Science.gov

Sample records for active terahertz metamaterials

  1. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong

    2009-01-01

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  2. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; O' Hara, John F; Taylor, Antoinette J

    2009-01-01

    In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

  3. Active terahertz metamaterial devices

    DOEpatents

    Chen, Houtong; Padilla, Willie John; Averitt, Richard Douglas; O'Hara, John F.; Lee, Mark

    2010-11-02

    Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

  4. Terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Taylor, Antoineete J; Azad, Abul K; O' Hara, John F

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  5. Terahertz metamaterials

    SciTech Connect

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  6. Active Metamaterials for Terahertz Communication and Imaging

    NASA Astrophysics Data System (ADS)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in

  7. Multi-band terahertz active device with complementary metamaterial

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Sun, Linlin; Sun, Han; Xu, Gaiqi; Zhao, Yuncheng; Yang, Ziqiang; Liang, Shixiong

    2015-09-28

    We describe a multi-band terahertz-active device using a composite structure made of complementary metamaterial and doped silicon that can be dynamically controlled. This special complementary metamaterial exhibits three resonances that produce three pass-bands. The pass-bands can be uniformly manipulated by exploiting the photoinduced characteristics of the doped silicon. Simulations were performed to analyze the magnetic field and surface current distributions. The simulation results agree well with experimental results obtained from terahertz time-domain spectroscopy. Using an 808-nm-wavelength laser beam, a modulation depth of up to 80% was obtained. In numerical simulations, we used a conductivity mode to characterize photoinduction. The development of multi-band terahertz-active devices has many potential applications, for example, in filters, modulators, switches, and sensors.

  8. Graphene active plasmonic metamaterials for new types of terahertz lasers

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  9. Switching terahertz waves with gate-controlled active graphene metamaterials.

    PubMed

    Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki

    2012-11-01

    The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

  10. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  11. Active Metamaterial Based Terahertz Polarimeter for Spectroscopic Detection of Chemical and Biological Hazards

    DTIC Science & Technology

    2014-04-01

    Active Metamaterial Based Terahertz Polarimeter for Spectroscopic Detection of Chemical and Biological Hazards by Grace D. Metcalfe ...for Spectroscopic Detection of Chemical and Biological Hazards Grace D. Metcalfe and Michael Wraback Sensors and Electron Devices Directorate, ARL...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Grace D. Metcalfe , Michael Wraback, Richard D. Averitt, and Xin Zhang 5d. PROJECT NUMBER

  12. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  13. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  14. Terahertz antireflection coatings using metamaterials

    SciTech Connect

    Chen, Hou-tong; Zhou, Jiangfeng; O' Hara, John F; Azad, Abul K; Chen, Frank; Taylor, Antoinette J

    2010-01-01

    We demonstrate terahertz metamaterial antireflection coatings (ARCs) that significantly reduce the reflection and enhance the transmission at an interface of dielectric media. They are able to operate over a wide range of incidence angles for both TM and TE polarizations. Experiments and finite-element simulations will be presented and discussed.

  15. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang

    2017-01-01

    An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.

  16. Asymmetric planar terahertz metamaterials

    SciTech Connect

    Singh, Ramjan; Al - Naib, Ibraheem A. I.; Koch, Martin; Zhang, Weili

    2010-01-01

    Using terahertz time-domain spectroscopy, we report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the comer of the ring allows for an 85% modulation of the fundamental inductive-capacitive (LC) resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region.

  17. A low-voltage high-speed terahertz spatial light modulator using active metamaterial

    NASA Astrophysics Data System (ADS)

    Rout, Saroj; Sonkusale, Sameer R.

    2016-11-01

    An all solid-state metamaterial based terahertz (THz) spatial light modulator (SLM) is presented which uses high mobility 2DEG to manipulate the metamaterial resonant frequency (0.45 THz) leading to terahertz wave modulation. The 2DEG is created by embedding pseudomorphic high-electron mobility transistors in the capacitive gap of each electrical-LC resonator, allowing the charge density to be controlled with very low voltage (1 V) and modulating speeds up to 10 MHz while consuming sub-milliwatt power. We have demonstrated our SLM as a 2 × 2 pixel array operating around 0.45 THz by raster scanning a 6 × 6 image of an occluded metal object behind a thick polystyrene screen using a single-pixel THz imaging setup.

  18. Metamaterial Resonant Absorbers for Terahertz Sensing

    DTIC Science & Technology

    2015-12-01

    and their periodic nature , finite element (FE) modeling is the preferable means of designing metamaterials. In order to use metamaterials in sensors ...will incorporate the metamaterial absorber design of this research into a more efficient, cost effective, bi-material THz sensor that can be employed...in a variety of naval applications. 14. SUBJECT TERMS terahertz sensors , metamaterials, uncooled detectors 15. NUMBER OF PAGES 73 16

  19. Elastomeric silicone substrates for terahertz fishnet metamaterials

    NASA Astrophysics Data System (ADS)

    Khodasevych, I. E.; Shah, C. M.; Sriram, S.; Bhaskaran, M.; Withayachumnankul, W.; Ung, B. S. Y.; Lin, H.; Rowe, W. S. T.; Abbott, D.; Mitchell, A.

    2012-02-01

    In this work, we characterize the electromagnetic properties of polydimethylsiloxane (PDMS) and use this as a free-standing substrate for the realization of flexible fishnet metamaterials at terahertz frequencies. Across the 0.2-2.5 THz band, the refractive index and absorption coefficient of PDMS are estimated as 1.55 and 0-22 cm-1, respectively. Electromagnetic modeling, multi-layer flexible electronics microfabrication, and terahertz time-domain spectroscopy are used in the design, fabrication, and characterization of the metamaterials, respectively. The properties of PDMS add a degree of freedom to terahertz metamaterials, with the potential for tuning by elastic deformation or integrated microfluidics.

  20. MEMS tunable terahertz metamaterials using out-of-plane mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Pitchappa, Prakash; Ho, Chong Pei; Lee, Chengkuo

    2015-03-01

    The tunable terahertz metamaterial (TTM) has attracted intense research interest, since the electromagnetic response of the metamaterial can be actively controlled through external stimulus, which is of great significance in real time applications. The active control of metamaterial characteristics is crucial in order to provide a flexible and versatile platform for mimicking fundamental physical effects. To realize the electromagnetic tunability, various approaches have been demonstrated to increase the flexibility in applications, such as changing the effective electromagnetic properties. Alternatively, MEMS-based techniques are well developed. The structural reconfiguration is a straightforward way to control the electromagnetic properties. The metamaterial properties can be directly modified by reconfiguring the unit cell which is the fundamental building block of metamaterials. Currently, our research works are focusing on MEMS-based TTM adopting stress-induced curved actuators (SICA) to adjust the resonant frequency of devices. Herein, the proposed TTM designs are double split-ring resonator (DSRR), electric split-ring resonator (eSRR), Omega-ring metamaterial (ORM), symmetric and asymmetric T-shape metamaterial (STM and ATM), respectively. We demonstrated these TTM can be active, continuous, and recoverable control the resonant frequency by using electrostatic or electrothermal actuation mechanism. Therefore, the TTM devices can be effectively used for sensors, optical switches, and filters applications.

  1. Terahertz Quantum-Cascade Transmission-Line Metamaterials

    NASA Astrophysics Data System (ADS)

    Tavallaee, Amir Ali

    Terahertz quantum-cascade (QC) lasers operating at 0.6 - 5 THz (λ ˜ 60 - 500 µm) are poised to become the dominant solid-state sources of continuous-wave (cw) far-infrared radiation enabling applications in terahertz spectroscopy, imaging, and sensing. QC-lasers are the longest wavelength semiconductor laser sources in which terahertz gain is obtained from electronic intersubband radiative transitions in GaAs/AlGaAs heterostructure quantum wells. Since their invention in 2001, rapid development has enabled demonstration of cw powers greater than 100 mW. However, challenges still remain in the areas of operating temperature, laser efficiency and power, and beam quality to name a few. The highest-temperature operation of terahertz quantum-cascade lasers (200 K pulsed, 117 K cw) depends on the use of a low-loss "metal-metal" waveguide where the active gain material is sandwiched between two metal cladding layers; a technique similar, in concept, to microstrip transmission line technology at microwave frequencies. Due to the subwavelength transverse dimensions of the metal-metal waveguide, however, obtaining a directive beam pattern and efficient out-coupling of THz power is non-trivial. This thesis reports the demonstration of a one-dimensional waveguide for terahertz quantum-cascade lasers that acts as a leaky-wave antenna and tailors laser radiation in one dimension to a directional beam. This scheme adapts microwave transmission-line metamaterial concepts to a planar structure realized in terahertz metal-metal waveguide technology and is fundamentally different from distributed feedback/photonic crystal structures that work based on Bragg scattering of propagating modes. The leaky-wave metamaterial antenna operates based on a propagating mode with an effective phase index smaller than unity such that it radiates in the surface direction via a leaky-wave mechanism. Surface emission (˜ 40° from broadside) with a single directive beam (FWHM ˜ 15°) at 2.74 THz

  2. Graphene plasmonics for tunable terahertz metamaterials.

    PubMed

    Ju, Long; Geng, Baisong; Horng, Jason; Girit, Caglar; Martin, Michael; Hao, Zhao; Bechtel, Hans A; Liang, Xiaogan; Zettl, Alex; Shen, Y Ron; Wang, Feng

    2011-09-04

    Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

  3. Human cell sensing based on symmetric terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Xia, Liangping; Wang, Sijiang; Mao, Hongyan; Tang, Mingjie; Wei, Dongshan; Wang, Huabin; Cui, Hongliang; Du, Chunlei

    2016-10-01

    The terahertz metamaterial with metallic symmetric square slit ring array is proposed to sensing human cells. The sensitivity of the structure is discussed with the finite element method simulations and the optimized structure parameters are obtained. The cell location analysis is carried out and the calculated result shows that the gaps are the most sensitive places in the structure. With the lithography of hard wafer support, the metamaterial terahertz sensor is fabricated on the thin and flexible polyethylene glycol terephthalate (PET) substrate which is low loss in terahertz waveband. In the sensing experiment, the human renal epithelial cell transfected with adenovirus EIA gene-293t cells are in situ grown on the surface of the fabricated terahertz metamaterial sensor. With the terahertz time domain spectroscopy (THz-TDS), the resonant frequency of the metamaterial shift 18GHz after the 293t cells are grown onto it.

  4. Terahertz polarimetry based on metamaterial devices

    NASA Astrophysics Data System (ADS)

    Metcalfe, Grace D.; Wraback, Michael; Strikwerda, Andrew; Fan, Kebin; Zhang, Xin; Averitt, Richard

    2012-05-01

    Polarimetry is a well-developed technique in radar based applications and stand-off spectroscopic analysis at optical frequencies. Extension to terahertz (THz) frequencies could provide a breakthrough in spectroscopic methods since the THz portion of the electromagnetic spectrum provides unique spectral signatures of chemicals and biological molecules, useful for filling gaps in detection and identification. Distinct advantages to a THz polarimeter include enhanced image-contrast based on differences in scattering of horizontally and vertically polarized radiation, and measurements of the dielectric response, and thereby absorption, of materials in reflection in real-time without the need of a reference measurement. To implement a prototype THz polarimeter, we have developed low profile, high efficiency metamaterial-based polarization control components at THz frequencies. Static metamaterial-based half- and quarter-wave plates operating at 0.35 THz frequencies were modeled and fabricated, and characterized using a MHz resolution, continuous-wave spectrometer operating in the 0.09 to 1.2 THz range to verify the design parameters such as operational frequency and bandwidth, insertion loss, and phase shift. The operation frequency was chosen to be in an atmospheric window (between water absorption lines) but can be designed to function at any frequency. Additional advantages of metamaterial devices include their compact size, flexibility, and fabrication ease over large areas using standard microfabrication processing. Wave plates in both the transmission and reflection mode were modeled, tested, and compared. Data analysis using Jones matrix theory showed good agreement between experimental data and simulation.

  5. Tunable reflecting terahertz filter based on chirped metamaterial structure.

    PubMed

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-12-12

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

  6. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  7. Tunable reflecting terahertz filter based on chirped metamaterial structure

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-12-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

  8. Optical isotropy at terahertz frequencies using anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook

    2016-07-01

    We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.

  9. Tuning of superconducting niobium nitride terahertz metamaterials.

    PubMed

    Wu, Jingbo; Jin, Biaobing; Xue, Yuhua; Zhang, Caihong; Dai, Hao; Zhang, Labao; Cao, Chunhai; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2011-06-20

    Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (f(g) = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below f(g) to above it. We have found that, as the resonance frequency approaches f(g), the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

  10. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    PubMed Central

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-01-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range. PMID:26423346

  11. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    NASA Astrophysics Data System (ADS)

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  12. Coupling Schemes in Terahertz Planar Metamaterials

    DOE PAGES

    Roy Chowdhury, Dibakar; Singh, Ranjan; Taylor, Antoinette J.; ...

    2012-01-01

    We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive ( LC ) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of the LC resonance. We observe the LC resonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-ordermore » resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes.« less

  13. Near field interactions in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Keiser, George R.

    Terahertz (THz) frequencies comprise the portion of the electromagnetic spectrum more energetic than microwaves, but less energetic than infrared light. The THz band presents many opportunities for condensed matter physics and optics engineering. From the physics perspective, advances in the generation and detection of THz radiation have opened the door for spectroscopic studies of a range of solid-state phenomena that manifest at THz frequencies. From an engineering perspective, THz frequencies are an under-used spectral region, ripe for the development of new devices. In both cases, the challenge for researchers is to overcome a lack of sources, detectors, and optics for THz light, termed the THz Gap. Metamaterials (MMs), composite structures with engineered index of refraction, n, and impedance, Z, provide one path towards realizing THz optics. MMs are an ideal platform for the design of local EM field distributions, and far-field optical properties. This is especially true at THz frequencies, where fabrication of inclusions is easily accomplished with photolithography. Historically, MM designs have been based around static configurations of resonant inclusions that work only in a narrow frequency band, limiting applications. Broadband and tunable MMs are needed to overcome this limit. This dissertation focuses on creating tunable and controllable MM structures through the manipulation of electromagnetic interactions between MM inclusions. We introduce three novel MM systems. Each system is studied computationally with CST-Studio, and experimentally via THz spectroscopy. First, we look at the tunable transmission spectrum of two coupled split ring resonators (SRRs) with different resonant frequencies. We show that introducing a lateral displacement between the two component resonators lowers the electromagnetic coupling between the SRRs, activating a new resonance. Second, we study an SRR array, coupled to a non-resonant closed ring array. We show that lowering

  14. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Xu, Zong-Cheng; Gao, Run-Mei; Ding, Chun-Feng; Wu, Liang; Zhang, Ya-Ting; Yao, Jian-Quan

    2015-04-01

    We present an demonstration of optically tunable metamaterial absorber at terahertz frequencies. The metamaterials are based on two split ring resonators (SSRs) that can be tuned by integrating photoconductive silicon into the metamaterial unit cell. Filing the gap between the resonator arm with a semiconductor (silicon), leads to easy modification of its optical response through a pump beam which changes conductivity of Si. The conductivity of silicon is a function of incident pump power. Therefore, the conductivity of silicon is tuned effectively by applying an external pump power. We demonstrate that a blueshift of the resonance frequency under illumination can be accomplished and a broadband switch of absorption frequencies varying from 0.68 to 1.41 THz, with a tuning range of 51.8%. The realization of broadband blueshift tunable metamaterial absorber offers opportunities for achieving switchable metamaterial absorber and could be implemented in terahertz devices to achieve additional functionalities.

  15. Terahertz compressive imaging with metamaterial spatial light modulators

    NASA Astrophysics Data System (ADS)

    Watts, Claire M.; Shrekenhamer, David; Montoya, John; Lipworth, Guy; Hunt, John; Sleasman, Timothy; Krishna, Sanjay; Smith, David R.; Padilla, Willie J.

    2014-08-01

    Imaging at long wavelengths, for example at terahertz and millimetre-wave frequencies, is a highly sought-after goal of researchers because of the great potential for applications ranging from security screening and skin cancer detection to all-weather navigation and biodetection. Here, we design, fabricate and demonstrate active metamaterials that function as real-time tunable, spectrally sensitive spatial masks for terahertz imaging with only a single-pixel detector. A modulation technique permits imaging with negative mask values, which is typically difficult to achieve with intensity-based components. We demonstrate compressive techniques allowing the acquisition of high-frame-rate, high-fidelity images. Our system is all solid-state with no moving parts, yields improved signal-to-noise ratios over standard raster-scanning techniques, and uses a source orders of magnitude lower in power than conventional set-ups. The demonstrated imaging system establishes a new path for terahertz imaging that is distinct from existing focal-plane-array-based cameras.

  16. Nonlinear reshaping of terahertz pulses with graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu.; Grimalsky, V.; Iorsh, I.; Kalinich, N.; Koshevaya, S.; Castrejon-Martinez, Ch.; Kivshar, Yu. S.

    2013-12-01

    We study the propagation of electromagnetic waves through a slab of graphene metamaterial composed of the layers of graphene separated by dielectric slabs. Starting from the kinetic expression for two-dimensional electric current in graphene, we derive a novel equation describing the nonlinear propagation of terahertz electromagnetic pulses through the layered graphene-dielectric structure in the presence of losses and non-linearities. We demonstrate strong nonlinearity-induced reshaping of transmitted and reflected terahertz pulses through the interaction with the thin multilayer graphene metamaterial structure.

  17. Materials and Mechanics of Metamaterial Enhanced MEMS for Terahertz Technology

    DTIC Science & Technology

    2013-12-23

    Published in: Advanced Materials, 2011, 23(28): 3197-3201 Title: Microwave and Terahertz Wave Sensing with Metamaterials * With H. Tao, E.A. Kadlec...Free-Standing Biocompatible Silk Films," Technical Digest of IEEE Solid-State Sensor and Actuator Workshop (Hilton Head 󈧎), Hilton Head Island...Terahertz Detector," Technical Digest of IEEE Solid-State Sensor and Actuator Workshop (Hilton Head 󈧐), Hilton Head Island, SC, USA, June 3-7, 2012, pp

  18. Electrically controllable terahertz square-loop metamaterial based on VO₂ thin film.

    PubMed

    Shin, Jun-Hwan; Park, Kyung Hyun; Ryu, Han-Cheol

    2016-05-13

    An electrically controllable square-loop metamaterial based on vanadium dioxide (VO2) thin film was proposed in the terahertz frequency regime. The square-loop shaped metamaterial was adopted to perform roles not only as a resonator but also as a micro-heater for the electrical control of the VO2. A dual-resonant square-loop structure was designed to realize band-pass characteristics in the desired frequency band. The measured Q-factors of the basic and scaled-down metamaterials fabricated on VO2 thin films were 2.22 and 1.61 at the center frequencies of 0.44 and 1.14 THz in the passbands, respectively. The transmittances of the proposed metamaterial were successfully controlled by applying a bias voltage without an external heater. The measured transmittance on-off ratios of the metamaterials were over 40 at the center frequencies in the passbands. In the future, electrically controllable terahertz metamaterial based on VO2 metamaterial could be employed as high-performance active filters or sensors.

  19. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film

    NASA Astrophysics Data System (ADS)

    Shin, Jun-Hwan; Park, Kyung Hyun; Ryu, Han-Cheol

    2016-05-01

    An electrically controllable square-loop metamaterial based on vanadium dioxide (VO2) thin film was proposed in the terahertz frequency regime. The square-loop shaped metamaterial was adopted to perform roles not only as a resonator but also as a micro-heater for the electrical control of the VO2. A dual-resonant square-loop structure was designed to realize band-pass characteristics in the desired frequency band. The measured Q-factors of the basic and scaled-down metamaterials fabricated on VO2 thin films were 2.22 and 1.61 at the center frequencies of 0.44 and 1.14 THz in the passbands, respectively. The transmittances of the proposed metamaterial were successfully controlled by applying a bias voltage without an external heater. The measured transmittance on-off ratios of the metamaterials were over 40 at the center frequencies in the passbands. In the future, electrically controllable terahertz metamaterial based on VO2 metamaterial could be employed as high-performance active filters or sensors.

  20. Ultrastrong coupling of intersubband plasmons and terahertz metamaterials

    SciTech Connect

    Dietze, D. Unterrainer, K.; Darmo, J.; Andrews, A. M.; Klang, P.; Strasser, G.

    2013-11-11

    We report on the ultrastrong-coupling between localized plasmons of a planar terahertz metamaterial and intersubband plasmons in a modulation doped quantum well sample. Such a system exhibits the formation of a lower and an upper polariton branch when the metamaterial eigenfrequency is tuned close to resonance with the intersubband transition. We achieve a normalized polariton splitting of 22% and a polaritonic gap of 2.4% of the intersubband transition frequency. In addition to the usual geometrical scaling, we demonstrate the effective tuning of the metamaterial resonance by dry etching with a tuning range of more than 1 THz.

