Sample records for active temperature stabilization

  1. Subgrade stabilization alternatives to lime and cement.

    DOT National Transportation Integrated Search

    2010-04-15

    This project involved four distinct research activities, (1) the influence of temperature on lime-stabilized soils, (2) the influence of temperature on cement-stabilized soils (3) temperature modeling of stabilized subgrade and (4) use of calcium chl...

  2. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium.

    PubMed

    Begum, Shahanara; Shibagaki, Masaki; Furusawa, Osamu; Nakaba, Satoshi; Yamagishi, Yusuke; Yoshimoto, Joto; Jin, Hyun-O; Sano, Yuzou; Funada, Ryo

    2012-01-01

    The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.

  3. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  4. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  5. Mechanisms of Stability of Robust Chaperones from Hyperthermophiles

    DTIC Science & Technology

    2009-02-03

    basis for high temperature stability is still under active study. Activity and stability of enzymes at high temperature is an obvious and critically...important adaptation for the survival of thermophiles at the extremes of their temperature ranges. One of the novel aspects of our project is that we...with optimal growth at 100°C, with homologous proteins from Methanococcus jannaschii, an 88°C extreme thermophile . We have previously shown that

  6. Stepwise Adaptations to Low Temperature as Revealed by Multiple Mutants of Psychrophilic α-Amylase from Antarctic Bacterium*

    PubMed Central

    Cipolla, Alexandre; D'Amico, Salvino; Barumandzadeh, Roya; Matagne, André; Feller, Georges

    2011-01-01

    The mutants Mut5 and Mut5CC from a psychrophilic α-amylase bear representative stabilizing interactions found in the heat-stable porcine pancreatic α-amylase but lacking in the cold-active enzyme from an Antarctic bacterium. From an evolutionary perspective, these mutants can be regarded as structural intermediates between the psychrophilic and the mesophilic enzymes. We found that these engineered interactions improve all the investigated parameters related to protein stability as follows: compactness; kinetically driven stability; thermodynamic stability; resistance toward chemical denaturation, and the kinetics of unfolding/refolding. Concomitantly to this improved stability, both mutants have lost the kinetic optimization to low temperature activity displayed by the parent psychrophilic enzyme. These results provide strong experimental support to the hypothesis assuming that the disappearance of stabilizing interactions in psychrophilic enzymes increases the amplitude of concerted motions required by catalysis and the dynamics of active site residues at low temperature, leading to a higher activity. PMID:21900238

  7. Optimization of extraction of novel pectinase enzyme discovered in red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Zohdi, Nor Khanani; Amid, Mehrnoush

    2013-11-20

    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  8. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  9. Statistical evaluation of accelerated stability data obtained at a single temperature. I. Effect of experimental errors in evaluation of stability data obtained.

    PubMed

    Yoshioka, S; Aso, Y; Takeda, Y

    1990-06-01

    Accelerated stability data obtained at a single temperature is statistically evaluated, and the utility of such data for assessment of stability is discussed focussing on the chemical stability of solution-state dosage forms. The probability that the drug content of a product is observed to be within the lower specification limit in the accelerated test is interpreted graphically. This probability depends on experimental errors in the assay and temperature control, as well as the true degradation rate and activation energy. Therefore, the observation that the drug content meets the specification in the accelerated testing can provide only limited information on the shelf-life of the drug, without the knowledge of the activation energy and the accuracy and precision of the assay and temperature control.

  10. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.

  11. Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences

    PubMed Central

    Whitney, Anna; Shakhnovich, Eugene I.

    2015-01-01

    Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910

  12. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-01-01

    This article describes the design, performance testing, and application of a controlled humidity mini-freeze-dryer in studying the physical stability of lactate dehydrogenase during lyophilization. Performance evaluation of the mini-freeze-dryer was conducted with tests, namely water sublimation, radiation heat exchange, lowest achievable temperature, and leak testing. Protein stability studies were conducted by comparing protein activity at various stages of lyophilization with the initial activity. The shelf and condenser temperature were stable at <-40 degrees C, wall temperature was within 2 degrees C of the shelf temperature, and the leak rate was small. The chamber pressure was controlled by the ice on the condenser and the product temperature during sublimation was equal to the shelf temperature. Addition of Tween 80 prevented activity loss in solution and after freeze-thaw. No activity loss was observed after primary-drying even in absence of lyoprotectants and with collapse of cake structure. Five percent (w/w) sucrose concentration was required to achieve full stabilization. In conclusion, performance testing established that the mini-freeze-dryer was suitable for mechanistic freeze-drying studies. Secondary-drying was the critical step for protein stability. The concentration of sucrose required to stabilize the protein completely was several orders of magnitude higher than that required to satisfy the direct interaction requirement of the protein. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  13. High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.

    PubMed

    Cao, Yulian; Ji, Haiming; Xu, Pengfei; Gu, Yongxian; Ma, Wenquan; Yang, Tao

    2012-10-01

    We demonstrate high-brightness 1.3 μm tapered lasers with high temperature stability by using p-doped InAs/GaAs quantum dots (QDs) as the active region. It is found that the beam quality factor M(2) for the devices is almost unchanged as the light power and temperature increase. The almost constant M(2) results from the p-doped QD active region.

  14. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system.

    PubMed

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-04-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Physical and chemical stability of different formulations with superoxide dismutase.

    PubMed

    Di Mambro, V M; Campos, P M B G Maia; Fonseca, M J V

    2004-10-01

    Topical formulations with superoxide dismutase (SOD), a scavenger of superoxide radicals, have proved to be effective against some skin diseases. Nevertheless, formulations with proteins are susceptible to both chemical and physical instability. Three different formulations (anionic and non-ionic gel and emulsion) were developed and supplemented with SOD in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by assessing the rheological behavior of the formulations stored at room temperature, 37 and 45 degrees C. Chemical stability was evaluated by the measurement of enzymatic activity in the formulations stored at room temperature and at 45 degrees C. Formulations showed a flow index less than one, characterizing pseudoplastic behavior. There was no significant difference in initial values of flow index, tixotropy or minimum apparent viscosity. Neither gel showed significant changes in minimum apparent viscosity concerning storage time or temperature, as well, SOD presence and its activity. The emulsion showed decreased viscosity by the 28th day, but no significant changes concerning storage temperature or SOD presence, although it showed a decreased activity. The addition of SOD to the formulations studied did not affect their physical stability but gel formulations seem to be better bases for enzyme addition.

  16. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  17. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches

    PubMed Central

    Chu, Leonard Y.; Ye, Ling; Dong, Ke; Compans, Richard W.; Yang, Chinglai; Prausnitz, Mark R.

    2015-01-01

    Purpose This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Methods Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. Results While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1–2 weeks outside of refrigeration, vaccine in microneedle patches lost 40–50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. Conclusions These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures. PMID:26620313

  18. Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver

    NASA Astrophysics Data System (ADS)

    Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.

    2017-02-01

    We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.

  19. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  20. Low Temperature Propane Oxidation over Co 3O 4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    DOE PAGES

    Ren, Zheng; Wu, Zili; Gao, Puxian; ...

    2015-06-09

    Low temperature propane oxidation has been achieved by Co 3O 4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co 3O 4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O 2 in the reaction feed does not directly participate in CO 2 formation. The Ni doping promotes the formation of less stable carbonates on the surfacemore » to facilitate the CO 2 desorption. The thermal stability of Ni doped Co 3O 4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co 3O 4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less

  1. High stability buffered phase comparator

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1984-01-01

    A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.

  2. Calcium promotes activity and confers heat stability on plant peroxidases

    PubMed Central

    Plieth, Christoph; Vollbehr, Sonja

    2012-01-01

    In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695

  3. Stability of Beriplast P fibrin sealant: storage and reconstitution.

    PubMed

    Eberhard, Ulrich; Broder, Martin; Witzke, Günther

    2006-04-26

    This study was performed to investigate the stability of Beriplast P fibrin sealant (FS) across a range of storage conditions, both pre- and post-reconstitution. Storage stability of the FS was evaluated during long-term refrigeration (24 months) with or without interim storage at elevated temperatures (40 degrees C for 1 week and 25 degrees C for 1 and 3 months). Stability of individual FS components was assessed by measuring: fibrinogen content, Factor XIII activity (FXIII), thrombin activity and aprotinin potency. The package integrity of each component was also checked (sterility testing, moisture content and pH). Storage stability was also evaluated by testing the reconstituted product for adhesion (tearing force testing after mixing the solutions) and sterility. Reconstitution stability was evaluated following 3-months' storage, for up to 50 h post-reconstitution using the same tests as for the storage stability investigations. Pre-defined specifications were met for fibrinogen content, Factor XIII activity, and thrombin activity, demonstrating storage stability. Package integrity and the functionality and sterility of the reconstituted product were confirmed throughout. Reconstitution stability was demonstrated for up to 50 h following reconstitution, in terms of both tearing force and sterility tests. In conclusion, the storage stability of Beriplast P was demonstrated over a range of 24-month storage schedules including interim exposure to elevated temperature, and the reconstituted product was stable for up to 50 h.

  4. Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid

    NASA Astrophysics Data System (ADS)

    Yusof, F. A. M.; Hashim, A. S.; Tajudin, Z.

    2017-12-01

    Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid materials was investigated by thermogravimetric analysis (TGA). Model-free iso-conversion Flynn-Wall-Ozawa (FWO) and Coats-Redfern-modified (CRm) were chosen to evaluate the activation energy of the kenaf (KF) and kenaf/sol-gel silica (KFS) at heating rates (β) of 10, 20, 30 and 40 °C/min. The results shows that an apparent activation energy was increased for the kenaf/sol-gel silica hybrid (211.59 kJ/mol for FWO and 191.55 kJ/mol for CRm) as compared to kenaf fiber (202.84 kJ/mol for FWO and 186.20 kJ/mol for CRm). Other parameters such as integral procedure decomposition temperature (IPDT), final residual weight (Rf), temperature of maximum degradation rate (Tmax) and residual at maximum temperature (RTmax) were obtained from TGA curves, additionally confirmed the thermal stability of the kenaf/sol-gel silica hybrid. These activation energy values and other findings developed the simplified approach in order to understand the thermal stability and degradation kinetics behavior of kenaf/sol-gel silica hybrid materials.

  5. Stability of oseltamivir in various extemporaneous liquid preparations.

    PubMed

    Ford, Stephen M; Kloesel, Lawson G; Grabenstein, John D

    2007-01-01

    The purpose of this study was to determine the stability of oseltamivir, the active ingredient in Tamiflu, in contemporaneously compounded suspensions for a period of not less than 90 days. The suspension vehicles provided for the study were chosen because of ease of preparation, commercial availability, and palatability. Stability of the active ingredient was demonstrated for suspensions prepared in PCCA-Plus, PCCA Acacia, and 1% methylcellulose and was independent of storage temperature (tested temperatures were 2 deg C to 8 deg C and 25 deg C). A control sample of the commercial liquid form of Tamiflu was prepared, stored and analyzed along with the samples prepared from the contents of capsules. There was no difference in the apparent stability of the two forms of the drug preparation.

  6. Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification.

    PubMed

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-03-01

    High hydrostatic pressure (HHP) stabilized glucose oxidase (GOx) against thermal inactivation. The apparent first-order kinetics of inactivation of GOx were investigated at 0.1-300 MPa and 58.8-80.0°C. At 240 MPa and 74.5°C, GOx inactivated at a rate 50 times slower than at atmospheric pressure at the same temperature. The apparent activation energy of inactivation at 300 MPa was 281.0 ± 17.4 kJ mol -1 or 1.3-fold smaller than for the inactivation at atmospheric pressure (378.1 ± 25.6 kJ mol -1 ). The stabilizing effect of HHP was greatest at 74.5°C, where the activation volume of 57.0 ± 12.0 cm 3  mol -1 was highest compared to all other studied temperatures. Positive apparent activation volumes for all the treatment temperatures confirmed that HHP favors GOx stabilization. A second approach to increase GOx stability involved crosslinking with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and either aniline or benzoate. The modified enzyme remained fully active with only slight increases in K M (1.3-1.9-fold increases for aniline and benzoate modification, respectively). The thermal stability of GOx increased by 8°C with aniline modification, while it decreased by 0.9°C upon modification with benzoate. Biotechnol. Bioeng. 2017;114: 516-525. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.

    PubMed

    Siddiqui, Khawar Sohail

    2017-05-01

    The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.

  8. Structure-activity relationships on the study of β-galactosidase folding/unfolding due to interactions with immobilization additives: Triton X-100 and ethanol.

    PubMed

    Soto, Dayana; Escobar, Sindy; Guzmán, Fanny; Cárdenas, Constanza; Bernal, Claudia; Mesa, Monica

    2017-03-01

    Improving the enzyme stability is a challenge for allowing their practical application. The surfactants are stabilizing agents, however, there are still questions about their influence on enzyme properties. The structure-activity/stability relationship for β-galactosidase from Bacillus circulans is studied here by Circular Dichroism and activity measurements, as a function of temperature and pH. The tendency of preserving the β-sheet and α-helix structures at temperatures below 65°C and different pH is the result of the balance between the large- and short-range effects, respecting to the active site. This information is fundamental for explaining the structural changes of this enzyme in the presence of Triton X-100 surfactant and ethanol. The enzyme thermal stabilization in the presence of this surfactant responds to the rearrangement of the secondary structure for having optimal activity/stability. The effect of ethanol is more related with changes in the dielectric properties of the aqueous solution than with protein structural transformations. These results contribute to understand the effects of surfactant-enzyme interactions on the enzyme behavior, from the structural point of view and to rationalize the surfactant-based stabilizing strategies for β-galactosidades. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    PubMed

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts.

    PubMed

    Ali, Ameena; Chong, Chien Hwa; Mah, Siau Hui; Abdullah, Luqman Chuah; Choong, Thomas Shean Yaw; Chua, Bee Lin

    2018-02-23

    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle 's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di- tert -butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients ( R ² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).

  11. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity

    NASA Astrophysics Data System (ADS)

    Barai, Abir Chandan; Paul, Koushik; Dey, Aditi; Manna, Subhankar; Roy, Somenath; Bag, Braja Gopal; Mukhopadhyay, Chiradeep

    2018-04-01

    The phytochemicals present in the stem bark extract of Nerium oleander (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed. Anticancer activity of the stabilized AuNPs studied against MCF-7 breast cancer cell line revealed that the stabilized AuNPs were highly effective for the apoptosis of cancer cells selectively. The antioxidant activity of the stem bark extract of Nerium oleander has also been studied against a long lived 2,2-diphenylpicrylhydrazyl radical at room temperature. Moreover, the utilization of the stabilized AuNPs as a catalyst has also been demonstrated. [Figure not available: see fulltext.

  12. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity.

    PubMed

    Barai, Abir Chandan; Paul, Koushik; Dey, Aditi; Manna, Subhankar; Roy, Somenath; Bag, Braja Gopal; Mukhopadhyay, Chiradeep

    2018-01-01

    The phytochemicals present in the stem bark extract of Nerium oleander (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed. Anticancer activity of the stabilized AuNPs studied against MCF-7 breast cancer cell line revealed that the stabilized AuNPs were highly effective for the apoptosis of cancer cells selectively. The antioxidant activity of the stem bark extract of Nerium oleander has also been studied against a long lived 2,2-diphenylpicrylhydrazyl radical at room temperature. Moreover, the utilization of the stabilized AuNPs as a catalyst has also been demonstrated.

  13. Application of high hydrostatic pressure for increasing activity and stability of enzymes.

    PubMed

    Mozhaev, V V; Lange, R; Kudryashova, E V; Balny, C

    1996-10-20

    Elevated hydrostatic pressure has been used to increase catalytic activity and thermal stability of alpha-chymotrypsin (CT). For an anilide substrate, characterized by a negative value of the reaction activation volume (DeltaV( not equal)), an increase in pressure at 20 degrees C results in an exponential acceleration of the hydrolysis rate catalyzed by CT reaching a 6.5-fold increase in activity at 4700 atm (4.7 kbar). Due to a strong temperature dependence of DeltaV( not equal), the acceleration effect of high pressure becomes more pronounced at high temperatures. For example, at 50 degrees C, under a pressure of 3.6 kbar, CT shows activity which is more than 30 times higher than the activity at normal conditions (20 degrees C, 1 atm). At pressures of higher than 3.6 kbar, the enzymatic activity is decreased due to a pressure-induced denaturation.Elevated hydrostatic pressure is also efficient for increasing stability of CT against thermal denaturation. For example, at 55 degrees C, CT is almost instantaneously inactivated at atmospheric pressure, whereas under a pressure of 1.8 kbar CT retains its anilide-hydrolyzing activity during several dozen minutes. Additional stabilization can be achieved in the presence of glycerol, which is most effective for protection of CT at an intermediate concentration of 40% (v/v). There has been observed an additivity in stabilization effects of high pressure and glycerol: thermal inactivation of pressure-stabilized CT can be decelerated in a supplementary manner by addition of 40% (v/v) glycerol. The protection effect of glycerol on the catalytic activity and stability of CT becomes especially pronounced when both extreme factors of temperature and pressure reach critical values. For example, at approximately 55 degrees C and 4.7 kbar, enzymatic activity of CT in the presence of 40% (v/v) glycerol is severalfold higher than in aqueous buffer.The results of this study are discussed in terms of the hypotheses which explain the action of external and medium effects on protein structure, such as preferential hydration and osmotic pressure.

  14. Chiral stability of an extemporaneously prepared clopidogrel bisulfate oral suspension.

    PubMed

    Tynes, Clay R; Livingston, Brad; Patel, Hetesh; Arnold, John J

    2014-01-01

    The purpose of this study was to evaluate the chiral stability of clopidogrel bisulfate in an extemporaneously compounded oral suspension for a period of 60 days. A 5 mg/mL oral suspension of clopidogrel bisulfate was prepared from commercially available Plavix tablets. The clopidogrel suspension was then evenly divided between two light-resistant prescription bottles and stored either under refrigeration (4°C) or at room temperature (25°C). Samples were drawn from the stored suspensions immediately after preparation and on days 7, 14, 28, and 60. Samples were subsequently analyzed at each time point by high-performance liquid chromatography using a reversed-phase column, with chemical stability defined as the retention of at least 90% of the initial intact clopidogrel concentration measured. To determine the chiral stability of the suspension, samples were also analyzed by high-performance liquid chromatography using a chiral column to investigate possible enantiomeric inversion. Chiral stability was defined as the retention of at least 90% of the initial concentration of the suspension as the S-enantiomer, the active moiety of Plavix. Regardless of storage conditions, the oral suspension of clopidogrel retained at least 98% of the active S-enantiomer for 60 days after preparation. Compared with the clopidogrel suspension stored in the refrigerator, more chiral inversion was noted in the clopidogrel suspension stored at room temperature. Our investigation of chiral stability indicates that a 5 mg/mL clopidogrel oral suspension stored under refrigeration and at room temperature maintains chiral stability as the active S-enantiomer.

  15. Evaluation of stability of allergen extracts for sublingual immunotherapy during transport under unfavourable temperature conditions with an innovative thermal insulating packaging.

    PubMed

    Puccinelli, P; Natoli, V; Dell'albani, I; Scurati, S; Incorvaia, C; Barbieri, S; Masieri, S; Frati, F

    2013-10-01

    Many pharmaceutical and biotechnological products are temperature-sensitive and should normally be kept at a controlled temperature, particularly during transport, in order to prevent the loss of their stability and activity. Therefore, stability studies should be performed for temperature-sensitive products, considering product characteristics, typical environmental conditions, and anticipating environmental extremes that may occur during product transport in a specific country. Staloral products for sublingual immunotherapy are temperature sensitive and are labelled for maintenance under refrigerated conditions (2-8°C). Given the peculiar climatic context of Italy and the great temperature fluctuations that may occur during transport, this study was aimed at evaluating the impact of a new engineered thermal insulating packaging for Staloral. In particular, the purpose was to assess whether the new packaging could create a container condition able to preserve the stability and immunological activity of the product during the transport phase throughout Italy. The results showed that the range of temperatures that can affect the product, in the area surrounding the product packaging, may reach a peak of 63°C during transport under the most unfavourable climatic conditions, i.e. in a non-refrigerated van during the summer season, from the site of production in France to the patient's house in Catania, the city with the highest temperatures in Italy. However, the highest temperature reached inside the vaccine did not exceed 45°C over a period of about 2 h. The ELISA inhibition test on samples subjected to the extreme temperature conditions previously defined (45°C) showed an immunological activity higher than 75% of that initially measured and was comparable to those obtained with samples stored at controlled temperature (5°C). This means that, even in the worst case scenario, the structure of the allergen extracts is not influenced and the vaccine potency is preserved.

  16. Evaluation of Thermal Stability of Ausferrite in Austempered Ductile Iron Using Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Warsinski, Karl C.

    Austempered Ductile Iron (ADI) is prone to changes in microstructure and mechanical properties when exposed to elevated service temperatures. Differential Scanning Calorimetry has been used to evaluate the stabilizing effects of copper, nickel, molybdenum, and cobalt on the ausferrite structure. Previous studies have conflated the effects of various alloy additions, and little effort has been made to systematically catalog the effects of individual elements. The focus of the current research has been to identify alloying elements that more strongly stabilize the ausferrite structure in order to improve service life of ADI at elevated temperatures. Nickel has been shown to have a moderate stabilizing effect, while copper and molybdenum cause a much sharper increase in activation energy. Cobalt has a high stabilizing effect at 0.5% addition by weight, but a further increase to 2.36% results in a slight decrease in activation energy.

  17. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Lei, Yu; Kropf, A. Jeremy

    2014-08-01

    The stability of a gas-phase furfural hydrogenation catalyst (CuCr2O4 center dot CuO) was enhanced by depositing a thin Al2O3 layer using atomic layer deposition (ALD). Based on temperature-programed reduction (TPR) measurements, the reduction temperature of Cu was raised significantly, and the activation energy for furfural reduction was decreased following the ALD treatment. Thinner ALD layers yielded higher furfural hydrogenation activities. X-ray absorption fine structure (XAFS) spectroscopy studies indicated that Cu1+/Cu-0 are the active species for furfural reduction.

  18. Strontium cobaltite oxygen sponge catalyst and methods of use

    DOEpatents

    Lee, Ho Nyung; Jeen, Hyoungjeen; Choi, Woo Seok; Biegalski, Michael; Folkman, Chad M.; Tung, I-Cheng; Fong, Dillon D.; Freeland, John W.; Shin, Dongwon; Ohta, Hiromichi; Chisholm, Matthew F.

    2017-01-24

    Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200.degree. C., from epitaxially stabilized, oxygen vacancy ordered SrCoO.sub.2.5 and thermodynamically unfavorable perovskite SrCoO.sub.3-.delta.. The fast, low temperature redox activity in SrCoO.sub.3-.delta. may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.

  19. Glycosylated a-lactalbumin-based nanocomplex for curcumin: physicochemical stability and DPPH-scavenging activity

    USDA-ARS?s Scientific Manuscript database

    Low stability at high salt concentrations, iso-electric point, and high temperature restricted the application of proteins as stabilizers in nutraceutical encapsulation. Protein-polysaccharide conjugates made with Maillard reaction may be better alternatives. In this study, the characteristics of cu...

  20. Enhanced enzyme kinetic stability by increasing rigidity within the active site.

    PubMed

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-03-14

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.

  1. Structural stability of E. coli transketolase to temperature and pH denaturation.

    PubMed

    Jahromi, Raha R F; Morris, Phattaraporn; Martinez-Torres, Ruben J; Dalby, Paul A

    2011-09-10

    We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.

  3. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  4. Preparation and Evaluation of Oxaliplatin Thermosensitive Liposomes with Rapid Release and High Stability

    PubMed Central

    Cheng, Xiaohui; Liu, Yan; Zhang, Hui; Zhao, Shiqing; Yang, Zhenbo; Li, Mingyuan; Li, Zhiping; Mei, Xingguo

    2016-01-01

    Oxaliplatin (OXP) was reported to show low anti-tumor activity when used alone and to display side effects; this low activity was attributed to high partitioning to erythrocytes and low accumulation in tumors. Thermosensitive liposomes (TSL) were considered able to specifically deliver drugs to heated tumors and to resolve the OXP distribution problem. Regretfully, TSL encapsulating doxorubicin did not demonstrate significant improvement in progression-free survival. Drug release below 41°C and significant leakage were considered major reasons for the failure. The purpose of this study was to acquire OXP TSL with rapid release at the triggered temperature and high stability at body temperature and at storage temperatures. A small quantity of poloxamer 188 was introduced into the TSL formulation to stabilize the encapsulated drug. It was shown that the addition of poloxamer 188 had no influence on the TSL characteristics. More than 90% of OXP was released within 10 min at 42°C, and less than 15% was released within 60 min at temperatures below 39°C. TSL were stable at 37°C for 96 h and at 4°C for 6 months. The anti-tumor activity of TSL at the dose of 2.5 mg/kg was certified to be equal to those of OXP injection and non-thermosensitive liposomes (NTSL) at the dose of 5 mg/kg, and significant improvement of tumor inhibition was observed in TSL compared with injection and NTSL at the same dose. It was also shown from the histological transmutation of tumors that TSL had stronger anti-tumor activity. Therefore, it could be concluded that TSL composed of a proper amount of poloxamer had rapid release and high stability, and OXP TSL would be anticipated to exert prominent anti-tumor activity in the clinic. PMID:27415823

  5. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    NASA Astrophysics Data System (ADS)

    Rachinskiy, K.; Schultze, H.; Boy, M.; Büchs, J.

    2008-11-01

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature. The presented article gives a successful example for the application of multi-rate modeling, experimental design and parameter estimation within biochemical engineering. At the same time, it shows the limitations of the methods at the state of the art and addresses the current problems to the applied mathematics community.

  6. The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.

    PubMed

    O'Donnell, Christopher D; Vogel, Leatrice; Matsuoka, Yumiko; Jin, Hong; Subbarao, Kanta

    2014-11-01

    The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We investigated the HA stability of pandemic live attenuated influenza vaccine (pLAIV) viruses and observed that the pLAIV viruses consistently had a less stable HA than the corresponding wild-type influenza viruses. The reduced HA stability and temperature sensitivity of the pLAIV viruses may account for their restricted replication in clinical trials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. The Matrix Gene Segment Destabilizes the Acid and Thermal Stability of the Hemagglutinin of Pandemic Live Attenuated Influenza Virus Vaccines

    PubMed Central

    O'Donnell, Christopher D.; Vogel, Leatrice; Matsuoka, Yumiko; Jin, Hong

    2014-01-01

    ABSTRACT The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. IMPORTANCE There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We investigated the HA stability of pandemic live attenuated influenza vaccine (pLAIV) viruses and observed that the pLAIV viruses consistently had a less stable HA than the corresponding wild-type influenza viruses. The reduced HA stability and temperature sensitivity of the pLAIV viruses may account for their restricted replication in clinical trials. PMID:25122789

  8. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations.

    PubMed

    Sellami-Kamoun, Alya; Haddar, Anissa; Ali, Nedra El-Hadj; Ghorbel-Frikha, Basma; Kanoun, Safia; Nasri, Moncef

    2008-01-01

    The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0-11.0 and 65-70 degrees C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 degrees C. The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 degrees C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 degrees C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.

  9. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    PubMed

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2004-05-01

    The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.

  11. Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses

    NASA Astrophysics Data System (ADS)

    Atyia, H. E.; Farid, A. S.

    2016-02-01

    Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.

  12. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    PubMed

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells.

    PubMed

    São Paulo Barretto Miranda, Íngara Keisle; Fontes Suzart Miranda, Anderson; Souza, Fernanda Vidigal Duarte; Vannier-Santos, Marcos André; Pirovani, Carlos Priminho; Pepe, Iuri Muniz; Rodowanski, Ivanoé João; Ferreira, Katiúcia Tícila de Souza Eduvirgens; Mendes Souza Vaz, Luciano; de Assis, Sandra Aparecida

    2017-06-01

    The current study aims to extract bromelain from different parts (stem, crown, peels, pulp and leaves) of Ananas comosus var. comosus AGB 772; to determine of optimum pH and temperature; to test bromelain stability in disodium EDTA and sodium benzoate, and to investigate its pharmacological activity on B16F10 murine melanoma cells in vitro. The highest enzymatic activity was found in bromelain extracted from the pulp and peel. The optimum bromelain pH among all studied pineapple parts was 6.0. The optimum temperature was above 50 °C in all bromelain extracts. The fluorescence analysis confirmed the stability of bromelain in the presence of EDTA and sodium benzoate. Bromelain was pharmacologically active against B16F10 melanoma cells and it was possible verifying approximately 100% inhibition of tumor cell proliferation in vitro. Since bromelain activity was found in different parts of pineapple plants, pineapple residues from the food industry may be used for bromelain extraction.

  15. Protein stability and dynamics influenced by ligands in extremophilic complexes - a molecular dynamics investigation.

    PubMed

    Khan, Sara; Farooq, Umar; Kurnikova, Maria

    2017-08-22

    In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.

  16. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-01

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  17. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor.

    PubMed

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-15

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H 2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm 2 ). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  18. (Hyper)thermophilic enzymes: production and purification.

    PubMed

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  19. Glucose-6-phosphate dehydrogenase enzyme stability in filter paper dried blood spots.

    PubMed

    Flores, Sharon R; Hall, Elizabeth M; De Jesús, Víctor R

    2017-10-01

    Prior to initial distribution of Glucose-6-phosphate dehydrogenase (G6PD) proficiency testing (PT) materials, we evaluated G6PD enzyme stability in dried blood spots (DBS) under various temperature and humidity environments to develop storage and usage guidelines for our new materials. We prepared fresh G6PD-normal DBS materials and conducted stability evaluations of daily use and short and long-term storage under various temperature and humidity environments. G6PD DBS PT materials retained 92% of initial activity after 30days of use at 4°C. Materials stored at -20°C and 4°C with desiccant for 30days retained 95% and 90% of initial activity, respectively. When stored for one year at -20°C or six months at 4°C specimens retained >90% of initial activity. Specimens stored at 37°C with desiccant lost 10% activity in three days. At the end of 30days, specimens stored under 'Extreme'-humidity >50% without desiccant- conditions at 37°C assayed below the NSQAP cut off for G6PD. Humidity exacerbated loss of enzyme activity with increasing temperature and time duration. Data suggest that G6PD PT materials can be stored at 4°C and used for up to one month and can be stored at -20°C for one year and yield >90% enzyme activity. Exposure to warm temperatures, especially with elevated humidity, should be avoided. Desiccant should always be used to mitigate humidity effects. Published by Elsevier Inc.

  20. Molecular basis of thermostability enhancement of Renilla luciferase at higher temperatures by insertion of a disulfide bridge into the structure.

    PubMed

    Fanaei Kahrani, Zahra; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi

    2017-02-01

    Renilla luciferase (RLuc), also known as Renilla-luciferin 2-monooxygenase, is a light producing enzyme used in many biotechnological applications such as bioreporters. However, its kinetics stability -especially at higher temperatures- is a limiting factor for developing thermostable bioreporters. The aim of this study was to improve the stability of super Renilla luciferase 8 (SRLuc 8) which is a red-emitter variety of RLuc at higher temperatures, by introduction of a disulfide bridge into its structure. In this study, the choice of the proper disulfide bond formation was based on computational methods and enzyme functionality (active site position) which is called geometric-functional method. N45 and A71 at the N-terminal of the enzyme were selected for directed evolution. The engineered luciferase was called C-SRLuc 8 and its activity and stability were assayed. The results indicated that the kinetic stability of C-SRLuc 8 increased significantly at 60°C to 70°C as compared to SRLuc 8; the residual activity of C-SRLuc 8 was approximately 20% after incubation at 65°C for 5min. Moreover, the enzyme activity decreased compared with SRLuc 8. The molecular basis of the structural changes was considered using molecular dynamics simulations and the results indicated that the N45C/A71C crosslink was involved in a hotspot foldon which seemed to be the rate-limiting step of conformational collapse at higher temperatures. The present study may provide an opportunity for the development of the next-generation of thermostable RLuc-based biosensors. Copyright © 2016. Published by Elsevier B.V.

  1. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  2. Stability of Acetazolamide, Baclofen, Dipyridamole, Mebeverine Hydrochloride, Propylthiouracil, Quinidine Sulfate, and Topiramate Oral Suspensions in SyrSpend SF PH4.

    PubMed

    Ferreira, Anderson de Oliveira; Polonini, Hudson; da Silva, Sharlene Loures; Aglio, Natália Cristina Buzinari; Abreu, Jordana; Fernandes, Brandão Marcos Antônio

    2017-01-01

    The objective of this study was to evaluate the stability of 7 commonly used active pharmaceutical ingredients compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend SF PH4): acetazolamide 25.0 mg/mL, baclofen 10.0 mg/mL, dipyridamole 10.0 mg/mL, mebeverine hydrochloride 10.0 mg/mL, propylthiouracil 5.0 mg/mL, quinidine sulfate 10.0 mg/mL, and topiramate 5.0 mg/mL. All suspensions were stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by measuring the percentage recovery at varying time points throughout a 90-day period. Active pharmaceutical ingredient quantification was performed by ultraviolet (UV) high-performance liquid chromatography, via a stability-indicating method. Given the percentage of recovery of the active pharmaceutical ingredients within the suspensions, the beyond-use date of the final products (active pharmaceutical ingredient + vehicle) was at least 90 days for all suspensions with regards to both temperatures. This suggests that SyrSpend SF PH4 is suitable for compounding active pharmaceutical ingredients from different pharmacological classes. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  3. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries

    NASA Astrophysics Data System (ADS)

    Hosseinipour, Seyyedeh Leila; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Salehi, Roya

    2015-09-01

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20-80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  4. Li 2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGES

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; ...

    2016-01-22

    In a classic example of stability from instability, we show that Li 2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li 2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li 2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl systemmore » of crystalline solid electrolytes where Li 2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li 2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li 2OHCl solid electrolyte.« less

  5. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation.

    PubMed

    Cvetkovska, Marina; Szyszka-Mroz, Beth; Possmayer, Marc; Pittock, Paula; Lajoie, Gilles; Smith, David R; Hüner, Norman P A

    2018-05-08

    The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Stability of Atenolol, Clonazepam, Dexamethasone, Diclofenac Sodium, Diltiazem, Enalapril Maleate, Ketoprofen, Lamotrigine, Penicillamine-D, and Thiamine in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; Lima, Luis Claudio; Ferreira, Anderson O; Brandão, Marcos Antônio F

    2016-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using SyrSpend SF PH4 (atenolol 1.0 and 5.0 mg/mL, clonazepam 0.2 mg/mL, dexamethasone 1.0 mg/mL, diclofenac sodium 5.0 mg/mL, diltiazem 12.0 mg/mL, enalapril maleate 1.0 mg/mL, ketoprofen 20.0 mg/mL, lamotrigine 1.0 mg/mL, penicillamine-D 50.0 mg/mL, thiamine 100 mg/m) and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by a stability-indicating, high-performance liquid chromatographic method. The beyond-use date of the products was found to be at least 90 days for all suspensions (except atenolol 1 mg/mL, which was stable up to 60 days), both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients.

  7. Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23.

    PubMed

    Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu

    2012-12-01

    Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.

  8. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  9. Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as "smart" recyclable catalyst

    NASA Astrophysics Data System (ADS)

    Li, Dongxiang; Liu, Na; Gao, Yuanyuan; Lin, Weihong; Li, Chunfang

    2017-11-01

    Core-shell AuNR@Ag nanostructures were synthesized and surface-grafted with thermosensitive poly( N-isopropylacrylamide) to enhance stability and endow stimuli-responsive property. The AuNR cores showed average dimensions of 8-nm diameter and 33-nm length, while the anisotropic silver shells displayed 1-2 nm thin side and maximal 8 nm fat side. The obtained polymer-stabilized AuNR@Ag nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, in catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5-40 °C, showing self-inhibition of the observed catalytic activity. Such "smart" self-inhibition of catalytic activity at enhanced temperature can be attributed to the thermosensitive response of the grafted polymer molecules and should be significant to control the reaction rate and avoid superheat for exothermic reactions. Such polymer-stabilized nanocatalyst also could be recovered and reused in the catalytic system. [Figure not available: see fulltext.

  10. Pharmacovigilance in Space: Stability Payload Compliance Procedures

    NASA Technical Reports Server (NTRS)

    Daniels, Vernie R.; Putcha, Lakshmi

    2007-01-01

    Pharmacovigilance is the science of, and activities relating to the detection, assessment, understanding, and prevention of drug-related problems. Over the lase decade, pharmacovigilance activities have contributed to the development of numerous technological and conventional advances focused on medication safety and regulatory intervention. The topics discussed include: 1) Proactive Pharmacovigilance; 2) A New Frontier; 3) Research Activities; 4) Project Purpose; 5) Methods; 6) Flight Stability Kit Components; 7) Experimental Conditions; 8) Research Project Logistics; 9) Research Plan; 10) Pharmaceutical Stability Research Project Pharmacovigilance Aspects; 11) Security / Control; 12) Packaging/Containment Actions; 13) Shelf-Life Assessments; 14) Stability Assessment Parameters; 15) Chemical Content Analysis; 16) Preliminary Results; 17) Temperature/Humidity; 18) Changes in PHysical and Chemical Assessment Parameters; 19) Observations; and 20) Conclusions.

