Hanft, Laurin M; McDonald, Kerry S
2010-08-01
According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length-tension relationships appear able to switch between slow-twitch-like and fast-twitch-like by PKA-mediated myofibrillar phosphorylation, which implicates a novel means for controlling Frank-Starling relationships.
Rudolf, Katrin; Umetsu, Daiki; Aliee, Maryam; Sui, Liyuan; Jülicher, Frank; Dahmann, Christian
2015-11-15
Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds. © 2015. Published by The Company of Biologists Ltd.
Chen, Jun; Friesen, W. Otto; Iwasaki, Tetsuya
2012-01-01
SUMMARY Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body–fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body–fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic tonus tension during one sector of the swim cycle; and (4) movements of the caudal end are passive during swimming. These predictions await verification or rejection through further experiments on swimming animals. PMID:22189764
Chen, Jun; Friesen, W Otto; Iwasaki, Tetsuya
2012-01-15
Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body-fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body-fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic tonus tension during one sector of the swim cycle; and (4) movements of the caudal end are passive during swimming. These predictions await verification or rejection through further experiments on swimming animals.
Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.
2012-01-01
OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical advantage. PMID:22666794
Between Product Development and Mass Production: Tensions as Triggers for Concept-Level Learning
ERIC Educational Resources Information Center
Jalonen, Meri; Ristimäki, Päivi; Toiviainen, Hanna; Pulkkis, Anneli; Lohtander, Mika
2016-01-01
Purpose: This paper aims to analyze learning in organizational transformations by focusing on concept-level tensions faced in two young companies, which were searching for a reorientation of activity with a production network between innovative product development and efficient mass production. Design/methodology/approach: An intervention-based…
Carlson, C George; Potter, Ross; Yu, Vivien; Luo, Kevin; Lavin, Jesse; Nielsen, Cory
2016-03-01
Previous experiments have indicated that in vivo administration of ursodeoxycholic acid (UDCA) inhibits nuclear NF-κB activation and has beneficial effects on the structure and function of dystrophic (mdx) muscle. We examined the effect of UDCA on tension development in dystrophic muscle. Isometric tension development was examined in costal diaphragms that were freshly isolated from vehicle and UDCA treated mdx mice. Percent recovery scores were obtained by directly comparing these measurements to those obtained from age-matched nondystrophic mice. Vehicle treated mdx mice exhibited significantly reduced optimal muscle lengths (lo ) and specific twitch and tetanic tensions compared with age-matched nondystrophic mice. UDCA treated preparations exhibited significantly improved tension development with a 33% recovery score. Because UDCA is used in treating certain clinical disorders, these results provide a rationale for human clinical trials using this and related drugs for treatment of Duchenne and related muscular dystrophies. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sisk-Hilton, Stephanie Lee
This study examines the two way relationship between an inquiry-based professional development model and teacher enactors. The two year study follows a group of teachers enacting the emergent Supporting Knowledge Integration for Inquiry Practice (SKIIP) professional development model. This study seeks to: (a) identify activity structures in the model that interact with teachers' underlying assumptions regarding professional development and inquiry learning; (b) explain key decision points during implementation in terms of these underlying assumptions; and (c) examine the impact of key activity structures on individual teachers' stated belief structures regarding inquiry learning. Linn's knowledge integration framework facilitates description and analysis of teacher development. Three sets of tensions emerge as themes that describe and constrain participants' interaction with and learning through the model. These are: learning from the group vs. learning on one's own; choosing and evaluating evidence based on impressions vs. specific criteria; and acquiring new knowledge vs. maintaining feelings of autonomy and efficacy. In each of these tensions, existing group goals and operating assumptions initially fell at one end of the tension, while the professional development goals and forms fell at the other. Changes to the model occurred as participants reacted to and negotiated these points of tension. As the group engaged in and modified the SKIIP model, they had repeated opportunities to articulate goals and to make connections between goals and model activity structures. Over time, decisions to modify the model took into consideration an increasingly complex set of underlying assumptions and goals. Teachers identified and sought to balance these tensions. This led to more complex and nuanced decision making, which reflected growing capacity to consider multiple goals in choosing activity structures to enact. The study identifies key activity structures that scaffolded this process for teachers, and which ultimately promoted knowledge integration at both the group and individual levels. This study is an "extreme case" which examines implementation of the SKIIP model under very favorable conditions. Lessons learned regarding appropriate levels of model responsiveness, likely areas of conflict between model form and teacher underlying assumptions, and activity structures that scaffold knowledge integration provide a starting point for future, larger scale implementation.
Telinius, Niklas; Drewsen, Nanna; Pilegaard, Hans; Kold-Petersen, Henrik; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs
2010-09-01
The current study characterizes the mechanical properties of the human thoracic duct and demonstrates a role for adrenoceptors, thromboxane, and endothelin receptors in human lymph vessel function. With ethical permission and informed consent, portions of the thoracic duct (2-5 cm) were resected and retrieved at T(7)-T(9) during esophageal and cardia cancer surgery. Ring segments (2 mm long) were mounted in a myograph for isometric tension (N/m) measurement. The diameter-tension relationship was established using ducts from 10 individuals. Peak active tension of 6.24 +/- 0.75 N/m was observed with a corresponding passive tension of 3.11 +/- 0.67 N/m and average internal diameter of 2.21 mm. The equivalent active and passive transmural pressures by LaPlace's law were 47.3 +/- 4.7 and 20.6 +/- 3.2 mmHg, respectively. Subsequently, pharmacology was performed on rings from 15 ducts that were normalized by stretching them until an equivalent pressure of 21 mmHg was calculable from the wall tension. At low concentrations, norepinephrine, endothelin-1, and the thromboxane-A(2) analog U-46619 evoked phasic contractions (analogous to lymphatic pumping), whereas at higher contractions they induced tonic activity (maximum tension values of 4.46 +/- 0.63, 5.90 +/- 1.4, and 6.78 +/- 1.4 N/m, respectively). Spontaneous activity was observed in 44% of ducts while 51% of all the segments produced phasic contractions after agonist application. Acetylcholine and bradykinin relaxed norepinephrine preconstrictions by approximately 20% and approximately 40%, respectively. These results demonstrate that the human thoracic duct can develop wall tensions that permit contractility to be maintained across a wide range of transmural pressures and that isolated ducts contract in response to important vasoactive agents.
Phorbol ester and spontaneous activity in SHR aorta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisey, D.M.; Cox, R.H.
1986-03-01
Thoracic aortas (TA) were excised from 6-week old SHR and WKY. 2mm rings were mounted isometrically at optimum preload. Spontaneous rhythmical activity developed in TA from SHR and had a frequency of 3-4/min with varying periods of quiescence between bursts of activity. The spontaneous activity often produced an increase in tension development which was associated with increased frequency of oscillations. Verapamil (10/sup -7/ M) or Ca/sup + +/-free solution added during the contractile phase resulted in an immediate loss of tension and spontaneous activity. Addition of ouabain (10/sup -4/ M) during the contractile phase of spontaneous activity, increased the frequencymore » of oscillations which appeared to fuse into a tetanus. Spontaneous rhythmical activity was infrequently observed in TA from WKY. However, addition of phorbol 12-myristate-13 acetate (TPA), frequently induced spontaneous rhythmic oscillations associated with tension development in TA from WKY. TPA contracted the SHR TA and increased the frequency of oscillations. SHR TA were more sensitive to TPA than WKY. This study demonstrates (1) spontaneous rhythmical activity, independent of agonist stimulation in TA from 6-week old SHR and (2) TPA induced spontaneous oscillatory activity. The mechanism underlying the spontaneous oscillatory activity may involve membrane coupling events and Na-pump difference between SHR and WKY.« less
Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging.
Wang, Yongliang; LeVine, Dana N; Gannon, Margaret; Zhao, Yuanchang; Sarkar, Anwesha; Hoch, Bailey; Wang, Xuefeng
2018-02-15
Integrin-transmitted cellular forces are critical for platelet adhesion, activation, aggregation and contraction during hemostasis and thrombosis. Measuring and mapping single platelet forces are desired in both research and clinical applications. Conventional force-to-strain based cell traction force microscopies have low resolution which is not ideal for cellular force mapping in small platelets. To enable platelet force mapping with submicron resolution, we developed a force-activatable biosensor named integrative tension sensor (ITS) which directly converts molecular tensions to fluorescent signals, therefore enabling cellular force mapping directly by fluorescence imaging. With ITS, we mapped cellular forces in single platelets at 0.4µm resolution. We found that platelet force distribution has strong polarization which is sensitive to treatment with the anti-platelet drug tirofiban, suggesting that the ITS force map can report anti-platelet drug efficacy. The ITS also calibrated integrin molecular tensions in platelets and revealed two distinct tension levels: 12-54 piconewton (nominal values) tensions generated during platelet adhesion and tensions above 54 piconewton generated during platelet contraction. Overall, the ITS is a powerful biosensor for the study of platelet mechanobiology, and holds great potential in antithrombotic drug development and assessing platelet activity in health and disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Mutungi, G; Ranatunga, K W
2001-01-01
The effects of a ramp stretch (amplitude <6% muscle fibre length (L0), speed < 13L0 s(-1)) on twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in their cross-bridge kinetics.
Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer
NASA Astrophysics Data System (ADS)
Pan, Hui
2016-02-01
Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.
Potvin, W.; Varma, D. R.
1990-01-01
1. Effects of atrial natriuretic peptide (ANP) on tension development, particulate guanylate cyclase activity and guanosine 3':5'-cyclic monophosphate (cyclic GMP) concentrations of uteri from oestrogen-treated, progesterone-treated, ovariectomized and pregnant rats were determined in vitro. 2. ANP inhibited the tension development by myometrial tissues from oestrogen-treated virgin rats and the sterile horn of 10 to 14 day pregnant rats but not of the uterus from pregnant and progesterone-treated rats. 3. Inhibition of cyclo-oxygenase and lipoxygenase activities did not restore the tocolytic activity of ANP on gravid uterus. ANP exerted a tocolytic effect on nongravid uterus submaximally stimulated by prostaglandin F2 alpha (PGF2 alpha), oxytocin, vasopressin, angiotensin II or 5-hydroxytryptamine (5-HT). 4. Ovariectomy decreased the tocolytic effects of ANP, which could be restored by oestrogen treatment. 5. The refractoriness to the tocolytic effect of ANP in pregnant rats was not accompanied by a decrease in its relaxant effects on isolated aortic strips. 6. Tocolytic effects of isoprenaline, isobutylmethyl xanthine and hydroxylamine were not influenced by pregnancy or progesterone treatment. Up to a concentration of 3 mM, sodium nitroprusside did not affect myometrial tension development. 7. Pregnancy and progesterone treatment markedly inhibited ANP-induced increases in myometrial particulate guanylate cyclase activity and cyclic GMP concentrations but did not influence the effects of ANP on aortic cyclic GMP concentrations. 8. It is concluded that exposure of the myometrium to circulating and placentally-produced progesterone is responsible for the pregnancy-induced decrease in the effects of ANP on myometrial particulate guanylate cyclase activity and cyclic GMP concentrations and in turn on myometrial tension development. PMID:1974161
Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko
2010-12-01
In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Reorganising the Teaching-Research Tension
ERIC Educational Resources Information Center
de Jonghe, Anne-Marie
2005-01-01
In this paper we examine the tensions resulting from the transformation processes going on in research and teaching, typical at traditional universities that have been actively developing their research mission. We will also look at universities that only recently decided to focus on research and wonder if they will be able to better manage or…
Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics
NASA Astrophysics Data System (ADS)
Zmurchok, Cole; Bhaskar, Dhananjay; Edelstein-Keshet, Leah
2018-07-01
Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, including contracted or relaxed cells, and cells that oscillate between these extremes. When such ‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in the context of development and collective cell behavior.
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.
NASA Astrophysics Data System (ADS)
Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.
2016-08-01
Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.
Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.
2016-01-01
Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes. PMID:27478033
Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension
Lewis, Amanda H; Grandl, Jörg
2015-01-01
Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186
Mutungi, Gabriel; Edman, K A P; Ranatunga, K W
2003-01-01
The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148
Gordon, A. M.; Godt, R. E.; Donaldson, S. K. B.; Harris, C. E.
1973-01-01
The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate- ≃ SO4 -- < Cl- < Br-. The order of increasing inhibition of calcium-activated tension for cations is K+ ≃ Na+ ≃ TMA+ < TEA+ < TPrA+ < TBuA+. The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14–0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA+ < TMA+ < K+ ≃ Na+. Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero. PMID:4543066
Tensions and Dilemmas in Community Development: New Discourses, New Trojans?
ERIC Educational Resources Information Center
Kenny, Sue
2002-01-01
Contradictory expectations facing community development practitioners include innovation versus bureaucratic accountability and professionalization versus grassroots activism. Four operating frameworks affect practice: charity, welfare state, activism, and market. In some instances, these frameworks and their related discourses are being fused,…
Growth factor involvement in tension-induced skeletal muscle growth
NASA Technical Reports Server (NTRS)
Vandenburgh, H. H.
1987-01-01
Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.
Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.; Collisson, Eric A.; Kim, Grace E.; Barrett, Alex S.; Hill, Ryan C.; Lakins, Johnathon N.; Schlaepfer, David D.; Mouw, Janna K.; LeBleu, Valerie S.; Roy, Nilotpal; Novitskiy, Sergey V.; Johansen, Julia S.; Poli, Valeria; Kalluri, Raghu; Iacobuzio-Donahue, Christine A.; Wood, Laura D.; Hebrok, Matthias; Hansen, Kirk; Moses, Harold L.; Weaver, Valerie M.
2016-01-01
Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor β (TGF-β) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype. PMID:27089513
Campbell, Kenneth S; Moss, Richard L
2000-01-01
Paired ramp stretches and releases (‘triangular length changes’, typically 0.04 ± 0.09L0 s−1; mean ±s.e.m.) were imposed on permeabilised rabbit psoas fibre segments under sarcomere length control. In actively contracting fibres, the tension response to stretch was biphasic; tension rose more rapidly during the first 0.005L0 of the imposed stretch than thereafter. Tension also dropped in a biphasic manner during shortening, and at the end of the length change was reduced below the steady state. If a second triangular length change was imposed shortly after the first, tension rose less sharply during the initial phase of lengthening, i.e. the stiffness of the muscle during the initial phase of the response was reduced in the second stretch. This is a thixotropic effect. If a third triangular length change was imposed on the muscle, the response was the same as that to the second. The time required to recover the original tension response was measured by varying the interval between triangular length changes. Recovery to steady state occurred at a rate of ∼1 s−1. The stiffness of the muscle during the initial phase of the response scaled with the developed tension in pCa (=−log10[Ca2+]) solutions ranging from 6.3 (minimal activation) to 4.5 (saturating effect). The relative thixotropic reduction in stiffness measured using paired length changes was independent of the pCa of the activating solution. The thixotropic behaviour of contracting skeletal muscle can be explained by a cross-bridge model of muscle contraction in which the number of attached cross-bridges is temporarily reduced following an imposed movement. PMID:10835052
Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Westergaard, Maria Lurenda; Nielsen, Trine; Sloth, Louise Bönsdorff; Jensen, Rigmor Højland; Gard, Gunvor
2017-12-01
The prevalence of migraine with co-existing tension-type headache and neck pain is high in the general population. However, there is very little literature on the characteristics of these combined conditions. The aim of this study was to investigate a) the prevalence of migraine with co-existing tension-type headache and neck pain in a clinic-based sample, b) the level of physical activity, psychological well-being, perceived stress and self-rated health in persons with migraine and co-existing tension-type headache and neck pain compared to healthy controls, c) the perceived ability of persons with migraine and co-existing tension-type headache and neck pain to perform physical activity, and d) which among the three conditions (migraine, tension-type headache or neck pain) is rated as the most burdensome condition. The study was conducted at a tertiary referral specialised headache centre where questionnaires on physical activity, psychological well-being, perceived stress and self-rated health were completed by 148 persons with migraine and 100 healthy controls matched by sex and average age. Semi-structured interviews were conducted to assess characteristics of migraine, tension-type headache and neck pain. Out of 148 persons with migraine, 100 (67%) suffered from co-existing tension-type headache and neck pain. Only 11% suffered from migraine only. Persons with migraine and co-existing tension-type headache and neck pain had lower level of physical activity and psychological well-being, higher level of perceived stress and poorer self-rated health compared to healthy controls. They reported reduced ability to perform physical activity owing to migraine (high degree), tension-type headache (moderate degree) and neck pain (low degree). The most burdensome condition was migraine, followed by tension-type headache and neck pain. Migraine with co-existing tension-type headache and neck pain was highly prevalent in a clinic-based sample. Persons with migraine and co-existing tension-type headache and neck pain may require more individually tailored interventions to increase the level of physical activity, and to improve psychological well-being, perceived stress and self-rated health.
Muscle trigger point therapy in tension-type headache.
Alonso-Blanco, Cristina; de-la-Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César
2012-03-01
Recent evidence suggests that active trigger points (TrPs) in neck and shoulder muscles contribute to tension-type headache. Active TrPs within the suboccipital, upper trapezius, sternocleidomastoid, temporalis, superior oblique and lateral rectus muscles have been associated with chronic and episodic tension-type headache forms. It seems that the pain profile of this headache may be provoked by referred pain from active TrPs in the posterior cervical, head and shoulder muscles. In fact, the presence of active TrPs has been related to a higher degree of sensitization in tension-type headache. Different therapeutic approaches are proposed for proper TrP management. Preliminary evidence indicates that inactivation of TrPs may be effective for the management of tension-type headache, particularly in a subgroup of patients who may respond positively to this approach. Different treatment approaches targeted to TrP inactivation are discussed in the current paper, focusing on tension-type headache. New studies are needed to further delineate the relationship between muscle TrP inactivation and tension-type headache.
Load-dependent regulation of neuromuscular system
NASA Technical Reports Server (NTRS)
Ohira, Yoshinobu; Kawano, Fuminori; Stevens, James L.; Wang, Xiao D.; Ishihara, Akihiko
2004-01-01
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.
Flipsen, J A; van Schaick, M A; Dijkman, R; van der Hijden, H T; Verheij, H M; Egmond, M R
1999-02-01
Hydrolysis of triglycerides by cutinase from Fusarium solani pisi causes in oil drop tensiometer experiments a decrease of the interfacial tension. A series of cutinase variants with amino acid substitutions at its molecular surface yielded different values of the steady state interfacial tension. This tension value poorly correlated with the specific activity as such nor with the total activity (defined as the specific activity multiplied by the amount of enzyme bound) of the cutinase variants. Moreover, it appeared that at activity levels above 15% of that of wild type cutinase the contribution of hydrolysis to the decrease of the tension is saturating. A clear positive correlation was found between the interfacial tension plateau value and the interfacial binding of cutinase, as determined with attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR). These results indicate that the interfacial steady state level is not determined by the rate of hydrolysis, but mainly by the interfacial binding of cutinase.
NASA Astrophysics Data System (ADS)
Wang, Huan; Boehlert, Carl J.; Wang, Qudong; Yin, Dongdi; Ding, Wenjiang
2016-05-01
The tension and tension-creep deformation behavior at elevated temperatures of a cast Mg-10Gd-3Y-0.5Zr (wt pct, GW103) alloy was investigated using in situ scanning electron microscopy. The tests were performed at temperatures ranging from 473 K to 598 K (200 °C to 325 °C). The active slip systems were identified using an EBSD-based slip trace analysis methodology. The results showed that for all of the tests, basal slip was the most likely system to be activated, and non-basal slip was activated to some extent depending on the temperature. No twinning was observed. For the tension tests, non-basal slip consisted of ~35 pct of the deformation modes at low temperatures (473 K and 523 K (200 °C and 250 °C)), while non-basal slip accounted for 12 and 7 pct of the deformation modes at high temperatures (573 K and 598 K (300 °C and 325 °C)), respectively. For the tension-creep tests, non-basal slip accounted for 31 pct of the total slip systems at low temperatures, while this value decreased to 10 to 16 pct at high temperatures. For a given temperature, the relative activity for prismatic slip in the tension-creep tests was slightly greater than that for the tension tests, while the activity for pyramidal slip was lower. Slip-transfer in neighboring grains was observed for the low-temperature tests. Intergranular cracking was the main cracking mode, while some intragranular cracks were observed for the tension-creep tests at high temperature and low stress. Grain boundary ledges were prevalently observed for both the tension and tension-creep tests at high temperatures, which suggests that besides dislocation slip, grain boundary sliding also contributed to the deformation.
Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H
2014-01-01
Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Jankowiak, Iwona; Madaj, Arkadiusz
2017-12-01
One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.
NASA Astrophysics Data System (ADS)
Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.
2017-12-01
Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when palmitic acid was mixed with oleic acid, indicating a disruption in packing. The impact of oxidation on droplet surface tension will also be discussed.
Active transport of vesicles in neurons is modulated by mechanical tension.
Ahmed, Wylie W; Saif, Taher A
2014-03-27
Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.
Active transport of vesicles in neurons is modulated by mechanical tension
Ahmed, Wylie W.; Saif, Taher A.
2014-01-01
Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781
The development of marital tension: Implications for divorce among married couples.
Birditt, Kira S; Wan, Wylie H; Orbuch, Terri L; Antonucci, Toni C
2017-10-01
Marriages are often characterized by their positive and negative features in terms of whether they elicit feelings of satisfaction and happiness or conflict and negativity. Although research has examined the development of marital happiness, less is known about the development of negativity among married couples. We examined how marital tension (i.e., feelings of tension, resentment, irritation) develops within couples over time and whether marital tension has unique implications for divorce. Specifically, we examined marital tension among husbands and wives within the same couples from the first to the sixteenth year of marriage, as well as links between marital tension and divorce. Participants included 355 couples assessed in years 1, 2, 3, 4, 7, and 16 of marriage. Multilevel models revealed that wives reported greater marital tension than husbands. Marital tension increased over time among both husbands and wives, with a greater increase among husbands. Couples were more likely to divorce when wives reported higher marital tension, a greater increase in marital tension, and greater cumulative marital tension. Findings are consistent with the emergent distress model of marriage, but indicate that despite the greater increases in marital tension among husbands, wives' increased marital tension over the course of marriage is more consistently associated with divorce. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa
2016-01-01
Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119
Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation
Kannan, Nivetha
2015-01-01
The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components. PMID:26504173
Adaptation of the length-active tension relationship in rabbit detrusor
Almasri, Atheer M.; Bhatia, Hersch; Klausner, Adam P.; Ratz, Paul H.
2009-01-01
Studies have shown that the length-tension (L-T) relationships in airway and vascular smooth muscles are dynamic and can adapt to length changes over a period of time. Our prior studies have shown that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that DSM exhibits adjustable passive stiffness (APS) characterized by a passive L-T curve that can shift along the length axis as a function of strain history and activation history. The present study demonstrates that the active L-T curve for DSM is also dynamic and that the peak active tension produced at a particular muscle length is a function of both strain and activation history. More specifically, this study reveals that the active L-T relationship, or curve, does not have a unique peak tension value with a single ascending and descending limb, but instead reveals that multiple ascending and descending limbs can be exhibited in the same DSM strip. This study also demonstrates that for DSM strips not stretched far enough to reveal a descending limb, the peak active tension produced by a maximal KCl-induced contraction at a short, passively slack muscle length of 3 mm was reduced by 58.6 ± 4.1% (n = 15) following stretches to and contractions at threefold the original muscle length, 9 mm. Moreover, five subsequent contractions at the short muscle length displayed increasingly greater tension; active tension produced by the sixth contraction was 91.5 ± 9.1% of that produced by the prestretch contraction at that length. Together, these findings indicate for the first time that DSM exhibits length adaptation, similar to vascular and airway smooth muscles. In addition, our findings demonstrate that preconditioning, APS and adaptation of the active L-T curve can each impact the maximum total tension observed at a particular DSM length. PMID:19675182
Traction force and tension fluctuations in growing axons
NASA Astrophysics Data System (ADS)
Urbach, Jeffrey; Polackwich, Jamie; Koch, Daniel; McAllister, Ryan; Geller, Herbert
Actively generated mechanical forces play a central role in axon growth and guidance during nervous system development. We describe the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stresses in a co-moving reference frame, we show that there is a clear and consistent average stress field underlying the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a Contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. In addition, using high time-resolution measurements, we show that the stress field is composed of fluctuating local stress peaks, with a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We also find that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.
Perfusion-induced changes in cardiac contractility depend on capillary perfusion.
Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N
1998-02-01
The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.
Development of contractile and energetic capacity in anuran hindlimb muscle during metamorphosis.
Park, Jin Cheol; Kim, Han Suk; Yamashita, Masamichi; Choi, Inho
2003-01-01
Anuran larvae undergo water-to-land transition during late metamorphosis. We investigated the development of the iliofibularis muscle in bullfrog tadpoles (Rana catesbeiana) between Gosner's stage 37 and stage 46 (the last stage). The tadpoles began staying in shallow water at least as early as stage 37, kicking from stage 39, active hindlimb swimming from stage 41, and emerging onto shore from stage 42. For control tadpoles kept in water throughout metamorphosis, muscle mass and length increased two- to threefold between stages 37 and 46, with rapid increases at stage 40. Large, steady increases were found in femur mass, tetanic tension, contraction rate, and power between stages 37 and 46. Concentrations of ATP and creatine phosphate and rates of the phosphagen depletion and the activity of creatine kinase increased significantly, mainly after stage 43. Shortening velocity, tetanic rise time, and half-relaxation time varied little. Energy charge (the amount of metabolically available energy stored in the adenine nucleotide pool) remained unchanged until stage 43 but decreased at stage 46. Compared with the control, experimental tadpoles that were allowed access to both water and land exhibited 1.2- to 1.8-fold greater increases in femur mass, tetanic tension, power, phosphagen depletion rates, and creatine kinase activities at late metamorphic stages but no significant differences for other parameters measured. In sum, most hindlimb development proceeds on the basis of the increasingly active use of limbs for locomotion in water. The further increases in tension, mechanical power, and "chemical power" on emergence would be advantageous for terrestrial antigravity performance.
The Opportunity of Adolescence.
ERIC Educational Resources Information Center
Gardner, John F.
1995-01-01
Argues that readiness for sexual activity is achieved years later than suggested by physical development and that premature sexual activity can create diminished vitality and longevity of function. The article discusses the pro's and con's of sex education, explains the tension between intellect and sex, and examines related social issues. (SM)
Exploring the tensions of being and becoming a medical educator.
Sethi, Ahsan; Ajjawi, Rola; McAleer, Sean; Schofield, Susie
2017-03-23
Previous studies have identified tensions medical faculty encounter in their roles but not specifically those with a qualification in medical education. It is likely that those with postgraduate qualifications may face additional tensions (i.e., internal or external conflicts or concerns) from differentiation by others, greater responsibilities and translational work against the status quo. This study explores the complex and multi-faceted tensions of educators with qualifications in medical education at various stages in their career. The data described were collected in 2013-14 as part of a larger, three-phase mixed-methods research study employing a constructivist grounded theory analytic approach to understand identity formation among medical educators. The over-arching theoretical framework for the study was Communities of Practice. Thirty-six educators who had undertaken or were undertaking a postgraduate qualification in medical education took part in semi-structured interviews. Participants expressed multiple tensions associated with both becoming and being a healthcare educator. Educational roles had to be juggled with clinical work, challenging their work-life balance. Medical education was regarded as having lower prestige, and therefore pay, than other healthcare career tracks. Medical education is a vast speciality, making it difficult as a generalist to keep up-to-date in all its areas. Interestingly, the graduates with extensive experience in education reported no fears, rather asserting that the qualification gave them job variety. This is the first detailed study exploring the tensions of educators with postgraduate qualifications in medical education. It complements and extends the findings of the previous studies by identifying tensions common as well as specific to active students and graduates. These tensions may lead to detachment, cynicism and a weak sense of identity among healthcare educators. Postgraduate programmes in medical education can help their students identify these tensions in becoming and develop coping strategies. Separate career routes, specific job descriptions and academic workload models for medical educators are recommended to further the professionalisation of medical education. (Tensions, Fears, Healthcare Educators, Medical Education, Postgraduate Programmes, Identity, Career Choice, Faculty Development, Communities of Practice).
NASA Astrophysics Data System (ADS)
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-07-01
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.
Larsman, Pernilla; Kadefors, Roland; Sandsjö, Leif
2013-01-01
Unfavorable psychosocial working conditions are hypothesized to lead to perceived stress, which, in turn, can be related to an increased risk of development of neck/shoulder symptoms through increased and sustained muscle activation. The aim of the present study was to test this hypothesized process model among medical secretaries, a female-dominated profession characterized by a high amount of visual display unit use and a high prevalence of neck/shoulder symptoms. In this cross-sectional study, a questionnaire survey was conducted among medical secretaries (n = 200). The proposed process model was tested using a path model framework. The results indicate that high work demands were related to high perceived stress, which in turn was related to a high perceived muscle tension and neck/shoulder symptoms. Low influence at work was not related to perceived stress, but was directly related to a high perceived muscle tension. In general, these cross-sectional results lend tentative support for the hypothesis that adverse psychosocial work conditions (high work demands) may contribute to the development of neck/shoulder symptoms through the mechanism of stress-induced sustained muscular activation. This process model needs to be further tested in longitudinal studies.
Vallot, Antoine; Leontiou, Ioanna; Cladière, Damien; El Yakoubi, Warif; Bolte, Susanne; Buffin, Eulalie; Wassmann, Katja
2018-01-08
Cell division with partitioning of the genetic material should take place only when paired chromosomes named bivalents (meiosis I) or sister chromatids (mitosis and meiosis II) are correctly attached to the bipolar spindle in a tension-generating manner. For this to happen, the spindle assembly checkpoint (SAC) checks whether unattached kinetochores are present, in which case anaphase onset is delayed to permit further establishment of attachments. Additionally, microtubules are stabilized when they are attached and under tension. In mitosis, attachments not under tension activate the so-named error correction pathway depending on Aurora B kinase substrate phosphorylation. This leads to microtubule detachments, which in turn activates the SAC [1-3]. Meiotic divisions in mammalian oocytes are highly error prone, with severe consequences for fertility and health of the offspring [4, 5]. Correct attachment of chromosomes in meiosis I leads to the generation of stretched bivalents, but-unlike mitosis-not to tension between sister kinetochores, which co-orient. Here, we set out to address whether reduction of tension applied by the spindle on bioriented bivalents activates error correction and, as a consequence, the SAC. Treatment of oocytes in late prometaphase I with Eg5 kinesin inhibitor affects spindle tension, but not attachments, as we show here using an optimized protocol for confocal imaging. After Eg5 inhibition, bivalents are correctly aligned but less stretched, and as a result, Aurora-B/C-dependent error correction with microtubule detachment takes place. This loss of attachments leads to SAC activation. Crucially, SAC activation itself does not require Aurora B/C kinase activity in oocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mohandhas, Badri R; Makaram, Navnit; Drew, Tim S; Wang, Weijie; Arnold, Graham P
2016-01-01
Background Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions. Methods Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading. Results Statistically significant differences (p < 0.05) were observed when average peak acceleration at the elbow at 200 N string-tension (acceleration of 5.58 m/s2) was compared with that at 222 N tension (acceleration of 6.83 m/s2) and 245 N tension (acceleration of 7.45 m/s2). The 200 N racket induced the least acceleration at the elbow. Conclusions Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE. PMID:27583017
Changes in passive tension of muscle in humans and animals after eccentric exercise
Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U
2001-01-01
This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215
33 CFR 147.817 - Sir Douglas Morpeth Tension Leg Platform safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sir Douglas Morpeth Tension Leg... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.817 Sir Douglas Morpeth Tension Leg Platform safety zone. (a) Description. The Sir Douglas Morpeth Tension Leg Platform (Morpeth...
Oxygen tension limits nitric oxide synthesis by activated macrophages.
McCormick, C C; Li, W P; Calero, M
2000-01-01
Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783
Tension band wiring of the olecranon: is it really a dynamic principle of osteosynthesis?
Brink, P R G; Windolf, M; de Boer, P; Brianza, S; Braunstein, V; Schwieger, K
2013-04-01
The tension band principle as applied to transverse olecranon fractures fixed by tension band wiring is based on the premise that distraction forces on the outer cortex of the ulna during elbow flexion are converted to compression forces on the articular surface of the olecranon at the fracture site. In view of some clinical outcomes, where hardware failure and secondary dislocations occur, the question arises if the dynamic compression theory is correct. Compressive forces during active flexion and extension after tension band wiring of a transverse osteotomy of the olecranon were measured in 6 fresh frozen human cadaveric models using a pressure-sensor in the osteotomy gap. We could collect 30 measurements during active flexion and 30 during active extension. Active flexion did not cause any compressive forces in the osteotomy gap. Extension with the humerus in an upright position and the elbow actively extended causes some compression (0.37-0.51 MPa) at the articular surface comparing with active flexion (0.2 MPa) due to gravity forces. Posterior, there was no significant pressure difference observed (0.41-0.45 versus 0.36-0.32 MPa) between active flexion and extension. The tension band wiring principle only exists during active extension in a range of 30-120° of flexion of the elbow. Postoperative exercise programs should be modified in order to prevent loss of compression at the fracture site of transverse olecranon fractures, treated with tension band wiring when the elbow is mobilised. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parker, Eleanor; Vessillier, Sandrine; Pingguan-Murphy, Belinda; Abas, Wan; Bader, Dan L; Chowdhury, Tina T
2013-10-25
The inherent low oxygen tension in normal cartilage has implications on inflammatory conditions associated with osteoarthritis (OA). Biomechanical signals will additionally contribute to changes in tissue remodelling and influence the inflammatory response. In this study, we investigated the combined effects of oxygen tension and fibronectin fragment (FN-f) on the inflammatory response of chondrocytes subjected to biomechanical signals. Chondrocytes were cultured under free-swelling conditions at 1%, 5% and 21% oxygen tension or subjected to dynamic compression in an ex vivo 3D/bioreactor model with 29 kDa FN-f, interleukin-1beta (IL-1β) and/or the nitric oxide synthase (NOS) inhibitor for 6 and 48 hours. Markers for catabolic activity (NO, PGE2), tissue remodelling (GAG, MMPs) and cytokines (IL-1β, IL-6 and TNFα) were quantified by biochemical assay. Aggrecan, collagen type II, iNOS and COX-2 gene expression were examined by real-time quantitative PCR. Two-way ANOVA and a post hoc Bonferroni-corrected t-test were used to analyse data. Both FN-fs and IL-1β increased NO, PGE2 and MMP production (all P< 0.001). FN-f was more active than IL-1β with greater levels of NO observed at 5% than 1% or 21% oxygen tension (P < 0.001). Whilst FN-f reduced GAG synthesis at all oxygen tension, the effect of IL-1β was significant at 1% oxygen tension. In unstrained constructs, treatment with FN-f or IL-1β increased iNOS and COX-2 expression and reduced aggrecan and collagen type II (all P < 0.001). In unstrained constructs, FN-f was more effective than IL-1β at 5% oxygen tension and increased production of NO, PGE2, MMP, IL-1β, IL-6 and TNFα. At 5% and 21% oxygen tension, co-stimulation with compression and the NOS inhibitor abolished fragment or cytokine-induced catabolic activities and restored anabolic response. The present findings revealed that FN-fs are more potent than IL-1β in exerting catabolic effects dependent on oxygen tension via iNOS and COX-2 upregulation. Stimulation with biomechanical signals abolished catabolic activities in an oxygen-independent manner and NOS inhibitors supported loading-induced recovery resulting in reparative activities. Future investigations will utilize the ex vivo model as a tool to identify key targets and therapeutics for OA treatments.
A Prescriptive, Intergenerational-Tension Ageism Scale: Succession, Identity, and Consumption (SIC)
North, Michael S.; Fiske, Susan T.
2014-01-01
We introduce a novel ageism scale, focusing on prescriptive beliefs concerning potential intergenerational tensions: active, envied resource Succession, symbolic Identity avoidance, and passive, shared-resource Consumption (SIC). Four studies (2,010 total participants) developed the scale. EFA formed an initial 20-item, three-factor solution (Study 1). The scale converges appropriately with other prejudice measures and diverges from other social control measures (Study 2). It diverges from anti-youth ageism (Study 3). Study 4’s experiment yielded both predictive and divergent validity apropos another ageism measure. Structural equation modeling confirmed model fit across all studies. Per an intergenerational-tension focus, younger people consistently scored the highest. As generational equity issues intensify, the scale provides a contemporary tool for current and future ageism research. PMID:23544391
Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart
2011-01-01
The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
The environmental factors as reason for emotional tension
NASA Astrophysics Data System (ADS)
Prisniakova, L.
The information from environment is a reason of activation of an organism, it calls abrupt changings in nervous processes and it offers emotions. One part of emotions organizes and supports activity, others disorganize it. In fields of perception, of making decision, fulfilment of operatings, of learning the emotional excitation raises the level of carrying-out more easy problems and reduces of more difficult one. The report are presented the outcomes of quantitative determination of a level of emotional tension on successful activity. The inverse of the sign of influencing on efficiency of activity of the man is detected. The action of the emotional tension on efficiency of professional work was demonstrated to have similarly to influencing of motivation according to the law Yerkes -Dodson. The report introduces a mathematical model of connection of successful activity and motivations or the emotional tension. Introduced in the report the outcomes can serve the theoretical idealized basis of the quantitative characteristics of an estimation of activity of astronauts in conditions of the emotional factors at a phase of selection
Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China
NASA Astrophysics Data System (ADS)
Wan, Tianfeng
1984-10-01
It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.
Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.
2015-01-01
Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099
Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J
2015-11-01
Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. © 2015 American Society of Plant Biologists. All Rights Reserved.
Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki
2016-08-01
The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Grodzki, Ana Cristina G.; Giulivi, Cecilia; Lein, Pamela J.
2013-01-01
The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O2 and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O2) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O2 versus 5% O2 indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O2 significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O2 decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology. PMID:23355903
Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues
NASA Astrophysics Data System (ADS)
Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.
Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions
NASA Astrophysics Data System (ADS)
Kula, Anna; Jia, Xiaohui; Mishra, Raj K.; Niewczas, Marek
2016-12-01
The mechanical properties of Mg-Gd and Mg-Y solid solutions have been studied under uniaxial tension and compression between 4 K and 298 K (-269 °C and 25 °C). The results reveal that Mg-Gd alloys exhibit higher strength and ductility under tension and compression attributed to the more effective solid solution strengthening and grain-boundary strengthening effects. Profuse twinning has been observed under compression, resulting in a material texture with strong dominance of basal component parallel to compression axis. Under tension, twining is less active and the texture evolution is controlled mostly by slip. The alloys exhibit pronounced yield stress asymmetry and significantly different work-hardening behavior under tension and compression. Increasing of Gd and/or Y concentration leads to the reduction of the tension-compression asymmetry due to the weakening of the recrystallization texture and more balanced twinning and slip activity during plastic deformation. The results suggest that under compression of Mg-Y alloys slip is more active than twinning in comparison to Mg-Gd alloys.
Methods for the Organogenesis of Skeletal Muscle in Tissue Culture
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph
1997-01-01
Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.
1982-01-01
Na+- and CA2+-sensitive microelectrodes were used to measure intracellular Na+ and Ca2+ activities (alpha iCa) of sheep ventricular muscle and Purkinje strands to study the interrelationship between Na+ and Ca2+ electrochemical gradients (delta muNa and delta muCa) under various conditions. In ventricular muscle, alpha iNa was 6.4 +/- 1.2 mM and alpha iCa was 87 +/- 20 nM ([Ca/+] = 272 nM). A graded decrease of external Na+ activity (alpha oNa) resulted in decrease of alpha iNa, and increase of alpha iCa. There was increase of twitch tension in low- alpha oNa solutions, and occasional increase of resting tension in 40% alpha oNa. Increase of external Ca2+ (alpha oCa) resulted in increase of alpha iCa and decrease of alpha iNa. Decrease of alpha oCa resulted in decrease of alpha iCa and increase of alpha iNa. The apparent resting Na-Ca energy ratio (delta muCa/delta muNa) was between 2.43 and 2.63. When the membrane potential (Vm) was depolarized by 50 mM K+ in ventricular muscle, Vm depolarized by 50 mV, alpha iNa decreased, and alpha iCa increased, with the development of a contracture. The apparent energy coupling ratio did not change with depolarization. 5 x 10(-6) M ouabain induced a large increase in alpha iNa ad alpha iCa, accompanied by an increase in twitch and resting tension. Under the conditions we have studied, delta muNa and delta muCa appeared to be coupled and n was nearly constant at 2.5, as would be expected if the Na-Ca exchange system was able to set the steady level of alpha iCa. Tension threshold was about 230 nM alpha iCa. The magnitude of twitch tension was directly related to alpha iCa. PMID:6292328
Surface tension propulsion of fungal spores by use of microdroplets
NASA Astrophysics Data System (ADS)
Noblin, Xavier; Yang, Sylvia; Dumais, Jacques
2010-11-01
Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.
[Tension Pneumothorax Developing Hemothorax after Chest Tube Drainage].
Sakai, Takehiro; Sawada, Masahiro; Sato, Yutaka; Kimura, Futoshi; Yagihashi, Nobuo; Iwabuchi, Tadashi; Kimura, Daisuke; Tsushima, Takao; Hatanaka, Ryo
2016-11-01
A 61-year-old man visited a physician complaining of progressive chest pain and dyspnea. The chest radiography showed complete collapse of the right lung suggesting tension pneumothorax. The patient was transferred to our hospital. A small amount of the right pleural effusion was also seen in addition to pulmonary collapse on the chest radiography. Chest drainage was performed, and continuous air leakage was seen. At 2 hours later, air leakage was disappeared but the bloody effusion was noted. The chest radiography revealed massive effusion and the enhanced computed tomography showed active bleeding. The emergency surgery was conducted. The bleeding point was a ruptured vessel between the apical parietal pleura and the pulmonary bulla. Hemostasis and the resection of the bullae was performed. Careful observation after chest drainage is necessary to prepare unexpected hemothorax in case of tension pneumothorax with pleural effusion.
Analysis of constant tension-induced rupture of lipid membranes using activation energy.
Karal, Mohammad Abu Sayem; Levadnyy, Victor; Yamazaki, Masahito
2016-05-11
The stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically. First, we investigated the temperature dependence of kp for GUVs of charged lipid membranes composed of negatively charged dioleoylphosphatidylglycerol (DOPG) and electrically neutral dioleoylphosphatidylcholine (DOPC). By analyzing this result, the values of Ua of tension-induced rupture of DOPG/DOPC-GUVs were obtained. Ua decreased with an increase in σ, supporting the classical theory of tension-induced pore formation. The analysis of the relationship between Ua and σ using the theory on the electrostatic interaction effects on the tension-induced rupture of GUVs provided the equation of Ua including electrostatic interaction effects, which well fits the experimental data of the tension dependence of Ua. A constant which does not depend on tension, U0, was also found to contribute significantly to Ua. The Arrhenius equations for kp using the equation of Ua and the parameters determined by the above analysis fit well to the experimental data of the tension dependence of kp for DOPG/DOPC-GUVs as well as for DOPC-GUVs. On the basis of these results, we discussed the possible elementary processes underlying the tension-induced rupture of GUVs of lipid membranes. These results indicate that the Arrhenius equation using the experimentally determined Ua is useful in the analysis of tension-induced rupture of GUVs.
Tension pneumothorax, is it a really life-threatening condition?
2013-01-01
Background Tension pneumothorax is a life-threatening occurrence that is infrequently the consequence of spontaneous pneumothorax. The aim of this study was to identify the risk factors for the development of tension pneumothorax and its effect on clinical outcomes. Methods We reviewed patients who were admitted with spontaneous pneumothorax between August 1, 2003 and December 31, 2011. Electronic medical records and the radiological findings were reviewed with chest x-ray and high-resolution computed tomography scans that were retrieved from the Picture Archiving Communication System. Results Out of the 370 patients included in this study, tension pneumothorax developed in 60 (16.2%). The bullae were larger in patients with tension pneumothorax than in those without (23.8 ± 16.2 mm vs 16.1 ± 19.1 mm; P = 0.007). In addition, the incidence of tension pneumothorax increased with the lung bulla size. Fibrotic adhesion was more prevalent in the tension pneumothorax group than in that without (P = 0.000). The bullae were large in patients with fibrotic adhesion than in those without adhesion (35.0 ± 22.3 mm vs 10.4 ± 11.5 mm; P = 0.000). On multivariate analysis, the size of bullae (odds ratio (OR) = 1.03, P = 0.001) and fibrotic adhesion (OR = 10.76, P = 0.000) were risk factors of tension pneumothorax. Hospital mortality was 3.3% in the tension pneumothorax group and it was not significantly different from those patients without tension pneunothorax (P = 0.252). Conclusions Tension pneumothorax is not uncommon, but clinically fatal tension pneumothorax is extremely rare. The size of the lung bullae and fibrotic adhesion contributes to the development of tension pneumothorax. PMID:24128176
Tensions in Distributed Leadership
ERIC Educational Resources Information Center
Ho, Jeanne; Ng, David
2017-01-01
Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…
Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Linde, Mattias; Gard, Gunvor; Jensen, Rigmor Højland
2018-01-01
Aim To evaluate aerobic exercise in migraine and co-existing tension-type headache and neck pain. Methods Consecutively recruited persons with migraine and co-existing tension-type headache and neck pain were randomized into an exercise group or control group. Aerobic exercise consisted of bike/cross-trainer/brisk walking for 45 minutes, three times/week. Controls continued usual daily activities. Pain frequency, intensity, and duration; physical fitness, level of physical activity, well-being and ability to engage in daily activities were assessed at baseline, after treatment and at follow-up. Results Fifty-two persons completed the study. Significant between-group improvements for the exercise group were found for physical fitness, level of physical activity, migraine burden and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Within the exercise group, significant reduction was found for migraine frequency, pain intensity and duration, neck pain intensity, and burden of migraine; an increase in physical fitness and well-being. Conclusions Exercise significantly reduced the burden of migraine and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Exercise also reduced migraine frequency, pain intensity and duration, although this was not significant compared to controls. These results emphasize the importance of regular aerobic exercise for reduction of migraine burden.
Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension.
Tsoumpekos, Giorgos; Nemetschke, Linda; Knust, Elisabeth
2018-03-05
Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth. © 2018 Tsoumpekos et al.
Land, Sander; Niederer, Steven A.
2015-01-01
Biophysical models of cardiac tension development provide a succinct representation of our understanding of force generation in the heart. The link between protein kinetics and interactions that gives rise to high cooperativity is not yet fully explained from experiments or previous biophysical models. We propose a biophysical ODE-based representation of cross-bridge (XB), tropomyosin and troponin within a contractile regulatory unit (RU) to investigate the mechanisms behind cooperative activation, as well as the role of cooperativity in dynamic tension generation across different species. The model includes cooperative interactions between regulatory units (RU-RU), between crossbridges (XB-XB), as well more complex interactions between crossbridges and regulatory units (XB-RU interactions). For the steady-state force-calcium relationship, our framework predicts that: (1) XB-RU effects are key in shifting the half-activation value of the force-calcium relationship towards lower [Ca2+], but have only small effects on cooperativity. (2) XB-XB effects approximately double the duty ratio of myosin, but do not significantly affect cooperativity. (3) RU-RU effects derived from the long-range action of tropomyosin are a major factor in cooperative activation, with each additional unblocked RU increasing the rate of additional RU’s unblocking. (4) Myosin affinity for short (1–4 RU) unblocked stretches of actin of is very low, and the resulting suppression of force at low [Ca2+] is a major contributor in the biphasic force-calcium relationship. We also reproduce isometric tension development across mouse, rat and human at physiological temperature and pacing rate, and conclude that species differences require only changes in myosin affinity and troponin I/troponin C affinity. Furthermore, we show that the calcium dependence of the rate of tension redevelopment ktr is explained by transient blocking of RU’s by a temporary decrease in XB-RU effects. PMID:26262582
Kobayashi, Masahiko; Takemori, Shigeru; Yamaguchi, Maki
2004-02-10
Based on the molecular mechanism of rigor mortis, we have proposed that stiffness (elastic modulus evaluated with tension response against minute length perturbations) can be a suitable index of post-mortem rigidity in skeletal muscle. To trace the developmental process of rigor mortis, we measured stiffness and tension in both red and white rat skeletal muscle kept in liquid paraffin at 37 and 25 degrees C. White muscle (in which type IIB fibres predominate) developed stiffness and tension significantly more slowly than red muscle, except for soleus red muscle at 25 degrees C, which showed disproportionately slow rigor development. In each of the examined muscles, stiffness and tension developed more slowly at 25 degrees C than at 37 degrees C. In each specimen, tension always reached its maximum level earlier than stiffness, and then decreased more rapidly and markedly than stiffness. These phenomena may account for the sequential progress of rigor mortis in human cadavers.
33 CFR 147.821 - Brutus Tension Leg Platform safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...
33 CFR 147.821 - Brutus Tension Leg Platform safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...
33 CFR 147.821 - Brutus Tension Leg Platform safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...
33 CFR 147.821 - Brutus Tension Leg Platform safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...
33 CFR 147.821 - Brutus Tension Leg Platform safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...
Quality of life in healthy children and in children with tension headaches--a comparative analysis.
Talarska, D
2005-01-01
The aim of this study was the assessment of the quality of life of children and adolescents with tension headaches in comparison with healthy peers. The study was conducted on 135 middle school and high school students in Poznań and on 86 children with tension headaches, that were treated in the out-patient clinic of The Chair and Clinic of Development Age Neurology of Karol Marcinkowski University of Medical Sciences in Poznań. The research tool for both groups was Pediatric Quality of Life Inventory, version 4.0 (PedsQL 4.0) questionnaire. In the analysed groups dominated 14- and 16-year-old children. Among children with tension headaches, the ailments usually appeared once or twice a week in 39 (45%) of them. With the use of the PedsQL 4.0 questionnaire the following fields of activity were analyzed: biological, emotional, social functioning and mood. The biggest discrepancies between the group of healthy children and those with headaches were noted in the field of emotional functioning and mood. Adolescents with tension headaches more frequently reported the feeling of fear and sleep disorders in comparison to healthy students. Children with headaches look at the future in a more pessimistic way and are less satisfied with their lives.
ERIC Educational Resources Information Center
Nuttall, Joce; Thomas, Louise; Henderson, Linda
2018-01-01
This article critiques the usefulness of double stimulation, a key concept in Vygotskian analyses of human development, with leaders in early childhood services in Australia. A series of formative interventions was conducted to identify and address systemic tensions that were confounding leaders' attempts to realise a central object of activity in…
Qi, H; Zheng, X; Qin, X; Dou, D; Xu, H; Raj, J U; Gao, Y
2007-12-01
Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator-induced relaxation of coronary veins. Effects of a PKG inhibitor on the basal tension and responses induced by nitroglycerin, DETA NONOate, and 8-Br-cGMP in isolated porcine coronary veins were determined. Cyclic cGMP was measured with radioimmunoassay. PKG activity was determined by measuring the incorporation of 32P from gamma-32P-ATP into the specific substrate BPDEtide. Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, increased the basal tension of porcine coronary veins and decreased PKG activity. The increase in tension was 38% of that caused by nitro-L-arginine. Relaxation of the veins induced by nitroglycerin and DETA NONOate was accompanied with increases in cGMP content and PKG activity. These effects were largely eliminated by inhibiting soluble guanylyl cyclase with ODQ. The increase in PKG activity induced by the nitrovasodilators was abolished by Rp-8-Br-PET-cGMPS. The relaxation caused by these dilators and by 8-Br-cGMP at their EC50 was attenuated by the PKG inhibitor by 51-66%. These results suggest that PKG is critically involved in nitric oxide-mediated regulation of the basal tension in porcine coronary veins and that it plays a primary role in relaxation induced by nitrovasodilators. Since nitric oxide plays a key role in modulating coronary venous activity, augmentation of PKG may be a therapeutic target for improving coronary blood flow.
Calcium and stretch activation modulate power generation in Drosophila flight muscle.
Wang, Qian; Zhao, Cuiping; Swank, Douglas M
2011-11-02
Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Qi, H; Zheng, X; Qin, X; Dou, D; Xu, H; Raj, J U; Gao, Y
2007-01-01
Background and purpose: Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator-induced relaxation of coronary veins. Experimental approach: Effects of a PKG inhibitor on the basal tension and responses induced by nitroglycerin, DETA NONOate, and 8-Br-cGMP in isolated porcine coronary veins were determined. Cyclic cGMP was measured with radioimmunoassay. PKG activity was determined by measuring the incorporation of 32P from γ-32P-ATP into the specific substrate BPDEtide. Key results: Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, increased the basal tension of porcine coronary veins and decreased PKG activity. The increase in tension was 38% of that caused by nitro-L-arginine. Relaxation of the veins induced by nitroglycerin and DETA NONOate was accompanied with increases in cGMP content and PKG activity. These effects were largely eliminated by inhibiting soluble guanylyl cyclase with ODQ. The increase in PKG activity induced by the nitrovasodilators was abolished by Rp-8-Br-PET-cGMPS. The relaxation caused by these dilators and by 8-Br-cGMP at their EC50 was attenuated by the PKG inhibitor by 51–66%. Conclusions and implications: These results suggest that PKG is critically involved in nitric oxide-mediated regulation of the basal tension in porcine coronary veins and that it plays a primary role in relaxation induced by nitrovasodilators. Since nitric oxide plays a key role in modulating coronary venous activity, augmentation of PKG may be a therapeutic target for improving coronary blood flow. PMID:17891157
Heeneman, Sylvia; de Grave, Willem
2017-04-01
In medical education, students need to acquire skills to self-direct(ed) learning (SDL), to enable their development into self-directing and reflective professionals. This study addressed the mentor perspective on how processes in the mentor-student interaction influenced development of SDL. n = 22 mentors of a graduate-entry medical school with a problem-based curriculum and longitudinal mentoring system were interviewed (n = 1 recording failed). Using activity theory (AT) as a theoretical framework, thematic analysis was applied to the interview data to identify important themes. Four themes emerged: centered around the role of the portfolio, guiding of students' SDL in the context of assessment procedures, mentor-role boundaries and longitudinal development of skills by both the mentor and mentee. Application of AT showed that in the interactions between themes tensions or supportive factors could emerge for activities in the mentoring process. The mentors' perspective on coaching and development of reflection and SDL of medical students yielded important insights into factors that can hinder or support students' SDL, during a longitudinal mentor-student interaction. Coaching skills of the mentor, the interaction with a portfolio and the context of a mentor community are important factors in a longitudinal mentor-student interaction that can translate to students' SDL skills.
Succinylcholine activation of human horizontal eye muscles.
Lennerstrand, Gunnar; Bolzani, Roberto; Tian, Suna; Benassi, Mariagrazia; Fusari, Maurizio; Campos, Emilio; Schiavi, Costantino
2010-12-01
Succinylcholine (Sch) can induce contracture in slow, multiply innervated muscle fibres of the extraocular muscles in animals of different species. Slow muscle fibres also exist in human eye muscle but their physiological properties have not been studied. Isometric tension development was recorded in the lateral and medial rectus muscles in 12 patients operated under general anaesthesia. A strain gauge probe was attached with 5-0 silk sutures to the muscle tendon. Recordings were made in 12 eye muscles with the tendon attached to the globe and in four muscles detached from the globe. Muscle activation was produced by i.v. injection of Sch at a dose of 0.2-0.3 mg/kg bodyweight. A single injection of Sch induced slow contractures lasting for several minutes. In the muscles attached to the globe, mean maximal isometric tension was 12.2 g in the lateral rectus and 12.8 g in the medial rectus. Similar tension was shown in the muscles detached from the globe. The contracture of eye muscles in response to Sch showed characteristics typical of slow muscle fibre activation in amphibian and avian muscle and confirmed the participation of slow fibre systems in ocular motor control. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.
Active tension network model suggests an exotic mechanical state realized in epithelial tissues
NASA Astrophysics Data System (ADS)
Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.
2017-12-01
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.
NASA Astrophysics Data System (ADS)
Loomis, Molly
This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science centers to think in new and critical ways about whom the serve, as well as how and why they serve their audiences.
Drops, Sieves, and Paintbrushes: Teaching About Surface Tension
ERIC Educational Resources Information Center
Barnes, George B.
1978-01-01
Surface tension, a characteristic of liquids, is discussed in this article. Several activities appropriate to the elementary grades are described and explained. Each activity uses common materials to explore this tendancy of water to act as if it were surrounded by a membrane. (MA)
Exploration of Tensions in a Mobile-Technology Supported Fieldtrip: An Activity Theory Perspective
ERIC Educational Resources Information Center
Lai, Chih-Hung; Chen, Fei-Ching; Yang, Jie-Chi
2014-01-01
The purpose of this study was to analyze how mobile technologies were incorporated and implemented in an outdoor learning activity. Two classes of primary school students participated in the experiment. Using activity theory as an analytical framework, it is found that underlying tensions provided rich insights into system dynamics and that…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munakata, M.; Huang, C.; Menkes, H.
Activated protein kinase C and intracellular Ca/sup + +/ may act synergistically to produce physiological responses. It is possible to activate protein kinase C directly with phorbol esters and to increase intracellular Ca/sup + +/ by depolarizing cell membranes. Guinea pig tracheal rings were incubated at constant temperature in Krebs-Henseleit solution and isometric tension was recorded. Protein kinase C was activated with phorbol 12,13 - diacetate (PDA) and cell membranes were depolarized by lowering temperature, increasing external K/sup +/ concentration, or incubating with ouabain. At 37/sup 0/C, 1 /sup +/M PDA caused a fall in tension (0.67 +/- 0.06 g).more » This decrease in tension was equal to 43% of the near maximal contraction produced by 4 ..mu..M carbachol. At 22/sup 0/C 1 ..mu.. PDA caused an increase in tension (1.00 +/- 0.10 g). This increase in tension was equal to 61% of the contraction produced by 4 ..mu..M carbachol. When K/sup +/ was increased from the physiological concentration of 5.4 mM to 20 mM, 1 ..mu..M PDA caused an increase in tension of 1.11 +/- 0.15 g (56% of the 4 ..mu..M carbachol response). When 10 ..mu..M ouabain was added to the tissue bath, 1 ..mu..M PDA caused an increase in tension of 1.56 +/- 0.61 g (81% of the 4 ..mu..M carbachol response). Contractions produced by PDA at low temperature or high K were blocked by 1 ..mu..M verapamil or by 0.01 ..mu..M nifedipine. The authors conclude that the activation of protein kinase C causes contraction when cell membranes are depolarized and Ca/sup + +/ is allowed to enter the cells through voltage dependent channels.« less
ERIC Educational Resources Information Center
Winokur, Jeff; And Others
1992-01-01
The article helps elementary teachers develop science programs geared to their students, emphasizing the appropriateness of hands-on activities and developmental learning. It presents three Earth Day water projects on rain and puddles, water drops and surface tension, and water purification that can be tailored for specific classes. (SM)
Rolin, Gwenae L; Binda, Delphine; Tissot, Marion; Viennet, Céline; Saas, Philippe; Muret, Patrice; Humbert, Philippe
2014-11-07
Skin wound healing is finely regulated by both matrix synthesis and degradation which are governed by dermal fibroblast activity. Actually, fibroblasts synthesize numerous extracellular matrix proteins (i.e., collagens), remodeling enzymes and their inhibitors. Moreover, they differentiate into myofibroblasts and are able to develop endogenous forces at the wound site. Such forces are crucial during skin wound healing and have been widely investigated. However, few studies have focused on the effect of exogenous mechanical tension on the dermal fibroblast phenotype, which is the objective of the present paper. To this end, an exogenous, defined, cyclic and uniaxial mechanical strain was applied to fibroblasts cultured as scratch-wounded monolayers. Results showed that fibroblasts' response was characterized by both an increase in procollagen type-I and TIMP-1 synthesis, and a decrease in MMP-1 synthesis. The monitoring of scratch-wounded monolayers did not show any decrease in kinetics of the filling up when mechanical tension was applied. Additional results obtained with proliferating fibroblasts and confluent monolayer indicated that mechanical tension-induced response of fibroblasts depends on their culture conditions. In conclusion, mechanical tension leads to the differentiation of dermal fibroblasts and may increase their wound-healing capacities. So, the exogenous uniaxial and cyclic mechanical tension reported in the present study may be considered in order to improve skin wound healing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Decrease in coronary vascular volume in systole augments cardiac contraction.
Willemsen, M J; Duncker, D J; Krams, R; Dijkman, M A; Lamberts, R R; Sipkema, P; Westerhof, N
2001-08-01
Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary vascular volume changes were partly inhibited by filling it with congealed gelatin or perfusing it with a high viscosity dextran buffer. Also, myocyte thickening during contraction was reduced by placing a silicon tube around the muscle. Increasing perfusion pressure from 8 to 80 cmH2O, increased developed tension by approximately 40%. When compared with the low perfusion state, developed tension of the gelatin-filled vasculature was reduced to 43 +/- 6% at the muscle length where the muscle generates the largest developed tension (n = 5, means +/- SE). Dextran reduced developed tension to 73 +/- 6% (n = 6). The silicon tube, in low perfusion state, reduced the developed tension to 83 +/- 7% (n = 4) of control. Time-control and oxygen-lowering experiments show that the findings are based on mechanical effects. Thus interventions to prevent myocyte thickening reduce developed tension. We hypothesize that when myocyte thickening is prevented, intracellular pressure increases and counteracts the force produced by the contractile apparatus. We conclude that emptying of the coronary vasculature serves a physiological purpose by facilitating cardiomyocyte thickening thereby augmenting force development.
Surface tensions of solutions containing dicarboxylic acid mixtures
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Hildemann, Lynn M.
2014-06-01
Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.
Kiriyama, Yoshimori; Matsumoto, Hideo; Toyama, Yoshiaki; Nagura, Takeo
2014-02-01
The aim of this study was to develop a new suture tension sensor for musculoskeletal soft tissue that shows deformation or movements. The suture tension sensor was 10 mm in size, which was small enough to avoid conflicting with the adjacent sensor. Furthermore, the sensor had good linearity up to a tension of 50 N, which is equivalent to the breaking strength of a size 1 absorbable suture defined by the United States Pharmacopeia. The design and mechanism were analyzed using a finite element model prior to developing the actual sensor. Based on the analysis, adequate material was selected, and the output linearity was confirmed and compared with the simulated result. To evaluate practical application, the incision of the skin and capsule were sutured during simulated total knee arthroplasty. When conventional surgery and minimally invasive surgery were performed, suture tensions were compared. In minimally invasive surgery, the distal portion of the knee was dissected, and the proximal portion of the knee was dissected additionally in conventional surgery. In the skin suturing, the maximum tension was 4.4 N, and this tension was independent of the sensor location. In contrast, the sensor suturing the capsule in the distal portion had a tension of 4.4 N in minimally invasive surgery, while the proximal sensor had a tension of 44 N in conventional surgery. The suture tensions increased nonlinearly and were dependent on the knee flexion angle. Furthermore, the tension changes showed hysteresis. This miniature tension sensor may help establish the optimal suturing method with adequate tension to ensure wound healing and early recovery.
Heat production during contraction in skeletal muscle of hypothyroid mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G.
1987-08-01
The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be relatedmore » to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.« less
Modification of Upper Thread Tensioner of Sewing Machine
NASA Astrophysics Data System (ADS)
Klouček, P.; Škop, P.
Standard mechanical upper thread tensioner of sewing machines is more and more limited in use for industrial sewing machines due to increasing requests for quality and raising velocity of machines. If we omit mostly manual settings of force made only by sense, the most problematic things are influence of different friction coefficient of the different batch of threads and strong relation between thread tension and sewing machine velocity. The article describes the development focused to the elimination of the most significant disadvantages of a standard tensioner and mainly finding of new conception of the tensioner with electromagnetic brake, development and testing of its prototype.
ERIC Educational Resources Information Center
Vajoczki, Susan; Biegas, Tamara C.; Crenshaw, Melody; Healey, Ruth L.; Osayomi, Tolulope; Bradford, Michael; Monk, Janice
2011-01-01
This paper provides a review of the practices and tensions informing approaches to professional development for early career academic geographers who are teaching in higher education. We offer examples from Britain, Canada, Nigeria and the USA. The tensions include: institutional and departmental cultures; models that offer generic and…
Michel, Marcus; Aliee, Maryam; Rudolf, Katrin; Bialas, Lisa; Jülicher, Frank; Dahmann, Christian
2016-01-01
The separation of cells with distinct fates and functions is important for tissue and organ formation during animal development. Regions of different fates within tissues are often separated from another along straight boundaries. These compartment boundaries play a crucial role in tissue patterning and growth by stably positioning organizers. In Drosophila, the wing imaginal disc is subdivided into a dorsal and a ventral compartment. Cells of the dorsal, but not ventral, compartment express the selector gene apterous. Apterous expression sets in motion a gene regulatory cascade that leads to the activation of Notch signaling in a few cell rows on either side of the dorsoventral compartment boundary. Both Notch and apterous mutant clones disturb the separation of dorsal and ventral cells. Maintenance of the straight shape of the dorsoventral boundary involves a local increase in mechanical tension at cell bonds along the boundary. The mechanisms by which cell bond tension is locally increased however remain unknown. Here we use a combination of laser ablation of cell bonds, quantitative image analysis, and genetic mutants to show that Notch and Apterous are required to increase cell bond tension along the dorsoventral compartment boundary. Moreover, clonal expression of the Apterous target gene capricious results in cell separation and increased cell bond tension at the clone borders. Finally, using a vertex model to simulate tissue growth, we find that an increase in cell bond tension at the borders of cell clones, but not throughout the cell clone, can lead to cell separation. We conclude that Apterous and Notch maintain the characteristic straight shape of the dorsoventral compartment boundary by locally increasing cell bond tension. PMID:27552097
Merryman, W. David; Lukoff, Howard D.; Long, Rebecca A.; Engelmayr, George C.; Hopkins, Richard A.; Sacks, Michael S.
2007-01-01
Background Phenotypically, the aortic valve interstitial cell (AVIC) is a dynamic myofibroblast, appearing contractile and activated in times of development, disease, and remodeling. The precise mechanism of phenotypic modulation is unclear, but it is speculated that both biomechanical and biochemical factors are influential. Therefore, we hypothesized that isolated and combined treatments of cyclic tension and TGF-β1 would alter the phenotype and subsequent collagen biosynthesis of AVICs in situ. Methods and Results Porcine aortic valve leaflets received 7 and 14 day treatments of 15% cyclic stretch (Tension), 0.5 ng/ml TGF-β1 (TGF), 15% cyclic stretch and 0.5 ng/ml TGF-β1 (Tension+TGF), or neither mechanical nor cytokine stimuli (Null). Tissues were homogenized and assayed for AVIC phenotype (smooth muscle α-actin (SMA)) and collagen biosynthesis (via heat shock protein 47 (Hsp47) which was further verified with type I collagen C-terminal propeptide (CICP)). At both 7 and 14 days, SMA, Hsp47, and CICP quantities were significantly greater (p<0.001) in the Tension+TGF group compared to all other groups. Additionally, Tension alone appeared to maintain SMA and Hsp47 levels that were measured at day 0, while TGF alone elicited an increase in SMA and Hsp47 compared to day 0 levels. Null treatment revealed diminished proteins at both time points. Conclusions Elevated TGF-β1 levels, in the presence of cyclic mechanical tension, resulted in synergistic increases in the contractile and biosynthetic proteins in AVICs. Since cyclic mechanical stimuli can never be relieved in vivo, the presence of TGF-β1 (possibly from infiltrating macrophages) may result in overly biosynthetic AVICs, leading to altered ECM architecture, compromised valve function, and ultimately degenerative valvular disease. PMID:17868877
Anazawa, T; Yasuda, K; Ishiwata, S
1992-05-01
We have devised a simple method for measuring tension development of single myofibrils by micromanipulation with a pair of glass micro-needles. The tension was estimated from the deflection of a flexible needle under an inverted phase-contrast microscope equipped with an image processor, so that the tension development is always accompanied by the shortening of the myofibril (auxotonic condition) in the present setup. The advantage of this method is that the measurement of tension (1/30 s for time resolution and about 0.05 micrograms for accuracy of tension measurement; 0.05 microns as a spatial resolution for displacement of the micro-needle) and the observation of sarcomere structure are possible at the same time, and the technique to hold myofibrils, even single myofibrils, is very simple. This method has been applied to study the tension development of glycerinated skeletal myofibrils under the condition where spontaneous oscillation of sarcomeres is induced, i.e., the coexistence of MgATP, MgADP and inorganic phosphate without free Ca2+. Under this condition, we found that the tension of myofibrils spontaneously oscillates accompanied by the oscillation of sarcomere length with a main period of a few seconds; the period was lengthened and shortened with stretch and release of myofibrils. A possible mechanism of the oscillation is discussed.
Morin, Scott J
2017-03-01
There has been much debate regarding the optimal oxygen tension in clinical embryo culture. The majority of the literature to date has compared 5% oxygen to atmospheric levels (20-21%). While the majority of modern IVF labs have accepted the superiority of 5% oxygen tension, a new debate has emerged regarding whether a further reduction after day 3 of development represents the most physiologic system. This new avenue of research is based on the premise that oxygen tension is in fact lower in the uterus than in the oviduct and that the embryo crosses the uterotubal junction sometime on day 3. While data are currently limited, recent experience with ultra-low oxygen (2%) after day 3 of development suggests that the optimal oxygen tension in embryo culture may depend on the stage of development. This review article will consider the current state of the literature and discuss ongoing efforts at studying ultra-low oxygen tension in extended culture.
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud
2017-06-01
Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (p<0.05). Structurally different BSs produced exhibited identical equilibrium surface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.
Aqueous aerosol SOA formation: impact on aerosol physical properties.
Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye
2013-01-01
Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.
Growth factor involvement in tension-induced skeletal muscle growth
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1993-01-01
Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.
Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin
2013-02-01
Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin
2017-06-29
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander
2015-09-01
The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.
Smooth muscle in human bronchi is disposed to resist airway distension.
Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk
2016-07-15
Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. Copyright © 2016 Elsevier B.V. All rights reserved.
The Role of Regular Home Practice in the Relaxation Treatment of Tension Headache.
ERIC Educational Resources Information Center
Blanchard, Edward B.; And Others
1991-01-01
Gave 27 tension headache sufferers progressive muscle relaxation (PMR) training, with 14 of those subjects also receiving home practice and application instructions. Compared to third group of sufferers (n=6) who merely monitored headache activity, both treated groups showed significant reduction in headache activity. Treatment groups did not…
Overview of Play: Its Uses and Importance in Early Intervention/Early Childhood Special Education
ERIC Educational Resources Information Center
Lifter, Karin; Foster-Sanda, Suzanne; Arzamarski, Caley; Briesch, Jacquelyn; McClure, Ellen
2011-01-01
Play is a natural activity of early childhood, which has great relevance to the fields of early intervention, early childhood special education, and early childhood education. Within these fields, ongoing tensions persist in how play is described and used. These tensions compromise activities of assessment, intervention, and curriculum development…
Correlation between Surface Tension and Water Activity in New Particle Formation
NASA Astrophysics Data System (ADS)
Daskalakis, E.; Salameh, A.
2016-12-01
The impact of aerosol properties on cloud dynamics and the radiative balance of the atmosphere relies on the parametrizations of cloud droplet formation. Such parametrization is based on equilibrium thermodynamics proposed by Köhler in 1936. There is considerable debate in the literature on the importance of factors like the surface tension depression or the water activity decrease for the correct parametrization. To gain fundamental insight into New Particle Formation (NPF), or Cloud Condensation Nuclei (CCN) activation one has to study microscopic properties of aqueous droplets, involving surface and bulk dynamics. The surface tension of droplets can be associated with the effects from Organic Matter (OM), whereas the static dielectric constant of water reflects the structure and dynamics of ions within solutions and can present a measure of water activity. In this study we employ Molecular Dynamics Simulations on aquatic droplets that contain surface active OM (acetaldehyde, methylglyoxal) and salts. We give insight into the dynamics of aquatic droplets with radials of 3.6nm at a level of detail that is not accessible experimentally (J. Phys. Chem. C 2016, 120:11508). We propose that as the surface tension of an aquatic droplet is decreased in the presence of surface-active OM, the water activity is affected as well. This is due to the fact that the water dipoles are oriented based on the salt morphology within the droplet. We suggest that the surface tension depression can be accompanied by the water activity change. This can be associated with the possible effects of surface-active species in terms of salt morphology transitions within an aerosol at the NPF and early particle growth time scales. Based on this study, surface-active OM seems important in controlling (a) the salt morphology transitions within a nucleus during NPF and particle growth and (b) a correlation between surface activity and water activity of ionic aquatic droplets. The latter correlation could be a fundamental property to consider when assessing NPF and the Köhler theory.
Changes in Passive Tension of the Hamstring Muscles During a Simulated Soccer Match.
Marshall, Paul W; Lovell, Ric; Siegler, Jason C
2016-07-01
Passive muscle tension is increased after damaging eccentric exercise. Hamstring-strain injury is associated with damaging eccentric muscle actions, but no research has examined changes in hamstring passive muscle tension throughout a simulated sport activity. The authors measured hamstring passive tension throughout a 90-min simulated soccer match (SAFT90), including the warm-up period and every 15 min throughout the 90-min simulation. Passive hamstring tension of 15 amateur male soccer players was measured using the instrumented straight-leg-raise test. Absolute torque (Nm) and slope (Nm/°) of the recorded torque-angular position curve were used for data analysis, in addition to total leg range of motion (ROM). Players performed a 15-min prematch warm-up, then performed the SAFT90 including a 15-min halftime rest period. Reductions in passive stiffness of 20-50° of passive hip flexion of 22.1-29.2% (P < .05) were observed after the warm-up period. During the SAFT90, passive tension increased in the latter 20% of the range of motion of 10.1-10.9% (P < .05) concomitant to a 4.5% increase in total hamstring ROM (P = .0009). The findings of this study imply that hamstring passive tension is reduced after an active warm-up that includes dynamic stretching but does not increase in a pattern suggestive of eccentric induced muscle damage during soccer-specific intermittent exercise. Hamstring ROM and passive tension increases are best explained by improved stretch tolerance.
Roussel, Jean-Romain; Clair, Bruno
2015-12-01
To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jiang, Tianyong; Song, Gangbing
2017-01-01
With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors’ previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct. PMID:28961173
Jiang, Tianyong; Zheng, Junbo; Huo, Linsheng; Song, Gangbing
2017-09-29
With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
.... Some of the initial eighteen piles will be removed and re-driven as part of lateral load and tension tests. A total of eleven piles will be installed to perform lateral load and tension load tests. All... substrate. Additionally, three lateral load and two tension load tests will be performed. The lateral load...
Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T
2014-11-18
Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.
Interfacial properties of acidified skim milk.
Cases, E; Rampini, C; Cayot, Ph
2005-02-01
The purpose of this study is to investigate the tension properties and dilatational viscoelastic modulus of various skim milk proteins (whole milk, EDTA-treated milk, beta-casein, and beta-lactoglobulin) at an oil/water interface at 20 degrees C. Measurements are performed using a dynamic drop tensiometer for 15,000 s. The aqueous bulk phase is a skim milk simulated ultrafiltrate containing 11 x 10(-3) g L(-1) milk protein. At pH 6.7, beta-casein appears as the best to decrease the interfacial tension, whereas beta-lactoglobulin leads to the highest interfacial viscoelastic modulus value. Whole milk was almost as surface-active as individual beta-casein in terms of the final (steady-state) lowering of the interfacial tension, but the rate of tension lowering was smaller. EDTA treatment improved the rate of tension lowering of whole milk. The acidification of milk, from previous measurements, would lead to the enhancement of surface activity. At t=15,000 s, the order of effectiveness is pH 4.3 > pH 5.3 = pH 5.6 > pH 6.7 whole milk, suggesting that pH 4.3 whole milk is the best surface active. As compared to pH 6.7 whole milk, the use of pH 5.3 and pH 5.6 milk as surface active would result in the use of milk containing more free beta-casein born of pH-dissociated casein micelles.
ERIC Educational Resources Information Center
Vartiainen, Perttu
2017-01-01
This paper analyzes the campus-based tensions which are emerging in the multi-campus university during a critical period of structural development. A multi-campus system easily generates intrinsic tensions between "localist" campus-based interests and system-level interests, in which the interests of external stakeholders often play a…
NASA Technical Reports Server (NTRS)
Papadopoulos, Anthony; Delp, Michael D.
2003-01-01
Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.