  1. Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-08-01

    We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017  cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.

  2. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    PubMed

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  3. Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Fang, Shenying; Luan, Kang; Ma, Hui Feng; Lv, Wenjin; Li, Yuxiang; Zhu, Zheng; Guan, Chunying; Shi, Jinhui; Cui, Tie Jun

    2017-01-01

    We experimentally demonstrate the asymmetric transmission of linearly polarized waves in a multilayer chiral metamaterial in the terahertz (THz) regime. The chiral metamaterial is constructed by two stacked orthogonal metallic layers embedded in polyimide dielectric layers. Simulated and measured results show that the proposed multilayer chiral metamaterial can achieve dual-band direction-dependent cross-polarization conversions for both x- and y-polarized THz waves. The polarized wave passing through the metamaterial will be converted into its orthogonal polarization state, while the same polarized wave is blocked along the reversed propagation direction. In addition, the asymmetric transmission band may be effectively engineered to other frequencies by slightly adjusting the gap width. We believe that our findings are beneficial in manipulating the polarization state of THz waves and exploring polarization-sensitive THz devices.

  4. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers.

    PubMed

    Ozbey, Burak; Aktas, Ozgur

    2011-03-28

    Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed.

  5. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    PubMed Central

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  6. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.

    PubMed

    Lim, C S; Hong, M H; Chen, Z C; Han, N R; Luk'yanchuk, B; Chong, T C

    2010-06-07

    Planar hybrid metamaterial with different split ring resonators (SRR) structure dimensions are fabricated on silicon substrates by femtosecond (fs) laser micro-lens array (MLA) lithography and lift-off process. The fabricated metamaterial structures consist of: (a) uniform metamaterial with 4 SRRs at same design and dimension as a unit cell and (b) hybrid metamaterial with 4 SRRs at same design but different dimensions as a unit cell. The electromagnetic field responses of these hybrid and single dimension metamaterial structures are characterized using a terahertz (THz) time-domain spectroscopy. Transmission spectra of these metamaterial show that a broader resonance peak is formed when 2 SRRs are close to each other. FDTD simulation proves that there is a strong mutual coupling between 2 SRRs besides a strong localized electric field at the split gap, which can enhance the electric field up to 364 times for tunable, broad band and high sensitivity THz sensing. Meanwhile, the strong coupling effect could lead to the formation of an additional resonance peak at approximately 0.2 THz in the THz spectra regime.

  7. Low-loss terahertz metamaterial from superconducting niobium nitride films.

    PubMed

    Zhang, C H; Wu, J B; Jin, B B; Ji, Z M; Kang, L; Xu, W W; Chen, J; Tonouchi, M; Wu, P H

    2012-01-02

    This paper reports a type of low Ohmic loss terahertz (THz) metamaterials made from low-temperature superconducting niobium nitride (NbN) films. Its resonance properties are studied by THz time domain spectroscopy. Our experiments show that its unloaded quality factor reaches as high as 178 at 8 K with the resonance frequency at around 0.58 THz, which is about 24 times that of gold metamaterial at the same temperature. The unloaded quality factor keeps at a high level, above 90, even when the resonance frequency increases to 1.02 THz, which is close to the gap frequency of NbN film. All these experimental observations fit well into the framework of Bardeen-Copper-Schrieffer theory and equivalent circuit model. These new metamaterials offer an efficient way to the design and implementation of high performance THz electronic devices.

  8. Terahertz sensing of chlorpyrifos-methyl using metamaterials.

    PubMed

    Xu, Wendao; Xie, Lijuan; Zhu, Jianfei; Wang, Wei; Ye, Zunzhong; Ma, Yungui; Tsai, Chao-Yin; Chen, Suming; Ying, Yibin

    2017-03-01

    By squeezing electromagnetic energy into small volumes near a metal-dielectric interface, plasmonics provide many routes to enhance and manipulate light-matter interactions, which presents new strategies for signal enhancing technologies. As an extension of the ideas of plasmonics to the terahertz (THz) range, metamaterials have shown great potential in sensing applications. In this study, terahertz time-domain spectroscopy (THz-TDS) combined with metamaterials was used to detect chlorpyrifos-methyl (CM), which is one type of the broad-spectrum organophosphorus pesticides. The results demonstrate that sensitivity is greatly improved using THz metamaterials, with the limit of detection (LOD) of CM reaching 0.204mgL(-1), which is lower than the World Health Organization's provisional guideline limit for CM in vegetables (1mgL(-1)). The results indicated that THz spectroscopy combined with metamaterials could be a valuable method for highly sensitive THz applications, presenting a new strategy for food quality and safety control in the future.

  9. Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber.

    PubMed

    Chen, Xu; Fan, Wenhui

    2015-03-20

    A thin-flexible and polarization-insensitive multiband terahertz metamaterial absorber (MMA) has been investigated. Each unit cell of the MMA consists of two metallic structures, which include the top metal resonator ring and the bottom metal ground plane, separated by a thin-flexible dielectric spacer. Finite element simulation indicates that this MMA has three high absorption peaks in the terahertz region, with absorptivities of 89% at 0.72 THz, 98% at 1.4 THz, and 85% at 2.3 THz. However, because of its rotationally symmetric structure, this MMA is polarization-insensitive and can perform very well at a wide range of incident angles, namely, 30° for transverse electric waves and 40° for transverse magnetic waves. The thin-flexible device structure and good performance shows that this MMA is very promising to disguise objects and make them less detectable to radar in the terahertz region.

  10. [Research progress in the application of biosensors by using metamaterial in terahertz wave].

    PubMed

    Yan, Xin; Zhang, Xing-Fang; Liang, Lan-Ju; Yao, Jian-Quan

    2014-09-01

    In the present paper, the recent progress in terahertz metamaterials-based sensing is reviewed with the principle of metamaterial biosensor,metamaterial substrate, and structure design, respectively. The paper introduces the principle in detail, analyzes the sensitivity of the biosensor with the material and the thickness of the substrate and the structure of metamaterial. The analysis shows that we can enhance the sensitivity and resolution of biosensor by designing specific metamaterial structure, using low dielectric constant and low loss thin substrate, especially many materials have a specific response in the terahertz frequency. So, there is a large potential application for label-free sensing by using the terahertz metamaterials. This paper also presents the future development of THz metamaterial sensors.

  11. Tuning the response of terahertz metamaterial at low temperatures

    SciTech Connect

    Singh, Ranjan; O' Hara, John F; Taylor, Antoinette; Zhang, Weili; Tian, Zhen; Han, Jiaguang; Rockstukl, Carsten; Gu, Jianqiang

    2010-01-01

    The transmission response of planar thin film metamateriaJs were measured at room and liquid nitrogen temperatures using terahertz time-domain spectroscopy. The behaviour of metamaterials at low temperatures is shown to have low-loss since the nonradiative losses are strongly suppressed due to higher metal film conductivity. We observe a temperature tunable effect and a gradual increase of 40% in the quality factor of the metamaterial. The emerging field of metamaterial (MM) has opened a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. Planar metamaterials are made of thin metal films with a thickness comparable to the skin depth. In spite of several newly found potential applications of these metafilms, practical use is often hindered by strong losses of the metallic elements. It causes a weakening and a damping of the resonance. This makes dissipation the property that dominates the light propagation. Therefore, the compensation of such losses is currently the most important topic to solve prior to advancing MMs to a higher level. Overall metamaterial losses typically have a radiative contribution, which can be tailored by suitable geometrical modifications, and a non-radiative contribution, associated to the intrinsic absorption of the light in the metal and/or dielectric. Thus, one way to improve their performance is to increase the conductivity of the metals. A simple technique to increase the metal conductivity is to cool it to low temperatures.

  12. Dynamic mode coupling in terahertz metamaterials

    PubMed Central

    Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili

    2015-01-01

    The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057

  13. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching

    PubMed Central

    Zografopoulos, Dimitrios C.; Beccherelli, Romeo

    2015-01-01

    The electrically tunable properties of liquid-crystal fishnet metamaterials are theoretically investigated in the terahertz spectrum. A nematic liquid crystal layer is introduced between two fishnet metallic structures, forming a voltage-controlled metamaterial cavity. Tuning of the nematic molecular orientation is shown to shift the magnetic resonance frequency of the metamaterial and its overall electromagnetic response. A shift higher than 150 GHz is predicted for common dielectric and liquid crystalline materials used in terahertz technology and for low applied voltage values. Owing to the few micron-thick liquid crystal cell, the response speed of the tunable metamaterial is calculated as orders of magnitude faster than in demonstrated liquid-crystal based non-resonant terahertz components. Such tunable metamaterial elements are proposed for the advanced control of electromagnetic wave propagation in terahertz applications. PMID:26272652

  14. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    PubMed Central

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  15. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-08-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging.

  16. Low loss and magnetic field-tunable superconducting terahertz metamaterial.

    PubMed

    Jin, Biaobing; Zhang, Caihong; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-08-02

    Superconducting terahertz (THz) metamaterial (MM) made from niobium (Nb) film has been investigated using a continuous-wave THz spectroscopy. The quality factors of the resonance modes at 0.132 THz and 0.418 THz can be remarkably increased when the working temperature is below the superconducting transition temperature of Nb, indicating that the use of superconducting Nb is a possible way to achieve low loss performance of a THz MM. In addition, the tuning of superconducting THz MM by a magnetic field is also demonstrated, which offers an alternative tuning method apart from the existing electric, optical and thermal tuning methods.

  17. Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial

    NASA Astrophysics Data System (ADS)

    Al-Naib, Ibraheem; Sharma, Gargi; Dignam, Marc M.; Hafez, Hassan; Ibrahim, Akram; Cooke, David G.; Ozaki, Tsuneyuki; Morandotti, Roberto

    2013-11-01

    We demonstrate the strong effect of the local field enhancement on the nonlinear terahertz response of a hybrid photoexcited silicon/double concentric ring metamaterial structure. The ring resonators enhance the local terahertz electric field by more than a factor of ten, pushing the terahertz-semiconductor interaction into the high-field regime even for moderate-strength incident terahertz pulses. In this regime, terahertz field-induced intervalley scattering in the photoexcited silicon substrate dynamically alters the substrate conductivity, which in turn strongly modifies the pulse transmission. The spatial distribution of the local field enhancement within the resonator structure results in a modified bandwidth, amplitude, and central frequency of the transmission resonance occurring on a subcycle time scale. These results demonstrate an enhancement of the nonlinear terahertz response of silicon-based metamaterials that must be accounted for in the design of terahertz nonlinear devices.

  18. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  19. High-Q terahertz reconfigurable metamaterials using graphene

    NASA Astrophysics Data System (ADS)

    Arezoomandan, Sara; Sensale Rodriguez, Berardi

    2016-09-01

    We propose and discuss high-Q reconfigurable metamaterials based on graphene. The key components of the device are periodic concentric metallic ring resonators with interdigitated fingers, which are placed in-between the rings and provide for the large Q in the metamaterial, as well as several strategically located gaps where active graphene sheets are placed. We can easily adjust the frequency response of the metamaterial by means of varying a couple of parameters, such as the ring dimensions, number of fingers, etc., but also dynamically by means of varying conductivity in graphene.

  20. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-03-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

  1. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    PubMed Central

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419

  2. HfO 2 -based ferroelectric modulator of terahertz waves with graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Jiang, Ran; Wu, Zheng-Ran; Han, Zu-Yin; Jung, Hyung-Suk

    2016-10-01

    Tunable modulations of terahertz waves in a graphene/ferroelectric-layer/silicon hybrid structure are demonstrated at low bias voltages. The modulation is due to the creation/elimination of an extra barrier in Si layer in response to the polarization in the ferroelectric Si:HfO2 layer. Considering the good compatibility of HfO2 with the Si-based semiconductor process, the highly tunable characteristics of the graphene metamaterial device under ferroelectric effect open up new avenues for graphene-based high performance integrated active photonic devices compatible with the silicon technology. Project supported by the National Natural Science Foundation of China (Grant No. 11374182).

  3. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range

    SciTech Connect

    Karl, N.; Reichel, K.; Mendis, R.; Mittleman, D. M.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Benz, A.; Reno, J. L.

    2014-03-03

    We design and experimentally demonstrate a switchable diffraction grating for terahertz modulation based on planar active metamaterials, where a Schottky gate structure is implemented to tune the metamaterial resonances in real-time via the application of an external voltage bias. The diffraction grating is formed by grouping the active split-ring resonators into an array of independent columns with alternate columns biased. We observe off-axis diffraction over a wide frequency band in contrast to the narrow-band resonances, which permits operation of the device as a relatively high-speed, wide-bandwidth, high-contrast modulator, with more than 20 dB of dynamic range.

  4. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  5. Origin of strain-induced resonances in flexible terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Xiu-Yun, Sun; Li-Ren, Zheng; Xiao-Ning, Li; Hua, Xu; Xian-Ting, Liang; Xian-Peng, Zhang; Yue-Hui, Lu; Young-Pak, Lee; Joo-Yull, Rhee; Wei-Jie, Song

    2016-05-01

    Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate (PEN) substrates. The unit cell of one type consists of two identical split-ring resonators (SRRs) that are arranged face-to-face (i.e., FlexMetaF); the unit cell of the other type has nothing different but is arranged back-to-back (i.e., FlexMetaB). FlexMetaF and FlexMetaB illustrate the similar transmission dips under zero strain because the excitation of fundamental inductive-capacitive (LC) resonance is mainly dependent on the geometric structure of individual SRR. However, if a gradually variant strain is applied to bend FlexMetaF and FlexMetaB, the new resonant peaks appear: in the case of FlexMetaF, the peaks are located at the lower frequencies; in the case of FlexMetaB, the peaks appear at the frequencies adjacent to the LC resonance. The origin and evolution of strain-induced resonances are studied. The origin is ascribed to the detuning effect and the different responses to strain from FlexMetaF and FlexMetaB are associated with the coupling effect. These findings may improve the understanding on flexible terahertz metamaterials and benefit their applications in flexible or curved devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204146 and 61574144), the Ningbo Key Laboratory of Silicon and Organic Thin Film Optoelectronic Technologies, China, the Program for Ningbo Municipal Science and Technology Innovative Research Team, China (Grant No. 2015B11002), and the K. C. Wong Magna Foundation in Ningbo University, China.

  6. Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region.

    PubMed

    Jing, Xufeng; Xia, Rui; Wang, Weimin; Tian, Ying; Hong, Zhi

    2016-05-01

    We propose analytical expressions to determine the effective constitutive parameters of a planar bianisotropic metamaterial from scattering parameters in the terahertz region. In our retrieval method, the transmission and reflection coefficients in only one wave propagation direction are applied. Considering the nonsymmetry of planar metamaterials in the wave propagation direction, the effective refractive index and the impedance should be obtained by a modified S parameters retrieval process. The effective parameters of the permittivity, permeability, and magnetoelectric coupling coefficient of planar bianisotropic metamaterials can be retrieved by derived equations. Specifically, the constitutive parameters for different planar metamaterials, among which two are isotropic and the other two are bianisotropic metamaterials, are determined. The intrinsic differences between the normal planar metamaterials and the bianisotropic metamaterials are evidently illustrated. The phenomenon including electric coupling to magnetic resonance and only electric response in the transmission spectrum is confirmed by retrieval effective permittivity and permeability.

  7. Active graphene-silicon hybrid diode for terahertz waves.

    PubMed

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  8. Electrically tunable superconducting terahertz metamaterial with low insertion loss and high switchable ratios

    NASA Astrophysics Data System (ADS)

    Li, Chun; Zhang, Caihong; Hu, Guoliang; Zhou, Gaochao; Jiang, Shoulu; Jiang, Chengtao; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-07-01

    With the emergence and development of artificially structured electromagnetic materials, active terahertz (THz) metamaterial devices have attracted significant attention in recent years. Tunability of transmission is desirable for many applications. For example, short-range wireless THz communications and ultrafast THz interconnects require switches and modulators. However, the tunable range of transmission amplitude of existing THz metamaterial devices is not satisfactory. In this article, we experimentally demonstrate an electrically tunable superconducting niobium nitride metamaterial device and employ a hybrid coupling model to analyze its optical transmission characteristics. The maximum transmission coefficient at 0.507 THz is 0.98 and decreases to 0.19 when the applied voltage increases to 0.9 V. A relative transmittance change of 80.6% is observed, making this device an efficient narrowband THz switch. Additionally, the frequency of the peak is red shifted from 0.507 to 0.425 THz, which means that the device can be used to select the frequency. This study offers an alternative tuning method to existing optical, thermal, magnetic-field, and electric-field tuning, delivering a promising approach for designing active and miniaturized THz devices.

  9. Modulating the Near Field Coupling through Resonator Displacement in Planar Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Mohan Rao, S. Jagan; Kumar, Deepak; Kumar, Gagan; Chowdhury, Dibakar Roy

    2017-01-01

    We present the effect of vertical displacements between the resonators inside the unit cell of planar coupled metamaterials on their near field coupling and hence on the terahertz (THz) wave modulation. The metamolecule design consists of two planar split- ring resonators (SRRs) in a unit cell which are coupled through their near fields. The numerically simulated transmission spectrum is found to have split resonances due to the resonance mode hybridization effect. With the increase in displacement between the near field coupled SRRs, this metamaterial system shows a transition from coupled to uncoupled state through merging of the split resonances to the single intrinsic resonance. We have used a semi-analytical model describing the effect of displacements between the resonators and determine that it can predict the numerically simulated results. The outcome could be useful in modulating the terahertz waves employing near field coupled metamaterials, hence, can be useful in the development of terahertz modulators and frequency tunable devices in future.

  10. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-06-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band.

  11. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies.

    PubMed

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-06-09

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle's geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band.

  12. A metamaterial absorber for the terahertz regime: design, fabrication and characterization.

    PubMed

    Tao, Hu; Landy, Nathan I; Bingham, Christopher M; Zhang, Xin; Averitt, Richard D; Padilla, Willie J

    2008-05-12

    We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient alpha = 2000 cm(-1). These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response.

  13. A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime.

    PubMed

    Wu, Liang; Du, Ting; Xu, Ningning; Ding, Chunfeng; Li, Hui; Sheng, Quan; Liu, Ming; Yao, Jianquan; Wang, Zhiyong; Lou, Xiaojie; Zhang, Weili

    2016-05-01

    Metamaterials, offering unprecedented functionalities to manipulate electromagnetic waves, have become a research hotspot in recent years. Through the incorporation of active media, the exotic electromagnetic behavior of metamaterials can be dramatically empowered by dynamic control. Many ferroelectric materials such as BaSrTiO3 (abbreviated as BST), exhibiting strong response to external electric field, hold great promise in both microwave and terahertz tunable devices. A new active Ba0.6 Sr0.4 TiO3 -silicon hybrid metamaterial device, namely, a SRR (square split-ring resonator)-BaSrTiO3 thin film-silicon three-layer structure is fabricated and intensively studied. The active Ba0.6 Sr0.4 TiO3 thin film hybrid metamaterial, with nanoscale thickness, delivers a transmission contrast up to ≈79% due to electrically enabled carrier transport between the ferroelectric thin film and silicon substrate. This work has significantly increased the low modulation rate of ferroelectric based devices in terahertz range, a major problem in this field remaining unresolved for many years. The proposed BST metamaterial is promising in developing high-performance real world photonic devices for terahertz technology.

  14. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode.

    PubMed

    Escorcia, Ivonne; Grant, James; Gough, John; Cumming, David R S

    2016-07-15

    We demonstrate a low-cost uncooled terahertz (THz) imager fabricated in a standard 180 nm CMOS process. The imager is composed of a broadband THz metamaterial absorber coupled with a diode microbolometer sensor where the pn junction is used as a temperature sensitive device. The metamaterial absorber array is integrated in the top metallic layers of a six metal layer process allowing for complete monolithic integration of the metamaterial absorber and sensor. We demonstrate the capability of the detector for stand-off imaging applications by using it to form transmission and reflection images of a metallic object hidden in a manila envelope.

  15. A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film

    SciTech Connect

    Bian, Yanlong; Zhai, Jiwei; Wu, Chao; Li, Hongqiang

    2014-01-27

    A tunable metamaterial with resonance frequency at terahertz (THz) was developed. Electromagnetic response of the metamaterial was characterized with THz time domain spectrometer at various direct current electric fields. The resonance frequency increased monotonously with increasing electric field. The finite difference time domain method was used to simulate the transmission spectra of the metamaterial at THz frequencies. By comparing the simulated resonance frequency with the experimental curve, dielectric property of the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST60) thin film at THz, over 0–33 kV/cm, was evaluated.