  11. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    PubMed

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol -1 ) than at 0.1MPa (181.7±12.1kJmol -1 ). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm 3 mol -1 . A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  14. Precise Stabilization of the Optical Frequency of WGMRs

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).

  15. Stabilization of photosystem II reaction centers: influence of bile salt detergents and low pH.

    PubMed

    Gall, B; Scheer, H

    1998-07-17

    Rapid deterioration of samples is a major obstacle in research on the isolated reaction center of photosystem II. Its stability was tested systematically using a wide range of detergents, varying pH and temperature. Stability and activity did not depend on ionic properties of detergents or on critical micellar concentration. However, both were significantly increased by bile salt detergents in the dark as well as in the light. Low pH (5.5) and low temperature further improved stability. The results suggest that in particular the zwitterionic bile salt detergent, CHAPS, in pH 5.5 buffers is a very useful detergent and even superior to dodecylmaltoside for work with photosystem II reaction centers.

  16. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.

    PubMed

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  17. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  18. Ethnic differences in thermoregulatory responses during resting, passive and active heating: application of Werner's adaptation model.

    PubMed

    Lee, Joo-Young; Wakabayashi, Hitoshi; Wijayanto, Titis; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-12-01

    For the coherent understanding of heat acclimatization in tropical natives, we compared ethnic differences between tropical and temperate natives during resting, passive and active heating conditions. Experimental protocols included: (1) a resting condition (an air temperature of 28°C with 50% RH), (2) a passive heating condition (28°C with 50% RH; leg immersion in a hot tub at a water temperature of 42°C), and (3) an active heating condition (32°C with 70% RH; a bicycle exercise). Morphologically and physically matched tropical natives (ten Malaysian males, MY) and temperate natives (ten Japanese males, JP) participated in all three trials. The results saw that: tropical natives had a higher resting rectal temperature and lower hand and foot temperatures at rest, smaller rise of rectal temperature and greater temperature rise in bodily extremities, and a lower sensation of thirst during passive and active heating than the matched temperate natives. It is suggested that tropical natives' homeostasis during heating is effectively controlled with the improved stability in internal body temperature and the increased capability of vascular circulation in extremities, with a lower thirst sensation. The enhanced stability of internal body temperature and the extended thermoregulatory capability of vascular circulation in the extremities of tropical natives can be interpreted as an interactive change to accomplish a thermal dynamic equilibrium in hot environments. These heat adaptive traits were explained by Wilder's law of initial value and Werner's process and controller adaptation model.

  19. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    PubMed

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2013-10-01

    A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. An appraisal of the enzyme stability-activity trade-off.

    PubMed

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support.

    PubMed

    Li, Tuoping; Li, Suhong; Wang, Na; Tain, Lirui

    2008-08-15

    Pectinase was immobilized on an activated agar-gel support by multipoint attachment. The maximal activity of immobilized pectinase was obtained at 5°C, pH 3.6, with a 24h reaction time at an enzyme dose of 0.52mg protein/g gel, and the gel was activated with 1.0M glycidol. These conditions increased the thermal stability of the immobilized pectinase 19-fold compared with the free enzyme at 65°C. The optimal temperature for pectinase activity changed from 40 to 50°C after immobilization; however, the optimal pH remained unchanged. The immobilized enzyme also exhibited great operational stability, and an 81% residual activity was observed in the immobilized enzyme after 10 batch reactions. Copyright © 2008 Elsevier Ltd. All rights reserved.

  3. Response of eddy activities to localized diabatic heating in Held-Suarez simulations

    NASA Astrophysics Data System (ADS)

    Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi

    2018-01-01

    Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.

  4. Stability of Alprazolam, Atropine Sulfate, Glutamine, Levofloxacin, Metoprolol Tartrate, Nitrofurantoin, Ondansetron Hydrochloride, Oxandrolone, Pregabaline, and Riboflavin in SyrSpend SF pH4 Oral Suspensions.

    PubMed

    Ferreira, Anderson O; Polonini, Hudson C; Loures da Silva, Sharlene; Cerqueira de Melo, Victor Augusto; de Andrade, Laura; Brandão, Marcos Antônio Fernandes

    2017-01-01

    The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend SF PH4): alprazolam 1.0 mg/mL, atropine sulfate 0.1 mg/mL, glutamine 250.0 mg/mL, levofloxacin 50.0 mg/mL, metoprolol tartrate 10.0 mg/mL, nitrofurantoin 2.0 mg/mL, ondansetron hydrochloride 0.8 mg/mL, oxandrolone 3.0 mg/mL, pregabaline 20.0 mg/mL, riboflavin 10.0 mg/mL. All suspensions were stored at both controlled refrigeration (2°C to 8°C) and controlled room temperature (20°C to 25°C). Stability was assessed by measuring the percent recovery at varying time points throughout a 90-day period. Active pharmaceutical ingredients quantification was performed by high-performance liquid chromatography via a stability-indicating method. Given the percentage of recovery of the active pharmaceutical ingredients within the suspensions, the beyond-use date of the final products (active pharmaceutical ingredients + vehicle) was at least 90 days for all suspensions with regard to both temperatures. This suggests that the vehicle is stable for compounding active pharmaceutical ingredients from different pharmacological classes. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  5. A Systematic Approach Toward Stabilization of CagL, a Protein Antigen from Helicobacter pylori That Is a Candidate Subunit Vaccine

    PubMed Central

    Choudhari, Shyamal P.; Pendleton, Kirk P.; Ramsey, Joshua D.; Blanchard, Thomas G.; Picking, William D.

    2013-01-01

    An important consideration in the development of subunit vaccines is loss of activity caused by physical instability of the protein. Such instability often results from suboptimal solution conditions related to pH and temperature. Excipients can help to stabilize vaccines, but it is important to screen and identify excipients that adequately contribute to stabilization of a given formulation. CagL is a protein present in strains of Helicobacter pylori that possess type IV secretion systems. It contributes to bacterial adherence via α5β1 integrin, thereby making it an attractive subunit vaccine candidate. We characterized the stability of CagL in different pH and temperature conditions using a variety of spectroscopic techniques. Stability was assessed in terms of transition temperature (Tm) with the accumulated data then incorporated into an empirical phase diagram (EPD) that provided an overview of CagL physical stability. These analyses indicated maximum CagL stability at pH 4–6 up to 40 °C in the absence of excipient. Using this EPD analysis, aggregation assays were developed to screen a panel of excipients with some found to inhibit CagL aggregation. Candidate stabilizers were selected to confirm their enhanced stabilizing effect. These analyses will help in the formulation of a stable vaccine against H. pylori. PMID:23794457

  6. Effect of Nickel Concentration on Bias Reliability and Thermal Stability of Thin-Film Transistors Fabricated by Ni-Metal-Induced Crystallization

    NASA Astrophysics Data System (ADS)

    Lai, Ming-Hui; Sermon Wu, YewChung; Huang, Jung-Jie

    2012-01-01

    Ni-metal-induced crystallization (MIC) of amorphous Si (α-Si) has been employed to fabricate low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Although the high leakage current is a major issue in the performance of conventional MIC-TFTs since Ni contamination induces deep-level state traps, it can be greatly improved by using well-known technologies to reduce Ni contamination. However, for active-matrix organic light-emitting diode (AMOLED) display applications, the bias reliability and thermal stability are major concerns especially when devices are operated under a hot carrier condition and in a high-temperature environment. It will be interesting to determine how the bias reliability and thermal stability are affected by the reduction of Ni concentration. In the study, the effect of Ni concentration on bias reliability and thermal stability was investigated. We found that a device exhibited high immunity against hot-carrier stress and elevated temperatures. These findings demonstrated that reducing the Ni concentration in MIC films was also beneficial for bias reliability and thermal stability.

  7. Diffusion and Stability of Hydrogen in Mg-Doped GaN: A Density Functional Study

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chang, Kee Joo

    2012-06-01

    Using hybrid functional calculations, we study the diffusion and thermal stability of hydrogen in Mg-doped GaN. Compared with the generalized gradient approximation, we obtain a higher activation barrier for dissociating a Mg-H complex, which is attributed to the increase in the binding energy of Mg-H. Kinetic Monte Carlo simulations yield the annealing temperature of around 800 °C for activating Mg acceptors, close to the measured values. The results provide an insight to understanding the annealing effect such that the annealing temperature generally increases with the Mg-H concentration, and the retrapping of H is partly responsible for the low doping efficiencies at high Mg concentrations.

  8. Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer.

    PubMed

    Qian, Li-Wei; Hu, Xiao-Ling; Guan, Ping; Gao, Bo; Wang, Dan; Wang, Chao-Li; Li, Ji; Du, Chun-Bao; Song, Wen-Qi

    2014-11-01

    Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting.

  9. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    PubMed

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  10. Environmental stability of actively mode locked fibre lasers

    NASA Astrophysics Data System (ADS)

    Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John

    2016-10-01

    Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).

  11. Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Fralick, Gustave (Technical Monitor)

    2003-01-01

    Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; He, Qian; Liu, Xiaofei

    Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less

  13. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    PubMed

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from hibernation.

  14. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states

    NASA Astrophysics Data System (ADS)

    Alfano, Caterina; Sanfelice, Domenico; Martin, Stephen R.; Pastore, Annalisa; Temussi, Piero Andrea

    2017-05-01

    Macromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study. Accurate evaluation of the volume exclusion effect is made possible by the choice of yeast frataxin, a protein that undergoes cold denaturation above zero degrees, because the unfolded form at low temperature is more expanded than the corresponding one at high temperature. To achieve optimum sensitivity to changes in stability we introduce an empirical parameter derived from the stability curve. The large effect of PEG 20 on cold denaturation can be explained by a change in water activity, according to Privalov's interpretation of cold denaturation.

  15. Heat stabilization of blood spot samples for determination of metabolically unstable drug compounds

    PubMed Central

    Blessborn, Daniel; Sköld, Karl; Zeeberg, David; Kaewkhao, Karnrawee; Sköld, Olof; Ahnoff, Martin

    2014-01-01

    Background Sample stability is critical for accurate analysis of drug compounds in biosamples. The use of additives to eradicate the enzymatic activity causing loss of these analytes has its limitations. Results A novel technique for sample stabilization by rapid, high-temperature heating was used. The stability of six commercial drugs in blood and blood spots was investigated under various conditions with or without heat stabilization at 95°C. Oseltamivir, cefotaxime and ribavirin were successfully stabilized by heating whereas significant losses were seen in unheated samples. Amodiaquine was stable with and without heating. Artemether and dihydroartemisinin were found to be very heat sensitive and began to decompose even at 60°C. Conclusion Heat stabilization is a viable technique to maintain analytes in blood spot samples, without the use of chemical additives, by stopping the enzymatic activity that causes sample degradation. PMID:23256470

  16. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization.

    PubMed

    Rhinehart, Jennifer L; Brown, Lauren A; Long, Brian K

    2013-11-06

    Sterically demanding Ni(II) α-diimine precatalysts were synthesized utilizing 2,6-bis(diphenylmethyl)-4-methyl aniline. When activated with methylaluminoxane, the catalyst NiBr2(ArN═C(Me)-C(Me)═NAr) (Ar = 2,6 bis(diphenylmethyl)-4-methylbenzene) was highly active, produced well-defined polyethylene at temperatures up to 100 °C (Mw/Mn = 1.09-1.46), and demonstrated remarkable thermal stability at temperatures appropriate for industrially used gas-phase polymerizations (80-100 °C).

  17. On the thermal stability of graphone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podlivaev, A. I.; Openov, L. A., E-mail: LAOpenov@mephi.ru

    2011-07-15

    Molecular dynamics simulation is used to study thermally activated migration of hydrogen atoms in graphone, a magnetic semiconductor formed of a graphene monolayer with one side covered with hydrogen. The temperature dependence of the characteristic time of disordering of graphone via hopping of hydrogen atoms to neighboring carbon atoms is established directly. The activation energy of this process is determined at E{sub a} = (0.05 {+-} 0.01) eV. The small value of E{sub a} is indicative of the extremely low thermal stability of graphone. The low stability presents a serious handicap for practical use of the material in nanoelectronics.

  18. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  19. Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.

    PubMed

    Tester, Nicole J; Plaas, Anna H; Howland, Dena R

    2007-04-01

    Chondroitinase ABC (Ch'ase ABC) is a bacterial lyase that degrades chondroitin sulfate (CS), dermatan sulfate, and hyaluronan glycosaminoglycans (GAGs). This enzyme has received significant attention as a potential therapy for promoting central nervous system and peripheral nervous system repair based on its degradation of CS GAGs. Determination of the stability of Ch'ase ABC activity at temperatures equivalent to normal (37 degrees C) and elevated (39 degrees C) body temperatures is important for optimizing its clinical usage. We report here data obtained from examining enzymatic activity at these temperatures across nine lots of commercially available protease-free Ch'ase ABC. CS GAG degrading activity was assayed by using 1) immunohistochemical detection of unsaturated disaccharide stubs generated by digestion of proteoglycans in tissue sections and 2) fluorophore-assisted carbohydrate electrophoresis (FACE) and/or high-performance liquid chromatography (HPLC) to separate and quantify unsaturated disaccharide digestion products. Our results indicate that there is a significant effect of lot and time on enzymatic thermostability. Average enzymatic activity is significantly decreased at 1 and 3 days at 39 degrees C and 37 degrees C, respectively. Furthermore, the average activity seen after 1 day was significantly different between the two temperatures. Addition of bovine serum albumin as a stabilizer significantly preserved enzymatic activity at 1 day, but not 3 days, at 39 degrees C. These results show that the CS GAG degrading activity of Ch'ase ABC is significantly decreased with incubation at body temperature over time and that all lots do not show equal thermostability. These findings are important for the design and interpretation of experimental and potential clinical studies involving Ch'ase ABC. (c) 2007 Wiley-Liss, Inc.

  20. Role of Disulfide Bridges in the Activity and Stability of a Cold-Active α-Amylase

    PubMed Central

    Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo

    2005-01-01

    The cold-adapted α-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30°C and unfolds reversibly and sequentially with two transitions at temperatures below 12°C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with β-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity. PMID:16109962

  1. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    PubMed

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of O2 plasma treatment on density-of-states in a-IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Huang, Fei; Li, Sheng; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    This work reports an efficient route for enhancing the performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFT). The mobility was greatly improved by about 38% by means of O2 plasma treatment. Temperature-stress was carried out to investigate the stability and extract the parameters related to activation energy ( E a) and density-of-states (DOS). The DOS was calculated on the basis of the experimentally obtained E a, which can explain the experimental observation. A lower activation energy ( E a, 0.72 eV) and a smaller DOS were obtained in the O2 plasma treatment TFT based on the temperature-dependent transfer curves. The results showed that temperature stability and electrical properties enhancements in a-IGZO thin film transistors were attributed to the smaller DOS. [Figure not available: see fulltext.

  3. Thermodynamic control of anvil cloud amount

    PubMed Central

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  4. Thermodynamic control of anvil cloud amount

    DOE PAGES

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; ...

    2016-07-13

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  5. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid.

    PubMed

    Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-06-20

    Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.

  6. Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media

    NASA Astrophysics Data System (ADS)

    Liu, Baichen; Huang, Binbin; Lin, Cheng; Ye, Jianshan; Ouyang, Liuzhang

    2017-07-01

    In recent years, non-precious metal electrocatalysts for oxygen reduction reaction (ORR) have attracted tremendous attention due to their high catalytic activity, long-term stability and excellent methanol tolerance. Herein, the porous carbon supported Fe-N-C catalysts for ORR were synthesized by direct pyrolysis of ferric chloride, 6-Chloropyridazin-3-amine and carbon black. Variation of pyrolysis temperature during the synthesis process leads to the difference in ORR catalytic activity. High pyrolysis temperature is beneficial to the formation of the "N-Fe" active sites and high electrical conductivity, but the excessive temperature will cause the decomposition of nitrogen-containing active sites, which are revealed by Raman, TGA and XPS. A series of synthesis and characterization experiments with/without nitrogen or iron in carbon black indicate that the coordination of iron and nitrogen plays a crucial role in achieving excellent ORR performances. Electrochemical test results show that the catalyst pyrolyzed at 800 °C (Fe-N-C-800) exhibits excellent ORR catalytic activity, better methanol tolerance and higher stability compared with commercial Pt/C catalyst in both alkaline and acidic conditions.

  7. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE PAGES

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...

    2017-08-18

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  8. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  9. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    PubMed Central

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the biochemical characterization of the novel Shewanella sp. ANA-3 L-arabinose isomerase. Determination of the biochemical properties demonstrated that this enzyme was highly active at low temperatures. The generated T268K mutant displays an increase of the enzyme stability essentially at low pH. These features seem to be very attractive for the bioconversion of D-galactose into D-tagatose at low temperature which is very interesting from industrial point of view. PMID:22074172

  10. Towards ALD thin film stabilized single-atom Pd 1 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson

    Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less

  11. Towards ALD thin film stabilized single-atom Pd 1 catalysts

    DOE PAGES

    Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; ...

    2016-07-27

    Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less

  12. Enhancing Activity and Stability of Uricase from Lactobacillus plantarum by Zeolite immobilization

    NASA Astrophysics Data System (ADS)

    Iswantini, D.; Nurhidayat, N.; Sarah

    2017-03-01

    Lactobacillus plantarum has been known be able to produce uricase for uric acid biosensor. Durability and stability of L. plantarum in generating uricase enzyme was low. Hence, we tried to enhance its durability and stability by immobilizing it onto activated 250 mg zeolite at room temperature using 100 μL L.plantarum suspension and 2.87 mM uric acid, while Michaelis-Menten constant (KM) and Vmax were obtained at 6.7431 mM and 0.9171 µA consecutively, and the linearity range was 0.1-3.3 mM (R2 = 0.9667). Limit of detection (LOD) and limit of quantification (LOQ) value of the measurement were 0.4827 mM and 1.6092 mM respectively. Biosensor stability treatment was carried out in two different treatments, using the same electrode and using disposable electrode. The disposable electrode stability showed better result based on repeated measurements, but stability was still need improvement.

  13. Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.

  14. Influence of Molecular Shape on Molecular Orientation and Stability of Vapor-Deposited Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Walters, Diane M.; Johnson, Noah D.; Ediger, M. D.

    Physical vapor deposition is commonly used to prepare active layers in organic electronics. Recently, it has been shown that molecular orientation and packing can be tuned by changing the substrate temperature during deposition, while still producing macroscopically homogeneous films. These amorphous materials can be highly anisotropic when prepared with low substrate temperatures, and they can exhibit exceptional kinetic stability; films retain their favorable packing when heated to high temperatures. Here, we study the influence of molecular shape on molecular orientation and stability. We investigate disc-shaped molecules, such as TCTA and m-MTDATA, nearly spherical molecules, such as Alq3, and linear molecules covering a broad range of aspect ratios, such as p-TTP and BSB-Cz. Disc-shaped molecules have preferential horizontal orientation when deposited at low substrate temperatures, and their orientation can be tuned by changing the substrate temperature. Alq3 forms stable, amorphous films that are optically isotropic when vapor deposited over a broad range of substrate temperatures. This work may guide the choice of material and deposition conditions for vapor-deposited films used in organic electronics and allow for more efficient devices to be fabricated.

  15. [Antimicrobial Effects of Iodine-Polyvinyl Alcohol Ophthalmic and Eye Washing Solution (PA * IODO) with Special Reference to its Temperature, Concentration and Time and its Preservation Stability].

    PubMed

    Hatano, Hiroshi; Sakamoto, Masako; Hayashi, Kazuo; Kamiya, Seigo

    2015-08-01

    Temperature, concentration and time are the three factors that affect the inactivation capacity of iodine antiseptics. We investigated the effect of these factors on the microbe inactivation of Iodine-Polyvinyl Alcohol ophthalmic and eye washing solution (PA * IODO), and also investigated the preservation conditions on stability of the inactivation activity of the PA * IODO. Test microbes were mixed with PA * IODO, varying the three factors. The live microbes were counted after each reaction. The effects of plugging and preservation temperature were investigated to determine the preserving stability. The inactivation capacity of PA * IODO tended to decrease in almost all microbes tested at 4 degrees C. Twenty times or less diluted PA * IODO killed almost all microbes completely. The time effect was more marked in viruses. Plugging and low-temperature made iodine concentration in diluted PA * IODO remain relatively high. The concentration of PA * IODO affected the inactivation ability more than the temperature and time, although all the three factors correlated positively to the inactivation. For preservation the diluted PA * IODO needed plugging and low temperature.

  16. Immobilization of polygalacturonase from Aspergillus niger onto activated polyethylene and its application in apple juice clarification.

    PubMed

    Saxena, Shivalika; Shukla, Surendra; Thakur, Akhilesh; Gupta, Reena

    2008-03-01

    The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.

  17. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface.

    PubMed

    Bjørk, Alexandra; Dalhus, Bjørn; Mantzilas, Dimitrios; Eijsink, Vincent G H; Sirevåg, Reidun

    2003-12-05

    Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.

  18. Synthesis and Characterisation of Biocompatible Polymer-Conjugated Magnetic Beads for Enhancement Stability of Urease.

    PubMed

    Doğaç, Yasemin Ispirli; Teke, Mustafa

    2016-04-01

    We reported natural polymer-conjugated magnetic featured urease systems for removal of urea effectively. The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70 °C), pH stability (4.0-9.0), operational stability (0-250 min), reusability (18 times) and storage stability (24 weeks) were studied for characterisation of the urease-encapsulated biocompatible polymer-conjugated magnetic beads. Also, the surface groups and chemical structure of the magnetic beads were determined by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The all urease-encapsulated magnetic beads protected their stability of 30-45 % relative activity at 70 °C. A significant increase was observed at their pH stability compared with the free urease for both acidic and alkaline medium. Besides this, their repeatability activity were approximately 100 % during 4(th) run. They showed residual activity of 50 % after 16 weeks. The importance of this work is enhancement stability of immobilised urease by biocompatible polymer-conjugated magnetic beads for the industrial application based on removal of urea.

  19. Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability.

    PubMed

    Liu, Lianjun; Zhao, Cunyu; Zhao, Huilei; Pitts, Daniel; Li, Ying

    2013-05-07

    A novel MgO-patched TiO2 microsphere photocatalyst demonstrated 10 times higher activity toward CO production from CO2 photoreduction with H2O vapor, when the reaction temperature increased from 50 to 150 °C. The catalytic performance of hybrid MgO-TiO2 was much more stable than TiO2, particularly at a higher temperature, likely due to easier desorption of reaction intermediates and the enhanced CO2 adsorption by MgO.

  20. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance.

    PubMed

    Xia, Wei; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Bai, Yingguo; Luo, Huiying; Ma, Rui; Yao, Bin

    2016-01-01

    β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expression systems and engineering superior mutants are effective approaches commonly used. A newly identified β-glucosidase of GH3, Bgl3A, from Talaromyces leycettanus JCM12802, was overexpressed in yeast strain Pichia pastoris GS115, yielding a crude enzyme activity of 6000 U/ml in a 3 L fermentation tank. The purified enzyme exhibited outstanding enzymatic properties, including favorable temperature and pH optima (75 °C and pH 4.5), good thermostability (maintaining stable at 60 °C), and high catalytic performance (with a specific activity and catalytic efficiency of 905 U/mg and 9096/s/mM on pNPG, respectively). However, the narrow stability of Bgl3A at pH 4.0-5.0 would limit its industrial applications. Further site-directed mutagenesis indicated the role of excessive O-glycosylation in pH liability. By removing the potential O-glycosylation sites, two mutants showed improved pH stability over a broader pH range (3.0-10.0). Besides, with better stability under pH 5.0 and 50 °C compared with wild type Bgl3A, saccharification efficiency of mutant M1 was improved substantially cooperating with cellulase Celluclast 1.5L. And mutant M1 reached approximately equivalent saccharification performance to commercial β-glucosidase Novozyme 188 with identical β-glucosidase activity, suggesting its great prospect in biofuels production. In this study, we overexpressed a novel β-glucosidase Bgl3A with high specific activity and high catalytic efficiency in P. pastoris. We further proved the negative effect of excessive O-glycosylation on the pH stability of Bgl3A, and enhanced the pH stability by reducing the O-glycosylation. And the enhanced mutants showed much better application prospect with substantially improved saccharification efficiency on cellulosic materials.

  1. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  2. Optimization and Immobilization of Purified Labeo rohita Visceral Protease by Entrapment Method

    PubMed Central

    Geethanjali, S.; Subash, Anitha

    2013-01-01

    The purified fish visceral protease enzyme was immobilized by using various concentrations of sodium alginate and calcium chloride to optimize the best concentration for the formation of the beads. Then it was characterized by assaying the optimal pH, temperature, storage stability and reusability. The results on immobilization with sodium alginate and calcium chloride showed that a combination of 2% sodium alginate and 0.3 M calcium chloride weas found to be the optimum concentration for the formation of spherical and stable beads, this gave a maximal entrapped activity of 48.31%, and there was no change in the optimum pH 8.0 and temperature 40°C of protease before and after entrapment. The results on stability and reusability indicated that it was stable at 4°C retaining 100% residual activity after 5 days of storage and 67% loss of activity after ten days of storage and it retained 100% residual activity on the first reuse, 75% residual activity on the second reuse, 25% residual activity on the third use and complete loss in the activity on the fourth reuse. PMID:23533718

  3. Stability of Allopurinol, Amitriptyline Hydrochloride, Carbamazepine, Domperidone, Isoniazid, Ketoconazole, Lisinopril, Naproxen, Paracetamol (Acetaminophen), and Sertraline Hydrochloride in SyrSpend SF PH4 Oral Suspensions.

    PubMed

    Polonini, Hudson C; Loures, Sharlene; de Araujo, Edson Peter; Brandão, Marcos Antônio F; Ferreira, Anderson O

    2016-01-01

    Oral liquids are safe alternatives to solid dosage forms, notably for elderly and pediatric patients that present dysphagia. The use of ready-to-use suspending vehicles such as SyrSpend SF PH4 is a suitable resource for pharmacists as they constitute a safe and timesaving option that has been studied often. The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients (allopurinol 20 mg/mL; amitriptyline hydrochloride 10 mg/mL; carbamazepine 25 mg/mL; domperidone 5 mg/mL; isoniazid 10 mg/mL; ketoconazole 20 mg/mL; lisinopril 1 mg/mL; naproxen 25 mg/mL; paracetamol [acetaminophen] 50 mg/mL; and sertraline hydrochloride 10 mg/mL) compounded in oral suspensions using SyrSpend SF PH4 as the vehicle throughout the study period and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring the percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by high-performance liquid chromatography through a stability-indicating method. Methods were adequately validated. Forced-degradation studies showed that at least one parameter influenced the stability of the active pharmaceutical ingredients. All suspensions were assayed and showed active pharmaceutical ingredient contents between 90% and 110% during the 90-day study period. Although the forced-degradation experiments led to visible fluctuations in the chromatographic responses, the final preparations were stable in the storage conditions. The beyond-use dates of the preparations were found to be at least 90 days for all suspensions, both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients for different medical usages. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  4. Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Zhao, Liwei; Guo, Jiang; Yan, Xingru; Ding, Daowei; Zhu, Changcheng; Huang, Yudong; Guo, Zhanhu

    2016-06-01

    Nanoparticles play important roles in enhancing the thermal-resistance of hosting polymer resins. Despite tremendous efforts, developing thermally stable methylsilicone resin at high temperatures is still a challenge. Herein, we report a strategy to increase the activation energy to slow down the decomposition/degradation of methylsilicone resin using synergistic effects between the Co3O4 nanoparticles and the nitrogen doped graphene oxide. The N-doped graphene oxides composited with Co3O4 nanoparticles were prepared by hydrolysis of cobalt nitrate hexahydrate in the presence of graphene oxide and were incorporated into the methylsilicone resin. Two-stage decompositions were observed, i.e., 200-300 and 400-500 °C. The activation energy for the low temperature region was enhanced by 47.117 kJ/mol (vs. 57.76 kJ/mol for pure resin). The enhanced thermal stability was due to the fact that the nanofillers prevented the silicone hydroxyl chain ends ``biting'' to delay the degradation. The activation energy for high-temperature region was enhanced by 11.585 kJ/mol (vs. 171.95 kJ/mol for pure resin). The nanofillers formed a protective layer to isolate oxygen from the hosting resin. The mechanism for the enhanced thermal stability through prohibited degradation with synergism of these nitrogen-doped graphene oxide nanocomposites was proposed as well.

  5. Uncovering the role of the flexible C-terminal tail: A model study with Strep-tagged GFP.

    PubMed

    Lassalle, Michael W; Kondou, Shinobu

    2016-06-01

    Recently, it has been recognized that, much like an electric current in an electric circuit, dynamic disruptions from flexible, unstructured regions distal to the active region are transferred through the contact network to the active site and influence protein stability and/or function. As transmembrane proteins frequently possess the β-barrel structure, studies of proteins with this topology are required. The unstructured lid segments of the β-barrel GFP protein are conserved and could play a role in the backbone stabilization required for chromophore function. A study of the disordered C-terminus and the function within the lid is necessary. In this study, we entirely truncated the flexible C-terminal tail and investigated the N-terminal Strep-tagged GFP by fluorescence spectroscopy, and the temperature- and GdnHCl-induced unfolding by circular dichroism. The introduction of the unstructured Strep-tag itself changed the unfolding pathway. Truncating the entire flexible tail did not decrease the fluorescence intensity to a large extent; however, the protein stability changed dramatically. The temperature for half-denaturation T 1/2 changed significantly from 79 °C for the wild-type to 72.8 °C for the mutant. Unfolding kinetics at different temperatures have been induced by 4 M GdnHCl, and the apparent Arrhenius activation energy decreased by 40% as compared to the wild-type.

  6. Lipolytic Potential of Aspergillus japonicus LAB01: Production, Partial Purification, and Characterisation of an Extracellular Lipase

    PubMed Central

    Souza, Lívia Tereza Andrade; Oliveira, Jamil S.; dos Santos, Vera L.; Regis, Wiliam C. B.; Santoro, Marcelo M.; Resende, Rodrigo R.

    2014-01-01

    Lipolytic potential of Aspergillus japonicus LAB01 was investigated by describing the catalytic properties and stability of a secreted extracellular lipase. Enzyme production was considered high under room temperature after 4 days using sunflower oil and a combination of casein with sodium nitrate. Lipase was partially purified by 3.9-fold, resulting in a 44.2% yield using ammonium sulphate precipitation (60%) quantified with Superose 12 HR gel filtration chromatography. The activity of the enzyme was maximised at pH 8.5, and the enzyme demonstrated stability under alkaline conditions. The optimum temperature was found to be 45°C, and the enzyme was stable for up to 100 minutes, with more than 80% of initial activity remaining after incubation at this temperature. Partially purified enzyme showed reasonable stability with triton X-100 and was activated in the presence of organic solvents (toluene, hexane, and methanol). Among the tested ions, only Cu2+, Ni2+, and Al3+ showed inhibitory effects. Substrate specificity of the lipase was higher for C14 among various p-nitrophenyl esters assayed. The KM and V max values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mM and 12.58 umol/(L·min), respectively. These features render a novel biocatalyst for industrial applications. PMID:25530954

  7. A Sacrificial Coating Strategy Toward Enhancement of Metal-Support Interaction for Ultrastable Au Nanocatalysts

    DOE PAGES

    Zhan, Wangcheng; He, Qian; Liu, Xiaofei; ...

    2016-11-22

    Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less

  8. Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC.

    PubMed

    Bernard, Abram R; Duarte, Shari M; Kumar, Prashant; Dickenson, Nicholas E

    2016-07-01

    Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. The catalytic properties and stability of β-galactosidases from fungi

    NASA Astrophysics Data System (ADS)

    Pilipenko, O. S.; Atyaksheva, L. F.; Poltorak, O. M.; Chukhrai, E. S.

    2008-12-01

    The catalytic activity of β-galactosidases from fungi Penicillium canescens and Aspergillus oryzae is maximum in a weakly acidic medium and does not depend on the presence of magnesium cations in the reaction medium. The enzyme from Aspergillus oryzae fungi is more active, and that from Penicillium canescens is stabler. One of stability indications is the presence of an induction period in the kinetic curves of thermal inactivation. This period disappears at 54°C for the enzyme from Aspergillus oryzae and at 59°C for the enzyme from Penicillium canescens. The temperature dependences of the effective rate constants for the inactivation of the tetrameric enzyme from Penicillium canescens show that the main reason for enzyme inactivation is the dissociation of oligomeric forms below 66°C ( E act = 85 kJ/mol) and enzyme denaturation at higher temperatures ( E act = 480 kJ/mol). The dissociation stage is absent for monomeric β-galactosidase from Aspergillus oryzae fungi, and the activation energy of inactivation is 450 kJ/mol over the whole temperature range studied (53-60°C).

  10. Chemical modification of L-asparaginase from Cladosporium sp. for improved activity and thermal stability.

    PubMed

    Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K

    2014-01-01

    L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.

  11. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles.

    PubMed

    Wang, Yong-Hui; Yuan, Yang; Yang, Xiao-Quan; Wang, Jin-Mei; Guo, Jian; Lin, Yuan

    2016-07-01

    The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.

  12. Variable temperature performance of a fully screen printed transistor switch

    NASA Astrophysics Data System (ADS)

    Zambou, Serges; Magunje, Batsirai; Rhyme, Setshedi; Walton, Stanley D.; Idowu, M. Florence; Unuigbe, David; Britton, David T.; Härting, Margit

    2016-12-01

    This article reports on the variable temperature performance of a flexible printed transistor which works as a current driven switch. In this work, electronic ink is formulated from nanostructured silicon produced by milling polycrystalline silicon. The study of the silicon active layer shows that its conductivity is based on thermal activation of carriers, and could be used as active layers in active devices. We further report on the transistors switching operation and their electrical performance under variable temperature. The reliability of the transistors at constant current bias was also investigated. Analysis of the electrical transfer characteristics from 340 to 10 K showed that the printed devices' current ON/OFF ratio increases as temperature decreases making it a better switch at lower temperatures. A constant current bias on a terminal for up to six hours shows extraordinary stability in electrical performance of the device.

  13. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments Database

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  14. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.

    PubMed

    Li, Xiyao; Peng, Yongzhen; He, Yuelan; Wang, Shuying; Guo, Siyu; Li, Lukai

    2017-03-01

    Anaerobic treatment is the most widely used method of waste activated sludge (WAS) stabilization. Using a semi-continuous stirring tank with condensed WAS, we investigated effects of decreasing the solid retention time (SRT) from 32days to 6.4days on sludge reduction, soluble chemical oxygen demand (SCOD) release and dehydration capability, along with anaerobic digestion operated at medium temperature (MT-AD) or anaerobic digestion operated at room temperature (RT-AD). Results showed that effects of temperature on SCOD release were greater at SRT of 32d and 6.4d. When SRT was less than 8d, total solids (TS), volatile solids (VS) and capillary suction time (CST) did not change significantly. CST was lowest at SRT of 10.7days, indicating best condition for sludge dehydration. Principal component analysis (PCA) showed that the most optimum SRT was higher than 10.7d both in MT-AD or RT-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Purification and physicochemical properties of Bacillus thuringiensis IMB B-7324 peptidase with elastolytic and fibrinolytic activity].

    PubMed

    Matseliukh, O V; Nidialkova, N A; Varbanets', L D

    2012-01-01

    The scheme of isolation and purification of Bacillus thuringiensis IMV B-7324 peptidase has been developed. This scheme includes ammonium sulfate precipitation and chromatography on neutral and charged TSK-gels. It was found that the enzyme hydrolyzes elastin and fibrin. The molecular weight is 26 kDa. It was shown that the enzyme is an alkaline serine peptidase. The optimal pH of hydrolysis of elastin and fibrin were 9.0 and 10.0, respectively. The optimal temperature of elastin and fibrin hydrolysis are 40 and 50 degrees C, respectively. The high stability of the purified preparation in the studied range of pH and temperature was shown. The stabilizing effect of zinc at a concentration of 1 mM on the elastase activity, and the inhibitory effect of other divalent cations under study have been established. The investigated chloride and acetate anions reduced activity by 20%, while phosphate anions increased activity by 15-30%.

  16. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  17. A review on the effects of supercritical carbon dioxide on enzyme activity.

    PubMed

    Wimmer, Zdenek; Zarevúcka, Marie

    2010-01-19

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO(2). The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  18. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  19. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  20. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7.

    PubMed

    Burt, S A; Reinders, R D

    2003-01-01

    To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.

  1. The effects of microstructural stability on the compressive response of two cast aluminum alloys up to 300 °C

    DOE PAGES

    Shower, Patrick T.; Roy, Shibayan; Hawkins, Charles Shane; ...

    2017-06-08

    Here in this study, the high temperature compressive response of cast aluminum alloys 319 and RR350 is compared in light of their microstructures. The 319 alloy is widely used in thermally critical automotive applications and provides a baseline for comparison with the RR350 alloy, whose microstructural stability at high homologous temperatures was recently reported. Cylindrical compression samples from each alloy were tested at four temperatures up to 300 °C at a constant true strain rate that was varied over four orders of magnitude. Although both alloys are strengthened by metastable precipitates (nominally Al 2Cu) in the as-aged condition, their mechanicalmore » response diverges at temperatures greater than 250 °C as the strengthening precipitates evolve in the 319 alloy and retain their as-aged morphology in the RR350 alloy. Deformation mechanisms of each alloy are examined using microstructural analysis and empirical activation energy calculations. The stability of the θ' phase in the RR350 alloy leads to effective precipitation hardening at homologous temperatures up to 0.6 and an extensive regime of grain boundary controlled deformation.« less

  2. Effect of alkyl branches on the thermal stability of quaternary ammonium cations in organic electrolytes for electrochemical double layer capacitors.