Tension-dependent structural deformation alters single-molecule transition kinetics.
Sudhanshu, B; Mihardja, S; Koslover, E F; Mehraeen, S; Bustamante, C; Spakowitz, A J
2011-02-01
We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension.
Tension-dependent structural deformation alters single-molecule transition kinetics
Sudhanshu, B.; Mihardja, S.; Koslover, E. F.; Mehraeen, S.; Bustamante, C.; Spakowitz, A. J.
2011-01-01
We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension. PMID:21245354
Marjoram, R.J.; Guilluy, C; Burridge, K.
2015-01-01
Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers. PMID:26427549
Offer, Gerald; Ranatunga, K W
2015-01-01
The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional temperature-sensitive step. PMID:25564737
Force Model for Control of Tendon Driven Hands
NASA Technical Reports Server (NTRS)
Pena, Edward; Thompson, David E.
1997-01-01
Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.
Evaluating skeletal muscle electromechanical delay with intramuscular pressure.
Go, Shanette A; Litchy, William J; Evertz, Loribeth Q; Kaufman, Kenton R
2018-06-08
Intramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD). Force, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated. A statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms). IMP reflects changes in muscle tension due to the contractile muscle elements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mutungi, Gabriel
2003-01-01
The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10 degrees C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (approximately 50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to approximately 15-18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827-837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.
Cellular control of connective tissue matrix tension.
Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K
2013-08-01
The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.
Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.
Ratheesh, Aparna; Biebl, Julia; Vesela, Jana; Smutny, Michael; Papusheva, Ekaterina; Krens, S F Gabriel; Kaufmann, Walter; Gyoergy, Attila; Casano, Alessandra Maria; Siekhaus, Daria E
2018-05-07
Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Jurchenko, Carol
2015-01-01
The ability of cells to sense the physical nature of their surroundings is critical to the survival of multicellular organisms. Cellular response to physical cues from adjacent cells and the extracellular matrix leads to a dynamic cycle in which cells respond by remodeling their local microenvironment, fine-tuning cell stiffness, polarity, and shape. Mechanical regulation is important in cellular development, normal morphogenesis, and wound healing. The mechanisms by which these finely balanced mechanotransduction events occur, however, are not well understood. In large part, this is due to the limited availability of tools to study molecular mechanotransduction events in live cells. Several classes of molecular tension probes have been recently developed which are rapidly transforming the study of mechanotransduction. Molecular tension probes are primarily based on fluorescence resonance energy transfer (FRET) and report on piconewton scale tension events in live cells. In this minireview, we describe the two main classes of tension probes, genetically encoded tension sensors and immobilized tension sensors, and discuss the advantages and limitations of each type. We discuss future opportunities to address major biological questions and outline the challenges facing the next generation of molecular tension probes. PMID:26031334
Development of High Performance Grouts for Bonded Post-tensioned Structures
DOT National Transportation Integrated Search
1999-10-01
The use of post-tensioning in bridges can provide durability and structural benefits to the system while expediting the construction process. When post-tensioning is combined with precast elements, traffic interference can be greatly reduced through ...
"But What Can I Do?": Three Necessary Tensions in Teaching Teachers about Race
ERIC Educational Resources Information Center
Pollock, Mica; Deckman, Sherry; Mira, Meredith; Shalaby, Carla
2010-01-01
A core question of teacher education--"What can I do?"--plagues courses on race in particular ways. Teachers struggle for "concrete" applications of "theoretical" ideas about race, question the potential for "everyday" activity to dismantle inequality "structures," and wrestle with the need for both professional and personal development on racial…
Tensions in a Nepali Telecenter: An Ethnographic Look at Progress Using Activity Theory
ERIC Educational Resources Information Center
Lee, Jeffrey Chih-Yih
2010-01-01
Developing countries such as Nepal struggle to keep up technologically. While advances make it possible for average Nepalis to access mobile phones, computers, and digital cameras, barriers impede access. As with other governments (Huerta & Rodrigo, 2007; Mokhtarian & Meenakshisun, 2002), Nepal responded in 2004 with telecenters to push…
ERIC Educational Resources Information Center
Stables, Kay
2009-01-01
This paper identifies the importance of both creativity and environmental sustainability for developing individual learners and society as a whole. It suggests that sometimes these two concepts appear to be in tension and that, politically, each is often championed by different communities. The relationship between creativity and environmental…
Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen
Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin
2013-01-01
Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O2 tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca2+ activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology. PMID:23211964
Handheld magnetic sensor for measurement of tension
NASA Astrophysics Data System (ADS)
Singal, K.; Rajamani, R.
2012-04-01
This letter develops an analytical formulation for measurement of tension in a string using a handheld sensor. By gently pushing the sensor against the string, the tension in the string can be obtained. An experimental sensor prototype is constructed to verify the analytical formulation. The centimeter-sized prototype utilizes three moving pistons and magnetic field based measurements of their positions. Experimental data show that the sensor can accurately measure tension on a bench top rig. The developed sensor could be useful in a variety of orthopedic surgical procedures, including knee replacement, hip replacement, ligament repair, shoulder stabilization, and tendon repair.
Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel
2015-02-01
Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3% of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.
Muscle Contraction during Hyperpolarizing Currents in the Crab
Uchitel, O. D.; García, H.
1974-01-01
Isolated muscle fibers from the motor legs of the crab Trichodactilus dilocarcinus were submitted to strong hyperpolarizing currents of varied intensities which produced tension during the current pulse. Threshold for tension was obtained with intensities of about 0.2 x 10–5 A, changing Em to ca. –150 mV (starting from a resting potential ofca. –80 mV). At the closure of the anodic square pulse, a second phase of tension usually appeared superimposed upon the one obtained during hyperpolarization. The first phase of tension increased with the increase of Ca++ concentration in the bath. Sr++ produced the same type of mechanical output as Ca++. When added to the normal Ca++ concentration, Ba++ and Mn++ in low concentrations (up to 21.5 mM) also increased the tension of this phase, but at higher concentrations they blocked both phases while Mg++ did not alter the tension. Of all the divalent cations employed, only Sr++ is capable of developing tension as a substitute for Ca++ in the external media. Procaine administered in a dosage (5 x 10–3 W/V)which would suppress the contracture due to caffeine (10 mM), did not modify the tension developed during the hyperpolarization. The preceding data indicate that the Ca++ required for tension during hyperpolarization comes from sites which would differ from those usually postulated for tension due to depolarization in the muscle fibers of other crustaceans (American crayfish). Furthermore, the external source of Ca++ appears to be one mainly implicated in the induction of tension due to inward current pulses. PMID:4810206
Muscle contraction during hyperpolarizing currents in the crab.
Uchitel, O D; García, H
1974-01-01
Isolated muscle fibers from the motor legs of the crab Trichodactilus dilocarcinus were submitted to strong hyperpolarizing currents of varied intensities which produced tension during the current pulse. Threshold for tension was obtained with intensities of about 0.2 x 10(-5) A, changing E(m) to ca. -150 mV (starting from a resting potential ofca. -80 mV). At the closure of the anodic square pulse, a second phase of tension usually appeared superimposed upon the one obtained during hyperpolarization. The first phase of tension increased with the increase of Ca(++) concentration in the bath. Sr(++) produced the same type of mechanical output as Ca(++). When added to the normal Ca(++) concentration, Ba(++) and Mn(++) in low concentrations (up to 21.5 mM) also increased the tension of this phase, but at higher concentrations they blocked both phases while Mg(++) did not alter the tension. Of all the divalent cations employed, only Sr(++) is capable of developing tension as a substitute for Ca(++) in the external media. Procaine administered in a dosage (5 x 10(-3) W/V)which would suppress the contracture due to caffeine (10 mM), did not modify the tension developed during the hyperpolarization. The preceding data indicate that the Ca(++) required for tension during hyperpolarization comes from sites which would differ from those usually postulated for tension due to depolarization in the muscle fibers of other crustaceans (American crayfish). Furthermore, the external source of Ca(++) appears to be one mainly implicated in the induction of tension due to inward current pulses.
NASA Astrophysics Data System (ADS)
Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.
2016-08-01
Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.
Elevated temperature deformation of TD-nickel base alloys
NASA Technical Reports Server (NTRS)
Petrovic, J. J.; Kane, R. D.; Ebert, L. J.
1972-01-01
Sensitivity of the elevated temperature deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Measured activation enthalpies in tension and creep were not the same. In tension, the internal stress was not proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and increasing grain diameter, to high values compared with that of the self diffusion enthalpy. It has been postulated that two concurrent processes contribute to the elevated temperature deformation of polycrystalline TD-nickel: (1) diffusion controlled grain boundary sliding, and (2) dislocation motion.
Kinetics of Hole Nucleation in Biomembrane Rupture
Evans, Evan; Smith, Benjamin A
2011-01-01
The core component of a biological membrane is a fluid-lipid bilayer held together by interfacial-hydrophobic and van der Waals interactions, which are balanced for the most part by acyl chain entropy confinement. If biomembranes are subjected to persistent tensions, an unstable (nanoscale) hole will emerge at some time to cause rupture. Because of the large energy required to create a hole, thermal activation appears to be requisite for initiating a hole and the activation energy is expected to depend significantly on mechanical tension. Although models exist for the kinetic process of hole nucleation in tense membranes, studies of membrane survival have failed to cover the ranges of tension and lifetime needed to critically examine nucleation theory. Hence, rupturing giant (~20 μm) membrane vesicles ultra-slowly to ultra-quickly with slow to fast ramps of tension, we demonstrate a method to directly quantify kinetic rates at which unstable holes form in fluid membranes, at the same time providing a range of kinetic rates from < 0.01 s−1 to > 100 s−1. Measuring lifetimes of many hundreds of vesicles, each tensed by precision control of micropipet suction, we have determined the rates of failure for vesicles made from several synthetic phospholipids plus 1:1 mixtures of phospho- and sphingo-lipids with cholesterol, all of which represent prominent constituents of eukaryotic cell membranes. Plotted on a logarithmic scale, the failure rates for vesicles are found to rise dramatically with increase of tension. Converting the experimental profiles of kinetic rates into changes of activation energy versus tension, we show that the results closely match expressions for thermal activation derived from a combination of meso-scale theory and molecular-scale simulations of hole formation. Moreover, we demonstrate a generic approach to transform analytical fits of activation energies obtained from rupture experiments into energy landscapes characterizing the process hole nucleation along the reaction coordinate defined by hole size. PMID:21966242
Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W
2005-01-01
We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.
Passive Sun seeker/tracker and a thermally activated power module
NASA Technical Reports Server (NTRS)
Siebert, C. J.; Morris, F. A.
1984-01-01
Development and testing of two mechanisms using a shape memory alloy metal (NITINOL) as the power source are described. The two mechanisms developed are a passive Sun Seeker/Tracker and a generic type power module. These mechanisms use NITINOL wire initially strained in pure torsion which provides the greatest mechanical work capacity upon recovery, as compared to other deformation modes (i.e., tension, helical springs, and bending).
2015-03-18
routine daily caffeine consumption, habitual use of tobacco products within the previous six months, and history of significant medical, neurological...POMS standard (65 items). The survey measures Tension-Anxiety, Depression -Dejection, Anger-Hostility, Vigor-Activity, Fatigue-Inertia, and...six different mood components: Tension-Anxiety, Depression -Dejection, Anger-Hostility, Fatigue-Inertia, Confusion-Bewilderment, and Vigor-Activity
Numerical tension adjustment of x-ray membrane to represent goat skin kompang
NASA Astrophysics Data System (ADS)
Siswanto, Waluyo Adi; Abdullah, Muhammad Syiddiq Bin
2017-04-01
This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang's membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been develop to help kompang maker to set the tension of x-ray membrane. In the future application, any tradional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The developed numerical tool is useful and handy to calculate the tension of the alternative membrane material.
Petit, Yvan; Cloutier, Luc P; Duke, Kajsa; Laflamme, G Yves
2012-04-01
Greater trochanter (GT) stabilization techniques following a fracture or an osteotomy are still showing high levels of postoperative complications. Understanding the effect of femoral neck cut placement, cable tension and muscles forces on GT fragment displacements could help surgeons optimize their techniques. A 3D finite element model has been developed to evaluate, through a statistical experimental design, the impact of the above variables on the GT fragment gap and sliding displacements. Muscles forces were simulating typical daily activities. Stresses were also investigated. The femoral neck cut placement had the most significant effect on the fragment displacement. Lowering it by 5 mm increased the gap and sliding fragment displacements by 288 and 128 %, respectively. Excessive cable tightening provided no significant reduction in fragment displacement. Muscle activities increased the gap and the sliding displacements for all muscle configurations. The maximum total displacement of 0.41 mm was present with a 10 mm femoral neck cut, a cable tension of 178 N, and stair climbing. Caution must be used not to over tighten the cables as the potential damage caused by the increased stress is more significant than any reduction in fragment displacement. Furthermore, preservation of the contact area is important for GT stabilization.
Gender differences in coping with tension-type headaches.
Rollnik, Jens D; Karst, Matthias; Piepenbrock, Siegfried; Gehrke, A; Dengler, Reinhard; Fink, Matthias
2003-01-01
To study gender differences of coping with illness strategies in tension-type headaches. We enrolled 89 subjects (50 women, 39 men) suffering from episodic (n = 37) and chronic (n = 52) tension-type headaches (TTH). Patients were required to answer a Freiburg Questionnaire of Coping with Illness (FQCI), a Von Zerssen Depression Scale (D-S), quality-of-life questionnaires, and a headache home diary (over 4 weeks). In addition, pressure pain thresholds (temporal muscles) and Total Tenderness Scores were obtained. While pain intensity, frequency and quality-of-life parameters were basically the same for female and male EPISODIC TTH sufferers, women scored significantly higher on the F3 subscale (distracting and encouraging) of the FQCI and tended to score higher on the F1 subscale (depressive). Among CHRONIC TTH patients, women reported the pain to be more intense (VAS), were more depressed (D-S), and scored lower on several quality-of-life scores. Female chronic TTH sufferers scored significantly lower on the F2 subscale (active coping) and tended to score higher on F5 (denying). We conclude that pessimistic coping with illness strategies are more frequent in female episodic and chronic TTH sufferers. We would like to recommend special psychologic intervention in particular to female chronic TTH sufferers which would offer counseling in developing active coping skills. Copyright 2003 S. Karger AG, Basel
DOT National Transportation Integrated Search
2015-08-01
In post-tensioning construction, steel cables : running through PVC pipes buried in concrete : construction components are subjected to a high : level of tension and then secured. This gives the : component significant strength, allowing bridge : spa...
Repairing/strengthening of bridges with post-tensioned FRP strands and performance evaluation.
DOT National Transportation Integrated Search
2008-06-01
The proposed project is to take advantage of some new developments in bridge engineering to apply fiber reinforced polymers (FRP) post-tensioning strands on a selected structure. The use of externally post-tensioned FRP strands to repair/strengthen b...
Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles
NASA Astrophysics Data System (ADS)
Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein
2017-08-01
We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.
Surface tension and long range corrections of cylindrical interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourasseau, E.; Malfreyt, P.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr
2015-12-21
The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential,more » (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.« less
Central sensitization in tension-type headache--possible pathophysiological mechanisms.
Bendtsen, L
2000-06-01
The aim of the present thesis was to investigate the pathophysiology of chronic tension-type headache with special reference to central mechanisms. Increased tenderness to palpation of pericranial myofascial tissues is the most apparent abnormality in patients with tension-type headache. A new piece of equipment, a so-called palpometer, that makes it possible to control the pressure intensity exerted during palpation, was developed. Thereafter, it was demonstrated that the measurement of tenderness could be compared between two observers if the palpation pressure was controlled, and that the Total Tenderness Scoring system was well suited for the scoring of tenderness during manual palpation. Subsequently, it was found that pressure pain detection and tolerance thresholds were significantly decreased in the finger and tended to be decreased in the temporal region in chronic tension-type headache patients compared with controls. In addition, the electrical pain threshold in the cephalic region was significantly decreased in patients. It was concluded that the central pain sensitivity was increased in the patients probably due to sensitization of supraspinal neurones. The stimulus-response function for palpation pressure vs. pain was found to be qualitatively altered in chronic tension-type headache patients compared with controls. The abnormality was related to the degree of tenderness and not to the diagnosis of tension-type headache. In support of this, the stimulus-response function was found to be qualitatively altered also in patients with fibromyalgia. It was concluded that the qualitatively altered nociception was probably due to central sensitization at the level of the spinal dorsal horn/trigeminal nucleus. Thereafter, the prophylactic effect of amitriptyline, a non-selective serotonin (5-HT) reuptake inhibitor, and of citalopram, a highly selective 5-HT reuptake inhibitor, was examined in patients with chronic tension-type headache. Amitriptyline reduced headache significantly more than placebo, while citalopram had only a slight and insignificant effect. It was concluded that the blockade of 5-HT reuptake could only partly explain the efficacy of amitriptyline in tension-type headache, and that also other actions of amitriptyline, e.g. reduction of central sensitization, were involved. Finally, the plasma 5-HT level, the platelet 5-HT level and the number of platelet 5-HT transporters were found to be normal in chronic tension-type headache. On the basis of the present and previous studies, a pathophysiological model for tension-type headache is presented. According to the model, the main problem in chronic tension-type headache is central sensitization at the level of the spinal dorsal horn/trigeminal nucleus due to prolonged nociceptive inputs from pericranial myofascial tissues. The increased nociceptive input to supraspinal structures may in turn result in supraspinal sensitization. The central neuroplastic changes may affect the regulation of peripheral mechanisms and thereby lead to, for example, increased pericranial muscle activity or release of neurotransmitters in the myofascial tissues. By such mechanisms the central sensitization may be maintained even after the initial eliciting factors have been normalized, resulting in the conversion of episodic into chronic tension-type headache. Future basic and clinical research should aim at identifying the source of peripheral nociception in order to prevent the development of central sensitization and at ways of reducing established sensitization. This may lead to a much needed improvement in the treatment of chronic tension-type headache and other chronic myofascial pain conditions.
Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle
Van Teeffelen, Jurgen W G E; Segal, Steven S
2000-01-01
The effect of motor unit recruitment on functional vasodilatation was investigated in hamster retractor muscle. Recruitment (i.e. peak tension) was controlled with voltage applied to the spinal accessory nerve (high = maximum tension; intermediate = ∼50% maximum; low = ∼25% maximum). Vasodilatory responses (diameter × time integral, DTI) to rhythmic contractions (1 per 2 s for 65 s) were evaluated in first, second and third orderarterioles and in feed arteries. Reciprocal changes in duty cycle (range, 2·5–25 %) effectively maintained the total active tension (tension × time integral, TTI) constant across recruitment levels. With constant TTI and stimulation frequency (40 Hz), DTI in all vessels increased with motor unit recruitment. DTI increased from distal arterioles up through proximal feed arteries. To determine whether the effect of recruitment on DTI was due to increased peak tension, the latter was controlled with stimulation frequency (15, 20 and 40 Hz) during maximum (high) recruitment. With constant TTI, DTI then decreased as peak tension increased. To explore the interaction between recruitment and duty cycle on DTI, each recruitment level was applied at 2.5, 10 and 20 % duty cycle (at 40 Hz). For a given increase in TTI, recruitment had a greater effect on DTI than did duty cycle. Functional vasodilatation in response to rhythmic contractions is facilitated by motor unit recruitment. Thus, vasodilatory responses are determined not only by the total tension produced, but also by the number of active motor units. PMID:10747197
Myosin II dynamics are regulated by tension in intercalating cells.
Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A
2009-11-01
Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.
Research on an Active Seat Belt System
NASA Astrophysics Data System (ADS)
Kawashima, Takeshi
In a car crash, permanent injury can be avoided if deformation of an occupant's rib cage is maintained within the allowable value. In order to realize this condition, the occupant's seat belt tension must be instantaneously adjusted by a feedback control system. In this study, a seat belt tension control system based on the active shock control system is proposed. The semi-active control law used is derived from the sliding mode control method. One advantage of this proposed system is that it does not require a large power actuator because the seat belt tension is controlled by a brake mechanism. The effectiveness is confirmed by numerical simulation using general parameters of a human thorax and a passenger car in a collision scenario with a wall at a velocity of 100 km/h. The feasibility is then confirmed with a control experiment using a scale model of about 1/10 scale. The relative displacement of the thorax model approaches the allowable value smoothly along the control reference and settles near this value. Thus, the proposed seat belt tension control system design is established.
Improved models of cable-to-post attachments for high-tension cable barriers.
DOT National Transportation Integrated Search
2012-05-01
Computer simulation models were developed to analyze and evaluate a new cable-to-post attachment for high-tension cable : barriers. The models replicated the performance of a keyway bolt currently used in the design of a high-tension cable : median b...
Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet
NASA Astrophysics Data System (ADS)
Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.
2013-01-01
Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.
Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.
1985-01-01
The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.
Space Station Freedom Solar Array tension mechanism development
NASA Technical Reports Server (NTRS)
Allmon, Curtis; Haugen, Bert
1994-01-01
A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.
The role of calcium in excitation-contraction coupling of lobster muscle.
Gainer, H
1968-07-01
Potassium contractures were induced in lobster muscle bundles under conditions which produced varying KCl fluxes into the fibers. The presence or absence of chloride fluxes during depolarization by high concentrations of potassium, had no effect on the tensions developed. The curve relating tension to the membrane potential had a typical sigmoid shape with an apparent "threshold" for tension at -60 mv. Soaking the muscles in low (0.1 mM) calcium salines for 30 min completely eliminated the potassium contractures but the caffeine contractures were only slightly reduced under these conditions. The potassium contracture could be completely restored in less than 2 min by return of the calcium ions to the saline. Evidence is presented for independent, superficial, and deep calcium sites; the superficial sites appear to be involved in the coupling mechanisms associated with potassium contractures. These sites are highly selective for Ca(++), and attempts to substitute either Cd(++), Co(++), Mg(++), Ba(++), or Sr(++) for Ca(++) were unsuccessful. However, K(+) appeared to compete with Ca(++) for these sites, and the evoked tension could be reduced by prestimulation of the muscle fibers with high K(+) salines. The results of studies on the influx of (45)Ca during potassium contractures were compatible with the view of muscle activation by the entry of extracellular calcium.
The effects of KinesioTape on the treatment of lateral epicondylitis.
Shakeri, Hassan; Soleimanifar, Manijeh; Arab, A M; Hamneshin Behbahani, Shirin
Randomized clinical trial. KinesioTape (KT) is a noninvasive method to treat pain and muscular dysfunction. To investigate the effect of KT with and without tension on pain intensity, pain pressure threshold, grip strength and disability in individuals with lateral epicondylitis, and myofacial trigger points in forearm muscles. Thirty women with lateral epicondylitis and myofacial trigger point in forearm muscles were randomly assigned to KT with tension and placebo (KT without tension). The treatment was provided 3 times in one week, and outcome measures were assess pre-post treatment. The mean score of visual analogue scale (VAS) during activity decreased significantly from 6.4 and 6 pretest to 2.53 and 4.66 posttest, respectively, for the KT with and without tension groups. The mean score of Disabilities of the Arm, Shoulder and Hand decreased significantly from 16.82 and 22.79 pretest to 8.65 and 8.29 posttest, respectively, for the KT with and without tension groups. A paired t-test revealed a significant reduction in VAS during activity and Disabilities of the Arm, Shoulder and Hand before and after treatment in both groups (P < .05). Pain pressure threshold, grip strength, and VAS using an algometer revealed no significant differences. The study showed no significant difference in variables immediately after intervention. Improvements in functional disability were superior when KT was used with tension, than obtained with a placebo-no tension application. The application of KT produces an improvement in pain intensity and upper extremity disability in subjects with LE and MTP in forearm muscles, and KT with tension was more effective than placebo group. NA. 100-216. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Forum: The Lecture and Student Learning. Lecture and Active Learning as a Dialectical Tension
ERIC Educational Resources Information Center
Mallin, Irwin
2017-01-01
Lecture remains a valuable tool in the student learning toolbox--one that at its best helps students unpack what they read for class, place course material in context, and see how a subject matter expert solves problems. It may be useful to think of lecture and active learning as a dialectical tension satisfied by the interactive lecture. Just as…
Phase-locked scroll waves defy turbulence induced by negative filament tension.
Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans
2016-01-01
Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.
Organization of Professional Mobile Practice for Students--Future Social Educators
ERIC Educational Resources Information Center
Iskhakov, Rinad H.; Zavyalova, Janika I.; Antropova, Diana A.; Mongileva, Valeria A.; Vishnyakova, Angelina B.
2016-01-01
The relevance of the investigated problem is due to the increasing social tension in society and the state, associated with the active manifestation of anti-social phenomena and the need for prompt resolution of these problems through the involvement of professional mobile social educators. The purpose of the article is to develop a new concept in…
An Infiltration Exercise for Introductory Soil Science
ERIC Educational Resources Information Center
Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.
2005-01-01
One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…
Contradictions, Dialectical Oppositions and Shifts in Teaching Mathematics
ERIC Educational Resources Information Center
Stouraitis, Konstantinos; Potari, Despina; Skott, Jeppe
2017-01-01
The study reported in this paper concerns the tensions and conflicts that teachers experience while they enact a new set of reform-oriented curricular materials into their classrooms. Our focus is ?n the interactions developed in two groups of teachers in two schools for a period of a school year. We use Activity Theory to study emerging…
Mechanical perturbation control of cardiac alternans
NASA Astrophysics Data System (ADS)
Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan
2018-05-01
Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.
A study of stiffness, residual strength and fatigue life relationships for composite laminates
NASA Technical Reports Server (NTRS)
Ryder, J. T.; Crossman, F. W.
1983-01-01
Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.
A microfluidic cell culture array with various oxygen tensions.
Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung
2013-08-21
Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.
Measurement of uterine activity in vitro by integrating muscle tension
Styles, P. R.; Sullivan, T. J.
1962-01-01
Spontaneous or electrically stimulated activity of the uterus is measured isometrically in vitro by integrating tension against time. Uterine contractions move the operating rod of a potentiometer transducer, the output voltage from which is coupled to an electrical integrator motor and a servo recorder. Several parameters of uterine activity can be expressed in a single measurement, and a record of isometric contractions is obtained simultaneously. Oxytocin can be assayed accurately and the effect of drugs on uterine motility can be measured. PMID:13918066
1992-01-31
pattern of paraspinal muscle contraction , and (3) onset of low back pain. (b) That patterns of muscle tension recorded throughout the normal day in the...intensity and duration of activity being performed, (b) the pattern of paraspinal muscle contraction , and (c) onset of low back pain. (2) To determine whether... muscle contraction , and activity by performing continuous recordings of these factors among groups of low back pain subjects in their normal
Rossi-Fedele, G; Prichard, J W; Steier, L; de Figueiredo, J A P
2013-06-01
Sodium hypochlorite (NaOCl) is recommended as an endodontic irrigant in view of its broad antimicrobial and tissue dissolution capacities. To enhance its penetration into inaccessible areas of root canals and to improve its overall effect, the addition of surface-active agents has been suggested. The aim of this investigation was to review the effect of the reduction of the surface tension on the performance of NaOCl in endodontics. A search was performed in the Medline electronic database (articles published up to 28 July 2012, in English) with the search terms and combinations as follows: 'sodium hypochlorite AND surface tension or interfacial force or interfacial tension or surface-active agent or amphiphilic agent or surface active agent or surfactant or tenside or detergent'. The purpose of this search was to identify publications that compared NaOCl alone and NaOCl modified with the addition of a surface-active agent in endodontics. A hand search of articles published online ('in-press' and 'early view'), and appearing in the reference list of the articles included, was further performed, using the same search criteria as the electronic search. The search identified 302 publications, of which 11 fulfilled the inclusion/exclusion criteria of the review. The evidence available suggests that surface-active agents improve the penetration of NaOCl in the main canal and have no effect on its pulp tissue dissolution ability. There are, however, insufficient data to enable a sound conclusion to be drawn regarding the effect of modifying NaOCl's surface tension on lubrication, antimicrobial and smear layer or debris removal abilities. © 2012 International Endodontic Journal.
Front-to-rear membrane tension gradient in rapidly moving cells.
Lieber, Arnon D; Schweitzer, Yonatan; Kozlov, Michael M; Keren, Kinneret
2015-04-07
Membrane tension is becoming recognized as an important mechanical regulator of motile cell behavior. Although membrane-tension measurements have been performed in various cell types, the tension distribution along the plasma membrane of motile cells has been largely unexplored. Here, we present an experimental study of the distribution of tension in the plasma membrane of rapidly moving fish epithelial keratocytes. We find that during steady movement the apparent membrane tension is ∼30% higher at the leading edge than at the trailing edge. Similar tension differences between the front and the rear of the cell are found in keratocyte fragments that lack a cell body. This front-to-rear tension variation likely reflects a tension gradient developed in the plasma membrane along the direction of movement due to viscous friction between the membrane and the cytoskeleton-attached protein anchors embedded in the membrane matrix. Theoretical modeling allows us to estimate the area density of these membrane anchors. Overall, our results indicate that even though membrane tension equilibrates rapidly and mechanically couples local boundary dynamics over cellular scales, steady-state variations in tension can exist in the plasma membranes of moving cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Developing Theories and Practices of Inclusion in Australia.
ERIC Educational Resources Information Center
Slee, Roger
2002-01-01
This article explores tensions between a general theory of inclusive education and those policies directed toward the schooling of students with disabilities. It examines theories of inclusive education, highlights tensions in the field of inclusive education, discusses these tensions as they are played out in Australia, and makes suggestions.…
NASA Astrophysics Data System (ADS)
Bonachera Martin, Francisco Javier
The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted built-up members was developed in ABAQUS and validated with experimental results. This methodology was used to created finite element models of three fastened plates subjected to tension, in which the middle plate had failed, in order to investigate the fundamental effects of combined fastener pre-tension and friction on their mechanical behavior. Detailed finite element models of riveted and bolted built-up flexural members were created and analyze to understand the effect of fastener pre-tension in member-level redundancy and resistance to fatigue and fracture. The obtained results showed that bolted members are able to re-distribute a larger portion of the load away from the failing component into the rest of the member than riveted members, and that this transfer of load also took place over a smaller length. Superior pre-tension of bolts, in comparison to rivets, results in larger frictional forces that develop at the contact interfaces between components and constitute additional alternate load paths that increase member-level redundancy which increase the fatigue and fracture resistance of the structural member during the failure of one of its components. Although fatigue and fracture potential may be mitigated by compressive stresses developing around the fastener hole due to fastener pre-tension, it was also observed, that at the surface of the fastener hole and at the contact interface with another plate, tensional stresses could develop; however, further computational and experimental work should be performed to verify this claim.
An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.
West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C
2017-08-07
In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lober, Terence
The thesis is concerned with the prospects for reducing strategic-local tensions in the British planning process. It examines the conflicts surrounding small general aviation aerodromes as a means of understanding these tensions, why they have evolved, and if they might be reconciled through planning reform. The only prior academic research to have touched upon this issue through general aviation has been an ESRC funded project undertaken by Gallent and colleagues (1999), who found aerodromes provided a microcosm of planning's issues. Building on this work, the thesis develops what is meant by strategic-local tensions, which in broad terms are described as differences between national and regional guidance/plans and what actually takes place locally. Moving from a basic research question it develops a wide planning perspective based on the literature by discussing the meaning of planning, its history and issues for example, how conflicts in planning might be influenced by the broader socio-political environment. The thesis then arrives at three hypotheses which question the effectiveness of the existing strategic guideline implementation process, develops a local planning authority framework and addresses issues of reflectivity and bias. Results from three national surveys of pilots, aerodromes and manufacturers, plus longitudinal analysis of government and other datasets, are then used to detail a comprehensive and unique description of general aviation, which includes a costing based account of the direct expenditure of flying activity. This provides a substantive foundation for a local planning authority survey which both extends previous boundaries and enables the process of implementing strategic objectives to be disaggregated and evaluated. Field visits to twenty six aerodromes and five local authorities are subsequently used to explore gaps within the strategic implementation process and to develop conclusions, within the wider landscape of planning, about the nature of strategic local tensions and implications for planning reform.
The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae.
Rowe, Ian; Elahi, Merina; Huq, Anwar; Sukharev, Sergei
2013-07-01
Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen.
The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae
Rowe, Ian; Elahi, Merina; Huq, Anwar
2013-01-01
Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen. PMID:23797422
Osth, Jonas; Olafsdóttir, Jóna Marín; Davidsson, Johan; Brolin, Karin
2013-11-01
The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males. The range of activity during steady state braking for males and females was 13-44% in the cervical and lumbar extensors, while antagonistic muscles showed a co-contraction of 2.3-19%. Seat belt pre-tension affects both the kinematic and muscle responses of drivers. In autonomous braking with standard restraints, muscle activation occurred in response to the inertial load. With pre-tensioned seat belts, EMG onset occurred earlier; between 71 ms and 176 ms after belt pre-tension. The EMG onset times decreased with repeated trials and were shorter for females than for males. With the results from this study, further improvement and validation of human models that incorporate active musculature will be made possible.
TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4.
Kuipers, Arthur J; Middelbeek, Jeroen; Vrenken, Kirsten; Pérez-González, Carlos; Poelmans, Geert; Klarenbeek, Jeffrey; Jalink, Kees; Trepat, Xavier; van Leeuwen, Frank N
2018-07-01
Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required for breast cancer metastasis in vitro and in vivo. Here, we show that TRPM7 contributes to maintaining a mesenchymal phenotype in breast cancer cells by tensional regulation of the EMT transcription factor SOX4. The functional consequences of SOX4 knockdown closely mirror those produced by TRPM7 knockdown. By traction force measurements, we demonstrate that TRPM7 reduces cytoskeletal tension through inhibition of myosin II activity. Moreover, we show that SOX4 expression and downstream mesenchymal markers are inversely regulated by cytoskeletal tension and matrix rigidity. Overall, our results identify SOX4 as a transcription factor that is uniquely sensitive to cellular tension and indicate that TRPM7 may contribute to breast cancer progression by tensional regulation of SOX4. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
Rappaport, R
1999-08-01
The purpose of the present investigation was to test experimentally the possibility that division mechanism establishment at the equator of sand dollar eggs may be a consequence of cortical tension gradients between the equator and the poles. Cytochalasin has been shown to decrease tension at the sea urchin egg surface. The concave ends of cytochalasin D-containing agarose cylinders were held against regions of the surface of Echinarachnius parma blastomeres and enucleated fertilized egg fragments. The ability to interfere with normal furrowing activity was used as a biological indicator of the effectiveness of cytochalasin. When agarose containing 2 microg/mL cytochalasin contacted the equatorial region of the blastomeres resulting from the first cleavage, or the equatorial surfaces of nucleated fertilized egg halves, furrowing was blocked, stalled or delayed, indicating that the concentration of cytochalasin was effective. When the same concentration of cytochalasin was applied to the poles, the cells and nucleated fertilized egg fragments divided in the same way as the controls, indicating that the effectiveness of the cytochalasin did not spread from the poles to the equator and that bisection did not interfere with the division of nucleated fertilized egg fragments. When the same concentration of cytochalasin was applied to diametrically opposed surfaces of enucleated, spherical egg fragments, there was no evidence of furrowing activity between the areas that contacted the cytochalasin or in any other part of the surface. Because of the tension-reducing effect of cytochalasin, a tension gradient existed between the regions affected and unaffected by cytochalasin. The results strongly suggest that establishment of the division mechanism by simple gradients of tension at the surface is unlikely.
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J.; Jumaat, Mohd Zamin
2016-01-01
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed. PMID:28773430
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading.
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J; Jumaat, Mohd Zamin
2016-04-22
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.
Reticulo-ruminal mechanoreceptors in sheep
Leek, B. F.
1969-01-01
1. The nervous activity in single afferent gastric vagal units was recorded electrophysiologically from halothane-anaesthetized sheep with spontaneous reticulo-ruminal movements present. 2. Sixty-six afferent units innervating gastric mechanoreceptors were isolated from fifteen sheep. The receptors were located mainly in the medial walls of the reticulum and the cranial sac of the dorsal rumen, and also in the reticular groove, the reticulo-ruminal fold, the dorsal and ventral sacs of the rumen and the omasal canal. 3. The mean conduction velocity (C.V.) for twenty-seven units was 12·4 ± 1·0 m/sec (S.E.). For units with a pathway in the dorsal vagal trunk, the mean C.V. was 14·5 ± 1·0 m/sec (S.E.) and for units with a pathway in the ventral vagal trunk the mean C.V. was 6·6 ± 0·5 m/sec (S.E.). 4. From the receptors a slowly adapting response was elicited by tangential lengthening. These were tension receptors in series with contractile elements, as they were excited by increased tensions developed both passively by inflation of the viscus and actively by muscular contractions. 5. Receptors in the reticulum and the rumen appeared to be situated deep in the muscle layers, whereas those in the reticular groove structures seemed to be more superficial and gave the in series tension receptor response as well as a response to light pressure. 6. A resting discharge in tension receptor units was usually absent at low levels of distension but appeared and increased as the level of distension was raised. Intermittency and fluctuations in the resting discharge were related to intrinsic local movement involving the receptive fields. Increasing distension enhanced the intrinsic movements. 7. Even after the removal of the abomasum, reticular and ruminal (primary cycle) movements were evoked by distending the reticulum. It is possible that this manoeuvre enhanced intrinsic movements, which, in turn, caused an increased excitatory afferent input to the `gastric centres' from in series reticular tension receptors. 8. The enhanced afferent discharge from reticular tension receptors elicited by an isometrically recorded reticular contraction reflexly inhibited the subsequent (primary cycle) contraction of the rumen. 9. Very few receptors were located in the caudal regions of the rumen whereas the cranial sac is richly supplied with tension receptors. The idea that the cranial sac may serve as the reflexogenic zone for secondary cycle movements of the rumen is discussed. PMID:5789939
Coping Strategies of Pre-Service Teachers of Turkish with Tensions in Achieving Agency
ERIC Educational Resources Information Center
Yayli, Derya
2017-01-01
Purpose: Pre-service and in-service teachers experience conflicts between the requirements of teaching and their own personal desires, which might lead to serious tensions with negative consequences. Teachers, especially pre-service teachers, try to cope with tensions by developing strategies accompanied by actions teachers take to modify the…
Wong, Marcy; Siegrist, Mark; Goodwin, Kelly
2003-10-01
Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.