  16. Two layer metamaterials for selective frequency transmission in the terahertz region (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Landau, Mayer A.

    2015-09-01

    We have fabricated a metamaterial tunable filter for dynamic frequency selection in the terahertz region. The metamaterial consists of a sandwich of two meta-surfaces grown on high resistivity silicon wafers. The first meta-surface consists of a two-dimensional array of gold double split ring resonators and the second meta-surface consisits of an array of gold cut rods. Both meta-surfaces are fabricated for a response in the terahertz region. Our terahertz pulses are produced using the standard Austin switch technique. The terahertz pulse is focused onto the two meta-surfaces which are sandwiched together to produce a transmission window. Together, with the right orientation, translation, and parallelism of the two meta-surfaces, we achieve filtering of terahertz pulses. Since the unit cells for the inclusions are on the order of 100 microns, control of the translation, orientation, and parallelism of the two meta-surfaces with respect to each other and with respect to the orientation and direction of the impinging terahertz field is a challenge. We describe our technique for doing this and present data on our frequency filtering in the terahertz.

  17. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure.

    PubMed

    Zhang, Yaxin; Qiao, Shen; Liang, Shixiong; Wu, Zhenhua; Yang, Ziqiang; Feng, Zhihong; Sun, Han; Zhou, Yucong; Sun, Linlin; Chen, Zhi; Zou, Xianbing; Zhang, Bo; Hu, Jianhao; Li, Shaoqian; Chen, Qin; Li, Ling; Xu, Gaiqi; Zhao, Yuncheng; Liu, Shenggang

    2015-05-13

    The past few decades have witnessed a substantial increase in terahertz (THz) research. Utilizing THz waves to transmit communication and imaging data has created a high demand for phase and amplitude modulation. However, current active THz devices, including modulators and switches, still cannot meet THz system demands. Double-channel heterostructures, an alternative semiconductor system, can support nanoscale two-dimensional electron gases (2DEGs) with high carrier concentration and mobility and provide a new way to develop active THz devices. In this Letter, we present a composite metamaterial structure that combines an equivalent collective dipolar array with a double-channel heterostructure to obtain an effective, ultrafast, and all-electronic grid-controlled THz modulator. Electrical control allows for resonant mode conversion between two different dipolar resonances in the active device, which significantly improves the modulation speed and depth. This THz modulator is the first to achieve a 1 GHz modulation speed and 85% modulation depth during real-time dynamic tests. Moreover, a 1.19 rad phase shift was realized. A wireless free-space-modulation THz communication system based on this external THz modulator was tested using 0.2 Gbps eye patterns. Therefore, this active composite metamaterial modulator provides a basis for the development of effective and ultrafast dynamic devices for THz wireless communication and imaging systems.

  18. Controlling terahertz waves with meta-materials and photonic bandgap structures

    SciTech Connect

    Shchegolkov, Dmitry; Azad, Abul; O' Hara, John F; Moody, Nathan A; Simakov, Evgenya I

    2010-12-07

    We will describe research conducted at Los Alamos National Laboratory towards developing components for controlling terahertz waves. We employ meta-materials and, particularly, meta-films, as very compact absorbers for controlling quasioptical beams. We believe that dielectric photonic bandgap structures could replace ordinary metal waveguide devices at THz, since metal structures become extremely lossy in this frequency range.

  19. Interaction of gold nanostars with neuronal cells and single negative terahertz metamaterials with barium titanate resonators

    NASA Astrophysics Data System (ADS)

    Kereselidze, Zurab

    As the title implies, this dissertation covers two independent topics. The first topic is concerned with biomedical applications of nanoparticles while the second topic presents our results in developing all-dielectric single negative metamaterials at terahertz frequencies. In recent years, the interest in using nanoparticles for biomedical applications has greatly increased. Therefore, there is a need to understand the mechanism of interactions as well as any non-lethal effects nanoparticles may have on biological systems. The first part of this dissertation is focused on advancing the field of nanomedicine by developing gold nanostars with a surface plasmon resonance in the infrared that can be used for photothermal ablation. In addition it seeks to quantify the effect gold nanostars have on the firing rate of neuronal cells. The terahertz (THz) region of the electromagnetic spectrum is located between microwaves and infrared where 1 THz corresponds to wavelengths of 300 microns and energies of 3 meV. There are several emerging applications for THz technology spanning biomedical and security imaging, chemical/biological sensing and communications. However, the development of these applications has been hindered because of the lack of electrically and magnetically active natural materials at these frequencies. By designing all-dielectric resonators in which we take advantage of Mie resonances, we can construct metamaterials with effective negative permeabilities and permittivities. In the second topic of this dissertation we present our results developing all-dielectric metamaterials with single negative values. Using a commercial-grade simulator based on the finite-difference time-domain method, we obtained the scattering parameters of the resonators. From the S parameters, we calculated the effective permittivity and permeability of the metamaterials. Using realistic values for the constituent dielectric's permittivity and loss tangent we performed a systematic

  20. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers.

    PubMed

    Mezzapesa, Francesco P; Columbo, Lorenzo L; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessandro; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S; Scamarcio, Gaetano

    2015-11-09

    Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media.

  1. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers

    PubMed Central

    Mezzapesa, Francesco P.; Columbo, Lorenzo L.; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S.; Scamarcio, Gaetano

    2015-01-01

    Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media. PMID:26549166

  2. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces

    SciTech Connect

    Cong, Longqing; Singh, Ranjan; Tan, Siyu; Yahiaoui, Riad; Yan, Fengping; Zhang, Weili

    2015-01-19

    Planar metasurfaces and plasmonic resonators have shown great promise for sensing applications across the electromagnetic domain ranging from the microwaves to the optical frequencies. However, these sensors suffer from lower figure of merit and sensitivity due to the radiative and the non-radiative loss channels in the plasmonic metamaterial systems. We demonstrate a metamaterial absorber based ultrasensitive sensing scheme at the terahertz frequencies with significantly enhanced sensitivity and an order of magnitude higher figure of merit compared to planar metasurfaces. Magnetic and electric resonant field enhancement in the impedance matched absorber cavity enables stronger interaction with the dielectric analyte. This finding opens up opportunities for perfect metamaterial absorbers to be applied as efficient sensors in the finger print region of the electromagnetic spectrum with several organic, explosive, and bio-molecules that have unique spectral signature at the terahertz frequencies.

  3. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.

    PubMed

    McCrindle, Iain J H; Grant, James; Drysdale, Timothy D; Cumming, David R S

    2013-08-12

    Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other.

  4. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.

    PubMed

    Weis, P; Garcia-Pomar, J L; Rahm, M

    2014-04-07

    We evidence by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. We calculate the complex conductivity of graphene under optical pumping and determine the proper conditions for terahertz amplification in single layer graphene. It is shown that amplification in graphene occurs up to room temperature for moderate pump intensities at telecommunication wavelength λ = 1.5 μm. Furthermore, we investigate the coupling between a plasmonic split ring resonator (SRR) metamaterial and optically pumped graphene at a temperature T = 77 K and a pump intensity I = 300 mW/mm(2). We find that the loss of a SRR metamaterial can be compensated by optically stimulated amplification in graphene. Moreover, we show that a hybrid material consisting of asymmetric split-ring resonators and optically pumped graphene can emit coherent THz radiation at minimum output power levels of 60 nW/mm(2).

  5. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    PubMed

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  6. Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial.

    PubMed

    Bitzer, Andreas; Merbold, Hannes; Thoman, Andreas; Feurer, Thomas; Helm, Hanspeter; Walther, Markus

    2009-03-02

    Experimental investigations of the microscopic electric and in particular the magnetic near-fields in metamaterials remain highly challenging and current studies rely mostly on numerical simulations. Here we report a terahertz near-field imaging approach which provides spatially resolved measurements of the amplitude, phase and polarization of the electric field from which we extract the microscopic magnetic near-field signatures in a planar metamaterial constructed of split-ring resonators (SRRs). In addition to studying the fundamental resonances of an individual double SRR unit we further investigate the interaction with neighboring elements.

  7. Asymmetric double split-ring metamaterials absorber in the terahertz region

    NASA Astrophysics Data System (ADS)

    Jun, He; Li, Qingmei; Shen, Jingling

    2012-12-01

    We present the simulation of an asymmetric double split-ring metamaterials absorber in terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us select absorption by varying the asymmetric characteristics. When the two gaps are gradually away from the center in opposite direction, a giant amplitude modulation is observed at the fundamental inductive-capacitive (LC) resonance and the resonant frequencies are observed to red shifting. Besides, increasing the thickness of dielectric-spacer, the peak absorption can be changed. This theoretical simulation will be good reference for the follow experiments, and these asymmetric metamaterials absorbers is expected to be used as cloaking materials.

  8. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.

    PubMed

    Andryieuski, Andrei; Lavrinenko, Andrei V

    2013-04-08

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.

  9. Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region

    NASA Astrophysics Data System (ADS)

    Xia, Rui; Jing, Xufeng; Zhu, Huihui; Wang, Weimin; Tian, Ying; Hong, Zhi

    2017-01-01

    A linear polarization converter composed of metal patch arrays and metal chiral metamaterial in the terahertz region is designed and analyzed, which can convert linearly polarized wave to its cross polarization in the transmission mode. Compared with other polarization conversion devices, this device has the advantages of broadband and highly efficiency. The in-depth analysis of physical mechanism is illustrated by using simulated surface current and electrical field distributions.

  10. Intensity-modulating graphene metamaterial for multiband terahertz absorption.

    PubMed

    Gao, Run-Mei; Xu, Zong-Cheng; Ding, Chun-Feng; Yao, Jian-Quan

    2016-03-10

    In this paper, we design a tunable strength multiband absorber consisting of a graphene metamaterial structure and a thick dielectric interlayer deposited on a metal ground plane. We investigate the tunable conductivity properties of the graphene metamaterial and demonstrate multiband absorbers with three absorption bands using a polyimide interlayer in the 0-2.25 THz range by numerical simulation. The results show that the mix absorptivity reached 99.8% at 1.99 THz, and the absorptive strength can be tuned with the modulation depth up to 84.2%. We present a theoretical interpretation based on a standing wave field, which shows that the field energy is localized inside the thicker spacer and then dissipated, effectively trapping the light in the metamaterial absorbers with negligible near-field interactions. The standing wave field theory developed here explains all the features of the multiband metamaterial absorbers and provides a profound understanding of the underlying physics.

  11. Graphene based metamaterials for terahertz cloaking and subwavelength imaging

    NASA Astrophysics Data System (ADS)

    Forouzmand, Seyedali

    Graphene is a two-dimensional carbon crystal that became one of the most controversial topics of research in the last few years. The intense interest in graphene stems from recent demonstrations of their potentially revolutionary electromagnetic applications -- including negative refraction, subdiffraction imaging, and even invisibility -- which have suggested a wide range of new devices for communications, sensing, and biomedicine. In addition, it has been shown that graphene is amenable to unique patterning schemes such as cutting, bending, folding, and fusion that are predicted to lead to interesting properties. A recent proposed application of graphene is in engineering the scattering properties of objects, which may be leveraged in applications such as radar-cross-section management and stealth, where it may be required to make one object look like another object or render an object completely invisible. We present the analytical formulation for the analysis of electromagnetic interaction with a finite conducting wedge covered with a cylindrically shaped nanostructured graphene metasurface, resulting in the scattering cancellation of the dominant scattering mode for all the incident and all the observation angles. Following this idea, the cylindrical graphene metasurface is utilized for cloaking of several concentric finite conducting wedges. In addition, a wedge shaped metasurface is proposed as an alternative approach for cloaking of finite wedges. The resolution of the conventional imaging lenses is restricted by the natural diffraction limit. Artificially engineered metamaterials now offer the possibility of creating a superlens that overcomes this restriction. We demonstrate that a wire medium (WM) slab loaded with graphene sheets enables the enhancement of the near field for subwavelength imaging at terahertz (THz) frequencies. The analysis is based on the nonlocal homogenization model for WM with the additional boundary condition in the connection of

  12. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  13. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene

    SciTech Connect

    He, Xun-jun Li, Teng-yue; Wang, Lei; Wang, Jian-min; Jiang, Jiu-xing; Yang, Guo-hui; Meng, Fan-yi; Wu, Qun

    2014-05-07

    In this paper, we design and numerically demonstrate an electrically controllable light-matter interaction in a hybrid material/metamaterial system consisting of an artificially constructed cross cut-wire complementary metamaterial and an atomically thin graphene layer to realize terahertz (THz) wave modulator. By applying a bias voltage between the metamaterial and the graphene layer, this modulator can dynamically control the amplitude and phase of the transmitted wave near 1.43 THz. Moreover, the distributions of current density show that this large modulation depth can be attributed to the resonant electric field parallel to the graphene sheet. Therefore, the modulator performance indicates the enormous potential of graphene for developing sophisticated THz communication systems.

  14. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene

    NASA Astrophysics Data System (ADS)

    Weis, P.; Garcia-Pomar, J. L.; Rahm, M.

    2014-04-01

    It is evidenced by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. In a first step, the complex conductivity of graphene under optical pumping is calculated and the proper conditions for terahertz amplification in single layer graphene are determined. It is shown that amplification in graphene occurs for temperatures up to room temperature and for moderate pump intensities when pumped at a telecommunication wavelength $\\lambda=1.5~\\mathrm{\\mu m}$. Furthermore, the amplification properties of graphene are evaluated and discussed at a temperature as low as $T=77~\\mathrm{K}$ and a pump intensity $I=300~\\mathrm{mW/mm^2}$ to investigate the coupling between graphene and a plasmonic split ring resonator (SRR) metamaterial. The contributions of ohmic and dielectric loss mechanisms are studied by full wave simulations. As a result, it is found that the loss of a split-ring resonator metamaterial can be compensated by optically stimulated amplification in graphene. Moreover, it is shown that a hybrid material consisting of asymmetric split-ring resonators and optically pumped graphene can exceed the laser threshold condition and can emit coherent THz radiation at minimum output power levels of $6 0~\\mathrm{nW/mm^2}$. The use of optically pumped graphene is well suited for loss compensation in THz metamaterials and paves the way to new kinds of coherent THz sources.

  15. Extreme-sensitivity terahertz polarizer inspired by an anisotropic cut-through metamaterial.

    PubMed

    Suzuki, Takehito; Nagai, Masaya; Kishi, Yudai

    2016-01-15

    Submilliradian accuracy utilizing terahertz waves is used to often discover and observe novel physical phenomena. However, conventional terahertz polarizers cannot simultaneously realize a high extinction ratio, which restricts the sensitivity of the polarization angle, and a high transmission power across a broad frequency band due to the wires involved. Here, inspired by metamaterials, we demonstrate an anisotropic cut-through metal-slit array for an ideal terahertz polarizer with a high extinction ratio and transmission power. Measurements confirm extinction ratios below approximately -50  dB and average transverse magnetic-mode transmission powers of over 80% from 0.3 to 2.2 THz. The extremely sensitive mechanism can shed light on a variety of path-breaking applications such as single-photon detection and quantum information and communication at lower frequencies.

  16. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial.

    PubMed

    Liu, Mengkun; Hwang, Harold Y; Tao, Hu; Strikwerda, Andrew C; Fan, Kebin; Keiser, George R; Sternbach, Aaron J; West, Kevin G; Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, Stuart A; Omenetto, Fiorenzo G; Zhang, Xin; Nelson, Keith A; Averitt, Richard D

    2012-07-19

    Electron-electron interactions can render an otherwise conducting material insulating, with the insulator-metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator-metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator-metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear

  17. Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz

    NASA Astrophysics Data System (ADS)

    Strikwerda, Andrew C.; Zalkovskij, Maksim; Lund Lorenzen, Dennis; Krabbe, Alexander; Lavrinenko, Andrei V.; Uhd Jepsen, Peter

    2014-05-01

    We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central frequency (f0) that is scalable from 0.86-8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present equations—and discuss their scaling laws—which detail the f0 and full width at half max (Δf) of the pass band, as well as the required geometric dimensions for their fabrication using standard UV photolithography and easily achievable fabrication linewidths. With these equations, the geometric parameters and Δf for a desired frequency can be quickly calculated. Using these bandpass filters as a proof of principle, we believe that this metamaterial composite provides the key for ultra-broadband metamaterial design.

  18. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-06-01

    Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.

  19. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.

    PubMed

    Khodaee, M; Banakermani, M; Baghban, H

    2015-10-10

    Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34  THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.

  20. Ultrafast refractive index control of a terahertz graphene metamaterial.

    PubMed

    Lee, Seung Hoon; Choi, Jeongmook; Kim, Hyeon-Don; Choi, Hyunyong; Min, Bumki

    2013-01-01

    Modulation of the refractive index of materials is elementary, yet it is crucial for the manipulation of electromagnetic waves. Relying on the inherent properties of natural materials, it has been a long-standing challenge in device engineering to increase the index-modulation contrast. Here, we demonstrate a significant amount of ultrafast index modulation by optically exciting non-equilibrium Dirac fermions in the graphene layer integrated onto a high-index metamaterial. Furthermore, an extremely-large electrical modulation of refractive index up to Δn ~ -3.4 (at 0.69 THz) is achieved by electrical tuning of the density of the equilibrium Dirac fermion in the graphene metamaterial. This manifestation, otherwise remaining elusive in conventional semiconductor devices, fully exploits the characteristic ultrafast charge relaxation in graphene as well as the strong capacitive response of the metamaterial, both of which enable us to drastically increase the light-matter interaction of graphene and the corresponding index contrast in the graphene metamaterials.

  1. Graphene metamaterial for multiband and broadband terahertz absorber

    NASA Astrophysics Data System (ADS)

    Gao, Runmei; Xu, Zongcheng; Ding, Chunfeng; Wu, Liang; Yao, Jianquan

    2015-12-01

    In this paper, we present the efficient design of functional graphene thin film metamaterial on a metal-plane separated by a thick dielectric layer. Perfect absorption is characterized by the complete suppression of incident and reflected light and complete dissipation of incident energy. We investigate the properties of graphene metamaterials and demonstrate multiband absorbers that have five absorption bands, using silicon interlayers, in the 0-2.2 THz range. The absorption rate reached up to 99.9% at a frequency of 1.08 THz, and the quality factor was 6.98 for a 0.14 THz bandwidth. We present a novel theoretical interpretation based on standing wave field theory, which shows that coherent superposition of the incident and reflection rays produce stationary waves, and the field energy localized inside the thick spacers and dissipated through the metal-planes. Thus, light was effectively trapped in the metamaterial absorbers with negligible near-field interactions, causing high absorption. The theory developed here explains all features observed in multiband metamaterial absorbers and therefore provides a profound understanding of the underlying physical mechanisms.

  2. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials

    PubMed Central

    Meng, Qinglong; Zhong, Zheqiang; Zhang, Bin

    2017-01-01

    The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamaterials is considered because the stand-up DSRRs are not symmetrical with respect to the electric field vector. Due to the electric and magnetic response realized by the planar and the standup double-split-ring resonators respectively, the dual-band resonance response and the negative refractive index can be achieved. The potential of the phase modulation under photoexcitation is also demonstrated. Further analysis indicates that, photoexcitation of free carriers in the silicon within the capacitive region of the standup DSRRs results in a broad resonance response bandwidth (about 0.47 THz), and also functions as a broadband negative refractive index that roughly lies between 0.80 and 2.01 THz. This tunable metamaterials is proposed for the potential application of electromagnetic wave propagation in terahertz area. PMID:28358357

  3. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  4. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.

    PubMed

    Prinz, Victor Ya; Naumova, Elena V; Golod, Sergey V; Seleznev, Vladimir A; Bocharov, Andrey A; Kubarev, Vitaliy V

    2017-03-03

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  5. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    PubMed Central

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-01-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587

  6. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    NASA Astrophysics Data System (ADS)

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-03-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  7. Enhancing Microbolometer Performance at Terahertz Frequencies with Metamaterial Absorbers

    DTIC Science & Technology

    2013-09-01

    3  Figure 3.  Knife covered in opaque white plastic tape (a) is visible in THz. Absorption (b) of a 1 μm thick Silicon Nitride membrane ...view micrograph (b) of a metamaterial absorber with a bolometric layer embedded in the dielectric. The square size and pitch were selected to have an...While all materials change resistance in response to a temperature shift, for certain 3 materials such as titanium (Ti) and Vanadium Oxides (VaOx

  8. Stable high absorption metamaterial for wide-angle incidence of terahertz wave

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu

    2014-04-01

    We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.