    PubMed

    Ahn, Yong Nam; Lee, Sung Hoon; Lee, Goo Soo; Kim, Hyunbin

    2017-08-02

    Quaternary ammoniums are cations having widespread use in organic electrolytes for high performance electrochemical double layer capacitors (EDLCs) due to their various advantages such as high electrochemical stability and inexpensive production cost. However, the decomposition of quaternary ammoniums via Hofmann elimination hinders their applications for EDLCs operating at elevated temperatures. This study systematically investigates the reactivity of four different quaternary ammoniums (tetraethyl-, triethylmethyl-, diethyldimethyl-, and trimethylethyl-ammonium) in EDLC by utilizing density functional theory calculations and Brownian dynamics simulations complemented with molecular dynamics simulations. It is found that ammonium stability reduces upon increasing the number of ethyl branches that have a stronger positive charge than the methyl groups. However, the contribution of the entropy change to the reaction free energy makes trimethylethylammonium less stable than diethyldimethylammonium at room temperature although the former has less ethyl branches than the latter. Trimethylethylammonium becomes the most stable at a high temperature of 488 K above which the activation free energy becomes effectively negligible and thus the number of reactive sites determines the overall stability. The fundamental understanding of the ammonium decompositions through Hofmann elimination demonstrated in this study is expected to contribute to developing new long-life organic electrolyte systems for high-temperature applications.

  3. Effect of mesogenic ligands on short and long-term spectral stability of CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Amaral, Jose; Betady, Edwin; Quint, Makiko; Martin, Denzal; Riahinasab, Sheida; Hirst, Linda; Ghosh, Sayantani

    Surface modification of chemically synthesized CdSe/ZnS quantum dots (QDs) by performing a ligand-exchange can improve the optical properties, including short- and long-term photo-stability. Using a custom-designed mesogenic ligand, we significantly and advantageously alter the photophysical properties of CdSe/ZnS core-shell QDs. Our investigation is two-fold, as we follow the effect of ligand exchange on (1) the static and dynamic photoluminescence (PL) properties of QDs under continuous illumination, and (2) the temperature dependence of PL. We find that a reduction in Forster resonance energy transfer due to the ligand exchange process results in stabilizing both recombination lifetimes and emission intensity for over an hour of high power photo-excitation. Our temperature-dependent PL studies indicate thermally activated PL recovery at higher temperatures, and a lack of emission enhancement at low temperatures resulting from greater charge separation by the mesogenic ligands. We conclude that this process improves photoluminescence stability and sample longevity of QD films whose applications require long term resistance to photobleaching. This research was supported by funds from the National Aeronautics and Space Administration (NASA) Grant No. NNX15AQ01A, UCMEXUS-CONACYT, and National Science Foundation (NSF) Grants No. DMR-1056860, DMR-1359406 and CBET-1507551.

  4. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, William S.; Thomas, Steven R.; Nieves, Rafael A.; Himmel, Michael E.

    1994-01-01

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C.sub.1, and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81.degree. C. at pH's from about 2 to about 9, and at a inactivation temperature of about 100.degree. C. at pH's from about 2 to about 9.

  5. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  6. High stability amplifier

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1983-01-01

    An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.

  7. Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping

    2018-02-01

    La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.

  8. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  9. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, M.; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon; Liu, X. J.

    2016-06-28

    Metallic glasses are metastable and their thermal stability is critical for practical applications, particularly at elevated temperatures. The conventional bulk metallic glasses (BMGs), though exhibiting high glass-forming ability (GFA), crystallize quickly when being heated to a temperature higher than their glass transition temperature. This problem may potentially be alleviated due to the recent developments of high-entropy (or multi-principle-element) bulk metallic glasses (HE-BMGs). In this work, we demonstrate that typical HE-BMGs, i.e., ZrTiHfCuNiBe and ZrTiCuNiBe, have higher kinetic stability, as compared with the benchmark glass Vitreoy1 (Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5}) with a similar chemical composition. The measured activation energymore » for glass transition and crystallization of the HE-BMGs is nearly twice that of Vitreloy 1. Moreover, the sluggish crystallization region ΔT{sub pl-pf}, defined as the temperature span between the last exothermic crystallization peak temperature T{sub pl} and the first crystallization exothermic peak temperature T{sub pf}, of all the HE-BMGs is much wider than that of Vitreloy 1. In addition, high-resolution transmission electron microscopy characterization of the crystallized products at different temperatures and the continuous heating transformation diagram which is proposed to estimate the lifetime at any temperature below the melting point further confirm high thermal stability of the HE-BMGs. Surprisingly, all the HE-BMGs show a small fragility value, which contradicts with their low GFA, suggesting that the underlying diffusion mechanism in the liquid and the solid of HE-BMGs is different.« less

  10. New insights into respirable protein powder preparation using a nano spray dryer.

    PubMed

    Bürki, K; Jeon, I; Arpagaus, C; Betz, G

    2011-04-15

    In this study the Nano Spray Dryer B-90 (BÜCHI Labortechnik AG, Flawil, Switzerland) was evaluated with regard to the drying of proteins and the preparation of respirable powders in the size range of 1-5 μm. β-galactosidase was chosen as a model protein and trehalose was added as a stabilizer. The influence of inlet temperature, hole size of the spray cap membrane and ethanol concentration in the spray solution was studied using a 3³ full factorial design. The investigated responses were enzyme activity, particle size, span, yield and shelf life. Furthermore, the particle morphology was examined. The inlet temperature as well as the interaction of inlet temperature and spray cap size significantly influenced the enzyme activity. Full activity was retained with the optimized process. The particle size was affected by the hole size of the spray cap membrane and the ethanol content. The smallest cap led to a monodisperse particle size distribution and the greatest yield of particles of respirable size. Higher product recovery was achieved with lower inlet temperatures, higher ethanol contents and smaller cap sizes. Particle morphology differed depending on the cap size. The protein exhibited higher storage stability when spray dried without ethanol and when a larger spray cap size was used. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2015-01-15

    Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.

  12. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  13. A Physics-Based Temperature Stabilization Criterion for Thermal Testing

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.; Ungar, Eugene K.

    2009-01-01

    Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.

  14. Characterization of the interaction between the heavy and light chains of bovine factor Va.

    PubMed

    Walker, F J

    1992-10-05

    Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light chain also stabilize the two subunit structure, suggesting that the high affinity of the complex is due to conformational changes that occur after chain interaction.

  15. Investigating the potential of Bacillus subtilis alpha-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes.

    PubMed

    Grauwet, Tara; Van der Plancken, Iesel; Vervoort, Liesbeth; Hendrickx, Marc E; Van Loey, Ann

    2009-01-01

    The potential of Bacillus subtilis alpha-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400-600 MPa; T(i) 10-40 degrees C; 1-15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA-MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system. (c) 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009.

  16. Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach.

    PubMed

    Dille, Morten J; Hattrem, Magnus N; Draget, Kurt I

    2018-06-01

    Hard tablets and capsules for oral drug delivery cause problems for people experiencing dysphagia. This work describes the formulation and properties of a gelatin based, self-preserved, and soft chewable tablet as an alternative and novel drug delivery format. Gelatin (8.8-10% in 24.7-29% water) constituted the matrix of the soft, semi-solid tablets. Three different pharmaceuticals (Ibuprofen 10%, Acetaminophen 15%, and Meloxicam 1.5%) were tested in this formulation. Microbial stability was controlled by lowering the water activity with a mixture of sorbitol and xylitol (45.6-55%). Rheological properties were tested applying small strain oscillation measurements. Taste masking of ibuprofen soft-chew tablets was achieved by keeping the ibuprofen insoluble at pH 4.5 and keeping the processing temperature below the crystalline-to-amorphous transition temperature. Soft-chew formulations showed good stability for all three pharmaceuticals (up to 24 months), and the ibuprofen containing formulation exhibited comparable dissolution to a standard oral tablet as well as good microbial stability. The rheological properties of the ibuprofen/gelatin formulation had the fingerprint of a true gelatin gel, albeit higher moduli, and melting temperature. The results suggest that easy-to-swallow and well taste-masked soft chewable tablet formulations with extended shelf life are within reach for several active pharmaceutical ingredients (APIs).

  17. Superactivity of peroxidase solubilized in reversed micellar systems.

    PubMed

    Setti, L; Fevereiro, P; Melo, E P; Pifferi, P G; Cabral, J M; Aires-Barros, M R

    1995-12-01

    Vaccinium mirtyllus peroxidase solubilized in reversed micelles was used for the oxidation of guaiacol. Some relevant parameters for the enzymatic activity, such as pH, w(o) (molar ratio water/surfactant), surfactant type and concentration, and cosurfactant concentration, were investigated. The peroxidase showed higher activities in reversed micelles than in aqueous solution. The stability of the peroxidase in reversed micelles was also studied, namely, the effect of w(o) and temperature on enzyme deactivation. The peroxidase displayed higher stabilities in CTAB/hexanol in isooctane reversed micelles, with half-life times higher than 500 h.

  18. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.

    PubMed

    Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.

  19. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  20. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    2016-09-20

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  1. Catalytically active Au-O(OH) x- species stabilized by alkali ions on zeolites and mesoporous oxides

    DOE PAGES

    Yang, Ming; Li, Sha; Wang, Yuan; ...

    2014-11-27

    Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH) x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold activemore » site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.« less

  2. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A cell stabilization factor for transport of experimental cell cultures to and from the International Space Station

    NASA Astrophysics Data System (ADS)

    Fattaey, Heideh K.; Consigli, Richard A.; Grenz, Ladonna; Johnson, Terry C.

    2000-01-01

    The requirement for long term storage of cell cultures previous to arrival on the International Space Station (ISS), as well as culture maintenance after the conduct of experiment in microgravity, necessitates inhibition of cell proliferation and metabolism pending return to earth-based laboratories. Transport of cells in a nonstabilized condition can lead to a loss of cell viability and/or a source of selection pressures for survival that can alter the overall cell population. We have isolated in our laboratory a reversible inhibitor of cell proliferation, a cell regulatory sialoglycopeptide (CeReS-18), that has the capability of stabilizing cells isolated from a wide phylogenetic range by arresting them in the G1 phase of the cell cycle. We show here that CeReS-18 is unusually stable and can be stored at ambient temperatures for weeks without a measurable loss in its biological activity. In addition we demonstrate that CeReS-18 is a superior cell-stabilizing agent as compared to other methods deployed for cell stabilization purposes, such as, decrease in the incubation temperature and serum down shifts. We also discovered that hybridoma cultures stabilized in their proliferative cycle by CeReS-18 produced 150%-300% more antibody per cell than that measured in the proliferating control cultures. The reversible inhibitory activity of CeReS-18, together with its unusual stability, as well as its wide target range lend themselves to use of this inhibitor as a cell stabilizing agent for cell transport to and storage on the ISS. .

  4. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

    PubMed Central

    Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther

    2015-01-01

    The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163

  5. Evaluation of the enzymatic activity and stability of commercial bromelain incorporated in topical formulations.

    PubMed

    Lourenço, C B; Ataide, J A; Cefali, L C; Novaes, L C D L; Moriel, P; Silveira, E; Tambourgi, E B; Mazzola, P G

    2016-10-01

    Bromelain is a mixture of proteolytic enzymes found in various tissues of the pineapple plant (Ananas comosus) and other species of Bromeliaceae. Owing to its proteolytic activity, bromelain has been used in the food, medical, pharmaceutical and cosmetic industries, for its cell renewal, anti-ageing, whitening and anti-cellulite properties. This study evaluated the stability of bromelain (commercial powder) incorporated in topical formulations. Bromelain was incorporated at three concentrations, 0.5%, 1.0% and 2.0%, in oil-in-water emulsion and gel, and stored for six months at varying stress conditions. Stability was accessed by measuring the changes in the protein content, enzymatic activity, viscosity, rheology, pH and colour of the selected formulations. The colour of all the samples changed after 180 days of incubation, indicating the concentration-dependence and temperature-sensitive nature of these formulations. No relationship was observed between the changes in the pH, temperature and luminosity exposure in all the samples. Gels proved to be the least preferred base for incorporation of bromelain for use as a topical formulation, owing to its inability to maintain the integrity of bromelain, thereby affecting the formulation characteristics. The emulsion-based formulations at all the concentrations of bromelain were more stable than the gel-based formulation over 180 days of evaluation, at a temperature of 5°C, protected from light. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. [THERMAL STABILITY AS A PROGNOSTIC INDICATOR OF CONSERVATION OF LIVE EMBRYONIC SMALLPOX VACCINE (TEOVAC) DURING STORAGE].

    PubMed

    Zhukov, V A; Kokorev, S V; Rogozhkina, S V; Melnikov, D G; Terentiev, A I; Kovalchuk, E A; Vakhnov, E Yu; Borisevich, S V

    2016-01-01

    Determination of values of coefficients of thermal stability of TEOVac for prognosis of conservation of the vaccine (specific biological activity) during the process of warranty period storage. TEOVac (masticatory tablets) in primary packaging was kept at increased temperature (accelerated and stress-tests) and at the conditions established by PAP for the preparation (long-term tests). Biological activity of the vaccine was determined by titration on 12-day chicken embryos. A correlation between the value of coefficients of thermal stability and conservation of the prepared series of the condition preparation at the final date of storage was experimentally established. Coefficients of thermal stability could be used as a prognostic indicator of quality of the produced pelleted formulation of the preparation for evaluation of conservation of the vaccine during warranty period storage.

  7. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at -80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C.

    PubMed

    Bian, Y Z; Guo, C; Chang, T M S

    2016-01-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (Poly-[Hb-SOD-CAT-CA]) contains all three major functions of red blood cells (RBCs) at an enhanced level. It transports oxygen, removes oxygen radicals and transports carbon dioxide. Our previous studies in a 90-min 30 mm Hg Mean Arterial Pressure (MAP) sustained hemorrhagic shock rat model shows that it is more effective than blood in the lowering of elevated intracellular pCO2, recovery of ST-elevation and histology of the heart and intestine. This paper is to analyze the storage and temperature stability. Allowable storage time for RBC is about 1 d at room temperature and 42 d at 4 °C. Also, RBC cannot be pasteurized to remove infective agents like HIV and Ebola. PolyHb can be heat sterilized and can be stored for 1 year even at room temperature. However, Poly-[Hb-SOD-CAT-CA] contains both Hb and enzymes and enzymes are particularly sensitive to storage and heat. We thus carried out studies to analyze its storage stability at different temperatures and heat pasteurization stability. Results of storage stability show that lyophilization extends the storage time to 1 year at 4 °C and 40 d at room temperature (compared to respectively, 42 d and 1 d for RBC). After the freeze-dry process, the enzyme activities of Poly-[SFHb-SOD-CAT-CA] was 100 ± 2% for CA, 100 ± 2% for SOD and 93 ± 3.5% for CAT. After heat pasteurization at 70 °C for 2 h, lyophilized Poly-[Hb-SOD-CAT-CA] retained good enzyme activities of CA 97 ± 4%, SOD 100 ± 2.5% and CAT 63.8 ± 4%. More CAT can be added during the crosslinking process to maintain the same enzyme ratio after heat pasteurization. Heat pasteurization is possible only for the lyophilized form of Poly-[Hb-SOD-CAT-CA] and not for the solution. It can be easily reconstituted by dissolving in suitable solutions that continues to have good storage stability though less than that for the lyophilized form. According to the P50 value, Poly-[SFHb-SOD-CAT-CA] retains its oxygen carrying ability before and after long-term storage.

  8. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  9. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  10. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering

    PubMed Central

    Tehei, Moeava; Franzetti, Bruno; Madern, Dominique; Ginzburg, Margaret; Ginzburg, Ben Z; Giudici-Orticoni, Marie-Thérèse; Bruschi, Mireille; Zaccai, Giuseppe

    2004-01-01

    Mean macromolecular dynamics was quantified in vivo by neutron scattering in psychrophile, mesophile, thermophile and hyperthermophile bacteria. Root mean square atomic fluctuation amplitudes determining macromolecular flexibility were found to be similar for each organism at its physiological temperature (∼1 Å in the 0.1 ns timescale). Effective force constants determining the mean macromolecular resilience were found to increase with physiological temperature from 0.2 N/m for the psychrophiles, which grow at 4°C, to 0.6 N/m for the hyperthermophiles (85°C), indicating that the increase in stabilization free energy is dominated by enthalpic rather than entropic terms. Larger resilience allows macromolecular stability at high temperatures, while maintaining flexibility within acceptable limits for biological activity. PMID:14710189

  11. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  12. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir; Gharib, Maniya; Najafi, Mahnaz

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at leastmore » three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.« less

  13. Thermal Stabilization of Biologics with Photoresponsive Hydrogels.

    PubMed

    Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W

    2018-03-12

    Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex biologics during storage and shipment that additionally enable on-demand release of active molecules at the point of use.

  14. Preserving enzymatic activity and enhancing biochemical stability of glutathione transferase by soluble additives under free and tethered conditions.

    PubMed

    Karamitros, Christos S; Labrou, Nikolaos E

    2017-09-01

    In the present study, we report the effect of four different soluble additives (sucrose, lactitol, superfloc c577, and dextran sulfate) on the stability of glutathione transferase 1 enzyme from Zea mays (ZmGSTF1-1) under free and tethered conditions at 4 and 25 °C. Among all additives, the best stabilizing effects were observed in the case of superfloc c577 and sucrose at both tested temperatures, yet at distinct concentrations at each condition. Those two stabilizing agents were further combined and potential positive synergistic effects were investigated. In addition, we assessed the long-term storage and operational stability of ZmGSTF1-1 under tethered conditions in the presence of additives, which provided the most conducive effects on its stability under free conditions. Our results strongly suggest that the presence of additives may be beneficial to the stability of the enzyme under both free and tethered conditions. Thermodynamic analysis of the free enzyme in the presence of sucrose, which exhibited the best stabilizing effect at both temperatures, shed light on the possible mechanism of action. Given the considerable importance of the development of GST-based biosensors with prolonged stability, the present work may be of general interest to researchers in the field of applied enzymology. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  15. [Evaluating the Stability of Loop-Mediated Isothermal Amplification Reagents at Irregular Storage Temperatures for On-Site Diagnosis].

    PubMed

    Inoshima, Yasuo; Ishiguro, Naotaka

    2015-01-01

    Temperature-stability of loop-mediated isothermal amplification (LAMP) reagents was determined for their use in on-site diagnosis, such as in farms/pastures. Bst and Csa DNA polymerases and the reagents that were stored at different temperatures (4 or 25°C) for 1, 2, or 4 days were used for the LAMP assay to detect orf virus DNA as a model. After storage at 4 and 25°C for 2 days, the enzymes and reagents were found to retain sufficient activity to carry out successful DNA amplification. Visual diagnosis was also possible with the reagents (Loopamp Fluorescent Detection Reagent or hydroxy naphthol blue, as well as DNA amplification checker, D-Quick) that were stored for 2 days at different temperatures. Although the time taken to obtain the positive/negative results were delayed, the enzymes and reagents, stored at 25°C for 4 days, were active and had the ability to efficiently amplify DNA in less than 50 min. These results indicate that LAMP assay can be successfully utilized for the diagnosis of infectious diseases under non-clinical settings such as for on-site diagnosis in farms/pastures, owing to the fact that the relevant enzymes and reagents does not require restricted temperature storage.

  16. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  17. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    PubMed

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  18. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    NASA Astrophysics Data System (ADS)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  19. n-Hexane hydro-isomerization over promoted Pd/HZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Thoa Dao, Thi Kim; Loc Luu, Cam

    2015-09-01

    A series of Pd/HZSM-5 catalysts modified by various metallic species, including Co, Ni, Fe, Re, and Cu, was prepared by sequential impregnation. Contents of Pd and second metals in modified catalysts were 0.8 and 1.0 wt%, respectively. Physico-chemical characteristics of catalysts were investigated by nitrogen physi-sorption (BET), x-ray diffraction (XRD), transmission electron microscopy (TEM), ammonia temperature programmed desorption (NH3-TPD), temperature programmed reduction (TPR) and hydrogen pulse chemisorption (HPC). Coke formation was studied by the method of thermogravimetric analysis (TGA). The activities of catalysts in n-hexane isomerization were studied in a micro-flow reactor under atmospheric pressure at 250 °C, and molar ratio of H2: n-hexane of 5.92. It was found that Co, Ni, Fe, and Re additives exhibited geometric and electronic effects toward Pd/HZSM-5 catalyst, leading to an enhancement of its activity and stability. On the contrary, Cu additive caused Pd/HZSM-5 to become poorer in activity and stability.

  20. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  1. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    NASA Astrophysics Data System (ADS)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  2. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface

    PubMed Central

    Bliem, Roland; van der Hoeven, Jessi E. S.; Hulva, Jan; Pavelec, Jiri; Gamba, Oscar; de Jongh, Petra E.; Schmid, Michael; Blaha, Peter; Diebold, Ulrike; Parkinson, Gareth S.

    2016-01-01

    Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase. PMID:27457953

  3. Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili

    2017-12-01

    Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.

  4. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature.

    PubMed

    Zahmakıran, Mehmet; Philippot, Karine; Özkar, Saim; Chaudret, Bruno

    2012-01-14

    Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions.

  5. The controlling mechanism for potential loss in CH 3NH 3PbBr 3 hybrid solar cells

    DOE PAGES

    Zheng, Xiaojia; Chen, Bo; Yang, Mengjin; ...

    2016-07-25

    In this study, we investigated moisture and thermal stability of MAPbBr 3 perovskite material. Cubic MAPbBr 3 was found to be moisture-insensitive and can avoid the thermal stability issues introduced by low-temperature phase transition in MAPbI 3. MAPbBr 3 and MAPbI 3 hybrid solar cells with efficiencies of ~7.1% and ~15.5%, respectively, were fabricated, and we identified the correlation between the working temperature, light intensity, and the photovoltaic performance. No charge-carrier transport barriers were found in the MAPbBr 3 and MAPbI 3 solar cells. The MAPbBr 3 solar cell displays a better stability under high working temperature because of itsmore » close-packed crystal structure. Temperature-dependent photocurrent-voltage characteristics indicate that, unlike the MAPbI 3 solar cell with an activation energy (E A) nearly equal to its band gap (E g), the E A for the MAPbBr 3 solar cell is much lower than its E g. This indicates that a high interface recombination process limits the photovoltage and consequently the device performance of the MAPbBr 3 solar cell.« less

  6. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system.

    PubMed

    Park, Sang June; Jeon, Hyungtaek; Yoo, Seung-Min; Lee, Myung-Shin

    2018-05-10

    Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.

  7. PAWS locker: a passively aligned internal wavelength locker for telecommunications lasers

    NASA Astrophysics Data System (ADS)

    Boye, Robert R.; Te Kolste, Robert; Kathman, Alan D.; Cruz-Cabrera, Alvaro; Knight, Douglas; Hammond, J. Barney

    2003-11-01

    This paper presents the passively aligned Wavesetter (PAWS) locker: a micro-optic subassembly for use as an internal wavelength locker. As the wavelength spacing in dense wavelength division multiplexing (WDM) decreases, the performance demands placed upon source lasers increase. The required wavelength stability has led to the use of external wavelength lockers utilizing air-spaced, thermally stabilized etalons. However, package constraints are forcing the integration of the wavelength locker directly into the laser module. These etalons require active tuning be done during installation of the wavelength locker as well as active temperature control (air-spaced etalons are typically too large for laser packages). A unique locking technique will be introduced that does not require an active alignment or active temperature compensation. Using the principles of phase shifting interferometry, a locking signal is derived without the inherent inflection points present in the signal of an etalon. The theoretical background of PAWS locker will be discussed as well as practical considerations for its implementation. Empirical results will be presented including wavelength accuracy, alignment sensitivity and thermal performance.

  8. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    NASA Astrophysics Data System (ADS)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  9. Design of active temperature compensated composite free-free beam MEMS resonators in a standard process

    NASA Astrophysics Data System (ADS)

    Xereas, George; Chodavarapu, Vamsy P.

    2014-03-01

    Frequency references are used in almost every modern electronic device including mobile phones, personal computers, and scientific and medical instrumentation. With modern consumer mobile devices imposing stringent requirements of low cost, low complexity, compact system integration and low power consumption, there has been significant interest to develop batch-manufactured MEMS resonators. An important challenge for MEMS resonators is to match the frequency and temperature stability of quartz resonators. We present 1MHz and 20MHz temperature compensated Free-Free beam MEMS resonators developed using PolyMUMPS, which is a commercial multi-user process available from MEMSCAP. We introduce a novel temperature compensation technique that enables high frequency stability over a wide temperature range. We used three strategies: passive compensation by using a structural gold (Au) layer on the resonator, active compensation through using a heater element, and a Free-Free beam design that minimizes the effects of thermal mismatch between the vibrating structure and the substrate. Detailed electro-mechanical simulations were performed to evaluate the frequency response and Quality Factor (Q). Specifically, for the 20MHz device, a Q of 10,000 was obtained for the passive compensated design. Finite Element Modeling (FEM) simulations were used to evaluate the Temperature Coefficient of frequency (TCf) of the resonators between -50°C and 125°C which yielded +0.638 ppm/°C for the active compensated, compared to -1.66 ppm/°C for the passively compensated design and -8.48 ppm/°C for uncompensated design for the 20MHz device. Electro-thermo-mechanical simulations showed that the heater element was capable of increasing the temperature of the resonators by approximately 53°C with an applied voltage of 10V and power consumption of 8.42 mW.

  10. Recent advances in the applications of ionic liquids in protein stability and activity: a review.

    PubMed

    Patel, Rajan; Kumari, Meena; Khan, Abbul Bashar

    2014-04-01

    Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein-IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed.

  11. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities.

    PubMed

    Maciel, Laércio Galvão; do Carmo, Mariana Araújo Vieira; Azevedo, Luciana; Daguer, Heitor; Molognoni, Luciano; de Almeida, Mereci Mendes; Granato, Daniel; Rosso, Neiva Deliberali

    2018-03-01

    Hibiscus sabdariffa calyx is a rich source of anthocyanins and other bioactive compounds but no study reported the effects of experimental conditions on the extraction of these chemical compounds. Therefore, the effects of time and extraction temperature on the bioactive compounds and antioxidant activity of Hibiscus sabdariffa calyx were evaluated. In addition, the effects of copigmentation and pH on the stability of anthocyanins were assessed and the cytotoxic effects (LC 50 , IC 50 , and GC 50 ) of the extracts were determined in relation to tumor cell lines - Caco-2, HepG-2, HCT8, and A549. The temperature significantly influenced the total anthocyanins and flavonoids contents. The interaction between time/temperature influenced the total phenolic content and ascorbic acid. The t 1/2 and the percentage of colour retention decreased markedly at temperatures above 80 °C. Variations in pH conserved the antioxidant activity of the anthocyanins, and the protonation-deprotonation process of the extract was reversible. The treatment of cells with purified anthocyanin extract or crude extracts at 5-800 μg mL -1 did not show significant cytotoxic effects on the cell lines, corroborating the chemical antioxidant effect of the extracts (DPPH assay). Cyanidin-3-glucoside, delphinidin-3-sambubioside, delphinidin-3-glucoside, and cyanidin-3-sambubioside were identified in the extracts by LC-ESI-MS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A new antioxidant beverage produced with green tea and apple.

    PubMed

    Rubio-Perez, Jose M; Vidal-Guevara, Maria L; Zafrilla, Pilar; Morillas-Ruiz, Juana M

    2014-08-01

    Green tea and apple are natural products with health benefits. These healthy properties are linked closely to the antioxidant compounds, mainly phenolic compounds. These antioxidant compounds have a potential for preventing and treating cancer, cardiovascular, inflammatory and neurodegenerative diseases in humans. The aim of the present work was to design a new beverage with high antioxidant power combining extracts of green tea and apple, studying the antioxidant composition and activity, organoleptic properties (colour) and stability status during storage at different temperatures. The majority compounds identified in the beverage were flavan-3-ols, being the (-)-epigallocatechin-3-gallate which had the highest concentration. After storage, floridzine was the compound with lower decrease of concentration. The new designed beverage had a good colour, and high antioxidant activity and stability at room temperature, so that the beverage needs no refrigeration, showing potential for the development of new healthy functional beverages.

  13. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping

    NASA Astrophysics Data System (ADS)

    Fang, De; He, Feng; Liu, Xiaoqing; Qi, Kai; Xie, Junlin; Li, Fengxiang; Yu, Chongqinq

    2018-01-01

    MnOx/TiO2 catalysts doped with Mg have been prepared with the impregnation method. Surprisingly, 7% Mg-MnOx/TiO2 catalyst containing more Mn3+ ions showed superior low-temperature SCR activity and stability. Mg doping resulted in some adverse effects on the phases, BET surface areas, reducibility, NH3 adsorption, and morphology structures. However, according to the SCR performance, these effects were thought to be rather limited in comparison with the catalytic properties of MgMn2O4 which might stem from the enhancement of NH3-SCR activity and stability. Meanwhile, based on the in situ DRIFTS tests, the NH3-SCR reaction route of MnOx/TiO2 and Mg doped MnOx/TiO2 catalysts depended on the kind of gas (NH3 or NO) pre-adsorbed on the catalyst.

  14. Time temperature transformation diagram for secondary crystal products of Co-based Co-Fe-B-Si-Nb-Mn soft magnetic nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGeorge, V., E-mail: vdegeorge@cmu.edu; Zoghlin, E.; Keylin, V.

    2015-05-07

    Secondary crystallization is the subject of much investigation in magnetic amorphous and nanocomposites (MANCs) as it limits the long term and thermal stability of their operation in device applications, including power electronics, sensors, and electric motors. Secondary crystal products [Blazquez et al., Philos. Mag. Lett. 82(7), 409–417 (2002); Ohodnicki et al., Phys. Rev. B 78, 144414 (2008); Willard et al., Metall. Mater. Trans. A 38, 725 (2007)], nanostructure and crystallization kinetics [Hsiao et al., IEEE Trans. Magn. 38(5), 3039 (2002); McHenry et al., Scr. Mater. 48(7), 881 (2003)], and onset temperatures and activation energies [Ohodnicki et al., Acta. Mater. 57,more » 87 (2009); Long et al., J. Appl. Phys. 101, 09N114 (2007)] at constant heating have been reported for similar alloys. However, a time-temperature-transformation (TTT) diagram for isothermal crystallization, more typical of application environments, has not been reported in literature. Here, a TTT diagram for the Co based, Co-Fe-Si-Nb-B-Mn MANC system is presented, along with a method for determining such. The method accounts for the presence of primary crystal phases and yields crystal fraction of secondary phase(s) by using a novel four stage heating profile. The diagram, affirmed by Kissinger activation energy analysis, reports thermal stability of the MANC for millennia at conventional device operating temperatures, and stability limits less than a minute at elevated temperatures. Both extremes are necessary to be able to avoid secondary crystalline products and establish operating limits for this mechanically attractive, high induction soft magnetic nanocomposite.« less

  15. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  16. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase.

    PubMed

    Varejão, Nathalia; De-Andrade, Rafael A; Almeida, Rodrigo V; Anobom, Cristiane D; Foguel, Debora; Reverter, David

    2018-02-06

    Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessment of circadian rhythms of both skin temperature and motor activity in infants during the first 6 months of life.

    PubMed

    Zornoza-Moreno, Matilde; Fuentes-Hernández, Silvia; Sánchez-Solis, Manuel; Rol, María Ángeles; Larqué, Elvira; Madrid, Juan Antonio

    2011-05-01

    The authors developed a method useful for home measurement of temperature, activity, and sleep rhythms in infants under normal-living conditions during their first 6 mos of life. In addition, parametric and nonparametric tests for assessing circadian system maturation in these infants were compared. Anthropometric parameters plus ankle skin temperature and activity were evaluated in 10 infants by means of two data loggers, Termochron iButton (DS1291H, Maxim Integrated Products, Sunnyvale, CA) for temperature and HOBO Pendant G (Hobo Pendant G Acceleration, UA-004-64, Onset Computer Corporation, Bourne, MA) for motor activity, located in special baby socks specifically designed for the study. Skin temperature and motor activity were recorded over 3 consecutive days at 15 days, 1, 3, and 6 mos of age. Circadian rhythms of skin temperature and motor activity appeared at 3 mos in most babies. Mean skin temperature decreased significantly by 3 mos of life relative to previous measurements (p = .0001), whereas mean activity continued to increase during the first 6 mos. For most of the parameters analyzed, statistically significant changes occurred at 3-6 mos relative to 0.5-1 mo of age. Major differences were found using nonparametric tests. Intradaily variability in motor activity decreased significantly at 6 mos of age relative to previous measurements, and followed a similar trend for temperature; interdaily stability increased significantly at 6 mos of age relative to previous measurements for both variables; relative amplitude increased significantly at 6 mos for temperature and at 3 mos for activity, both with respect to previous measurements. A high degree of correlation was found between chronobiological parametric and nonparametric tests for mean and mesor and also for relative amplitude versus the cosinor-derived amplitude. However, the correlation between parametric and nonparametric equivalent indices (acrophase and midpoint of M5, interdaily stability and Rayleigh test, or intradaily variability and P(1)/P(ultradian)) despite being significant, was lower for both temperature and activity. The circadian function index (CFI index), based on the integrated variable temperature-activity, increased gradually with age and was statistically significant at 6 mos of age. At 6 mos, 90% of the infants' rest period coincided with the standard sleep period of their parents, defined from 23:00 to 07:00 h (dichotomic index I < O; when I < O = 100%, there is a complete coincidence between infant nocturnal rest period and the standard rest period), whereas at 15 days of life the coincidence was only 75%. The combination of thermometry and actimetry using data loggers placed in infants' socks is a reliable method for assessing both variables and also sleep rhythms in infants under ambulatory conditions, with minimal disturbance. Using this methodological approach, circadian rhythms of skin temperature and motor activity appeared by 3 mos in most babies. Nonparametric tests provided more reliable information than cosinor analysis for circadian rhythm assessment in infants.

  18. Enhanced production of polygalacturonase in solid-state fermentation: selection of the process conditions, isolation and partial characterization of the enzyme.

    PubMed

    Zaslona, Halina; Trusek-Holownia, Anna

    2015-01-01

    Polygalacturonase (PG) production by Penicillium chrysogenum during solid-state fermentation was accompanied by decomposition of orange peels. A leaching procedure was developed through the selection of solvent, time and intensity of stirring. A maximum PG activity was observed after 48 h peel inoculation. Further cultivation decreased the enzyme activity significantly, up to 60% of the maximum PG activity. During fermentation, a rapid acidification of the solid medium which inhibited the pectinolytic enzyme, was observed. Buffering agents with different pH values and different ionic strengths were examined to identify the most suitable medium to avoid this problem. Buffer addition counteracted acidification and enhanced active protein production, which was observed for all of the applied pH values (6.5-8.0) of the buffering agent. The most satisfactory results were obtained when using the highest pH at 8.0. The protein content and PG activity increased from 3.5 mg/g and 1.09 U/g to 7.7 mg/g and 7.11 U/g during cultivation, with uncontrolled and pH-controlled medium, respectively. Measurements at wide pH and temperature ranges indicated an optimum for PG activity at pH 5.0 and 43°C; however, high thermal stability corresponded to lower temperatures, and a temperature of 37°C is thus recommended. Under these conditions, the operational stability was determined to be t1/2=570 h.

  19. Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-alkanethiol self-assembled monolayers.

    PubMed

    Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi

    2006-08-17

    The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.

  20. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    PubMed

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Investigation of the microbial community structure and activity as indicators of compost stability and composting process evolution.

    PubMed

    Chroni, Christina; Kyriacou, Adamadini; Manios, Thrassyvoulos; Lasaridi, Konstantia-Ekaterini

    2009-08-01

    In a bid to identify suitable microbial indicators of compost stability, the process evolution during windrow composting of poultry manure (PM), green waste (GW) and biowaste was studied. Treatments were monitored with regard to abiotic factors, respiration activity (determined using the SOUR test) and functional microflora. The composting process went through typical changes in temperature, moisture content and microbial properties, despite the inherent feedstock differences. Nitrobacter and pathogen indicators varied as a monotonous function of processing time. Some microbial groups have shown a potential to serve as fingerprints of the different process stages, but still they should be examined in context with respirometric tests and abiotic parameters. Respiration activity reflected well the process stage, verifying the value of respirometric tests to access compost stability. SOUR values below 1 mg O(2)/g VS/h were achieved for the PM and the GW compost.

  2. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    PubMed

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Temperature fluctuations inside savanna termite mounds: Do size and plant shade matter?

    PubMed

    Ndlovu, M; Pérez-Rodríguez, A

    2018-05-01

    Mound building termites are key ecosystem engineers of subtropical savanna regions. Mounds allow termites to maintain suitable conditions for termite reproduction and food cultivation ('fungus gardens'). We studied how the internal mound temperature of Macrotermes natalensis, a dominant mound-building termite of the subtropical savanna of southern Africa, responds to a number of environmental variables. We used general additive mixed models (GAMM) to determine how external temperature, mound size (volume) and the amount of vegetation shade affects mound internal temperature over a 24-h period. Internal mound temperature varied daily following changes of the external temperature, although the range of variation was much smaller. Active termite mounds maintained a higher internal temperature than inactive ones, and mound activity reinforced the positive effect of mound size and moderated the negative effect of vegetation shade on internal temperatures. In turn, external temperature fluctuations equally affected active and inactive mounds. Large mounds maintained near optimal internal temperatures compared to smaller sized mounds. We therefore conclude that termite mound size is a stronger determinant of internal mound temperature stability compared to plant shade cover. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Role of Compliance and Reaction Rate in Dehydration Weakening and Frictional Stability of Antigorite

    NASA Astrophysics Data System (ADS)

    Burdette, E.; Okazaki, K.; Hirth, G.

