodilation. This elevation could be because of a delayed onset of cutaneous active vasodilation and/or to persistent cutaneous active vasoconstriction. Seven healthy men were infused with either hypertonic (3% NaCl) or isotonic (0.9% NaCl) saline and passively heated by immersing their lower legs in 42 degrees C water for 60 min (room temperature, 28 degrees C; relative humidity, 40%). Skin blood flow was monitored via laser-Doppler flowmetry at sites pretreated with bretylium tosylate (BT) to block sympathetic vasoconstriction selectively and at adjacent control sites. Plasma osmolality was increased by approximately 13 mosmol/kgH(2)O following hypertonic saline infusion and was unchanged following isotonic saline infusion. The esophageal temperature (T(es)) threshold for cutaneous vasodilation at untreated sites was significantly elevated in the hyperosmotic state (37.73 +/- 0.11 degrees C) relative to the isosmotic state (36.63 +/- 0.12 degrees C, P < 0.001). A similar elevation of the T(es) threshold for cutaneous vasodilation was observed between osmotic conditions at the BT-treated sites (37.74 +/- 0.18 vs. 36.67 +/- 0.07 degrees C, P < 0.001) as well as sweating. These results suggest that the hyperosmotically induced elevation of the internal temperature threshold for cutaneous vasodilation is due primarily to an elevation in the internal temperature threshold for the onset of active vasodilation, and not to an enhancement of vasoconstrictor activity.

  13. Phase change material for temperature control and material storage

    NASA Technical Reports Server (NTRS)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  14. Enhanced stimulated Raman scattering in temperature controlled liquid water

    NASA Astrophysics Data System (ADS)

    Ganot, Yuval; Shrenkel, Shmuel; Barmashenko, Boris D.; Bar, Ilana

    2014-08-01

    The dependence of single pass stimulated Raman scattering (SRS) in liquid water on temperature was investigated. Thermal self-defocusing and competition with backward stimulated Brillouin scattering were found to be the major limiting factors for forward SRS (FSRS) generation. Experiments were performed to show that water cooling reduces these factors, resulting in significant enhancement of the FSRS and leading to a maximum conversion efficiency of 35% for pump energy of 120 mJ/pulse and for water at a temperature of 4 °C. Computer simulations of the involved waves resulted in FSRS efficiencies agreeing well with the experimental ones.

  15. Basic factors controlling pest in high temperature systems

    NASA Technical Reports Server (NTRS)

    Berkowitz-Mattuck, J.; Rossetti, M.

    1971-01-01

    The catastrophic disintegration in air at intermediate temperatures of refractory materials which are very resistant to oxidation at high temperatures is known as pest. A study was undertaken to determine whether the mechanism proposed for pest failure in silicides might also be responsible for pest failure in NbAl3. The aim was to correlate oxidation kinetics in the range where disintegration of NbAl3 is observed with delayed failure data obtained under similar conditions. Studies were also undertaken to develop some understanding of deformation mechanisms in both silicides and aluminides.

  16. Next-generation electroceramic fibers for active control

    NASA Astrophysics Data System (ADS)

    Bystricky, Pavel; Pascucci, Marina R.; Strock, Harold B.

    2002-07-01

    Lead-based PMN-31PT and lead-free BNBZT fibers in the 250- 500 micrometer diameter range were produced using CeraNova's proprietary extrusion technology. Various recrystallization approaches were investigated, including seeded solid state conversion and self-seeded texturing, with the goal of obtaining single-crystalline or textured macrocrystalline fibers. Grains in excess of 100 micrometers - and exceeding 1 mm in some cases - with surface and bulk coverage approaching 100 percent, were obtained in a narrow temperature range and under carefully controlled atmosphere conditions. Large grain growth in BNBZT required the presence of BaSrTiO3 or SrTiO3 seeds and temperatures in the 1150-1200 degrees C range. In PMN-31PT, nearly compete recrystalline was observed in unseeded material at relatively low temperature and short time, and improved performance was achieved with a two-step sintering schedule and slightly extended time. While conduction effects have not yet allowed compete assessment of recrystalline BNBZT, PMN-31PT fibers have shown excellent piezoelectric properties with remanent polarization in excess of 30(mu) C/cm2 and coercive field of 4.5kV/cm. When incorporated into active fiber composites, the latter fibers' performance of 2000 microstrain in superior to average PZT-based production composites. Efforts are under way to induce preferred orientation in the large crystal in order to maximize performance.

  17. Nanovalve-controlled cargo release activated by plasmonic heating.

    PubMed

    Croissant, Jonas; Zink, Jeffrey I

    2012-05-01

    The synthesis and operation of a light-operated nanovalve that controls the pore openings of mesoporous silica nanoparticles containing gold nanoparticle cores is described. The nanoparticles, consisting of 20 nm gold cores inside ~150 nm mesoporous silica spheres, were synthesized using a unique one-pot method. The nanovalves consist of cucurbit[6]uril rings encircling stalks that are attached to the ~2 nm pore openings. Plasmonic heating of the gold core raises the local temperature and decreases the ring-stalk binding constant, thereby unblocking the pore and releasing the cargo molecules that were preloaded inside. Bulk heating of the suspended particles to 60 °C is required to release the cargo, but no bulk temperature change was observed in the plasmonic heating release experiment. High-intensity irradiation caused thermal damage to the silica particles, but low-intensity illumination caused a local temperature increase sufficient to operate the valves without damaging the nanoparticle containers. These light-stimulated, thermally activated, mechanized nanoparticles represent a new system with potential utility for on-command drug release.

  18. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    SciTech Connect

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  19. Low-heat input cryogenic temperature control with recuperative heat-exchanger in a Joule Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Prina, M.; Borders, J.; Bhandari, P.; Morgante, G.; Pearson, D.; Paine, C.

    2004-06-01

    The control of cryogenic temperatures is usually accomplished by a passive stage, exploiting the combined effect of a thermal mass connected to a thermal resistance; by an active control, often of a PID type, based on the combination of a dedicated sensor, a heater and a controller; or by a combination of the two. Such a system typically uses a controlled stage that is isolated from the source of the fluctuations by a thermal isolator. Controlled insertion of heat into this stage counters the temperature fluctuations reaching the stage. Inherent to this type of system is the insertion of heat into the controlled stage that eventually reaches the cold end of the cooler, reducing the net heat lift available. The larger the thermal isolation, the smaller the reduction of the net heat lift, but with the attendant increase in the interface temperature. Any scheme that can reduce the penalty associated with the loss of heat lift or the temperature offset would be attractive in terms of cooler performance. If the cooler system has a recuperative heat exchanger between the coldest heat sink and a higher temperature precooler, a different approach can be used. In this paper we describe a novel control approach capable of passively damping low frequency fluctuations, requiring minimal reduction of cooler heat lift and minimal temperature increase of the cold end interface. This alternative scheme is based on the idea of controlling the temperature of a section of the recuperative heat exchanger between the coldest precooler and the cold end of the cooler and it has been tested on a 20 K hydrogen sorption JT cooler.

  20. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407