  9. Guided mode resonance with extremely high Q-factors in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Jianjun; Hong, Zhi

    2017-01-01

    We proposed and demonstrated that guided mode resonance (GMR) response with extremely high quality factor can be achieved in a planar terahertz metamaterial (MM) by rotating split ring resonators (SRRs) or moving the gaps of SRRs in a two-SRR composed MM. Furthermore, a novel extremely sharp asymmetric Fano resonance or electromagnetically induced transparency (EIT) like spectral response can be easily realized by manipulating the coherent interaction between this high Q GMR and the dipole resonance of MM. The new method can be extended to other ranges of the electromagnetic spectrum, and open new horizons for the design of ultra-high Q metamaterials for multifunctional applications, such as ultra-sensitive sensors, narrowband filters, or slow light based devices.

  10. Low-index-metamaterial for gain enhancement of planar terahertz antenna

    SciTech Connect

    Zhang, Qing-Le; Si, Li-Ming Lv, Xin; Huang, Yongjun; Zhu, Weiren

    2014-03-15

    We theoretically present a high gain planar antenna at terahertz (THz) frequencies by combing a conventional log-periodic antenna (LPA) with a low-index-metamaterial (LIM, |n| < 1). The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width) and more than 4 dB gain enhancement are seen within a certain frequency range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.

  11. Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-26

    We design an ultra-thin terahertz metamaterial absorber based on graphene/MgF(2) multilayer stacking unit cells arrayed on an Au film plane and theoretically demonstrate a dual-band total absorption effect. Due to strong anisotropic permittivity, the graphene/MgF(2) multilayer unit cells possess a hyperbolic dispersion. The strong electric and magnetic dipole resonances between unit cells make the impedance of the absorber match to that of the free space, which induces two total absorption peaks in terahertz range. These absorption peaks are insensitive to the polarization and nearly omnidirectional for the incident angle. But the absorption intensity and frequency depend on material and geometric parameters of the multilayer structure. The absorbed electromagnetic waves are finally converted into heat and, as a result, the absorber shows a good nanosecond photothermal effect.

  12. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances

    PubMed Central

    Tuniz, Alessandro; Kaltenecker, Korbinian J.; Fischer, Bernd M.; Walther, Markus; Fleming, Simon C.; Argyros, Alexander; Kuhlmey, Boris T.

    2013-01-01

    Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells. PMID:24162458

  13. Fabrication of terahertz metamaterials using electrohydrodynamic jet printing for sensitive detection of yeast

    NASA Astrophysics Data System (ADS)

    Pradhipta Tenggara, Ayodya; Park, S. J.; Teguh Yudistira, Hadi; Ahn, Y. H.; Byun, Doyoung

    2017-03-01

    We demonstrated the fabrication of terahertz metamaterial sensor for the accurate and on-site detection of yeast using electrohydrodynamic jet printing, which is inexpensive, simple, and environmentally friendly. The very small sized pattern up to 5 µm-width of electrical split ring resonator unit structures could be printed on a large area on both a rigid substrate and flexible substrate, i.e. silicon wafer and polyimide film using the drop on demand technique to eject liquid ink containing silver nanoparticles. Experimental characterization and simulation were performed to study their performances in detecting yeast of different weights. It was shown that the metamaterial sensor fabricated on a flexible polyimide film had higher sensitivity by more than six times than the metamaterial sensor fabricated on a silicon wafer, due to the low refractive index of the PI substrate and due to the extremely thin substrate thickness which lowers the effective index further. The resonance frequency shift saturated when the yeast weights were 145 µg and 215 µg for metamaterial structures with gap size 6.5 µm fabricated on the silicon substrate and on the polyimide substrate, respectively.

  14. Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Wilson, Jeffrey D.

    2008-01-01

    Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.

  15. Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyun; Zhang, Xiaoqiuyan; Cao, Yanyan; Zeng, Beibei; Zhou, Mingdong; Zhang, Yuping

    2017-01-01

    We proposed a dynamically tunable electromagnetically induced transparency (EIT) in the terahertz region based on a complementary graphene metamaterials within two asymmetric slot structures. A transparency peak is enabled through the coupling between the asymmetric slot-structure elements when their symmetry is broken. The width of transparency window can be controlled by varying the asymmetry degree. Moreover, by varying the Fermi energy of graphene, the transmission peak can be dynamically tuned, realizing a blue-shift without re-optimizing or re-fabricating the nanostructure. Therefore, the work opens up opportunities for the development of tunable compact elements such as slow light devices, sensors and switches.

  16. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  17. Experimental demonstration of trapping waves with terahertz metamaterial absorbers on flexible polyimide films

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Jinsong; Wang, Kejia

    2016-02-01

    We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.

  18. Design of a programmable active acoustics metamaterial

    NASA Astrophysics Data System (ADS)

    Smoker, Jason J.

    Metamaterials are artificial materials engineered to provide properties which may not be readily available in nature. The development of such class of materials constitutes a new area of research that has grown significantly over the past decade. Acoustic metamaterials, specifically, are even more novel than their electromagnetic counterparts arising only in the latter half of the decade. Acoustic metamaterials provide a new tool in controlling the propagation of pressure waves. However, physical design and frequency tuning, is still a large obstacle when creating a new acoustic metamaterial. This dissertation describes active and programmable design for acoustic metamaterials which allows the same basic physical design principles to be used for a variety of application. With cloaking technology being of a great interest to the US Navy, the proposed design approach would enable the development of a metamaterial with spatially changing effective parameters while retaining a uniform physical design features. The effective parameters would be controlled by tuning smart actuators embedded inside the metamaterial structure. Since this design is based on dynamic effective parameters that can be electrically controlled, material property ranges of several orders of magnitude could potentially be achieved without changing any physical parameters. With such unique capabilities, physically realizable acoustic cloaks can be achieved and objects treated with these active metamaterials can become acoustically invisible.

  19. Electrically switchable metamaterials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Hou-Tong

    2016-09-01

    The promise of metamaterials lies in the realization of desirable electromagnetic functionalities simply through tailoring the geometric structure and deliberate arrangement of metal/dielectric building blocks (meta-atoms) to yield envisaged material properties that may be difficult or impossible to accomplish using natural materials. Integration of functional materials into metamaterial structures further extends switchable and frequency tunable functionalities through applying an external stimulus such as temperature change, photoexcitation, and voltage bias. Among them electrically switchable metamaterials are of particular interest for a host of applications. In this work we present our recent progress in this direction. More specifically, hybrid terahertz metamaterials can be formed through integrating semiconducting Schottky junctions into the metallic resonators, enabling highly efficient, electrically switchable resonant response. Such hybrid terahertz metamaterials can be applied in creating terahertz spatial light modulators and active diffraction gratings. Furthermore, graphene can be used to extend the active metamaterials to the mid-infrared frequency range.

  20. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial.

    PubMed

    Chen, Meng; Fan, Fei; Shen, Si; Wang, Xianghui; Chang, Shengjiang

    2016-08-10

    The film thickness sensing based on metamaterial is investigated in the terahertz (THz) region. We fabricated the metamaterial sensor, and demonstrated its resonance by using the THz time-domain spectroscopy system. The results show that the resonant dip redshifts as the film thickness increases, which achieves reliable film sensing in the THz band. Its sensitivity is larger than 9.4 GHz/μm with a film thinner than λ/90. Meanwhile, the sensing mechanism is revealed by the simulation of near-field resonance distribution, which shows that the resonant intensity is stronger when the field is closer to the interface between the metamaterial surface and polyvinyl alcohol film. Therefore, the nonlinear type of the sensing sensitivity in our experiment can be well explained, and a higher sensitive sensing can be obtained when the film thickness is smaller. This simple and flexible method can realize the ultrathin film sensing in the THz region, and has application potential in the real-time monitoring of sample quality.

  1. A three-dimensional ultra-broadband metamaterial absorber in terahertz region

    NASA Astrophysics Data System (ADS)

    Ling, Xinyan; Xiao, Zhongyin; Zheng, Xiaoxia; Tang, Jingyao; Xu, Kaikai

    2016-11-01

    In this paper, we proposed a three-dimensional metamaterial absorber with ultra-broadband in terahertz region. Compared with other three-layer structures, our structure is only composed of graphite film and a metal plate. The simulated results show that the metamaterial absorber can achieve an ultra-broadband absorption more than 90 % from 3 to 9 THz for either transverse electric or magnetic polarization wave at normal incidence. In addition, the absorption properties based on the oblique incidence and different polarization angles are also observed. A good absorption bandwidth can be kept when the incidence angle is up to 60°. Moreover, the absorber is polarization-insensitive with the polarization angle increase. Finally, the power loss density and surface current distributions at distinct resonance point are analyzed, which can demonstrate that the graphite plays an important role for the absorption of electromagnetic waves. We believe that the design idea of the three-dimensional metamaterial absorber maybe can extend to microwave, infrared or optical region.

  2. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  3. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    PubMed Central

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-01-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices. PMID:26442614

  4. High-performance terahertz wave absorbers made of silicon-based metamaterials

    SciTech Connect

    Yin, Sheng; Zhu, Jianfei; Jiang, Wei; Yuan, Jun; Yin, Ge; Ma, Yungui; Xu, Wendao; Xie, Lijuan; Ying, Yibin

    2015-08-17

    Electromagnetic (EM) wave absorbers with high efficiency in different frequency bands have been extensively investigated for various applications. In this paper, we propose an ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on a patterned lossy silicon substrate. Experimentally, a large absorption efficiency more than 95% in a frequency range of 0.9–2.5 THz was obtained up to a wave incident angle as large as 70°. Much broader absorption bandwidth and excellent oblique incidence absorption performance are numerically demonstrated. The underlying mechanisms due to the combination of a waveguide cavity mode and impedance-matched diffraction are analyzed in terms of the field patterns and the scattering features. The monolithic THz absorber proposed here may find important applications in EM energy harvesting systems such as THz barometer or biosensor.

  5. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  6. Simple design of novel triple-band terahertz metamaterial absorber for sensing application

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian

    2016-04-01

    For a general metamaterial absorber, single patterned structure has only one resonance absorption peak. Therefore, a multi-band perfect absorber can be obtained by employing multiple different-sized metallic patterns. However, this kind of design strategy removes the novelty of their resonance mechanism and is also quite troublesome in regard to fabrication. Here, a novel and simple design of a triple-band terahertz absorber formed by only an asymmetric cross is presented. Theoretical results show that the proposed structure has three distinct absorption bands whose peaks are all over 99%. The first two absorption peaks are due to the magnetic resonances of the different sections of the asymmetric cross, and the third peak is based on the surface response of the structure. Moreover, sensing performance of the absorber is investigated in terms of the surrounding index. It is found that the figure of merit and quality factor of the third peak is much larger than those of the first two peaks, which reveals the proposed absorber’s, in particular the third resonance mode of the metamaterial, potential applications in sensing and detection.

  7. Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator

    NASA Astrophysics Data System (ADS)

    Shen, Nian-Hai; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.

    2014-09-01

    Graphene exhibits unique material properties, and in electromagnetic wave technology it raises the prospect of devices miniaturized down to the atomic length scale. Here we study split-ring resonator metamaterials made from graphene and we compare them to gold-based metamaterials. We find that graphene's huge reactive response derived from its large kinetic inductance allows for deeply subwavelength resonances, although its resonance strength is reduced due to higher dissipative loss damping and smaller dipole coupling. Nevertheless, tightly stacked graphene rings may provide for negative permeability and the electric dipole resonance of graphene meta-atoms turns out to be surprisingly strong. Based on these findings, we present a terahertz modulator based on a metamaterial with a multilayer stack of alternating patterned graphene sheets separated by dielectric spacers. Neighboring graphene flakes are biased against each other, resulting in modulation depths of over 75% at a transmission level of around 90%.

  8. An Active Metamaterial Platform for Chiral Responsive Optoelectronics.

    PubMed

    Kang, Lei; Lan, Shoufeng; Cui, Yonghao; Rodrigues, Sean P; Liu, Yongmin; Werner, Douglas H; Cai, Wenshan

    2015-08-05

    Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics.

  9. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves

    NASA Astrophysics Data System (ADS)

    Cheng, Yongzhi; Gong, Rongzhou; Cheng, Zhengze

    2016-02-01

    We present a design and numerical study of a polarization-insensitive and wide-angle photoexcited broadband switchable metamaterial absorber (MMA) in the terahertz (THz) regime. The switchable MMA comprises a periodic array of dielectric substrate sandwiched with metallic four-splits-ring resonator (FSRR) structure and continuous metallic film. Filling the gap between the SRRs with a photoconductive semiconductor (silicon, Si), leading to easy modification of its electromagnetic (EM) response through a pump beam. The conductivity of photoconductive Si pads filled in the gap of SRRs can be tuned efficiently by external pump power. This results in the modulation of absorption magnitude with a modulation depth of 62.2%, and a broadband switch of absorption peak frequencies varying from 0.82 to 0.51 THz. Further numerical simulations demonstrate that the switchable MMA has the merit of polarization-insensitive and wide-angle absorption. The realization of broadband redshift tunable MMA offers opportunities to mature semiconductor technologies and potential applications in active THz modulator and switcher.

  10. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-03-01

    We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.

  11. Spoof surface plasmons resonance effect and tunable electric response of improved metamaterial in the terahertz regime

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zhang, Li-Ying; Mei, Jin-Shuo; Zhang, Wen-Chao; Tong, Yi-Jing

    2015-12-01

    We propose an improved design and numerical study of an optimized tunable plasmonics artificial material resonator in the terahertz regime. We demonstrate that tunability can be realized with a transmission intensity as much as ˜61% in the lower frequency resonance, which is implemented through the effect of photoconductive switching under photoexcitation. In the higher frequency resonance, we show that spoof surface plasmons along the interface of metal/dielectric provide new types of electromagnetic resonances. Our approach opens up possibilities for the interface of metamaterial and plasmonics to be applied to optically tunable THz switching. Project supported by the National Natural Science Foundation of China (Grant No. 61201075), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2015039), the Young Scholar Project of Heilongjiang Provincial Education Bureau, China (Grant No. 1254G021), the China Postdoctoral Science Foundation (Grant No. 2012M511507), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201302).

  12. Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level

    SciTech Connect

    Wang, Jinqi; Liu, Shuchang; Nahata, Ajay; Guruswamy, Sivaraman

    2013-11-25

    We demonstrate a technique for selectively erasing and refilling unit cells of terahertz (THz) metamaterials. The structures are formed by injecting eutectic gallium indium (EGaIn), a liquid metal at room temperature, into microchannels within a polydimethylsiloxane (PDMS) mold fabricated using conventional soft lithography techniques. The thin oxide layer that forms on the surface of EGaIn can be locally dissolved via exposure to hydrochloric acid (HCl) introduced at the surface of the gas permeable PDMS mold. In the absence of the oxide skin, the liquid metal retracts to a position where a stable new oxide layer can be formed, effectively erasing the liquid metal structure in the presence of HCl. After erasing selected structures, EGaIn can be re-injected into microchannels to yield the initial structure. In the case of small unit cells, we show that mechanical pressure can be used to effectively erase individual elements. We use THz time-domain spectroscopy to characterize the distinct transmission properties for each of these different structures.

  13. Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Liang, Lan-Ju; Ding, Xin; Yao, Jian-Quan

    2017-02-01

    A high-sensitivity sensing technique was demonstrated based on a flexible terahertz dual-band metamaterial absorber. The absorber has two perfect absorption peaks, one with a fundamental resonance (f1) of the structure and another with a high-order resonance (f2) originating from the interactions of adjacent unit cells. The quality factor (Q) and figure of merit of f2 are 6 and 14 times larger than that of f1, respectively. For the solid analyte, the changes in resonance frequency are monitored upon variation of analyte thickness and index; a linear relation between the amplitude absorption with the analyte thickness is achieved for f2. The sensitivity (S) is 31.2% refractive index units (RIU-1) for f2 and 13.7% RIU-1 for f1. For the aqueous solutions, the amplitude of absorption decreases linearly with increasing the dielectric constant for the ethanol-water mixture of f1. These results show that the designed absorber cannot only identify a solid analyte but also characterize aqueous solutions through the frequency shift and amplitude absorption. Therefore, the proposed absorber is promising for future applications in high-sensitivity monitoring biomolecular, chemical, ecological water systems, and aqueous biosystems.

  14. Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level

    NASA Astrophysics Data System (ADS)

    Wang, Jinqi; Liu, Shuchang; Guruswamy, Sivaraman; Nahata, Ajay

    2013-11-01

    We demonstrate a technique for selectively erasing and refilling unit cells of terahertz (THz) metamaterials. The structures are formed by injecting eutectic gallium indium (EGaIn), a liquid metal at room temperature, into microchannels within a polydimethylsiloxane (PDMS) mold fabricated using conventional soft lithography techniques. The thin oxide layer that forms on the surface of EGaIn can be locally dissolved via exposure to hydrochloric acid (HCl) introduced at the surface of the gas permeable PDMS mold. In the absence of the oxide skin, the liquid metal retracts to a position where a stable new oxide layer can be formed, effectively erasing the liquid metal structure in the presence of HCl. After erasing selected structures, EGaIn can be re-injected into microchannels to yield the initial structure. In the case of small unit cells, we show that mechanical pressure can be used to effectively erase individual elements. We use THz time-domain spectroscopy to characterize the distinct transmission properties for each of these different structures.

  15. Metamaterials

    DOEpatents

    Smith, David R.; Schurig, David; Starr, Anthony F.; Mock, Jack J.

    2014-09-09

    One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.

  16. Nano-Engineering of Active Metamaterials

    DTIC Science & Technology

    2014-10-29

    follows for silicon-organic hybrid (SOH) and plasmonic silicon-organic hybrid (PSOH) devices: For SOH devices, the following performance has been...H. Steier, Harold R. Fetterman, Pierre Berini, and Larry R. Dalton, “Active Plasmonic and Metamaterials and Devices,” Proc SPIE, 7754, 775403 1-10...Embedded Plasmonic Metal-Slotted Polymer Electro-Optic Waveguide Modulator,” Proc. 2011 Conf. on Laser and Electro-Optics, pp. 1-3 (2011). 24. H. Figi

  17. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    an InGaAs heterostructure Nanotechnology 24 214007 [4] Chen H-T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Active terahertz metamaterial devices Nature 444 597-600 [5] Hans H 1991 Microwave technology in the terahertz region Brand Conf. Proc.—European Microwave Conf. vol 1, pp 16-35 [6]Joyce H J, Docherty C J, Gao Q, Tan H H, Jagadish C, Lloyd-Hughes J, Herz L M and Johnston M B 2013 Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy Nanotechnology 24 214006 [7] Knap W, Rumyantsev S, Vitiello M S, Coquillat D, Blin S, Dyakonova N, Shur M, Teppe F, Tredicucci A and Nagatsuma T 2013 Nanometer size field effect transistors for terahertz detectors Nanotechnology 24 214002 [8] Kawano Y 2013 Wide-band frequency-tunable terahertz and infrared detection with graphene Nanotechnology 24 214004 [9]Romeo L, Coquillat D, Pea M, Ercolani D, Beltram F, Sorba L, Knap W, Tredicucci A and Vitiello M S 2013 Nanowire-based field effect transistors for terahertz detection and imaging systems Nanotechnology 24 214005 [10] Son J-H 2013 Principle and applications of terahertz molecular imaging Nanotechnology 24 214001 [11] Zhu Z, Yang X, Gu J, Jiang J, Yue W, Tian Z, Tonouchi M, Han J and Zhang W 2013 Broadband plasmon induced transparency in terahertz metamaterials Nanotechnology 24 214003 [12] Tonouchi M 2007 Cutting-edge terahertz technology Nature Photon. 1 97-105

  18. Fabrication of Nanopillar-Based Split Ring Resonators for Displacement Current Mediated Resonances in Terahertz Metamaterials.

    PubMed

    Liu, Chao; Schauff, Joseph; Lee, Seokhyeong; Cho, Jeong-Hyun

    2017-03-23

    Terahertz (THz) split ring resonator (SRR) metamaterials (MMs) has been studied for gas, chemical, and biomolecular sensing applications because the SRR is not affected by environmental characteristics such as the temperature and pressure surrounding the resonator. Electromagnetic radiation in THz frequencies is biocompatible, which is a critical condition especially for the application of the biomolecular sensing. However, the quality factor (Q-factor) and frequency responses of traditional thin-film based split ring resonator (SRR) MMs are very low, which limits their sensitivities and selectivity as sensors. In this work, novel nanopillar-based SRR MMs, utilizing displacement current, are designed to enhance the Q-factor up to 450, which is around 45 times higher than that of traditional thin-film-based MMs. In addition to the enhanced Q-factor, the nanopillar-based MMs induce a larger frequency shifts (17 times compared to the shift obtained by the traditional thin-film based MMs). Because of the significantly enhanced Q-factors and frequency shifts as well as the property of biocompatible radiation, the THz nanopillar-based SRR are ideal MMs for the development of biomolecular sensors with high sensitivity and selectivity without inducing damage or distortion to biomaterials. A novel fabrication process has been demonstrated to build the nanopillar-based SRRs for displacement current mediated THz MMs. A two-step gold (Au) electroplating process and an atomic layer deposition (ALD) process are used to create sub-10 nm scale gaps between Au nanopillars. Since the ALD process is a conformal coating process, a uniform aluminum oxide (Al2O3) layer with nanometer-scale thickness can be achieved. By sequentially electroplating another Au thin film to fill the spaces between Al2O3 and Au, a close-packed Au-Al2O3-Au structure with nano-scale Al2O3 gaps can be fabricated. The size of the nano-gaps can be well defined by precisely controlling the deposition cycles of the

  19. Topological mechanics: from metamaterials to active matter

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    2015-03-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.