    2017-12-01

    The complicated brittle-ductile rheology of antigorite at subduction zone pressures and temperatures, resulting from its anisotropic mechanical properties, low dehydration temperature, and high water content has made interpretation of dehydration weakening problematic. Recent analyses indicate that antigorite is both ductile and brittle at high temperatures, and follows effective pressure frictional laws while dehydrating. In this study we focus on the role of rig compliance and reaction kinetics on frictional weakening and frictional stability. In addition, we correlate the evolution of mechanical behavior with AE activity at conditions within and above the thermal stability limit of antigorite. We conducted experiments at confining pressures from 0.25 GPa to 1GPa in a Griggs apparatus and modified rig compliance by including compliant components within the loading frame. We also modeled in-situ reaction progress using parameters from Sawai et al. (2013) to quantify relationships between weakening and fluid production. Without modifying the compliance, low pressure runs show stable dehydration weakening. With a modified, low compliance, results were nearly identical to stable weakening at standard compliance at 1 GPa. However, at lower pressures, many acoustic emissions were recorded at peak reaction rates during temperature ramping, with a rapid failure event occurring several minutes afterward (with the caveat that we still need to verify that AEs occur within the sample). No AEs are observed during room temperature experiments in samples that fault, nor were any observed in the high temperature experiments at conditions within the antigorite stability field - consistent with prior studies. Our results demonstrate that understanding in-situ dehydration reaction kinetics and their feedback with rheology and system compliance are key to scaling laboratory antigorite rheology to earth.

  5. Thermal stability of single-side hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Openov, L. A.; Podlivaev, A. I.

    2012-11-01

    The temperature dependence of the time of hydrogen desorption from single-side hydrogenated graphene is calculated using molecular dynamics simulation. The activation energy ( E a = 0.75 ± 0.10 eV) and the frequency factor ( A = (2.5 ± 1.0) × 1015 s-1) of the desorption are found. This quasi-two-dimensional carbon-hydrogen system is shown to have a relatively low thermal stability, which makes it difficult to use it in practice.

  6. Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase.

    PubMed

    Baptista, R P; Cabral, J M; Melo, E P

    2000-12-20

    The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.

  7. Real-solution stability diagrams: A thermodynamic tool for modeling corrosion in wide temperature and concentration ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderko, A.; Sanders, S.J.; Young, R.D.

    1997-01-01

    A method was developed for construction of stability diagrams for metals in the presence of realistically modeled aqueous solutions. The method was based on a comprehensive thermodynamic model that combines the Helgeson-Kirkham-Flowers (HKF) equation of state for standard-state properties with a solution nonideality model based on the activity coefficient expressions developed by Bromley and Pitzer. Composition-dependent nonideality effects were incorporated into the calculation of predominance areas for dissolved and solid species. Using the combined thermodynamic model, stability diagrams can be computed for systems involving concentrated solutions (i.e., with molalities up to 30 mol/kg) at temperatures up to 573 K andmore » pressures up to 100 MPa. Since the diagrams are based on a realistic thermodynamic model for the aqueous phase, they are referred to as real-solution stability diagrams. In addition to customary potential (E) and pH variables, concentrations of various active species (e.g., complexing agents) can be used as independent variables, making it possible to analyze effects of various compounds that promote or inhibit corrosion. Usefulness of the methodology was demonstrated by generating real-solution stability diagrams for five representative systems (i.e., sulfur-water [S-H{sub 2}O], copper-ammonia-water [Cu-NH{sub 3}-H{sub 2}O], titanium-chlorine-calcium-water [Ti-Cl-Ca-H{sub 2}O], iron-sulfur-water [Fe-S-H{sub 2}O], and zinc-water [Zn-H{sub 2}O]).« less

  8. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  9. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  10. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  11. Optimization of covalent immobilization of pectinase on sodium alginate support.

    PubMed

    Li, Tuoping; Wang, Na; Li, Suhong; Zhao, Qiancheng; Guo, Mei; Zhang, Cheyun

    2007-09-01

    Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40 degrees C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.

  12. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature

    PubMed Central

    Durap, Feyyaz; Caliskan, Salim; Özkar, Saim; Karakas, Kadir; Zahmakiran, Mehmet

    2015-01-01

    Intensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0) nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 ± 0.9 nm acting as a water-dispersible nanocatalyst in the hydrolysis of ammonia-borane. They provide an initial turnover frequency (TOF) value of 80 min−1 in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. Moreover, the high stability of these ruthenium(0) nanoparticles makes them long-lived and reusable nanocatalysts for the hydrolysis of ammonia-borane. They provide 56,800 total turnovers and retain ~80% of their initial activity even at the fifth catalytic run in the hydrolysis of ammonia-borane at room temperature. PMID:28793435

  14. Strategy for assessment of the colloidal and biological stability of H1N1 influenza A viruses.

    PubMed

    Hämmerling, Frank; Lorenz-Cristea, Oliver; Baumann, Pascal; Hubbuch, Jürgen

    2017-01-30

    Current influenza vaccines are mostly formulated as liquids which requires a continuous cold chain to maintain the stability of the antigen. For development of vaccines with an increased stability at ambient temperatures, manifold parameters and their influences on the colloidal stability and activity of the antigen have to be understood. This work presents a strategy to examine both, the colloidal stability and the remaining biological activity of H1N1 influenza viruses under various conditions after an incubation of 40 days. H1N1 phase diagrams were generated for several pH values and different initial H1N1 and NaCl concentrations. It was shown that the highest H1N1 recoveries were obtained for pH 6 and that moderate amounts of NaCl are favorable for increased recoveries. In contrast to colloidal stability, the highest remaining HA activity was observed at pH 9. The electrostatic and hydrophobic surface properties of H1N1 were investigated to reveal the mechanisms accounting for the decrease in stability. Secondly, the capability of virus precipitation by polyethylene glycol in combination with determination of surface hydrophobicity was proven to be useful as a predictive tool to rank stability under different conditions. This methodology enables the rapid assessment of aggregation propensity of H1N1 formulations and the influence on the activity of the virus particles and might become a standard tool during the development of vaccine formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization.

    PubMed

    Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Cardozo-Bernal, Ángela M; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M; Díaz-Rincón, Dennis J; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Cuervo-Patiño, Claudia L

    2017-01-01

    Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZ α A- GlucPost -Stop in Pichia pastoris . Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL -1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a V max of 6.87 × 10 -5  mM s -1 , with an apparent K m of 5.36 × 10 -2  mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.

  16. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Cardozo-Bernal, Ángela M.; Pedroza-Rodríguez, Aura M.; Díaz-Rincón, Dennis J.; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Cuervo-Patiño, Claudia L.

    2017-01-01

    Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges. PMID:28421142

  17. Mechanochemical stabilization and sintering of nanocrystalline the (ZrO2)0.97 (Y2O3)0.03 solid solution from pure oxides

    NASA Astrophysics Data System (ADS)

    Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.

    2011-10-01

    The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.

  18. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  19. Enhancement of Electrode Stability Using Platinum-Cobalt Nanocrystals on a Novel Composite SiCTiC Support.

    PubMed

    Millán, María; Zamora, Héctor; Rodrigo, Manuel A; Lobato, Justo

    2017-02-22

    PtCo alloy catalysts for high temperature PEMFCs (protonic exchange membrane fuel cells) were synthesized on a novel noncarbonaceous support (SiCTiC) using the impregnation method with NaBH 4 as the reducing agent at different synthesis temperatures to evaluate the effect of this variable on their physicochemical and electrochemical properties. The catalysts were characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscope-energy dispersive X-ray,and temperature-programmed reduction. In addition, the electrochemical characterization (i.e., cyclic voltammetry, oxygen reduction reaction, and chronoamperometry) was carried out with a rotating disk electrode. For the cyclic voltammetry investigation, 400 cycles were performed in hot phosphoric acid and a half-cell to evaluate the stability of the synthesized catalysts. The catalyst synthesized on SiCTiC exhibited excellent durability compared to the catalyst synthesized on a Vulcan support. In addition, all synthesized catalysts exhibited better catalytic activity than that of the PtCo/C catalysts. The best results were observed for the catalyst synthesized at 80 °C due to its shorter Pt-Pt nearest-neighbor and higher alloy degree. Finally, a preliminary stability test was conducted in an HT-PEMFC, and promising results in terms of stability and performance were observed.

  20. Related Studies in Long Term Lithium Battery Stability

    NASA Technical Reports Server (NTRS)

    Horning, R. J.; Chua, D. L.

    1984-01-01

    The continuing growth of the use of lithium electrochemical systems in a wide variety of both military and industrial applications is primarily a result of the significant benefits associated with the technology such as high energy density, wide temperature operation and long term stability. The stability or long term storage capability of a battery is a function of several factors, each important to the overall storage life and, therefore, each potentially a problem area if not addressed during the design, development and evaluation phases of the product cycle. Design (e.g., reserve vs active), inherent material thermal stability, material compatibility and self-discharge characteristics are examples of factors key to the storability of a power source.

  1. Immobilization of Lipase Inhibitor on the Biopolymers from Agaricus bisporus Cell Walls

    PubMed Central

    2017-01-01

    Summary One of the methods for curing obesity is the inclusion of some substances with the antilipase activity in the diet and thus reducing the uptake of fat components from food. The aim of this research is to provide a stabilized form of lipase inhibitor by immobilization of enzyme on the biopolymers from Agaricus bisporus cell walls. The phenolic compounds extracted from the rapeseed were considered as the lipase inhibitor. The activity of the inhibitor was considerably reduced in the gastric juice, as well as at temperatures above 37 °C and during its storage, which determined the suitability of the inhibitor for stabilization on the matrix. The effectiveness of the phenolic compound stabilization was investigated by means of immobilization on the biopolymers from Agaricus bisporus cell wall matrix. The biopolymers used were β-glucan, chitin, melanin and proteins. A number of samples, which differed both in the content of the inhibitor (from 1 to 16%) and in the ratio of biopolymers in the matrix composition, was obtained. The conditions of immobilization (temperature, duration of the process) were also varied. The expediency of obtaining the sample with the inhibitor content of 12% and matrix containing 47.9% of glucan, 18.8% of chitin, 18.8% of melanin and 11.1% of proteins was shown. The best immobilization was carried out at 20–25 °C for 30 min. Thermal analysis and infrared spectroscopy data confirmed that immobilization of the lipase inhibitor on the matrix was due to the hydrogen bonds. The immobilized inhibitor had higher pH stability and higher thermal stability than the original one. The remaining activity of the immobilized inhibitor was higher than the original one after incubation in the gastric acid and bile. The immobilized inhibitor was characterized by a low loss of activity after 12 months of storage. PMID:29540987

  2. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Novel Montmorillonite/TiO₂/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts.

    PubMed

    Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M

    2017-11-19

    A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

  4. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  5. Experimental constraints on the monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Ca vs. Na activity in the fluid

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Majka, Jarosław; Kozub, Gabriela A.

    2014-05-01

    Stability relations of monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote are strongly dependent on pressure, temperature and fluid composition. The increased Ca bulk content expands stability field of allanite relative to monazite towards higher temperatures (Spear, 2010, Chem Geol 279, 55-62). It was also reported from amphibolite facies Alpine metapelites, that both temperature and bulk CaO/Na2O ratio control relative stabilities of allanite, monazite and xenotime (Janots et al., 2008, J Metam Geol 26, 5, 509-526). This study experimentally defines influence of pressure, temperature, high activity of Ca vs. Na in the fluid, and high vs. moderate bulk CaO/Na2O ratio on the relative stabilities of monazite-fluorapatite-allanite/REE-rich epidote and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote. This work expands previous experimental study on monazite (Budzyń et al., 2011, Am Min 96, 1547-1567) to wide pressure-temperature range of 2-10 kbar and 450-750°C, utilizing most reactive fluids used in previous experiments. Experiments were performed using cold-seal autoclaves on a hydrothermal line (2-4 kbar runs) and piston-cylinder apparatus (6-10 kbar runs) over 4-16 days. Four sets of experiments, two for monazite and two for xenotime, were performed with 2M Ca(OH)2 and Na2Si2O5 + H2O fluids. The starting materials included inclusion-free crystals of monazite (pegmatite, Burnet County, TX, USA) or xenotime (pegmatite, Northwest Frontier Province, Pakistan) mixed with (1) labradorite (Ab37An60Kfs3) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + 2M Ca(OH)2 or (2) albite (Ab100) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + Na2Si2O5 + H2O. 20-35 mg of solids and 5 mg of fluid were loaded into 3x15 mm Au capsules and arc welded shut. The monazite alteration is observed in all runs. Newly formed REE-rich fluorapatite and/or britholite are stable in all experimental P-T range in the presence of both fluids. Alteration of monazite and subsequent formation of REE-rich epidote or allanite, REE-rich fluorapatite and britholite was promoted by high activity of Ca in the fluid, with high bulk CaO/Na2O ratio of ca. 11.5 in the system. In contrast, neither REE-rich epidote nor allanite does form in the presence of Na2Si2O5 + H2O fluid, with bulk CaO/Na2O ratio of ca. 1.0. Results indicating that stability field of allanite relative to monazite expands towards higher temperatures along with increased Ca bulk content are consistent with recent thermodynamic modeling of phase equilibria (Spear, 2010). Experiments also support natural observations from the amphibolite-facies Alpine metapelites regarding the influence of CaO/Na2O ratio in bulk content on the relative stabilities of monazite and REE-rich epidote (Janots et al., 2008). Alteration of xenotime is observed in all runs. (Y,HREE)-rich britholite or (Y,HREE)-rich fluorapatite always formed. In contrast to monazite experiments, (Y,HREE)-rich epidote formed only at 650°C and 8-10 kbar, in the presence of 2M Ca(OH)2. Results are partially consistent with natural observations showing that stability of (Y,HREE)-rich epidote is promoted by high Ca bulk content with high CaO/Na2O ratio (Janots et al., 2008). However, experimental results indicate that the relative stabilities of xenotime and (Y,HREE)-rich epidote are strongly controlled by pressure. Acknowledgements. The project was funded by the National Science Center of Poland, grant no. 2011/01/D/ST10/04588.

  6. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories

    PubMed Central

    Lou, Jerry J; Mirsadraei, Leili; Sanchez, Desiree E; Wilson, Ryan W; Shabihkhani, Maryam; Lucey, Gregory M; Wei, Bowen; Singer, Elyse J; Mareninov, Sergey; Yong, William H

    2014-01-01

    Frozen biospecimens are crucial for translational research and contain well preserved nucleic acids and protein. However, the risk for catastrophic freezer failure as well as space, cost, and environmental concerns argue for evaluating long-term room temperature storage alternatives. Formalin-fixed paraffin embedded (FFPE) tissues have great value but their use is limited by cross-linking and fragmentation of nucleic acids, as well as loss of enzymatic activity. Stabilization solutions can now robustly preserve fresh tissue for up to 7 days at room temperature. For longer term storage, commercial vendors of chemical matrices claim real time stability of nucleic acids of over 2 years and their accelerated aging studies to date suggest stability for 12 years for RNA and 60 years for DNA. However, anatomic pathology biorepositories store mostly frozen tissue rather than nucleic acids. Small quantities of tissue can be directly placed on some chemical matrices to stabilize DNA, however RNA and proteins are not preserved. Current lyophilization approaches can preserve histomorphology, DNA, RNA, and proteins though RNA shows moderate degradation after 1–2 years. Formalin free fixatives show improved but varying abilities to preserve nucleic acids and face validation as well as cost barriers in replacing FFPE specimens. The paraffin embedding process can degrade RNA. Development of robust long-term room temperature biospecimen tissue storage technology can potentially reduce costs for the biomedical community in the face of growing targeted therapy needs and decreasing budgets. PMID:24362270

  7. Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study.

    PubMed

    Zokti, James A; Sham Baharin, Badlishah; Mohammed, Abdulkarim Sabo; Abas, Faridah

    2016-07-26

    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.

  8. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    PubMed

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of the inducers veratryl alcohol, Xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor.

    PubMed

    Saraiva, Jorge A; Tavares, Ana P M; Xavier, Ana M R B

    2012-06-01

    Laccase production from Trametes versicolor was improved in the presence of the inducers ligninosulphonates, veratryl alcohol, and xylidine respectively two-, four-, and eightfold. The thermal inactivation of the produced laccase, after partial purification with ammonium sulfate was kinetically investigated at various temperatures (60-70 °C) and pH values (3.5, 4.5, and 5.5). The inactivation process followed first-order kinetics for all conditions tested, except for veratryl alcohol, for which a constant activity level was observed at the end of the inactivation, also after first-order decay. Enzyme thermostability was affected by the type of inducer used in the culture medium for the production of laccase and also by the pH of incubation mixture. Generally, laccase stability increased with pH increment, being more stable at pH 5.5, except with xylidine. At pHs 4.5 and 5.5, the three inducers significantly increased laccase thermal stability, with the higher effect being observed for pH 5.5 and ligninosulphonates, where increment of half-life times ranged from 3- to 20-fold, depending on the temperature.

  10. Nanostructured porous Si optical biosensors: effect of thermal oxidation on their performance and properties.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Fruk, Ljiljana; Segal, Ester

    2014-09-24

    The influence of thermal oxidation conditions on the performance of porous Si optical biosensors used for label-free and real-time monitoring of enzymatic activity is studied. We compare three oxidation temperatures (400, 600, and 800 °C) and their effect on the enzyme immobilization efficiency and the intrinsic stability of the resulting oxidized porous Si (PSiO2), Fabry-Pérot thin films. Importantly, we show that the thermal oxidation profoundly affects the biosensing performance in terms of greater optical sensitivity, by monitoring the catalytic activity of horseradish peroxidase and trypsin-immobilized PSiO2. Despite the significant decrease in porous volume and specific surface area (confirmed by nitrogen gas adsorption-desorption studies) with elevating the oxidation temperature, higher content and surface coverage of the immobilized enzymes is attained. This in turn leads to greater optical stability and sensitivity of PSiO2 nanostructures. Specifically, films produced at 800 °C exhibit stable optical readout in aqueous buffers combined with superior biosensing performance. Thus, by proper control of the oxide layer formation, we can eliminate the aging effect, thus achieving efficient immobilization of different biomolecules, optical signal stability, and sensitivity.

  11. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stráská, Jitka, E-mail: straska.jitka@gmail.com; Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz; Čížek, Jakub, E-mail: jcizek@mbox.troja.mff.cuni.cz

    Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardnessmore » and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.« less

  12. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    PubMed Central

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen

    2011-01-01

    The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550–700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300–400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum – most likely along Pt grain boundaries – as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum. PMID:22210951

  13. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    PubMed

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  14. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  15. Evaluation of Thermostabilities of Enzymes, Mediators and Immobilizing Membranes for Enzyme Sensors

    NASA Astrophysics Data System (ADS)

    Yamada, Yohei; Ohnishi, Yuki; Hayashi, Tetsuya; Isobe, Yoshifumi; Yabutani, Tomoki

    The stability of the constituents of electrochemical measurement, electron mediators, enzymes and enzyme-immobilizing membranes was evaluated under high temperature (maximum 75°C) by electrochemical analysis, UV-Vis spectrometry (UV-Vis) and UV circular dichroism (CD). As a result of stability evaluation of mediators at 75°C, electrochemical activity of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid ammonium salt (ABTS), potassium ferricyanide (K3[Fe(CN)6]) and ferrocenemethanol (FcOH) were not changed, but 2,6-dichloroindophenol (DCIP), p-benzoquinone (p-BQ), vitaminK3 (VK3) were greatly decreased. The stability of diaphorase from Bacillus stearothermophilus (DI) were compared between in-solution and in several types of membranes, Agarose H, Poly-L-lysine (PLL) and poly-ion-complex (PIC) by electrochemical analysis. In solution, activity and secondary structure of DI were changed at 65°C or higher. This tendency of activity was not much different in Agarose H but in PLL, the activity was almost kept until 70°C. It was suggested that DI was fixed on the electrodes in high concentration and the elimination of DI seldom arise in PLL from the magnitude of the current response and the results of prolonged stability evaluation.

  16. Structure and dynamics of GeoCyp: a thermophilic cyclophilin with a novel substrate binding mechanism that functions efficiently at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Michael; Camilloni, Carlo; Armstrong, Geoffrey S.

    2015-05-26

    Thermophilic proteins have found extensive use in research and industrial applications due to their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamicmore » motions over several timescales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures in order to compare structure, dynamics, and function to a mesophilic counterpart, human Cyclophilin A (CypA). Unlike most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Despite subtle differences in conformational movements, dynamics over fast (ps-ns) and slow (μs) timescales are largely conserved between the two proteins.« less

  17. Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis

    PubMed Central

    Barnwal, Ravi Pratap; Loh, Edmund; Godin, Katherine S.; Yip, Jordan; Lavender, Hayley; Tang, Christoph M.; Varani, Gabriele

    2016-01-01

    Neisseria meningitidis causes bacterial meningitis and septicemia. It evades the host complement system by upregulating expression of immune evasion factors in response to changes in temperature. RNA thermometers within mRNAs control expression of bacterial immune evasion factors, including CssA, in the 5′-untranslated region of the operon for capsule biosynthesis. We dissect the molecular mechanisms of thermoregulation and report the structure of the CssA thermometer. We show that the RNA thermometer acts as a rheostat, whose stability is optimized to respond in a small temperature range around 37°C as occur within the upper airways during infection. Small increases in temperature gradually open up the structure to allow progressively increased access to the ribosome binding site. Even small changes in stability induced by mutations of imperfect base pairs, as in naturally occurring polymorphisms, shift the thermometer response outside of the desired temperature range, suggesting that its activity could be modulated by pharmacological intervention. PMID:27369378

  18. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.

    PubMed

    Brown, I; Dafforn, T R; Fryer, P J; Cox, P W

    2013-12-01

    Hyperthermophilic enzymes are of industrial importance and interest, especially due to their denaturation kinetics at commercial sterilisation temperatures inside safety indicating time-temperature integrators (TTIs). The thermal stability and irreversible thermal inactivation of native extracellular Pyrococcus furiosus α-amylase were investigated using differential scanning calorimetry, circular dichroism and Fourier transform infrared spectroscopy. Denaturation of the amylase was irreversible above a Tm of approximately 106°C and could be described by a one-step irreversible model. The activation energy at 121°C was found to be 316kJ/mol. Using CD and FT-IR spectroscopy it was shown that folding and stability greatly increase with temperature. Under an isothermal holding temperature of 121°C, the structure of the PFA changes during denaturation from an α-helical structure, through a β-sheet structure to an aggregated protein. Such data reinforces the use of P. furiosus α-amylase as a labile species in TTIs. © 2013.

  19. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    PubMed

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  20. Shelf-life of a 2.5% sodium hypochlorite solution as determined by Arrhenius equation.

    PubMed

    Nicoletti, Maria Aparecida; Siqueira, Evandro Luiz; Bombana, Antonio Carlos; Oliveira, Gabriella Guimarães de

    2009-01-01

    Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 degrees C) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 degrees C (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 degrees C, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 degrees C. This model, however, makes it possible to calculate shelf-life at any other given temperature.

  1. Workshop on High Temperature Metal-Ceramic Composites Held in Aurora, New York on 10-11 September 1990

    DTIC Science & Technology

    1990-12-26

    to mechanical properties , atomic structure , electronic bonding, and long term stability of interfaces at high temperature. The objective of this...discussion. The subjects were measurement of the local mechanical properties of-interfaces, constrained deformation, reactions at metal ceramic...as a function of oxygen activity and the effect of these reactions on mechanical properties understood, (iv) local deformation on the scale of

  2. Fluorescence properties and conformational stability of the beta-hemocyanin of Helix pomatia.

    PubMed

    Idakieva, Krassimira; Siddiqui, Nurul I; Parvanova, Katja; Nikolov, Peter; Gielens, Constant

    2006-04-01

    The beta-hemocyanin (beta-HpH) is one of the three dioxygen-binding proteins found freely dissolved in the hemolymph of the gastropodan mollusc Helix pomatia. The didecameric molecule (molecular mass 9 MDa) is built up of only one type of subunits. The fluorescence properties of the oxygenated and apo-form (copper-deprived) of the didecamer and its subunits were characterized. Upon excitation of the hemocyanins at 295 or 280 nm, tryptophyl residues buried in the hydrophobic interior of the protein determine the fluorescence emission. This is confirmed by quenching experiments with acrylamide, cesium chloride and potassium iodide. The copper-dioxygen system at the binuclear active site quenches the tryptophan emission of the oxy-beta-HpH. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophyl residues in the apo-form. Time-resolved fluorescence measurements show that the oxygenated and copper-deprived forms of the beta-HpH and its subunits exist in different conformations. The thermal stability of the oxy- and apo-beta-HpH is characterized by a transition temperature (Tm) of 84 degrees C and 63 degrees C, respectively, obtained by differential scanning calorimetry. Increase of the temperature influences the active site at lower temperatures than the environments of tryptophans and tyrosines causing a loss of oxygen bound to the copper atoms. This process is, at least partially, reversible as after cooling of the protein samples, around 60% reinstatement of the copper-peroxide band has been observed. The results confirm the role of the copper-dioxygen complex for the stabilization of the hemocyanin structure in solution. The other important stabilizing factor is oligomerization of the hemocyanin molecule.

  3. An external sodium ion binding site controls allosteric gating in TRPV1 channels

    PubMed Central

    Jara-Oseguera, Andres; Bae, Chanhyung; Swartz, Kenton J

    2016-01-01

    TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 activate in two steps to favor opening, and that the binding of sodium to an extracellular site exerts allosteric control over temperature-sensor activation and opening of the pore. The binding of a tarantula toxin to the external pore also exerts control over temperature-sensor activation, whereas binding of vanilloids influences temperature-sensitivity by largely affecting the open/closed equilibrium. Our results reveal a fundamental role of the external pore in the allosteric control of TRPV1 channel gating and provide essential constraints for understanding how these channels can be tuned by diverse stimuli. DOI: http://dx.doi.org/10.7554/eLife.13356.001 PMID:26882503

  4. High-temperature catalytically assisted combustion. Final report, 1 August 1981-31 July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracco, F.V.; Royce, B.S.H.; Santavicca, D.A.

    1983-07-31

    Results of research on a two-dimensional, transient catalytic combustion model and on a high temperature perovskite catalyst are presented. A recently developed two-dimensional, transient model was used to study the ignition of carbon monoxide/air mixtures in a platinum-coated catalytic honeycomb. Comparisons between calculated and measured steady-state substrate temperature profiles and exhaust-gas compositions show good agreement. A platinum-doped perovskite catalyst proposed will exhibit low-temperature light off and high-temperature stability. Preliminary tests using a perovskite powder with 1 wt.% platinium are encouraging, showing very little change in surface activity when used with propane fuel. Variations in catalytic activity from sample to samplemore » were also found, and after extensive testing the cause of these variations could not be identified. However, preliminary tests using Fourier-transform infrared photoacoustic spectroscopy do indicate differences in the various catalyst samples that may be related to the difference in catalytic activity. The use of bench-top-oven and differential-scanning-calorimetry techniques for screening catalysts in terms of relative activity and aging characteristics were also demonstrated.« less

  5. Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods.

    PubMed

    Giménez, Pedro J; Fernández-López, José A; Angosto, José M; Obón, José M

    2015-12-01

    There is a great interest in natural yellow colorants due to warnings issued about certain yellow food colorings of synthetic origin. However, no comparative studies have been reported of their thermal stability. For this reason, the thermal stabilities of six natural yellow colorants used in foods--lutein, riboflavin, curcumin, ß-carotene, gardenia yellow and Opuntia betaxanthins--were studied in simple solutions over a temperature range 30-90 °C. Spectral properties and visual color were investigated during 6 h of heat treatment. Visual color was monitored from the CIEL*a*b* parameters. The remaining absorbance at maximum wavelength and the total color difference were used to quantify color degradation. The rate of color degradation increased as the temperature rose. The results showed that the thermal degradation of the colorants followed a first-order reaction kinetics. The reaction rate constants and half-life periods were determined as being central to understanding the color degradation kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. Activation energies ranged from 3.2 kJmol(-1) (lutein) to 43.7 kJmol(-1) (Opuntia betaxanthins). ß-carotene and lutein exhibited high thermal stability, while betaxanthins and riboflavin degraded rapidly as temperature increased. Gardenia yellow and curcumin were in an intermediate position.

  6. Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches.

    PubMed

    Mohamad Ali, Mohd Shukuri; Mohd Fuzi, Siti Farhanie; Ganasen, Menega; Abdul Rahman, Raja Noor Zaliha Raja; Basri, Mahiran; Salleh, Abu Bakar

    2013-01-01

    The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.

  7. Evaluation of pharmacokinetics and the stability of daptomycin in serum at various temperatures.

    PubMed

    Ogami, Chika; Tsuji, Yasuhiro; Kasai, Hidefumi; Hiraki, Yoichi; Yamamoto, Yoshihiro; Matsunaga, Kazuhisa; Karube, Yoshiharu; To, Hideto

    2017-04-01

    Daptomycin exhibits concentration-dependent antibacterial activity. By monitoring daptomycin serum concentrations, clinicians may be able to predict the effectiveness of treatments for infections more accurately. However, it has been reported that daptomycin concentrations in plasma samples stored at -20°C decrease approximately 25% after 4 weeks. The aim of this study was to evaluate the stability of daptomycin in serum at various temperatures. Daptomycin serum samples were prepared and stored at different temperatures. The stability of daptomycin under various conditions was evaluated by sequential measurements of concentration. Although the loss of concentration of daptomycin in serum samples stored in freezers (-80°C and -20°C) was less than 10% after 168days (6 months), the concentrations in samples stored in a refrigerator (4°C) decreased by more than 70% over the same period. Furthermore, daptomycin concentrations in serum samples stored at close to body temperature (35°C, 37°C, and 39°C) decreased by more than 50% after only 24h. The results of the present study demonstrate that the measurement of serum concentrations of daptomycin needs to be performed rapidly. Furthermore, the degradation of daptomycin in serum may be involved in its elimination from the living body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Low vibration cooling using a pulse tube cooler and cryostat for the GRAVITY beam combiner instrument at the VLTI

    NASA Astrophysics Data System (ADS)

    Haug, M.; Haussmann, F.; Kellner, S.; Kern, L.; Eisenhauer, F.; Lizon, J.-L.; Dietrich, M.; Thummes, G.

    2014-07-01

    GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.

  9. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

    PubMed

    Ulu, Ahmet; Noma, Samir Abbas Ali; Koytepe, Suleyman; Ates, Burhan

    2018-06-06

    l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of Fe 3 O 4 @Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of Fe 3 O 4 @MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

  10. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C

    NASA Astrophysics Data System (ADS)

    Alfonso, A.; Juul Jensen, D.; Luo, G.-N.; Pantleon, W.

    2014-12-01

    Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process indicate a sufficient thermal stability of the tungsten plate during operation below 1075 °C.

  11. Carbon Film Electrodes For Super Capacitor Applications

    DOEpatents

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  12. Method for making carbon films

    DOEpatents

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  13. Method for making carbon films

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  14. Long-term stable active mount for reflective optics

    NASA Astrophysics Data System (ADS)

    Reinlein, C.; Brady, A.; Damm, C.; Mohaupt, M.; Kamm, A.; Lange, N.; Goy, M.

    2016-07-01

    We report on the development of an active mount with an orthogonal actuator matrix offering a stable shape optimization for gratings or mirrors. We introduce the actuator distribution and calculate the accessible Zernike polynomials from their actuator influence function. Experimental tests show the capability of the device to compensate for aberrations of grating substrates as we report measurements of a 110x105 mm2 and 220x210 mm2 device With these devices, we evaluate the position depending aberrations, long-term stability shape results, and temperature-induced shape variations. Therewith we will discuss potential applications in space telescopes and Earth-based facilities where long-term stability is mandatory.

  15. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC affords to operate the radiometer component away from the problematic temperature zone. A simple ThermXL model (10 nodes) was developed to exercise quick trade studies among various proposed control algorithms: Modified P control vs. PI control. The ThermXL results were then compared with the detailed Thermal Desktop (TD) model for corroboration. Once done, the simple ThermXL model was used to evaluate parameter effects such as temperature digitization, heater size and gain margin, time step, and voltage variation of power supply on the ATC performance. A Modified P control algorithm was implemented into the instrument flight electronics based on the ThermXL results. The thermal short-term stability margin decreased by 10 percent with ATC and a wide temperature error band (plus or minus 0.1 degrees Centigrade) compared to the original passive thermal design. However, a tighter temperature error band (plus or minus 0.1 degrees Centigrade) increased the thermal short-term stability margin by a factor of three over the passive thermal design. The current ATC design provides robust thermal control, tighter stability, and greater in-flight flexibility even though its implementation was prompted by non-thermal performance concerns.

  16. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    PubMed

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  17. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor.

    PubMed

    Snajdr, J; Baldrian, P

    2007-01-01

    Enzyme activity was determined in cultures of Pleurotus ostreatus and Trametes versicolor with cellulose as a sole C source and high C/N ratio. The fungi were able to grow and produce laccase and Mn-peroxidase (MnP) at 5-35 degrees C, the highest production being recorded at 25-30 degrees C in P. ostreatus and at 35 degrees C in T. versicolor. Production of both enzymes at 10 degrees C accounted only for 4-20% of the maximum value. Temperature optima for enzyme activity were 50 and 55 degrees C for P. ostreatus and T. versicolor laccases, respectively, and 60 degrees C for MnP. Temperatures causing 50% loss of activity after 24 h were 32 and 47 degrees C for laccases and 36 and 30 degrees C for MnP from P. ostreatus and T. versicolor, respectively.

  18. Immunodetection of the Bacteriocin Lacticin RM: Analysis of the Influence of Temperature and Tween 80 on Its Expression and Activity

    PubMed Central

    Keren, Tomer; Yarmus, Merav; Halevy, Galia; Shapira, Roni

    2004-01-01

    Immunoassays with specific antibodies offer higher sensitivity than do bioassays with indicator strains in the detection and quantification of several bacteriocins. Here we present the purification of lacticin RM and the production of specific polyclonal antibodies to a synthetic peptide resembling an internal fragment of the mature bacteriocin. The specificity and sensitivity of the generated polyclonal antibodies were evaluated in various immunoassays. The detection limits of lacticin RM were found to be 1.9, 0.16, and 0.18 μg ml−1 for Western blot, immuno-dot blot, and noncompetitive indirect enzyme-linked immunosorbent assays, respectively. Immunoassay sensitivities were 12.5-fold higher than that of the agar diffusion test (ADT). The production of lacticin RM showed temperature dependency, with 3, 4.2, 12.7, 28.9, 37.8, and 12 μg ml−1 at 37, 30, 20, 15, 10, and 4°C, respectively. Temperature-stability analysis demonstrated that lacticin RM is sensitive to mild temperature, but the loss of activity does not seem to result from protein degradation. Tween 80 increased the concentration of lacticin RM eightfold and probably affected the results of the ADT either by enhancing the activity of lacticin RM or by increasing the sensitivity of the indicator strain. The use of antibodies for the specific detection and quantification of lacticin RM can expand our knowledge of its production and stability, with important implications for further investigation and future application. PMID:15066801

  19. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho; Kim, Tae Kyu

    2017-04-01

    Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl2 solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.

  20. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers.

    PubMed

    He, B L; Jiang, P; Qiu, Y B

    1990-01-01

    Aminoacylase from Aspergillus oryzae was adsorbed on functionallized macroporous copolymers where the enzyme showed excellent catalyzing activity and operation stability. Various factors which effect the activity of the immobilized aminoacylase such as temperature, pH and ionic strength were investigated. The continuous operation of the enzyme immobilized on macroporous copolymers was compared with that of the enzyme immobilized on DEAE-Sephadex.

  1. Characterization of a bi-functional cellulase produced by a gut bacterial resident of Rosaceae branch borer beetle, Osphranteria coerulescens (Coleoptera: Cerambycidae).

    PubMed

    Hatefi, Atousa; Makhdoumi, Ali; Asoodeh, Ahmad; Mirshamsi, Omid

    2017-10-01

    A cellulolytic bacterium was obtained from the digestive tract of Osphranteria coerulescens. The breakdown of woody and cellulosic substances by this insect may be relative in part to its symbiont bacteria. Under optimal cultural conditions the novel isolate produced 5.35U/ml cellulase after 72h. The enzyme was purified to 36 fold with a 0.59% yield and showed a specific activity of 9.0U/mg. It presented its maximum activity at 60°C and pH 5, while it was stable in a wide range of temperature from 20 to 60°C and pH from 5 to 10. The purified enzyme had a molecular weight of 42.50kDa based on SDS-PAGE and zymogram analyses. It demonstrated high ions and solvent stability and its activity was stimulated by Mn 2+ , Na + , DMSO and chloroform. The enzyme could hydrolyze CMC, avicel, cellulose and sawdust. TLC analysis represented the cellobiose as the hydrolytic product of CMC. With regard to endo/exo glucanase activity and wide pH, temperature and solvent stability, it has potential for industrial application. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  4. Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design.