Clathrin-Independent Endocytosis Suppresses Cancer Cell Blebbing and Invasion.
Holst, Mikkel Roland; Vidal-Quadras, Maite; Larsson, Elin; Song, Jie; Hubert, Madlen; Blomberg, Jeanette; Lundborg, Magnus; Landström, Maréne; Lundmark, Richard
2017-08-22
Cellular blebbing, caused by local alterations in cell-surface tension, has been shown to increase the invasiveness of cancer cells. However, the regulatory mechanisms balancing cell-surface dynamics and bleb formation remain elusive. Here, we show that an acute reduction in cell volume activates clathrin-independent endocytosis. Hence, a decrease in surface tension is buffered by the internalization of the plasma membrane (PM) lipid bilayer. Membrane invagination and endocytosis are driven by the tension-mediated recruitment of the membrane sculpting and GTPase-activating protein GRAF1 (GTPase regulator associated with focal adhesion kinase-1) to the PM. Disruption of this regulation by depleting cells of GRAF1 or mutating key phosphatidylinositol-interacting amino acids in the protein results in increased cellular blebbing and promotes the 3D motility of cancer cells. Our data support a role for clathrin-independent endocytic machinery in balancing membrane tension, which clarifies the previously reported role of GRAF1 as a tumor suppressor. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.
Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang
2016-04-15
Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.
Community-based HIV education and prevention workers respond to a changing environment.
Guenter, Dale; Majumdar, Basanti; Willms, Dennis; Travers, Robb; Browne, Gina; Robinson, Greg
2005-01-01
The purpose of this study was to understand the culture, values, skills and activities of staff involved in education and prevention activities in community-based AIDS Service Organizations (ASOs) in Ontario, Canada, and to understand the role of evaluation research in their prevention programming. In this qualitative study, 33 staff members from 11 ASOs participated in semi-structured interviews that were analyzed using the grounded theory approach. ASO staff experience tension between a historical grassroots organizational culture characterized by responsiveness and relevance and a more recent culture of professionalization. Target populations have changed from being primarily gay men to an almost unlimited variety of communities. Program emphasis has shifted from education and knowledge dissemination to a broadly based mandate of health promotion, community development, and harm reduction. Integration of evidence of effectiveness, social-behavioral theory, or systematic evaluation is uncommon. Understanding these points of tension is important for the nursing profession when it is engaged with ASOs in programming or evaluation research.
Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells.
Wu, Xin-Sheng; Elias, Sharon; Liu, Huisheng; Heureaux, Johanna; Wen, Peter J; Liu, Allen P; Kozlov, Michael M; Wu, Ling-Gang
2017-12-05
Endocytosis generates spherical or ellipsoid-like vesicles from the plasma membrane, which recycles vesicles that fuse with the plasma member during exocytosis in neurons and endocrine secretory cells. Although tension in the plasma membrane is generally considered to be an important factor in regulating endocytosis, whether membrane tension inhibits or facilitates endocytosis remains debated in the endocytosis field, and has been rarely studied for vesicular endocytosis in secretory cells. Here we report that increasing membrane tension by adjusting osmolarity inhibited both the rapid (a few seconds) and slow (tens of seconds) endocytosis in calyx-type nerve terminals containing conventional active zones and in neuroendocrine chromaffin cells. We address the mechanism of this phenomenon by computational modeling of the energy barrier that the system must overcome at the stage of membrane budding by an assembling protein coat. We show that this barrier grows with increasing tension, which may slow down or prevent membrane budding. These results suggest that in live secretory cells, membrane tension exerts inhibitory action on endocytosis. Published by Elsevier Inc.
Pericentromere tension is self-regulated by spindle structure in metaphase
Chacón, Jeremy M.; Mukherjee, Soumya; Schuster, Breanna M.; Clarke, Duncan J.
2014-01-01
During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4–6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted. PMID:24821839
Pericentromere tension is self-regulated by spindle structure in metaphase.
Chacón, Jeremy M; Mukherjee, Soumya; Schuster, Breanna M; Clarke, Duncan J; Gardner, Melissa K
2014-05-12
During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4-6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted.
Cable-to-post attachments for a non-proprietary high-tension cable barrier - phase II.
DOT National Transportation Integrated Search
2015-06-01
The research objectives reported herein were based on further development of cable-to-post attachment hardware for use in : the non-proprietary high-tension cable barrier system. Specifically, this project aimed to develop and evaluate alternative : ...
Derba-Maceluch, Marta; Awano, Tatsuya; Takahashi, Junko; Lucenius, Jessica; Ratke, Christine; Kontro, Inkeri; Busse-Wicher, Marta; Kosik, Ondrej; Tanaka, Ryo; Winzéll, Anders; Kallas, Åsa; Leśniewska, Joanna; Berthold, Fredrik; Immerzeel, Peter; Teeri, Tuula T; Ezcurra, Ines; Dupree, Paul; Serimaa, Ritva; Mellerowicz, Ewa J
2015-01-01
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Clark, F J; Matthews, P B; Muir, R B
1981-02-01
1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor.2. When the amplitude of vibration was 50 mum, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 mum vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut.3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 mum vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 mum vibration; at the same time the reflex tension increased.4. Additional, indirect evidence favouring widespread security of Ia driving by 50 mum vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action.5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general similarity to the tremor in the same preparation, but measurement of coherence demonstrated that the tremor and Ia firing were not well related. This was probably because individual Ia afferents were primarily influenced by local factors, and provides further evidence against the tremor of this preparation being attributable to the action of the stretch reflex.
Clark, F. J.; Matthews, P. B. C.; Muir, R. B.
1981-01-01
1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor. 2. When the amplitude of vibration was 50 μm, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 μm vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut. 3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 μm vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 μm vibration; at the same time the reflex tension increased. 4. Additional, indirect evidence favouring widespread security of Ia driving by 50 μm vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action. 5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general similarity to the tremor in the same preparation, but measurement of coherence demonstrated that the tremor and Ia firing were not well related. This was probably because individual Ia afferents were primarily influenced by local factors, and provides further evidence against the tremor of this preparation being attributable to the action of the stretch reflex. PMID:7264987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiang-Tian; Li, Yan; Yu, Bing
2015-08-21
To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression undermore » stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.« less
[Somatization disorders of the urogenital tract].
Günthert, E A
2002-11-01
Diffuse symptoms in the urogenital region can frequently be explained by somatization disorders. Since they cannot be proven either by laboratory tests or with common technical diagnostic methods, somatization disorders should always be taken into consideration. Somatization disorders are to be considered functional disorders. Since somatization disorders due to muscular tension prevail in the urogenital region, the functional disturbance can be explained by the muscular tension. Subsequently, muscular tension causes the pathophysiological development of symptoms. As a rule they appear as myofascial pain or disorder. Muscular tension can have a psychic origin. The absence of urological findings is typical. Males and females between the ages of 16 and 75 can be affected by somatization disorders in the urogenital region. Somatization disorders due to muscular tension belong to the large group of symptoms due to tension. Diagnostic and therapeutic procedures as well as the pathophysiology of somatization disorders due to muscular tension are illustrated by two detailed case-reports.
The study and design of tension controller
NASA Astrophysics Data System (ADS)
Jun, G.; Lamei, X.
2018-02-01
Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.
Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration.
Somogyi, Kálmán; Rørth, Pernille
2004-07-01
Cells migrating through a tissue exert force via their cytoskeleton and are themselves subject to tension, but the effects of physical forces on cell behavior in vivo are poorly understood. Border cell migration during Drosophila oogenesis is a useful model for invasive cell movement. We report that this migration requires the activity of the transcriptional factor serum response factor (SRF) and its cofactor MAL-D and present evidence that nuclear accumulation of MAL-D is induced by cell stretching. Border cells that cannot migrate lack nuclear MAL-D but can accumulate it if they are pulled by other migrating cells. Like mammalian MAL, MAL-D also responds to activated Diaphanous, which affects actin dynamics. MAL-D/SRF activity is required to build a robust actin cytoskeleton in the migrating cells; mutant cells break apart when initiating migration. Thus, tension-induced MAL-D activity may provide a feedback mechanism for enhancing cytoskeletal strength during invasive migration.
Cross-Border Higher Education: Global and Local Tensions within Competition and Economic Development
ERIC Educational Resources Information Center
Owens, Taya L.; Lane, Jason E.
2014-01-01
In this chapter, the authors explore various types of cross-border higher education, considering equity and quality issues within these developments. With a particular focus on international branch campuses, the authors discuss the ways in which global competition for knowledge and economic development interact with tensions at the local level.
Social tension as precursor of large damaging earthquake: legend or reality?
NASA Astrophysics Data System (ADS)
Molchanov, O.
2008-11-01
Using case study of earthquake (EQ) activity and war conflicts in Caucasus during 1975 2002 time interval and correlation analysis of global distribution of damaging EQs and war-related social tension during 1901 2005 period we conclude:
The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds
NASA Astrophysics Data System (ADS)
Tuckermann, Rudolf; Cammenga, Heiko K.
The surface tensions of aqueous solutions of levoglucosan, 3-hydroxybutanoic acid, 3-hydroxybenzoic acid, azelaic acid, pinonic acid, and humic acid have been measured. These compounds are suggested as model substances for the water-soluble organic compounds (WSOC) in atmospheric aerosols and droplets which may play an important role in the aerosol cycle because of their surface-active potentials. The reductions in surface tension induced by single and mixed WSOC in aqueous solution of pure water is remarkable. However, the results of this investigation cannot explain the strong reduction in surface tension in real cloud and fog water samples at concentrations of WSOC below 1 mg/mL.
NASA Technical Reports Server (NTRS)
1978-01-01
In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.
NASA Astrophysics Data System (ADS)
Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko
2017-07-01
Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.
Force generation and temperature-jump and length-jump tension transients in muscle fibers.
Davis, J S; Rodgers, M E
1995-01-01
Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845
Mechanical Properties and Microstructure of AZ31B Magnesium Alloy Processed by I-ECAP
NASA Astrophysics Data System (ADS)
Gzyl, Michal; Rosochowski, Andrzej; Pesci, Raphael; Olejnik, Lech; Yakushina, Evgenia; Wood, Paul
2014-03-01
Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 °C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension-compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarse-grained samples have also been studied.
ERIC Educational Resources Information Center
Alim, H. Samy
2007-01-01
This article addresses two long-standing tensions in the education of linguistically marginalized youth: (a) the cultural tension, or cultural combat, that such students engage in as they form their linguistic identities, and (b) the tensions between the development of critical language pedagogies and the lack of their broader implementation due…
DOT National Transportation Integrated Search
2014-08-01
A proof of concept was established for a sensor capable of using indirect impedance spectroscopy to : detect the existence of corrosion in post-tensioned tendons. This development was supported by a : combination of bench-top experiments performed on...
Kirwan, Garry W; Bourke, Michael G; Chipchase, Lucinda; Dalton, Philip A; Russell, Trevor G
2015-12-01
The application of graft tension during anterior cruciate ligament reconstruction is considered an important feature of ACLR. However, wide variation exists in relation to graft tensioning practice limiting the ability to determine the best approach. Thus, the primary aim of this study was to describe current clinical practice amongst Australian orthopaedic surgeons with respect to graft tensioning and explore influencing factors. A survey was developed to address the aims of the study and pilot testing was completed to confirm validity and reliability. The survey population was defined as Australian orthopaedic surgeons, associated with the Australian Orthopaedic Association sub-specialty of knee to target surgeons likely to perform ACLR. The final sampling frame consisted of 192 surgeons. Manual tensioning was the most common method (80.5 %), with a maximum one-handed pull the most frequent description and estimated tension ranged between 41 and 60 N with the knee positioned near full extension. Surgeons using a tensioning device tended to use a higher tension (mean 81.85 N), with the knee positioned at 30° flexion (40 %). Sixteen percent reported individualising tension on viscoelasticity of the graft, graft diameter, patient anthropometry and age. Patient outcomes and available evidence were the primary factors influencing tensioning protocol. Tensioning practices appear to consist of three main approaches, (1) manual tension using a sustained maximum one-handed pull, with tension estimated as 41-60 N, applied near full extension, (2) tensioning device, mean tension of 81.85 N, at 30° knee flexion, (3) individual approach based on size and viscoelastic properties of the graft, patient anthropometry, contralateral comparison to the other knee and age of the patient.
Surface active complexes formed between keratin polypeptides and ionic surfactants.
Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R
2016-12-15
Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Holroyd, Kenneth A.; And Others
1991-01-01
Randomly assigned 41 recurrent tension headache sufferers to either cognitive-behavioral therapy or to amitriptyline therapy. Both therapies yielded clinically significant improvements in headache activity. In instances where differences in treatment effectiveness were observed, cognitive-behavioral therapy yielded somewhat more positive outcomes…
Instructional Design and Professional Informal Learning: Practices, Tensions, and Ironies
ERIC Educational Resources Information Center
Yanchar, Stephen C.; Hawkley, Melissa N.
2015-01-01
This qualitative study explored the nature of informal learning in professional instructional designers' everyday work activities. Based on intensive interviews with six full-time practitioners, and using a hermeneutic form of data analysis, this study produced seven themes concerning the practices, tensions, and ironies associated with this…
Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottenheijm, Coen A.C.; Voermans, Nicol C.; Hudson, Bryan D.
Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. We performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used tomore » measure myofilament lattice spacing. Passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. In response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.« less
Shugoshins: Tension-Sensitive Pericentromeric Adaptors Safeguarding Chromosome Segregation
2014-01-01
The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the pericentromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially, shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-sensitive pericentromeric proteins are discussed. PMID:25452306
Catch and release: How do kinetochores hook the right microtubules during mitosis?
Sarangapani, Krishna K.; Asbury, Charles L.
2014-01-01
Sport fishermen keep tension on their lines to prevent hooked fish from releasing. A molecular version of this angler’s trick, operating at kinetochores, ensures accuracy during mitosis: The mitotic spindle attaches randomly to chromosomes and then correctly bioriented attachments are stabilized due to the tension exerted on them by opposing microtubules. Incorrect attachments, which lack tension, are unstable and release quickly, allowing another chance for biorientation. Stabilization of molecular interactions by tension also occurs in other physiological contexts such as cell adhesion, motility, hemostasis, and tissue morphogenesis. Here we review models for the stabilization of kinetochore attachments with an eye toward emerging models for other force-activated systems. While attention in the mitosis field has focused mainly on one kinase-based mechanism, multiple mechanisms may act together to stabilize properly bioriented kinetochores and some principles governing other tension-sensitive systems may apply to kinetochores as well. PMID:24631209
Toniolo, Luana; Cancellara, Pasqua; Maccatrozzo, Lisa; Patruno, Marco; Mascarello, Francesco; Reggiani, Carlo
2008-12-01
Masticatory myosin heavy chain (M MyHC) is a myosin subunit isoform with expression restricted to muscles derived from the first branchial arch, such as jaw-closer muscles, with pronounced interspecies variability. Only sparse information is available on the contractile properties of muscle fibers expressing M MyHC (M fibers). In this study, we characterized M fibers isolated from the jaw-closer muscles (temporalis and masseter) of two species of domestic carnivores, the cat and the dog, compared with fibers expressing slow or fast (2A, 2X, and 2B) isoforms. In each fiber, during maximally calcium-activated contractions at 12 degrees C, we determined isometric-specific tension (P(o)), unloaded shortening velocity (v(o)) with the slack test protocol, and the rate constant of tension redevelopment (K(TR)) after a fast shortening-relengthening cycle. At the end of the mechanical experiment, we identified MyHC isoform composition of each fiber with gel electrophoresis. Electrophoretic migration rate of M MyHC was similar in both species. We found that in both species the kinetic parameters v(o) and K(TR) of M fibers were similar to those of 2A fibers, whereas P(o) values were significantly greater than in any other fiber types. The similarity between 2A and M fibers and the greater tension development of M fibers were confirmed also in mechanical experiments performed at 24 degrees C. Myosin concentration was determined in single fibers and found not different in M fibers compared with slow and fast fibers, suggesting that the higher tension developed by M fibers does not find an explanation in a greater number of force generators. The specific mechanical characteristics of M fibers might be attributed to a diversity in cross-bridge kinetics.
ERIC Educational Resources Information Center
Cassel, Russell
1985-01-01
Describes six stage hierarchial patterns in the development of self-control through biofeedback. The stages include Skeletal and Striated Muscle Tension; Visceral Involvement-Anxiety Neuroses; Chronic Physiological Dysfunctioning; Decision Making Competency; Twilight Learning-Permissive Concentration; and Autogenic Feedback Training. (BL)
Unzueta, C R; Lahortiga-Ramos, F; Santiago, S; Zazpe, I; Molero, P; Sánchez-Villegas, A; Martínez-González, M A
2018-04-01
The objective of this study is to assess the differences in lifestyles according to levels of self-perceived competitiveness, psychological tension, and dependency in a Mediterranean cohort of university graduates. Levels of personality traits, food consumption, nutrient intake, eating attitudes, physical activity, sedentary lifestyle, and alcohol and tobacco consumption were assessed through a questionnaire administered at baseline. This was a cross-sectional study in the context of the Seguimiento Universidad de Navarra cohort. Participants are 15,346 Spanish adults. Participants with a high level of self-perceived competitiveness consumed more vegetables and fish but less refined grains; they had higher protein intake and healthier eating attitudes. They were more physically active and less likely to be smokers. Participants with a high level of tension or dependency were less physically active, and participants more dependent also had poorer adherence to the Mediterranean diet. Self-perceived personality traits, especially the trait of competitiveness, are likely to be associated with healthier dietary patterns, better nutrient profile, better eating attitudes, physical activity, and less exposure to smoking. The use of short questions about self-perceived levels of competitiveness, psychological tension, and dependency can contribute to add additional information when assessing lifestyles and diet in adults. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Freeman, Spencer A; Christian, Sonja; Austin, Pamela; Iu, Irene; Graves, Marcia L; Huang, Lin; Tang, Shuo; Coombs, Daniel; Gold, Michael R; Roskelley, Calvin D
2017-01-01
Although it is known that a stiffening of the stroma and the rearrangement of collagen fibers within the extracellular matrix facilitate the movement of tumor cells away from the primary lesion, the underlying mechanisms responsible are not fully understood. We now show that this invasion, which can be initiated by applying tensional loads to a three-dimensional collagen gel matrix in culture, is dependent on the Rap1 GTPases (Rap1a and Rap1b, referred to collectively as Rap1). Under these conditions Rap1 activity stimulates the formation of focal adhesion structures that align with the tensional axis as single tumor cells move into the matrix. These effects are mediated by the ability of Rap1 to induce the polarized polymerization and retrograde flow of actin, which stabilizes integrins and recruits vinculin to preformed adhesions, particularly those near the leading edge of invasive cells. Rap1 activity also contributes to the tension-induced collective invasive elongation of tumor cell clusters and it enhances tumor cell growth in vivo Thus, Rap1 mediates the effects of increased extracellular tension in multiple ways that are capable of contributing to tumor progression when dysregulated. © 2017. Published by The Company of Biologists Ltd.
Vinculin tension distributions of individual stress fibers within cell–matrix adhesions
Chang, Ching-Wei; Kumar, Sanjay
2013-01-01
Summary Actomyosin stress fibers (SFs) enable cells to exert traction on planar extracellular matrices (ECMs) by tensing focal adhesions (FAs) at the cell–ECM interface. Although it is widely appreciated that the spatial and temporal distribution of these tensile forces play key roles in polarity, motility, fate choice, and other defining cell behaviors, virtually nothing is known about how an individual SF quantitatively contributes to tensile loads borne by specific molecules within associated FAs. We address this key open question by using femtosecond laser ablation to sever single SFs in cells while tracking tension across vinculin using a molecular optical sensor. We show that disruption of a single SF reduces tension across vinculin in FAs located throughout the cell, with enriched vinculin tension reduction in FAs oriented parallel to the targeted SF. Remarkably, however, some subpopulations of FAs exhibit enhanced vinculin tension upon SF irradiation and undergo dramatic, unexpected transitions between tension-enhanced and tension-reduced states. These changes depend strongly on the location of the severed SF, consistent with our earlier finding that different SF pools are regulated by distinct myosin activators. We critically discuss the extent to which these measurements can be interpreted in terms of whole-FA tension and traction and propose a model that relates SF tension to adhesive loads and cell shape stability. These studies represent the most direct and high-resolution intracellular measurements of SF contributions to tension on specific FA proteins to date and offer a new paradigm for investigating regulation of adhesive complexes by cytoskeletal force. PMID:23687380
Simulation of Texture Evolution during Uniaxial Deformation of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Bishoyi, B.; Debta, M. K.; Yadav, S. K.; Sabat, R. K.; Sahoo, S. K.
2018-03-01
The evolution of texture in commercially pure (CP) titanium during uniaxial tension and compression through VPSC (Visco-plastic self-consistent) simulation is reported in the present study. CP-titanium was subjected to both uniaxial tension and compression upto 35% deformation. During uniaxial tension, tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of \\{11\\bar{2}2\\}\\unicode{x003C;}11\\bar{2}\\bar{3}\\unicode{x003E;} type were observed in the samples. However, only tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of type was observed in the samples during uniaxial compression. Volume fractions of the twins were increased linearly as a function of percentage deformation during uniaxial tension. Whereas, during uniaxial compression the twinning volume fraction was increased up to 20% deformation and then decreased rapidly on further increasing the percentage deformation. During uniaxial tension, the general t-type textures were observed in the samples irrespective of the percentage deformation. The initial non-basal texture was oriented to split basal texture during uniaxial compression of the sample. VPSC formulation was used for simulating the texture development in the material. Different hardening parameters were estimated through correlating the simulated stress-strain curve with the experimental stress-strain data. It was observed that, prismatic slip \\{10\\bar{1}0\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} operated as the primary deformation mode during uniaxial tension whereas basal slip \\{0001\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} acquired the leading role during deformation through uniaxial compression. It was also revealed that active deformation modes were fully depending on percentage deformation, loading direction, and orientation of grains.
Massingham, R.; Shevde, S.
1971-01-01
The mechanical and electrophysiological activity of rings and strips of thoracic aortic smooth muscle taken from normotensive, DOCA-hypertensive and New Zealand spontaneously hypertensive (A.S. strain) rats have been compared. Aortae from A.S.-hypertensive rats developed less tension in the presence of noradrenaline and K+ than those isolated from normotensive and DOCA-hypertensive rats. Aortae from DOCA-hypertensive rats developed the same tension in response to K+ as normotensive rats but were less reactive to noradrenaline. Measurements of resting membrane potentials from the three groups of rats demonstrated that whereas normotensive and DOCA-hypertensive rats had similar resting membrane potentials, those from A.S.-hypertensive rats were significantly lower (P<0.001). It is suggested that the enhanced responsiveness of intact vascular beds in A.S.-hypertensive rats is a consequence of a change in the geometry of the blood vessels rather than an increase in the contractor response of the smooth muscle cells. PMID:5152033
CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†
Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan
2013-01-01
The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198
Chemical demulsification of petroleum emulsions using oil-soluable demulsifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczyk, M.A.; Wasan, D.T.; Shetty, C.S.
1991-02-01
This paper investigates the factors affecting the coalescence and interfacial behavior of water- in-crude-oil emulsions in the presence of oil-soluble demulsifiers. The emulsion-breaking characteristics and interfacial properties of East Texas Crude and a model system were compared. The variation of interfacial tension with demulsifier concentration for the model system was ascertained by measuring the interfacial tensions between the oil and water phase. Interfacial activity, adsorption kinetics, and partitioning were shown to be the most important parameters governing demulsifier performance. A conceptual model of drop-drop coalescence process in demulsification was presented which indicates that the interfacial activity of the demulsifier mustmore » be high enough to suppress the interfacial tension gradient. This accelerates the rate of film drainage, thus promoting coalescence.« less
The influence of surface-active agents in gas mixture on the intensity of jet condensation
NASA Astrophysics Data System (ADS)
Yezhov, YV; Okhotin, VS
2017-11-01
The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and the thermal conductivity of the liquid jet. The first circumstance leads to deterioration of the condensation process, the second to the intensification of this process. There is obviously an optimum value of concentration of the additive surfactants to the vapour when the condensation process is maximum. According to the developed design methodology contact condensation can evaluate these optimum conditions, their practical effect in the field study.
Kanbayashi, Toru; Miyafuji, Hisashi
2016-09-01
Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Qin
2013-01-01
Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.
Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M
2015-01-01
Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large ‘leader bleb.’ Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement. DOI: http://dx.doi.org/10.7554/eLife.08314.001 PMID:26163656
Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W
2016-01-01
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive mechanical characteristics of the myocardium influence ensemble cross-bridge behavior and maintenance of tension generation throughout the sarcomere.
DOT National Transportation Integrated Search
2014-06-01
This report contains a summary of the research performed to develop a replacement for the high-temperature grout : fluidity (HTGF) test. The HTGF test was employed in the past by FDOT to qualify post-tensioning (PT) grouts for use in : post-tensioned...
Essential Tension: Specialization with Broad and General Training in Psychology
ERIC Educational Resources Information Center
Roberts, Michael C.
2006-01-01
The practice fields of psychology develop through specialization in training and education. The recognized specialties play a major role in developing new opportunities for professional psychology and providing quality services for the public. The essential tension comes from the balance of innovation and tradition and, in professional psychology,…
Human skeletal muscle biochemical diversity.
Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L
2012-08-01
The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability.
Human skeletal muscle biochemical diversity
Tirrell, Timothy F.; Cook, Mark S.; Carr, J. Austin; Lin, Evie; Ward, Samuel R.; Lieber, Richard L.
2012-01-01
SUMMARY The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy – titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to ‘tune’ the protein's mechanotransduction capability. PMID:22786631
NASA Astrophysics Data System (ADS)
Tachibana, Hideyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
We address an estimation method of isometric muscle tension of fingers, as fundamental research for a neural signal-based prosthesis of fingers. We utilize needle electromyogram (EMG) signals, which have approximately equivalent information to peripheral neural signals. The estimating algorithm comprised two convolution operations. The first convolution is between normal distribution and a spike array, which is detected by needle EMG signals. The convolution estimates the probability density of spike-invoking time in the muscle. In this convolution, we hypothesize that each motor unit in a muscle activates spikes independently based on a same probability density function. The second convolution is between the result of the previous convolution and isometric twitch, viz., the impulse response of the motor unit. The result of the calculation is the sum of all estimated tensions of whole muscle fibers, i.e., muscle tension. We confirmed that there is good correlation between the estimated tension of the muscle and the actual tension, with >0.9 correlation coefficients at 59%, and >0.8 at 89% of all trials.
Testing the Effectiveness of Therapeutic Showering in Labor.
Stark, Mary Ann
: Therapeutic showering is a holistic nursing intervention that is often available and supports physiologic labor. The purpose of this study was to compare the effectiveness of therapeutic showering with usual care during active labor. Research questions were as follows: Are there significant differences between women who showered 30 minutes during active labor and those who received usual labor care in anxiety, tension, relaxation, pain, discomfort, and coping? Is there a difference in use of obstetric interventions between groups? A convenience sample of healthy low-risk women in active labor was recruited (N = 32). A pretest posttest control group repeated-measures design was used. Participants were randomized to treatment group (n = 17), who showered for 30 minutes, or to control group (n = 14) who received usual labor care. Women evaluated pain, discomfort, anxiety, tension, coping, and relaxation at enrollment, again 15 minutes after entering the shower or receiving usual care, then again 30 minutes after entering the shower or receiving usual care. Chart reviews after delivery recorded obstetric interventions. The showering group had statistically significant decreases in pain, discomfort, anxiety and tension, and significant increase in relaxation. There were no differences in use of obstetric interventions. Therapeutic showering was effective in reducing pain, discomfort, anxiety, and tension while improving relaxation and supporting labor in this sample.
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-04-17
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less
Ecological and physiological aspects of transit work.
Krivoschekov, S G
1991-01-01
The organism of transit workers is overloaded after repeated translocation on long distances. Power work capacity (PWC), biological rhythms and psycho-emotional tension were studied in 240 transit workers flying to work from the Ukraine to West Siberia. Decreased PWC, disturbed diurnal rhythm, and increased emotional tension were found to be related to the increase in transit work service. The role of seasonal differences and functional activity, reflected in increased sympathetic activity in summer and parasympathetic in winter, was found to be significant.
Low Oxygen Tension Enhances Hepatitis C Virus Replication
Kalliampakou, K. I.; Kotta-Loizou, I.; Befani, C.; Liakos, P.; Simos, G.; Mentis, A. F.; Kalliaropoulos, A.; Doumba, P. P.; Smirlis, D.; Foka, P.; Bauhofer, O.; Poenisch, M.; Windisch, M. P.; Lee, M. E.; Koskinas, J.; Bartenschlager, R.
2013-01-01
Low oxygen tension exerts a significant effect on the replication of several DNA and RNA viruses in cultured cells. In vitro propagation of hepatitis C virus (HCV) has thus far been studied under atmospheric oxygen levels despite the fact that the liver tissue microenvironment is hypoxic. In this study, we investigated the efficiency of HCV production in actively dividing or differentiating human hepatoma cells cultured under low or atmospheric oxygen tensions. By using both HCV replicons and infection-based assays, low oxygen was found to enhance HCV RNA replication whereas virus entry and RNA translation were not affected. Hypoxia signaling pathway-focused DNA microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) analyses revealed an upregulation of genes related to hypoxic stress, glycolytic metabolism, cell growth, and proliferation when cells were kept under low (3% [vol/vol]) oxygen tension, likely reflecting cell adaptation to anaerobic conditions. Interestingly, hypoxia-mediated enhancement of HCV replication correlated directly with the increase in anaerobic glycolysis and creatine kinase B (CKB) activity that leads to elevated ATP production. Surprisingly, activation of hypoxia-inducible factor alpha (HIF-α) was not involved in the elevation of HCV replication. Instead, a number of oncogenes known to be associated with glycolysis were upregulated and evidence that these oncogenes contribute to hypoxia-mediated enhancement of HCV replication was obtained. Finally, in liver biopsy specimens of HCV-infected patients, the levels of hypoxia and anaerobic metabolism markers correlated with HCV RNA levels. These results provide new insights into the impact of oxygen tension on the intricate HCV-host cell interaction. PMID:23269812
Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.
Pettorossi, V E; Filippi, G M
1981-09-01
The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.
ERIC Educational Resources Information Center
Pardo, Marcela; Woodrow, Christine
2014-01-01
This article problematises emerging tensions in Chile, in relation to the discourses of early childhood teachers and public policies aimed at improving the quality of early childhood education. The aim of the analysis is to contribute to developing more nuanced understandings of these tensions, through the analytical lenses provided by the…
Cadmium Alternatives for High-Strength Steel
2011-09-22
coating small parts, a barrel coater was developed which originally coated 75 pounds of steel fasteners during a coating run. By the early 1980s...technique to define design allowables. Other design authorities rely more heavily on axial tension-tension or tension- compression data. Some axial ...FINAL REPORT Cadmium Alternatives for High-Strength Steel WP-200022 Steven A. Brown Naval Air Warfare Center Aircraft Division Patuxent
New technique for servo-control of arterial oxygen tension in preterm infants.
Beddis, I R; Collins, P; Levy, N M; Godfrey, S; Silverman, M
1979-01-01
Equipment has been developed for the servo-control of arterial oxygen tension in sick, newborn babies. Using an indwelling umbilical arterial oxygen electrode as sensor, the equipment successfully regulated the administration of oxygen to 12 newborn babies with respiratory distress syndrome, significantly improving the stability of arterial oxygen tension and lessening the duration of episodes of hypoxia and hyperoxia. PMID:453911
Surgery of a nocardia lung abscess presenting as a tension pyopneumothorax.
Fujimoto, Ryo; Omasa, Mitsugu; Ishikawa, Hiroyuki; Aoki, Minoru
2017-05-01
While some cases of nocardial pneumonia develop secondary empyema, tension pyopneumothorax is a very rare and lethal complication. A 74-year-old man who exhibited thrombocytopenia during steroid therapy for autoimmune hepatitis, presented to our department with a nocardial tension pyopneumothorax. He underwent a left lower lobectomy after chest drainage, and was discharged without any complication other than reoperation to remove a postoperative hematoma.
bioLights: light emitting wear for visualizing lower-limb muscle activity.
Igarashi, Naoto; Suzuki, Kenji; Kawamoto, Hiroaki; Sankai, Yoshiyuki
2010-01-01
Analysis of muscle activity by electrophysiological techniques is commonly used to analyze biomechanics. Although the simultaneous and intuitive understanding of both muscle activity and body motion is important in various fields, it is difficult to realize. This paper proposes a novel technique for visualizing physiological signals related to muscle activity by means of surface electromyography. We developed a wearable light-emitting interface that indicates lower-limb muscle activity or muscular tension on the surface of the body in real time by displaying the shape of the activated muscle. The developed interface allows users to perceive muscle activity in an intuitive manner by relating the level of the muscle activity to the brightness level of the glowing interface placed on the corresponding muscle. In order to verify the advantage of the proposed method, a cognitive experiment was conducted to evaluate the system performance. We also conducted an evaluation experiment using the developed interface in conjunction with an exoskeleton robot, in order to investigate the possible applications of the developed interface in the field of neurorehabilitation.
Straight, Paul D; Willey, Joanne M; Kolter, Roberto
2006-07-01
Using mixed-species cultures, we have undertaken a study of interactions between two common spore-forming soil bacteria, Bacillus subtilis and Streptomyces coelicolor. Our experiments demonstrate that the development of aerial hyphae and spores by S. coelicolor is inhibited by surfactin, a lipopeptide surfactant produced by B. subtilis. Current models of aerial development by sporulating bacteria and fungi postulate a role for surfactants in reducing surface tension at air-liquid interfaces, thereby removing the major barrier to aerial growth. S. coelicolor produces SapB, an amphipathic peptide that is surface active and required for aerial growth on certain media. Loss of aerial hyphae in developmental mutants can be rescued by addition of purified SapB. While a surfactant from a fungus can substitute for SapB in a mutant that lacks aerial hyphae, not all surfactants have this effect. We show that surfactin is required for formation of aerial structures on the surface of B. subtilis colonies. However, in contrast to this positive role, our experiments reveal that surfactin acts antagonistically by arresting S. coelicolor aerial development and causing altered expression of developmental genes. Our observations support the idea that surfactants function specifically for a given organism regardless of their shared ability to reduce surface tension. Production of surfactants with antagonistic activity could provide a powerful competitive advantage during surface colonization and in competition for resources.
NASA Astrophysics Data System (ADS)
Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki
Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.
Surface tension effects on fully developed liquid layer flow over a convex corner
NASA Astrophysics Data System (ADS)
Bhatti, Ifrah; Farid, Saadia; Ullah, Saif; Riaz, Samia; Faryad, Maimoona
2018-04-01
This investigation deals with the study of fully developed liquid layer flow along with surface tension effects, confronting a convex corner in the direction of fluid flow. At the point of interaction, the related equations are formulated using double deck structure and match asymptotic techniques. Linearized solutions for small angle are obtained analytically. The solutions corresponding to similar flow neglecting surface tension effects are also recovered as special case of our general solutions. Finally, the influence of pertinent parameters on the flow, as well as a comparison between models, are shown by graphical illustration.
NASA Technical Reports Server (NTRS)
2002-01-01
Developed in response to a NASA requirement to remotely measure tension in critical bolts on the International Space Station, the SureBolt(TM) Correlation Bolt Gage is the first ultrasonic system to capture an entire "echo" pulse for determining the change in time of flight of an ultrasonic signal traversing a fastener for tension measurement. The standard SureBolt system hardware has the capability of recording over 1 million bolt tension readings-with their complete waveforms-in Microsoft Excel-compatible format. The user- friendly Tension-Not-Torque(Copyright) software interface offers tension change graphing in real time, and a place to store field notes, special parameters, tension calibration constants, and temperature changes for each measurement. The technology has been used on fasteners as small as fine-threaded, 1-inch bolts, and as large as 18-inch-diameter by 30-foot-long tie rods. SureBolt is finding increased application within NASA and the aerospace industry, as well as in the automotive and nuclear industries.
ERIC Educational Resources Information Center
Wiebke, Heidi; Park Rogers, Meredith
2014-01-01
This self-study investigated the tensions that I (Heidi) encountered when teaching elementary preservice teachers how to develop a coherent sequence of five science lessons. Four lesson planning components guided me in developing a series of lessons to support the preservice teachers with this exercise. Employing self-study methodology, data…
Properties of liquid Ti alloys from electrostatic levitation experiments and simulation
NASA Astrophysics Data System (ADS)
Novak, Brian; Raush, Jonathan; Zhang, Xiaoman; Moldovan, Dorel; Meng, Wenjin; Guo, Shengmin
Accurate thermophysical property data for liquid metals and alloys are important for the development of realistic simulations of laser-based 3D printing processes. We are using the container-less electrostatic levitation (ESL) method, molecular simulation, and CALPHAD calculations to obtain such data for Ti alloys. We performed vacuum ESL measurements of viscosity and surface tension with an oscillating drop technique at NASA MSFC on molten elemental Ti, Ti-xAl binaries (x = 0-10 wt%), Ti-6Al-4V, and Ti-6Al-4V-10Mo which showed improved mechanical properties compared with traditional β Ti alloys. We also used classical molecular simulations to obtain viscosities and surface tensions for Ti-xAl. Pair distribution functions, diffusivities, and vapor pressures were also obtained from simulations. The simulated viscosities and surface tensions for pure Ti agree well with the ESL data while the Ti-xAl viscosities have the same trends as the ESL data, but not quantitative agreement. Chemical activity and Gibbs free energy of Ti-10Al were generated using the CALPHAD technique and compared to experimental values. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.
Stieghorst, Jan; Majaura, Daniel; Wevering, Hendrik; Doll, Theodor
2016-03-01
The direct fabrication of silicone-rubber-based individually shaped active neural implants requires high-speed-curing systems in order to prevent extensive spreading of the viscous silicone rubber materials during vulcanization. Therefore, an infrared-laser-based test setup was developed to cure the silicone rubber materials rapidly and to evaluate the resulting spreading in relation to its initial viscosity, the absorbed infrared radiation, and the surface tensions of the fabrication bed's material. Different low-adhesion materials (polyimide, Parylene-C, polytetrafluoroethylene, and fluorinated ethylenepropylene) were used as bed materials to reduce the spreading of the silicone rubber materials by means of their well-known weak surface tensions. Further, O2-plasma treatment was performed on the bed materials to reduce the surface tensions. To calculate the absorbed radiation, the emittance of the laser was measured, and the absorptances of the materials were investigated with Fourier transform infrared spectroscopy in attenuated total reflection mode. A minimum silicone rubber spreading of 3.24% was achieved after 2 s curing time, indicating the potential usability of the presented high-speed-curing process for the direct fabrication of thermal-curing silicone rubbers.
Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A
2015-06-01
Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.
Functional effects of uridine triphosphate on human skinned skeletal muscle fibers.
Vianna-Jorge, R; Oliveira, C F; Mounier, Y; Suarez-Kurtz, G
1998-02-01
Chemically skinned human skeletal muscle fibers were used to study the effects of uridine triphosphate (UTP) on the tension-pCa relationship and on Ca2+ uptake and release by the sarcoplasmic reticulum (SR). Total replacement (2.5 mM) of adenosine triphosphate (ATP) with UTP (i) displaced the tension-pCa relationship to the left along the abcissae and increased maximum Ca(2+)-activated tension, both effects being larger in slow- than in fast-type fibers; (ii) markedly reduced Ca2+ uptake by the SR (evaluated by the caffeine-evoked tension) in both fiber types; (iii) had no effect on the rate of depletion of caffeine-sensitive Ca2+ stores during soaking in relaxing solutions; (iv) induced tension in slow- but not in fast-type fibers. The effects on the SR functional properties are consistent with the notion that UTP is a poor substitute for ATP as a substrate for the Ca ATPase pump and as an agonist of the ryanodine-sensitive Ca(2+)-release channel. The UTP-induced tension in human slow-type fibers is attributed to effect(s) of the nucleotide on the tension-pCa relationship of the contractile machinery. The present data reveal important differences between the effects of UTP on human versus rat muscle fibers.
[Influence of mental rotation of objects on psychophysiological functions of women].
Chikina, L V; Fedorchuk, S V; Trushina, V A; Ianchuk, P I; Makarchuk, M Iu
2012-01-01
An integral part of activity of modern human beings is an involvement to work with the computer systems which, in turn, produces a nervous - emotional tension. Hence, a problem of control of the psychophysiological state of workmen with the purpose of health preservation and success of their activity and the problem of application of rehabilitational actions are actual. At present it is known that the efficiency of rehabilitational procedures rises following application of the complex of regenerative programs. Previously performed by us investigation showed that mental rotation is capable to compensate the consequences of a nervous - emotional tension. Therefore, in the present work we investigated how the complex of spatial tasks developed by us influences psychophysiological performances of tested women for which the psycho-emotional tension with the usage of computer technologies is more essential, and the procedure of mental rotation is more complex task for them, than for men. The complex of spatial tasks applied in the given work included: mental rotation of simple objects (letters and digits), mental rotation of complex objects (geometrical figures) and mental rotation of complex objects with the usage of a short-term memory. Execution of the complex of spatial tasks reduces the time of simple and complex sensomotor response, raises parameters of a short-term memory, brain work capacity and improves nervous processes. Collectively, mental rotation of objects can be recommended as a rehabilitational resource for compensation of consequences of any psycho-emotional strain, both for men, and for women.
Lung abscess presenting as tension pyopneumothorax in a gastrointestinal cancer patient.
Okita, Riki; Miyata, Yoshihiro; Hamai, Yoichi; Hihara, Jun; Okada, Morihito
2014-01-01
We report a surgical case of tension pyopneumothorax in a patient who was receiving chemotherapy for esophageal cancer. A 68-year-old man who had undergone total gastrectomy with splenectomy for gastric cancer and was receiving chemotherapy for esophageal cancer was presented to our hospital with dyspnea. Left tension pyopneumothorax was diagnosed, and he received left lower lobectomy after pleural drainage. His postoperative course was uneventful, and he is alive without any cancer recurrences 5 years after the lobectomy. Once tension pyopneumothorax has developed from lung abscess, emergent lobectomy may be a useful option to prevent lethal aspiration pneumonia.
Method for evaluating moisture tensions of soils using spectral data
NASA Technical Reports Server (NTRS)
Peterson, John B. (Inventor)
1982-01-01
A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.
Batchelder, A W; Brisbane, M; Litwin, A H; Nahvi, S; Berg, K M; Arnsten, J H
2013-01-01
Active drug use among HIV-infected persons is associated with poor adherence to highly active antiretroviral therapy (HAART) and suboptimal treatment outcomes. To understand adherence experiences among HIV-infected drug users, we conducted semistructured interviews with 15 participants in a randomized controlled trial evaluating the efficacy of directly observed HAART delivered in methadone maintenance clinics. Interviews were recorded, transcribed, and thematically analyzed. We identified negative and positive psychological themes associated with both drug use and adherence. Participants described tension between negative feelings (denial, shame, and perceived isolation) and positive feelings (acceptance, motivation, empowerment, and perceived connectedness), and they associated this tension with their own drug using and adherence behaviors. Sustained antiretroviral therapy adherence may require increased emphasis on understanding the psychological experience of HIV-infected drug users.
Kutsuki, H; Higuchi, T
1981-07-01
The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
NASA Astrophysics Data System (ADS)
Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferrini, M.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lalli, A.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passamonti, L.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Primavera, F.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Valente, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.
2018-02-01
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
[Cognitive behavioral therapy for tension-type headache: a case report].
Salman, İsmail Barış; Sertel Berk, Hanife Özlem
2017-10-01
Tension-type headache has a very high socioeconomic impact, and its lifetime prevalence is reported to be between 30% and 78% in different studies. It is widely acknowledged that noninvasive management with a multidisciplinary approach should be considered for the treatment of tension-type headache. Cognitive behavioral therapy and relaxation exercises are efficient techniques. This article illustrates the application of a cognitive behavioral therapy protocol enhanced with progressive muscle stretching and relaxation exercises in the treatment of chronic tension-type headache via a case report. Our patient had an ongoing headache for 6 years when he was referred to us by the department of psychiatry. After 10 cognitive behavioral therapy sessions, the patient had learned to notice muscle tension and relax the muscles as well as to recognize and express his emotions in a better way. He became aware of automatic thoughts and learned to find alternative thoughts. Headache severity decreased, and he was able to increase participation in daily life activities.
Role of Oxygen as Surface-Active Element in Linear GTA Welding Process
NASA Astrophysics Data System (ADS)
Yadaiah, Nirsanametla; Bag, Swarup
2013-11-01
Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.
A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models
Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K.
2016-01-01
The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement. PMID:27219067
Numerical Tension Adjustment of X-Ray Membrane to Represent Goat Skin Kompang
NASA Astrophysics Data System (ADS)
Syiddiq, M.; Siswanto, W. A.
2017-01-01
This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang’s membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been used to help kompang maker to set the tension of x-ray membrane. In the future application, any traditional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The numerical tool used is useful and handy to calculate the tension of the alternative membrane material.
A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models.
Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K
2016-01-01
The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement.
ERIC Educational Resources Information Center
Charles, Harvey; Longerbeam, Susan D.; Miller, Angela E.
2013-01-01
Multicultural education and global learning have long been acknowledged by higher education professionals to be necessary in advancing student development. Both of these agendas overlap in significant ways and can be characterized as two sides of the same coin. Notwithstanding, there has been a historical divide, even a tension between these two…
Leadership Development for Organizational Change in a "New" UK University
ERIC Educational Resources Information Center
Turnbull, Sharon; Edwards, Gareth
2005-01-01
This paper reports on the findings of a case study of an Organizational Development (OD) intervention within a new university in the UK. Previous research into the leadership of higher education has highlighted a number of apparently inevitable tensions. The findings of the case study uncovered a number of complex and interrelated tensions. The…
Mediating Relationships across Research, Policy, and Practice in Teacher Education
ERIC Educational Resources Information Center
Harris, Pauline
2010-01-01
This self-study explores my mediation as a literacy teacher educator in the context of a professional development undertaking that involved developing and leading an early school years literacy course. I examine the tensions that arose in the light of my own professional history and explore ways that the tensions led me to reconcile conflicting…
Climate Change and Costs: Investigating Students' Reasoning on Nature and Economic Development
ERIC Educational Resources Information Center
Sternang, Li; Lundholm, Cecilia
2012-01-01
The tensions between environmental protection and economic growth are critical to future well-being, and it is therefore important to understand how young people conceptualize these tensions. The aim of the present study is to explore students' solutions to the dilemma of economic development and mitigating climate change, with regard to societal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar
2014-05-30
Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{submore » 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.« less
Yu, Qin; Jiang, Yanyao; Wang, Jian
2015-04-07
Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of T iC jT j type. T iC i+1T i+1 (or T iC i–1T i–1) variants are observed more frequently than T iC i+2T i+2 (or T iC i–2T i–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.
Structural design significance of tension-tension fatigue data on composites
NASA Technical Reports Server (NTRS)
Grimes, G. C.
1977-01-01
Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.
Downie, J W; Armour, J A
1992-11-01
The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.
The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes.
Milner, P I; Wilkins, R J; Gibson, J S
2007-07-01
To examine the effect of O(2) and the role, and source, of reactive oxygen species (ROS) on pH regulation in articular chondrocytes. Cartilage from equine metacarpo/tarsophalangeal joints was digested (collagenase) to isolate chondrocytes and loaded with 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein, a pH-sensitive fluorophore. O(2) tension was maintained using Eschweiler tonometers and a Wosthoff gas mixer. Cells were exposed to agents which alter ROS levels, mitochondrial inhibitors and/or inhibitors of protein phosphorylation. ROS levels were determined by dichlorofluorescein and mitochondrial membrane potential measured using JC-1. pH homeostasis was dependent on ROS. Na(+)/H(+) exchanger (NHE) activity was inhibited at low O(2) tension (acid efflux reducing from 2.30+/-0.05 to 1.27+/-0.11mMmin(-1) at 1%). NHE activity correlated with ROS levels (r(2)=0.65). ROS levels were increased by antimycin A (with levels at 1% O(2) tension increasing from 59+/-9% of the value at 20% to 87+/-7%), but reduced by rotenone, myxothiazol and diphenyleneiodonium. Hypoxia induced depolarisation of the mitochondrial membrane potential (with JC-1 red-green fluorescence ratio at 1% O(2) tension decreasing to 40+/-10% of the value at 20%). The response to changes in O(2) and to antimycin A was inhibited by staurosporine, wortmanin and calyculin A. The fall in ROS levels in hypoxia reduces the ability of articular chondrocytes to regulate pH, inhibiting NHE activity via changes in protein phosphorylation. The site of ROS generation is likely to be mitochondrial electron transport chain complex III. These effects are important to understanding normal chondrocyte function and response to altered O(2) tension.
Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.
Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R
2016-05-03
The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.
Surface tension estimation of high temperature melts of the binary alloys Ag-Au
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2017-11-01
Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.
Non-Invasive Tension Measurement Devices for Parachute Cordage
NASA Technical Reports Server (NTRS)
Litteken, Douglas A.; Daum, Jared S.
2016-01-01
The need for lightweight and non-intrusive tension measurements has arisen alongside the development of high-fidelity computer models of textile and fluid dynamics. In order to validate these computer models, data must be gathered in the operational environment without altering the design, construction, or performance of the test article. Current measurement device designs rely on severing a cord and breaking the load path to introduce a load cell. These load cells are very reliable, but introduce an area of high stiffness in the load path, directly affecting the structural response, adding excessive weight, and possibly altering the dynamics of the parachute during a test. To capture the required data for analysis validation without affecting the response of the system, non-invasive measurement devices have been developed and tested by NASA. These tension measurement devices offer minimal impact to the mass, form, fit, and function of the test article, while providing reliable, axial tension measurements for parachute cordage.
Surface tension in human pathophysiology and its application as a medical diagnostic tool
Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem
2015-01-01
Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295
Testing Machine for Biaxial Loading
NASA Technical Reports Server (NTRS)
Demonet, R. J.; Reeves, R. D.
1985-01-01
Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.
An unusual case of primary spontaneous tension pneumothorax in a jamaican female.
Johnson, M; French, S; Cornwall, D
2014-06-01
Spontaneous pneumothorax is a well-recognized entity with a classical presentation of acute onset chest pain and shortness of breath. It may be complicated by the development of a tension pneumothorax or a haemopneumothorax. We report an interesting case of a spontaneous tension haemopneumothorax which presented atypically and was diagnosed on computed tomography (CT) scan of the chest. The clinical and pathophysiological characteristics and treatment of this unusual entity is discussed.
Reflecting on the tensions faced by a community-based multicultural health navigator service.
Henderson, Saras; Kendall, Elizabeth
2014-11-01
The community navigator model was developed to assist four culturally and linguistically diverse communities (Sudanese, Burmese, Pacific Islander Group, Afghani) in south-east Queensland to negotiate the Australian health system and promote health. Using participatory action research, we developed the model in partnership with community leaders and members, the local health department and two non-governmental organisations. Following implementation, we evaluated the model, with the results published elsewhere. However, our evaluation revealed that although the model was accepted by the communities and was associated with positive health outcomes, the financial, social and organisational durability of the model was problematic. Ironically, this situation was inadvertently created by critical decisions made during the development process to enhance the durability and acceptability of the model. This paper explores these critical decisions, our rationale for making those decisions and the four hidden tensions that subsequently emerged. Using a reflective case study method to guide our analysis, we provide possible resolutions to these tensions that may promote the longevity and utility of similar models in the future. WHAT IS KNOWN ABOUT THE TOPIC?: The use of community navigators to assist culturally diverse communities to access health services is not new. Many benefits have been documented for communities, individuals and heath service providers following the use of such models. What is not well documented is how to maintain these models in a safe and cost-effective way within the Australian health system while respecting cultural and community practices and reducing the burden of service delivery on the navigators. WHAT DOES THIS PAPER ADD?: This paper provides a perspective on how the development of community-based service models inherently places them in a position of tension that must be resolved if they are to be long lasting. Four core tensions experienced during the development and implementation of our model in south-east Queensland are explored to develop potential resolutions. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Reducing the tensions inherent in culturally appropriate community-based service models will increase the durability of the approach. By addressing these tensions, we can create a more durable pool of community navigators that can facilitate community empowerment, self-governance of health issues and a sense of community ownership of health services.
Measurement of Surface Interfacial Tension as a Function of Temperature Using Pendant Drop Images
NASA Astrophysics Data System (ADS)
Yakhshi-Tafti, Ehsan; Kumar, Ranganathan; Cho, Hyoung J.
2011-10-01
Accurate and reliable measurements of surface tension at the interface of immiscible phases are crucial to understanding various physico-chemical reactions taking place between those. Based on the pendant drop method, an optical (graphical)-numerical procedure was developed to determine surface tension and its dependency on the surrounding temperature. For modeling and experimental verification, chemically inert and thermally stable perfluorocarbon (PFC) oil and water was used. Starting with geometrical force balance, governing equations were derived to provide non-dimensional parameters which were later used to extract values for surface tension. Comparative study verified the accuracy and reliability of the proposed method.
Taylor, C J; Bansal, R; Pimpalnerkar, A
2006-09-01
Acute distal biceps rupture is a devastating injury in the young athlete and surgical repair offers the only chance of a full recovery. We report a new surgical technique used in 14 cases of acute distal tendon rupture in which the 'suture anchor technique' and a de-tensioning suture was employed. In this procedure the distal end of the biceps is re-attached to the radial tuberosity using a sliding whip stitch suture and the proximal part of the distal tendon repair attached to the underlying brachialis muscle with absorbable sutures. This restores correct anatomical alignment and isometric pull on the distal tendon and de-tensions the repair in the early post-operative period, allowing early rehabilitation and an early return to activity. In all cases patients regained a full pre-injury level of sporting activity at a mean period of 6.2 months (2-9 months).
Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation.
Wei, Helen Shinru; Kang, Hongyi; Rasheed, Izad-Yar Daniel; Zhou, Sitong; Lou, Nanhong; Gershteyn, Anna; McConnell, Evan Daniel; Wang, Yixuan; Richardson, Kristopher Emil; Palmer, Andre Francis; Xu, Chris; Wan, Jiandi; Nedergaard, Maiken
2016-08-17
Energy production in the brain depends almost exclusively on oxidative metabolism. Neurons have small energy reserves and require a continuous supply of oxygen (O2). It is therefore not surprising that one of the hallmarks of normal brain function is the tight coupling between cerebral blood flow and neuronal activity. Since capillaries are embedded in the O2-consuming neuropil, we have here examined whether activity-dependent dips in O2 tension drive capillary hyperemia. In vivo analyses showed that transient dips in tissue O2 tension elicit capillary hyperemia. Ex vivo experiments revealed that red blood cells (RBCs) themselves act as O2 sensors that autonomously regulate their own deformability and thereby flow velocity through capillaries in response to physiological decreases in O2 tension. This observation has broad implications for understanding how local changes in blood flow are coupled to synaptic transmission. Copyright © 2016 Elsevier Inc. All rights reserved.
Brennand, Erin A; Kim-Fine, Shunaha
2016-08-15
The goal of this trial is to compare two techniques for tensioning retropubic midurethral slings: a Mayo scissor between the tape and urethra vs. a Babcock clamp creating a measured loop underneath the urethra. The primary outcome is a composite of abnormal bladder function at 12 months post surgery. Abnormal bladder function is defined as bothersome stress incontinence or worsening over active bladder symptoms, a positive cough stress test, re-treatment of stress urinary incontinence, post-operative urinary retention requiring either catheterization beyond 6 weeks or surgical intervention. Secondary outcomes include the duration of post operative urinary retention, quality of life scores, and physical examination. This article describes the rationale and design of this clinical trial, which will be of interest to those who care for patient with pelvic floor disorders such as stress urinary incontinence.
Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia
2012-04-01
During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen--initiator of inflammation. The uric acid in the form of ion-capturers of active forms of oxygen is involved into in the formation of syndrome of compensatory anti-inflammatory defense. It may be assumed that simultaneously with post-secretory reabsorption of ions of urates in proximal tubules of nephron occurs intensification of philogenetically late post-secretory reabsorption of ions of sodium and activation of of biologic reaction of hydrodynamic and hydraulic pressure in local pool of intravascular medium i.e. arterial tension. The uric acid simultaneously participates in realization of biologic function of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension.
ERIC Educational Resources Information Center
Connaghan, Kathryn P.; Moore, Christopher A.
2013-01-01
Purpose: In this study, the authors compared indirect estimates of jaw-muscle tension in children with suspected muscle-tone abnormalities with age- and gender-matched controls. Method: Jaw movement and muscle activation were measured in children (ages 3 years, 11 months, to 10 years) with suspected muscle-tone abnormalities (Down syndrome or…
USDA-ARS?s Scientific Manuscript database
Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...
ERIC Educational Resources Information Center
Ramírez, Gerardo Blanco; Metcalfe, Amy Scott
2017-01-01
Mexico has a long history of tensions between the government and student activists. This history dates back to student protests that ended with the State's violent repression of students in 1968. These tensions were reignited with the student occupation of Mexico's National Autonomous University from 1999 to 2000, which ended through intervention…
Irving, Thomas; Wu, Yiming; Bekyarova, Tanya; Farman, Gerrie P.; Fukuda, Norio; Granzier, Henk
2011-01-01
We studied the effect of titin-based passive tension on sarcomere structure by simultaneously measuring passive tension and low-angle x-ray diffraction patterns on passive fiber bundles from rabbit skinned psoas muscle. We used a stretch-hold-release protocol with measurement of x-ray diffraction patterns at various passive tension levels during the hold phase before and after passive stress relaxation. Measurements were performed in relaxing solution without and with dextran T-500 to compress the lattice toward physiological levels. The myofilament lattice spacing was measured in the A-band (d1,0) and Z-disk (dZ) regions of the sarcomere. The axial spacing of the thick-filament backbone was determined from the sixth myosin meridional reflection (M6) and the equilibrium positions of myosin heads from the fourth myosin layer line peak position and the I1,1/I1,0 intensity ratio. Total passive tension was measured during the x-ray experiments, and a differential extraction technique was used to determine the relations between collagen- and titin-based passive tension and sarcomere length. Within the employed range of sarcomere lengths (∼2.2–3.4 μm), titin accounted for >80% of passive tension. X-ray results indicate that titin compresses both the A-band and Z-disk lattice spacing with viscoelastic behavior when fibers are swollen after skinning, and elastic behavior when the lattice is reduced with dextran. Titin also increases the axial thick-filament spacing, M6, in an elastic manner in both the presence and absence of dextran. No changes were detected in either I1,1/I1,0 or the position of peaks on the fourth myosin layer line during passive stress relaxation. Passive tension and M6 measurements were converted to thick-filament compliance, yielding a value of ∼85 m/N, which is several-fold larger than the thick-filament compliance determined by others during the tetanic tension plateau of activated intact muscle. This difference can be explained by the fact that thick filaments are more compliant at low tension (passive muscle) than at high tension (tetanic tension). The implications of our findings are discussed. PMID:21402032
Bzdek, Bryan R.; Power, Rory M.; Simpson, Stephen H.; Royall, C. Patrick
2016-01-01
The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holographic optical tweezers to study the damped surface oscillations of a suspended droplet (<10 μm radius) following the controlled coalescence of a pair of droplets and report the first contactless measurements of the surface tension and viscosity of droplets containing only 1–4 pL of material. An advantage of performing the measurement in aerosol is that supersaturated solute states (common in atmospheric aerosol) may be accessed. For pairs of droplets starting at their equilibrium surface composition, surface tensions and viscosities are consistent with bulk equilibrium values, indicating that droplet surfaces respond to changes in surface area on microsecond timescales and suggesting that equilibrium values can be assumed for growing atmospheric droplets. Furthermore, droplet surfaces are shown to be rapidly modified by trace species thereby altering their surface tension. This equilibration of droplet surface tension to the local environmental conditions is illustrated for unknown contaminants in laboratory air and also for droplets exposed to gas passing through a water–ethanol solution. This approach enables precise measurements of surface tension and viscosity over long time periods, properties that currently are poorly constrained. PMID:28758004
Surface activity of lipid extract surfactant in relation to film area compression and collapse.
Schürch, S; Schürch, D; Curstedt, T; Robertson, B
1994-08-01
The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.
Ozkan, A
2004-09-15
This paper contributes the shear flocculation method as a new approach to determine the critical surface tension of wetting of minerals treated with surfactants. This newly developed approach is based on the decrease of the shear flocculation of the mineral suspension, with decreasing of the surface tension of the liquids used. The solution surface tension value at which shear flocculation does not occur can be defined as the critical surface tension of wetting (gamma c) of the mineral. By using the shear flocculation method, the critical surface tensions of wetting (gamma c) for calcite and barite minerals, treated with surfactants, were obtained as 30.9 and 35.0 mN/m, respectively. These values are in good agreement with data reported previously on the same minerals obtained by the contact angle measurement and flotation methods. The chemical agents used for the treatment of calcite and barite particles were sodium oleate and sodium dodecyl sulfate, respectively.
Toward an Ideal Security State for Northeast Asia 2025
2010-04-01
tension caused by the recent activities of North Korea , such as tests of nuclear weapons and medium- to long-range missiles, dangers for a clash...such as whether deterrence will work in the case of North Korea , whether the U.S. will be determined to extend its conventional and nuclear ...reverse North Korea’s nuclear programs, the region should make a clear distinction between acknowledging that North Korea has developed nuclear
Time and participation in workplace health promotion: Australian qualitative study.
Sargent, Ginny M; Banwell, Cathy; Strazdins, Lyndall; Dixon, Jane
2018-06-01
Workplaces are considered promising settings for protecting and promoting the health and wellbeing of employees. To date, few workplaces, particularly small and medium sized enterprises (SME), or their workers, have adopted Workplace Health Promotion (WHP), raising questions as to why. We conducted interviews in 10 SME in the Australian Capital Territory (ACT) asking managers and workers to reflect on the reasons for their participation (or not) in WHP activities. We qualitatively explored factors that managers consider important when deciding whether to offer WHP and compared these to worker considerations regarding participation. Both workers and managers identified time constraints as a major barrier for participation in WHP activities. If WHP was implemented, time constraints arose mainly from: difficulties scheduling and synchronising activities to include most staff, even then casual staff were mostly excluded; and the duration of time required by employees to participate in the offered activities, and whether this was in paid (work) or unpaid (worker) time. Workers struggled to participate in WHP in their scheduled breaks and were reluctant to use time outside of work hours. We have developed a model illustrating the emerging tension between managers' and workers' needs for WHP participation. WHP participation will likely remain low until this tension, and associated financial implications, are widely acknowledged and addressed. Our research indicates that time should be considered more explicitly and thoughtfully in the workplace engagement and WHP design, to actively respond to constraints from activity duration, scheduling and synchronisation.
ERIC Educational Resources Information Center
Perez, Jose Gutierrez; Llorente, Ma Teresa Pozo
2005-01-01
The main idea this article develops is the conceptual chaos, methodological tensions and epistemological conflicts that are being experienced in the field of environmental education as a result of the uncertainty generated by some institutions and international organisms. The authors' perspective starts from the idea that too many expectations…
ERIC Educational Resources Information Center
Rothbaum, Fred; Pott, Martha; Azuma, Hiroshi; Miyake, Kazuo; Weisz, John
2000-01-01
Compares paths of development in Japan (symbiotic harmony) and the United States (generative tension) of parent-child and adult mate relationships, challenging assumptions that certain processes are central in all relationships or that U.S. relationships are less valued or weaker than Japan's. Suggests need to investigate processes underlying, and…
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan
2005-05-01
In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.
Are Organic Aerosols Good Cloud Condensation Nuclei?
NASA Astrophysics Data System (ADS)
Abbatt, J. P.; Broekhuizen, K.; Kumar, P. P.
2002-12-01
The ability of a set of organic-containing aerosols to act as cloud condensation nuclei has been measured in the laboratory using a thermal-gradient diffusion chamber operated at a fixed supersaturation. We observe that particles composed of soluble organics, such as malonic acid and adipic acid, activate at dry particle diameters in agreement with Kohler theory predications assuming the solutes are fully soluble and the droplet has the surface tension of water. Surprisingly, we also observe that sparingly soluble azelaic acid and cis-pinonic acid particles also activate, perhaps because they are being formed in a supersaturated, amorphous state or that their activation is aided by surface uptake of water. Mixed organic/ammonium sulfate particles have also been studied, and a range of behavior is observed. Soluble species such as malonic acid enhance activation through the vapour-pressure lowering effect whereas a thick coating of stearic acid on ammonium sulfate makes the particles totally inactive. Lastly, we have observed that pure oleic acid particles, which show no indication of activation when pure, can be activated after exposure to gas-phase ozone. The atmospheric implications of our results will be discussed. An interesting issue is the degree to which we can quantitatively model our results by assuming the surface tension of the growing droplet is that of water, i.e. without the need to invoke the surface-tension-lowering effect due to surface-active organics.
Li, S; Oreffo, ROC; Sengers, BG; Tare, RS
2014-01-01
Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental-computational approach in a “scaffold-free” 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21-day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a “scaffold-free” 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches. Biotechnol. Bioeng. 2014;111: 1876–1885. PMID:24668194
Wagenführ, Lisa; Meyer, Anne Karen; Marrone, Lara
2016-01-01
Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data—in agreement with in vitro data—indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment. PMID:26577812
On-Line Laser Measurements of the Tension in Thin Fibres
NASA Astrophysics Data System (ADS)
Pearson, Matthew R. T.; Wiederick, H. D.; Sherritt, S.
1996-05-01
We have developed a non-contact method for measuring the tension in a moving nylon fibre. Experiments have been conducted primarily with thin, nylon fibres used in the industrial production of airbags, for which non-destructive tension measurements are critical for ensuring safety standards. The system relies on the standing waves produced as the nylon passes rapidly over a set of two rollers; a laser/photo- diode combination is used to monitor the vibrations between them. A Fourier analysis of the signal generated by a scan of 0.2 sec yields the fundamental frequency of vibration of the fibre. The tension in the fibre is proportional to the square of this fundamental frequency. The present system provides accurate, non-contact measurements of the tension in a moving fibre, and shows promise for industrial application.
Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method
NASA Astrophysics Data System (ADS)
Seric, Ivana; Afkhami, Shahriar; Kondic, Lou
2018-01-01
We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.
Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D
2012-01-01
Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.
2013-01-01
noncompressible internal hemorrhage to the tho- rax. All 4 dogs that were non-KIA dogs that incurred thoracic wounds developed tension pneumothorax and 3 of...receive needle decompression for tension pneumothorax died shortly after arriving at the VTF. An occlusive bandage was ap- plied over the thoracic...hemoglobin-based oxygen car- rier (HBOC).d Unfortunately, this dog subsequently died of unrecognized/untreated tension pneumothorax after arrival at
DNA unwinding by ring-shaped T4 helicase gp41 is hindered by tension on the occluded strand.
Ribeck, Noah; Saleh, Omar A
2013-01-01
The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively little is known about the nature of the interaction with the opposite, 'occluded' strand. Here, we investigate the interplay between the bacteriophage T4 helicase gp41 and the ss/dsDNA fork by measuring, at the single-molecule level, DNA unwinding events on stretched DNA tethers in multiple geometries. We find that gp41 activity is significantly dependent on the geometry and tension of the occluded strand, suggesting an interaction between gp41 and the occluded strand that stimulates the helicase. However, the geometry dependence of gp41 activity is the opposite of that found previously for the E. coli hexameric helicase DnaB. Namely, tension applied between the occluded strand and dsDNA stem inhibits unwinding activity by gp41, while tension pulling apart the two ssDNA tails does not hinder its activity. This implies a distinct variation in helicase-occluded strand interactions among superfamily IV helicases, and we propose a speculative model for this interaction that is consistent with both the data presented here on gp41 and the data that had been previously reported for DnaB.
Corrosion of post-tensioned tendons with deficient grout : final report.
DOT National Transportation Integrated Search
2016-10-20
Recent corrosion failures of post-tensioned (PT) tendons in the Ringling Causeway Bridge (and corrosion development of PT tendons elsewhere in Florida) utilizing pre-packaged low-bleed specified grout products have spurred the need to evaluate what m...
Use of fiber reinforced polymer composite cable for post-tensioning application.
DOT National Transportation Integrated Search
2015-08-01
The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced : polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental : bri...
Utilizing research in practice and generating evidence from practice.
Learmonth, A M
2000-12-01
This paper gives an overview of evidence-based practice in health promotion, with reference mainly to the National Health Service (NHS) context within the UK, but with wider international relevance. It starts by looking at the tensions raised at the interface of the two activities of research and health promotion. It goes on to explore two aspects of evidence-based practice: incorporating research evidence into health promotion activity and developing robustly evaluated practice in such a way as to feed the developing research agenda. Each of these two aspects is explored using a specific example, from within the UK. Finally, the paper goes on to make eight recommendations that taken together would help create an iterative process contributing to the development of health promotion theory and practice.
Gökçe Çokal, Burcu; Aytaç, Bilal; Durak, Zahide Esra; Güneş, Hafize Nalan; Öztürk, Bahadır; Keskin Güler, Selda; Durak, İlker; Yoldaş, Tahir Kurtuluş
2015-10-01
Tension-type headache (TTH) is one of the most common and costly primary types of headache in clinical practice, with an unknown etiology. This study assessed to investigate oxidative and antioxidative status in patients with chronic tension-type headache (CTTH), and to evaluate possible effect of medical treatment. The study included 41 CTTH patients and 19 age- and sex-matched healthy subjects without headache as controls. The CTTH group comprised 20 patients receiving treatment and 21 untreated patients. We evaluated oxidant/antioxidant status by measuring serum malondialdehyde (MDA) levels and activities of antioxidant enzymes, namely glutathione peroxidase (GSH-Px) and catalase (CAT). Comparison of oxidative parameters in the patient and control groups revealed significantly lower CAT activities and higher MDA level and GSH-Px activities in the patient group. In the CTTH group, serum CAT activities were found to be significantly decreased in patient groups, while serum MDA levels and GSH-Px activities were found to be higher in the untreated CTTH patients. These findings suggest that oxidative stress is increased in the patients with CTTH, and medical treatment abolishes the stress in part. It has been concluded that antioxidant support might be helpful for the patients with CTTH to prevent oxidant stress and peroxidation damages further.
Tokuda, Y; Crane, S; Yamaguchi, Y; Zhou, L; Falanga, V
2000-03-01
Low oxygen tension has recently been shown to stimulate cell growth and clonal expansion, as well as synthesis and transcription of certain growth factors and extracellular matrix components. These results have been obtained by exposing cell cultures to a hypoxic environment. Using an oxygen probe, we have now studied how experimental conditions affect the oxygen tension detectable at the cell surface. Dissolved oxygen tension was directly related to the height of the medium above the cell surface (r = 0.8793, P = 0.021), but was constant when no cells were present in the flask (r = -0. 9732, P = 0.001). In both human dermal fibroblasts and NIH/3T3 cultures, oxygen tension decreased linearly as cell density increased (r = -0.835, P < 0.0001; r = -0.916, P < 0.0001, respectively). When human dermal fibroblasts were exposed to 2% O(2), maximum hypoxic levels (0 mmHg) were achieved within approximately 15 min, and the recovery time was within a similar time frame. The addition of rotenone, an inhibitor of cellular respiration, blocked this decrease in oxygen tension at the cell surface, suggesting that cellular consumption of oxygen is responsible for the decline. Finally, we examined the cell-surface oxygen tension in control and acutely wounded human skin equivalents (HSE), consisting of a keratinocyte layer over a type I collagen matrix containing fibroblasts. We found that oxygen tension dropped significantly (P < 0.0001) in acutely wounded areas of HSE as compared to unwounded areas of HSE and that this drop was prevented by the addition of mitomycin C. These results indicate that cell-surface oxygen tension is indirectly related to cell density, and that the amount of detectable oxygen at the cell surface is a function of cell density, the oxygen tension in the incubator, and increased cellular activity, as occurs after injury. Copyright 2000 Wiley-Liss, Inc.
[Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].
Rylova, Iu V; Buravkova, L B
2013-01-01
We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.
NASA Astrophysics Data System (ADS)
Ma, Lin
2017-11-01
This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.
Magalhães, Igor; Bottaro, Martim; Freitas, João R.; Carmo, Jake; Matheus, João P. C.; Carregaro, Rodrigo L.
2016-01-01
ABSTRACT Objectives The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Method Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. Results No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). Conclusion The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance. PMID:27437712
Magalhães, Igor; Bottaro, Martim; Freitas, João R; Carmo, Jake; Matheus, João P C; Carregaro, Rodrigo L
2016-03-18
The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance.
Coupling between myosin head conformation and the thick filament backbone structure.
Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A
2017-12-01
The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.
Post-tensioning and splicing of precast/prestressed bridge beams to extend spans
NASA Astrophysics Data System (ADS)
Collett, Brandon S.; Saliba, Joseph E.
2002-06-01
This paper explores the status and techniques of post-tensioning and splicing precast concrete I-beams in bridge applications. It will look at the current practices that have been used in the United States and comment on the advantages of these techniques. Representative projects are presented to demonstrate the application and success of specific methods used. To demonstrate the benefits of using post-tensioning and splicing to extend spans, multiple analysis of simple span post-tensioned I-beams were performed varying such characteristics as beam spacing, beam sections, beam depth and concrete strength. Tables were then developed to compare the maximum span length of a prestressed I-beam versus a one segment or a spliced three segment post-tensioned I-beam. The lateral stability of the beam during fabrication, transportation and erection is also examined and discussed. These tables are intended to aid designers and owners in preliminary project studies to determine if post-tensioning can be beneficial to their situation. AASHTO Standard Specifications(2) will be used as basic guidelines and specifications. In many cases, post-tensioning was found to extend the maximum span length of a typical 72-inch precast I-beam more than 40 feet over conventional prestress.
Paul, Sharad P; Matulich, Justin; Charlton, Nick
2016-07-25
One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines.
Paul, Sharad P.; Matulich, Justin; Charlton, Nick
2016-01-01
One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines. PMID:27453542
Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants
NASA Astrophysics Data System (ADS)
Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai
2018-06-01
With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.
Fluoride glass: Crystallization, surface tension
NASA Technical Reports Server (NTRS)
Doremus, R. H.
1988-01-01
Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1987-01-01
An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.
Cross-bridge elasticity in single smooth muscle cells
1983-01-01
In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640
Effective tension and fluctuations in active membranes.
Loubet, Bastien; Seifert, Udo; Lomholt, Michael Andersen
2012-03-01
We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular, we take constraints on the membrane area and the volume of fluid that it encapsulates into account when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the nonthermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane, a curvature force, which models a fluctuating spontaneous curvature, and a permeation force coming from an active transport of fluid through the membrane. For the direct force and curvature force cases, we compare our results to existing experiments on active membranes.
Development of DPD coarse-grained models: From bulk to interfacial properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano Canchaya, José G.; Dequidt, Alain, E-mail: alain.dequidt@univ-bpclermont.fr; Goujon, Florent
2016-08-07
A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG andmore » atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.« less
NASA Astrophysics Data System (ADS)
Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno
2013-04-01
Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.
Modeling of surface tension effects in venturi scrubbing
NASA Astrophysics Data System (ADS)
Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.
A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.
Feasibility of using shape memory alloys to develop self post-tensioned concrete bridge girders.
DOT National Transportation Integrated Search
2013-08-01
Post-tensioned (PT) structural elements are used quite often in bridges due to their ability to span long widths : economically while providing an aesthetically pleasing structure. PT systems are also preferred in bridge construction : because they g...
Fernández-De-Las-Peñas, César; Arendt-Nielsen, Lars
2017-09-01
The underlying etiology of tension type headache (TTH) is not understood. The current paper highlights the etiologic role of muscle trigger points (TrPs) to the development and maintenance of central sensitization in TTH and its clinical repercussion for proper management of these patients. Areas covered: A literature search on Pub Med for English-language published papers between 1990 and May 2017 to provide the most updated data on the topic was conducted. Current literature suggests that the referred pain elicited by active trigger points (TrPs) contributes to the manifestations of TTH. There is also evidence supporting that TrPs represent a peripheral source of nociception and thereby a driver in the development of central sensitization. In fact, TrPs have been found to be associated with widespread pressure pain sensitivity in TTH. Temporal and spatial summation of TrP nociception suggests that inactivating TrP in the neck, head and shoulder muscles could help these patients; however, current evidence supporting the therapeutic role of TrPs in TTH is conflicting. Expert commentary: Understanding the role of TrPs in TTH in widespread pain sensitization may help to develop better management regimes and possibly prevent TTH from developing into more chronic conditions.