  20. Real-timely monitoring the interaction between bovine serum albumin and drugs in aqueous with terahertz metamaterial biosensor

    NASA Astrophysics Data System (ADS)

    Hu, Fangrong; Guo, Enze; Xu, Xin; Li, Peng; Xu, Xinlong; Yin, Shan; Wang, Yuee; Chen, Tao; Yin, Xianhua; Zhang, Wentao

    2017-04-01

    In this paper, a metamaterial (MM) resonator used as a sensitive biosensor is designed and fabricated for monitoring the interaction between bovine serum albumin (BSA) solution and four kinds of drug solutions in real time. The transmission spectra of the resonator are simulated and measured with terahertz time-domain spectroscopy system where the distinct resonance frequency shifts are observed. The experimental results indicate that the interactions between BSA and every kind of solution are violent before the reaction reaches equilibrium, and the reaction solutions manifest varying permittivity. Moreover, different reaction solutions show different frequency shifts and reaction times. The MM resonator worked as an effective biosensor achieves to monitor the interaction between BSA and drug solutions in real time, which is very useful for the development of novel drugs and other biomedical applications.

  1. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves

    NASA Astrophysics Data System (ADS)

    Cheng, Yongzhi; Gong, Rongzhou; Zhao, Jingcheng

    2016-12-01

    We present a photoexcited switchable perfect metamaterial absorber/reflector for terahertz waves. The switchable absorber/reflector is based on a cross-shaped structure (CSS) integrated semiconductor photoconductive silicon (Si). The electric response property of the photoconductive Si can be easily modified through a pump optical beam. The conductivity of Si pads filled in the gap of CSS is tuned efficiently through the incident pump optical beam with different power, resulting in the modulation of absorption magnitude from 0 to 100% at the fixed operation frequency. Thus, the switch ability of the perfect absorber/reflector can be easily realized. Furthermore, the proposed design is polarization insensitive and operated well at wide incidence angles for both TE and TM waves.

  2. Recent Progress in Terahertz Metasurfaces

    NASA Astrophysics Data System (ADS)

    Al-Naib, Ibraheem; Withayachumnankul, Withawat

    2017-03-01

    In the past decade, the concept of metasurfaces has gradually dominated the field of metamaterials owing to their fascinating optical properties and simple planar geometries. At terahertz frequencies, the concept has been driven further by the availability of advanced micro-fabrication technologies that deliver sub-micron accuracy, well below the terahertz wavelengths. Furthermore, terahertz spectrometers with high dynamic range and amplitude and phase sensitivity provide valuable information for the study of metasurfaces in general. In this paper, we review recent progress in terahertz metasurfaces mainly in the last 5 years. The first part covers nonuniform metasurfaces that perform beamforming in reflection and transmission. In addition, we briefly overview four different methodologies that can be utilized in realizing high-quality-factor metasurfaces. We also describe two recent approaches to tuning the frequency response of terahertz metasurfaces using graphene as an active medium. Finally, we provide a brief summary and outlook for future developments in this rapidly progressing field.

  3. Characterization of active metamaterials based on negative impedance converters

    NASA Astrophysics Data System (ADS)

    Rajab, K. Z.; Fan, Y. F.; Hao, Y.

    2012-11-01

    Negative impedance converters (NICs) are used to create impedance loads that can effectively cancel the inductive properties of magnetic dipoles, resulting in active metamaterials with increased bandwidth and reduced loss for μ-near-zero (MNZ) and negative-Re(μ) (MNG) media. We demonstrate techniques for analyzing the stability and characterizing the magnetic properties of effective media loaded with NICs. Specifically, we apply the Nyquist criterion to validate the stability of sample active metamaterials. It is shown that the practical NIC-loaded metamaterial may maintain stability and reduce dispersion, albeit with reduced performance as compared to the ideal NIC load.

  4. Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Dat Nguyen, Vu; Teun Kim, Teun; Dian Prasetyo, Fariza; Choi, Choon-gi; Choi, Muhan; Byun, Doyoung

    2013-11-01

    Metamaterial is an engineered material whose electromagnetic properties can be determined by the unit structure. Lithography is one of main methods to fabricate metamaterials for fine patterning which has limitations in large-area fabrication. We present a direct fabrication method for metamaterial using the electrohydrodynamic jet printing. An electrical pulse was controlled to make drop-on-demand operation, through which flexible high refractive-index metamaterial could be fabricated in the form of I-shaped silver electrodes with 10-μm widths and 5-μm gaps on polyimide substrate. The peak value of the refractive index was 18.4 at a frequency of around 0.48 THz.

  5. Active terahertz wave imaging system for detecting hidden objects

    NASA Astrophysics Data System (ADS)

    Gan, Yuner; Liu, Ming; Zhao, Yuejin

    2016-11-01

    Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.

  6. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.

    PubMed

    Han, N R; Chen, Z C; Lim, C S; Ng, B; Hong, M H

    2011-04-11

    Microscopic split-ring-resonator (SRR) arrays are fabricated on 100 μm thick polyethylene naphthalate (PEN) films by femtosecond laser micro-lens array (MLA) lithography. The transmission properties of these metamaterials are characterized by THz Time Domain Spectroscopy (THz-TDS). Tunable resonance responses can be achieved by changing SRR structural design parameters. By stacking 2D PEN metamaterial films with different frequency responses together, a broadband THz filter with full width at half maximum (FWHM) of 0.38 THz is constructed. The bandwidth of the resonance response increases up to 4.2 times as compared to the bandwidths of single layer metamaterials. Numerical simulation reveals that SRR layers inside the multi-layer metamaterials are selectively excited towards specific frequencies within the broadband response. Meanwhile, more than one SRR layers respond to the chosen frequencies, resulting in the enhancement of the resonance properties. The multi-layer metamaterials provide a promising way to extend SRR based metamaterial operating region from narrowband to broadband with a tunable feature.

  7. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    SciTech Connect

    Park, Sang-Gil; Jeong, Ki-Hun; Lee, Kanghee; Han, Daehoon; Ahn, Jaewook

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  8. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process

    PubMed Central

    Huang, Tsung-Yu; Tseng, Ching-Wei; Yeh, Ting-Tso; Yeh, Tien-Tien; Luo, Chih-Wei; Akalin, Tahsin; Yen, Ta-Jen

    2015-01-01

    We design and demonstrate a flexible, ultrathin and double-sided metamaterial perfect absorber (MPA) at 2.39 terahertz (THz), which enables excellent light absorbance under incidences from two opposite sides. Herein, the MPA is fabricated on a λ0/10.1-thick flexible polyethylene terephthalate substrate of εr = 2.75 × (1 + 0.12i), sandwiched by two identical randomized metallic patterns by our stochastic design process. Such an MPA provides tailored permittivity and permeability to approach the impedance of free space for minimizing reflectance and a great imaginary part of the refractive index for reducing transmittance and finally results in high absorbance. Both experimental measurement and numerical simulation are in a good agreement. The flexible, ultrathin and double-sided MPA significantly differs from traditional quarter-wavelength absorbers and other single-sided perfect absorbers, paving a way toward practical THz applications in thermal emission, sensing and imaging, communications, stealth technique, and even energy harvesting. PMID:26690846

  9. Extended Malus law with terahertz metallic metamaterials for sensitive detection with giant tunable quality factor

    NASA Astrophysics Data System (ADS)

    Romain, Xavier; Baida, Fadi; Boyer, Philippe

    2016-07-01

    We study a polarizer-analyzer mounting for the terahertz regime with perfectly conducting metallic polarizers made of a periodic subwavelength pattern. With a renewed Jones formalism, we analytically investigate the influence of the multiple reflections, which occur between the polarizer and the analyzer, on the transmission response. We demonstrate that this interaction leads to a modified transmission response: the extended Malus law. In addition, we show that the transmission response can be controlled by the distance between the polarizer and the analyzer. For particular setups, the mounting exhibits extremely sensitive transmission responses. This interesting feature can be employed for high-precision sensing and characterization applications. We specifically propose a general design for measuring the electro-optical response of materials in the terahertz domain allowing detection of refractive index variations as small as 10-5.

  10. Single- and double-sided sensor applications of metamaterials based on square-ring and diamond resonators for terahertz region

    NASA Astrophysics Data System (ADS)

    Shawky, Najlaa; Adnan Taha, Salah Al-Deen; Altan, Hakan; Sabah, Cumali

    2017-03-01

    This study investigates the sensing applications of metamaterial (MTM) structures in the terahertz (THz) region and is based on a broadside-coupled diamond and square-ring resonator (DSRR) structures. The resonators are designed and simulated as sensors in detail. Compared with single-sided sensors, the sensing capability of double-sided sensors provide an enhancement with respect to the sensitivity. To analyze the structure as sensor, the changes in the transmission resonance are investigated as a function of the permittivity and thickness of overlayer for the single- and double-sided MTM. The results demonstrate that this design can provide good sensitivity when sensing the chemical or biological agents that are resonant in the terahertz region of the electromagnetic spectrum. These types of designs can be employed in the many sensing applications that are of interest in the THz region.

  11. Ubiquity of optical activity in planar metamaterial scatterers.

    PubMed

    Sersic, Ivana; van de Haar, Marie Anne; Arango, Felipe Bernal; Koenderink, A Femius

    2012-06-01

    Recently it was discovered that periodic lattices of metamaterial scatterers show optical activity, even if the scatterers or lattice show no 2D or 3D chirality, if the illumination breaks symmetry. We demonstrate that such "pseudochirality" is intrinsic to any single planar metamaterial scatterer and in fact has a well-defined value at a universal bound. We argue that in any circuit model, a nonzero electric and magnetic polarizability derived from a single resonance automatically imply strong bi-anisotropy, i.e., magnetoelectric cross polarizability at the universal bound set by energy conservation. We confirm our claim by extracting polarizability tensors and cross sections for handed excitation from transmission measurements on near-infrared split ring arrays, and electrodynamic simulations for diverse metamaterial scatterers.

  12. Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits.

    PubMed

    Xu, Wangren; Padilla, Willie J; Sonkusale, Sameer

    2012-09-24

    Dielectric and ohmic losses in metamaterials are known to limit their practical use. In this paper, an all-electronic approach for loss compensation in metamaterials is presented. Each unit cell of the meta-material is embedded with a cross-coupled transistor pair based negative differential resistance circuit to cancel these losses. Design, simulation and experimental results for Split Ring Resonator (SRR) metamaterials with and without loss compensation are presented. Results indicate that the quality factor (Q) of the SRR improves by over 400% at 1.6 GHz, showing the effectiveness of the approach. The proposed technique is scalable over a broad frequency range and is limited only by the maximum operating frequency of transistors, which is reaching terahertz in today's semiconductor technologies.

  13. Graphene active plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Dubinov, Alexander; Ryzhii, Maxim; Boubanga Tombet, Stephane; Satou, Akira; Mitin, Vladimir; Shur, Michael S.; Ryzhii, Victor

    2015-05-01

    This paper reviews recent advances in the double-graphene-layer (DGL) active plasmonic heterostructures for the terahertz (THz) device applications. The DGL consists of a core shell in which a thin tunnel barrier layer is sandwiched by the two GLs being independently connected with the side contacts and outer gate stack layers at both sides. The DGL core shell works as a nano-capacitor, exhibiting inter-GL resonant tunneling (RT) when the band offset between the two GLs is aligned. The RT produces a strong nonlinearity with a negative differential conductance in the DGL current-voltage characteristics. The excitation of the graphene plasmons by the THz radiation resonantly modulates the tunneling currentvoltage characteristics. When the band offset is aligned to the THz photon energy, the DGL structure can mediate photonassisted RT, resulting in resonant emission or detection of the THz radiation. The cooperative double-resonant excitation with structure-sensitive graphene plasmons gives rise to various functionalities such as rectification (detection), photomixing, higher harmonic generation, and self-oscillation, in the THz device implementations.

  14. Feedforward control of sound transmission using an active acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Stephen; McCormick, Cameron

    2017-02-01

    Metamaterials have received significant interest in recent years due to their potential ability to exhibit behaviour not found in naturally occurring materials. This includes the generation of band gaps, which are frequency regions with high levels of wave attenuation. In the context of acoustics, these band gaps can be tuned to occur at low frequencies where the acoustic wavelength is large compared to the material, and where the performance of traditional passive noise control treatments is limited. Therefore, such acoustic metamaterials have been shown to offer a significant performance advantage compared to traditional passive control treatments, however, due to their resonant behaviour, the band gaps tend to occur over a relatively narrow frequency range. A similar long wavelength performance advantage can be achieved using active noise control, but the systems in this case do not rely on resonant behaviour. This paper demonstrates how the performance of an acoustic metamaterial, consisting of an array of Helmholtz resonators, can be significantly enhanced by the integration of an active control mechanism that is facilitated by embedding loudspeakers into the resonators. Crucially, it is then also shown how the active acoustic metamaterial significantly outperforms an equivalent traditional active noise control system. In both cases a broadband feedforward control strategy is employed to minimise the transmitted pressure in a one-dimensional acoustic control problem and a new method of weighting the control effort over a targeted frequency range is described.

  15. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals.

    PubMed

    Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-24

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  16. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-01

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light–matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  17. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  18. Subwavelength micropillar array terahertz lasers.

    PubMed

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  19. Terahertz Response of a Microfabricated Rod Split-Ring-Resonator Electromagnetic Metamaterial

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Casse, B. D.; Wilhelmi, O.; Saw, B. T.

    2005-02-01

    The first electromagnetic metamaterials (EM3) produced by microfabrication are reported. They are based on the rod split-ring-resonator design as proposed by Pendry et al. [

    IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)IETMAB0018-948010.1109/22.798002
    ] and experimentally confirmed by Smith et al. [
    Phys. Rev. Lett.PRLTAO0031-9007 84, 4184 (2000)10.1103/PhysRevLett.84.4184
    ] in the GHz frequency range. Numerical simulation and experimental results from far infrared (FIR) transmission spectroscopy support the conclusion that the microfabricated composite material is EM3 in the range 1 2.7 THz. This extends the frequency range in which EM3 are available by about 3 orders of magnitude well into the FIR, thereby widely opening up opportunities to verify the unusual physical implications on electromagnetic theory as well as to build novel electromagnetic and optical devices.

  20. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  1. High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index

    NASA Astrophysics Data System (ADS)

    Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Oh, Sang Soon; Nguyen, VuDat; Choi, Muhan; Choi, Choon-gi; Byun, Doyoung

    2015-04-01

    The fabrication of 3D metamaterials, such as multilayer structures, is of great interest in practical applications of the metamaterial. Here we present an electrohydrodynamic jet printing technique as a direct fabrication method of 3D multilayer metamaterial. By alignment of the nozzle movement, we could fabricate multiple layers of the metamaterial. Controlling an electrical pulse to make droplets on-demand, we fabricated a high refractive index metamaterial and compared the optical performances of a single layer and multiple layers, with 10 µm width and 5 µm gap of I-shaped meta-atoms on the polyimide substrate. The peak refractive index was 25.7 at 0.46 THz for a four-layer metamaterial.

  2. Active control of chirality in nonlinear metamaterials

    SciTech Connect

    Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-03-02

    An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.

  3. Influence of film thickness in THz active metamaterial devices: A comparison between superconductor and metal split-ring resonators

    NASA Astrophysics Data System (ADS)

    Singh, Ranjan; Roy Chowdhury, Dibakar; Xiong, Jie; Yang, Hao; Azad, Abul K.; Taylor, Antoinette J.; Jia, Q. X.; Chen, Hou-Tong

    2013-08-01

    We experimentally demonstrate thickness-dependent resonance tuning in planar terahertz superconducting metamaterials. Inductive-capacitive resonance of arrays of split-ring resonators fabricated from 50, 100, and 200 nm thick YBa2Cu3O7-δ (YBCO) and gold films were characterized and compared as a function of temperature. In the YBCO metamaterials the resonance frequency strongly depends on the thickness, and they show high thermal tunability in both resonance strength and frequency below the superconducting transition temperature, where the imaginary conductivity varies by three orders of magnitude. In contrast, the resonance in the gold metamaterials exhibits little thickness-dependence and very small tunability.

  4. Magnetoelastic metamaterials.

    PubMed

    Lapine, Mikhail; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S

    2011-11-13

    The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction, the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics. In particular, nonlinear metamaterials established a new research direction giving rise to fruitful ideas for tunable and active artificial materials. Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics of photonic structures or magnetoelasticity in magnetic materials.

  5. Magnetoelastic metamaterials

    NASA Astrophysics Data System (ADS)

    Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.

    2012-01-01

    The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction, the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics. In particular, nonlinear metamaterials established a new research direction giving rise to fruitful ideas for tunable and active artificial materials. Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics of photonic structures or magnetoelasticity in magnetic materials.

  6. Non-reciprocal and highly nonlinear active acoustic metamaterials.

    PubMed

    Popa, Bogdan-Ioan; Cummer, Steven A

    2014-02-27

    Unidirectional devices that pass acoustic energy in only one direction have numerous applications and, consequently, have recently received significant attention. However, for most practical applications that require unidirectionality at audio and low frequencies, subwavelength implementations capable of the necessary time-reversal symmetry breaking remain elusive. Here we describe a design approach based on metamaterial techniques that provides highly subwavelength and strongly non-reciprocal devices. We demonstrate this approach by designing and experimentally characterizing a non-reciprocal active acoustic metamaterial unit cell composed of a single piezoelectric membrane augmented by a nonlinear electronic circuit, and sandwiched between Helmholtz cavities tuned to different frequencies. The design is thinner than a tenth of a wavelength, yet it has an isolation factor of >10 dB. The design method generates relatively broadband unidirectional devices and is a good candidate for numerous acoustic applications.

  7. Design and simulation of a tunable metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Fu, Yanan; Zhao, Guozhong; Li, Yonghua

    2016-11-01

    A photo-excited tunable and broad band metamaterial absorber in the terahertz region is proposed. The metamaterial absorber is composed of three layers like the sandwich, the top layer is a ring metal-semiconductor square split ring and the bottom layer is a metallic ground plane, these two layers are separated by a dielectric spacer, which we choose as the polyimide. The conductivity of the silicon can be tuned actively with the incident pump power. We use the full wave simulation and the equivalent circuit parameter to analysis this absorber, and interpreted the phenomena showed when the conductivity of the silicon filled in the gap of ring is changed by the electric field. The proposed equivalent circuit parameter can save more time to design this kind of absorber in need. The proposed photo-excited tunable metamaterial absorber can also be used as terahertz modulators and switches.

  8. Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths.

    PubMed

    Wei, Zhongchao; Li, Xianping; Yin, Jianjun; Huang, Rong; Liu, Yuebo; Wang, Wei; Liu, Hongzhan; Meng, Hongyun; Liang, Ruisheng

    2016-06-27

    Active plasmonic band-stop filters based on single- and double-layer doped graphene metamaterials at the THz wavelengths are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. The metamaterial unit cell structure is composed of two parallel graphene nanoscale ribbons. Simulated results exhibit that significant resonance wavelength shifts can be achieved with a slight variation of the doping concentration of the graphene ribbons. Besides, the asymmetry double-layer graphene metamaterial device has two apparent filter dips while the symmetry single-, double-layer and asymmetry single-layer graphene metamaterial devices just only one. The metamaterials with symmetry single-layer and asymmetry double-layer graphene can be used as a high-sensitivity refractive sensor with the sensitivity up to 5100 nm/RIU and a two-circuit switch, respectively. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for THz applications.