    PubMed

    Ece, Selin; Evran, Serap; Janda, Jan-Oliver; Merkl, Rainer; Sterner, Reinhard

    2015-06-01

    Neopullulanase, a glycosyl hydrolase from Bacillus stearothermophilus (bsNpl), is a potentially valuable enzyme for starch and detergent industries. However, as the protein is not active at elevated temperatures and high surfactant concentrations, we aimed to increase its stability by rational enzyme design. Nine potentially destabilizing cavities were identified in the crystal structure of the enzyme. Based on computational predictions, these cavities were filled by residues with bulkier side chains. The five Asp46Glu, Val239Leu, Val404Leu, Ser407Thr and Ala566Leu exchanges resulted in a drastic stabilization of bsNpl against inactivation by heat and detergents. The catalytic activity of the variants was identical to the wild-type enzyme. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  6. N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris.

    PubMed

    Zou, Shuping; Huang, Shen; Kaleem, Imdad; Li, Chun

    2013-03-10

    Recombinant β-glucuronidase (GUS) expressed in Pichia pastoris GS115 is an important glycoprotein, encoded by a gene with four potential N-glycosylation sites. To investigate the impact of N-linked carbohydrate moieties on the stability of recombinant GUS, it was deglycosylated by peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic activities of the glycosylated and deglycosylated GUS were compared under various conditions such as temperature, pH, organic solvents, detergents and chaotropic agent. The results demonstrated that the glycosylated GUS retained greater fraction of maximum enzymatic activity against various types of denaturants compared with the deglycosylated. The conformational stabilities of both GUS were analyzed by monitoring the unfolding equilibrium by using the denaturant guanidinium chloride (dn-HCl). The glycosylated GUS displayed a significant increase in its conformational stability than the deglycosylated counterpart. These results affirmed the key role of N-glycosylation on the structural and functional stability of β-glucuronidase and could have potential applications in the functional enhancement of industrial enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Compatibility of chewing gum excipients with the amino acid L-cysteine and stability of the active substance in directly compressed chewing gum formulation.

    PubMed

    Kartal, Alma; Björkqvist, Mikko; Lehto, Vesa-Pekka; Juppo, Anne Mari; Marvola, Martti; Sivén, Mia

    2008-09-01

    Using L-cysteine chewing gum to eliminate carcinogenic acetaldehyde in the mouth during smoking has recently been introduced. Besides its efficacy, optimal properties of the gum include stability of the formulation. However, only a limited number of studies exist on the compatibility of chewing gum excipients and stability of gum formulations. In this study we used the solid-state stability method, Fourier transform infrared spectroscopy and isothermal microcalorimetry to investigate the interactions between L-cysteine (as a free base or as a salt) and excipients commonly used in gum. These excipients include xylitol, sorbitol, magnesium stearate, Pharmagum S, Every T Toco and Smily 2 Toco. The influence of temperature and relative humidity during a three-month storage period on gum formulation was also studied. Cysteine alone was stable at 25 degrees C/60% RH and 45 degrees C/75% RH whether stored in open or closed glass ambers. As a component of binary mixtures, cysteine base remained stable at lower temperature and humidity but the salt form was incompatible with all the studied excipients. The results obtained with the different methods corresponded with each other. At high temperature and humidity, excipient incompatibility with both forms of cysteine was obvious. Such sensitivity to heat and humidity during storage was also seen in studies on gum formulations. It was also found that cysteine is sensitive to high pressure and increase in temperature induced by compression. The results suggest that the final product should be well protected from temperature and humidity and, for example, cooling process before compression should be considered.

  8. Synthesis, characterization, and thermal stability of SiO2/TiO2/CR-Ag multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Díaz, Gabriela; Chang, Yao-Jen; Philipossian, Ara

    2018-06-01

    The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.

  9. Time- and temperature-dependent changes in cytochrome c oxidase activity and cyanide concentration in excised mice organs and mice cadavers.

    PubMed

    Singh, Poonam; Rao, Pooja; Yadav, Shiv K; Gujar, Niranjan L; Satpute, Ravindra M; Bhattacharya, Rahul

    2015-01-01

    Postmortem stability of cyanide biomarkers is often disputed. We assessed the time and temperature-dependent changes in cytochrome c oxidase (CCO) activity and cyanide concentration in various organs of mice succumbing to cyanide. Immediately after death, excised mice organs and mice cadavers were stored at room temperature (35°C ± 5°C) or in frozen storage (-20°C ± 2°C). At various times after death, CCO activity and cyanide concentrations were measured in excised mice organs or organs removed from mice cadavers. The study revealed that (i) measuring both the biomarkers in mice cadavers was more reliable compared to excised mice organs, (ii) measuring temporal CCO activity and cyanide concentration in vital organs from mice cadavers (room temperature) was reliable up to 24 h, and (iii) CCO activity in the brain and lungs and cyanide concentration in organs from mice cadavers (frozen) were measurable beyond 21 days. This study will be helpful in postmortem determination of cyanide poisoning. © 2014 American Academy of Forensic Sciences.

  10. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity

    PubMed Central

    Kim, Yeu-Chun; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2009-01-01

    Microneedle patches coated with solid-state influenza vaccine have been developed to improve vaccine efficacy and patient coverage. However, dip coating microneedles with influenza vaccine can reduce antigen activity. In this study, we sought to determine the experimental factors and mechanistic pathways by which inactivated influenza vaccine can lose activity, as well as develop and assess improved microneedle coating formulations that protect the antigen from activity loss. After coating microneedles using a standard vaccine formulation, antigenicity was reduced to just 2%, as measured by hemagglutination activity. The presence of carboxymethylcellulose, which was added to increase viscosity of the coating formulation, was shown to contribute to vaccine activity loss. After screening a panel of candidate stabilizers, the addition of trehalose to the coating formulation was shown to protect the antigen and retain 48–82% antigen activity for all three major strains of seasonal influenza: H1N1, H3N2 and B. Influenza vaccine coated in this way also exhibited thermal stability, such that activity loss was independent of temperature over the range of 4 – 37°C for 24 h. Dynamic light scattering measurements showed that antigen activity loss was associated with virus particle aggregation, and that stabilization using trehalose largely blocked this aggregation. Finally, microneedles using an optimized vaccine coating formulation were applied to the skin to vaccinate mice. Microneedle vaccination induced robust systemic and functional antibodies and provided complete protection against lethal challenge infection similar to conventional intramuscular injection. Overall, these results show that antigen activity loss during microneedle coating can be largely prevented through optimized formulation and that stabilized microneedle patches can be used for effective vaccination. PMID:19840825

  11. Thermal stability of supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Turba, Timothy Fredrick

    Nanoparticle gold is of interest for a wide array of applications including catalysis, gas sensing, and light absorption for color filters and optical switches. Many of these applications are dependent upon the particles having sizes <5nm. In this paper, the thermal stability of nanoparticle gold is evaluated. Unsupported gold nanoparticles can grow (and in some cases double their size) even at room temperature. An important approach to stabilizing gold nanoparticles is through an interaction with a suitable substrate support material. Semiconductor substrates such as GaN are important supports for gold nanoparticles for applications such as sensors, but GaN does not provide a significant stabilizing effect at high temperatures. This paper covers a number of different substrate materials and in particular shows that for some substrates, such as SiO2, gold nanoparticles can be stable at temperatures up to 500°C, which is significantly above the Tammann temperature for bulk gold (395°C). In this dissertation, gold nanoparticles are shown to have complete stability on aluminum-supported silica nanosprings at 550°C in air. This stability window is one of the highest reported for nanoparticle gold and potentially enables a number of applications for this highly active catalyst. X-ray photoelectron spectroscopy measurements were performed before and after heating to 550°C to determine the nature of the interaction between gold and SiO2. A 1.2 eV drop in gold 4f binding energy after heating signified a shift to anionic gold particles (i.e., Au delta-) indicative of strong bonds to oxygen vacancies with neighboring Sidelta+ atoms. Heating in hydrogen at 550°C resulted in a binding energy decrease of 0.4 eV due to an increased fraction of particles with decreased coordination numbers (i.e., more atoms at edges and corners). Lastly, heating gold nanoparticles in an atmosphere of 10% relative humidity at 550°C resulted in apparent encapsulation of the gold.

  12. Low molecular weight thermostable {beta}-D-glucosidase from Acidothermus cellulolyticus

    DOEpatents

    Himmel, M.E.; Tucker, M.P.; Adney, W.S.; Nieves, R.A.

    1995-07-11

    A purified low molecular weight {beta}-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-{beta}-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65 C at a pH range of from about 2 to about 7, has an inactivation temperature of about 80 C at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5--54.5 kD as determined by SDS-PAGE. 6 figs.

  13. Low molecular weight thermostable .beta.-D-glucosidase from acidothermus cellulolyticus

    DOEpatents

    Himmel, Michael E.; Tucker, Melvin P.; Adney, William S.; Nieves, Rafael A.

    1995-01-01

    A purified low molecular weight .beta.-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-.beta.-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65.degree. C. at a pH range of from about 2 to about 7, has an inactivation temperature of about 80.degree. C. at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5-54.5 kD as determineded by SDS-PAGE.

  14. Optimized preparation and characterization of CLEA-lipase from cocoa pod husk.

    PubMed

    Khanahmadi, Soofia; Yusof, Faridah; Amid, Azura; Mahmod, Safa Senan; Mahat, Mohd Khairizal

    2015-05-20

    Cross-linked enzyme aggregate (CLEA) is easily prepared from crude enzyme and has many advantages to the environment and it is considered as an economic method in the context of industrial biocatalysis compared to free enzyme. In this work, a highly active and stable CLEA-lipase from cocoa pod husk (CPH) which is a by-product after removal of cocoa beans, were assayed for their hydrolytic activity and characterized under the optimum condition successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of the three significant factors (concentration of ammonium sulfate, concentration of glutaraldehyde and concentration of additive) to achieve higher enzyme activity of CLEA. From 20 runs, the highest activity recorded was around 9.407U (83% recovered activity) under the condition of using 20% saturated ammonium sulfate, 60mM glutaraldehyde as cross-linker and 0.17mM bovine serum albumin as feeder. Moreover, the optimal reaction temperature and pH value in enzymatic reaction for both crude enzyme and immobilized were found to be 45°C at pH 8 and 60°C at pH 8.2, respectively. A systematic study of the stability of CLEA and crude enzyme was taken with regards to temperature (25-60°C) and pH (5-10) value and in both factors, CLEA-lipase showed more stability than free lipase. The Km value of CLEA was higher compared to free enzyme (0.55mM vs. 0.08mM). The CLEA retained more than 60% of the initial activity after six cycles of reuse compared to free enzyme. The high stability and recyclability of CLEA-lipase from CPH make it efficient for different industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  16. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  17. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  18. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    PubMed

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    PubMed

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.

  20. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors

    PubMed Central

    Walters, Diane M.; Lyubimov, Ivan; de Pablo, Juan J.; Ediger, M. D.

    2015-01-01

    Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics. PMID:25831545

  1. Optimum Disinfection Properties and Commercially Available Disinfectants

    DTIC Science & Technology

    1989-07-01

    organic constituents that display a chlorine demand.) d. Upon addition to water, the agent should dissolve quickly and release its active ingredient(s...trione pH dependence alkaline pH favored Temperature dependence high at low residual Palatability Taste and odor claimed to be lartgly absent Color...CryptosgortdLjM at various temperature and pH levels. 2. A field procedwu for masueing disinfectant residual is ".eded for chlorin dioaide. 3. Stability

  2. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump floor, and active fan tend to be more variable as a consequence of less consistently structured soils. This could be due to either the predominance of older carbon being recycled within these profiles or a skewed balance between anaerobic vs. aerobic respiration.

  3. Studies on the storage stability of human blood cholinesterases : I.

    DOT National Transportation Integrated Search

    1970-01-01

    Whole blood, red cell, and plasma preparations were stored at room temperature, refrigerated, and frozen. Samples were assayed over a 50-day period using the technique of constant-pH titration (pH-Stat). At least 90% of the cholinesterase activity in...

  4. Air Pollution and Weather: Activities and Demonstrations for Science Classes

    ERIC Educational Resources Information Center

    Cole, Henry S.

    1973-01-01

    Discusses a number of concepts (turbulence, dispersion, vertical temperature distribution, atmospheric stability and instability, and inversions) which are prerequisite to understanding how weather affects air quality. Describes classroom demonstrations effective in introducing these concepts to students at the elementary, secondary and college…

  5. Study of the sodium phenytoin effect on the formation of sol-gel SiO 2 nanotubes by TEM

    NASA Astrophysics Data System (ADS)

    López, T.; Asomoza, M.; Picquart, M.; Castillo-Ocampo, P.; Manjarrez, J.; Vázquez, A.; Ascencio, J. A.

    2005-04-01

    Microencapsulation is a versatile technology that allows controlling the release of different active molecules. Recently the sol-gel process has emerged like a promising method to immobilization and stabilization of biologically active compounds like enzymes, antigens, microorganisms and drugs. Porous silica and titanium dioxide materials made by low temperature sol-gel processes are promising host matrixes for encapsulation of biological molecules. The preparation of a low-temperature silica sol followed by gelation to neutral pH with water for injection containing the antiepileptic drug is reported here. The structure is very important so the analysis of the new developed material is also reported. Particularly interesting is the presence of nanotubes and microtubes, produced in the inorganic matrix in the presence of the sodium phenytoin. The use of transmission electron microscopy and quantum mechanics molecular simulation allows determining a micelle-like effect during the synthesis of these materials, which controls the size, structure and stability of them.

  6. A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents.

    PubMed

    Hao, Jijun; Berry, Alan

    2004-09-01

    Thermostable variants of the Class II fructose bisphosphate aldolase have been isolated following four rounds of directed evolution using DNA shuffling of the fda genes from Escherichia coli and Edwardsiella ictaluri. Variants from all four generations of evolution have been purified and characterized. The variants show increased thermostability with no loss of catalytic function at room temperature. The temperature at which 50% of the initial enzyme activity is lost after incubation for 10 min (T50) of the most stable variant, 4-43D6, is increased by 11-12 degrees C over the wild-type enzymes and the half-life of activity at 53 degrees C is increased approximately 190-fold. In addition, variant 4-43D6 shows increased stability to treatment with organic solvents. DNA sequencing of the evolved variants has identified the mutations which have been introduced and which lead to increased thermostability, and the role of the mutations introduced is discussed.

  7. Temperature uniformity in the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Dias, António; Ehrhart, Sebastian; Vogel, Alexander; Williamson, Christina; Almeida, João; Kirkby, Jasper; Mathot, Serge; Mumford, Samuel; Onnela, Antti

    2017-12-01

    The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min-1, respectively. During steady-state calibration runs between -70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.

  8. Low work function silicon collector for thermionic converters

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  9. Partial purification and kinetic characterization of acid phosphatase from garlic seedling.

    PubMed

    Yenigün, Begüm; Güvenilir, Yüksel

    2003-01-01

    The objective of this study was to obtain purer acid phosphatases than produced by prior art by operating under conditions that improve the final product. The study features are the use of a mild nonionic detergent, 40-80% saturation with (NH4)2SOm4, maintained at low temperature to remove impurity, and the use of chromatografic columns to concentrate the acid phosphatase and remove non-acid phosphatase proteins with lower or higher molecular weights. Acid phosphatase was isolated and purified from garlic seedlings by a streamline method without the use of proteolytic and lipolytic enzymes, butanol, or other organic solvents. Grown garlic seedlings of 10- 15 cm height were homogenized with 0.1 M acetate buffer containing 0.1 M NaCl and 0.1% Triton X-100. After homogenization, the supernatant was filtered with paper filters. Filtrated supernatant was cooled to 4 degrees C, followed by a threestep fractionation of the proteins with ammonium sulfate. The crude enzyme was isolated as a green precipitate that was dissolved in a small amount of 0.1 M acetate buffer containing 0.1 M NaCl and 0.1% Triton X-100. Garlic seedling acid phosphatase was purified with ion-exchange chromatography (DEAE cellulose). The column was equilibrated with 0.1 M acetate buffer. Acid phosphatase was purified 40-fold from the starting material. The specific activity of the pure enzyme was 168 U/mg. A variety of stability and activity profiles were determined for the purified garlic seedling acid phosphatase: optimum pH, optimum temperature, pH stability, temperature stability, thermal inactivation, substrate specificity, effect of enzyme concentration, effect of substrate concentration, activation energy, and effect of inhibitor and activator. The molecular mass of acid phosphatase was estimated to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH was 5.7 and the optimum temperature was 50 degrees C. The enzyme was stable at pH 4.0-10.0 and 40-60 degrees C. Activation energy was between 10 and 20 kcal, and as Michaelis Menten coefficients, Vm values were 100 and 20 mM/s and Km values were 21.27 and 8.33 mM for paranitrophenylphosphate and paranitrophenyl, respectively. Studies of the effect of metal ions on enzyme activity showed both an activating and a deactivating effect. While Cu, Mo, and Mn showed strong inhibitory effects, Na, Ca, and K were the significant activators of acid phosphatase.

  10. Influence of Internal DNA Pressure on Stability and Infectivity of Phage λ

    PubMed Central

    Bauer, D. W.; Evilevitch, A.

    2016-01-01

    Viruses must remain infectious while in harsh extracellular environments. An important aspect of viral particle stability for double-stranded DNA viruses is the energetically unfavorable state of the tightly confined DNA chain within the virus capsid creating pressures of tens of atmospheres. Here we study the influence of internal genome pressure on the thermal stability of viral particles. Using differential scanning calorimetry (DSC) to monitor genome loss upon heating, we find that internal pressure destabilizes the virion, resulting in a smaller activation energy barrier to trigger DNA release. These experiments are complemented by plaque assay and electron microscopy measurements to determine the influence of intra-capsid DNA pressure on the rates of viral infectivity loss. At higher temperatures (65 – 75 °C), failure to retain the packaged genome is the dominant mechanism of viral inactivation. Conversely, at lower temperatures (40 – 55 ºC), a separate inactivation mechanism dominates, which results in non-infectious particles that still retain their packaged DNA. Most significantly, both mechanisms of infectivity loss are directly influenced by internal DNA pressure, with higher pressure resulting in a more rapid rate of inactivation at all temperatures. PMID:26254570

  11. Stabilization of luciferase from Renilla reniformis using random mutations.

    PubMed

    Shigehisa, Megumi; Amaba, Norie; Arai, Shigeki; Higashi, Chisato; Kawanabe, Ryo; Matsunaga, Ayano; Laksmi, Fina Amreta; Tokunaga, Masao; Ishibashi, Matsujiro

    2017-01-01

    We expressed luciferase (RLuc) from Renilla reniformis in Escherichia coli RLuc was purified using a Ni-NTA column and subsequently characterized. It was unstable in acidic solutions and at 30°C. To increase the stability of RLuc, the Rluc gene was randomly mutated using error-prone polymerase chain reaction. E. coli harboring the mutated gene was screened by detecting luminescence on a plate containing the substrate coelenterazine at 34°C. Three mutants, i.e. N264SS287P, N178D and F116LI137V, were obtained. The solubilities and specific activities of these mutants were higher than those of the wild type. Furthermore, the N264SS287P mutant maintained stability at a temperature approximately 5°C higher than that of the wild type, while denaturation of the F116LI137V mutant started at a temperature that was 5°C lower than the wild type, and ended at a temperature that was 7°C higher. We examined the obtained mutations using thermal shift assays and a computer program Coot in this study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Chemical vapor deposition: Stable carbons from low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, R.K.; Kulas, R.W.; Olson, E.S.

    1996-12-31

    A chemical vapor deposition (CVD) technique has been used to increase the oxidative stability of activated carbons. Activated carbons prepared from Gascoyne lignite (North Dakota) by thermal or potassium hydroxide activations were subjected to BCI, in helium at 727{degrees}C with or without benzene for a limited period of time, followed by annealing in helium at 900{degrees}C for three days. Untreated and acid-washed coal samples were used to assess the magnitude of the effect of mineral matter in the coal on the boron coating. The oxidative stability of the boron-modified carbons was determined from the decomposition curves obtained from the thermogravimetricmore » analysis. Modification of the as-received, KOH-treated carbon yielded oxidatively stable carbons up to an initial temperature of 520{degrees}C, compared to about 350{degrees}C for the starting material. Similar results were obtained for the carbonized Gascoyne lignite. Sulfurous acid washing of the Gascoyne significantly enhanced the thermal stability (600{degrees}C) of the boron-modified carbon.« less

  13. Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom.

    PubMed

    Kang, Changkeun; Munawir, Al; Cha, Mijin; Sohn, Eun-Tae; Lee, Hyunkyoung; Kim, Jong-Shu; Yoon, Won Duk; Lim, Donghyun; Kim, Euikyung

    2009-07-01

    The recent bloom of a giant jellyfish Nemopilema nomurai has caused a danger to sea bathers and fishery damages in the waters of China, Korea, and Japan. The present study investigated the cytotoxic and hemolytic activities of crude venom extract of N. nomurai using a number of in vitro assays. The jellyfish venom showed a much higher cytotoxic activity in H9C2 heart myoblast than in C2C12 skeletal myoblast (LC(50)=2 microg/mL vs. 12 microg/mL, respectively), suggesting its possible in vivo selective toxicity on cardiac tissue. This result is consistent with our previous finding that cardiovascular function is a target of the venom. In order to determine the stability of N. nomurai venom, its cytotoxicity was examined under the various temperature and pH conditions. The activity was relatively well retained at low environmental temperature (or=60 degrees C). In pH stability test, the venom has abruptly lost its activity at low pH environment (pH

  14. Climate variability decreases species richness and community stability in a temperate grassland.

    PubMed

    Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Wang, Junbang; Pan, Qingmin; Bai, Yongfei; Han, Xingguo

    2018-06-26

    Climate change involves modifications in both the mean and the variability of temperature and precipitation. According to global warming projections, both the magnitude and the frequency of extreme weather events are increasing, thereby increasing climate variability. The previous studies have reported that climate warming tends to decrease biodiversity and the temporal stability of community primary productivity (i.e., community stability), but the effects of the variability of temperature and precipitation on biodiversity, community stability, and their relationship have not been clearly explored. We used a long-term (from 1982 to 2014) field data set from a temperate grassland in northern China to explore the effects of the variability of mean temperature and total precipitation on species richness, community stability, and their relationship. Results showed that species richness promoted community stability through increases in asynchronous dynamics across species (i.e., species asynchrony). Both species richness and species asynchrony were positively associated with the residuals of community stability after controlling for its dependence on the variability of mean temperature and total precipitation. Furthermore, the variability of mean temperature reduced species richness, while the variability of total precipitation decreased species asynchrony and community stability. Overall, the present study revealed that species richness and species asynchrony promoted community stability, but increased climate variability may erode these positive effects and thereby threaten community stability.

  15. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution.

    PubMed

    Goedegebuur, Frits; Dankmeyer, Lydia; Gualfetti, Peter; Karkehabadi, Saeid; Hansson, Henrik; Jana, Suvamay; Huynh, Vicky; Kelemen, Bradley R; Kruithof, Paulien; Larenas, Edmund A; Teunissen, Pauline J M; Ståhlberg, Jerry; Payne, Christina M; Mitchinson, Colin; Sandgren, Mats

    2017-10-20

    Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in T m and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Proteolysin, a Novel Highly Thermostable and Cosolvent-Compatible Protease from the Thermophilic Bacterium Coprothermobacter proteolyticus

    PubMed Central

    Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.

    2013-01-01

    Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086

  17. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  18. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  19. Recyclable Thermoresponsive Polymer-β-Glucosidase Conjugate with Intact Hydrolysis Activity.

    PubMed

    Mukherjee, Ishita; Sinha, Sushant K; Datta, Supratim; De, Priyadarsi

    2018-06-11

    β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose and is a rate-limiting enzyme in the conversion of lignocellulosic biomass to sugars toward biofuels. Since the cost of enzyme is a major contributor to biofuel economics, we report the bioconjugation of a temperature-responsive polymer with the highly active thermophilic β-glucosidase (B8CYA8) from Halothermothrix orenii toward improving enzyme recyclability. The bioconjugate, with a lower critical solution temperature (LCST) of 33 °C withstands high temperatures up to 70 °C. Though the secondary structure of the enzyme in the conjugate is slightly distorted with a higher percentage of β-sheet like structure, the stability and specific activity of B8CYA8 in the conjugate remains unaltered up to 30 °C and retains more than 70% specific activity of the unmodified enzyme at 70 °C. The conjugate can be reused for β-glucosidic bond cleavage of cellobiose for at least four cycles without any significant loss in specific activity.

  20. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  1. Advanced Organic Electro-Optic Materials for Integrated Device Applications

    DTIC Science & Technology

    2001-06-01

    Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more

  2. Performance and stability of a liquid anode high-temperature metal-air battery

    NASA Astrophysics Data System (ADS)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  3. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    NASA Technical Reports Server (NTRS)

    Padula, II, Santo A (Inventor)

    2013-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  4. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II (Inventor)

    2016-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  5. A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    PubMed Central

    Lam, Sonia Y.; Yeung, Rachel C. Y.; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-01-01

    Background Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Methods and Findings Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Conclusions Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures. PMID:21423654

  6. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    PubMed

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  7. Study of CO 2 stability and electrochemical oxygen activation of mixed conductors with low thermal expansion coefficient based on the TbBaCo 3ZnO 7+ δ system

    NASA Astrophysics Data System (ADS)

    Vert, Vicente B.; Serra, José M.

    The influence of different application-oriented factors on the electrochemical activity and stability of TbBaCo 3ZnO 7+ δ when used as a solid oxide fuel cell cathode has been studied. Calcination at temperatures above 900 °C (e.g. 1000 °C) leads to a significant increase in the electrode polarization resistance. The effect of the sintering temperature of the TbBaCo 3ZnO 7+ δ cathode seems to be more important than the effect produced by the Tb substitution as observed when compared with 900 °C-sintered YBaCo 3ZnO 7+ δ; and ErBaCo 3ZnO 7+ δ electrode performances. The presence of CO 2 in the air flow leads to an increase of roughly 10% in the polarization resistance for the whole studied temperature range (500-850 °C) while this effect is reversible. Analysis of the impedance spectroscopy measurements shows that the exchange rate constant (k G from Gerischer element) is significantly affected by CO 2 at temperatures below 700 °C, while the diffusion coefficient related parameter is slightly influenced at low temperatures. Electrode degrades with a low constant rate of 1 mΩ cm 2 h -1 after 60 h. This cathode material exhibits high CO 2 tolerance, as shown by temperature programmed treatment under a continuous gas flow of air with 5% CO 2, and a relatively low thermal expansion coefficient.

  8. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  9. Methods to Stabilize and Destabilize Ammonium Borohydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Thomas K.; Karkamkar, Abhijeet J.; Bowden, Mark E.

    2013-01-21

    Ammonium borohydride, NH4BH4, has a high hydrogen content of ρm = 24.5 wt% H2 and releases 18 wt% H2 below T = 160 °C. However, the half-life of bulk NH4BH4 at ambient temperatures, ~6 h, is insufficient for practical applications. The decomposition of NH4BH4 (ABH2) was studied at variable hydrogen and argon back pressures to investigate possible pressure mediated stabilization effects. The hydrogen release rate from solid ABH2 at ambient temperatures is reduced by ~16 % upon increasing the hydrogen back pressure from 5 to 54 bar. Similar results were obtained using argon pressure and the observed stabilization may bemore » explained by a positive volume of activation in the transition state leading to hydrogen release. Nanoconfinement in mesoporous silica, MCM-41, was investigated as alternative means to stabilize NH4BH4. However, other factors appear to significantly destabilize NH4BH4 and it rapidly decomposes at ambient temperatures into [(NH3)2BH2][BH4] (DADB) in accordance with the bulk reaction scheme. The hydrogen desorption kinetics from nanoconfined [(NH3)2BH2][BH4] is moderately enhanced as evidenced by a reduction in the DSC decomposition peak temperature of ΔT = -13 °C as compared to the bulk material. Finally, we note a surprising result, storage of DADB at temperature < -30 °C transformed, reversibly, the [(NH3)2BH2][BH4] into a new low temperature polymorph as revealed by both XRD and solid state MAS 11B MAS NMR. TA & AK are thankful for support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle.« less

  10. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation

    NASA Astrophysics Data System (ADS)

    Mao, Bao-Hua; Liu, Chang-Hai; Gao, Xu; Chang, Rui; Liu, Zhi; Wang, Sui-Dong

    2013-10-01

    The room-temperature ionic liquid assisted sputtering method is utilized to achieve the Pd-nanoparticle (NP)-graphene hybrid. The supported Pd NPs possess uniformly small sizes of 1-2 nm, which create huge surface area with ultralow Pd consumption and high NP stability. The Pd-NP-graphene hybrid is in situ characterized by the ambient pressure X-ray photoelectron spectroscopy using synchrotron radiation, and the results demonstrate high catalytic activity of the hybrid for CO oxidation. The catalytic behavior is reproducible for several catalytic cycles. The present simple and clean approach is promising to produce metal-NP-based high-efficiency catalysts for CO oxidation.

  11. Patterns of activity and body temperature of Aldabra giant tortoises in relation to environmental temperature.

    PubMed

    Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M

    2018-02-01

    We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n  = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n  = 4 wild and n  = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.

  12. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423.

    PubMed

    Wu, Xiangrong; Wang, Yuxia; Tong, Bending; Chen, Xianghua; Chen, Jianhua

    2018-04-01

    Novel thermostable amylase need to be continuously explored with the improvement of industrial requirements. A new acidophilic and thermostable amylase producing bacterium isolated from spring was identified as Bacillus strain on the basis of 16S rDNA. The amylase was purified by ammonium sulphate precipitation, gel chromatography and anion exchange chromatography. SDS-PAGE revealed that the enzyme was monomeric with a molecular weight of 58 kDa. The amylase exhibited optimal activity at pH 5.0 and temperature 100 °C. Then the enzyme showed high stability in pH ranges 4.0-10.0 and more than 90% of maximal activity was found from 20 °C to 80 °C. Apart from good stability toward SDS and non-ionic detergent, the purified enzyme exhibited high compatibility with some inhibitors such as urea and EDTA. The results demonstrated the stability of the enzyme in different organic solvents. Moreover, we determined the amylase gene, compared the structure with α-amylase BAA and BLA and found some thermostability determinants in our enzyme. Overall, presenting various properties were including high thermostability, Ca 2+ -independency, broad temperature and pH profiles, organic-solvent tolerance as well as excellent stability with detergents. Such characteristics have not been reported for this type of enzyme, and the α-amylase will be a suitable candidate in industrial fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less

  14. Toward Stabilizing Co 3O 4 Nanoparticles as an Oxygen Reduction Reaction Catalyst for Intermediate-Temperature SOFCs

    DOE PAGES

    Ren, Yaoyu; Cheng, Yuan; Gorte, Raymond J.; ...

    2017-04-05

    The oxygen reduction reaction (ORR) activity of a series of composite cathodes consisting of a porous Gd 0.20Ce 0.80O 2-δ (GDC) scaffold infiltrated with Sr-, Co-, and Y-nitrate solutions has been systematically investigated in this study. The results show that such infiltrated cathodes if calcined at low temperatures such as 350°C exhibit low polarization resistance (RP) in the temperature range of 450–700°C, even though XRD analysis reveals that the calcined product is virtually a mixture of Co 3O 4 and SrCO 3. A further study by design-of-experiment suggests that the true ORR-active species is Co 3O 4, whereas SrCO 3more » serves as a sintering inhibitor to preserve the high surface area of Co 3O 4. The findings and understanding in this study present a new strategy for future development of active cathodes for intermediate-temperature solid oxide fuel cells (SOFCs).« less

  15. Photoconduction in amorphous thin films of Se90Sb10-xAgx glassy alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Shukla, R. K.; Dwivedi, Prabhat K.; Kumar, A.

    2017-10-01

    The present paper reports the steady state photoconductivity and photosensitivity response of thermally evaporated amorphous thin films of Se90Sb10-xAgx(x = 2, 4, 6, 8, 10). Temperature dependence of dark conductivity is studied and activation energy is calculated for different samples. Temperature dependence of photoconductivity is also studied at different intensities. From temperature dependence of photoconductivity activation energy is computed at different intensities which are found to vary from 0.26 to 0.47 eV. Intensity dependence of photoconductivity has also been studied at different temperatures. These curves are plotted on logarithmic scale and found to be straight lines which show that photoconductivity follows a power law with intensity. Composition dependence of dark conductivity, activation energy of DC conduction and photosensitivity show that these parameters are highly. composition dependent and show a discontinuity at a particular composition when Ag concentration becomes 6 at. %. This is explained in terms of transition from floppy state to mechanically stabilized state at this composition.

  16. Toward Stabilizing Co 3O 4 Nanoparticles as an Oxygen Reduction Reaction Catalyst for Intermediate-Temperature SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Yaoyu; Cheng, Yuan; Gorte, Raymond J.

    The oxygen reduction reaction (ORR) activity of a series of composite cathodes consisting of a porous Gd 0.20Ce 0.80O 2-δ (GDC) scaffold infiltrated with Sr-, Co-, and Y-nitrate solutions has been systematically investigated in this study. The results show that such infiltrated cathodes if calcined at low temperatures such as 350°C exhibit low polarization resistance (RP) in the temperature range of 450–700°C, even though XRD analysis reveals that the calcined product is virtually a mixture of Co 3O 4 and SrCO 3. A further study by design-of-experiment suggests that the true ORR-active species is Co 3O 4, whereas SrCO 3more » serves as a sintering inhibitor to preserve the high surface area of Co 3O 4. The findings and understanding in this study present a new strategy for future development of active cathodes for intermediate-temperature solid oxide fuel cells (SOFCs).« less

  17. New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hoon; Park, Sang-Geun; Jeon, Jae-Hong; Goh, Joon-chul; Huh, Jong-moo; Choi, Joonhoo; Chung, Kyuha; Han, Min-Koo

    2007-03-01

    We propose and fabricate a new hydrogenated amorphous silicon (a-Si:H) thin-film transistor (TFT) pixel employing a fraction time annealing (FTA), which can supply a negative gate bias during a fraction time of each frame rather than the entire whole frame, in order to improve the organic light emitting diode (OLED) current stability for an active matrix (AM) OLED. When an electrical bias for an initial reference current of 2 μA at 60 °C is applied to an FTA-driven pixel more than 100 h and the temperature is increased up to 60 °C rather than room temperature, the OLED current is reduced by 22% in the FTA-driven pixel, whereas it is reduced by 53% in a conventional pixel. The current stability of the proposed pixel is improved, because the applied negative bias can suppress the threshold voltage degradation of the a-Si:H TFT itself, which may be attributed to hole trapping into SiNx. The proposed fraction time annealing method can successfully suppress Vth shift of the a-Si:H TFT itself due to hole trapping into SiNx induced by negative gate bias annealing.

  18. The optimization of wireless power transmission: design and realization.

    PubMed

    Jia, Zhiwei; Yan, Guozheng; Liu, Hua; Wang, Zhiwu; Jiang, Pingping; Shi, Yu

    2012-09-01

    A wireless power transmission system is regarded as a practical way of solving power-shortage problems in multifunctional active capsule endoscopes. The uniformity of magnetic flux density, frequency stability and orientation stability are used to evaluate power transmission stability, taking into consideration size and safety constraints. Magnetic field safety and temperature rise are also considered. Test benches are designed to measure the relevent parameters. Finally, a mathematical programming model in which these constraints are considered is proposed to improve transmission efficiency. To verify the feasibility of the proposed method, various systems for a wireless active capsule endoscope are designed and evaluated. The optimal power transmission system has the capability to supply continuously at least 500 mW of power with a transmission efficiency of 4.08%. The example validates the feasibility of the proposed method. Introduction of novel designs enables further improvement of this method. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.

    PubMed

    Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen

    2016-06-03

    Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.

  20. Room-Temperature Atomic Layer Deposition of Al2 O3 : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells.

    PubMed

    Kot, Malgorzata; Das, Chittaranjan; Wang, Zhiping; Henkel, Karsten; Rouissi, Zied; Wojciechowski, Konrad; Snaith, Henry J; Schmeisser, Dieter

    2016-12-20

    In this work, solar cells with a freshly made CH 3 NH 3 PbI 3 perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al 2 O 3 deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al 2 O 3 -covered perovskite films showed enhanced ambient air stability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal behavior of copper processed by ECAP at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Gonda, Viktor

    2018-05-01

    Large amount of strengthening can be achieved by equal channel angular pressing (ECAP), by the applied severe plastic deformation during the processing. For pure metals, this high strength is accompanied with low thermal stability due to the large activation energy for recrystallization. In the present paper, the chosen technological route was elevated temperature single pass ECAP processing of copper, and its effect on the thermal behavior during the restoration processes of the deformed samples was studied.

  2. Temperature compensation via cooperative stability in protein degradation

    NASA Astrophysics Data System (ADS)

    Peng, Yuanyuan; Hasegawa, Yoshihiko; Noman, Nasimul; Iba, Hitoshi

    2015-08-01

    Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system's period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

  3. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    PubMed Central

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  4. Production of starch with antioxidative activity by baking starch with organic acids.

    PubMed

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  5. Temperature variations around medication cassette and carry bag in routine use of epoprostenol administration in healthy volunteers.