Bilateral tension pneumothorax resulting from a bicycle-to-bicycle collision.
Edwin, Frank; Sereboe, Lawrence; Tettey, Mark Mawutor; Aniteye, Ernest; Bankah, Patrick; Frimpong-Boateng, Kwabena
2009-01-01
Bilateral tension pneumothorax occurring as a result of recreational activity is exceedingly rare. A 10-year-old boy with no previous respiratory symptoms was involved in a bicycle-to-bicycle collision during play. He was the only one hurt. A few hours later, he was rushed to the general casualty unit of the emergency department of our institution with respiratory distress, diminished bilateral chest excursions and diminished breath sounds. The correct diagnosis was made after a chest radiograph was obtained in the course of resuscitation at the casualty unit. Pleural space needle decompression was suggestive of tension only on the right. Bilateral tube thoracostomies provided effective relief. He was discharged from hospital after a week in excellent health. This case illustrates the need for children to have safety instruction to reduce the risks of recreational bicycling. Chest radiography may be needed to establish the diagnosis of bilateral tension pneumothorax. Needle thoracostomy decompression is not always effective.
Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.
Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans
2012-03-15
Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society
Tension responses to rapid pressure release in glycerinated rabbit muscle fibers.
Fortune, N S; Geeves, M A; Ranatunga, K W
1991-01-01
We have previously shown that the isometric tension of a fully calcium-activated skinned rabbit psoas muscle fiber is reversibly depressed by increased hydrostatic pressure. We report here the characterization of tension transients induced by a rapid (less than 1-ms) release of increased pressure at 12 degrees C. The tension transient consists of three clear phases, an initial further decrease of tension in phase with pressure change followed by two phases of tension increase back to the level recorded at ambient pressure. The mean reciprocal relaxation time for phase 2 (1/tau 2) was approximately 17 s-1 and that for phase 3 (1/tau 3) was 3 s-1. The presence of 20 mM inorganic phosphate markedly increased 1/tau 2 to approximately 52 s-1 and decreased 1/tau 3 to approximately 1.7 s-1. These observations are interpreted in terms of a pressure-sensitive transition between two attached crossbridge states of low (or zero) and higher force. This is compatible with the pressure-sensitive isomerization of actomyosin previously observed in solution. The results presented allow us to propose a coupling between a specific pressure-sensitive isomerization of purified actomyosin, the phosphate release step of the ATPase pathway, and the force-generating event of the cross-bridge cycle. PMID:1871140
NASA Astrophysics Data System (ADS)
Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.
2003-12-01
The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.
NASA Astrophysics Data System (ADS)
Ouyang, Bo; Shang, Weiwei
2016-03-01
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.
2010-12-01
On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.
NASA Astrophysics Data System (ADS)
Yuzhakov, AD; Nosarev, AV; Aleinik, AN
2017-11-01
This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.
Trafford, Zara; Swartz, Alison; Colvin, Christopher J
2018-02-01
In this paper, we explore the increasing activity around labor rights for South African community health workers (CHWs). Contextualizing this activity within broader policy and legal developments, we track the emergence of sporadic mobilizations for decent work (supported by local health activist organizations) and subsequently, the formation of a CHW union. The National Union of Care Workers of South Africa (NUCWOSA) was inaugurated in 2016, hoping to secure formal and secure employment through government and the consequent labor and occupational health protections. Various tensions were observed during fieldwork in the run up to NUCWOSA's formation and raise important questions about representation, legitimacy, and hierarchies of power. We close by offering suggestions for future research in this developing space.
NASA Technical Reports Server (NTRS)
Celic, Alan; Zilliac, Gregory G.
1998-01-01
The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.
Koskella, J.; Stotzky, G.
1997-01-01
The insecticidal toxins produced by Bacillus thuringiensis subspp. kurstaki and tenebrionis were resistant when bound on clays, but not when free, to utilization by pure and mixed cultures of microbes as sources of carbon and carbon plus nitrogen, and their availability as a nitrogen source was reduced. The bound toxins retained insecticidal activity both before and after exposure to microbes or pronase. The insecticidal activity of the toxins persisted for 40 days (the longest time evaluated) in nonsterile soil continuously maintained at the -33-kPa water tension and room temperature, alternately air dried and rewetted to the -33-kPa water tension, or alternately frozen and thawed, although alternate drying and wetting reduced the activity. PMID:16535692
Development of clay liquid detergent for Islamic cleansing and the stability study.
Angkatavanich, J; Dahlan, W; Nimmannit, U; Sriprasert, V; Sulongkood, N
2009-04-01
Clay liquid detergents (CLDs) were developed for cleansing religiously-prohibited dirt ('najis') according to Islamic law. Four types of clay were selected: marl, kaolin, bentonite and veegum. After product development trials, five CLD formulations with varying combinations of clays were qualified for stability testing. Three exaggerated temperature conditions were considered: 4 degrees C for 24 h, 50 degrees C for 7 days, and 40 degrees C for 1 month. The CLDs were also evaluated at 30, 60 and 90 days after production, while being stored at room temperature (RT30, RT60 and RT90). Physical and chemical characteristics including pH, colour, viscosity, surface tension, foam tests and sensory liking scores were evaluated. Our results showed that the kaolin-based formula, F2, had an optimal pH (closest to skin pH) of 5.08. The other formulas ranged from pH 6 to 8. Colour shades of the CLDs ranged from white, to creamy white, to mildly greenish-white. The foaming properties of the CLDs, the means +/- SD of foam heights at 0 and 5 min, using the Ross-Miles test, were 19.13 +/- 0.25 to 20.88 +/- 0.45 cm at RT90 and were comparable with those of commercial detergents. Foam stability of all CLDs was high, as shown from the foam heights between 0 and 5 min being not significantly different (P > 0.05). The surface tensions, means +/- SD, of CLD solutions were between 27.94 +/- 0.08 and 28.72 +/- 0.04 mN m(-1), which were slightly better than the surface tension of 29.08 +/- 0.04 mN m(-1) for sodium lauryl sulphate. There was a weak negative relationship between surface activity and foam height, based on the pooled data of the CLDs (R(2) = 0.209, P < 0.01). The viscosity of four CLDs ranged from 16 317 to 49 036 mPa s. In conclusion, CLDs can be formulated with good stability. F2 (kaolin-based, with a white, creamy texture) was the best CLD formula. It had the highest surface activity, moderate lathering and pleasant physical appearance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditenberg, Ivan A.; Grinyaev, Konstantin V.; Tyumentsev, Alexander N.
2015-10-27
Influence of tension temperature on features of plastic deformation and fracture of V–4.23Cr–1.69Zr–7.56W alloy was investigated by scanning and transmission electron microscopy. It is shown that temperature increase leads to activation of the recovery processes, which manifests in the coarsening of microstructure elements, reducing the dislocation density, relaxation of continuous misorientations.
Crafting Research from the Liminal Space
ERIC Educational Resources Information Center
Burns, Stuart
2012-01-01
Tony Watson developed an approach of "intellectual craftsmanship" within management research and writing, and appealed for the hand behind the text to be made visible. This paper considers the tensions apparent between the utility of writing and the positionality of the researcher. I explore the tensions, limitations and formational…
Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
Hu, Junlang; Lei, Pan; Mohsin, Ali; Liu, Xiaoyun; Huang, Mingzhi; Li, Liang; Hu, Jianhua; Hang, Haifeng; Zhuang, Yingping; Guo, Meijin
2017-09-12
Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13 C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden-Meyerhof-Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD + ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. This study shows that integration of transcriptomics, 13 C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin's regulatory mechanisms in B. subtilis grown under different dissolved oxygen tension conditions. The two-component system, ResD-ResE, was considered as the signal receiver of DO tension and gene regulator that led to differences between biomass and riboflavin production after triggering the shifts in gene expression, metabolic flux distributions and metabolite pool sizes.
Rankin, Demicha; Mathew, Paul S; Kurnutala, Lakshmi N; Soghomonyan, Suren; Bergese, Sergio D
2014-01-01
The intraoperative progression of a simple or occult pneumothorax into a tension pneumothorax can be a devastating clinical scenario. Routine use of prophylactic thoracostomy prior to anesthesia and initiation of controlled ventilation in patients with simple or occult pneumothorax remains controversial. We report the case of a 75-year-old trauma patient with an insignificant pneumothorax on the right who developed an intraoperative tension pneumothorax on the left side while undergoing thoracic spine stabilization surgery in the prone position. Management of an intraoperative tension pneumothorax requires prompt recognition and treatment; however, the prone position presents an additional challenge of readily accessing the standard anatomic sites for pleural puncture and air drainage.
Neuromuscular control of the glottis in a primitive air-breathing fish, Amia calva.
Davies, P J; Hedrick, M S; Jones, D R
1993-01-01
The neuromuscular control of the glottis, a muscular sphincter that controls air flow to and from the swim bladder, was investigated using in vitro preparations from bowfin (Amia calva). Stimulation of the ramus intestinalis branch of the vagus nerve caused an increase in isometric tension of the glottal musculature, indicating active closure. The glottis could be actively opened only by direct stimulation of muscle bundles lying lateral to the glottis. In 19 of 24 preparations supramaximal nerve stimulation (20 Hz, 10 V) caused a two-phase increase in muscle tension. Immediately after the onset of stimulation there was a rapid increase in muscle tension. After the end of the train of stimuli, the tension decreased and then again increased briefly followed by a slow return to baseline lasting approximately 60 s. The addition of hyoscine reduced maximum tension of the response by 63 +/- 7% and abolished the second slower element of the response to vagal stimulation. The remaining faster response to nerve stimulation was abolished by tubocurarine. Applied acetylcholine or carbachol mimicked the slow response, causing a slow-onset sustained contraction that was abolished by hyoscine. Hence, the musculature showed physiological characteristics of both skeletal and smooth muscle. Histological examination of the glottis confirmed the physiological results: smooth muscle fibers were found lining the pneumatic duct and lumen of the glottis arranged in a circular fashion around the lateral margins of the glottis. Distinct skeletal muscle bundles were found lateral to the smooth muscle and also arranged in parallel with the glottal lumen, forming a skeletal muscle sphincter.(ABSTRACT TRUNCATED AT 250 WORDS)
Palix, Julie; Akselrod, Michel; Cungi, Charly; Giuliani, Fabienne; Favrod, Jérôme
2017-01-01
The present study investigates the possibilities of using heart rate variability (HRV) parameters as physiological markers that precede increase in observed behavioral excitation of intellectually disabled individuals. The ability to recognize or predict such patterns, especially in patients showing unpredictable reactions and language deficiencies, might be a major step forward in clinical research. Thirteen volunteers with intellectual disabilities, who had suffered of at least one event of overt aggression in the preceding 3 months, participated to the study. The protocol consists in the acquisition of continuous electrocardiogram (ECG) throughout approximately two times of 8 h in natural situation, using a T-shirt integrated with sensors. Simultaneously, an observer evaluates the patient's level of overt excitation from calm (level 1) to extremely tense (level 5) and send online via Bluetooth these triggers into the ECG signals. The HRV indexes were then estimated offline on the basis of the inter-beat intervals recorded by the ECG, independently for the 30 min preceding each behavioral tension marking point, averaged, and compared through non-parametric Wilcoxon matched-pairs test. Of these, the RMSSD and LF/HF calculations were used to observe the fluctuations of inhibitory activity and cardiovagal balance through different tension states. Seven individuals have sufficient reliable data for analysis. They have reached at least a level 3 of behavioral excitation (moderately tense) or more (very to extremely tense, level 4 and 5) and have been retained for further analysis. In sum, a total of 197 periods of tension were kept, made up of 46 periods of slight excitation (level 2), 18 of moderate excitation (level 3), 10 of high excitation (level 4), and 5 of extreme agitation (level 5). Variations in the HRV as a function of degree of excitation are observed for RMSSD index only (inhibitory parasympathetic activity). The changes from calm to increasing levels of excitation are characterized by a significant downfall in RMSSD index when patients were evaluated to be in a very high level of tension (level 4). The presence of precursors to agitation, reflected in the falling-off of parasympathetic activity, offers potentially interesting prospects for therapeutic development.
Giant and switchable surface activity of liquid metal via surface oxidation
Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.
2014-01-01
We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767
Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells
Cokic, Bojana B Beleslin; Cokic, Vladan P; Suresh, Sukanya; Wirt, Stacey; Noguchi, Constance Tom
2014-01-01
Erythropoietin receptor (EPOR) expression level determines the extent of erythropoietin (EPO) response. Previously we showed that EPOR expression in endothelial cells is increased at low oxygen tension and that EPO stimulation of endothelial cells during hypoxia can increase endothelial nitric oxide (NO) synthase (eNOS) expression and activation as well as NO production. We now observe that while EPO can stimulate NO production, NO in turn can regulate EPOR expression. Human umbilical vein endothelial cells (HUVEC) treated with 10–50 μM of NO donor diethylenetriamine NONOate (DETANO) for 24 hours showed significant induction of EPOR gene expression at 5% and 2% of oxygen. Also human bone marrow microvascular endothelial cell line (TrHBMEC) cultured at 21 and 2% oxygen with 50 μM DETANO demonstrated a time and oxygen dependent induction of EPOR mRNA expression after 24 and 48 hours, particularly at low oxygen tension. EPOR protein was also induced by DETANO at 2% oxygen in TrHBMEC and HUVEC. The activation of signaling pathways by NO donor stimulation appeared to be distinct from EPO stimulation. In reporter gene assays, DETANO treatment of HeLa cells at 2% oxygen increased EPOR promoter activity indicated by a 48% increase in luciferase activity with a 2 kb EPOR promoter fragment and a 71% increase in activity with a minimal EPOR promoter fragment containing 0.2Kb 5′. We found that DETANO activated MAPK kinase in TrHBMEC both in normoxia and hypoxia, while MAPK kinase inhibition showed significant reduction of EPOR mRNA gene expression at low oxygen tension, suggesting MAPK involvement in NO mediated induction of EPOR. Furthermore, DETANO stimulated Akt anti-apoptotic activity after 30 minutes in normoxia, whereas it inhibited Akt phosphorylation in hypoxia. In contrast, EPO did not significantly increase MAPK activity while EPO stimulated Akt phosphorylation in TrHBMEC in normoxia and hypoxia. These observations provide a new effect of NO on EPOR expression to enhance EPO response in endothelial cells, particularly at low oxygen tensions. PMID:24518819
Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells.
Cokic, Bojana B Beleslin; Cokic, Vladan P; Suresh, Sukanya; Wirt, Stacey; Noguchi, Constance Tom
2014-03-01
Erythropoietin receptor (EPOR) expression level determines the extent of erythropoietin (EPO) response. Previously we showed that EPOR expression in endothelial cells is increased at low oxygen tension and that EPO stimulation of endothelial cells during hypoxia can increase endothelial nitric oxide (NO) synthase (eNOS) expression and activation as well as NO production. We now observe that while EPO can stimulate NO production, NO in turn can regulate EPOR expression. Human umbilical vein endothelial cells (HUVEC) treated with 10-50 μM of NO donor diethylenetriamine NONOate (DETANO) for 24h showed significant induction of EPOR gene expression at 5% and 2% of oxygen. Also human bone marrow microvascular endothelial cell line (TrHBMEC) cultured at 21 and 2% oxygen with 50 μM DETANO demonstrated a time and oxygen dependent induction of EPOR mRNA expression after 24 and 48 h, particularly at low oxygen tension. EPOR protein was also induced by DETANO at 2% oxygen in TrHBMEC and HUVEC. The activation of signaling pathways by NO donor stimulation appeared to be distinct from EPO stimulation. In reporter gene assays, DETANO treatment of HeLa cells at 2% oxygen increased EPOR promoter activity indicated by a 48% increase in luciferase activity with a 2 kb EPOR promoter fragment and a 71% increase in activity with a minimal EPOR promoter fragment containing 0.2 kb 5'. We found that DETANO activated MAPK kinase in TrHBMEC both in normoxia and hypoxia, while MAPK kinase inhibition showed significant reduction of EPOR mRNA gene expression at low oxygen tension, suggesting MAPK involvement in NO mediated induction of EPOR. Furthermore, DETANO stimulated Akt anti-apoptotic activity after 30 min in normoxia, whereas it inhibited Akt phosphorylation in hypoxia. In contrast, EPO did not significantly increase MAPK activity while EPO stimulated Akt phosphorylation in TrHBMEC in normoxia and hypoxia. These observations provide a new effect of NO on EPOR expression to enhance EPO response in endothelial cells, particularly at low oxygen tensions. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, P.; Schawalder, H.; Weibel, B.
The mutagenic activities of aristolochic acid I (AAI) and II (AAII), the two main components of aristolochic acid (AA), were tested for mutagenicity in vivo in a subcutaneous granulation tissue in rats and in vitro in the corresponding freshly isolated and cultured target cells. In vivo at equimolar dose, AAI induced 16 times more 6-thioguanine resistant cells than AAII. Oxygen tension in vitro was adjusted to that found in vivo: in the subcutaneous connective tissue, the pO/sub 2/ was determined to be 40 +/- 9 mm Hg, which corresponds in vitro to an O/sub 2/ concentration of 5% in themore » incubator atmosphere. In vitro, AAI was 19 times more mutagenic than AAII at this low oxygen tension but exhibited only 4 times greater activity than AAII under standard culture conditions. These results indicate that the genotoxic activity of AA in mammals is mainly caused by AAI and that the exposure of cells to AAI and AAII in vitro at low pO/sub 2/ corresponds more closely to the metabolic situation in vivo. Therefore, the mutagenic potency of the two chemicals can only be estimated correctly at tissue oxygen tension. The influence of pO/sub 2/ on the mutation frequencies seems to arise from a modulation of the activation/detoxification pathways.« less
Microgravity: Teacher's guide with activities for physical science
NASA Technical Reports Server (NTRS)
Vogt, Gregory L.; Wargo, Michael J.; Rosenberg, Carla B. (Editor)
1995-01-01
This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions.
Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M
1996-01-01
We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Sanat K.; Das, Prasanta K., E-mail: pkd@mech.iitkgp.ernet.in; Maiti, Biswajit
2015-03-14
A rigorous thermodynamic formulation of the geometric model for heterogeneous nucleation including line tension effect is missing till date due to the associated mathematical hurdles. In this work, we develop a novel thermodynamic formulation based on Classical Nucleation Theory (CNT), which is supposed to illustrate a systematic and a more plausible analysis for the heterogeneous nucleation on a planar surface including the line tension effect. The appreciable range of the critical microscopic contact angle (θ{sub c}), obtained from the generalized Young’s equation and the stability analysis, is θ{sub ∞} < θ{sub c} < θ′ for positive line tension and ismore » θ{sub M} < θ{sub c} < θ{sub ∞} for negative line tension. θ{sub ∞} is the macroscopic contact angle, θ′ is the contact angle for which the Helmholtz free energy has the minimum value for the positive line tension, and θ{sub M} is the local minima of the nondimensional line tension effect for the negative line tension. The shape factor f, which is basically the dimensionless critical free energy barrier, becomes higher for lower values of θ{sub ∞} and higher values of θ{sub c} for positive line tension. The combined effect due to the presence of the triple line and the interfacial areas (f{sup L} + f{sup S}) in shape factor is always within (0, 3.2), resulting f in the range of (0, 1.7) for positive line tension. A formerly presumed appreciable range for θ{sub c}(0 < θ{sub c} < θ{sub ∞}) is found not to be true when the effect of negative line tension is considered for CNT. Estimation based on the property values of some real fluids confirms the relevance of the present analysis.« less
Annesi, James J
2008-01-01
It has been suggested that physical activity may affect weight reduction outcomes through associated improvements in mood. Relations of physical activity, mood, and weight change are not well understood in persons classified as severely obese (BMI > or = 40 kg/m(2)), however. This research tested these relationships in women with severe obesity. 57 women with a mean BMI of 43.8 kg/m(2) were enrolled in a cognitive-behavioral exercise support treatment with group-based nutrition information. Measurement of depression, tension, overall mood, and BMI was taken at baseline and month 6, and exercise session attendance was recorded. The treatment was associated with significant improvements in depression, tension and total mood disturbance scores as well as in BMI over 6 months. Changes in mood scores that were more positive were correlated with a greater reduction in BMI. Mean attendance in the prescribed 3 session/week exercise regimen was 46.0%, and attendance was significantly correlated with changes in tension and total mood disturbance scores, and approached significance with changes in depression scores. Findings suggested significant relations of mood and weight change as well as of physical activity and mood in severely obese women associated with a treatment of moderate physical activity. With extensions of this research, weight loss theory and treatment may benefit. Copyright 2008 S. Karger AG, Basel.
Design of an improved post for use in a non-proprietary high-tension cable median barrier.
DOT National Transportation Integrated Search
2015-05-01
The objective of this research study was to develop a revised post section for the non-proprietary high-tension cable : median barrier that improved the safety and function of the post by lowering strong-axis forces. A total of twenty dynamic : compo...
Simulation-Based Constructivist Approach for Education Leaders
ERIC Educational Resources Information Center
Shapira-Lishchinsky, Orly
2015-01-01
The purpose of this study was to reflect the leadership strategies that may arise using a constructivist approach based on organizational learning. This approach involved the use of simulations that focused on ethical tensions in school principals' daily experiences, and the development of codes of ethical conduct to reduce these tensions. The…
ERIC Educational Resources Information Center
Folta, Bernarr
This paper discusses the rationale and teaching methods for a six-week unit, for a high school freshman English Class, on perception, semantics, and writing, which places special focus on developing tension in student writing. The first four objectives of the course focus on perception and the next two focus on semantics. The seventh…
On the Development of Constitutive Relations for Plain and Reinforced Concrete.
1982-04-09
Costitutive e Con- dizioni di Rottura del Calcestruzzo in Stati de Tensione Mono e Pluriassiali." Costruzione in Cemento Armato, Studi e Rendiconti...leggi, costitutive e con- dizioni di rottura del calcestruzzo in stati di tensione mono e pluriassiali." Construzione in Cemento Armato, Studi e
STEAM-y Partnerships: A Case of Interdisciplinary Professional Development and Collaboration
ERIC Educational Resources Information Center
Kelton, Molly L.; Saraniero, Patti
2018-01-01
Museum partnerships can involve significant tensions, especially when these collaborations reach across institutions to blend disciplines such as art and mathematics. Rather than simply being obstacles to overcome, we suggest that tensions arising in multi-institutional, cross-disciplinary collaborations can be highly generative for collaborators,…
Torque Tension Testing of Fasteners used for NASA Flight Hardware Applications
NASA Technical Reports Server (NTRS)
Hemminger, Edgar G.; Posey, Alan J.; Dube, Michael J.
2014-01-01
The effect of various lubricants and other compounds on fastener torque-tension relationships is evaluated. Testing was performed using a unique test apparatus developed by Posey at the NASA Goddard Space Flight Center. A description of the test methodology, including associated data collection and analysis will be presented. Test results for 300 series CRES and A286 heat resistant fasteners, torqued into various types of inserts will be presented. The primary objective of this testing was to obtain torque-tension data for use on NASA flight projects.
Effect of temperature and concentration on the surface tension of chia seed mucilage
NASA Astrophysics Data System (ADS)
Fu, Yuting; Arye, Gilboa
2017-04-01
The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.
Bazzotti, L
1999-01-01
On a population of 52 subjects surface electromyographic recordings of temporals and masseters, simultaneously with mandible dynamic of closure and clenching, were performed, in order to study tension and frequency behaviour in three postural conditions: rest, isotonic and isometric contractions. Frequency was studied using the median resulting from FFT calculation, and a new computing method, which presents the proportion of frequencies making up the whole EMG signal, by steps of 50 Hz. Tension was calculated as well. The results permit us to draw the following conclusions: 1. a period of EMG silence was present in 51 of 52 subjects at mandible closure (SPA--Silent Period Area); 2. SPA onset was before teeth contact (22.5 msec., during the motion of the mandible), while its end was after closure (10.2 msec., during motionless phase of clenching). This allowed to use the SPA as a tool to clearly distinguish isotonic from isometric contraction; 3. the comparison of tension and frequency, expressed as median, showed that at rest a muscle presents low frequency and low tension. In active contraction both increase their values. Nevertheless, in active contraction, while no differences were found in frequency behaviour, tension showed a difference: although higher than at rest, isotonic contraction presented lower values than during isometric contraction; 4. the study performed by the new program showed that the low frequency at rest was due to the high proportion (30-40%) of frequencies of less than 50 Hz, while the increase at function was due to the parallel increase of frequencies comprised between 100 and 250 Hz. Because it is known that muscles are composed of fibers at low frequency and at high frequency of discharge, which play different functional roles, the last finding suggests that the mathematical analysis of the spectrum of frequencies, could provide a functional-histological image of the muscle.
Active Cellular Mechanics and its Consequences for Animal Development
NASA Astrophysics Data System (ADS)
Noll, Nicholas B.
A central goal of developmental biology is to understand how an organism shapes itself, a process referred to as morphogenesis. While the molecular components critical to determining the initial body plan have been well characterized, the control of the subsequent dynamics of cellular rearrangements which ultimately shape the organism are far less understood. A major roadblock to a more complete picture of morphogenesis is the inability to measure tissue-scale mechanics throughout development and thus answer fundamental questions: How is the mechanical state of the cell regulated by local protein expression and global pattering? In what way does stress feedback onto the larger developmental program? In this dissertation, we begin to approach these questions through the introduction and analysis of a multi-scale model of epithelial mechanics which explicitly connects cytoskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy two primary assumptions: that the mechanical balance of cells is dominated by cortical tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent manner. Remarkably, the interplay of these features allows for angle-preserving, i.e. 'isogonal', dilations or contractions of local cell geometry that do not generate stress. Asymptotically this model is stabilized provided there is mechanical feedback on expression of myosin within the cell; we take this to be a strong prediction to be tested. The ATN model exposes a fundamental connection between equilibrium cell geometry and its underlying force network. In Chapter 3, we relax the tension-net approximation and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have non-trivial geometric constraints that imply the network is described by a weighted `dual' triangulation. We show that the dual triangulation encodes all information about the mechanical state of an epithelial tissue. Utilizing the stress-geometry 'duality', we formulate a local "Mechanical Inference" of cellular-level stress using solely cell geometry that dramatically improves over past image-based inference techniques. In Chapter 4, we generalize the ATN model to explore the controlled re-arrangement of cells within epithelial tissues. This requires us to explicitly consider the effects of cadherin mediated adhesion, and its regulation, on tissue morphogenesis. We find that positive feedback between myosin and cortical tension, along with traction-dependent depletion of cytoskeletal cadherin is sufficient to recapitulate the morphogenetic movement of cells observed during convergent extension of the lateral ectoderm during Drosophila embryogenesis. Statistical analyses of live-imaging data supports the fundamentals of the model. Chapter 5 focuses on morphogenesis at a mesoscopic scale by coarse-graining the cellular ATN model. Under this limit, we expect an epithelial tissue should behave as an effective viscous, compressible fluid driven by myosin gradients on intermediate time-scales. Theoretical predictions are empirically tested against in-toto microscopy data obtained during early Drosophila embryogenesis.
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria
Xu, Zeling; Yan, Aixin
2015-01-01
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630
Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear
NASA Astrophysics Data System (ADS)
Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.
2016-08-01
The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Pia; Department of Neurosurgery, University of Bern, CH-3010 Bern; Gramsbergen, Jan-Bert
Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactivemore » (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.« less
Evolving Norms at the Intersection of Health and Trade
Drope, Jeffrey; Lencucha, Raphael
2014-01-01
There has been growing tension at the intersection of health and economic policymaking as global governance has increased across sectors. This tension has been particularly evident between tobacco control and trade policy, as the international norms that frame them – particularly the Framework Convention on Tobacco Control and the World Trade Organization (WTO) – have continued to institutionalize. Using five case studies of major tobacco-related trade disputes from the principal multilateral system of trade governance – the WTO/General Agreement on Tariffs and Trade – we trace the evolution of these interacting norms over nearly 25 years. Our analytic framework particularly focuses on the actors that advance, defend and challenge these norms. We find that an increasingly broad network, which includes governments, intergovernmental organizations, non-governmental organizations and members of the epistemic community, is playing a more active role in seeking to resolve these tensions. Moreover, key economic actors are beginning to incorporate health more actively in their messaging and activities. We also demonstrate that the most recent resonant messages reflect a more nuanced integration of the two norms. The tobacco control example has direct relevance to related policy areas, including environment, safety, access to medicines, diet, and alcohol. PMID:24603086
Numerical simulation of active track tensioning system for autonomous hybrid vehicle
NASA Astrophysics Data System (ADS)
Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel
2017-05-01
One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.
A thermodynamical model for the surface tension of silicate melts in contact with H2O gas
Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello
2016-01-01
Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.
Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation
NASA Technical Reports Server (NTRS)
Barahona, Donifan
2013-01-01
In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.
Mann, Karen; van der Vleuten, Cees; Eva, Kevin; Armson, Heather; Chesluk, Ben; Dornan, Timothy; Holmboe, Eric; Lockyer, Jocelyn; Loney, Elaine; Sargeant, Joan
2011-09-01
Informed self-assessment describes the set of processes through which individuals use external and internal data to generate an appraisal of their own abilities. The purpose of this project was to explore the tensions described by learners and professionals when informing their self-assessments of clinical performance. This 2008 qualitative study was guided by principles of grounded theory. Eight programs in five countries across undergraduate, postgraduate, and continuing medical education were purposively sampled. Seventeen focus groups were held (134 participants). Detailed analyses were conducted iteratively to understand themes and relationships. Participants experienced multiple tensions in informed self-assessment. Three categories of tensions emerged: within people (e.g., wanting feedback, yet fearing disconfirming feedback), between people (e.g., providing genuine feedback yet wanting to preserve relationships), and in the learning/practice environment (e.g., engaging in authentic self-assessment activities versus "playing the evaluation game"). Tensions were ongoing, contextual, and dynamic; they prevailed across participant groups, infusing all components of informed self-assessment. They also were present in varied contexts and at all levels of learners and practicing physicians. Multiple tensions, requiring ongoing negotiation and renegotiation, are inherent in informed self-assessment. Tensions are both intraindividual and interindividual and they are culturally situated, reflecting both professional and institutional influences. Social learning theories (social cognitive theory) and sociocultural theories of learning (situated learning and communities of practice) may inform our understanding and interpretation of the study findings. The findings suggest that educational interventions should be directed at individual, collective, and institutional cultural levels. Implications for practice are presented.
Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.
2015-01-01
The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.
NASA Technical Reports Server (NTRS)
Kattenhorn, S. A.
2004-01-01
An unresolved problem in the interpretation of lineae on Europa is whether they formed as tension- or shear-fractures. Voyager image analyses led to hypotheses that Europan lineaments are tension cracks induced by tidal deformation of the ice crust. This interpretation continued with Galileo image analyses, with lineae being classified as crust- penetrating tension cracks. Tension fracturing has also been an implicit assumption of nonsynchronous rotation (NSR) studies. However, recent hypotheses invoke shear failure to explain lineae development. If a shear failure mechanism is correct, it will be necessary to re-evaluate any models for the evolution of Europa's crust that are based on tensile failure models, such as NSR estimates. For this reason, it is imperative that the mechanism by which fractures are initiated on Europa be unambiguously unraveled. A logical starting point is an evaluation of the pros and cons of each failure model, highlighting the lines of evidence that are needed to fully justify either model.
Collapse of Corroded Pipelines under Combined Tension and External Pressure
Ye, Hao; Yan, Sunting; Jin, Zhijiang
2016-01-01
In this work, collapse of corroded pipeline under combined external pressure and tension is investigated through numerical method. Axially uniform corrosion with symmetric imperfections is firstly considered. After verifying with existing experimental results, the finite element model is used to study the effect of tension on collapse pressure. An extensive parametric study is carried out using Python script and FORTRAN subroutine to investigate the influence of geometric parameters on the collapse behavior under combined loads. The results are used to develop an empirical equation for estimating the collapse pressure under tension. In addition, the effects of loading path, initial imperfection length, yielding anisotropy and corrosion defect length on the collapse behavior are also investigated. It is found that tension has a significant influence on collapse pressure of corroded pipelines. Loading path and anisotropic yielding are also important factors affecting the collapse behavior. For pipelines with relatively long corrosion defect, axially uniform corrosion models could be used to estimate the collapse pressure. PMID:27111544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
[The effect of goal framing on the activation of affective representations].
Takehashi, Hiroki; Karasawa, Kaori
2007-10-01
Guided by regulatory focus theory, this study examined the effects of goal framing on the subjective experience of affect and the accessibility of affective representations. Study I examined lay persons' beliefs concerning the relationship between goal framing and certain kinds of affective experiences. The results indicated that a promotion focus was associated with happiness and disappointment, whereas a prevention focus was associated with relaxation and tension. Study 2 examined the effect of goal framing on the activation of affective representations, and found that a promotion focus activated both gain-related representations (happy and disappointment) and loss-related representations (relaxation and tension), whereas a prevention focus activated only loss-related representations. These results suggest that goal framing activates particular affective representations, and the activated affective representations may influence the interpretation of positive or negative experiences. The discussion considered the function of the activation of affective representations as a mediator between goal framing and its cognitive and behavioral consequences.
Ergonomically neutral arm support system
Siminovitch, Michael J; Chung, Jeffrey Y; Dellinges, Steven; Lafever, Robin E
2005-08-02
An ergonomic arm support system maintains a neutral position for the forearm. A mechanical support structure attached to a chair or other mounting structure supports the arms of a sitting or standing person. The system includes moving elements and tensioning elements to provide a dynamic balancing force against the forearms. The support structure is not fixed or locked in a rigid position, but is an active dynamic system that is maintained in equipoise by the continuous operation of the opposing forces. The support structure includes an armrest connected to a flexible linkage or articulated or pivoting assembly, which includes a tensioning element such as a spring. The pivoting assembly moves up and down, with the tensioning element providing the upward force that balances the downward force of the arm.
Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko
2002-10-01
The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.
Tension - Type - Headache treated by Positional Release Therapy: a case report.
Mohamadi, Marzieh; Ghanbari, Ali; Rahimi Jaberi, Abbas
2012-10-01
Tension Type Headache (T.T.H) is the most prevalent headache. Myofascial abnormalities & trigger points are important in this type of headache which can be managed by Positional Release Therapy (PRT). This is a report of a 47 years old female patient with Tension Type Headache treated by Positional Release Therapy for her trigger points. She had a constant dull headache, which continued all the day for 9 months. A physiotherapist evaluated the patient and found active trigger points in her cervical muscles. Then, she received Positional Release Therapy for her trigger points. After 3 treatment sessions, the patient's headache stopped completely. During the 8 months following the treatment she was without pain, and did not use any medication. Positional Release Therapy was effective in treating Tension Type Headache. This suggests that PRT could be an alternative treatment to medication in patients with T.T.H if the effectiveness of that can be confirmed by further studies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bilateral tension pneumothorax resulting from a bicycle-to-bicycle collision
Edwin, Frank; Sereboe, Lawrence; Tettey, Mark Mawutor; Aniteye, Ernest; Bankah, Patrick; Frimpong-Boateng, Kwabena
2009-01-01
Bilateral tension pneumothorax occurring as a result of recreational activity is exceedingly rare. A 10-year-old boy with no previous respiratory symptoms was involved in a bicycle-to-bicycle collision during play. He was the only one hurt. A few hours later, he was rushed to the general casualty unit of the emergency department of our institution with respiratory distress, diminished bilateral chest excursions and diminished breath sounds. The correct diagnosis was made after a chest radiograph was obtained in the course of resuscitation at the casualty unit. Pleural space needle decompression was suggestive of tension only on the right. Bilateral tube thoracostomies provided effective relief. He was discharged from hospital after a week in excellent health. This case illustrates the need for children to have safety instruction to reduce the risks of recreational bicycling. Chest radiography may be needed to establish the diagnosis of bilateral tension pneumothorax. Needle thoracostomy decompression is not always effective. PMID:22148075
Tooth contact in patients with temporomandibular disorders.
Glaros, Alan G; Williams, Karen; Lausten, Leonard; Friesen, Lynn R
2005-07-01
Both experimental and retrospective studies suggest a link between parafunctions and pain in temporomandibular disorder (TMD) patients. To investigate the role of parafunctions in TMD, experience sampling methodology was used as a prospective test of the hypothesis that patients with TMD have higher levels of tooth contact and tension than non-TMD controls. Three groups of TMD patients and a group of normal controls carried pagers for one week, were contacted approximately every two hours by an automated calling system, and completed questionnaires assessing tooth contact, tension, and pain at each contact. Results showed that tooth contact was much more frequent among normal controls than is commonly presumed. Patients with myofascial pain with/without arthralgia reported more frequent contact, higher intensity contact, and more tension than patients with disk displacement or normal controls. Increased masticatory muscle activity responsible for tooth contact and tension may be an important mechanism in the etiology and maintenance of the myofascial pain and arthralgia of TMD.
Regulating mechanical tension at compartment boundaries in Drosophila.
Michel, Marcus; Dahmann, Christian
2016-10-01
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.
Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm
NASA Astrophysics Data System (ADS)
Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi
2012-03-01
This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.
The Inherent Vulnerability of the Australian Curriculum's Cross-Curriculum Priorities
ERIC Educational Resources Information Center
Salter, Peta; Maxwell, Jacinta
2016-01-01
National curriculum development is a complex and contested process. By its very function, a national curriculum serves to organise diverse interests into a common framework, a task fraught with cultural and political tensions and compromises. In the emergent Australian Curriculum these tensions are manifest in and around the cross-curriculum…
Justice and Practice: Tensions in the Development of Social Justice (Teacher) Educators
ERIC Educational Resources Information Center
Schiera, Andrew J.
2017-01-01
This dissertation explores how pre-service teachers conceptualize the relationship between justice and practice, and then navigate the tensions of their student teaching context to enact their beliefs in their teaching practice. Starting from the assumption that all teachers must understand how their practice challenges rather than reproduces…
Borders to Cross: Identifying Sources of Tension in Mentor-Intern Relationships
ERIC Educational Resources Information Center
Bradbury, Leslie Upson; Koballa, Thomas R., Jr.