  9. Dynamic control of THz waves through thin-film transistor metamaterials

    NASA Astrophysics Data System (ADS)

    Ren, Fang-Fang; Xu, Wei-Zong; Lu, Hai; Ye, Jiandong; Tan, Hark Hoe; Jagadish, Chennupati

    2015-12-01

    We propose a hybrid metamaterial with embedded amorphous oxide thin-film transistor (TFT) arrays, which embraces the advantages of energy saving, low cost and high yields for tunable amplitude modulation in terahertz (THz) regime. The properties of this active metamaterial system are numerically investigated based on full-wave techniques and multipole theory. The calculation results attribute the modulation to a change in the damping rate of an electric dipoletype resonance mode caused by the increased conductivity of the transparent oxide layer. Such a device, expanding the horizon of oxide electronics into metamaterials, opens up many fascinating prospects for producing stable, uniform, and low-cost THz components.

  10. Carrier concentration dependence of the tunability of the dipole resonance peak in optically excited metamaterials

    NASA Astrophysics Data System (ADS)

    Chatzakis, Ioannis; Luo, Liang; Wang, Jigang; Shen, Nian Hai; Koschny, Thomas; Soukoulis, Costas

    2011-03-01

    Currently, there is strong interest to explore the dynamic control of the electromagnetic properties of metamaterials, which have important implications on their optoelectronic applications. While the design, fabrication and photo-doping of metamaterial/semiconductor structures have been actively pursued, some fundamental issues related to highly photo-excited states, their dynamic tuning and temporal evolution remain open. Using optical-pump terahertz probe spectroscopy, we report on the pump fluence dependence of the electric dipole resonance tunability in metamaterials. We find a previously undiscovered large non-monotonic variation on the strength of the dipole resonance peak with the photo-injected carrier concentration.

  11. Intensity-dependent modulation of optically active signals in a chiral metamaterial

    PubMed Central

    Rodrigues, Sean P.; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W.; Wang, Shengxiang; Urbas, Augustine M.; Cai, Wenshan

    2017-01-01

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation. PMID:28240288

  12. Intensity-dependent modulation of optically active signals in a chiral metamaterial.

    PubMed

    Rodrigues, Sean P; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W; Wang, Shengxiang; Urbas, Augustine M; Cai, Wenshan

    2017-02-27

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation.

  13. Liquid crystal tunable metamaterial absorber.

    PubMed

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  14. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    PubMed Central

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas. PMID:28120897

  15. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  16. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-04-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.

  17. Visible frequency magnetic activity in silver nanocluster metamaterial.

    PubMed

    Tamma, Venkata Ananth; Lee, Jin-Hyoung; Wu, Qi; Park, Wounjhang

    2010-03-01

    We experimentally observe magnetic resonance in the visible frequency region from self-assembled silver nanocluster metamaterials. Extensive numerical modeling studies were conducted to find the optimal nanocluster dimensions. Self-assembly of silver nanoparticles coated with nanoscale silica coating was then performed on polymer templates fabricated by laser interference lithography. The nanoclusters supported magnetic resonance in the visible region, and the extracted effective permeability exhibited Lorentz-like resonance. The experimentally observed lowest value for the real part of permeability was 0.06. The nanocluster metamaterial represents a practical metamaterial architecture that is compatible with the scalable bottom-up manufacturing process.

  18. Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy.

    PubMed

    Minowa, Yosuke; Fujii, Takashi; Nagai, Masaya; Ochiai, Tetsuyuki; Sakoda, Kazuaki; Hirao, Kazuyuki; Tanaka, Koichiro

    2008-03-31

    We established a novel method to evaluate effective optical constants by terahertz (THz) time domain spectroscopy and suggested a strict definition of optical constants and an expression for electromagnetic energy loss following the second law of thermodynamics. We deduced the effective optical constants of phosphor bronze wire grids in the THz region experimentally and theoretically. The results depend strongly on the polarization of the THz waves. When the electric field is parallel to the wires, we observed Drude-like electric permittivities with a plasma frequency reduced by a factor of 10(-3), whereas when the field is perpendicular, the sample behaved as a simple dielectric film. We also observed unexpected magnetic permeabilities, which originate from the non-resonant real magnetic response of finite size-conductors.

  19. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  20. Hybrid semiconductor-dielectric metamaterial modulation for switchable bi-directional THz absorbers

    NASA Astrophysics Data System (ADS)

    Le, Ly Nguyen; Thang, Nguyen Manh; Thuy, Le Minh; Tung, Nguyen Thanh

    2017-01-01

    There is an increasing interest for electromagnetic metamaterials that show mutable absorption properties with real-time and dynamic control. In this paper, we investigate a modulation of bi-directional metamaterial absorbers that is thermally switchable at terahertz frequencies. The metamaterial absorber is composed of symmetric hybrid semiconductor-dielectric cut-wire-pair structures, whose electromagnetic responses can be actively manipulated by utilizing an external heat source. As increasing the temperature of metamaterials from 300 to 350 K, we demonstrate that the magnetic resonance can be systematically blue-shifted and overlapped with the electric resonance, which is unaffectedly settled at about 0.8 THz. This superposition provides an effective mechanism to control the absorption intensity from 43% to nearly 95%. Finite integration simulation technique, standard retrieval method, and equivalent circuit model are employed to elaborate our idea.

  1. Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser

    NASA Astrophysics Data System (ADS)

    Sarychev, Andrey K.; Tartakovsky, Gennady

    2006-08-01

    We consider plasmonic nanoantennas immersed in active host medium. Specifically shaped metal nanoantennas can exhibit strong magnetic properties in the optical spectral range due to the excitation of Magnetic Resonance Plasmons (MRP). A case when a metamaterial comprising such nanoantennas can demonstrate both "left-handiness" and negative permeability in the optical range is considered. We show that high losses predicted for optical "left-handed" materials can be compensated in the gain medium. Gains required to achieve local generation in such magnetic active metamaterials are calculated for real metals

  2. Temperature and magnetic field tunability of composite metamaterials containing spherical semiconductor particles in far-infrared and terahertz regimes

    NASA Astrophysics Data System (ADS)

    Panahpour, Ali; Latifi, Hamid

    2010-12-01

    The effect of temperature and dc magnetic field variations on effective electromagnetic parameters of metamaterials (MTMs) containing spherical semiconductor particles is studied theoretically. The effect of temperature is taken into account through its influence on semiconductor carrier density and mobility. The effect of dc magnetic field is included using an extension of the Mie theory, describing the interaction of a plane wave with a gyrotropic sphere. The effective parameters such as relative permittivity and permeability are calculated by proper application of the Maxwell Garnett (MG) theory and its extensions to quasi-static condition and multi-phase structures. Based on these theories, the temperature and dc magnetic field tunability of three different MTM structures is investigated. First a single phase medium is considered which contains spherical semiconductor particles of one kind, randomly dispersed in a dielectric host. Then two multi-phase structures containing (a) two kinds of spherical semiconductor particles or (b) spherical particles with core-shell topology are investigated. The two multi-phase MTM structures can exhibit negative index of refraction in far-infrared spectral region. The measure of the temperature and dc magnetic field tunability of effective parameters such as relative permittivity and refractive index of the structures is evaluated and it is shown specifically that the real part of refractive index can be tuned to get negative, zero or positive values in far-IR or THz regimes, but the imaginary part of the index and the Figure of Merit (FOM) are also quite sensitive to the temperature and magnetic field variations. The tunable MTMs can find new applications in THz devices such as switches, tunable mirrors, isolators, converters, polarizers, filters and phase shifters.

  3. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial

    PubMed Central

    Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-01-01

    The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities. PMID:28202903

  4. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial.

    PubMed

    Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-02-16

    The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.

  5. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-02-01

    The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.

  6. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

    SciTech Connect

    Dietrich, K. Menzel, C.; Lehr, D.; Puffky, O.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.; Hübner, U.

    2014-05-12

    We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

  7. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  8. Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of THz light propagation

    NASA Astrophysics Data System (ADS)

    Arezoomandan, Sara; Yang, Kai; Sensale-Rodriguez, Berardi

    2014-08-01

    This work studies the terahertz light propagation through graphene-based reconfigurable metasurfaces where the unit cell dimensions are much smaller than the terahertz wavelength. The proposed devices, which poses deep-subwavelength unit cell and active region dimensions can operate as amplitude and/or phase modulators in certain specific frequency bands determined by the device geometry. Reconfigurability is attained via electrostatically tuning the optical conductivity of patterned graphene layers, which are strategically located in each unit cell. The ultra-small unit cell dimensions can be advantageous for beam shaping applications.

  9. Dispersion management with metamaterials

    DOEpatents

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.

    2017-03-07

    An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).

  10. Active Graphene-Based Terahertz Dual-Band Modulator Implemented in the Presence of External Fields

    NASA Astrophysics Data System (ADS)

    Hu, Xiang; Huang, Qiuping; Zhao, Yi; Cai, Honglei; Lu, Yalin

    2017-01-01

    In this work, we numerically demonstrate a dynamic graphene-based dual-band metamaterial modulator (gDMM) in the presence of an external magnetic field and gate electric field. With the objective of modulating terahertz waves at two separate channels, we utilize the proposed dual-field control method to dynamically modulate the optical conductivity of graphene, and thus the working frequencies of the gDMM. An interpretation for such dependence on the external fields is presented based on a quantum understanding of the energy structure of graphene, and a numerical method based on the finite element method (FEM) is employed to investigate the optical responses of our proposed gDMM. Our results show that, by varying the strength of external fields, one can switch the operation status of the two working channels located at 3.18 THz and 9.04 THz, with modulation depths exceeding 84.4%. Only 30 meV of energy is required for shifting the Fermi level to accomplish the switch, which is extremely low compared with methods in previous works using gate electric control alone. Simultaneous ON/OFF statuses are also realized. Such great tunability and controllability of our proposed gDMM over a wide frequency range may give rise to a new class of dynamic devices for terahertz and microwave applications.

  11. Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma

    PubMed Central

    Singh, Pramod K.; Hopwood, Jeffrey; Sonkusale, Sameer

    2014-01-01

    Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials. PMID:25098976

  12. From metamaterials to metadevices.

    PubMed

    Zheludev, Nikolay I; Kivshar, Yuri S

    2012-11-01

    Metamaterials, artificial electromagnetic media that are structured on the subwavelength scale, were initially suggested for the negative-index 'superlens'. Later metamaterials became a paradigm for engineering electromagnetic space and controlling propagation of waves: the field of transformation optics was born. The research agenda is now shifting towards achieving tunable, switchable, nonlinear and sensing functionalities. It is therefore timely to discuss the emerging field of metadevices where we define the devices as having unique and useful functionalities that are realized by structuring of functional matter on the subwavelength scale. In this Review we summarize research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals. The Review also encompasses microelectromechanical metadevices, metadevices engaging the nonlinear and quantum response of superconductors, electrostatic and optomechanical forces and nonlinear metadevices incorporating lumped nonlinear components.

  13. Sensing with toroidal metamaterial

    NASA Astrophysics Data System (ADS)

    Gupta, Manoj; Srivastava, Yogesh Kumar; Manjappa, Manukumara; Singh, Ranjan

    2017-03-01

    Localized electromagnetic excitation in the form of toroidal dipoles has recently been observed in metamaterial systems. The origin of the toroidal dipole lies in the currents flowing on the surface of a torus. Thus, the exotic toroidal excitations play an important role in determining the optical properties of a system. Toroidal dipoles also contribute towards enabling high quality factor subwavelength resonances in metamaterial systems which could be an excellent platform for probing the light matter interaction. Here, we demonstrate sensing with toroidal resonance in a two-dimensional terahertz metamaterial in which a pair of mirrored asymmetric Fano resonators possesses anti-aligned magnetic moments at an electromagnetic resonance that gives rise to a toroidal dipole. Our proof of concept demonstration opens up an avenue to explore the interaction of matter with toroidal multipoles that could have strong applications in the sensing of dielectrics and biomolecules.

  14. Microelectromechanically tunable multiband metamaterial with preserved isotropy.

    PubMed

    Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo

    2015-06-26

    We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future.

  15. Microelectromechanically tunable multiband metamaterial with preserved isotropy

    PubMed Central

    Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo

    2015-01-01

    We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future. PMID:26115416

  16. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  17. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  18. THz near-field Faraday imaging in hybrid metamaterials.

    PubMed

    Kumar, Nishant; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Planken, Paul C M; Adam, Aurèle J L

    2012-05-07

    We report on direct measurements of the magnetic near-field of metamaterial split ring resonators at terahertz frequencies using a magnetic field sensitive material. Specifically, planar split ring resonators are fabricated on a single magneto-optically active terbium gallium garnet crystal. Normally incident terahertz radiation couples to the resonator inducing a magnetic dipole oscillating perpendicular to the crystal surface. Faraday rotation of the polarisation of a near-infrared probe beam directly measures the magnetic near-field with 100 femtosecond temporal resolution and (λ/200) spatial resolution. Numerical simulations suggest that the magnetic field can be enhanced in the plane of the resonator by as much as a factor of 200 compared to the incident field strength. Our results provide a route towards hybrid devices for dynamic magneto-active control of light such as isolators, and highlight the utility of split ring resonators as compact probes of magnetic phenomena in condensed matter.

  19. Experimental characterization of active acoustic metamaterial cell with controllable dynamic density

    NASA Astrophysics Data System (ADS)

    Akl, Wael; Baz, Amr

    2012-10-01

    Controlling wave propagation pattern within acoustic fluid domains has been the motivation for the acoustic metamaterials developments to target applications ranging from acoustic cloaking to passive noise control techniques. Currently, various numerical and analytical approaches exist to predict the fluid domain material properties necessary for specific propagation pattern. Physical attempts to realize such material properties have revealed engineered material constructions that are focused on predefined wave propagation patterns. In the current paper, coupled fluid-structure one-dimensional metamaterial cell, in which piezoelectric active ingredient has been introduced, is manufactured to achieve controllable dynamic density. The density-controllable cell has been manufactured by coupling a water-filled cavity with piezoelectric elements in a cell of 4.5 cm length and 4.1 cm diameter subject to impulse excitation. A finite element model of the cell has been developed and its predictions are validated against the experimental results. The validated model is utilized to predict the changes in the pressure gradient inside the developed cell which is a direct measure of the changes introduced to the dynamic density of the acoustic metamaterial domain. With such predictions, it is demonstrated that densities as high as 3.2 gm/cm3 and as low as 0.72 gm/cm3 can be achieved experimentally for excitation frequencies ranging between 100 Hz and 500 Hz.

  20. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  1. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    NASA Astrophysics Data System (ADS)

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  2. Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Hua; Su, Hang; Hu, Guangwei; Zhang, Jingwen

    2016-09-01

    An active method of continuously tuning the effective permittivity of a hyperbolic metamaterial at visible and near-infrared spectra is introduced in this letter. A transparent conducting oxide, whose optical properties can be altered accurately by applying an external voltage, is inserted into a traditional metal-dielectric multilayer structure to increase the degree of freedom for tuning the epsilon-near-zero point by shifting the topological transition point. The tuning effect is explained in detail by combining the relationship between permittivity and voltage with wavevector analysis. This may promote other active applications of hyperbolic metamaterials and ultrafast tunable optoelectronic devices.

  3. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    PubMed Central

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei V.; Kivshar, Yuri S.; Lavrinenko, Andrei V.

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment. PMID:26311410

  4. Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Gallot, Guilhem

    2006-10-01

    The authors demonstrate the direct, noninvasive and time resolved imaging of functional frog auricular fibers by ionic contrast terahertz (ICT) near field microscopy. This technique provides quantitative, time-dependent measurement of ionic flow during auricular muscle electrical activity, and opens the way of direct noninvasive imaging of cardiac activity under stimulation. ICT microscopy technique was associated with full three-dimensional simulation enabling to measure precisely the fiber sizes. This technique coupled to waveguide technology should provide the grounds to development of advanced in vivo ion flux measurement in mammalian hearts, allowing the prediction of heart attack from change in K+ fluxes.

  5. Frequency selective terahertz retroreflectors

    NASA Astrophysics Data System (ADS)

    Williams, Richard James

    The use of novel optical structures operating at terahertz frequencies in industrial and military applications continues to grow. Some of these novel structures include gratings, frequency selective surfaces, metamaterials and metasurfaces, and retroreflectors. A retroreflector is a device that exhibits enhanced backscatter by concentrating the reflected wave in the direction of the source. Retroreflectors have applications in a variety of diverse fields such as aviation, radar systems, antenna technology, communications, navigation, passive identification, and metrology due to their large acceptance angles and frequency bandwidth. This thesis describes the design, fabrication, and characterization of a retroreflector designed for terahertz frequencies and the incorporation of a frequency selective surface in order to endow the retroreflector with narrow-band frequency performance. The radar cross section of several spherical lens reflectors operating at terahertz frequencies was investigated. Spherical lens reflectors with diameters ranging from 2 mm to 8 mm were fabricated from fused silica ball lenses and their radar cross section was measured at 100 GHz, 160 GHz, and 350 GHz. Crossed-dipole frequency selective surfaces exhibiting band-pass characteristics at 350 GHz fabricated from 12 um-thick Nickel screens were applied to the apertures of the spherical lens reflectors. The radar cross section of the frequency selective retroreflectors was measured at 160 GHz and 350 GHz to demonstrate proof-of-concept of narrow-band terahertz performance.

  6. Electrically driven optical metamaterials

    PubMed Central

    Le-Van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse

    2016-01-01

    The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors. PMID:27328976

  7. Electrically driven optical metamaterials

    NASA Astrophysics Data System (ADS)

    Le-van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse

    2016-06-01

    The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors.

  8. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.

    PubMed

    Giannini, Vincenzo; Berrier, Audrey; Maier, Stefan A; Sánchez-Gil, José Antonio; Rivas, Jaime Gómez

    2010-02-01

    Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors.

  9. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    PubMed Central

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795

  10. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  11. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.

    PubMed

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-19

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  12. Metamaterial membranes

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena.

  13. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    NASA Astrophysics Data System (ADS)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  14. Sensitive monitoring of photocarrier densities in the active layer of a photovoltaic device with time-resolved terahertz reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Genki; Matsubara, Eiichi; Nagai, Masaya; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Ashida, Masaaki

    2017-02-01

    We demonstrate the sensitive measurement of photocarriers in an active layer of a GaAs-based photovoltaic device using time-resolved terahertz reflection spectroscopy. We found that the reflection dip caused by Fabry-Pérot interference is strongly affected by the carrier profile in the active layer of the p-i-n structure. The experimental results show that this method is suitable for quantitative evaluation of carrier dynamics in active layers of solar cells under operating conditions.

  15. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.

    PubMed

    Tang, Weiwei; Wang, Lin; Chen, Xiaoshuang; Liu, Changlong; Yu, Anqi; Lu, Wei

    2016-08-18

    Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.

  16. Terahertz transmission through rings of quantum dots-nanogap

    NASA Astrophysics Data System (ADS)

    Tripathi, Laxmi-Narayan; Bahk, Young-Mi; Choi, Geunchang; Han, Sanghoon; Park, Namkyoo; Kim, Dai-Sik

    2016-03-01

    We report resonant funneling of terahertz (THz) waves through (9 ± 1) nm wide quantum dots-nanogap of cadmium selenide quantum dots silver nanogap metamaterials. We observed a giant THz intensity enhancement (∼104) through the quantum dots-nanogap at the resonant frequency. We, further report the experimentally measured effective mode indices for these metamaterials. A finite difference time domain simulation of the nanogap enabled by the quantum dots supports the experimentally measured THz intensity enhancement across the nanogap. We propose that these low effective mode index terahertz resonators will be useful as bio/chemical sensors, gain-enhanced antennas, and wave guides.

  17. Terahertz dual-wavelength quantum cascade laser based on GaN active region

    NASA Astrophysics Data System (ADS)

    Mirzaei, B.; Rostami, A.; Baghban, H.

    2012-03-01

    In this paper a novel terahertz (THz) quantum cascade laser (QCL) based on GaN/AlGaN quantum wells has been proposed, which emits at two widely separated wavelengths 33 and 52 μm simultaneously in a single active region. The large LO-phonon energy (˜90 meV), the ultrafast resonant phonon depopulation of the lower radiative levels, suppression of the electrons that escape to the continuum states and selective carrier injection and extraction all together lead to a considerable enhancement in the operating temperature of the structure. All calculations have been done at a temperature of 265 K. Moreover, similar behavior of the output optical powers is another remarkable feature, which makes both wavelengths useful for special applications.

  18. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition

    PubMed Central

    Lv, T. T.; Li, Y. X.; Ma, H. F.; Zhu, Z.; Li, Z. P.; Guan, C. Y.; Shi, J. H.; Zhang, H.; Cui, T. J.