    PubMed

    Tamura, Yuichi; Nakajima, Yasuo; Ozeki, Yasushi; Ono, Tomohiko; Takei, Makoto; Yamamoto, Tsunehisa; Fukuda, Keiichi

    2012-01-01

    According to several treatment guidelines, epoprostenol is an important treatment option for pulmonary arterial hypertension. However, the pharmacokinetic characteristics and poor stability of epoprostenol at room temperature make its administration challenging. We therefore studied temperature fluctuations between the drug administration cassette and atmosphere to promote the safe use of epoprostenol. Five healthy volunteers carried a portable intravenous infusion pump attached to a medication cassette containing saline in a bag during their ordinary activities over 16 days during which the mean atmospheric temperature was 29.6 ± 1.5°C. The temperature around the medication cassette was not less than 25°C on any occasion, and the mean period over 24 h during which the temperature around the cassette exceeded 35°C and 40°C was 96.9 ± 156.4 min and 24.4 ± 77.3 min, respectively. Significant correlations were observed between the temperatures outside the bag and around the cassette, as well as between temperatures around the cassette and of the saline solution in the cassette (r = 0.9258 and 0.8276, respectively). There were no differences in the temperatures outside the bag or around the cassette with respect to the bag material. Temperatures around a medication cassette and outside the bag containing the medication increase with sunlight exposure. The temperature around cassettes used for administering epoprostenol must therefore be kept low for as long as possible during hot summer conditions to maintain the drug stability.

  6. Performance and stability of Pd nanostructures in an alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Carrera-Cerritos, R.; Fuentes-Ramírez, R.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; Arriaga, L. G.

    2014-12-01

    Pd nanopolyhedral, nanobar and nanorod particles were synthesised using the polyol process and evaluated as anodes in a direct ethanol fuel cell. The materials were physico-chemically characterised by high-resolution transmission electronic microscopy (HR-TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effect of the operation parameters (i.e., temperature and fuel ethanol concentration) on the maximum power density (MPD) and open circuit voltage (OCV) was investigated. In addition, a stability test was performed by applying three current density steps for fifty cycles. The OCV values increased as the temperature increased for all of the catalysts at low ethanol concentration. Although the MPD increased with temperature for all of the catalyst independent of the ethanol concentration, the effect of the temperature on the MPD for each Pd structure results in different slopes due to the different crystal faces. Finally, a loss of electro-catalytic activity after fifty cycles was observed in all of the catalysts evaluated, which may be in response to morphological changes in the nanostructures.

  7. Optimization of palm oil physical refining process for reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation.

    PubMed

    Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping

    2013-04-03

    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.

  8. Evaluation of the stability of uranyl peroxo-carbonato complex ions in carbonate media at different temperatures.

    PubMed

    Kim, Kwang-Wook; Lee, Keun-Young; Chung, Dong-Yong; Lee, Eil-Hee; Moon, Jei-Kwon; Shin, Dong-Woo

    2012-09-30

    This work studied the stability of peroxide in uranyl peroxo carbonato complex ions in a carbonate solution with hydrogen peroxide using absorption and Raman spectroscopies, and evaluated the temperature dependence of the decomposition characteristics of uranyl peroxo carbonato complex ions in the solution. The uranyl peroxo carbonato complex ions self-decomposed more rapidly into uranyl tris-carbonato complex ions in higher temperature carbonate solutions. The concentration of peroxide in the solution without free hydrogen peroxide represents the concentration of uranyl peroxo carbonato complex ions in a mixture of uranyl peroxo carbonato complex and uranyl tris-carbonato complex ions. The self-decomposition of the uranyl peroxo carbonato complex ions was a first order reaction, and its activation energy was evaluated to be 7.144×10(3) J mol(-1). The precipitation of sodium uranium oxide hydroxide occurred when the amount of uranyl tris-carbonato complex ions generated from the decomposition of the uranyl peroxo carbonato complex ions exceeded the solubility of uranyl tris-carbonato ions in the solution at the solution temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evolution of nonspectral rhodopsin function at high altitudes.

    PubMed

    Castiglione, Gianni M; Hauser, Frances E; Liao, Brian S; Lujan, Nathan K; Van Nynatten, Alexander; Morrow, James M; Schott, Ryan K; Bhattacharyya, Nihar; Dungan, Sarah Z; Chang, Belinda S W

    2017-07-11

    High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.

  10. [Study on the stability of tetrandrine microsphere].

    PubMed

    Cheng, Guohu; Luo, Jiabo

    2005-05-01

    To study the stability of Tetrandrine Microsphere. Higher speed test and room temperature test were adopted to investigate the indexes, such as properties of appearance, amount of medicine loaded, seal rate, seepage rate, microbial stability, etc. Through the test of six months, properties of appearance, amount of medicine loaded, seal rate, seepage rate, microbial stability have not obviously change. But after testing for 6 months with higher temperature, the seal rate was reduced, and the seepage rate was increased. Tetrandrine microsphere is steady under the room temperature condition, but is unstable to hot, and ought to keep in conformity with low-temperature.

  11. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity.

    PubMed

    Han, Hye Jung; Lee, Ji-Soo; Park, Sun-Ah; Ahn, Jun-Bae; Lee, Hyeon Gyu

    2015-06-01

    The aim of this study was to optimize extraction conditions for jujube pulp and seed in order to obtain maximum active ingredient yield and antioxidant activity, as well as to prepare chitosan nanoparticles loaded with jujube pulp and seed extracts for enhancing stability. The extraction conditions, i.e. temperature, time, and ethanol concentration, were optimized at the following respective values: 61.2 °C, 38 h, and 60.4% for pulp, and 58 °C, 34 h, and 59.2% for seed. The jujube nanoparticle size significantly increased with a higher chitosan/sodium tripolyphosphate ratio and extract concentration. Entrapment efficiency was greater than 80% regardless of preparation conditions. The stabilities of jujube pulp and seed extract in terms of total phenolic content and antioxidant activity were effectively enhanced by nanoencapsulation. In conclusion, jujube pulp and seed extracts prepared using optimal conditions could be useful as a natural functional food ingredient with antioxidant activity, and nanoencapsulation can be used to improve the stability of jujube extract. Therefore, these results could be used to promote the utilization of not only jujube pulp but also seed, by product. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of temperature and relative humidity on the stability of paper-immobilized antibodies.

    PubMed

    Wang, Jingyun; Yiu, Brian; Obermeyer, Jaclyn; Filipe, Carlos D M; Brennan, John D; Pelton, Robert

    2012-02-13

    The stability of a paper-immobilized antibody was investigated over a range of temperatures (40-140 °C) and relative humidities (RH, 30-90%) using both unmodified filter paper and the same paper impregnated with polyamide-epichlorohydrin (PAE) as supports. Antibody stability decreased with increasing temperature, as expected, but also decreased with increasing RH. At 40 °C, the half-life was more than 10 days, with little dependence on RH. However, at 80 °C, the half-life varied from ~3 days at low RH to less than half an hour at 90% RH, demonstrating that hydration of the antibody promotes unfolding. Antibody stability was not influenced by the PAE paper surface treatment. This work shows that antibodies are good candidates for development of bioactive paper as they have sufficient stability at high temperature to withstand printing and other roll-to-roll processing steps, and sufficient low temperature stability to allow long-term storage of bioactive paper materials.

  13. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  14. Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs.

    PubMed

    Asgher, Muhammad; Iqbal, Hafiz Muhammad Nasir; Irshad, Muhammad

    2012-08-03

    Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology. A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592 ± 6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30 kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants K(m) and V(max) were 70 and 56 μM and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu(2+), Mn(2+) and Fe(2+) whereas, Cystein, EDTA and Ag(+) showed inhibitory effects. The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications.

  15. Characterization of purified and Xerogel immobilized Novel Lignin Peroxidase produced from Trametes versicolor IBL-04 using solid state medium of Corncobs

    PubMed Central

    2012-01-01

    Background Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology. Results A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592 ± 6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30 kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants Km and Vmax were 70 and 56 μM and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects. Conclusions The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications. PMID:22862820

  16. Enhancing Rubisco activity at higher temperatures by re-engineering of Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    This report discusses the possibility of increasing plant performance under moderate heat stress by improving the thermal stability of Rubisco activase. • The research is driven by the observation that photosynthesis is acutely sensitive to inhibition by moderate heat stress and that this inhibitio...

  17. Stability studies on florfenicol using developed derivative spectrophotometric methods.

    PubMed

    Elimam, M M; Shantier, S W; Gadkariem, E A; Mohamed, M A; Osman, Z

    2017-01-01

    This study aims to investigate the stability of florfenicol using previously developed derivative spectrophotometric methods (D 1 and D 2 ). The studied stability-indicating pararmeters included alkali (NaOH, 1M), acid (HCl, 1M), pH changes (buffer pH 2.2-11), temperature (80°C and 100°C at pH 10) and light. A constructed pH profile for the drug degradation rate revealed a significant effect of pH on the drug stability between pH ranges 8 and 11. The obtained profile indicated first order dependence of K obs on [OH - ]. Arrhenius plot at pH 10 was found linear at temperatures 80°C and 100°C with estimated activation energy of 19.35kcal/mol. The calculated rate constant (K obs ), t ½ and t 90 at 25°C were found to be 1.8×10 -3 h, 385h and 58.3h, respectively. The photostability of florfenicol was also studied by exposing the drug solution to direct sunlight during mid-day time. The obtained results reflected the instability of florfenicol under the study conditions. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  18. An improved kinetics approach to describe the physical stability of amorphous solid dispersions.

    PubMed

    Yang, Jiao; Grey, Kristin; Doney, John

    2010-01-15

    The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.

  19. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference.

    PubMed

    Bardin, C; Astier, A; Vulto, A; Sewell, G; Vigneron, J; Trittler, R; Daouphars, M; Paul, M; Trojniak, M; Pinguet, F

    2011-07-01

    Stability studies performed by the pharmaceutical industry are only designed to fulfill licensing requirements. Thus, post-dilution or -reconstitution stability data are frequently limited to 24h only for bacteriological reasons regardless of the true chemical stability which could, in many cases, be longer. In practice, the pharmacy-based centralized preparation may require infusions to be made several days in advance to provide, for example, the filling of ambulatory devices for continuous infusions or batch preparations for dose banding. Furthermore, a non-justified limited stability for expensive products is obviously very costly. Thus, there is a compelling need for additional stability data covering practical uses of anticancer drugs. A European conference consensus was held in France, May 2010, under the auspices of the French Society of Oncology Pharmacy (SFPO) to propose adapted rules on stability in practical situations and guidelines to perform corresponding stability studies. For each anticancer drug, considering their therapeutic index, the pharmacokinetics/pharmacodynamics (PK/PD) variability, specific clinical use and risks related to degradation products, the classical limit of 10% of degradation can be inappropriate. Therefore, acceptance limits must be clinically relevant and should be defined for each drug individually. Design of stability studies has to reflect the different needs of the clinical practice (preparation for the week-ends, outpatient transportations, implantable devices, dose banding…). It is essential to use validated stability-indicating methods, separating degradation products being formed in the practical use of the drug. Sequential temperature designs should be encouraged to replicate problems seen in daily practice such as rupture of the cold-chain or temperature-cycling between refrigerated storage and ambient in-use conditions. Stressed conditions are recommended to evaluate not only the role of classical variables (pH, temperature, light) but also the mechanical stress. Physical stability such as particles' formation should be systematically evaluated. The consensus conference focused on the need to perform more studies on the stability of biotherapies, including a minimum of three complementary separating methods and a careful evaluation of submicron aggregates. The determination of the biological activity of proteins could be also useful. A guideline on the practical stability of anticancer drugs is proposed to cover current clinical and pharmaceutical practice. It should contribute to improved security of use, optimization of centralized handling and reduced costs. Finally, we have attempted to establish a new drug stability paradigm based on practical clinical needs, to complement regulatory guidelines which are essentially orientated to the stability of manufactured drugs. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Physiochemical and functional properties of chum salmon (Oncorhynchus keta) skin gelatin extracted at different temperatures.

    PubMed

    Liu, Yang; Xia, Lining; Jia, Hui; Li, Qi; Jin, Wengang; Dong, Xiuping; Pan, Jinfeng

    2017-12-01

    Aquatic source gelatins are gaining more attention due to the advantages in safety and religion acceptability compared with mammalian sources. For understanding the effects of extracting temperature on gelatins from chum salmon (Oncorhynchus keta) skins (GCSS), gelatins were extracted at temperatures from 40 to 90°C and the physiochemical properties of GCSS were investigated. GCSS yield increased while imino acids content declined as the increase of temperature. GCSS40, 50 and 60 showed strong β-, α1- and α2-chains but the three faded in GCSS70, 80 and 90, with the presence of low molecular weight fragments. Amides A, I and III were shifted to higher wavenumber in GCSS70, 80 and 90 compared with that of GCSS40, 50 and 60. X-ray diffraction showed lower intensity of peak at 7° in GCSS80 and 90 than in the other GCSS. Gel strength declined while a*, b* and ΔE* value increased as temperature increased. Foam expansion and stability of GCSS40, 50 and 60 were lower than those of GCSS70, 80 and 90. Emulsion activity and stability decreased as temperature increased. Extracting temperature greatly affected yield, molecular composition and functionalities of GCSS. A temperature lower than 50°C is recommended for GCSS extraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Thermal Stability of Otto Fuel Prepolymer

    NASA Technical Reports Server (NTRS)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NDPA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal DSC using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  2. Thermal Stability of Otto Fuel Prepolymer

    NASA Technical Reports Server (NTRS)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NPDA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal differential scanning calorimetry (DSC) using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  3. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles

    PubMed Central

    Honda, Satoshi; Yamamoto, Takuya; Tezuka, Yasuyuki

    2013-01-01

    Cyclic molecules provide better stability for their aggregates. Typically in nature, the unique cyclic cell membrane lipids allow thermophilic archaea to inhabit extreme conditions. By mimicking the biological design, the robustness of self-assembled synthetic nanostructures is expected to be improved. Here we report topology effects by cyclized polymeric amphiphiles against their linear counterparts, demonstrating a drastic enhancement in the thermal, as well as salt stability of self-assembled micelles. Furthermore, through coassembly of the linear and cyclic amphiphiles, the stability was successfully tuned for a wide range of temperatures and salt concentrations. The enhanced thermal/salt stability was exploited in a halogen exchange reaction to stimulate the catalytic activity. The mechanism for the enhancement was also investigated. These topology effects by the cyclic amphiphiles offer unprecedented opportunities in polymer materials design unattainable by traditional means. PMID:23481382

  4. Healing of voids in the aluminum metallization of integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas R.

    1990-01-01

    The thermal stability of GaAs modulation-doped field effect transistors (MODFETs) is evaluated in order to identify failure mechanisms and validate the reliability of these devices. The transistors were exposed to thermal step-stress and characterized at ambient temperatures to indicate device reliability, especially that of the transistor ohmic contacts with and without molybdenum diffusion barriers. The devices without molybdenum exhibited important transconductance deterioration. MODFETs with molybdenum diffusion barriers were tolerant to temperatures above 300 C. This tolerance indicates that thermally activated failure mechanisms are slow at operational temperatures. Therefore, high-reliability MODFET-based circuits are possible.

  5. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  6. Calculation of the Relative Chemical Stabilities of Proteins as a Function of Temperature and Redox Chemistry in a Hot Spring

    PubMed Central

    Dick, Jeffrey M.; Shock, Everett L.

    2011-01-01

    Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems. PMID:21853048

  7. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus.

    PubMed

    Ji, Xiuling; Zhang, Chunjing; Fang, Yuan; Zhang, Qi; Lin, Lianbing; Tang, Bing; Wei, Yunlin

    2015-02-01

    As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.

  8. Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion.

    PubMed

    Thanonkaew, Amonrat; Wongyai, Surapote; Decker, Eric A; McClements, David J

    2015-10-01

    Cold pressed rice bran oil (CPRBO) is used in foods, cosmetics, and pharmaceuticals due to its desirable health and functional attributes. The purpose of this work was to study the formation, antioxidant property and oxidative stability of oil-in-water emulsion of CPRBO. The influence of oil (10-40 % CPRBO) and surfactant (1-5 % glyceryl monostearate (GMS)) concentration on the properties of emulsions were studied. The lightness (L*) and yellowness (b*) of CPRBO emulsions decreased as GMS concentration increased, which was attributed to a decrease in droplet size after homogenization. The CPRBO emulsion was stable during storage at room temperature for 30 days. Increasing the oil concentration in the CPRBO emulsions increased their antioxidant activity, which can be attributed to the corresponding increase in phytochemical content. However, GMS concentration had little impact on the antioxidant activity of CPRBO emulsions. The storage of CPRBO emulsion at room temperature showed that lipid oxidation markers gradually increased after 30 days of storage, which was correlated to a decrease in gamma oryzanol content and antioxidant activity. These results have important implications for the utilization of rice bran oil (RBO) as a function ingredient in food, cosmetic, and pharmaceutical products.

  9. Low temperature stabilization process for production of carbon fiber having structural order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presencemore » of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.« less

  10. Collaborative Research: Effects of Stability, Canopies, and Non-Stationarity on Dispersion in the Stable Boundary Layer

    DTIC Science & Technology

    2013-12-31

    absorbing efficiency for photosynthet- ically active and near-infrared radiation is prescribed. In addition, soil moisture and temperature profiles and...their scattering/absorbing efficiency for photosynthetically active and near-infrared radiation is prescribed. In addition, soil moisture and...vertical mixing driven by the contrast between the relatively warm soil and the leaf -induced cool air in the upper canopy. Essentially, the plume mimics

  11. Proteolytic and amylolytic enzymes from a newly isolated Bacillus mojavensis SA: Characterization and applications as laundry detergent additive and in leather processing.

    PubMed

    Hammami, Amal; Fakhfakh, Nahed; Abdelhedi, Ola; Nasri, Moncef; Bayoudh, Ahmed

    2018-03-01

    The present work aims to study the simultaneous production of highly alkaline proteases and thermostable α-amylases by a newly isolated bacterium Bacillus mojavensis SA. The optimum pH and temperature of amylase activity were 9.0 and 55°C, respectively, while those of the proteolytic activity were 12.0 and 60°C, respectively. Both α-amylase and protease enzymes showed a high stability towards a wide range of pH and temperature. Furthermore, SA crude enzymes were relatively stable towards non-ionic (Tween 20, Tween 80 and Triton X-100) and anionic (SDS) surfactants, as well as oxidizing agents. Both activities were improved by the presence of polyethylene glycol 4000 and glycerol. Additionally, the crude enzymes showed excellent stability against various solid and liquid detergents. Wash performance analysis revealed that the SA crude enzymes exhibited a remarkable efficiency in the removal of a variety type of stains, such as blood, chocolate, coffee and oil. On the other side, SA proteases revealed a potential dehairing activity of animal hide without chemical assistance or fibrous proteins hydrolysis. Thus, considering their promising properties, B. mojavensis SA crude enzymes could be used in several biotechnological bioprocesses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Activation energy and energy density: a bioenergetic framework for assessing soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Plante, A. F.

    2017-12-01

    The stability and cycling of natural organic matter depends on the input of energy needed to decompose it and the net energy gained from its decomposition. In soils, this relationship is complicated by microbial enzymatic activity which decreases the activation energies associated with soil organic matter (SOM) decomposition and by chemical and physical protection mechanisms which decreases the concentrations of the available organic matter substrate and also require additional energies to overcome for decomposition. In this study, we utilize differential scanning calorimetry and evolved CO2 gas analysis to characterize differences in the energetics (activation energy and energy density) in soils that have undergone degradation in natural (bare fallow), field (changes in land-use), chemical (acid hydrolysis), and laboratory (high temperature incubation) experimental conditions. We will present this data in a novel conceptual framework relating these energy dynamics to organic matter inputs, decomposition, and molecular complexity.

  13. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    PubMed

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  14. The Lysozyme from Insect (Manduca sexta) is a Cold-Adapted Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotelo-Mundo,R.; Lopez-Zavala, A.; Garcia-Orozco, K.

    Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of {alpha}-helixmore » secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 {sup o}C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.« less

  15. Photoemission stability of negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Wang, Xiaohui; Yang, Wenzheng; Tang, Weidong; Fu, Xiaoqian; Li, Biao; Chang, Benkang

    2012-11-01

    The stability for reflection-mode GaN photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We watch that the photocurrent of the cathode decays with time in the vacuum system, and compare the spectral response curves after activation and after degradation. The photocurrent decay mechanism for reflection-mode NEA GaN photocathode was studied by the surface model ?GaN (Mg) :Cs ?:O-Cs. The reduction of the effective dipole quantity, which is caused by harmful gases, is the key factor of the photocurrent reduction.

  16. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell.

    PubMed

    Kaewsai, Duanghathai; Hunsom, Mali

    2018-05-04

    The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d -band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support.

  17. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell

    PubMed Central

    Kaewsai, Duanghathai; Hunsom, Mali

    2018-01-01

    The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d-band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support. PMID:29734719

  18. Influence of sodium metabisulfite and glutathione on the stability of vitamin C in O/W emulsion and extemporaneous aqueous gel.

    PubMed

    Maia, Adriana M; Baby, André Rolim; Pinto, Claudinéia A S O; Yasaka, Wilson J; Suenaga, Eunice; Kaneko, Telma M; Velasco, Maria Valéria Robles

    2006-09-28

    Vitamin C exerts several functions on skin as collagen synthesis, depigmentant and antioxidant activity. Vitamin C is unstable in the presence of oxygen, luminosity, humidity, high temperatures and heavy metals, which presents a significant challenge to the development of cosmetic formulations. Therefore, the utilization of an effective antioxidant system is required to maintain the vitamin C stability. The purpose of this research work was to develop prototypes of cosmetic formulations, as O/W emulsion and extemporaneous aqueous gel, containing vitamin C and to evaluate the influence of sodium metabisulfite (SMB) and glutathione (GLT), as antioxidants, on the stability of the active substance. A HPLC stability-indicating method was developed and validated for this study and stability assays were performed in 90 and 26 days and storage conditions were 5.0+/-0.5, 24+/-2 and 40.0+/-0.5 degrees C. The HPLC stability-indicating method showed linearity (r(2)>0.99), specificity, R.S.D.<1.22% and accuracy/recovery ranging from 95.46 to 101.54%. Preparations with SMB or GLT and the antioxidant-free presented results statistically distinct, demonstrating the necessity of the antioxidant system addition. O/W emulsions with SMB or GLT retained the vitamin C content >90.38% stored at 5.0+/-0.5 and 24+/-2 degrees C. For the aqueous gel with SMB or GLT, the active substance concentration was maintained >94.03%. Considering the vitamin C stability, the SMB and the GLT showed to be statistically adequate, as antioxidants, for the cosmetic formulations.

  19. Reduced African Easterly Wave Activity with Quadrupled CO 2 in the Superparameterized CESM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannah, Walter M.; Aiyyer, Anantha

    African easterly wave (AEW) activity is examined in quadrupled CO 2 experiments with the superparameterized CESM (SP-CESM). The variance of 2–10-day filtered precipitation increases with warming over the West African monsoon region, suggesting increased AEW activity. The perturbation enstrophy budget is used to investigate the dynamic signature of AEW activity. The northern wave track becomes more active associated with enhanced baroclinicity, consistent with previous studies. The southern track exhibits a surprising reduction of wave activity associated with less frequent occurrence of weak waves and a slight increase in the occurrence of strong waves. These changes are connected to changes inmore » the profile of vortex stretching and tilting that can be understood as interconnected consequences of increased static stability from the lapse rate response, weak temperature gradient balance, and the fixed anvil temperature hypothesis.« less

  20. Characterization of the receptor-destroying enzyme activity from infectious salmon anaemia virus.

    PubMed

    Kristiansen, Marianne; Frøystad, Marianne K; Rishovd, Anne Lise; Gjøen, Tor

    2002-11-01

    Infectious salmon anaemia virus (ISAV) infects cells via the endocytic pathway and, like many other enveloped viruses, ISAV contains a receptor-destroying enzyme. We have analysed this acetylesterase activity with respect to substrate specificity, enzyme kinetics, inhibitors, temperature and pH stability. The ISAV acetylesterase was inhibited by di-isopropyl fluorophosphate (DFP) in a dose-dependent fashion but not by other known hydrolase inhibitors, suggesting that a serine residue is part of the active site. The pH optimum of the enzyme was in the range 7.5-8.0 and the enzymatic activity was lessened at temperatures above 40 degrees C. The effect of DFP on agglutination/elution of erythrocytes by ISAV demonstrated that the acetylesterase activity is the bona fide receptor-destroying enzyme. A haemadsorption assay was used to analyse whether the esterase was active on the surface of infected cells or not.

  1. Reduced African Easterly Wave Activity with Quadrupled CO 2 in the Superparameterized CESM

    DOE PAGES

    Hannah, Walter M.; Aiyyer, Anantha

    2017-10-01

    African easterly wave (AEW) activity is examined in quadrupled CO 2 experiments with the superparameterized CESM (SP-CESM). The variance of 2–10-day filtered precipitation increases with warming over the West African monsoon region, suggesting increased AEW activity. The perturbation enstrophy budget is used to investigate the dynamic signature of AEW activity. The northern wave track becomes more active associated with enhanced baroclinicity, consistent with previous studies. The southern track exhibits a surprising reduction of wave activity associated with less frequent occurrence of weak waves and a slight increase in the occurrence of strong waves. These changes are connected to changes inmore » the profile of vortex stretching and tilting that can be understood as interconnected consequences of increased static stability from the lapse rate response, weak temperature gradient balance, and the fixed anvil temperature hypothesis.« less

  2. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.

    PubMed

    Zahmakiran, Mehmet; Ozkar, Saim

    2009-09-21

    Herein we report the discovery of a superior dimethylamine-borane dehydrogenation catalyst, more active than the prior best heterogeneous catalyst (Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776) reported to date for the dehydrogenation of dimethylamine-borane. The new catalyst system consists of rhodium(0) nanoclusters stabilized by C(5)H(11)COO(-) anions and Me(2)H(2)N(+) cations and can reproducibly be formed from the reduction of rhodium(II) hexanoate during dehydrogenation of dimethylamine-borane at room temperature. Rhodium(0) nanoclusters in an average particle size of 1.9 +/- 0.6 nm Rh(0)(approximately 190) nanoclusters) provide 1040 turnovers over 26 h with a record initial turnover frequency (TOF) of 60 h(-1) (the average TOF value is 40 h(-1)) in the dehydrogenation of dimethylamine-borane, yielding 100% of the cyclic product (Me(2)NBH(2))(2) at room temperature. The work reported here also includes the full experimental details of the following major components: (i) Characterization of dimethylammonium hexanoate stabilized rhodium(0) nanoclusters by using TEM, STEM, EDX, XRD, UV-vis, XPS, FTIR, (1)H, (13)C, and (11)B NMR spectroscopy, and elemental analysis. (ii) Collection of a wealth of previously unavailable kinetic data to determine the rate law and activation parameters for catalytic dehydrogenation of dimethylamine-borane. (iii) Monitoring of the formation kinetics of the rhodium(0) nanoclusters by a fast dimethylamine-borane dehydrogenation catalytic reporter reaction (Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382) at various [Me(2)NH.BH(3)]/[Rh] ratios and temperatures. Significantly, sigmoidal kinetics of catalyst formation was found to be well fit to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A --> B (rate constant k(1)) and A + B --> 2B (rate constant k(2)), in which A is [Rh(C(5)H(11)CO(2))(2)](2) and B is the growing, catalytically active rhodium(0) nanoclusters. (iv) Mercury(0) and CS(2) poisoning and nanofiltration experiments to determine whether the dehydrogenation of dimethylamine-borane catalyzed by the dimethylammonium hexanoate stabilized rhodium(0) nanoclusters is homogeneous or heterogeneous catalysis.

  3. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching. Electronic supplementary information (ESI) available: Melting curves without baseline subtraction, AFM images of DNA origami after 24 h incubation, calculated melting temperatures of all staple strands. See DOI: 10.1039/c6nr00835f

  4. Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics

    NASA Astrophysics Data System (ADS)

    Jordan, Jennifer Lynn

    The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.

  5. Engineering Ultrastable Protein Filaments into 2D and 3D Templates for Advanced Nanomaterials: A New Dimension in Materials Design

    DTIC Science & Technology

    2013-08-16

    Littlechild,   Thermophilic  archaeal   enzymes  and  applications  in  biocatalysis,  Biochem  Soc  Trans  39   (2011...spatially arrange thermostable enzymes for high- temperature biocatalysis[7][8] and as biotemplates for fabrication and patterning of inorganic...upon which to position hyperthermostable enzymes that have optimal activities at or above 100°C  [8], which are temperatures beyond the stability of

  6. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  7. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract.

    PubMed

    Escher, Graziela Bragueto; Santos, Jânio Sousa; Rosso, Neiva Deliberali; Marques, Mariza Boscacci; Azevedo, Luciana; do Carmo, Mariana Araújo Vieira; Daguer, Heitor; Molognoni, Luciano; Prado-Silva, Leonardo do; Sant'Ana, Anderson S; da Silva, Marcia Cristina; Granato, Daniel

    2018-05-19

    This study aimed to optimise the experimental conditions of extraction of the phytochemical compounds and functional properties of Centaurea cyanus petals. The following parameters were determined: the chemical composition (LC-ESI-MS/MS), the effects of pH on the stability and antioxidant activity of anthocyanins, the inhibition of lipid peroxidation, antioxidant activity, anti-hemolytic activity, antimicrobial, anti-hypertensive, and cytotoxic/cytoprotective effect, and the measurements of intracellular reactive oxygen species. Results showed that the temperature and time influenced (p ≤ 0.05) the content of flavonoids, anthocyanins, and FRAP. Only the temperature influenced the total phenolic content, non-anthocyanin flavonoids, and antioxidant activity (DPPH). The statistical approach made it possible to obtain the optimised experimental extraction conditions to increase the level of bioactive compounds. Chlorogenic, caffeic, ferulic, and p-coumaric acids, isoquercitrin, and coumarin were identified as the major compounds in the optimised extract. The optimised extract presented anti-hemolytic and anti-hypertensive activity in vitro, in addition to showing stability and reversibility of anthocyanins and antioxidant activity with pH variation. The C. cyanus petals aqueous extract exhibited high IC 50 and GI 50 (>900 μg/mL) values for all cell lines, meaning low cytotoxicity. Based on the stress oxidative assay, the extract exhibited pro-oxidant action (10-100 μg/mL) but did not cause damage or cell death. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species.

    PubMed

    Bhattacharya, Abhishek; Shrivastava, Ankita; Sharma, Anjana

    2013-06-01

    Carbonic anhydrase (CA) was purified from Micrococcus lylae and Micrococcus luteus with 49.90 and 53.8 % yield, respectively, isolated from calcium carbonate kilns. CA from M. lylae retained 80 % stability in the pH and temperature range of 6.0-8.0 and 35-45 °C, respectively. However, CA from M. luteus was stable in the pH and temperature range of 7.5-10.0 and 35-55 °C, respectively. Cross-linked enzyme aggregates (CLEAs) raised the transition temperature of M. lylae and M. luteus CA up to 67.5 and 74.0 °C, while the operational stability (T(1/20) of CA at 55 °C was calculated to be 7.7 and 12.0 h, respectively. CA from both the strains was found to be monomeric in nature with subunit molecular weight and molecular mass of 29 kDa. Ethoxozolamide was identified as the most potent inhibitor based on both IC(50) values and inhibitory constant measurement (K(i)). The K(m) and V(max) for M. lylae CA (2.31 mM; 769.23 μmol/mg/min) and M. luteus CA (2.0 mM; 1,000 μmol/mg/min) were calculated from Lineweaver-Burk plots in terms of esterase activity. Enhanced thermostability of CLEAs alleviates its role in operational stability for application at an on-site scrubber. The characteristic profile of purified CA from Micrococcus spp. advocates its effective application in biomimetic CO(2) sequestration.

  9. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    PubMed

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Comparison of the relative stability of pharmaceutical cocrystals consisting of paracetamol and dicarboxylic acids.

    PubMed

    Suzuki, Naoto; Kawahata, Masatoshi; Yamaguchi, Kentaro; Suzuki, Toyofumi; Tomono, Kazuo; Fukami, Toshiro

    2018-04-01

    The aim of this study is to evaluate the relative stability of pharmaceutical cocrystals consisting of paracetamol (APAP) and oxalic acid (OXA) or maleic acid (MLA). These observations of cocrystal stability under various conditions are useful coformer criteria when cocrystals are selected as the active pharmaceutical ingredient in drug development. The relative stability was determined from the preferentially formed cocrystals under various conditions. Cocrystal of APAP-OXA was more stable than that of APAP-MLA in a ternary cogrinding system and possessed thermodynamical stability. On the other hand, when grinding with moisture or maintaining at high temperatures and relative humidity conditions, APAP-MLA was more stable, and OXA converted to OXA dihydrate. In the slurry method, APAP-OXA was more stable in aprotic solvents because the APAP-OXA with low-solubility product precipitated. The relative stability order was affected by preparing conditions of presence of moisture. This order might attribute to the small difference of crystal structure in the extension of the hydrogen bond network.

  11. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  12. A facile construction of Au nanoparticles stabilized by thermo-responsive polymer-tethered carbon dots for enhanced catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Tianyi; Lü, Jianhua; Lü, Changli

    2018-10-01

    Carbon dots (CDs), the youngest member in the carbon nanomaterial family, have drawn considerable attention due to their interesting optical, physicochemical and electronic properties as well as broad promising applications. Here, we developed a facile and effective strategy for the preparation of Au nanoparticles stabilized by thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) functionalized carbon dots (Au@CD@P) under the gentle water media. The as-designed dopamine(DA)-terminated PNIPAM can be easily anchored to CDs via mussel-inspired chemistry route. Both CD@P and CDs could well stabilize the Au nanoparticles with interesting assembled structure. The as-prepared Au@CD and Au@CD@P nanohybrids with good dispersibility and stability exhibited the intriguing catalytic activity for reduction of p-nitrophenol (p-NP). Especially, Au@CD@P as catalyst also played a switching role in regulating the catalytic rate by temperature. In addition, Au@CD@P exhibited excellent recyclability which may have potential in green chemical industry for developing high-activity catalysts and easy production methods.

  13. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors

    DOE PAGES

    Dalal, Shakeel S.; Walters, Diane M.; Lyubimov, Ivan; ...

    2015-03-23

    Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. In this paper, we apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (T substrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by T substrate/T g, where T g is themore » glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. Finally, by showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.« less

  14. Molecular dynamics study of the structural and dynamic characteristics of the polyextremophilic short-chain dehydrogenase from the Thermococcus sibiricus archaeon and its homologues

    NASA Astrophysics Data System (ADS)

    Popinako, Anna V.; Antonov, Mikhail Yu.; Bezsudnova, Ekaterina Yu.; Prokopiev, Georgiy A.; Popov, Vladimir O.

    2017-11-01

    The study of structural adaptations of proteins from polyextremophilic organisms using computational molecular dynamics method is appealing because the obtained knowledge can be applied to construction of synthetic proteins with high activity and stability in polyextreme media which is useful for many industrial applications. To investigate molecular adaptations to high temperature, we have focused on a superthermostable short-chain dehydrogenase TsAdh319 from the Thermococcus sibiricus polyextremophilic archaeon and its closest structural homologues. Molecular dynamics method is widely used for molecular structure refinement, investigation of biological macromolecules motion, and, consequently, for interpreting the results of certain biophysical experiments. We performed molecular dynamics simulations of the proteins at different temperatures. Comparison of root mean square fluctuations (RMSF) of the atoms in thermophilic alcohol dehydrogenases (ADHs) at 300 K and 358 K revealed the existence of stable residues at 358 K. These residues surround the active site and form a "nucleus of rigidity" in thermophilic ADHs. The results of our studies suggest that the existence of the "nucleus of rigidity" is crucial for the stability of TsAdh319. Absence of the "nucleus of rigidity" in non-thermally stable proteins causes fluctuations throughout the protein, especially on the surface, triggering the process of denaturation at high temperatures.

  15. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  16. Effect of the nanostructure and the surface composition of bimetallic Ni-Ru nanoparticles on the performance of CO methanation

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yuan, Changkun; Yao, Nan; Li, Xiaonian

    2018-05-01

    The Ni/SiO2 catalysts with trace Ru promoter were prepared by either polyethylene glycol (PEG)-assisted or PEG-free impregnation method and were used in CO methanation reaction. The presence of PEG molecules was beneficial to form bimetallic Ni-Ru particles with smaller size, better anti-sintering property and low-temperature reducibility on SiO2 support than the conventional PEG-free derived NiRu/SiO2 catalyst. Moreover, it was found that the low-temperature reduction at 573 K was favorable to form bimetallic Ni-Ru particles with more surface Ru atoms. This nanostructure not only allowed the electron transfer happening from Ru0 to Ni0 which led to its higher electron cloud density, but also could reduce the deposition of less reactive carbon on the catalyst. Therefore, the low-temperature reduction enhanced the reaction stability of NiRu/SiO2 catalyst. The increase of reduction temperature from 573 K to 693 K did not change the size of metallic particles, but decreased the amount of surface Ru atoms. It deactivated the catalyst due to the deposition of more less reactive carbon. Although the higher reduction temperature (e.g. 693 and 793 K) was unfavorable to the reaction stability, it created more surface defects. The amount of defects showed a volcano-shaped correlation with the reduction temperature which was consistent with the variation tendency of turnover frequency of CO conversion. Consequently, it evidenced that the amount of surface Ru atoms and defects on the bimetallic Ni-Ru particle played the critical roles on the stability and the intrinsic activity of methanation, respectively.