2008-01-01
We used border crossing as a theoretical framework to explore the tensions that developed between two mentor-intern pairs during the course of a yearlong internship in high schools in the United States. Interviews with mentors and interns, and observations of planning sessions, teaching episodes, and follow-up conferences indicated that differing…
Identification of fungi isolated from banana rachis and characterization of their surface activity.
Méndez-Castillo, L; Prieto-Correa, E; Jiménez-Junca, C
2017-03-01
Filamentous fungi are an unexplored source for the production of biosurfactants, but over a decade one of the most surface active molecules called hydrophobins was discovered. There are few techniques to determine the surface activity of fungi without any kind of manipulation that can affect the final results. In this work, we identified 33 strains of filamentous fungi isolated from banana rachis which may have potential in producing biosurfactants. Further, the production of surface active compounds by the strains was measured by two techniques. First, the surface tension of supernatants was evaluated in liquid cultures of the strains. We found that three strains belonging to the genus Fusarium, Penicillium and Trichoderma showed activity in the reduction of surface tension, which indicate a putative production of biosurfactants. Second, we measured the contact angle between the drop of water and the solid culture of strains to determine the surface activity of cells, classifying the strains as hydrophilic or hydrophobic. These techniques can be used as a quantitative measurement of the surface activity of fungi without cell manipulation. Biosurfactants are an alternative to petrochemical derivatives, and filamentous fungi are a promising source of these molecules. This work identified 33 strains of filamentous fungi in agroindustrial wastes. This is important because these results open the opportunity of finding new biosurfactants (hydrophobins) with unique properties. We propose the evaluation of surface tension in the supernatant as a quantitative screening to determine the production of biosurfactants from the strains of fungi. © 2017 The Society for Applied Microbiology.
ERIC Educational Resources Information Center
Baker, Elizabeth A.; Elliott, Michael; Barnidge, Ellen; Estlund, Amy; Brownson, Ross C.; Milne, Anne; Kershaw, Freda; Hashimoto, Derek
2017-01-01
Background: Schools are an important setting for improving behaviors associated with obesity, including physical activity. However, within schools there is often a tension between spending time on activities promoting academic achievement and those promoting physical activity. Methods: A community-based intervention provided administrators and…
Corrosion of post-tensioning strands in ungrouted ducts - unstressed condition
NASA Astrophysics Data System (ADS)
Hutchison, Michael
Recent failures and severe corrosion distress of post-tensioned (PT) bridges in Florida have revealed corrosion of the 7-wire strands in tendons. Post-tensioned duct assemblies are fitted with multiple 7-wire steel strands and ducts are subsequently filled with grout. During construction, the length of time from the moment in which the strands have been inserted into the ducts, until the ducts are grouted, is referred to as the `ungrouted' period. During this phase, the steel strands are vulnerable to corrosion and consequently the length of this period is restricted (typically to 7 days) by construction guidelines. This investigation focuses on determining the extent of corrosion that may take place during that period, but limited to strands that were in the unstressed condition. Visual inspections and tensile testing were used to identify trends in corrosion development. Corrosion induced cracking mechanisms were also investigated via wire bending and metallographic cross section evaluation. Corrosion damage on unstressed strands during ungrouted periods of durations in the order of those otherwise currently prescribed did not appear to seriously degrade mechanical performance as measured by standardized tests. However the presence of stress in the ungrouted period, as is normally the case, may activate other mechanisms (e.g., EAC) that require further investigation. As expected in the unstressed condition, no evidence of transverse cracking was observed.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
Diener, Hans-Christoph; Gold, Morris; Hagen, Martina
2014-11-19
Most patients with episodic tension-type headache treat headache episodes with over-the-counter medication. Combination analgesics containing caffeine may be more effective and as well tolerated as monotherapy. The aim of this study was to evaluate the efficacy of the combination of acetylsalicylic acid, acetaminophen (paracetamol) and caffeine in episodic tension-type headache using recently recommended endpoints. Four randomized, controlled trials of identical design in 1,900 patients with episodic tension-type headache comparing acetylsalicylic acid, acetaminophen and caffeine vs. acetaminophen or placebo were pooled. Analysis populations were 'all headache episodes' and those with 'severe pain at baseline'. Post-hoc defined primary endpoint: headache episodes pain-free at 2 h. Secondary endpoints: headache episodes pain-free at 1 h, headache response at 2 h (mild or no pain), degree of interference with daily activities. 6,861 headache episodes were treated, including 2,215 severe headache episodes. The proportion of headache episodes pain-free at 2 h was significantly higher with the triple combination (28.5%) vs. acetaminophen (21.0%) and placebo (18.0%) (p < 0.0001), and similarly for those severe at baseline (20.2% vs. 12.1% and 10.8%; p ≤ 0.0003). A similar pattern of superiority was observed for secondary endpoints. The triple combination was generally well tolerated. The combination of acetylsalicylic acid, acetaminophen and caffeine is effective and well tolerated in episodic tension-type headache, and significantly superior to acetaminophen with regard to being pain-free at 2 h, headache response at 2 h and ability to return to daily activities, even in those with pain rated severe at baseline.
Effect of hindlimb immobilization on the fatigability of skeletal muscle
NASA Technical Reports Server (NTRS)
Witzmann, F. A.; Kim, D. H.; Fitts, R. H.
1983-01-01
The effect of 6 weeks of disuse atrophy produced by hindlimb immobilization was studied in situ (33.5 C) in the soleus and extensor digitorum longus muscles of rats. The results indicate that disuse causes preferential alterations in the isometric contractile properties of slow-twitch, as opposed to fast-twitch, skeletal muscles. During continuous contractile activity, atrophied muscles were found to have lower ATP levels and an apparent increase in their dependence on anaerobic metabolism, as reflected by the more extensive depletion of glycogen and enhanced lactate formation. Although the atrophied muscles were determined to have fewer cross bridges and thus generated lower tension, the pattern of decline in active cross-bridge formation and tetanic tension during contractile activity was found to proceed in a manner similar to controls.
Veen, I; Killian, D; Vlaminck, L; Vernooij, J C M; Back, W
2018-03-08
Debate surrounds the use of high rein tension for obtaining different head and neck positions in the training of sport horses on account of possible welfare issues. To compare auxiliary rein tension in two methods (Draw Reins and Concord Leader) for obtaining a standardised head and neck position on a hard and a soft surface. Intervention study. Left and right rein tensions were measured in 11 base-level trained client-owned sport horses (mean age ± s.d.; 10 ± 3.2 years) exercised in-hand with, in a random order, conventional draw reins or the newly developed Concord Leader in a standardised head and neck position. Rein tension was measured using a calibrated device operating at 10 Hz during six runs of 15 s in a straight line for each training method on both a hard and a soft surface. A linear mixed model and grouped logistic regression analysis were applied to compare the two methods (P<0.05). The odds of a tension of 0 N were lower with draw reins than with the Concord Leader. The rein tension (mean sum of the force applied, in N) of the draw reins was 13.8 times higher than that of the Concord Leader. This study was performed on horses exercised in-hand; however, these auxiliary aids are normally used when lungeing. Possible redirection of rein tension towards the poll was not measured. We showed that when using the Concord Leader a similar head and neck position is achieved with a much lower rein tension than with the draw reins and, more importantly, with a much greater likelihood of 0 N. It is unnecessary to use high auxiliary rein tension to obtain a standard, flexed head and neck position. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E
2010-06-01
Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.
A non-orthogonal material model of woven composites in the preforming process
Zhang, Weizhao; Ren, Huaqing; Liang, Biao; ...
2017-05-04
Woven composites are considered as a promising material choice for lightweight applications. An improved non-orthogonal material model that can decouple the strong tension and weak shear behaviour of the woven composite under large shear deformation is proposed for simulating the preforming of woven composites. The tension, shear and compression moduli in the model are calibrated using the tension, bias-extension and bending experiments, respectively. The interaction between the composite layers is characterized by a sliding test. The newly developed material model is implemented in the commercial finite element software LS-DYNA® and validated by a double dome study.
NASA Technical Reports Server (NTRS)
Palmer, Susan O.; Nettles, Alan T.; Poe, C. C.
1998-01-01
A series of tests was conducted to support development of an analytical model for predicting the failure strains of stitched warp-knit carbon/epoxy composite materials with through-thicknesss damage in the form of a crack-like notch. Measurements of strain near notch tips, crack opening displacement (COD), and applied load were monitored in all tests. The out-of-plane displacement at the center of the notch was also measured when the specimen was subjected to bending. Three types of loading were applied: pure bending, pure tension, and combined bending and tension.
Gradient induced liquid motion on laser structured black Si surfaces
NASA Astrophysics Data System (ADS)
Paradisanos, I.; Fotakis, C.; Anastasiadis, S. H.; Stratakis, E.
2015-09-01
This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano-patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/s, which is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells, and drug delivery is envisaged.
Role of GTP-protein and endothelium in contraction induced by ethanol in pig coronary artery.
Kuroiwa, M; Aoki, H; Kobayashi, S; Nishimura, J; Kanaide, H
1993-01-01
1. We examined the effects of ethanol on the contractility of strips of porcine coronary artery, with and without endothelium, and following permeabilization with alpha-toxin, and of aortic valvular endothelial cells, in situ. Changes in cytosolic Ca2+ concentration ([Ca2+]i) of the coronary artery smooth muscle cells and of the valvular endothelial cells were monitored using front-surface fluorometry of the calcium indicator dye, fura-2. In permeabilized preparations, [Ca2+]i was clamped using 10 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N,N',N'-tetra ace tic acid (EGTA) and 10 microM A23187 (a calcium ionophore). 2. The strips without endothelium were placed in normal physiological salt solution (normal PSS) in the presence of ethanol (100-1000 mM). There were dose-dependent increases in [Ca2+]i and a rapid sustained rise in tension. In Ca(2+)-free PSS, ethanol increased [Ca2+]i and tension, similar to, but much smaller than, findings with normal PSS. 3. For a given change in [Ca2+]i induced by ethanol, the developed tension was greater than that observed during contractions induced by high [K+]o. Thus, the [Ca2+]-tension curve for ethanol was shifted to the left of that for high [K+]o. The [Ca2+]-tension curve for the contraction induced by ethanol in the absence of extracellular Ca2+ was shifted further to the left from that obtained in the presence of [Ca2+]o. 4. The mechanisms involved in this Ca(2+)-sensitizing effect of ethanol were investigated using alpha-toxin-permeabilized coronary medial strips. Ethanol increased the tension development, in a concentration-dependent manner, at a fixed concentration of Ca2+ (pCa = 6.3) in the presence of guanosine-5'-triphosphate (GTP), an effect antagonized by guanosine-5'-O-(beta-thiodiphosphate) (GDP beta S), a non-hydrolysable GDP analogue. 5. With intact endothelium, the ethanol-induced tension development was markedly reduced, although inhibition in the increase in [Ca2+]i was slight. The [Ca2+]-tension relationship of this contraction overlapped with that obtained with high [K+]o-induced contraction and was shifted to the right from that obtained in the absence of the endothelium. This endothelium-dependent reduction of [Ca2+]i and tension induced by ethanol was inhibited when the strips were exposed to NG-monomethyl-L-arginine (L-NMMA). 6. Ethanol induced a gradual and sustained increase in [Ca2+]i in normal PSS, and a transient, concentration-dependent increase in [Ca2+]i in Ca(2+)-free PSS in porcine aortic valvular endothelial cells in situ.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8308741
Weiss, T; Erxleben, C; Rathmayer, W
2001-01-01
A single fibre preparation from the extensor muscle of a marine isopod crustacean is described which allows the analysis of membrane currents and simultaneously recorded contractions under two-electrode voltage-clamp conditions. We show that there are three main depolarisation-gated currents, two are outward and carried by K+, the third is an inward Ca2+ current, I(Ca). Normally, the K+ currents which can be isolated by using K+ channel blockers, mask I(Ca). I(Ca) activates at potentials more positive than -40 mV, is maximal around 0 mV, and shows strong inactivation at higher depolarisation. Inactivation depends on current rather than voltage. Ba2+, Sr2+ and Mg2+ can substitute for Ca2+. Ba2+ currents are about 80% larger than Ca2+ currents and inactivate little. The properties of I(Ca) characterise it as a high threshold L-type current. The outward current consists primarily of a fast, transient A current, I(K(A)) and a maintained, delayed rectifier current, I(K(V)). In some fibres, a small Ca2+-dependent K+ current is also present. I(K(A)) activates fast at depolarisation above -45 mV, shows pronounced inactivation and is almost completely inactivated at holding potentials more positive than -40 mV. I(K(A)) is half-maximally blocked by 70 microM 4-aminopyridine (4-AP), and 70 mM tetraethylammonium (TEA). I(K(V)) activates more slowly, at about -30 mV, and shows no inactivation. It is half-maximally blocked by 2 mM TEA but rather insensitive to 4-AP. Physiologically, the two K+ currents prevent all-or-nothing action potentials and determine the graded amplitude of active electrical responses and associated contractions. Tension development depends on and is correlated with depolarisation-induced Ca2+ influx mediated by I(Ca). The voltage dependence of peak tension corresponds directly to the voltage dependence of the integrated I(Ca). The threshold potential for contraction is at about -38 mV. Peak tension increases with increasing voltage steps, reaches maximum at around 0 mV, and declines with further depolarisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Yong-Woon; Mascagni, Michael, E-mail: Mascagni@fsu.edu
2014-09-28
We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ringmore » constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.« less
Rosholm, Kadla R.; Baker, Matthew A. B.; Ridone, Pietro; Nakayama, Yoshitaka; Rohde, Paul R.; Cuello, Luis G.; Lee, Lawrence K.; Martinac, Boris
2017-01-01
The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform. PMID:28345591
Collaboration, interdisciplinarity, and the epistemology of contemporary science.
Andersen, Hanne
2016-04-01
Over the last decades, science has grown increasingly collaborative and interdisciplinary and has come to depart in important ways from the classical analyses of the development of science that were developed by historically inclined philosophers of science half a century ago. In this paper, I shall provide a new account of the structure and development of contemporary science based on analyses of, first, cognitive resources and their relations to domains, and second of the distribution of cognitive resources among collaborators and the epistemic dependence that this distribution implies. On this background I shall describe different ideal types of research activities and analyze how they differ. Finally, analyzing values that drive science towards different kinds of research activities, I shall sketch the main mechanisms underlying the perceived tension between disciplines and interdisciplinarity and argue for a redefinition of accountability and quality control for interdisciplinary and collaborative science. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cathcart, Stuart; Bhullar, Navjot; Immink, Maarten; Della Vedova, Chris; Hayball, John
2012-01-01
A central model for chronic tension-type headache (CTH) posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. The prediction from this model that pain sensitivity mediates the relationship between stress and headache activity has not yet been examined. To determine whether pain sensitivity mediates the relationship between stress and prospective headache activity in CTH sufferers. Self-reported stress, pain sensitivity and prospective headache activity were measured in 53 CTH sufferers recruited from the general population. Pain sensitivity was modelled as a mediator between stress and headache activity, and tested using a nonparametric bootstrap analysis. Pain sensitivity significantly mediated the relationship between stress and headache intensity. The results of the present study support the central model for CTH, which posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. Implications for the mechanisms and treatment of CTH are discussed.
Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.
2014-01-01
Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021
Jackson, Jeffrey L; Mancuso, Josephine M; Nickoloff, Sarah; Bernstein, Rebecca; Kay, Cynthia
2017-12-01
Tension-type headaches are a common source of pain and suffering. Our purpose was to assess the efficacy of tricyclic (TCA) and tetracyclic antidepressants in the prophylactic treatment of tension-type headache. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, the ISI Web of Science, and clinical trial registries through 11 March 2017 for randomized controlled studies of TCA or tetracyclic antidepressants in the prevention of tension-type headache in adults. Data were pooled using a random effects approach. Among 22 randomized controlled trials, eight included a placebo comparison and 19 compared at least two active treatments. Eight studies compared TCAs to placebo, four compared TCAs to selective serotonin reuptake inhibitors (SSRIs), and two trials compared TCAs to behavioral therapies. Two trials compared tetracyclics to placebo. Single trials compared TCAs to tetracyclics, buspirone, spinal manipulation, transcutaneous electrical stimulation, massage, and intra-oral orthotics. High-quality evidence suggests that TCAs were superior to placebo in reducing headache frequency (weighted mean differences (WMD): -4.8 headaches/month, 95% CI: -6.63 to -2.95) and number of analgesic medications consumed (WMD: -21.0 doses/month, 95% CI: -38.2 to -3.8). TCAs were more effective than SSRIs. Low-quality studies suggest that TCAs are superior to buspirone, but equivalent to behavioral therapy, spinal manipulation, intra-oral orthotics, and massage. Tetracyclics were no better than placebo for chronic tension-type headache. Tricyclic antidepressants are modestly effective in reducing chronic tension-type headache and are superior to buspirone. In limited studies, tetracyclics appear to be ineffective in the prophylactic treatment of chronic tension-type headache.
Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.
1976-01-01
The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.
The High-Superior-Tension Technique: Evolution of Lipoabdominoplasty
Pascal, Jean Francois
2010-01-01
Because abdominoplasty is associated with complications such as seroma and necrosis as well as epigastric bulging and a suprapubic scar located too high, the demand for this procedure is not as high as it otherwise might be. However, although these negative effects were common many years ago, their incidence has decreased dramatically with modern abdominoplastic techniques. One approach using a combination of abdominoplasty and liposuction or lipoabdominoplasty has resolved many of the problems faced with earlier techniques, offering aesthetically pleasing results and excellent reliability. The keys to successful lipoabdominoplasty, first developed as the high-superior-tension technique, are extensive liposuction, preservation of lymphatic trunks, preaponeurotic epigastric dissection, major muscle fascia plication, two high-tension paraumbilical sutures, hypogastric tension sutures, and closure of the dead spaces. The most recent updates to this technique are described in this article. PMID:20931193
NASA Astrophysics Data System (ADS)
SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.
2016-07-01
The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.
Isometric contractions of motor units in a fast twitch muscle of the cat
Bagust, J.; Knott, Sarah; Lewis, D. M.; Luck, J. C.; Westerman, R. A.
1973-01-01
1. Isosmetric contractions of cat flexor digitorum longus whole muscles and of functionally isolated motor units have been measured under conditions similar to those used by Buller & Lewis (1965a). 2. Motor unit twitch time to peak was inversely related to axonal conduction velocity. The logarithm of tetanic tension was directly related to conduction velocity. These relationships suggest that each motoneurone has an influence on the muscle fibres which it innervates. 3. The ratio of twitch to tetanic tension was directly related to the time to peak of the motor unit. This fact might be explained by variation between motor units of the duration of `active state'. 4. The muscle length at which tension was maximal varied between motor units and the optima were found over the range of muscle lengths which could occur in the body. Slow motor units had longer optimal lengths. 5. The sample of motor units was considered to be unbiased because the distribution of axon conduction velocities was compatible with reported motor fibre diameter spectra of the muscle nerve. The mean motor unit tetanic tension gave a reasonable estimate of the number of α-motor axons in the muscle nerve. Twitch tensions gave a value that was 40% higher. 6. Motor unit and whole muscle data were in good agreement for length-tetanus tension curves, for times to peak and for twitch-tetanus ratios at long muscle lengths. PMID:4715372
Tracheal smooth muscle responses to substance P and neurokinin A in the piglet.
Haxhiu-Poskurica, B; Haxhiu, M A; Kumar, G K; Miller, M J; Martin, R J
1992-03-01
The tachykinins substance P (SP) and neurokinin A (NKA) have been shown to induce airway smooth muscle contraction in mature animals, and the enzyme neutral endopeptidase (NEP) modulates this effect. We evaluated maturation of SP- and NKA-induced tracheal smooth muscle contraction and modulation of their effects by NEP in anesthetized, paralyzed, and artificially ventilated piglets less than 4 days, 2-3 wk, and 10 wk of age. Tracheal smooth muscle tension was measured in vivo from an open tracheal segment by use of a force transducer. Intravenous SP caused a dose-dependent increase in tracheal tension in all three age groups; however, the response in less than 4-day-old piglets was significantly weaker than in 2- to 3- and 10-wk-old piglets. NKA caused a dose-dependent increase in tracheal tension only in 2- to 3- and 10-wk-old piglets. The response of tracheal tension to NKA was weaker than the response to SP in all age groups. Atropine (2 mg/kg) significantly diminished the responses of tracheal tension to SP and NKA, indicating a cholinergic contribution to these responses at all ages. Intravenous thiorphan, a known NEP inhibitor, potentiated the effects of SP only in 2- to 3- and 10-wk-old piglets and did not affect the response of tracheal tension to NKA at any age. Biochemical analyses demonstrated a significant increase in tracheal NEP activity in comparably aged piglets over the first 10 wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)
Peer assisted learning in the clinical setting: an activity systems analysis.
Bennett, Deirdre; O'Flynn, Siun; Kelly, Martina
2015-08-01
Peer assisted learning (PAL) is a common feature of medical education. Understanding of PAL has been based on processes and outcomes in controlled settings, such as clinical skills labs. PAL in the clinical setting, a complex learning environment, requires fresh evaluation. Socio-cultural theory is proposed as a means to understand educational interventions in ways that are practical and meaningful. We describe the evaluation of a PAL intervention, introduced to support students' transition into full time clinical attachments, using activity theory and activity systems analysis (ASA). Our research question was How does PAL transfer to the clinical environment? Junior students on their first clinical attachments undertook a weekly same-level, reciprocal PAL activity. Qualitative data was collected after each session, and focus groups (n = 3) were held on completion. Data was analysed using ASA. ASA revealed two competing activity systems on clinical attachment; Learning from Experts, which students saw as the primary function of the attachment and Learning with Peers, the PAL intervention. The latter took time from the first and was in tension with it. Tensions arose from student beliefs about how learning takes place in clinical settings, and the importance of social relationships, leading to variable engagement with PAL. Differing perspectives within the group were opportunities for expansive learning. PAL in the clinical environment presents challenges specific to that context. Using ASA helped to describe student activity on clinical attachment and to highlight tensions and contradictions relating PAL in that setting. Planning learning opportunities on clinical placements, must take account of how students learn in workplaces, and the complexity of the multiple competing activity systems related to learning and social activities.
Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products.
Gray Bé, Ariana; Upshur, Mary Alice; Liu, Pengfei; Martin, Scot T; Geiger, Franz M; Thomson, Regan J
2017-07-26
The formation of atmospheric cloud droplets due to secondary organic aerosol (SOA) particles is important for quantifying the Earth's radiative balance under future, possibly warmer, climates, yet is only poorly understood. While cloud activation may be parametrized using the surface tension depression that coincides with surfactant partitioning to the gas-droplet interface, the extent to which cloud activation is influenced by both the chemical structure and reactivity of the individual molecules comprising this surfactant pool is largely unknown. We report herein considerable differences in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from α-pinene and β-caryophyllene, the most abundant of the monoterpenes and sesquiterpenes, respectively, that are emitted over the planet's vast forest ecosystems. Oxidation products derived from β-caryophyllene were found to exhibit significantly higher surface activity than those prepared from α-pinene, with the critical supersaturation required for cloud droplet activation reduced by 50% for β-caryophyllene aldehyde at 1 mM. These considerable reductions in the critical supersaturation were found to coincide with free energies of adsorption that exceed ∼25 kJ/mol, or just one hydrogen bond equivalent, depending on the ammonium sulfate and oxidation product concentration in the solution. Additional experiments showed that aldehyde-containing oxidation products exist in equilibrium with hydrated forms in aqueous solution, which may modulate their bulk solubility and surface activity. Equilibration time scales on the order of 10 -5 to 10 -4 s calculated for micrometer-sized aerosol particles indicate instantaneous surface tension depression in the activation processes leading to cloud formation in the atmosphere. Our findings highlight the underlying importance of molecular structure and reactivity when considering cloud condensation activity in the presence of SOA particles.
Curricular Adaptations in Introductory Physics Labs
NASA Astrophysics Data System (ADS)
Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly
2017-01-01
When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.
Bruno, Alexander G.; Bouxsein, Mary L.; Anderson, Dennis E.
2015-01-01
We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG). PMID:25901907
Development of a high force thermal latch
NASA Technical Reports Server (NTRS)
Nygren, William D.
1995-01-01
This paper describes the preliminary development of a high force thermal latch (HFTL). The HFTL has one moving part which is restrained in the latched position by a low melting temperature or fusible metal alloy. When heated the fusible alloy flows to a receiving chamber and in so doing at first releases the tension load in the latch bolt and later releases the bolt itself. The HFTL can be used in place of pyrotechnically activated spacecraft release devices in those instances where the elimination of both pyrotechnic shock-loading and rapid strain-energy release take precedence over the near instantaneous release offered by ordnance initiated devices.
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for a three-span continuous, curved post-tensioned box-girder : bridge in Connecticut. The computer-based remote monitoring system was developed to collect information on the deformations...
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for an eleven span segmental, post-tensioned : box-girder bridge in Connecticut. Based on a request from the designers, the computer-based remote : monitoring system was developed to coll...
The Market for Academic Knowledge: Its Historical Emergence and Inherent Tensions
ERIC Educational Resources Information Center
Weik, Elke
2014-01-01
This paper contributes to the discussion about the marketisation of universities by providing a historical perspective. Going back to the time when the market for academic knowledge emerged, I argue that it was created through incorporating a number of inherent tensions that have been, and still are, shaping its development. I show how these…
Between the "Local" and the "Global": South African Geography after Apartheid
ERIC Educational Resources Information Center
Mather, Charles
2007-01-01
South Africa's higher education system has undergone significant change since the end of apartheid. A central theme in the debates on higher education transformation has been the tension between the global imperatives of development and the need for universities to respond to the legacy of apartheid. This paper explores this tension by considering…
Bazanova, O M; Kholodina, N V; Podoinikov, A S; Nikolenko, E D
2015-01-01
Ageing, lack of physical activity and sedentary lifestyle cause disorders of the sensorimotor system of postural control. The role of support afferentation in the changes in cortical activity in balance impairments has not been studied yet. The purpose of this study was to investigate the changes in the stabilographic parameters of the body center of gravity, alpha activity indices of the electroencephalography (EEG) and electromyographic (EMG) measurements of forehead muscle tone in response to visual activation in standing and sitting positions in postmenopausal women after and without training of leg support sensation (LSS) The variables were compared between 3 groups: Group A (n = 12, age: 66 ± 9 years)--women who have trained LSS with the help of Aikido techniques for 8 years; group F (n = 12, age: 65 ± 6 years)--women who have attended Fitness training for 8 years; group N (n = 11, age: 66 ± 7 years)--women who have not taken physical exercises for the last 8 years. It was found that in group N a change in body position from "sitting" to "standing" leads to a much greater increase in the area of stabilogram and in the energy expenditure needed to maintain the bal- ance than in groups A and F. Posture changes from sitting to standing position increases the tension of the forehead muscles and the suppression of alpha-1-amplitude, but decreases the power in high- and low-frequency alpha-band of EEG and the width of alpha-band in group N. In women ofgroup F the posture change does not result in an increase in EMG and signs of activation or tension in EEG; in group A it leads to a decrease of visual activation indices and psychoemotional tension and to an increase in power in alpha-2-band which is a sign of neuronal efficiency. Basing on these data, we can conclude that training focused on support afferentation in postmenopausal women decreases the psychoemotional tension and increases neuronal efficiency ofsensorimotor integration of postural control system and can be used in the prevention of falls in elderly people.
Reitz, Sarah; Kluetsch, Rosemarie; Niedtfeld, Inga; Knorz, Teresa; Lis, Stefanie; Paret, Christian; Kirsch, Peter; Meyer-Lindenberg, Andreas; Treede, Rolf-Detlef; Baumgärtner, Ulf; Bohus, Martin; Schmahl, Christian
2015-08-01
Patients with borderline personality disorder frequently show non-suicidal self-injury (NSSI). In these patients, NSSI often serves to reduce high levels of stress. Investigation of neurobiological mechanisms of NSSI in borderline personality disorder. In total, 21 women with borderline personality disorder and 17 healthy controls underwent a stress induction, followed by either an incision into the forearm or a sham treatment. Afterwards participants underwent resting-state functional magnetic resonance imaging while aversive tension, heart rate and heart rate variability were assessed. We found a significant influence of incision on subjective and objective stress levels with a stronger decrease of aversive tension in the borderline personality disorder group following incision than sham. Amygdala activity decreased more and functional connectivity with superior frontal gyrus normalised after incision in the borderline personality disorder group. Decreased stress levels and amygdala activity after incision support the assumption of an influence of NSSI on emotion regulation in individuals with borderline personality disorder and aids in understanding why these patients use self-inflicted pain to reduce inner tension. © The Royal College of Psychiatrists 2015.
Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares
2013-06-01
The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.
Elazzazy, Ahmed M.; Abdelmoneim, T.S.; Almaghrabi, O.A.
2014-01-01
Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754
Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A
2015-07-01
Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.
Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater
NASA Astrophysics Data System (ADS)
Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.
2017-12-01
Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.
Separation anxiety: Stress, tension and cytokinesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu
Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less
Electrocution by arcing: a nonfatal case study.
Solarino, Biagio; Di Vella, Giancarlo
2011-12-01
Accidental electrocution during working activities account for a considerable amount of morbidity and mortality. Workers often misjudge the danger of electric wires or high-tension power cables, thereby exposing themselves to electrocution hazard. This article describes a nonfatal case of injuries by arcing from high-tension power-line cables involving a young farmer who was thrashing an olive tree by means of aluminum ladder. The circumstances surrounding the manner of electrocution and the features of electric injuries are presented and discussed.
A new non-metallic anchorage system for post-tensioning applications using CFRP tendons
NASA Astrophysics Data System (ADS)
Taha, Mahmoud Reda
The objective of the work described in this thesis is to design, develop and test a new non-metallic anchorage system for post-tensioning applications using CFRP tendons. The use of a non-metallic anchorage system should eliminate corrosion and deterioration concerns in the anchorage zone. The development of a reliable non-metallic anchorage would provide an important contribution to this field of knowledge. The idea of the new anchorage is to hold the tendon through mechanical gripping. The anchorage consists of a barrel with a conical housing and four wedges. The anchorage components are made of ultra high performance concrete (UHPC) specially developed for the anchorage. Sixteen concrete mixtures with different casting and curing regimes were examined to develop four UHPC mixtures with compressive strengths in excess of 200 MPa. The UHPC mixtures showed very dense microstructures with some unique characteristics. To enhance the fracture toughness of the newly developed UHPC, analytical and experimental analyses were performed. Using 3 mm chopped carbon fibres, a significant increase in the fracture toughness of UHPC was achieved. The non-metallic anchorage was developed with the UHPC with enhanced fracture toughness. The barrel required careful wrapping with CFRP sheets to provide the confinement required to utilize the strength and toughness of the UHPC. Thirty-three anchorages were tested under both static and dynamic loading conditions. The non-metallic anchorage showed excellent mechanical performance and fulfilled the different requirements of a post-tensioning anchorage system. The development of the new non-metallic anchorage will widen the inclusion of CFRP tendons in post-tensioned concrete/masonry structures. The new system will offer the opportunity to exploit CFRP tendons effectively creating an innovative generation of corrosion-free, smart structures.
NASA Astrophysics Data System (ADS)
Padró, Luz T.; Tkacik, Daniel; Lathem, Terry; Hennigan, Chris J.; Sullivan, Amy P.; Weber, Rodney J.; Huey, L. Greg; Nenes, Athanasios
2010-05-01
We present hygroscopic and cloud condensation nuclei (CCN) relevant properties of the water-soluble fraction of Mexico City aerosol collected upon filters during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign. Application of κ-Köhler theory to the observed CCN activity gave a fairly constant hygroscopicity parameter (κ = 0.28 ± 0.06) regardless of location and organic fraction. Köhler theory analysis was used to understand this invariance by separating the molar volume and surfactant contributions to the CCN activity. Organics were found to depress surface tension (10-15%) from that of pure water. Daytime samples exhibited lower molar mass (˜200 amu) and surface tension depression than nighttime samples (˜400 amu); this is consistent with fresh hygroscopic secondary organic aerosol (SOA) condensing onto particles during peak photochemical hours, subsequently aging during nighttime periods of high relative humidity. Changes in surface tension partially compensate for shifts in average molar volume to give the constant hygroscopicity observed, which implies the amount (volume fraction) of soluble material in the parent aerosol is the key composition parameter required for CCN predictions. This finding, if applicable elsewhere, may explain why CCN predictions are often found to be insensitive to assumptions of chemical composition and provides a very simple way to parameterize organic hygroscopicity in atmospheric models (i.e., κorg = 0.28ɛWSOC). Special care should be given, however, to surface tension depression from organic surfactants, as its nonlinear dependence with organic fraction may introduce biases in observed (and predicted) hygroscopicity. Finally, threshold droplet growth analysis suggests the water-soluble organics do not affect activation kinetics.
Electromyogram and force fluctuation during different linearly varying isometric motor tasks.
Orizio, C; Baruzzi, E; Gaffurini, P; Diemont, B; Gobbo, M
2010-08-01
The purpose of this work was to verify if deviation from the mirror-like behaviour of the motor units activation strategy (MUAS) and de-activation strategy (MUDS) and the degree of the error of the motor control system, during consecutive linearly increasing-decreasing isometric tension tasks, depend on the maximum reached tension and/or on the rate of tension changes. In 12 male subjects the surface EMG and force produced by the first dorsal interosseus activity were recorded during two (a and b) trapezoid isometric contractions with different plateau (a: 50% maximal voluntary contraction (MVC) and b: 100% MVC) and rate of tension changes (a: 6.7% MVC/s and b: 13.3% MVC/s) during up-going (UGR) and down-going (DGR) ramps. Ten steps (ST) 6s long at 5, 10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC were also recorded. The root mean square (RMS) and mean frequency (MF) from EMG and the relative error of actual force output with respect to the target (% ERR) were computed. The EMG-RMS/% MVC and EMG-MF/% MVC relationships were not overlapped when the ST and DGR as well as the UGR and DGR data were compared. The % ERR/% MVC relationships during a and b contractions differed from ST data only below 20% MVC. It can be concluded that MUAS and MUDS are not mirroring one each other because MU recruitment or de-recruitment threshold may be influenced by the maximum effort and by the % MVC/s of UGR and DGR. The role of MUs mechanical and/or central nervous system hysteresis on force decrement control is discussed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Autohesive strength development in polysulfone resin and graphite-polysulfone composites
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1988-01-01
The effects of bonding temperature and contact time on autohesive strength development in thermoplastic polysulfone resin and graphite-polysulfone composites were investigated. Two test methods were examined to measure autohesion in the neat resin samples. These included an interfacial tension test and a compact tension fracture toughness test. Autohesive strength development in fiber-reinforced composites was measured using a double cantilever beam interlaminar fracture toughness test. The results of the tests were compared with current diffusion theories explaining crack healing and welding of glassy polymers. Discrepancies between the results of the present investigation and the diffusion theories are discussed.
Production and antimicrobial property of glycolipid biosurfactants
USDA-ARS?s Scientific Manuscript database
Microbial glycolipids such as rhamnolipid (RL) and sophorolipid (SL) are an important class of biosurfactants with excellent surface tension-lowering activity. Besides their surfactant- and environment-friendly properties, however, additional value-added property such as bacteriocidal activity is n...
Effect of an ADP analog on isometric force and ATPase activity of active muscle fibers.
Karatzaferi, Christina; Myburgh, Kathryn H; Chinn, Marc K; Franks-Skiba, Kathleen; Cooke, Roger
2003-04-01
The role played by ADP in modulating cross-bridge function has been difficult to study, because it is hard to buffer ADP concentration in skinned muscle preparations. To solve this, we used an analog of ADP, spin-labeled ADP (SL-ADP). SL-ADP binds tightly to myosin but is a very poor substrate for creatine kinase or pyruvate kinase. Thus ATP can be regenerated, allowing well-defined concentrations of both ATP and SL-ADP. We measured isometric ATPase rate and isometric tension as a function of both [SL-ADP], 0.1-2 mM, and [ATP], 0.05-0.5 mM, in skinned rabbit psoas muscle, simulating fresh or fatigued states. Saturating levels of SL-ADP increased isometric tension (by P'), the absolute value of P' being nearly constant, approximately 0.04 N/mm(2), in variable ATP levels, pH 7. Tension decreased (50-60%) at pH 6, but upon addition of SL-ADP, P' was still approximately 0.04 N/mm(2). The ATPase was inhibited competitively by SL-ADP with an inhibition constant, K(i), of approximately 240 and 280 microM at pH 7 and 6, respectively. Isometric force and ATPase activity could both be fit by a simple model of cross-bridge kinetics.
Evolving norms at the intersection of health and trade.
Drope, Jeffrey; Lencucha, Raphael
2014-06-01
There has been growing tension at the intersection of health and economic policy making as global governance has increased across sectors. This tension has been particularly evident between tobacco control and trade policy, as the international norms that frame them -- particularly the Framework Convention on Tobacco Control and the World Trade Organization (WTO) -- have continued to institutionalize. Using five case studies of major tobacco-related trade disputes from the principal multilateral system of trade governance -- the WTO/General Agreement on Tariffs and Trade -- we trace the evolution of these interacting norms over nearly twenty-five years. Our analytic framework focuses on the actors that advance, defend, and challenge these norms. We find that an increasingly broad network, which includes governments, intergovernmental organizations, nongovernmental organizations, and members of the epistemic community, is playing a more active role in seeking to resolve these tensions. Moreover, key economic actors are beginning to incorporate health more actively into their messaging and activities. We also demonstrate that the most recent resonant messages reflect a more nuanced integration of the two norms. The tobacco control example has direct relevance to related policy areas, including environment, safety, access to medicines, diet, and alcohol. Copyright © 2014 by Duke University Press.
Development of a torsion balance for adhesion measurements
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Maeda, Chikayoshi; Masuo, Ryuichi
1988-01-01
A new torsion balance for study of adhesion in ceramics is discussed. A torsion wire and a linear variable differential transformer are used to monitor load and to measure pull-off force (adhesion force). The investigation suggests that this torsion balance is valuable in studying the interfacial properties of ceramics in controlled environments such as in ultrahigh vacuum. The pull-off forces measured in dry, moist, and saturated nitrogen atmosphere demonstrate that the adhesion of silicon nitride contacts remains low at humidities below 80 percent but rises rapidly above that. The adhesion at saturation is 10 times or more greater than that below 80 percent relative humidity. The adhesion in a saturated atmosphere arises primarily from the surface tension effects of a thin film of water adsorbed on the surface. The surface tension of the water film was 58 x 10 to the minus 5 to 65 x 10 to the minus 5 power. The accepted value for water is 72.7 x 10 to the minus 5 power N/cm. Adhesion characteristics of silicon nitride in contact with metals, like the friction characteristics of silicon carbide to metal contacts, can be related to the relative chemical activity of metals in ultrahigh vacuum. The more active the metal, the higher the adhesion.