    2016-01-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices. PMID:27000427

  19. THz optics and metamaterials: Design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Turaga, Shuvan Prashant

    In the past decade, terahertz(THz) based optics and metamaterials have been extensively researched to create components and devices in the frequency range of 0.1 to 5 THz also known as 'THz gap'. Metamaterials, in particular, have realized concepts such as negative refraction, slow light and superlensing through artificially engineered media. The naturally available materials have very weak interaction of terahertz light. Therefore, the design of THz metamaterials to manipulate THz radiation is an important task towards furthering the usage of terahertz light for practical applications. The thesis involved the development of two lab facilities for fabrication and characterization. A state-of-the-art two photon lithography( TPL) system was developed which enables us to manufacture 3D structures with sub-diffraction limit resolution(280nm at 800 nm wavelength). The software was written to enable easy fabrication of multiple structures with different algorithms. For characterizing our metamaterial structures in the terahertz regime, a THz time-domain spectroscopy(THz-TDS) and imaging system was built. This transmission based spectrometer has a dynamic range of 50 dB at 0.5 THz and a bandwidth of about 2.5 THz. To demonstrate the application of these home-built facilities, the metamaterials in the THz regime were fabricated using TPL and UV lithography. To investigate conductive coupling effects in meta-atoms, a new design was proposed, fabricated and characterized. As an application of TPL, free standing polymer helices were fabricated and coated with silver electroless plating. These silver helical metamaterials have potential application as circular polarizers in the MIR and THz regimes. The aspect ratio effects of these helical metamaterials were also studied in order to improve their polarizing performance.

  20. Surface polaritons in a negative-index metamaterial with active Raman gain

    NASA Astrophysics Data System (ADS)

    Tan, Chaohua; Huang, Guoxiang

    2015-02-01

    We propose a scheme to realize stable propagation of linear and nonlinear surface polaritons (SPs) by placing a N -type four-level quantum emitters at the interface between a dielectric and a negative-index metamaterial (NIMM). We show that in linear propagation regime SPs can acquire an active Raman gain (ARG) from a pump field and a gain doublet appears in the gain spectrum of a signal field induced by the quantum interference effect from a control field. The ARG can be used not only to completely compensate the Ohmic loss in the NIMM but also to acquire a superluminal group velocity for the SPs. We also show that in the nonlinear propagation regime a huge enhancement of the Kerr nonlinearity of the SPs can be obtained. As a result, ARG-assisted (1 + 1 )- and (2 + 1 )- dimensional superluminal surface polaritonic solitons with extremely low generation power may be produced based on the strong confinement of the electric field at the dielectric-NIMM interface.

  1. Digital metamaterials.

    PubMed

    Della Giovampaola, Cristian; Engheta, Nader

    2014-12-01

    Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, '0' and '1', in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call 'metamaterial bits', with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental 'metamaterial bytes' with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology.

  2. Terahertz Microscope

    DTIC Science & Technology

    2010-05-01

    Science, 2009. 9. Reference: 1. Ferguson , B., Zhang, X.-C. Materials for terahertz science and technology, Nature Materials 1, 26 - 33 (01 Sep 2002...interaction, Phys. Rev. Lett., 71, 2725-2728 (1993). 21. Woolard D.L., Brown R., Pepper M., Kemp M., Terahertz frequency sensing and imaging: a time

  3. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer.

    PubMed

    Shin, Jun-Hwan; Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Kyung Hyun

    2015-08-07

    An active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.1-2.0 THz spectral range. As an illustrative example, we fabricated an actively on/off switchable THz linear polarizer. The fabricated device has shown commercially comparable values in degree of polarization (DOP) and extinction ratio (ER). A high value of 0.89 in the modulation depth (MD) for the transmission field amplitude, superior to other THz wave modulators, is achieved. The experimental results show that the fabricated device can be highly useful in many applications, including active THz linear polarizers, THz wave modulators and variable THz attenuators.

  4. Mid-infrared tunable metamaterials

    SciTech Connect

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  5. Engineering electromagnetic metamaterials and methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yen, Tajen

    2005-07-01

    Electromagnetic metamaterials represent a group of artificial structures, whose dimensions are smaller than subwavelength. Due to electromagnetic metamaterials' collective response to the applied fields, they can exhibit unprecedented properties to fascinate researchers' eyes. For instance, artificial magnetism above terahertz frequencies and beyond, negative magnetic response, and artificial plasma lower than ultraviolet and visible frequencies. Our goal is to engineer those novel properties aforementioned at interested frequency regions and further optimize their performance. To fulfill this task, we developed exclusive micro/nano fabrication techniques to construct magnetic metamaterials (i.e., split-ring resonators and L-shaped resonators) and electric metamaterials (i.e., plasmonic wires) and also employed Taguchi method to study the optimal design of electromagnetic metamaterials. Moreover, by integrating magnetic and electric metamaterials, we have been pursuing to fabricate so-called negative index media---the Holy Grail enables not only to reverse conventional optical rules such as Snell's law, Doppler shift, and Cerenkov radiation, but also to smash the diffraction limit to realize the superlensing effect. In addition to electromagnetic metamaterials, in this dissertation we also successfully miniaturize silicon-based methanol fuel cells by means of micro-electrical-mechanical-system technique, which promise to provide an integrated micro power source with excellent performance. Our demonstrated power density and energy density are one of the highest in reported documents. Finally, based on the results of metamaterials and micro fuel cells, we intend to supply building blocks to complete an omnipotent device---a system with sensing, communication, computing, power, control, and actuation functions.

  6. Formation of terahertz beams produced by artificial dielectric periodical structures

    NASA Astrophysics Data System (ADS)

    Khodzitsky, Mikhail K.; Vozianova, Anna V.; Gill, Viktoria V.; Chernyadiev, Alexander V.; Grebenchukov, Alexandr N.; Minin, Igor V.; Minin, Oleg V.

    2016-09-01

    This paper presents an investigation of terajets formation by dielectric periodic structure at terahertz frequencies in effective medium regime (photonic metamaterial). The dispersions of effective permittivity for three periodic structures formed by different types of plastics (ABS, PLA, Crystal) were analytically obtained for both regimes. Numerical simulation of this structure was performed by using COMSOL Multiphysics. The terajet formation was numerically shown.

  7. Terahertz epsilon-near-zero cut-through metal-slit array antenna

    NASA Astrophysics Data System (ADS)

    Suzuki, Takehito; Kimura, Tatsuya; Togashi, Takahisa; Kitahara, Hideaki; Ishihara, Koki; Sato, Tatsuya

    2017-02-01

    Metamaterials can give rise to unprecedented refractive indices and drive the rapid development of metadevices with on-demand electromagnetic properties. Recent advances in terahertz science demand high-performance optical elements beyond conventional designs of naturally occurring materials in the terahertz wave band. However, how an epsilon-near-zero (ENZ) structure can exploit terahertz metadevices is still not fully demonstrated based on a physical analysis. Here, inspired by the ENZ concept, we demonstrate a design guideline of a terahertz ENZ cut-through metal-slit array antenna. Measurements by a terahertz imager visualize the beam profile of a terahertz wave, and the measured permittivity of 0.26 agrees well with that of 0.27 obtained by simulation and theory. The terahertz ENZ antenna provides a wide range of potential applications such as high-directivity antennas, beam dividers, beam-steering elements, phase-control devices, and novel filters.

  8. Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.

    2008-01-01

    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.

  9. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-07

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

  10. Performance evaluation of active sub-Terahertz systems in Degraded Visual Environments (DVE)

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Tanguy, Bernard; Martin, Christian; Huet, Thierry; Chervet, Patrick; Durand, Gerard; Riviere, Nicolas; Hespel, Laurent; Diakonova, Nina; But, Dmitry; Knap, Wojciech; Meilhan, Jerome; Delplanque, Baptiste; Oden, Jonathan; Simoens, François

    2016-05-01

    This paper addresses the problem of critical operations in Degraded Visual Environment (DVE). DVE usually refer when the perception of a pilot is degraded by environmental factors, including the presence of obscurants from bad weather (e.g. fog, rain, snow) or accidental events (e.g. brownout, whiteout, smoke). Critical operations in DVE are a growing field of research as it is a cause of numerous fatal accidents for operational forces. Due to the lack of efficient sources and sensors in the Terahertz (THz) region, this domain has remained an unexplored part of the electromagnetic spectrum. Recently, the potential use of sub-Terahertz waves has been proposed to see through dense clouds of obscurants (e.g. sand, smoke) in DVE conditions. In order to conduct a performance evaluation of sub-Terahertz systems, several sub-terahertz systems (e.g. bolometer-array cameras, liquid helium cooled bolometers) were operated in artificial controlled DVE conditions at ONERA facilities. The purpose of this paper is to report field experiments results in controlled DVE conditions: attenuation measurements from 400 GHz to 700 GHz with a performance evaluation of different sub-Terahertz systems are presented.

  11. Tailoring terahertz plasmons with silver nanorod arrays

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Song, Chunyuan; Lanier, Thomas E.; Singh, Ranjan; O'Hara, John F.; Dennis, William M.; Zhao, Yiping; Zhang, Weili

    2013-05-01

    Plasmonic materials that strongly interact with light are ideal candidates for designing subwavelength photonic devices. We report on direct coupling of terahertz waves in metallic nanorods by observing the resonant transmission of surface plasmon polariton waves through lithographically patterned films of silver nanorod (100 nm in diameter) micro-hole arrays. The best enhancement in surface plasmon resonant transmission is obtained when the nanorods are perfectly aligned with the electric field direction of the linearly polarized terahertz wave. This unique polarization-dependent propagation of surface plasmons in structures fabricated from nanorod films offers promising device applications. We conclude that the anisotropy of nanoscale metallic rod arrays imparts a material anisotropy relevant at the microscale that may be utilized for the fabrication of plasmonic and metamaterial based devices for operation at terahertz frequencies.

  12. Casimir interactions between graphene sheets and metamaterials

    SciTech Connect

    Drosdoff, D.; Woods, Lilia M.

    2011-12-15

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  13. Graphene-Based Active Random Metamaterials for Cavity-Free Lasing.

    PubMed

    Marini, A; García de Abajo, F J

    2016-05-27

    Manipulating and controlling the optical energy flow inside random media is a research frontier of photonics and the basis of novel laser designs. Here, we show that a metamaterial consisting of randomly dispersed graphene nanoflakes embedded within an optically pumped gain medium (rhodamine 6G) can operate as a cavity-free laser thanks to its extraordinarily low threshold for saturable absorption. The emitted light is self-organized into a well-determined spatial pattern, which depends on the graphene flake density and can be externally controlled through the optical pump. We provide different examples of tunable laser operation ranging from stable single-mode to chaoticlike behavior. Our metamaterial design holds great potential for the optical control of light amplification, as well as for the development of single-mode beam-engineered cavity-free lasers.

  14. Graphene-Based Active Random Metamaterials for Cavity-Free Lasing

    NASA Astrophysics Data System (ADS)

    Marini, A.; García de Abajo, F. J.

    2016-05-01

    Manipulating and controlling the optical energy flow inside random media is a research frontier of photonics and the basis of novel laser designs. Here, we show that a metamaterial consisting of randomly dispersed graphene nanoflakes embedded within an optically pumped gain medium (rhodamine 6G) can operate as a cavity-free laser thanks to its extraordinarily low threshold for saturable absorption. The emitted light is self-organized into a well-determined spatial pattern, which depends on the graphene flake density and can be externally controlled through the optical pump. We provide different examples of tunable laser operation ranging from stable single-mode to chaoticlike behavior. Our metamaterial design holds great potential for the optical control of light amplification, as well as for the development of single-mode beam-engineered cavity-free lasers.

  15. Semiconductor Terahertz Technology

    DTIC Science & Technology

    2009-06-15

    COVERED (From - To) 15-June-2009 Final Report 12 Apr 07 - 15 Apr 09 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER FA8718-07-C-0030 Semiconductor Terahertz ...and the other for the phononic waveguides. 15. SUBJECT TERMS Quantum cascade laser, gennanium, gennanium-tin, terahertz 16. SECURITY CLASStFICATION OF...7 Figure 7 lllustration of a GaAs-based active region waveguide with either Ga or Au as cladding operating in the Restrahlen band of GaN . 10 Figure 8

  16. Broadband Epsilon-Near-Zero (ENZ) and Mu-Near-Zero (MNZ) Active Metamaterial

    DTIC Science & Technology

    2011-08-01

    Single-Negative ( SNG ) and Single-Near-Zero (SNZ) behavior (Figure 1-2). This class incoming plane wave scatterer (implant) host material a E H P Chapter...constitutive parameters ( SNG , DNG, SNZ, DNZ) offer many unexpected and counter-intuitive physical phenomena such as backward-wave propagation...of all SNG , SNZ, DNZ or DNG metamaterials do change significantly with frequency. This change is, in general, described by Lorentz dispersion model

  17. Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency.

    PubMed

    Wang, Ziwei; Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-11-01

    A 3D-printed digital metamaterial embedded with electromagnets is fabricated. Switching electromagnets between the attaching (1 bit) and detaching (0 bit) modes activates different waveguides in the metamaterial. The underlying mechanism is investigated theoretically and experimentally. The hierarchical assemblies of unit cells, mimicking digital bits, allow programmable broadening of the bandgap of the metamaterial.

  18. Resonant Terahertz Absorption Using Metamaterial Structures

    DTIC Science & Technology

    2012-12-01

    in the microwave and visible /infrared wavelengths, however, due to the inefficiency of electronic and photonic responses in the THz region, it is...strong in the THz region [13], and exploration there has led to the discovery of thousands of galaxies undetected in the visible or infrared [16...regard to Earth , such observations assist in ozone destruction monitoring, global warming analysis, total radiation balance analysis, and pollution

  19. Graphene Plasmonics for Tunable Terahertz Metamaterials

    DTIC Science & Technology

    2011-10-01

    limited to 1× 1012 cm22 to avoid semiconductor dielectric breakdown. At this carrier density, the effective mass of an electron at Fermi energy is 0.02m0...induced Fermi energy shift and carrier concentration in graphene through interband optical transitions21,22. This is based on the effect that interband...as a result of blocked interband optical transitions. This threshold energy provides direct determination of Fermi energy EF and carrier concentration

  20. Active control of membrane-type acoustic metamaterial by electric field

    NASA Astrophysics Data System (ADS)

    Xiao, Songwen; Ma, Guancong; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-03-01

    By employing a metal-coated central platelet and a rigid mesh electrode which is transparent to acoustic wave, we show that the membrane-type acoustic metamaterials (MAMs) can be easily tuned by applying an external voltage. With static voltage, the MAM's eigenfrequencies and therefore the phase of the transmitted wave are tunable up to 70 Hz. The MAM's vibration can be significantly suppressed or enhanced by using phase-matched AC voltage. Functionalities such as phase modulation and acoustic switch with on/off ratio up to 21.3 dB are demonstrated.

  1. Quasi-dielectric characteristics of stacked metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Tokuda, Yasunori; Takano, Keisuke; Yamaguchi, Yuki; Sakaguchi, Koichiro; Nakajima, Makoto

    2017-03-01

    We investigated the optical transmission properties of quasi-dielectric metamaterials composed of a stack of metallic sub-wavelength slit-array slabs. First, we used simulations to predict the transmission properties, and showed that these characteristics are basically equivalent to those of triple-layered dielectrics below the diffraction-limit frequency. Next, for the experimental demonstrations, we fabricated the metallic slit arrays, and then measured the transmission spectra. By comparison of the theoretical and experimental results, we demonstrated that each slit array acts as an individual quasi-dielectric in the stacked system. Using these metamaterials, a variety of transmission characteristics can be obtained in the terahertz region.

  2. Invisible plasmonic meta-materials through impedance matching to vacuum.

    PubMed

    Lee, J W; Seo, M A; Sohn, J Y; Ahn, Y H; Kim, D S; Jeoung, S C; Lienau, Ch; Park, Q-Han

    2005-12-26

    We report on perfect transmission in two-dimensional plasmonic matamaterials in the terahertz frequency range, in which zeroth order transmittance becomes essentially unity near specific resonance frequencies. Perfect transmission may occur when the plasmonic metamaterials are perfectly impedance matched to vacuum, which is equivalent to designing an effective dielectric constant around epsilonr = -2. When the effective dielectric constant of the metamaterial is tuned towards epsilonr and the hole coverage is larger than 0.2, strong evanescent field builds up in the near field, making perfect transmission possible.

  3. Tunable waveguide bends with graphene-based anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-02-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  4. Acoustic metamaterials: From local resonances to broad horizons.

    PubMed

    Ma, Guancong; Sheng, Ping

    2016-02-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.

  5. Acoustic metamaterials: From local resonances to broad horizons

    PubMed Central

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  6. Metamaterial, plasmonic and nanophotonic devices.

    PubMed

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  7. Metamaterial, plasmonic and nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  8. Terahertz sources.

    PubMed

    Shumyatsky, Pavel; Alfano, Robert R

    2011-03-01

    We present an overview and history of terahertz (THz) sources for readers of the biomedical and optical community for applications in physics, biology, chemistry, medicine, imaging, and spectroscopy. THz low-frequency vibrational modes are involved in many biological, chemical, and solid state physical processes.

  9. A circuit method to integrate metamaterial and graphene in absorber design

    NASA Astrophysics Data System (ADS)

    Wang, Zuojia; Zhou, Min; Lin, Xiao; Liu, Huixia; Wang, Huaping; Yu, Faxin; Lin, Shisheng; Li, Erping; Chen, Hongsheng

    2014-10-01

    We theoretically investigate a circuit analog approach to integrate graphene and metamaterial in electromagnetic wave absorber design. In multilayer graphene-metamaterial (GM) absorbers, ultrathin metamaterial elements are theoretically modeled as equivalent loads which attached to the junctions between two transmission lines. Combining with the benefits of tunable chemical potential in graphene, an optimized GM absorber is proposed as a proof of the circuit method. Numerical simulation results demonstrate the effectiveness of the circuit analytical model. The operating frequency of the GM absorber can be varied in terahertz frequency, indicating the potential applications of the GM absorber in sensors, modulators, and filters.

  10. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao

    2016-03-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  11. Tunable beam steering enabled by graphene metamaterials.

    PubMed

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  12. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, Maksim; Dupuis, Alexandre

    2007-03-01

    Design of hollow all-polymer Bragg fibers using periodic multilayers of ferroelectric polyvinylidene fluoride (PVDF) polymer and a low loss polycarbonate (PC) polymer is demonstrated. Efficient band gap guiding is predicted near the transverse optical frequency of a PVDF material in the terahertz regime. Optimal reflector designs are investigated in the whole terahertz region. Depending on frequency, the lowest loss hollow Bragg fiber can be one of the following: a photonic crystal fiber guiding in the band gap regime, a metamaterial fiber with a subwavelength reflector period, a single PC, or a PVDF tube.

  13. An approach for mechanically tunable, dynamic terahertz bandstop filters

    NASA Astrophysics Data System (ADS)

    Li, Quan; Zhang, Xueqian; Cao, Wei; Lakhtakia, Akhlesh; O'Hara, John F.; Han, Jiaguang; Zhang, Weili

    2012-05-01

    Theoretical and experimental work was carried out on a terahertz metamaterial bandstop filter comprising an array of identical subwavelength resonators, each formed by fusing a pair of printable metallic U-shapes that have their openings pointing in opposite directions. Linear frequency tunability of the stopband electromagnetic response can be achieved by altering the overlap distance between the two fused shapes. Tuning does not significantly affect the strength or quality factor of the resonance. An approach to create mechanically tunable, dynamic terahertz filters is thereby suggested, with several functional advantages. Meanwhile, an effective equivalent circuit model based on self-inductance, mutual inductance, and capacitance has been proposed.

  14. Terahertz optics: Terahertz-driven harmonics

    NASA Astrophysics Data System (ADS)

    Kim, K. Y.; You, Y. S.

    2014-02-01

    Researchers have demonstrated high-harmonic generation using strong terahertz pulses in a bulk solid without damaging it. The mechanism underpinning such an extreme nonlinearity also generates coherent electromagnetic radiation covering the terahertz, infrared and optical regions.

  15. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  16. Extraordinary terahertz transmission through a double-layer metal array with closed ring resonators

    NASA Astrophysics Data System (ADS)

    Guo, Yadong; Yuan, Zongheng; Yuan, Yuyang; Wang, Sheng; Zhang, Wentao

    2016-07-01

    In this paper, we numerically investigate the transmission properties of a terahertz metamaterial. This metamaterial is composed of metal-dielectric-metal, which consists of metallic layers with an air hole array and one coaxial closed ring resonator in the air hole. The metamaterial in the THz range of 0.2-1 THz has three transmission peaks. We provide an explanation of the transmission peaks by means of the surface plasmon polaritons and magnetic polaritons resonance based on the distribution of the surface current. Then according to the magnetic polaritons resonance, the equivalent circuit model of the metamaterial is established. The effects of geometric parameters on the transmission peaks are discussed and studied by an equivalent circuit model and surface plasmon polaritons dispersion relation. Our metamaterial promises dual-band potential applications such as filters.