  17. Transcriptional Response of the Mussel Mytilus galloprovincialis (Lam.) following Exposure to Heat Stress and Copper

    PubMed Central

    Negri, Alessandro; Oliveri, Catherina; Sforzini, Susanna; Mignione, Flavio; Viarengo, Aldo; Banni, Mohamed

    2013-01-01

    Global warming is a major factor that may affect biological organization, especially in marine ecosystems and in coastal areas that are particularly subject to anthropogenic pollution. We evaluated the effects of simultaneous changes in temperature and copper concentrations on lysosomal membrane stability (N-acetyl-hexosaminidase activity) and malondialdehyde accumulation (MDA) in the gill of the blue mussel Mytilus galloprovincialis (Lam.). Temperature and copper exerted additive effects on lysosomal membrane stability, exacerbating the toxic effects of metal cations present in non-physiological concentrations. Mussel lysosomal membrane stability is known to be positively related to scope for growth, indicating possible effects of increasing temperature on mussel populations in metal-polluted areas. To clarify the molecular response to environmental stressors, we used a cDNA microarray with 1,673 sequences to measure the relative transcript abundances in the gills of mussels exposed to copper (40 µg/L) and a temperature gradient (16°C, 20°C, and 24°C). In animals exposed only to heat stress, hierarchical clustering of the microarray data revealed three main clusters, which were largely dominated by down-regulation of translation-related differentially expressed genes, drastic up-regulation of protein folding related genes, and genes involved in chitin metabolism. The response of mussels exposed to copper at 24°C was characterized by an opposite pattern of the genes involved in translation, most of which were up-regulated, as well as the down-regulation of genes encoding heat shock proteins and “microtubule-based movement” proteins. Our data provide novel information on the transcriptomic modulations in mussels facing temperature increases and high copper concentrations; these data highlight the risk of marine life exposed to toxic chemicals in the presence of temperature increases due to climate change. PMID:23825565

  18. Localized temperature stability of low temperature cofired ceramics

    DOEpatents

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  19. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement

    PubMed Central

    Samara, E.; Decosterd, L. A.; Richards, R. G.; Gautier, E.; Wahl, P.

    2017-01-01

    Objectives Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature. Methods In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay. Results The heat exposure mimicking curing bone cement had minimal effect on stability for most antibiotics, except for gentamicin which experienced approximately 25% degradation as measured by immunoassay. Beta-lactam antibiotics were found to degrade quite rapidly at 37°C regardless of whether there was an initial heat exposure. Excellent long-term stability was observed for aminoglycosides, glycopeptides, tetracyclines and quinolones under both conditions. Conclusions This study provides a valuable dataset for orthopaedic surgeons considering local application of antibiotics, and for material scientists looking to develop next-generation controlled or extended-release antibiotic carriers. Cite this article: E. Samara, T. F. Moriarty, L. A. Decosterd, R. G. Richards, E. Gautier, P. Wahl. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Joint J 2017;6:296–306. DOI: 10.1302/2046-3758.65.BJR-2017-0276.R1. PMID:28515059

  20. [Immobilization of pectawamorine G10x on silichromes].

    PubMed

    Bogatskiĭ, A V; Davidenko, T I; Gren', T A

    1980-01-01

    Immobilization of pectawamorine G10x on silochromes, using cyanuric chloride, 2,4-toluylene diisocyanate, glutaric dialdehyde, thionyl chloride, phosphorus tribromide, titanium tetrachloride, zirconium oxychloride and hafnium oxychloride was studied. The use of glutaric dialdehyde assured the strongest binding and the preatest stability of activity. Properties of the native pectawamorine G10x and immobilized preparations were studied on a comparative basis. Pectawamorine G10x immobilized by means of hafnium oxychloride showed increased stability when stored at 5 degrees C and used repeatedly. In every case, except for cyanuric chloride and glutaric dialdehyde, maximum activity was at a temperature 10 degrees C higher than for the native enzyme, and optimum pH varied for the preparations with different binding reagents.

  1. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region.

    PubMed

    Lebbink, J H; Knapp, S; van der Oost, J; Rice, D; Ladenstein, R; de Vos, W M

    1998-07-10

    Comparison of the recently determined three-dimensional structures of several glutamate dehydrogenases allowed for the identification of a five-residue ion-pair network in the hinge region of Pyrococcus furiosus glutamate dehydrogenase (melting temperature 113 degrees C), that is not present in the homologous glutamate dehydrogenase from Thermotoga maritima (melting temperature 93 degrees C). In order to study the role of this ion-pair network, we introduced it into the T. maritima enzyme using a site-directed mutagenesis approach. The resulting T. maritima glutamate dehydrogenases N97D, G376 K and N97D/G376 K as well as the wild-type enzyme were overproduced in Escherichia coli and subsequently purified. Elucidation of the three-dimensional structure of the double mutant N97D/G376 K at 3.0 A, showed that the designed ion-pair interactions were indeed formed. Moreover, because of interactions with an additional charged residue, a six-residue network is present in this double mutant. Melting temperatures of the mutant enzymes N97D, G376 K and N97D/G376 K, as determined by differential scanning calorimetry, did not differ significantly from that of the wild-type enzyme. Identical transition midpoints in guanidinium chloride-induced denaturation experiments were found for the wild-type and all mutant enzymes. Thermal inactivation at 85 degrees C occured more than twofold faster for all mutant enzymes than for the wild-type glutamate dehydrogenase. At temperatures of 65 degrees C and higher, the wild-type and the three mutant enzymes showed identical specific activities. However, at 58 degrees C the specific activity of N97D/G376 K and G376 K was found to be significantly higher than that of the wild-type and N97D enzymes. These results suggest that the engineered ion-pair interactions in the hinge region do not affect the stability towards temperature or guanidinium chloride-induced denaturation but rather affect the specific activity of the enzyme and the temperature at which it functions optimally. Copyright 1998 Academic Press

  2. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  3. International Space Station Alpha trace contaminant control subassembly life test report

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    1995-01-01

    The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762).

  4. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature

    NASA Astrophysics Data System (ADS)

    Nasrollahzadeh, Mahmoud; Atarod, Monireh; Sajadi, S. Mohammad

    2016-02-01

    This paper reports the green and in-situ preparation of the Cu/Fe3O4 magnetic nanocatalyst synthesized using Morinda morindoides leaf extract without stabilizers or surfactants. The catalyst was characterized by XRD, SEM, EDS, UV-visible, TEM, VSM and TGA-DTA. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4-nitrophenol (4-NP), Congo red (CR) and Rhodamine B (RhB) in an environmental friendly medium at room temperature. The catalyst was recovered using an external magnet and reused several times without appreciable loss of its catalytic activity. In addition, the stability of the recycled catalyst has been proved by SEM and EDS techniques.

  5. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    PubMed

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  6. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  7. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  8. Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions.

    PubMed

    Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2010-03-01

    Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.

  9. A Series of Enzymology-Based Experiments Designed to Mimic an Applied Research Project

    ERIC Educational Resources Information Center

    Boyce, Angela; Walsh, Gary

    2005-01-01

    Four mini-practicals are described in which the effects of temperature and pH on phytase activity are assessed, as well as the enzyme's thermostability and the effect upon stability of simulated digestive tract conditions. Phytase is routinely incorporated into monogastric animal feed to ameliorate the negative nutritional and environmental…

  10. Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents.

    PubMed

    Kuck, Luiza Siede; Wesolowski, Júlia Lerina; Noreña, Caciano Pelayo Zapata

    2017-09-01

    The stability of microparticles of Bordo grape skin aqueous extract, produced by spray-drying and freeze-drying using polydextrose (5%) and partially hydrolyzed guar gum (5%), was evaluated under accelerated conditions (75 and 90% relative humidity, at 35, 45, and 55°C for 35days) and simulated gastrointestinal digestion. The temperature had a significant effect on the reduction of phenolics content, with retentions varying from 82.5 to 93.5%. The retention of total monomer anthocyanins were in the range of 3.9-42.3%. The antioxidant activity had a final retention of 38.5-59.5%. In the simulated gastrointestinal digestion, a maximum release was observed for the phenolic compounds in the intestinal phase (90.6% for the spray-dried powder and 94.9% for the freeze-dried powder), as well as the antioxidant activity (69.4% for the spray-dried powder and 67.8% for the freeze-dried powder). However, a reduction of monomeric anthocyanins was observed in the intestinal phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye

    NASA Astrophysics Data System (ADS)

    Gahlout, Mayur; Rudakiya, Darshan M.; Gupte, Shilpa; Gupte, Akshaya

    2017-08-01

    Immobilization of enzyme with nanostructures enhances its ideal characteristics, which may allow the enzyme to become more stable and resistant. The present investigation deals with the formulation of laccase nanosilica conjugates to overcome the problems associated with its stability and reusability. Synthesized nanosilica and laccase nanoparticles were spherical shaped, with the mean size of 220 and 615 nm, respectively. Laccase nanoparticles had an optimum temperature of 55 °C and pH 4.0 for the oxidation of ABTS. Laccase nanoparticle retained 79% of residual activity till 20th cycle. It also showed 91% of its initial activity at lower temperatures even after 60 days. Laccase nanoparticles were applied for Reactive Violet 1 degradation wherein 96.76% of decolourization was obtained at pH 5.0 and 30 °C within 12 h. Toxicity studies on microbes and plants suggested that the degraded metabolites were less toxic than control dye. Thus, the method applied for immobilization increased storage stability and reusability of laccase, and therefore, it can be utilized for efficient degradation of azo dyes.

  12. Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator

    PubMed Central

    Grabek, Katharine R; Diniz Behn, Cecilia; Barsh, Gregory S; Hesselberth, Jay R; Martin, Sandra L

    2015-01-01

    During hibernation, animals cycle between torpor and arousal. These cycles involve dramatic but poorly understood mechanisms of dynamic physiological regulation at the level of gene expression. Each cycle, Brown Adipose Tissue (BAT) drives periodic arousal from torpor by generating essential heat. We applied digital transcriptome analysis to precisely timed samples to identify molecular pathways that underlie the intense activity cycles of hibernator BAT. A cohort of transcripts increased during torpor, paradoxical because transcription effectively ceases at these low temperatures. We show that this increase occurs not by elevated transcription but rather by enhanced stabilization associated with maintenance and/or extension of long poly(A) tails. Mathematical modeling further supports a temperature-sensitive mechanism to protect a subset of transcripts from ongoing bulk degradation instead of increased transcription. This subset was enriched in a C-rich motif and genes required for BAT activation, suggesting a model and mechanism to prioritize translation of key proteins for thermogenesis. DOI: http://dx.doi.org/10.7554/eLife.04517.001 PMID:25626169

  13. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst.

    PubMed

    Del Arco, J; Cejudo-Sanches, J; Esteban, I; Clemente-Suárez, V J; Hormigo, D; Perona, A; Fernández-Lucas, J

    2017-12-15

    Traditionally, enzymatic synthesis of nucleoside-5'-monophosphates (5'-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50-90°C) and ionic strengths (0-500mMNaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8-11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5'-NMPs, such as 5'-GMP and 5'-IMP, was carried out at high concentrations of guanine and hypoxanthine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Homology modeling reveals the structural background of the striking difference in thermal stability between two related [NiFe]hydrogenases.

    PubMed

    Szilágyi, András; Kovács, Kornél L; Rákhely, Gábor; Závodszky, Péter

    2002-02-01

    Hydrogenases are redox metalloenzymes in bacteria that catalyze the uptake or production of molecular hydrogen. Two homologous nickel-iron hydrogenases, HupSL and HydSL from the photosynthetic purple sulfur bacterium Thiocapsa roseopersicina, differ substantially in their thermal stabilities despite the high sequence similarity between them. The optimum temperature of HydSL activity is estimated to be at least 50 degrees C higher than that of HupSL. In this work, homology models of both proteins were constructed and analyzed for a number of structural properties. The comparison of the models reveals that the higher stability of HydSL can be attributed to increased inter-subunit electrostatic interactions: the homology models reliably predict that HydSL contains at least five more inter-subunit ion pairs than HupSL. The subunit interface of HydSL is more polar than that of HupSL, and it contains a few extra inter-subunit hydrogen bonds. A more optimized cavity system and amino acid replacements resulting in increased conformational rigidity may also contribute to the higher stability of HydSL. The results are in accord with the general observation that with increasing temperature, the role of electrostatic interactions in protein stability increases. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00894-001-0071-8.

  15. Stability of peptides in high-temperature aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  16. Effect of thermal treatment on the quality of cloudy apple juice.

    PubMed

    Krapfenbauer, Gottfried; Kinner, Mathias; Gössinger, Manfred; Schönlechner, Regine; Berghofer, Emmerich

    2006-07-26

    Apple juice from eight different varieties of apples was heated at high-temperature (60-90 degrees C) and short-time (20-100 s) (HTST) combinations. To determine the effect of heating conditions on enzymatic browning and cloud stability in apple juices, the activity of polyphenol oxidase and pectinesterase was analyzed and correlated with the thermal treatment conditions and the quality of the juice. Additional investigations included the measurement of pH value, soluble solid content, titratable acidity, color, and turbidity after 3 and 6 months. The results showed that HTST treatment at 80 degrees C already inactivated polyphenol oxidase, whereas pectinesterase activity was reduced to half and could even at 90 degrees C not be inactivated completely. In fact, highest residual pectinesterase activity was found at 60 degrees C. Heating at 70 degrees C caused stable pectinesterase activity and even a slight increase for 50 and 100 s heating times. Turbidity and lightness increased after HTST treatment. In particular, differences in cloud stability between the varieties were measured. HTST parameters did not correlate with the residual cloud stability after 6 months. The sensory evaluation revealed that only a few combinations were distinguishable. The best stability of cloud and color in relation to heat impact was achieved by HTST treatment between 70 degrees C/100 s and 80 degrees C/20 s.

  17. Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.

    PubMed

    Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol

    2018-05-09

    The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3 insulator.

  18. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was analytically predicted.

  19. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability.

    PubMed

    Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S

    2016-08-08

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  20. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-08-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g-1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g-1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  1. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    PubMed Central

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g−1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g−1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  2. Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream

    PubMed Central

    Li, Dongwei; Zhu, Ye; Wang, Hui; Ding, Yi

    2013-01-01

    Preferential CO oxidation (PROX) was investigated by using dealloyed nanoporous gold (NPG) catalyst under ambient conditions. Systematic investigations were carried out to characterize its catalytic performance by varying reaction parameters such as temperature and co-existence of CO2 and H2O, which revealed that NPG was a highly active and selective catalyst for PROX, especially at low temperature. At 20°C, the exit CO concentration could be reduced to less than 2 ppm with a turnover frequency of 4.1 × 10−2 s−1 at a space velocity of 120,000 mL h−1 g−1cat. and its high activity could retain for more than 24 hours. The presence of residual Ag species in the structure did not seem to improve the intrinsic activity of NPG for PROX; however, they contributed to the stabilization of the NPG structure and apparent catalytic activity. These results indicated that NPG might be readily applicable for hydrogen purification in fuel cell applications. PMID:24145317

  3. A theory for the phase behavior of mixtures of active particles.

    PubMed

    Takatori, Sho C; Brady, John F

    2015-10-28

    Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.

  4. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    NASA Astrophysics Data System (ADS)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O <-> CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O<-> OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve combustion stability The effect of applied voltage in a flame below self-sustained plasma generation is known to enhance flame holding through induced turbulence. Review of recent results will be presented to show future research opportunities in quantitative measurements and modeling of hydrocarbon/air plasma enhanced combustion.

  5. Chitosan-caffeic acid-genipin films presenting enhanced antioxidant activity and stability in acidic media.

    PubMed

    Nunes, Cláudia; Maricato, Élia; Cunha, Ângela; Nunes, Alexandra; da Silva, José A Lopes; Coimbra, Manuel A

    2013-01-02

    The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass.

    PubMed

    Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei

    2016-10-01

    Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    PubMed Central

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  8. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  9. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    PubMed Central

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  10. Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate.

    PubMed

    Fan, Yuting; Yi, Jiang; Zhang, Yuzhu; Yokoyama, Wallace

    2017-12-13

    A chitosan (CS)-chlorogenic acid (CA) conjugate was successfully prepared through free-radical-induced protocols with a substitution of CA on CS of 103.5 mg/g. ATR-FTIR and 1 H NMR results validated the covalent conjugation of CA onto CS. XRD results indicated the decrease of crystallinity after CA conjugation. DPPH-scavenging activity and reducing-power studies indicated that the CS-CA conjugate had stronger antioxidant activity than chitosan. The particle diameters of curcumin-loaded CS and CS-CA nanoparticles simultaneously formed by ionic gelling in the presence of tripolyphosphate (TPP) were less than 300 nm (243.6 and 256.5 nm, respectively), and zeta-potential values between 25 and 30 mV were obtained. TEM results showed that the nanoparticles were spherically shaped and homogeneously dispersed. Curcumin with the CS-CA conjugate showed better heat stability than with CA at both temperatures (25 and 95 °C) (p <0.05). Curcumin release was inhibited by the CS-CA conjugate. The total release amount of curcumin from CS and CS-CA-conjugate nanoparticles were 70.5 and 61.7%, respectively (p <0.05). A methyl thiazolyl tetrazolium (MTT) assay showed that the antiproliferative activity of curcumin in CS-CA nanoparticles was remarkably higher than that in CS nanoparticles because of the higher chemical stability. The results suggest that CS-CA-based nanoparticles are promising candidates for the encapsulation and controlled release of hydrophobic, bioactive compounds and can improve these compounds' chemical stabilities and anticancer activities.

  11. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.

  12. Trehalose radial networks protect Renilla luciferase helical layers against thermal inactivation.

    PubMed

    Liyaghatdar, Zahra; Emamzadeh, Rahman; Rasa, Sayed Mohammad Mahdi; Nazari, Mahboobeh

    2017-12-01

    Renilla luciferase (Rluc) from Renilla reniformis is an appropriate protein reporter for the detection of specific molecular targets due to its bioluminescent feature, although its relatively low stability limits the application. To investigate the effects of trehalose and sucrose as chemical chaperones on the kinetic stability of Rluc, we assayed the activity of the enzyme in the presence of these additives at high temperatures and to comprehend the mechanism of stability, molecular dynamic (MD) simulation was carried out. In the presence of trehalose a thermostabilizing effect which was considerable in comparison with other systems was observed. It is proposed that a wide radial like network of trehalose molecules supports α-helix structures that are located in the N-terminus and C-terminus of the protein. However, in the water simulation box, these helices alter to instable structures at high temperatures. Reduction of the fluctuation of these helices in the presence of trehalose molecules, may prevent the protein from unfolding and increase its shelf life. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of surfactant on temperature stability of solid lipid nanoparticles studied by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sacheen; Kaur, Jaspreet

    2013-06-01

    Solid lipid nanoparticles are new paradigm of drug delivery system of water insoluble active pharmaceutical ingredient. Paliperidone, an antipsychotic used in treatment of schizophrenia is a water insoluble molecule with low bioavailability was studied. Macrogol glyceride surfactant, bile salt based surfactant and sodium dodecyl sulphate were used to stabilize the solid lipid as dispersed nanoparticles form by adsorbing on the surface of the nanoparticles. Anionic surfactants bile salt and sodium dodecyl sulphate were found to stabilize forming a monomolecular layer of surfactants on the surface of nanoparticles; whereas macrogol glyceride based surfactant have intrusion in the matrix of lipid nanoparticles. So intrusion of macrogol glyceride in matrix was observed by studying the change in size of nanoparticles with respect to temperature with the help of dynamic light scattering. In case of macrogol glyceride size decrease start form 50°C, for bile salt and sodium dodecyl sulphate size deacrease start at 60°C. So that structural disturbance of nanoparticles by the macrogol glyceride on the surface was found maximum as compared to anionic surfactant.

  14. Increasing Operational Stability in Low NOX GT Combustor Using Fuel Rich Concentric Pilot Combustor

    NASA Astrophysics Data System (ADS)

    Levy, Yeshayahou; Erenburg, Vladimir; Sherbaum, Valery; Ovcharenko, Vitali; Rosentsvit, Leonid; Chudnovsky, Boris; Herszage, Amiel; Talanker, Alexander

    2012-03-01

    Lean combustion is a method in which combustion takes place under low equivalence ratio and relatively low combustion temperatures. As such, it has the potential to lower the effect of the relatively high activation energy nitrogen-oxygen reactions which are responsible for substantial NOX formation during combustion processes. However, lowering temperature reduces the reaction rate and deteriorates combustion stability. The objective of the present study is to reduce the lower equivalence ratio limit of the stable combustion operational boundary in lean Gas Turbine (GT) combustors while still maintaining combustion stability. A lean premixed gaseous combustor was equipped with a surrounding concentric pilot flame operating under rich conditions, thus generating a hot stream of combustion products with significant amount of reactive radicals. The main combustor's fuel-air composition was varied from stoichiometric to lean mixtures. The pilot's mixture composition was also varied by changing the air flow rate, within a limited rich mixtures range. The pilot fuel flow rate was always lower than five percent of the total fuel supply at the specific stage of the experiments.

  15. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    PubMed

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  16. Structural control of side-chain chromophores to achieve highly efficient electro-optic activity.

    PubMed

    Yang, Yuhui; Chen, Zhuo; Liu, Jialei; Xiao, Hongyan; Zhen, Zhen; Liu, Xinhou; Jiang, Guohua

    2017-05-10

    A series of chromophores J1-J4 have been synthesized based on julolidine donors modified with different rigid steric hindrance groups. Compared with the chromophore (J1) without the isolation group, chromophores J2, J3 and J4 show better stability. Structural analysis and photophysical property measurements were carried out to compare the molecular mobility and steric hindrance effect of the different donor-modified chromophores. All of these chromophores with isolation groups showed superb thermal stabilities with high thermal decomposition temperatures above 250 °C. Furthermore, with rigid steric hindrance, chromophores J3 and J4 showed more enhanced thermal stabilities with thermal decomposition temperatures of 269 °C and 275 °C, respectively. Density functional theory was used to calculate the hyperpolarizability (β), and the high molecular hyperpolarizability of these chromophores can be effectively translated into large electro-optic coefficients. The electro-optic coefficients of poled films containing 20 wt% of these new chromophores doped in amorphous polycarbonate were 127, 266 and 209 pm V -1 at 1310 nm for chromophores J1-J3, respectively, while the film containing chromophore J4 showed the largest r 33 value of only 97 pm V -1 at 25 wt%. These results indicated that the introduced isolation group can reduce intermolecular electrostatic interactions, thus enhancing the macroscopic electro-optic activity, while the size of the isolation group should be suitable.

  17. Stability of minoxidil in Espumil foam base.

    PubMed

    Geiger, Christine M; Sorenson, Bridget; Whaley, Paul A

    2013-01-01

    Minoxidil is a drug used to stimulate hair growth and to slow balding. It is marketed under a number of trade names, including Rogaine, and is available in varying strength dose forms from a number of generic manufacturers. Minoxidil is available in oral and topical forms. In topical form, it can be applied by a metered-spray or rub-on applicator. A hydroalcoholic compounding vehicle can minimize greasiness, itching, burning, and contact dermatitis where low concentrations of ethanol and propylene glycol are present. Espumil Foam Base contains low concentrations of these ingredients and also can form a foam on topical application. Espumil's unique delivery by foam-activating packaging assures simple application to difficult-to-treat areas, and it vanishes quickly after application, keeping it in place and avoiding health skin areas. The objective of this study was to determine the stability of minoxidil in Espumil Foam Base. The studied sample was compounded into a 50-mg/mL solution and stored in a plastic foam-activating bottle at room temperature conditions. Three samples were assayed at each time point out to 90 days by a stability-indicating high-performance liquid chromatography method. The method was validated for its specificity through forced-degradation studies. The beyond-use-date is at least 90 days, based on data collected when this formulation was stored at room temperature, protected from light.

  18. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis.

    PubMed

    Kadek, Alan; Tretyachenko, Vyacheslav; Mrazek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr

    2014-03-01

    Carnivorous plants of the genus Nepenthes produce their own aspartic proteases, nepenthesins, to digest prey trapped in their pitchers. Nepenthesins differ significantly in sequence from other aspartic proteases in the animal or even plant kingdoms. This difference, which also brings more cysteine residues into the structure of these proteases, can be a cause of uniquely high temperature and pH stabilities of nepenthesins. Their detailed structure characterization, however, has not previously been possible due to low amounts of protease present in the pitcher fluid and also due to limited accessibility of Nepenthes plants. In the present study we describe a convenient way for obtaining high amounts of nepenthesin-1 from Nepenthes gracilis using heterologous production in Escherichia coli. The protein can be easily refolded in vitro and its characteristics are very close to those described for a natural enzyme isolated from the pitcher fluid. Similarly to the natural enzyme, recombinant nepenthesin-1 is sensitive to denaturing and reducing agents. It also has maximal activity around pH 2.5, shows unusual stability at high pH and its activity is not irreversibly inhibited even after prolonged incubation in the basic pH range. On the other hand, temperature stability of the recombinant enzyme is lower in comparison with the natural enzyme, which can be attributed to missing N-glycosylation in the recombinant protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Adjustment of Conformational Flexibility is a Key Event in the Thermal Adaptation of Proteins

    NASA Astrophysics Data System (ADS)

    Zavodszky, Peter; Kardos, Jozsef; Svingor, Adam; Petsko, Gregory A.

    1998-06-01

    3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17 degrees C higher melting temperature. Its temperature optimum is 22-25 degrees C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a ``corresponding state'' regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.

  20. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  1. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    NASA Astrophysics Data System (ADS)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  2. Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues.

    PubMed

    Wang, Kun; Luo, Huiying; Tian, Jian; Turunen, Ossi; Huang, Huoqing; Shi, Pengjun; Hua, Huifang; Wang, Caihong; Wang, Shuanghe; Yao, Bin

    2014-04-01

    Protein engineering is commonly used to improve the robustness of enzymes for activity and stability at high temperatures. In this study, we identified four residues expected to affect the thermostability of Streptomyces sp. strain S9 xylanase XynAS9 through multiple-sequence analysis (MSA) and molecular dynamic simulations (MDS). Site-directed mutagenesis was employed to construct five mutants by replacing these residues with proline or glutamic acid (V81P, G82E, V81P/G82E, D185P/S186E, and V81P/G82E/D185P/S186E), and the mutant and wild-type enzymes were expressed in Pichia pastoris. Compared to the wild-type XynAS9, all five mutant enzymes showed improved thermal properties. The activity and stability assays, including circular dichroism and differential scanning calorimetry, showed that the mutations at positions 81 and 82 increased the thermal performance more than the mutations at positions 185 and 186. The mutants with combined substitutions (V81P/G82E and V81P/G82E/D185P/S186E) showed the most pronounced shifts in temperature optima, about 17°C upward, and their half-lives for thermal inactivation at 70°C and melting temperatures were increased by >9 times and approximately 7.0°C, respectively. The mutation combination of V81P and G82E in adjacent positions more than doubled the effect of single mutations. Both mutation regions were at the end of long secondary-structure elements and probably rigidified the local structure. MDS indicated that a long loop region after positions 81 and 82 located at the end of the inner β-barrel was prone to unfold. The rigidified main chain and filling of a groove by the mutations on the bottom of the active site canyon may stabilize the mutants and thus improve their thermostability.

  3. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  4. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  5. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  6. Merging C-H activation and alkene difunctionalization at room temperature: a palladium-catalyzed divergent synthesis of indoles and indolines.

    PubMed

    Manna, Manash Kumar; Hossian, Asik; Jana, Ranjan

    2015-02-06

    A palladium-catalyzed 1,2-carboamination through C-H activation at room temperature is reported for the synthesis of 2-arylindoles, and indolines from readily available, inexpensive aryl ureas and vinyl arenes. The reaction initiates with a urea-directed electrophilic ortho palladation, alkene insertion, and β-hydride elimination sequences to provide the Fujiwara-Moritani arylation product. Subsequently, aza-Wacker cyclization, and β-hydride elimination provide the 2-arylindoles in high yields. Intercepting the common σ-alkyl-Pd intermediate, corresponding indolines are also achieved. The indoline formation is attributed to the generation of stabilized, cationic π-benzyl-Pd species to suppress β-hydride elimination.

  7. Towards a Model of Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Sanchez, Isaac

    2010-10-01

    Proteins/enzymes can undergo cold denaturation or cold deactivation. In the active or natured state, a protein exists in a unique folded/ordered state. In the deactivated (denatured) state, a protein unfolds and exists in a disordered expanded state. This protein folding/unfolding or order/disorder transition can be triggered by a temperature change. What seems paradoxical is that the active (ordered) state can be induced by heating, or equivalently, the disordered inactive state can be induced by cooling. This is equivalent to an Ising spin model passing from a disordered array of spins to an ordered array by increasing temperature! Hydrogels and their corresponding polyelectrolyte chains behave similarly, i.e., the swollen disordered state can be induced by cooling while the more ordered collapsed or globular state is induced by heating (an entropically driven phase transition). In a living cell at the physiological temperature of 37 C, activation and deactivation of proteins is triggered by local environmental changes in pH, salinity, etc. The important physics is that the denaturation temperature can be moved up or down relative to 37 C by these stimuli. Moving the transition temperature up can destabilize the active protein while moving it down leads to stabilization. An analytical polymer model will be described that exhibits cold denaturation behavior.

  8. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction.

    PubMed

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria

    2013-03-13

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au-O-TiO(x) sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this "excess" gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  9. On the spatial stability of a liquid jet in the presence of vapor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas,more » (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.« less

  10. Low-temperature technique for thick film resist stabilization and curing

    NASA Astrophysics Data System (ADS)

    Minter, Jason P.; Wong, Selmer S.; Marlowe, Trey; Ross, Matthew F.; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    For a range of thick film photoresist applications, including MeV ion implant processing, thin film head manufacturing, and microelectromechanical systems processing, there is a need for a low-temperature method for resist stabilization and curing. Traditional methods of stabilizing or curing resist films have relied on thermal cycling, which may not be desirable due to device temperature limitations or thermally-induced distortion of the resist features.

  11. Neuromodulation to the Rescue: Compensation of Temperature-Induced Breakdown of Rhythmic Motor Patterns via Extrinsic Neuromodulatory Input

    PubMed Central

    Städele, Carola; Heigele, Stefanie; Stein, Wolfgang

    2015-01-01

    Stable rhythmic neural activity depends on the well-coordinated interplay of synaptic and cell-intrinsic conductances. Since all biophysical processes are temperature dependent, this interplay is challenged during temperature fluctuations. How the nervous system remains functional during temperature perturbations remains mostly unknown. We present a hitherto unknown mechanism of how temperature-induced changes in neural networks are compensated by changing their neuromodulatory state: activation of neuromodulatory pathways establishes a dynamic coregulation of synaptic and intrinsic conductances with opposing effects on neuronal activity when temperature changes, hence rescuing neuronal activity. Using the well-studied gastric mill pattern generator of the crab, we show that modest temperature increase can abolish rhythmic activity in isolated neural circuits due to increased leak currents in rhythm-generating neurons. Dynamic clamp-mediated addition of leak currents was sufficient to stop neuronal oscillations at low temperatures, and subtraction of additional leak currents at elevated temperatures was sufficient to rescue the rhythm. Despite the apparent sensitivity of the isolated nervous system to temperature fluctuations, the rhythm could be stabilized by activating extrinsic neuromodulatory inputs from descending projection neurons, a strategy that we indeed found to be implemented in intact animals. In the isolated nervous system, temperature compensation was achieved by stronger extrinsic neuromodulatory input from projection neurons or by augmenting projection neuron influence via bath application of the peptide cotransmitter Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). CabTRP Ia activates the modulator-induced current IMI (a nonlinear voltage-gated inward current) that effectively acted as a negative leak current and counterbalanced the temperature-induced leak to rescue neuronal oscillations. Computational modelling revealed the ability of IMI to reduce detrimental leak-current influences on neuronal networks over a broad conductance range and indicated that leak and IMI are closely coregulated in the biological system to enable stable motor patterns. In conclusion, these results show that temperature compensation does not need to be implemented within the network itself but can be conditionally provided by extrinsic neuromodulatory input that counterbalances temperature-induced modifications of circuit-intrinsic properties. PMID:26417944

  12. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time.

    PubMed

    Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D

    2016-05-13

    In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds.

  13. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress.

    PubMed

    Zhang, Hua; Xu, Heng; Feng, Mengjie; Zhu, Ying

    2018-01-01

    High temperature significantly alters the amylose content of rice, resulting in mature grains with poor eating quality. However, only few genes and/or quantitative trait loci involved in this process have been isolated and the molecular mechanisms of this effect remain unclear. Here, we describe a floral organ identity gene, OsMADS7, involved in stabilizing rice amylose content at high temperature. OsMADS7 is greatly induced by high temperature at the early filling stage. Constitutive suppression of OsMADS7 stabilizes amylose content under high temperature stress but results in low spikelet fertility. However, rice plants with both stable amylose content at high temperature and normal spikelet fertility can be obtained by specifically suppressing OsMADS7 in endosperm. GBSSI is the major enzyme responsible for amylose biosynthesis. A low filling rate and high expression of GBSSI were detected in OsMADS7 RNAi plants at high temperature, which may be correlated with stabilized amylose content in these transgenic seeds under high temperature. Thus, specific suppression of OsMADS7 in endosperm could improve the stability of rice amylose content at high temperature, and such transgenic materials may be a valuable genetic resource for breeding rice with elite thermal resilience. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Temperature stabilization in dispersed flows of frameless heat removal systems in space

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Filatov, N. I.; Koroteev, A. A.; Bondareva, N. V.

    2017-11-01

    The temperature profile stabilization is studied at radiation cooling of a dispersed veil of droplet coolers-radiators. The stabilization is shown to be nonmonotonic. The influence of the studied process regularities on the characteristics of the radiating systems is analyzed.

  15. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  16. Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support.

    PubMed

    Ahmed, Samia A; Mostafa, Faten A; Ouis, Mona A

    2018-06-01

    α-Amylase enzyme was immobilized on bioactive phospho-silicate glass (PS-glass) as a novel inorganic support by physical adsorption and covalent binding methods using glutaraldehyde and poly glutaraldehyde as a spacer. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) studies confirmed the glass-enzyme linkage. Dissolution of PS-glass in acidic and neutral pH is higher than that of alkaline pH. Some immobilization variables were optimized using statistical factorial design (Central Composite Design). Optimized immobilization variables enhanced the immobilization yield (IY) from 27.9 to 79.9% (2.9-fold). It was found that the immobilized enzyme had higher optimum temperature, higher half-life time (t 1/2 ), lower activation energy (E a ), lower deactivation constant rate (k d ) and higher decimal reduction time (D-values) within the temperature range of 40-60°C. Differential scanning calorimetry analysis (DSC) confirmed the thermalstability of the immobilized enzyme. The immobilized enzyme was stable at a wide pH range (5.0-8.0). Kinetic studies of starch hydrolysis demonstrated that immobilized enzyme had lower Michaelis constant (K m ), maximum velocity (V max ) and catalytic efficiency (V max /K m ) values. The storage stability and reusability of the immobilized enzyme were found to be about 74.7 and 62.5% of its initial activity after 28days and 11cycles, respectively. Enhanced α-amylase stabilities upon immobilization make it suitable for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    PubMed

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  18. Silicon-based thin-film transistors with a high stability

    NASA Astrophysics Data System (ADS)

    Stannowski, Bernd

    2002-02-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the insulator layers, respectively. Commonly, Plasma-Enhanced Chemical Vapor Deposition (PECVD) is used to deposit such films on large glass or plastic substrates at rather low substrate temperatures of 200 - 300oC. Even though TFTs are nowadays used in commercial applications, they need further improvement with respect to a number of issues: Firstly, the stability upon prolonged application of a gate voltage results in a shift of the TFT transfer characteristics. This is explained with the metastability of a-Si:H, namely the defect creation in the amorphous channel. This effect hampers the application of TFTs e.g. in the peripheral driver circuitry of AMLCDs and in the addressing matrix of Organic Light-Emitting Diode (OLED) displays. Secondly, the low deposition rate of the silicon limits the throughput in display fabrication. For a further reduction of the production costs higher deposition rates are crucial. This thesis addresses the development and the study of silicon-based TFTs with a high stability. Therefore, a-Si:H and a-SiNx:H films have been deposited with new techniques, alternative to the commonly used PECVD at a discharge frequency of 13.56 MHz. For Very High Frequency (VHF) PECVD we used frequencies in the range of 13.56 - 70 MHz. Furthermore, we deposited layers by Hot-Wire Chemical Vapor Deposition (HWCVD), utilizing heated tantalum or tungsten filaments to decompose the source-gas molecules catalytically. Hot-wire deposited a-SiNx:H layers were developed to be applied as gate insulator. Furthermore, they are promising for passivation purposes, since no surface damaging ion bombardment is present during the deposition. A proof-of-concept for an "All-Hot-Wire TFT" with both the a-Si:H and the a-SiNx:H deposited by HWCVD is presented, yielding a considerable field-effect mobility of 0.3 cm2/Vs. The stability of various a-Si:H TFTs with either plasma a-SiNx:H or thermally grown SiO2 as the gate insulator was investigated by applying constant gate-bias stress of 25 V at temperatures of 20 - 110oC and durations of 10 - 105s. We determined the kinetics of defect-creation in the amorphous silicon by measuring the threshold-voltage shift and merging the data obtained at different stressing temperatures and times to one data set as a function of the "thermalization energy". This scheme was described by Deane et al.. The kinetics follow a stretched hyperbola, which results from dispersive defect creation with an exponential distribution of activation energies. A least-squares fit yields two parameters: kBT0 is the slope of the barrier distribution, with values of (65 ? 3) meV for all TFTs in this stability study. The second parameter, Ea, is interpreted as the "mean activation energy for defect creation". We used it for a comparison of the stability of various TFTs. For VHF-PECVD a-Si:H TFTs, values for Ea were around 0.92 eV and are found to be correlated with the mechanical stress in silicon films: A high value for Ea, thus a high stability, is related to a low compressive stress. For HWCVD a-Si:H the stability clearly increases with increasing deposition temperatures. The highest value being around 1.03 eV is obtained for het-Si:H, deposited at 510?C. From these results we concluded that the stability of a-Si:H is determined by the grade of network relaxation. Higher deposition temperatures result in a more efficient relaxation of the amorphous network. This can be associated with a higher medium-range order. In the case of the plasma-deposited a-Si:H films deposited at one temperature, the relation between Ea and mechanical stress may be a secondary effect, with the mechanical stress being related to the network ordering. In conclusion, HWCVD appears to be an ideal method to deposit highly stable a-Si:H TFTs, since a rather high temperature is combined with an effective hydrogenation, resulting in a-Si:H film with a low and stable defect density.