Apico-basal forces exerted by apoptotic cells drive epithelium folding.
Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali
2015-02-12
Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.
Upstream paths for Hippo signaling in Drosophila organ development.
Choi, Kwang-Wook
2018-03-01
Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs. [BMB Reports 2018; 51(3): 134-142].
NASA Astrophysics Data System (ADS)
Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K.; Hort, N.
2018-01-01
The hot workability of extruded Mg-3Sn-1Ca alloy has been evaluated by developing processing maps with flow stress data from compression and tensile tests with a view to find the effect of the applied state-of-stress. The processing maps developed at a strain of 0.2 are essentially similar irrespective of the mode of deformation - compression or tension, and exhibit three domains in the temperature ranges: (1) 350 - 425 °C, and (2) 450 - 550 °C and (3) 400 - 500 °C, the first two occurring at lower strain rates and the third occurring at higher strain rates. In all the three domains, dynamic recrystallization occurs and is caused by non-basal slip and controlled by lattice self-diffusion in the first and second domains and grain boundary self-diffusion in the third domain. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps.
Real-time TIRF observation of vinculin recruitment to stretched α-catenin by AFM.
Maki, Koichiro; Han, Sung-Woong; Hirano, Yoshinori; Yonemura, Shigenobu; Hakoshima, Toshio; Adachi, Taiji
2018-01-25
Adherens junctions (AJs) adaptively change their intensities in response to intercellular tension; therefore, they integrate tension generated by individual cells to drive multicellular dynamics, such as morphogenetic change in embryos. Under intercellular tension, α-catenin, which is a component protein of AJs, acts as a mechano-chemical transducer to recruit vinculin to promote actin remodeling. Although in vivo and in vitro studies have suggested that α-catenin-mediated mechanotransduction is a dynamic molecular process, which involves a conformational change of α-catenin under tension to expose a cryptic vinculin binding site, there are no suitable experimental methods to directly explore the process. Therefore, in this study, we developed a novel system by combining atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF). In this system, α-catenin molecules (residues 276-634; the mechano-sensitive M 1 -M 3 domain), modified on coverslips, were stretched by AFM and their recruitment of Alexa-labeled full-length vinculin molecules, dissolved in solution, were observed simultaneously, in real time, using TIRF. We applied a physiologically possible range of tensions and extensions to α-catenin and directly observed its vinculin recruitment. Our new system could be used in the fields of mechanobiology and biophysics to explore functions of proteins under tension by coupling biomechanical and biochemical information.
Muscle pain in the head: overlap between temporomandibular disorders and tension-type headaches.
Svensson, Peter
2007-06-01
A variety of painful problems can affect the muscles in the head and face. Both temporomandibular disorders and tension-type headaches are believed to have a significant contribution from the skeletal muscles and have several clinical features in common. It still unclear, however, to what extent these two prevalent disorders are separate entities or have similar pathophysiological background. There is now reasonably good evidence that myofascial temporomandibular disorder patients are more likely to have a tension-type headache problem and vice versa, but the overlap is not complete. Studies have documented similarities regarding sensitization of the nociceptive pathways, dysfunction of the endogenous pain modulatory systems as well as contributing genetic factors, but there are also a number of distinct differences between temporomandibular disorders and tension-type headaches that need to be considered. Using the current classification systems, myofascial temporomandibular disorder pain and tension-type headache disorders do overlap and appear to share many of the same pathophysiological mechanisms, but it would be premature to consider them as identical entities since the importance of, for example, the affected muscles and associated function and genetic background needs to be established. Orofacial pain and headache specialists should collaborate to further develop diagnostic procedures and management strategies of temporomandibular disorders and tension-type headaches.
Davey, C G; López-Solà, C; Bui, M; Hopper, J L; Pantelis, C; Fontenelle, L F; Harrison, B J
2016-11-01
Negative mood states are composed of symptoms of depression and anxiety, and by a third factor related to stress, tension and irritability. We sought to clarify the nature of the relationships between the factors by studying twin pairs. A total of 503 monozygotic twin pairs completed the Depression Anxiety Stress Scales (DASS), an instrument that assesses symptoms of depression, anxiety and stress-tension. We applied a recently developed twin regression methodology - Inference about Causation from Examination of FAmiliaL CONfounding (ICE FALCON) - to test for evidence consistent with the existence of 'causal' influences between the DASS factors. There was evidence consistent with the stress-tension factor having a causal influence on both the depression (p < 0.0001) and anxiety factors (p = 0.001), and for the depression factor having a causal influence on the anxiety factor (p < 0.001). Our findings suggest a critical role for stress-tension in the structure of negative mood states, and that interventions that target it may be particularly effective in reducing depression and anxiety symptoms.
Finite element tension analysis of the supporting tissues of a maxillary canine.
Kalachev, Y S; Ralev, R D; Iordanov, P I
2001-01-01
The distribution of masticatory load on the teeth and the arising force tensions in them are factors that determine the origine of destructive processes in their periodontium. The development of mathematical models and application of new computer technologies make possible their precise study. They are still not thoroughly studied. To study the tensions, originating in the periodontium of a canine tooth during occlusal load by the modern method of finite elements (MFE). A three-dimensional model of a maxillary canine is built by MFE containing 304 finite elements with six varieties of geometrical form, linked in 1409 nodes. It is supposed that the tooth is fixed firmly to the outer surface of the periodontal membrane to the alveolar bone and is loaded in the lingual wall by a force perpendicular to its longitudinal axis and directed from the lingual to the vestibular wall. As a result of the calculations according to MFE the tension state of dental tissues is calculated for diferent degrees of destruction of the alveolar bone. It was established that with the increase of destruction of the alveolar bone for one and the same masticatory load, the tensions in the periodontal membrane also increase. The maximal tensions act in the apex of the root and around the clinical neck of the teeth. The results obtained provide precise information of distribution of force tensions in the periodontium of maxillary canines during occlusal load. They serve as a serious theoretical base for future investigations.
Cross-Continental Collaboration: A Case Study Using Activity Systems Analysis
ERIC Educational Resources Information Center
Ryder, LanHui
2011-01-01
Research has shown that simply linking learners from different countries using technology does not automatically bring about learning benefits; instead it frequently ends in tensions that, if not addressed, could potentially hinder learning. Using the lens of Vygotsky-inspired sociocultural theory, activity theory, and Engestrom's activity systems…
1988-01-01
The effects of laser-flash photolytic release of ATP from caged ATP [P3- 1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross- bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross- bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle. PMID:3373178
Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs.
Phillips, Roger M
2016-03-01
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
NASA Astrophysics Data System (ADS)
Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.
2015-06-01
Even though organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments spanning from the subtropics to the high Arctic, their hygroscopic properties have not been investigated prior to this study. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesized and used for simultaneous measurements with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry size for all chemical compositions investigated, indicating size dependency and/or surface effects. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical activation diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w/w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water-value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ obtained from the measurements were compared with κ calculated applying the volume additive Zdanovskii-Stokes-Robinson mixing rule, as well as κ modelled from equilibrium Köhler theory with different assumptions regarding L-OS 250 bulk-to-surface partitioning and aqueous droplet surface tension. This study is to our knowledge the first to investigate the hygroscopic properties and surface activity of L-OS 250; hence it is an important first step towards understanding the atmospheric impact of organosulfates.
van der Waals model for the surface tension of liquid 4He near the λ point
NASA Astrophysics Data System (ADS)
Tavan, Paul; Widom, B.
1983-01-01
We develop a phenomenological model of the 4He liquid-vapor interface. With it we calculate the surface tension of liquid helium near the λ point and compare with the experimental measurements by Magerlein and Sanders. The model is a form of the van der Waals surface-tension theory, extended to apply to a phase equilibrium in which the simultaneous variation of two order parameters-here the superfluid order parameter and the total density-is essential. The properties of the model are derived analytically above the λ point and numerically below it. Just below the λ point the superfluid order parameter is found to approach its bulk-superfluid-phase value very slowly with distance on the liquid side of the interface (the characteristic distance being the superfluid coherence length), and to vanish rapidly with distance on the vapor side, while the total density approaches its bulk-phase values rapidly and nearly symmetrically on the two sides. Below the λ point the surface tension has a |ɛ|32 singularity (ɛ~T-Tλ) arising from the temperature dependence of the spatially varying superfluid order parameter. This is the mean-field form of the more general |ɛ|μ singularity predicted by Sobyanin and by Hohenberg, in which μ (which is in reality close to 1.35 at the λ point of helium) is the exponent with which the interfacial tension between two critical phases vanishes. Above the λ point the surface tension in this model is analytic in ɛ. A singular term |ɛ|μ may in reality be present in the surface tension above as well as below the λ point, although there should still be a pronounced asymmetry. The variation with temperature of the model surface tension is overall much like that in experiment.
[Delayed (tension) pneumothorax after placement of a central venous catheter].
Tan, E C; van der Vliet, J A
1999-09-11
Laborious attempts at introducing a central venous catheter for parenteral nutrition in two women, aged 36 and 62 years, were followed by shortness of breath after 32 and 10 hours, respectively. This symptom was due to a (tension) pneumothorax not visible on earlier roentgenograms. Thoracic drainage led to recovery. In all patients with a central venous catheter an undetected delayed pneumothorax can be present. Urgent chest X-ray examination should be performed in all patients with acute respiratory symptoms. Patients undergoing elective intubation with positive pressure breathing should be examined carefully, since they are at risk of developing a late (tension) pneumothorax.
Development and use of the incremental twitch subtraction MUNE method in mice.
Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa
2009-01-01
We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.
DOT National Transportation Integrated Search
2017-05-10
The Midwest States Pooled Fund Program has been developing a prototype design for a non-proprietary, high-tension cable median barrier for use in a 6H:1V V-ditch. This system incorporates four evenly spaced cables, Midwest Weak Posts (MWP) spaced at ...
NASA Astrophysics Data System (ADS)
Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc
2018-04-01
In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.
Reefing Line Tension in CPAS Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2013-01-01
Reefing lines are an essential feature to manage inflation loads. During each Engineering Development Unit (EDU) test of the Capsule Parachute Assembly System (CPAS), a chase aircraft is staged to be level with the cluster of Main ringsail parachutes during the initial inflation and reefed stages. This allows for capturing high-quality still photographs of the reefed skirt, suspension line, and canopy geometry. The over-inflation angles are synchronized with measured loads data in order to compute the tension force in the reefing line. The traditional reefing tension equation assumes radial symmetry, but cluster effects cause the reefed skirt of each parachute to elongate to a more elliptical shape. This effect was considered in evaluating multiple parachutes to estimate the semi-major and semi-minor axes. Three flight tests are assessed, including one with a skipped first stage, which had peak reefing line tension over three times higher than the nominal parachute disreef sequence.
NASA Technical Reports Server (NTRS)
Rotem, Assa
1990-01-01
Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.
A Kolsky tension bar technique using a hollow incident tube
NASA Astrophysics Data System (ADS)
Guzman, O.; Frew, D. J.; Chen, W.
2011-04-01
Load control of the incident pulse profiles in compression Kolsky bar experiments has been widely used to subject the specimen to optimal testing conditions. Tension Kolsky bars have been used to determine dynamic material behavior since the 1960s with limited capability to shape the loading pulses due to the pulse-generating mechanisms. We developed a modified Kolsky tension bar where a hollow incident tube is used to carry the incident stress waves. The incident tube also acts as a gas gun barrel that houses the striker for impact. The main advantage of this new design is that the striker impacts on an impact cap of the incident tube. Compression pulse shapers can be attached to the impact cap, thus fully utilizing the predictive compression pulse-shaping capability in tension experiments. Using this new testing technique, the dynamic tensile material behavior for Al 6061-T6511 and TRIP 800 (transformation-induced plasticity) steel has been obtained.
Surface tension propellant control for Viking 75 Orbiter
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.
1976-01-01
The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.
Stop the Stretching. Grades 6-8.
ERIC Educational Resources Information Center
Rushton, Erik; Ryan, Emily; Swift, Charles
In this activity, students learn about composite materials, tension as a force, and how they act on structural components through the design and testing of a strip of plastic chair webbing. This activity requires a 60-minute time period for completion. (Author/NB)
NASA Astrophysics Data System (ADS)
Harteveld, Casper
At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.
Deng, Yang; Liu, Yang; Chen, Suren
2017-01-01
Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables. PMID:28621743
Deng, Yang; Liu, Yang; Chen, Suren
2017-06-16
Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables.
Evaluation of cable tension sensors of FAST reflector from the perspective of EMI
NASA Astrophysics Data System (ADS)
Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao
2016-06-01
The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLauchlan, Anna, E-mail: anna.mclauchlan@strath.ac.uk; Joao, Elsa, E-mail: elsa.joao@strath.ac.uk
2012-09-15
This paper evaluates the tensions that result from routinely applying SEA to all policies, plans and programmes within Scotland. The European Union SEA Directive, effective in many EU member states from 2004, introduced a requirement for environmental assessment of certain plans and programmes. Scotland, a devolved nation within the EU member state of the United Kingdom, aimed to be a 'world leader in SEA' by legislating for SEA to be undertaken of all public sector plans, programmes and strategies, with the word 'strategies' being equated with 'policies'. This paper presents detailed data regarding Scottish SEA activity between 2004 and 2007,more » including responses to consultations on SEA reports. This empirical research found that, reflecting a general difficulty in determining where and when SEA should be applied, engagement with the SEA process was not as widespread as intended (including the pre-screening and screening stages). Eight tensions evident from Scotland's application of SEA are identified, and their broader relevance is examined. - Highlights: Black-Right-Pointing-Pointer We examine detailed data regarding Scottish strategic environmental assessment (SEA) activity. Black-Right-Pointing-Pointer There is a general difficulty in determining where SEA should be applied. Black-Right-Pointing-Pointer Engagement with the SEA process was not as widespread as intended. Black-Right-Pointing-Pointer Eight 'tensions' that question the efficacy of applying SEA to all plans, programmes and policies were identified.« less
Speich, John E; Wilson, Cameron W; Almasri, Atheer M; Southern, Jordan B; Klausner, Adam P; Ratz, Paul H
2012-10-01
The length-tension (L-T) relationships in rabbit detrusor smooth muscle (DSM) are similar to those in vascular and airway smooth muscles and exhibit short-term length adaptation characterized by L-T curves that shift along the length axis as a function of activation and strain history. In contrast to skeletal muscle, the length-active tension (L-T(a)) curve for rabbit DSM strips does not have a unique peak tension value with a single ascending and descending limb. Instead, DSM can exhibit multiple ascending and descending limbs, and repeated KCl-induced contractions at a particular muscle length on an ascending or descending limb display increasingly greater tension. In the present study, mouse bladder strips with and without urothelium exhibited KCl-induced and carbachol-induced length adaptation, and the pressure-volume relationship in mouse whole bladder displayed short-term volume adaptation. Finally, prostaglandin-E(2)-induced low-level rhythmic contraction produced length adaptation in rabbit DSM strips. A likely role of length adaptation during bladder filling is to prepare DSM cells to contract efficiently over a broad range of volumes. Mammalian bladders exhibit spontaneous rhythmic contraction (SRC) during the filling phase and SRC is elevated in humans with overactive bladder (OAB). The present data identify a potential physiological role for SRC in bladder adaptation and motivate the investigation of a potential link between short-term volume adaptation and OAB with impaired contractility.
Connelly, John T.; Vanderploeg, Eric J.; Mouw, Janna K.; Wilson, Christopher G.
2010-01-01
Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1–2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro. PMID:20088686
Management of Open Pneumothorax in Tactical Combat Casualty Care: TCCC Guidelines Change 13-02.
Butler, Frank K; Dubose, Joseph J; Otten, Edward J; Bennett, Donald R; Gerhardt, Robert T; Kheirabadi, Bijan S; Gross, Kriby R; Cap, Andrew P; Littlejohn, Lanny F; Edgar, Erin P; Shackelford, Stacy A; Blackbourne, Lorne H; Kotwal, Russ S; Holcomb, John B; Bailey, Jeffrey A
2013-01-01
During the recent United States Central Command (USCENTCOM) and Joint Trauma System (JTS) assessment of prehospital trauma care in Afghanistan, the deployed director of the Joint Theater Trauma System (JTTS), CAPT Donald R. Bennett, questioned why TCCC recommends treating a nonlethal injury (open pneumothorax) with an intervention (a nonvented chest seal) that could produce a lethal condition (tension pneumothorax). New research from the U.S. Army Institute of Surgical Research (USAISR) has found that, in a model of open pneumothorax treated with a chest seal in which increments of air were added to the pleural space to simulate an air leak from an injured lung, use of a vented chest seal prevented the subsequent development of a tension pneumothorax, whereas use of a nonvented chest seal did not. The updated TCCC Guideline for the battlefield management of open pneumothorax is: ?All open and/ or sucking chest wounds should be treated by immediately applying a vented chest seal to cover the defect. If a vente chest seal is not available, use a non-vented chest seal. Monitor the casualty for the potential development of a subsequent tension pneumothorax. If the casualty develops increasing hypoxia, respiratory distress, or hypotension and a tension pneumothorax is suspected, treat by burping or removing the dressing or by needle decompression.? This recommendation was approved by the required two-thirds majority of the Committee on TCCC in June 2013. 2013.
Driver fatigue: electroencephalography and psychological assessment.
Lal, Saroj K L; Craig, Ashley
2002-05-01
Fatigue has major implications for transportation system safety; therefore, investigating the psychophysiological links to fatigue could enhance our understanding and management of fatigue in the transport industry. This study examined the psychophysiological changes that occurred during a driver simulator task in 35 randomly selected subjects. Results showed that significant electroencephalographic changes occur during fatigue. Delta and theta activity were found to increase significantly during fatigue. Heart rate was significantly lower after the driving task. Blink rate also changed during the fatigue task. Increased trait anxiety, tension-anxiety, fatigue-inertia and reduced vigor-activity were shown to be associated with neurophysiological indicators of fatigue such as increased delta and theta activity. The results are discussed in light of directions for future studies and for the development of a fatigue countermeasure device.
Surface tension and modeling of cellular intercalation during zebrafish gastrulation.
Calmelet, Colette; Sepich, Diane
2010-04-01
In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.
Development of a space qualified Surface Tension Confined Liquid Cryogen Cooler (STCLCC)
NASA Technical Reports Server (NTRS)
Castles, Stephen H.; Schein, Michael E.
1988-01-01
The Surface Tension Confined Liquid Cryogen Cooler (STCLCC), a new type of cryogenic cooler which is being developed by the NASA-GSFC for spaceflight payloads, is described. The STCLCC will be capable of maintaining instrumentation within the temperature range of 10-120 K and will allow liquid cryogens to be flown in space without the risk of liquid being entrained in the vent gas. A low-density open-cell material in the STCLCC acts as a 'sponge', with the surface tension trapping the liquid cryogen within its pores and keeping the liquid away from the cooler's vent during launch, zero-g operations, and landing. It is emphasized that the STCLCC concept is amenable to a wide variety of applications, whenever a passive low-cost cooler is required or when the on-orbit service of a cooler would increase a mission's lifetime.
van Mulken, Michelle R H; McAllister, Margaret; Lowe, John B
2016-08-01
Many women going through the major life transition of pregnancy experience decreases in physical activity behaviour, which may compromise maternal and infant health and wellbeing. Although research suggests that the social environment plays a large role in influencing women's physical activity behaviour, little is known about the association between societal attitudes and physical activity behaviour during the course of pregnancy. Through a qualitative longitudinal study, we explored women's physical activity experiences throughout pregnancy and how these were formed, supported and/or opposed by their social environment. This research included telephone interviews with 30 pregnant participants, recruited via a regional public hospital. Using a feminist standpoint analysis incorporating modern dialectics, three major tensions were identified, reflecting dominant societal discourses around physical activity and pregnancy: (1) engaging in physical activity and keeping the baby safe, (2) engaging in physical activity and obtaining social approval and (3) listening to oneself and to others. These findings present previously unrecognised opportunities for developing tailored and effective physical activity interventions among pregnant women.
Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.
Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun
2011-10-01
We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.
Nondestructive evaluation of loading and fatigue effects in Haynes(R) 230(R) alloy
NASA Astrophysics Data System (ADS)
Saleh, Tarik Adel
Nondestructive evaluation is a useful method for studying the effects of deformation and fatigue. In this dissertation I employed neutron and X-ray diffraction, nonlinear resonant ultrasound spectroscopy (NRUS), and infrared thermography to study the effects of deformation and fatigue on two different nickel based superalloys. The alloys studied were HAYNES 230, a solid solution strengthened alloy with 4% M6C carbides, and secondarily HASTELLOY C-2000 a similar single phase alloy. Using neutron and X-ray diffraction, the deformation behavior of HAYNES 230 was revealed to be composite-like during compression, but unusual in tension, where the carbides provide strengthening until just after the macroscopic yield strength and then they begin to debond and crack, creating a tension-compression asymmetry that is revealed clearly by in situ diffraction. In fatigue of HAYNES 230, the hkl elastic strains changed very little in tension-tension fatigue. However, in situ tension-compression studies showed large changes over the initial stages of fatigue. The HAYNES 230 samples studies had two distinct starting textures, measured by neutron diffraction. Some samples were texture free initially and deformed in tension and compression to fiber textures. Other samples started with a bimodal texture due to cross-rolling and incomplete annealing. The final texture of these bimodal samples is shown through modeling to be a superposition of the initial texture and typical FCC deformation mechanisms. The texture-free samples deformed significantly more macroscopically and in internal elastic strains than the samples with the cross-rolled texture. In contrast to the relative insensitivity of neutron diffraction to the effects of tension-tension fatigue, NRUS revealed large differences between as-received and progressively fatigued samples. This showed that microcracking and void formation are the primary mechanisms responsible for fatigue damage in tension-tension fatigue. NRUS is shown to be a useful complimentary technique to neutron diffraction to evaluate fatigue damage. Finally, infrared thermography is used to show temperature changes over the course of fatigue in HASTELLOY C-2000. Four stages of temperature are shown over the course of a single fatigue test. Both empirical and theoretical relationships between steady state temperature and fatigue life are developed and presented.
Titov, V N
2013-05-01
The increase of blood tension is a diagnostic test of disorders of homeostasis, trophology, endoecology and adaptation in paracrine regulated coenosis of cells. This conditions results in disorder of microcirculation in the distal section of arterial race and in compensatory increase of blood tension in its proximal section. The increase of blood tension disturbs the function of paracrine coenosis of cells which have one's own system of hemo- and hydrodynamics such as brain with system of spinal liquor and kidneys with local pool of primary urine. They counteract the rise of blood tension and activate local, humoral system of renin-angiotensin-II increasing peripheral resistance to blood flow. At that, the compensatory blood tension becomes even higher. The aldosterone and natriuretic peptides are functional synergists. So, they preserve and excrete ions of Na+ and support the stability of unified pool of intercellular medium ("Inner Ocean" of organism) where all cells live. The parameters of this pool are limited most strictly in vivo. If at the level of nephron the conditions are formed that can alter the parameters of unified pool of intercellular medium the vasomotor center rises blood tension from the level of organism "forcing" nephrons to re-establish the parameters of this pool and normalize the biological functions and biological reactions. The blood pressure increase under pathology of kidneys is caused because of pathological compensation at the level of organism mediated by vegetal nervous system and dictated by necessity to preserve the parameters of inner medium of organism.
Tan, Xueli; Yowler, Charles J; Super, Dennis M; Fratianne, Richard B
2010-01-01
The purpose of this study was to explore the efficacy of two music therapy protocols on pain, anxiety, and muscle tension levels during dressing changes in burn patients. Twenty-nine inpatients participated in this prospective, crossover randomized controlled trial. On two consecutive days, patients were randomized to receive music therapy services either on the first or second day of the study. On control days, they received no music. On music days, patients practiced music-based imagery (MBI), a form of music-assisted relaxation with patient-specific mental imagery before and after dressing changes. Also, on music days during dressing changes, the patients engaged in music alternate engagement (MAE), which consisted of active participation in music making. The dependent variables were the patients' subjective ratings of their pain and anxiety levels and the research nurse's objective ratings of their muscle tension levels. Two sets of data were collected before, three sets during, and another two sets after dressing changes. The results showed significant decrease in pain levels before (P < .025), during (P < .05), and after (P < .025) dressing changes on days the patients received music therapy in contrast to control days. Music therapy was also associated with a decrease in anxiety and muscle tension levels during the dressing changes (P < .05) followed by a reduction in muscle tension levels after dressing changes (P < .025). Music therapy significantly decreases the acute procedural pain, anxiety, and muscle tension levels associated with daily burn care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Yang
Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.
Unstable plastic deformation of ultrafine-grained copper at 0.5 K
NASA Astrophysics Data System (ADS)
Isaev, N. V.; Grigorova, T. V.; Shumilin, S. E.; Polishchuk, S. S.; Davydenko, O. A.
2017-12-01
We investigate the relation between the strain-hardening rate and flow instability of polycrystalline Cu-OF deformed by tension at a constant rate in a liquid 3He atmosphere. The microstructure of the ultrafine-grained crystal, obtained by the equal-channel angular hydro-extrusion method, was varied by annealing at recovery and recrystallization temperatures and was monitored by x-ray diffraction. It is shown that that the flow instability, manifesting itself as macroscopic stress serrations on the tension curve, appears at a threshold tension sufficient for activation of a dynamic recovery that leads to a decrease of the strain-hardening coefficient. We discuss the effect of grain size and the initial dislocation density on the evolution of the dislocation structure that determines the scale and the statistical properties of the flow instability in the investigated crystals at low temperature.
Dickinson, E. S.; Johnson, A. S.; Ellers, O.; Dickinson, P. S.
2016-01-01
ABSTRACT Mechanical and neurophysiological anisotropies mediate three-dimensional responses of the heart of Homarus americanus. Although hearts in vivo are loaded multi-axially by pressure, studies of invertebrate cardiac function typically use uniaxial tests. To generate whole-heart length–tension curves, stretch pyramids at constant lengthening and shortening rates were imposed uniaxially and biaxially along longitudinal and transverse axes of the beating whole heart. To determine whether neuropeptides that are known to modulate cardiac activity in H. americanus affect the active or passive components of these length–tension curves, we also performed these tests in the presence of SGRNFLRFamide (SGRN) and GYSNRNYLRFamide (GYS). In uniaxial and biaxial tests, both passive and active forces increased with stretch along both measurement axes. The increase in passive forces was anisotropic, with greater increases along the longitudinal axis. Passive forces showed hysteresis and active forces were higher during lengthening than shortening phases of the stretch pyramid. Active forces at a given length were increased by both neuropeptides. To exert these effects, neuropeptides might have acted indirectly on the muscle via their effects on the cardiac ganglion, directly on the neuromuscular junction, or directly on the muscles. Because increases in response to stretch were also seen in stimulated motor nerve-muscle preparations, at least some of the effects of the peptides are likely peripheral. Taken together, these findings suggest that flexibility in rhythmic cardiac contractions results from the amplified effects of neuropeptides interacting with the length–tension characteristics of the heart. PMID:26896540
Wang, Chaoyun; Wang, Chunhua; Ma, Chunlei; Huang, Qingxian; Sun, Hongliu; Zhang, Xiaomin; Bai, Xianyong
2014-02-15
Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation. Copyright © 2013 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.J. McInerney; N. Youssef; T. Fincher
2004-05-31
Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. Themore » surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Interfacial tension (IFT) decreased in a stepwise manner as biosurfactant concentration increased with marked reductions in IFT occurring at biosurfactant concentrations of 10 and 40 mg/l. When the biosurfactant concentration was greater than 10 mg/l, residual oil recovery linearly increased with biosurfactant concentration. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Our work shows that (1) diverse microorganisms produce biosurfactants, (2) nutrient manipulation may provide a mechanism to increase biosurfactant activity, (3) biosurfactant concentrations in excess of the critical micelle concentration recover substantial amounts of residual oil, and (4) equations that describe the effect of the biosurfactant on IFT adequately predict residual oil recovery in sandstone cores.« less
Deterioration of muscle function in the human esophagus with age.
Gregersen, Hans; Pedersen, Jan; Drewes, Asbjørn Mohr
2008-12-01
Most studies on the effect of aging on esophageal motor function have shown that peristaltic function deteriorates with age. Esophageal motor function is traditionally studied by means of manometry and radiography. Distension of the esophagus with evaluation of active and passive mechanical parameters have become available during recent years. In this study, we did a manometric swallow analysis and used the distension method to study esophageal properties and function during aging. An impedance planimetric probe with a bag for distension was placed in the distal esophagus of 25 healthy volunteers with a median age of 35 (range 23-86) years. Distensions were done at an infusion rate of 25 ml min(-1) with and without relaxation of neuromuscular activity with butylscopolamine. The infusion was reversed when moderate pain was experienced by the subjects. Swallow-induced contraction amplitudes decreased as function of age for persons older than 40 years (P < 0.05). The total and passive tension showed an exponential increase as function of the change in radius, whereas the active tension increased until it reached a local maximum point. The maximum active tension deteriorated as a function of age after the age of 40 years (P < 0.05). Furthermore, esophagus became stiffer with age. In conclusion, age-related changes of increased stiffness and reduced primary and secondary peristalsis were found in the human esophagus with a deterioration of esophageal function after the age of 40 years. Such changes may contribute to the high prevalence of reflux disease in elderly.
Extensor indicis proprius tendon transfer using shear wave elastography.
Lamouille, J; Müller, C; Aubry, S; Bensamoun, S; Raffoul, W; Durand, S
2017-06-01
The means for judging optimal tension during tendon transfers are approximate and not very quantifiable. The purpose of this study was to demonstrate the feasibility of quantitatively assessing muscular mechanical properties intraoperatively using ultrasound elastography (shear wave elastography [SWE]) during extensor indicis proprius (EIP) transfer. We report two cases of EIP transfer for post-traumatic rupture of the extensor pollicis longus muscle. Ultrasound acquisitions measured the elasticity modulus of the EIP muscle at different stages: rest, active extension, active extension against resistance, EIP section, distal passive traction of the tendon, after tendon transfer at rest and then during active extension. A preliminary analysis was conducted of the distribution of values for this modulus at the various transfer steps. Different shear wave velocity and elasticity modulus values were observed at the various transfer steps. The tension applied during the transfer seemed close to the resting tension if a traditional protocol were followed. The elasticity modulus varied by a factor of 37 between the active extension against resistance step (565.1 kPa) and after the tendon section (15.3 kPa). The elasticity modulus values were distributed in the same way for each patient. The therapeutic benefit of SWE elastography was studied for the first time in tendon transfers. Quantitative data on the elasticity modulus during this test may make it an effective means of improving intraoperative adjustments. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Todorov, R; Iordanova, A; Georgiev, G A; Petkova, Kh; Stoimenova, E; Georgieva, R; Khristova, E; Vasiliev, Kh; Lalchev, Z
2007-01-01
Surfactant therapy leads to significant clinical improvement in infants at risk for, or having, respiratory distress syndrome (RDS). The development of exogenous surfactant (ES) as a therapy for neonatal respiratory disorders was a significant advance in neonatal intensive care that has led to a decrease in neonatal mortality. Two broad categories of surfactants are available for exogenous therapy: surfactants derived from animal sources or 'natural' surfactants; and synthetic surfactants. The physical properties of natural and synthetic surfactants have been studied using techniques such as the Wilhelmy surface balance and the bilayer black film (BBF) method. Here we report some data from a comparative study of ES (Exosurf, Survanta, Curosurf and Alveofact) and clinical samples of tracheal aspirate (TA) of newborns with RDS treated with Curosurf. Measured interfacial physico-chemical parameters prove "better" properties in vitro of the surfactant proteins (SP-B and SP-C) containing preparations Curosurf and Alveofact. Their properties are similar, Alveofact showing a higher surface tension lowering capacity under dynamic conditions. A compendious comparison of results for dynamic surface properties of monolayers of TA from newborns treated with Curosurf with data for newborns treated with Exosurf is presented. Both ES yield the desired lowering of the surface tension during cyclic film compression, being larger after treatment with Curosurf. Observations concerning the properties of BFF of ES (dependence on surfactant concentration, adsorption time, film drainage time and BFF formation time) are also reported and discussed.
Plating of patella fractures: techniques and outcomes.
Taylor, Benjamin C; Mehta, Sanjay; Castaneda, Joaquin; French, Bruce G; Blanchard, Chris
2014-09-01
Operative treatment of displaced patella fractures with tension band fixation remains the gold standard, but is associated with a significant rate of complications and symptomatic implants. Despite the evolution of tension band fixation to include cannulated screws, surprisingly little other development has been made to improve overall patient outcomes. In this article, we present the techniques and outcomes of patella plating for displaced patella fractures and patella nonunions.
A new method of measurement of tension on a moving magnetic tape
NASA Technical Reports Server (NTRS)
Kurtinaytis, A. K.; Lauzhinskas, Y. S.
1973-01-01
The possibility of no-contact measurement of the tension on a moving magnetic tape, assuming the tape is uniform, is discussed. A scheme for calculation of the natural frequency of transverse vibrations of magnetic tape is shown. Mathematical models are developed to show the relationships of the parameters. The method is applicable to the analysis of accurate tape feed mechanisms design.
ERIC Educational Resources Information Center
Chappell, Kerry
2008-01-01
This paper will present and critique the mediation of tensions arising as a result of the collision of creativity and performativity policies in English primary education, in the context of the three-way model of creative partnership being used for professional development in certain English schools. The paper will consider these partnerships from…
ERIC Educational Resources Information Center
Bunting, Camille
2000-01-01
A study of five undergraduate physical education classes explored the influence on positive and negative affect of different types of physical activity. Results indicated that running, skiing, and challenge course activities, especially the 14-foot wall, increased positive affect more than other activities. Implications for physical education…
Buchmann, Johannes; Neustadt, Beate; Buchmann-Barthel, Katharina; Rudolph, Soeren; Klauer, Thomas; Reis, Olaf; Smolenski, Ulrich; Buchmann, Hella; Wagner, Klaus F; Haessler, Frank
2014-03-01
Myofascial trigger points (MTPs) are extremely frequent in the human musculoskeletal system. Despite this, little is known about their etiology. Increased muscular tension in the trigger point area could be a major factor for the development of MTPs. To investigate the impact of muscular tension in the taut band with an MTP and thereby, the spinal excitability of associated segmental neurons, we objectively measured the tissue tension in MTPs before and during the administration of anesthesia using a transducer. Three target muscles (m. temporalis, upper part of m. trapezius, and m. extensor carpi radialis longus) with an MTP and 1 control muscle without an MTP were examined in 62 patients scheduled for an operation. We found significant 2-way interactions (ANOVA, P<0.05) between the analyzed regions of the target muscles dependent on the time of measurement, that is, before and during a complete blocking of neuromuscular transmission. These effects could be demonstrated for each target muscle separately. An increased muscle tension in MTPs, and not a primary local inflammation with enhanced viscoelasticity, was the main result of our investigation. We interpret this increased muscular tension in the taut band with an MTP as increased spinal segmental excitability. In line with this, we assume a predominant, but not unique, impact of increased spinal excitability resulting in an augmented tension of segmental-associated muscle fibers for the etiology of MTP. Consequently, postisometric relaxation might be a promising therapeutic option for MTPs.
Multiple Rap1 effectors control Epac1-mediated tightening of endothelial junctions.
Pannekoek, Willem-Jan; Vliem, Marjolein J; Bos, Johannes L
2018-02-17
Epac1 and Rap1 mediate cAMP-induced tightening of endothelial junctions. We have previously found that one of the mechanisms is the inhibition of Rho-mediated tension in radial stress fibers by recruiting the RhoGAP ArhGAP29 in a complex containing the Rap1 effectors Rasip1 and Radil. However, other mechanisms have been proposed as well, most notably the induction of tension in circumferential actin cables by Cdc42 and its GEF FGD5. Here, we have investigated how Rap1 controls FGD5/Cdc42 and how this interconnects with Radil/Rasip1/ArhGAP29. Using endothelial barrier measurements, we show that Rho inhibition is not sufficient to explain the barrier stimulating effect of Rap1. Indeed, Cdc42-mediated tension is induced at cell-cell contacts upon Rap1 activation and this is required for endothelial barrier function. Depletion of potential Rap1 effectors identifies AF6 to mediate Rap1 enhanced tension and concomitant Rho-independent barrier function. When overexpressed in HEK293T cells, AF6 is found in a complex with FGD5 and Radil. From these results we conclude that Rap1 utilizes multiple pathways to control tightening of endothelial junctions, possibly through a multiprotein effector complex, in which AF6 functions to induce tension in circumferential actin cables.
Scherer, Katrin; Schünke, Michael; Sellckau, Roland; Hassenpflug, Joachim; Kurz, Bodo
2004-01-01
Tissue engineering of articular cartilage from chondrocytes or stem cells is considered to be a potential aspect in the treatment of cartilage defects. In order to optimize culture conditions the influence of low oxygen tension (5%) - single or in combination with intermittent hydrostatic pressure (HP: 30/2 min on/off loading; 0.2 MPa) - on the biosynthetic activity (sulfate and proline incorporation) of human osteoarthritic chondrocytes cultured on collagen I/III membranes was investigated. Additionally, chondrogenesis from high density or monolayer cultures of bovine adherent bone marrow cells (aBMC) with and without chondrogenic medium supplements (CM) was analyzed by RT-PCR (mRNA expression of aggrecan and collagen type II). We could show that low oxygen tension increases significantly the biosynthesis of collagen I/III membrane-associated chondrocytes and even higher under co-stimulation with HP. While there is no chondrogenesis in monolayer cultures, CM induces expression of cartilage matrix molecules in high density cultures of aBMC which is even increased under the influence of low oxygen tension. Both, low oxygen tension and HP without CM are alone not sufficient stimuli for chondrogenesis. It can be concluded that low oxygen tension and HP might be useful tools in cartilage tissue engineering and that these physico-chemical factors promote but do not induce chondrogenesis under the given conditions.