  19. Development of antioxidative effect in ice cream with Kalakai (Stenochlaena palustris) water extract

    NASA Astrophysics Data System (ADS)

    Hadhiwaluyo, Kristania; Rahmawati, Della; Gunawan Puteri, Maria D. P. T.

    2017-11-01

    Kalakai (Stenochlaena. palustris) extract was used to develop the ice cream. The antioxidant activity of the extracts and its stability over process and storage were evaluated through various antioxidant assay including DPPH assay, Folin-Ciocalteau assay and aluminum chloride colorimetric method. In general, the leaves of S. palustris had a significantly higher antioxidant activity (p < 0.05) than the branches and approximately, 0.10 mg/ml S. palustris leaves extract was able to develop antioxidant activity (IC50) with suitable iron content (< 0.3 mg/l) that could be used to produce ice cream without affecting the sensory properties of the ice cream. In addition, the high phenolic and flavonoid content also suggest the more compounds that were capable to act as an antioxidant. The result of the stability test also suggested the ability low temperature storage and processing in maintaining the stability of the antioxidant activity of the extract (p > 0.05) over processing and storage. Thus, this strengthen the feasibility of S. palustris to be used as a potential functional food ingredient that is low cost and easily accessible with an antioxidant activity and safe iron content that is beneficial to increase the quality of food produced including in ice cream.

  20. Controlled Aggregation and Increased Stability of β-Glucuronidase by Cellulose Binding Domain Fusion

    PubMed Central

    Kim, Moonjung; Kwon, Kil Koang; Fu, Yaoyao; Kim, Haseong; Lee, Hyewon; Lee, Dae-Hee; Jung, Heungchae; Lee, Seung-Goo

    2017-01-01

    Cellulose-binding domains (CBDs) are protein domains with cellulose-binding activity, and some act as leaders in the localization of cellulosomal scaffoldin proteins to the hydrophobic surface of crystalline cellulose. In this study, we found that a CBD fusion enhanced and improved soluble β-glucuronidase (GusA) enzyme properties through the formation of an artificially oligomeric state. First, a soluble CBD fused to the C-terminus of GusA (GusA-CBD) was obtained and characterized. Interestingly, the soluble GusA-CBD showed maximum activity at higher temperatures (65°C) and more acidic pH values (pH 6.0) than free GusA did (60°C and pH 7.5). Moreover, the GusA-CBD enzyme showed higher thermal and pH stabilities than the free GusA enzyme did. Additionally, GusA-CBD showed higher enzymatic activity in the presence of methanol than free GusA did. Evaluation of the protease accessibility of both enzymes revealed that GusA-CBD retained 100% of its activity after 1 h incubation in 0.5 mg/ml protease K, while free GusA completely lost its activity. Simple fusion of CBD as a single domain may be useful for tunable enzyme states to improve enzyme stability in industrial applications. PMID:28099480

  1. Controlled Aggregation and Increased Stability of β-Glucuronidase by Cellulose Binding Domain Fusion.

    PubMed

    Yeom, Soo-Jin; Han, Gui Hwan; Kim, Moonjung; Kwon, Kil Koang; Fu, Yaoyao; Kim, Haseong; Lee, Hyewon; Lee, Dae-Hee; Jung, Heungchae; Lee, Seung-Goo

    2017-01-01

    Cellulose-binding domains (CBDs) are protein domains with cellulose-binding activity, and some act as leaders in the localization of cellulosomal scaffoldin proteins to the hydrophobic surface of crystalline cellulose. In this study, we found that a CBD fusion enhanced and improved soluble β-glucuronidase (GusA) enzyme properties through the formation of an artificially oligomeric state. First, a soluble CBD fused to the C-terminus of GusA (GusA-CBD) was obtained and characterized. Interestingly, the soluble GusA-CBD showed maximum activity at higher temperatures (65°C) and more acidic pH values (pH 6.0) than free GusA did (60°C and pH 7.5). Moreover, the GusA-CBD enzyme showed higher thermal and pH stabilities than the free GusA enzyme did. Additionally, GusA-CBD showed higher enzymatic activity in the presence of methanol than free GusA did. Evaluation of the protease accessibility of both enzymes revealed that GusA-CBD retained 100% of its activity after 1 h incubation in 0.5 mg/ml protease K, while free GusA completely lost its activity. Simple fusion of CBD as a single domain may be useful for tunable enzyme states to improve enzyme stability in industrial applications.

  2. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase.

    PubMed

    Amin, Faiza; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2017-02-01

    An extracellular exo-polygalacturonase (exo-PG) from Penicillium notatum was immobilized in sodium-alginate matrix through two different protocols, viz. covalent bonding and adsorption to enhance its catalytic activity, thermal stability and life-time properties for industrial applications. Covalent immobilization was more efficient in terms of high relative activity (45.89%) and immobilization yield (71.6%) as compared to adsorption. Immobilized exo-PG derivatives displayed maximum activities at pH 5.5 and 55°C as compared to free enzyme which showed its optimum activity at pH 6.0 and 50°C. The affinity of enzyme towards its substrate (K m(app) ) was reduced after immobilization and V max of covalently immobilized exo-PG decreased to 66.7% while the V max value of adsorbed enzyme increased up to 150% as compared to free counterpart. Both immobilization techniques greatly enhanced the thermal stability profile of the enzyme. At 60°C, immobilized exo-PGs retained more than 90% of their residual activities after 60min of heating, while free enzyme did not show any activity at the same temperature. Thermodynamic properties (i.e., Ea, ΔH*, ΔS*and ΔG*) of the free and immobilized enzymes were also investigated. Sodium-alginate covalently immobilized and adsorbed enzymes showed excellent recycling efficiencies and retained 50.0% and 41.0% of original activities, respectively after seven consecutive batch reactions. Moreover, the immobilized enzymes treatment achieved promising results in turbidity and viscosity reduction as well as clarity amelioration in various fruit juices. Altogether catalytic, thermo-stability and fruit juices clarification characteristics of the immobilized ex-PGs suggest a high potential for biotechnological exploitability. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

    PubMed Central

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom

    2011-01-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009

  4. Antiinflammatory effects of Viola tricolor gel in a model of sunburn in rats and the gel stability study.

    PubMed

    Piana, Mariana; Silva, Mariane Arnoldi; Trevisan, Gabriela; de Brum, Thiele Faccim; Silva, Cássia Regina; Boligon, Aline Augusti; Oliveira, Sara Marchesan; Zadra, Marina; Hoffmeister, Carin; Rossato, Mateus Fortes; Tonello, Raquel; Laporta, Luciane Varini; de Freitas, Robson Borba; Belke, Bianca Vargas; Jesus, Roberta da Silva; Ferreira, Juliano; Athayde, Margareth Linde

    2013-11-25

    Viola tricolor, popularly known as heartsease has been empirically used in several skin disorders, including burns. The objective of this study was investigate the antinociceptive and antiinflammatory effect of a gel containing extract of Viola tricolor flowers on thermal burn induced by UVB irradiation and to perform gel stability study. The antinociceptive and antiinflammatory effect were evaluated by static and dynamic mechanical allodynia model, paw edema, and neutrophilic cell infiltration. Metabolites compounds were quantified by HPLC. The gel stability study was performed analyzing organoleptical aspects, besides pH, viscosity, and quantification of rutin by HPLC. In the results were evidenced changes in threshold in statical and dynamic mechanical allodynia (I(max)=100 ± 10% and 49 ± 10%, respectively), paw edema (I(max)=61 ± 6%), and myeloperoxidase activity (I(max)=89 ± 5%). Such effects may be attributed, in part, to rutin, salicylic and chlorogenic acids, and others compounds found in this species. No important changes were detected in the stability study, in all aspects analyzed in temperature below 25 °C. These findings suggest that Viola tricolor gel has an antinociceptive and antiinflammatory effect in the ultraviolet-B-induced burn, since maintain the temperature below 25 °C. © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.

  6. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  7. Z-scheme Ag3PO4/POM/GO heterojunction with enhanced photocatalytic performance for degradation and water splitting.

    PubMed

    Liu, Guodong; Zhao, Xinfu; Zhang, Jian; Liu, Shaojie; Sha, Jingquan

    2018-05-01

    To develop solar light-driven photocatalysts with high activity and structural stability, Ag3PO4/POM/GO heterojunction has been successfully prepared by a facile method at room temperature. Ag3PO4/POM/GO shows remarkably enhanced activity and stability for photocatalytic degradation and H2 production from water-splitting under simulated solar light. The degradation rate of Ag3PO4/POM/GO is 1.8 times and 1.2 times those of Ag3PO4 and Ag3PO4/POMs, respectively. H2 production using Ag3PO4/POM/GO is 2.0 times that of Ag3PO4/GO. The enhanced photocatalytic performance of Ag3PO4/POM/GO is attributed to the increased surface area, electronegativity and structure stability. The Z-scheme system of Ag3PO4/POM/GO effectively promotes charge separation, resulting in enhanced photocatalytic performance under simulated solar light.

  8. Effect of linoleic-acid modified carboxymethyl chitosan on bromelain immobilization onto self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Yu-long; Liu, Chen-guang; Yu, Le-jun; Chen, Xi-guang

    2008-06-01

    Hydrogel nanoparticles could be prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. Bromelain could be loaded onto nanoparticles of LA-CMCS. Factors affecting the activity of the immobilized enzyme, including temperature, storage etc., were investigated in this study. The results showed that the stability of bromelain for heat and storage was improved after immobilization on nanoparticles. The Michaelis constant ( K m) of the immobilized enzyme was smaller than that of free enzyme, indicating that the immobilization could promote the stability of the enzyme and strengthen the affinity of the enzyme for the substrate.

  9. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.

    PubMed

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-21

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.

  10. Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: first-principles investigations

    NASA Astrophysics Data System (ADS)

    Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.

    2016-09-01

    The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium.

  11. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    PubMed

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

  12. Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres.

    PubMed

    Lei, Zhongli; Jiang, Qin

    2011-03-23

    Pectinase was covalently immobilized onto the macroporous polyacrylamide (PAM) microspheres synthesized via an inverse suspension polymerization approach, resulting in 81.7% immobilization yield. The stability of the macroporous PAM support, which has a large surface area, is not impeded by the adsorbed proteins despite the fact that up to 296.3 mg of enzyme is immobilized per gram of the carrier particles. The immobilized enzyme retained more than 75% of its initial activity over 30 days, and the optimum temperature/pH also increased to the range of 50-60 °C/3.0-5.0. The immobilized enzyme also exhibited great operational stability, and more than 75% residual activity was observed after 10 batch reactions. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated. Moreover, the immobilized pectinase could be recovered by centrifuging and showed durable activity at the process of recycle.

  13. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    PubMed

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  14. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  15. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive.

    PubMed

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10-70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  16. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Li, Qing; Zhu, Yushan

    2017-01-01

    In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m ) by 11.7 °C and the catalytic efficiency V max /K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m . Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.

  17. The Analysis and Modeling of Phase Stability and Multiphase Designs in High Temperature Refractory Metal-Silicon-Boron Alloys

    DTIC Science & Technology

    2009-01-27

    high temperature mechanical properties , it was confirmed that the three phase eutectic structure exhibited exceptionally high strength and creep...microstructurc constituent, offer an attractive property balance of high melting temperature, oxidation resistance and useful high temperature mechanical ...design of new multiphase high-temperature alloys with balanced environmental and mechanical properties . 15. SUBJECT TERMS Phase Stability, Alloying

  18. Comparative study of stability of soluble and cell wall invertase from Saccharomyces cerevisiae.

    PubMed

    Margetić, Aleksandra; Vujčić, Zoran

    2017-03-16

    Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8 M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22 hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.

  19. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  20. Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis

    PubMed Central

    Yoo, Sang-Hun; Chang, Yoon Hyuk

    2016-01-01

    The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G′, G″) of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities. PMID:28078256

  1. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  2. Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis.

    PubMed

    Yoo, Sang-Hun; Chang, Yoon Hyuk

    2016-12-01

    The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G', G″) of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities.

  3. Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots.

    PubMed

    Guillén, Sofía; Mir-Bel, Jorge; Oria, Rosa; Salvador, María L

    2017-02-15

    Colour, pigments, total phenolic content and antioxidant activity were investigated in artichokes, green beans, broccoli and carrots cooked under different conditions. Domestic induction hobs with temperature control were used to evaluate the effect of boiling, sous-vide cooking and water immersion cooking at temperatures below 100°C on the properties of each vegetable. Sous-vide cooking preserved chlorophyll, carotenoids, phenolic content and antioxidant activity to a greater extent than boiling for all of the vegetables tested and retained colour better, as determined by a(∗). A reduction of only 10-15°C in the cooking temperature was enough to improve the properties of the samples cooked by water immersion, except for green beans. Artichokes and carrots suffered pronounced losses of antioxidant activity during boiling (17.0 and 9.2% retention, respectively), but the stability of this parameter significantly increased with sous-vide cooking (84.9 and 55.3% retention, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    PubMed

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. WGM Temperature Tracker

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    This software implements digital control of a WGM (whispering-gallerymode) resonator temperature based on the dual-mode approach. It comprises one acquisition (dual-channel) and three control modules. The interaction of the proportional-integral loops is designed in the original way, preventing the loops from fighting. The data processing is organized in parallel with the acquisition, which allows the computational overhead time to be suppressed or often completely avoided. WGM resonators potentially provide excellent optical references for metrology, clocks, spectroscopy, and other applications. However, extremely accurate (below micro-Kelvin) temperature stabilization is required. This software allows one specifically advantageous method of such stabilization to be implemented, which is immune to a variety of effects that mask the temperature variation. WGM Temperature Tracker 2.3 (see figure) is a LabVIEW code developed for dual-mode temperature stabilization of WGM resonators. It has allowed for the temperature stabilization at the level of 200 nK with one-second integration time, and 6 nK with 10,000-second integration time, with the above room-temperature set point. This software, in conjunction with the appropriate hardware, can be used as a noncryogenic temperature sensor/ controller with sub-micro-Kelvin sensitivity, which at the time of this reporting considerably outperforms the state of the art.

  6. Purification and characterization of tannin acyl hydrolase produced by mixed solid state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923.

    PubMed

    Gayen, Saswati; Ghosh, Uma

    2013-01-01

    Tannin acyl hydrolase produced extracellularly by the fungal strain Penicillium notatum NCIM 923 in mixed solid state fermentation of wheat bran and marigold flower in the ratio 4 : 1 was purified from the cell-free extract broth by ammonium sulphate fractionation followed by diethylaminoethyl-cellulose column chromatography. Tannase was purified by 19.89-fold with yield of 11.77%. The specific activity of crude tannase was found to be 1.31 U/mg protein while that of purified tannase was 22.48 U/mg protein. SDS-PAGE analysis indicated that the enzyme is dimeric with one major band of molecular mass 97 kDa and a very light band of molecular mass 43 kDa. Temperature of 35 to 40°C and pH 5 were optimum for tannase activity. The enzyme retained more than 60% of its stability at 60°C and 40% stability at pH 3 and 8, respectively. K m was found to be 0.33 × 10(-2) M and V max = 40 U/mg. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food processing industry.

  7. Electrical characteristics and thermal stability of n+ polycrystalline- Si/ZrO2/SiO2/Si metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lim, Kwan-Yong; Park, Dae-Gyu; Cho, Heung-Jae; Kim, Joong-Jung; Yang, Jun-Mo; Ii, Choi-Sang; Yeo, In-Seok; Park, Jin Won

    2002-01-01

    We have investigated the thermal stability of n+ polycrystalline-Si(poly-Si)/ZrO2(50-140 Å)/SiO2(7 Å)/p-Si metal-oxide-semiconductor (MOS) capacitors via electrical and material characterization. The ZrO2 gate dielectric was prepared by atomic layer chemical vapor deposition using ZrCl4 and H2O vapor. Capacitance-voltage hysteresis as small as ˜12 mV with the flatband voltage of -0.5 V and the interface trap density of ˜5×1010cm-2 eV-1 were attained with activation anneal at 750 °C. A high level of gate leakage current was observed at the activation temperatures over 750 °C and attributed to the interfacial reaction of poly-Si and ZrO2 during the poly-Si deposition and the following high temperature anneal. Because of this, the ZrO2 gate dielectric is incompatible with the conventional poly-Si gate process. In the MOS capacitors having a smaller active area (<50×50 μm2), fortunately, the electrical degradation by further severe silicidation does not occur up to an 800 °C anneal in N2 for 30 min.

  8. Purification and Characterization of Tannin Acyl Hydrolase Produced by Mixed Solid State Fermentation of Wheat Bran and Marigold Flower by Penicillium notatum NCIM 923

    PubMed Central

    Gayen, Saswati; Ghosh, Uma

    2013-01-01

    Tannin acyl hydrolase produced extracellularly by the fungal strain Penicillium notatum NCIM 923 in mixed solid state fermentation of wheat bran and marigold flower in the ratio 4 : 1 was purified from the cell-free extract broth by ammonium sulphate fractionation followed by diethylaminoethyl-cellulose column chromatography. Tannase was purified by 19.89-fold with yield of 11.77%. The specific activity of crude tannase was found to be 1.31 U/mg protein while that of purified tannase was 22.48 U/mg protein. SDS-PAGE analysis indicated that the enzyme is dimeric with one major band of molecular mass 97 kDa and a very light band of molecular mass 43 kDa. Temperature of 35 to 40°C and pH 5 were optimum for tannase activity. The enzyme retained more than 60% of its stability at 60°C and 40% stability at pH 3 and 8, respectively. K m was found to be 0.33 × 10−2 M and V max = 40 U/mg. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food processing industry. PMID:24350277

  9. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    PubMed

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding. © 2016 S. Karger AG, Basel.

  10. Glycerol, trehalose and glycerol-trehalose mixture effects on thermal stabilization of OCT

    NASA Astrophysics Data System (ADS)

    Barreca, D.; Laganà, G.; Magazù, S.; Migliardo, F.; Bellocco, E.

    2013-10-01

    The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  11. Stability limits and transformation pathways of α-quartz under high pressure

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.

    2017-03-01

    Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.

  12. relA-dependent RNA polymerase activity in Escherichia coli.

    PubMed Central

    Ryals, J; Bremer, H

    1982-01-01

    Parameters relating to RNA synthesis were measured after a temperature shift from 30 to 42 degrees C, in a relA+ and relA- isogenic pair of Escherichia coli strains containing a temperature-sensitive valyl tRNA synthetase. The following results were obtained: (i) the rRNA chain growth rate increased 2-fold in both strains; (ii) newly synthesized rRNA became unstable in both strains; (iii) the stable RNA gene activity (rRNA and tRNA, measured as stable RNA synthesis rate relative to the total instantaneous rate of RNA synthesis) decreased 1.7-fold in the relA+ strain and increased 1.9-fold in the relA mutant; and (iv) the RNA polymerase activity (measured by the percentage of total RNA polymerase enzyme active in transcription an any instant) decreased from 20 to 3.6% in the relA+ strain and remained unchanged (or increased at most to 22%) in the relA mutant. It is suggested that both rRNA gene activity and the RNA polymerase activity depend on the intracellular concentration of guanosine tetraphosphate, whereas the altered chain elongation rate and stability of rRNA are temperature or amino acid starvation effects, respectively, without involvement of relA function. PMID:6174501

  13. Storage Stability and Improvement of Intermediate Moisture Foods, Phase 3

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1975-01-01

    Methods were determined for the improvement of shelf-life stability of intermediate moisture foods (IMF). Microbial challenge studies showed that protection against molds and Staphylococcus aureus could be achieved by a combination of antimicrobial agents, humectants and food acids. Potassium sorbate and propylene glycol gave the best results. It was also confirmed that the maximum in heat resistance shown by vegetative pathogens at intermediate water activities also occurred in a solid food. Glycols and sorbitol both achieve browning inhibition because of their action as a medium for reaction and effect on viscosity of the adsorbed phase. Chemical availability results showed rapid lysine loss before visual discoloration occurred. This is being confirmed with a biological test using Tetrahymena pyriformis W. Accelerated temperature tests show that effectiveness of food antioxidants against rancidity development can be predicted; however, the protection factor changes with temperature. BHA was found to be the best antioxidant for iron catalyzed oxidation.

  14. An optical transduction chain for the AURIGA detector

    NASA Astrophysics Data System (ADS)

    Conti, L.; Marin, F.; de Rosa, M.; Prodi, G. A.; Taffarello, L.; Zendri, J. P.; Cerdonio, M.; Vitale, S.

    2000-06-01

    We describe the principle of operation of an opto-mechanical readout for resonant mass gravitational wave detectors; with such a device the AURIGA detector is expected to reach a sensitivity at the level of Shh=10-22/Hz over a bandwidth of about 40Hz. Recent developments in the implementation of this transduction chain are also reported. In particular we achieve quantum limited laser power noise in the frequency range of 200Hz around the bar fundamental frequency (about 1kHz) by means of active stabilization. We also set up a reference cavity of finesse 40000 with optically contacted mirrors on a 0.2m long Zerodur spacer. The cavity can be heated from room temperature to about 100 °C and temperature stabilized with fluctuations within 1mK over a period of several days. The cavity is under vacuum and isolated from mechanical disturbancies by means of a double stage cantilever system. .

  15. Quantum Dot-Induced Phase Stabilization of ..alpha..-CsPbI3 Perovskite for High-Efficiency Photovoltaics

    DOE PAGES

    Swarnkar, Abhishek; Marshall, Ashley R.; Sanehira, Erin M.; ...

    2016-10-07

    Here, we show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (..alpha..-CsPbI 3) -- the variant with desirable band gap -- is only stable at high temperatures. We also describe the formation of ..alpha..-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuitmore » voltage of 1.23 volts and efficiency of 10.77%. Furthermore, these devices function as light-emitting diodes with low turn-on voltage and tunable emission.« less

  16. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  17. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads.

    PubMed

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena

    2016-07-01

    Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Relationship between the Heat Tolerance of Photosynthesis and the Thermal Stability of Rubisco Activase in Plants from Contrasting Thermal Environments1

    PubMed Central

    Salvucci, Michael E.; Crafts-Brandner, Steven J.

    2004-01-01

    Inhibition of net photosynthesis (Pn) by moderate heat stress has been attributed to an inability of Rubisco activase to maintain Rubisco in an active form. To examine this proposal, the temperature response of Pn, Rubisco activation, chlorophyll fluorescence, and the activities of Rubisco and Rubisco activase were examined in species from contrasting environments. The temperature optimum of Rubisco activation was 10°C higher in the creosote bush (Larrea tridentata) compared with the Antarctic hairgrass (Deschampsia antarctica), resembling the temperature response of Pn. Pn increased markedly with increasing internal CO2 concentration in Antarctic hairgrass and creosote bush plants subjected to moderate heat stress even under nonphotorespiratory conditions. Nonphotochemical quenching of chlorophyll fluorescence, the effective quantum yield of photochemical energy conversion (ΔF/Fm′) and the maximum yield of PSII (Fv/Fm) were more sensitive to temperature in Antarctic hairgrass and two other species endemic to cold regions (i.e. Lysipomia pumila and spinach [Spinacea oleracea]) compared with creosote bush and three species (i.e. jojoba [Simmondsia chinensis], tobacco [Nicotiana tabacum], and cotton [Gossypium hirsutum]) from warm regions. The temperature response of activity and the rate of catalytic inactivation of Rubisco from creosote bush and Antarctic hairgrass were similar, whereas the optimum for ATP hydrolysis and Rubisco activation by recombinant creosote bush, cotton, and tobacco activase was 8°C to 10°C higher than for Antarctic hairgrass and spinach activase. These results support a role for activase in limiting photosynthesis at high temperature. PMID:15084731

  19. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  20. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particlesmore » had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.« less

  1. Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10

    NASA Astrophysics Data System (ADS)

    Rigney, Jeffrey M.

    A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.

  2. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-09-01

    The stresses during the secondary-drying stage of lyophilization were investigated using a controlled humidity mini-freeze-dryer [Luthra S, Obert J-P, Kalonia DS, Pikal MJ. 2007. Investigation of drying stresses on proteins during lyophilization: Differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer. J Pharm Sci 96: 61-70.]. Lactate dehydrogenase (LDH), was formulated in: (1) Tween 80, (2) citrate buffer, and (3) both Tween 80 and citrate buffer. Protein activity recovery was measured as a function of relative humidity (RH), product temperature, and drying duration. Studies were also conducted with different concentrations of sucrose, sorbitol, and poly (vinyl pyrrolidone) (PVP). LDH stability was affected to a small extent by RH and significantly by drying temperature and duration. Complete stabilization of LDH was observed when lyophilized with sucrose and PVP but only a partial stabilization was observed with sorbitol. The mini-freeze-dryer enabled studying the process parameters independently, unlike a conventional study where these effects are generally convoluted. The results suggest that the stability of the protein is a function of the dynamics of the system during lyophilization. The origin of the stabilization effect of sucrose, which could, in principle, be attributed both to direct interaction with the protein or vitrification of the protein was elucidated using lyoprotectants that can either hydrogen bond well with the protein (sorbitol) or form a good glass (PVP). It appears both effects are required for complete stabilization of the protein. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  3. Influence of formulation and processing factors on stability of levothyroxine sodium pentahydrate.

    PubMed

    Collier, Jarrod W; Shah, Rakhi B; Gupta, Abhay; Sayeed, Vilayat; Habib, Muhammad J; Khan, Mansoor A

    2010-06-01

    Stability of formulations over shelf-life is critical for having a quality product. Choice of excipients, manufacturing process, storage conditions, and packaging can either mitigate or enhance the degradation of the active pharmaceutical ingredient (API), affecting potency and/or stability. The purpose was to investigate the influence of processing and formulation factors on stability of levothyroxine (API). The API was stored at long-term (25 degrees C/60%RH), accelerated (40 degrees C/75%RH), and low-humidity (25 degrees C/0%RH and 40 degrees C/0%RH) conditions for 28 days. Effect of moisture loss was evaluated by drying it (room temperature, N(2)) and placed at 25 degrees C/0%RH and 40 degrees C/0%RH. The API was incubated with various excipients (based on package insert of marketed tablets) in either 1:1, 1:10, or 1:100 ratios with 5% moisture at 60 degrees C. Commonly used ratios for excipients were used. The equilibrium sorption data was collected on the API and excipients. The API was stable in solid state for the study duration under all conditions for both forms (potency between 90% and 110%). Excipients effect on stability varied and crospovidone, povidone, and sodium laurel sulfate (SLS) caused significant API degradation where deiodination and deamination occurred. Moisture sorption values were different across excipients. Crospovidone and povidone were hygroscopic whereas SLS showed deliquescence at high RH. The transient formulation procedures where temperature might go up or humidity might go down would not have major impact on the API stability. Excipients influence stability and if possible, those three should either be avoided or used in minimum quantity which could provide more stable tablet formulations with minimum potency loss throughout its shelf-life.

  4. Optical Injection Locking of a VCSEL in an OEO

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute

    2009-01-01

    Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)

  5. Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

    NASA Astrophysics Data System (ADS)

    Marín-Moreno, Héctor; Minshull, Timothy A.; Westbrook, Graham K.; Sinha, Bablu

    2015-05-01

    Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400-500 m water depth (mwd) in response to past temperature changes inferred from historical measurements and proxy data and we model future changes predicted by seven climate models and two climate-forcing scenarios (Representative Concentration Pathways RCPs 2.6 and 8.5). We show that over the past 2000 year, a combination of annual and decadal temperature fluctuations could have triggered multiple hydrate-sourced methane emissions from seabed shallower than 400 mwd during episodes when the multidecadal average temperature was similar to that over the last century (˜2.6°C). These temperature fluctuations can explain current methane emissions at 400 mwd, but decades to centuries of ocean warming are required to generate emissions in water deeper than 420 m. In the venting area, future methane emissions are relatively insensitive to the choice of climate model and RCP scenario until 2050 year, but are more sensitive to the RCP scenario after 2050 year. By 2100 CE, we estimate an ocean uptake of 97-1050 TgC from marine Arctic hydrate-sourced methane emissions, which is 0.06-0.67% of the ocean uptake from anthropogenic CO2 emissions for the period 1750-2011.

  6. Evaluation of accelerated stability test conditions for medicated chewing gums.

    PubMed

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  7. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  8. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation.

    PubMed

    Liu, Jun-Hong; Wang, Ai-Qin; Chi, Yu-Shan; Lin, Hong-Ping; Mou, Chung-Yuan

    2005-01-13

    Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.

  9. Experimental and analytical study of secondary path variations in active engine mounts

    NASA Astrophysics Data System (ADS)

    Hausberg, Fabian; Scheiblegger, Christian; Pfeffer, Peter; Plöchl, Manfred; Hecker, Simon; Rupp, Markus

    2015-03-01

    Active engine mounts (AEMs) provide an effective solution to further improve the acoustic and vibrational comfort of passenger cars. Typically, adaptive feedforward control algorithms, e.g., the filtered-x-least-mean-squares (FxLMS) algorithm, are applied to cancel disturbing engine vibrations. These algorithms require an accurate estimate of the AEM active dynamic characteristics, also known as the secondary path, in order to guarantee control performance and stability. This paper focuses on the experimental and theoretical study of secondary path variations in AEMs. The impact of three major influences, namely nonlinearity, change of preload and component temperature, on the AEM active dynamic characteristics is experimentally analyzed. The obtained test results are theoretically investigated with a linear AEM model which incorporates an appropriate description for elastomeric components. A special experimental set-up extends the model validation of the active dynamic characteristics to higher frequencies up to 400 Hz. The theoretical and experimental results show that significant secondary path variations are merely observed in the frequency range of the AEM actuator's resonance frequency. These variations mainly result from the change of the component temperature. As the stability of the algorithm is primarily affected by the actuator's resonance frequency, the findings of this paper facilitate the design of AEMs with simpler adaptive feedforward algorithms. From a practical point of view it may further be concluded that algorithmic countermeasures against instability are only necessary in the frequency range of the AEM actuator's resonance frequency.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.

    Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less

  11. Paleoclimatic changes and human cultural evolution in and around the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Anma, Ryo

    2016-04-01

    Recent studies of paleoenvironmental changes in and around the Arabian Peninsula have suggested that extremely wet periods occurred during the late Pleistocene and early Holocene; these periods started around the termination of glacial periods and continued during the initial rapid warming that followed. During these periods, flood waters transported enormous amounts of sediments from mountains to plains. Once the thermal maximum was reached and temperature stabilized at a high level, the water environment also stabilized and the climate became dryer. Although gradual changes in atmospheric temperature may have had only a minor direct influence on human activities, drastic changes in the water environment in responses to changes in the average atmospheric and surface water temperatures of just a few degrees had a stronger influence on human culture, possibly leading to the development of agriculture and civilizations. Domestication of animals started at the beginning of a wet period in the early Holocene, whereas the first cities were constructed during its latest stage. The need to control flooding may have led humans to build cities and, thus, to the development of early civilizations.

  12. Effect of modified atmospheric packaging on the shelf stability of paneer prepared by adopting hurdle technology.

    PubMed

    Thippeswamy, L; Venkateshaiah, B V; Patil, Sharanagouda B

    2011-04-01

    Paneer was prepared by application of hurdle technology (HT) and its shelf stability studied by modified atmospheric packaging (MAP). The hurdles adopted comprised of water activity (aw), pH, preservative and MAP. The aw was reduced by using NaCl (1-3%), citric acid (CA, 0.01-0.1%) and potassium sorbate (0.1%). NaCl and CA at 3 and 0.1% reduced aw from 0.994 to 0.970 and pH from 5.6 to 5.1, respectively. Sensory scores of all samples decreased (p ≤ 0.05) from control during storage at different temperatures, but these scores at the end of 20 days were still under acceptable limit of 6 and above (liked moderately). MAP was carried out by using a mixture of CO2 to N2 in the ratio of 50:50. The HT adopted paneer with MAP had extended the shelf-life from 1 to 12 days at room temperature (30 ± 1°C) and 6 to 20 days at refrigeration (7 ± 1°C) temperatures.

  13. The effect of temperature and moisture on the amorphous-to-crystalline transformation of stavudine.

    PubMed

    Strydom, Schalk; Liebenberg, Wilna; Yu, Lian; de Villiers, Melgardt

    2009-09-08

    Stavudine is a nucleoside reverse transcriptase inhibitor active against HIV, and is known to exist in two polymorphic forms designated as forms I and II, and a hydrate form III. An amorphous solid of stavudine was successfully prepared and characterized during this investigation. A comprehensive evaluation of the stability of this amorphous solid showed that the amorphous solid transforms to either form II (anhydrous) or form III (hydrate) when exposed to temperature, in the absence or presence of moisture, respectively. The amorphous-to-hydrate transformation occurred at relatively low RH (>32%) and led to the formation of crystal aggregates of the hydrated form. Steady state growth rate analyses also showed that the amorphous-to-crystalline transformation occurs at a greater rate in the presence of moisture, compared to the transformation at the same temperature in a dry environment. Crystal growth studies showed that it is possible to stabilize the amorphous solid of stavudine against crystal transformations in the absence of moisture by coating it with poly(methyl methacrylate). However, this polymer coating could not prevent crystal growth from the amorphous solid during exposure to moisture.

  14. Cold-Adapted Enzymes

    NASA Astrophysics Data System (ADS)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  15. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    PubMed

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Protein Internal Dynamics Associated With Pre-System Glass Transition Temperature Endothermic Events: Investigation of Insulin and Human Growth Hormone by Solid State Hydrogen/Deuterium Exchange.

    PubMed

    Fang, Rui; Grobelny, Pawel J; Bogner, Robin H; Pikal, Michael J

    2016-11-01

    Lyophilized proteins are generally stored below their glass transition temperature (T g ) to maintain long-term stability. Some proteins in the (pure) solid state showed a distinct endotherm at a temperature well below the glass transition, designated as a pre-T g endotherm. The pre-T g endothermic event has been linked with a transition in protein internal mobility. The aim of this study was to investigate the internal dynamics of 2 proteins, insulin and human growth hormone (hGH), both of which exhibit the pre-T g endothermic event with onsets at 50°C-60°C. Solid state hydrogen/deuterium (H/D) exchange of both proteins was characterized by Fourier transform infrared spectroscopy over a temperature range from 30°C to 80°C. A distinct sigmoidal transition in the extent of H/D exchange had a midpoint of 56.1 ± 1.2°C for insulin and 61.7 ± 0.9°C for hGH, suggesting a transition to greater mobility in the protein molecules at these temperatures. The data support the hypothesis that the pre-T g event is related to a transition in internal protein mobility associated with the protein dynamical temperature. Exceeding the protein dynamical temperature is expected to activate protein internal motion and therefore may have stability consequences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less

  18. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  19. A surface acoustic wave ICP sensor with good temperature stability.

    PubMed

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  20. Evaluation of mechanical and thermal properties of commonly used denture base resins.

    PubMed

    Phoenix, Rodney D; Mansueto, Michael A; Ackerman, Neal A; Jones, Robert E

    2004-03-01

    The purpose of this investigation was to evaluate and compare the mechanical and thermal properties of 6 commonly used polymethyl methacrylate denture base resins. Sorption, solubility, color stability, adaptation, flexural stiffness, and hardness were assessed to determine compliance with ADA Specification No. 12. Thermal assessments were performed using differential scanning calorimetry and dynamic mechanical analysis. Results were assessed using statistical and observational analyses. All materials satisfied ADA requirements for sorption, solubility, and color stability. Adaptation testing indicated that microwave-activated systems provided better adaptation to associated casts than conventional heat-activated resins. According to flexural testing results, microwaveable resins were relatively stiff, while rubber-modified resins were more flexible. Differential scanning calorimetry indicated that microwave-activated systems were more completely polymerized than conventional heat-activated materials. The microwaveable resins displayed better adaptation, greater stiffness, and greater surface hardness than other denture base resins included in this investigation. Elastomeric toughening agents yielded decreased stiffness, decreased surface hardness, and decreased glass transition temperatures.

Top