  17. Graphene metamaterial modulator for free-space thermal radiation.

    PubMed

    Fan, Kebin; Suen, Jonathan; Wu, Xueyuan; Padilla, Willie J

    2016-10-31

    We proposed and demonstrated a new metamaterial architecture capable of high speed modulation of free-space space thermal infrared radiation using graphene. Our design completely eliminates channel resistance, thereby maximizing the electrostatic modulation speed, while at the same time effectively modulating infrared radiation. Experiment results verify that our device with area of 100 × 120 µm2 can achieve a modulation speed as high as 2.6 GHz. We further highlight the utility of our graphene metamaterial modulator by reconstructing a fast infrared signal using an equivalent time sampling technique. The graphene metamaterial modulator demonstrated here is not only limited to the thermal infrared, but may be scaled to longer infrared and terahertz wavelengths. Our work provides a path forward for realization of frequency selective and all-electronic high speed devices for infrared applications.

  18. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I.; Samusev, Kirill B.; Parkinson, Patrick; Sreenivasan, Varun K. A.; Minovich, Alexander; Miroshnichenko, Andrey E.; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N.; Kivshar, Yuri S.

    2013-12-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  19. Enhanced Light Emitters Based on Metamaterials

    DTIC Science & Technology

    2015-03-30

    layer, use of a high refractive index contrast grating to out-couple light from active hyperbolic metamaterials. We also successfully demonstrated for... refractive index contrast grating to out-couple light from active hyperbolic metamaterials. We also successfully demonstrated for the first time simultaneous...we successfully demonstrated growth of ultrasmooth silver films using germanium wetting layer, use of a high refractive index contrast grating to out

  20. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  1. Fabricating metamaterials using the fiber drawing method.

    PubMed

    Tuniz, Alessandro; Lwin, Richard; Argyros, Alexander; Fleming, Simon C; Kuhlmey, Boris T

    2012-10-18

    Metamaterials are man-made composite materials, fabricated by assembling components much smaller than the wavelength at which they operate (1). They owe their electromagnetic properties to the structure of their constituents, instead of the atoms that compose them. For example, sub-wavelength metal wires can be arranged to possess an effective electric permittivity that is either positive or negative at a given frequency, in contrast to the metals themselves (2). This unprecedented control over the behaviour of light can potentially lead to a number of novel devices, such as invisibility cloaks (3), negative refractive index materials (4), and lenses that resolve objects below the diffraction limit (5). However, metamaterials operating at optical, mid-infrared and terahertz frequencies are conventionally made using nano- and micro-fabrication techniques that are expensive and produce samples that are at most a few centimetres in size (6-7). Here we present a fabrication method to produce hundreds of meters of metal wire metamaterials in fiber form, which exhibit a terahertz plasmonic response (8). We combine the stack-and-draw technique used to produce microstructured polymer optical fiber (9) with the Taylor-wire process (10), using indium wires inside polymethylmethacrylate (PMMA) tubes. PMMA is chosen because it is an easy to handle, drawable dielectric with suitable optical properties in the terahertz region; indium because it has a melting temperature of 156.6 °C which is appropriate for codrawing with PMMA. We include an indium wire of 1 mm diameter and 99.99% purity in a PMMA tube with 1 mm inner diameter (ID) and 12 mm outside diameter (OD) which is sealed at one end. The tube is evacuated and drawn down to an outer diameter of 1.2 mm. The resulting fiber is then cut into smaller pieces, and stacked into a larger PMMA tube. This stack is sealed at one end and fed into a furnace while being rapidly drawn, reducing the diameter of the structure by a factor

  2. Speckle in Active Millimeter-Wave and Terahertz Imaging and Spectroscopy

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2007-04-01

    Wideband millimeter-wave imaging techniques and systems have been developed at PNNL for concealed weapon detection and other applications. These techniques evolved from single-frequency millimeter-wave holographic imaging methods to wideband three-dimensional planar and cylindrical techniques and systems. The single-frequency holographic method was derived from optical and ultrasonic holography techniques. Speckle is highly significant in this case, and is caused by constructive and destructive interference from multiple scattering locations or depths within a single resolution cell. The wideband three-dimensional techniques developed at PNNL significantly reduce the speckle effect through the use of high depth resolution obtained from the wide bandwidth of the illumination. For these techniques, speckle can still be significant in some cases and affect image quality. In this paper, we explore the situations in which speckle occurs and it's relationship to lateral and depth resolution. This will be accomplished through numerical simulation and demonstrated in actual imaging results. Speckle may also play a significant role in altering reflection spectra in wideband terahertz spectra. Reflection from rough surfaces will generate speckle, which will result in significant variation in the reflection spectrum as measured over very wide bandwidths. This effect may make if difficult to interpret spectral absorption features from general reflectance data. In this paper, physical optics numerical simulation techniques will be used to model the reflection from arbitrary random surfaces and explore the effect of the surface on the reflection spectra and reconstructed image. Laboratory imaging and numerical modeling results in the millimeter-wave through the terahertz frequency ranges are presented.

  3. Active tunable plasmonically induced polarization conversion in the THz regime

    NASA Astrophysics Data System (ADS)

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-10-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications.

  4. Active tunable plasmonically induced polarization conversion in the THz regime

    PubMed Central

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-01-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications. PMID:27734912

  5. Metamaterials beyond electromagnetism.

    PubMed

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  6. Metamaterials beyond electromagnetism

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  7. Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density.

    PubMed

    Allam, Ahmed; Elsabbagh, Adel; Akl, Wael

    2016-11-01

    A two-dimensional active acoustic metamaterial with controllable anisotropic density is introduced. The material consists of composite lead-lead zirconate titanate plates clamped to an aluminum structure with air as the background fluid. The effective anisotropic density of the material is controlled, independently for two orthogonal directions, by means of an external static electric voltage signal. The material is used in the construction of a reconfigurable waveguide capable of controlling the direction of the acoustic waves propagating through it. An analytic model based on the acoustic two-port theory, the theory of piezoelectricity, the laminated pre-stressed plate theory, and the S-parameters retrieval method is developed to predict the behavior of the material. The results are verified using the finite element method. Excellent agreement is found between both models for the studied frequency and voltage ranges. The results show that, below 1600 Hz, the density is controllable within orders of magnitude relative to the uncontrolled case. The results also suggest that simple controllers could be used to program the material density toward full control of the directivity and dispersion characteristics of acoustic waves.

  8. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

    PubMed Central

    Slyngborg, Morten; Tsao, Yao-Chung

    2016-01-01

    Summary A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy. PMID:27547608

  9. Hybrid metamaterials for electrically triggered multifunctional control

    PubMed Central

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-01-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342

  10. Hybrid metamaterials for electrically triggered multifunctional control

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-10-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems.

  11. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy

    PubMed Central

    Finneran, Ian A.; Welsch, Ralph; Allodi, Marco A.; Miller, Thomas F.; Blake, Geoffrey A.

    2016-01-01

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes. PMID:27274067

  12. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  13. Design of Metamaterials for control of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Koschny, Thomas

    2014-03-01

    Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response

  14. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  15. Controlling metamaterial resonances with light

    SciTech Connect

    Chakrabarti, Sangeeta; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2010-08-15

    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behavior of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching are implemented by coherently driving the resonant permittivity of the embedding medium with applied optical radiation. The effect of embedding split ring resonators in a frequency-dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetically induced transparency (EIT) is manifested in the splitting of the negative-permeability band, the modified (frequency-dependent) filling fractions, and the dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, and for an embedding medium exhibiting EIT also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures as well as the inhomogeneous broadening due to structural imperfections is demonstrated. Studies on plasmonic metamaterials that consist of metallic nanorods arranged in loops and exhibit a collective magnetic response at optical frequencies are presented. Control and switching in this class of plasmonic nanorod metamaterials is shown to be possible, for example, by embedding these arrays in a Raman-active liquid like CS{sub 2} and utilizing the inverse Raman effect.

  16. Planar gradient metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2016-12-01

    Metamaterials possess exotic properties that do not exist in nature. Gradient metamaterials, which are characterized by a continuous spatial variation of their properties, provide a promising approach to the development of both bulk and planar optics. In particular, planar gradient metamaterials can be classified into three categories: gradient metasurfaces, gradient index metamaterials and gradient metallic gratings. In this Review, we summarize the progress made in the theoretical modelling of these materials, in their experimental implementation and in the design of functional devices. We discuss the use of planar gradient metamaterials for wave bending and focusing in free space, for supporting surface plasmon polaritons and for the realization of trapped rainbows. We also focus on the implementation of these materials in waveguide systems, which can enable electromagnetic cloaking, Fano resonances, asymmetric transmission and guided mode conversion. Finally, we discuss promising trends, such as the use of dielectric rather than metallic unit elements and the use of planar gradient metamaterials in 3D systems.

  17. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography.

    PubMed

    Kaschke, Johannes; Wegener, Martin

    2015-09-01

    In analogy to wire-grid polarizers for linear polarization, metal-helix metamaterials can act as broadband circular polarizers. This concept has brought circular-polarization capabilities to mid-infrared and terahertz frequencies, which were previously difficult to access. Due to the lack of rotational symmetry, however, single-helix metamaterials exhibit unwanted circular-polarization conversions. Recent theoretical work showed that conversions can be fully eliminated by intertwining N=3 or 4 helices within each unit cell. While direct laser writing in positive-tone photo-resist yielded good results for single-helix metamaterials operating at mid-infrared frequencies, the axial resolution is insufficient for N-helix metamaterials. Here, we use stimulated emission depletion-inspired three-dimensional laser lithography to fabricate such microstructures. We measure all entries of the Jones transmission and reflection matrices and show experimentally that polarization conversions are minimized, in good agreement with theory.

  18. Tunable Mechanical Metamaterials

    DTIC Science & Technology

    2011-03-31

    Mechanical Metamaterials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0709 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Siavouche Nemat...creating mechanical metamaterials over a broad range of frequencies. We have shown that it is possible to have stress waves with negative dynamic...scattering can be controlled, and energy can be focused or dissipated. 15. SUBJECT TERMS Mechanical Metamaterials , Tunability 16. SECURITY

  19. Tunable multispectral plasmon induced transparency based on graphene metamaterials.

    PubMed

    Sun, Chen; Si, Jiangnan; Dong, Zhewei; Deng, Xiaoxu

    2016-05-30

    A dynamically wavelength tunable multispectral plasmon induced transparency (PIT) device based on graphene metamaterials, which is composed of periodically patterned graphene double layers separated by a dielectric layer, is proposed theoretically and numerically in the terahertz frequency range. Considering the near-field coupling of different graphene layers and the bright-dark mode coupling in the same graphene layer, the coupled Lorentz oscillator model is adapted to explain the physical mechanism of multispectral EIT-like responses. The simulated transmission based on the finite-difference time-domain (FDTD) solutions indicates that the shifting and depth of the EIT resonances in multiple PIT windows are controlled by different geometrical parameters and Fermi energies distributions. A design scheme with graphene integration is employed, which allows independent tuning of resonance frequencies by electrostatically changing the Fermi energies of graphene double layer. Active control of the multispectral EIT-like responses enables the proposed device to be widely applied in optical information processing as tunable sensors, switches, and filters.

  20. Metamaterials with conformational nonlinearity

    PubMed Central

    Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.

    2011-01-01

    Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control. PMID:22355655

  1. Nonlinear magnetic metamaterials.

    PubMed

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission.

  2. An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.

    PubMed

    Baig, Sarwat A; Boland, Jessica L; Damry, Djamshid A; Tan, H Hoe; Jagadish, Chennupati; Joyce, Hannah J; Johnston, Michael B

    2017-04-12

    Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.

  3. A new ultrafast technique for measuring the terahertz dynamics of chiral molecules: the theory of optical heterodyne-detected Raman-induced Kerr optical activity.

    PubMed

    Wynne, Klaas

    2005-06-22

    Optical heterodyne-detected Raman-induced Kerr optical activity (OHD-RIKOA) is a nonresonant ultrafast chiroptical technique for measuring the terahertz-frequency Raman spectrum of chirally active modes in liquids, solutions, and glasses of chiral molecules. OHD-RIKOA has the potential to provide much more information on the structure of molecules and the symmetries of librational and vibrational modes than the well-known nonchirally sensitive technique optical heterodyne-detected Raman-induced Kerr-effect spectroscopy (OHD-RIKES). The theory of OHD-RIKOA is presented and possible practical ways of performing the experiments are analyzed.

  4. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  5. [A Double Split Ring Terahertz Filter on Ploymide Substrate].

    PubMed

    He, Jun; Zhang, Tie-jun; Xiong, Wei; Zhang, Bo; He, Ting; Shen, Jing-ling

    2015-11-01

    Metamaterials are artificial composites that acquire their electromagnetic properties from embeded subwavelength metalic structure. With proper design of metamaterials, numerrous intriguing phenomena that not exhibited naturally can be realized, such as invisible cloaking, perfect absorption, negative refractive index and so on. In recent years, With the development of THz technology, the extensive research onTHz metamaterials devices areattracting more and more attentions. Since silicon (Si) has a higher transmittance for THz wave, it is usually selected as substrate in metamaterials structure. However, Si has the shortcomings of hardness, not easy to bend, and fragile, which limit the application of THz metamaterials. In this work, we use polyimide as the substrate to overcome the shortcomings of the Si substrate. Polyimide is flexible, smooth, suitable for conventional lithography process and the THz transmittance can compete with that of the Si. Frist, we test the THz optical properties of polymide, and get the refractive index of 1.9, and the transmittance of 80%. Second, we design a double splits ring resonators (DSRRs), and study the properties of transmission by changing the THz incidence angle and curvature of the sample. We find the resonant amplitude and resonant frequencies are unchanged. Fabricating metamaterials structures on a thin plastic substrate is a possible way to extend plane surface filtering to curved surface filtering. Third, we try to make a broadband filter by stacking two samples, and the 181GHz bandwidth at 50% has been achieved. By stacking several plane plastic metamaterial layers with different resonance responses into a multi-layer structure, a broadband THz filter can be built. The broadband filter has the advantages of simple manufacture, obvious filtering effect, which provides a new idea for the production of terahertz band filter.

  6. Acoustic metamaterials with circular sector cavities and programmable densities.

    PubMed

    Akl, W; Elsabbagh, A; Baz, A

    2012-10-01

    Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.

  7. Thermal hyperbolic metamaterials.

    PubMed

    Guo, Yu; Jacob, Zubin

    2013-06-17

    We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.

  8. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  9. Topological mechanics of gyroscopic metamaterials.

    PubMed

    Nash, Lisa M; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M; Irvine, William T M

    2015-11-24

    Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial--composed of coupled gyroscopes on a lattice--that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides.

  10. Metamaterials for optical and photonic applications for space: preliminary results

    NASA Astrophysics Data System (ADS)

    Gaspar Venancio, L. M.; Hannemann, S.; Lubkowski, G.; Suhrke, M.; Schweizer, H.; Fu, L.; Giessen, H.; Schau, P.; Frenner, K.; Osten, W.

    2011-09-01

    The European Space Agency (ESA) in the frame of its General Study Program (GSP) has started to investigate the opportunity of using metamaterials in space applications. In that context, ESA has initiated two GSP activities which main objectives are 1) to identify the metamaterials and associated optical properties which could be used to improve in the future the performances of optical payloads in space missions, 2) to design metamaterial based devices addressing specific needs in space applications. The range of functions for metamaterials to be investigated is wide (spectral dispersion, polarisation control, light absorption, straylight control...) and so is the required spectral range, from 0.4μm to 15μm. In the frame of these activities several applications have been selected and the designs of metamaterial based devices are proposed and their performances assessed by simulations.

  11. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    NASA Astrophysics Data System (ADS)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  12. A tunable acoustic metamaterial with double-negativity driven by electromagnets

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-Yi; Li, Xiao-Juan; Zhang, Hui; Ding, Jin

    2016-07-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings.

  13. A tunable acoustic metamaterial with double-negativity driven by electromagnets.

    PubMed

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-Yi; Li, Xiao-Juan; Zhang, Hui; Ding, Jin

    2016-07-22

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings.

  14. A tunable acoustic metamaterial with double-negativity driven by electromagnets

    PubMed Central

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin

    2016-01-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196

  15. Active Reconfigurable Metamaterial Unit Cell Based on Non-Foster Elements

    DTIC Science & Technology

    2013-10-01

    68  Figure 4-24 OPAMP transconductance amplifier circuit as a replacement for a MOSFET device...resistance (solid black – simulations, dashed red - measurements) ................................................... 98  Figure 4-64 Floating NIC with two...prototype There are some practical aspects of the basic circuit: • UHF silicone depleted-type MOSFETs Q1 and Q2 are the main active devices • Q3

  16. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared.

    PubMed

    Ou, Jun-Yu; Plum, Eric; Zhang, Jianfa; Zheludev, Nikolay I

    2013-04-01

    Current efforts in metamaterials research focus on attaining dynamic functionalities such as tunability, switching and modulation of electromagnetic waves. To this end, various approaches have emerged, including embedded varactors, phase-change media, the use of liquid crystals, electrical modulation with graphene and superconductors, and carrier injection or depletion in semiconductor substrates. However, tuning, switching and modulating metamaterial properties in the visible and near-infrared range remain major technological challenges: indeed, the existing microelectromechanical solutions used for the sub-terahertz and terahertz regimes cannot be shrunk by two to three orders of magnitude to enter the optical spectral range. Here, we develop a new type of metamaterial operating in the optical part of the spectrum that is three orders of magnitude faster than previously reported electrically reconfigurable metamaterials. The metamaterial is actuated by electrostatic forces arising from the application of only a few volts to its nanoscale building blocks-the plasmonic metamolecules-that are supported by pairs of parallel strings cut from a flexible silicon nitride membrane of nanoscale thickness. These strings, of picogram mass, can be driven synchronously to megahertz frequencies to electromechanically reconfigure the metamolecules and dramatically change the transmission and reflection spectra of the metamaterial. The metamaterial's colossal electro-optical response (on the order of 10(-5)-10(-6) m V(-1)) allows for either fast continuous tuning of its optical properties (up to 8% optical signal modulation at up to megahertz rates) or high-contrast irreversible switching in a device only 100 nm thick, without the need for external polarizers and analysers.

  17. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark; Wanke, Michael C.

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  18. A 0.14 THz relativistic coaxial overmoded surface wave oscillator with metamaterial slow wave structure

    SciTech Connect

    Guo, Weijie; Wang, Jianguo Chen, Zaigao; Cai, Libing; Wang, Yue; Wang, Guangqiang; Qiao, Hailiang

    2014-12-15

    This paper presents a new kind of device for generating the high power terahertz wave by using a coaxial overmoded surface wave oscillator with metamaterial slow wave structure (SWS). A metallic metamaterial SWS is used to avoid the damage of the device driven by a high-voltage electron beam pulse. The overmoded structure is adopted to make it much easy to fabricate and assemble the whole device. The coaxial structure is used to suppress the mode competition in the overmoded device. Parameters of an electron beam and geometric structure are provided. Particle-in-cell simulation results show that the high power terahertz wave at the frequency of 0.14 THz is generated with the output power 255 MW and conversion efficiency about 21.3%.

  19. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    NASA Astrophysics Data System (ADS)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  20. Metamaterials Application in Sensing

    PubMed Central

    Chen, Tao; Li, Suyan; Sun, Hui

    2012-01-01

    Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized. PMID:22736975

  1. Broadband Acoustic Hyperbolic Metamaterial.

    PubMed

    Shen, Chen; Xie, Yangbo; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-12-18

    In this Letter, we report on the design and experimental characterization of a broadband acoustic hyperbolic metamaterial. The proposed metamaterial consists of multiple arrays of clamped thin plates facing the y direction and is shown to yield opposite signs of effective density in the x and y directions below a certain cutoff frequency, therefore, yielding a hyperbolic dispersion. Partial focusing and subwavelength imaging are experimentally demonstrated at frequencies between 1.0 and 2.5 kHz. The proposed metamaterial could open up new possibilities for acoustic wave manipulation and may find usage in medical imaging and nondestructive testing.

  2. Combinatorial Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    The structure of most mechanical metamaterials is periodic so that their design space is that of the unit cell. Here we introduce a combinatorial strategy to create a vast number of distinct mechanical metamaterials, each with a unique spatial texture and response. These are aperiodic stackings of anisotropic building blocks, and their functionality rests on both the block design and their stacking configuration which is governed by a tiling problem. We realize such metamaterials by 3D printing, and show that they act as soft machines, capable of pattern recognition and pattern analysis.

  3. Shear force control for a terahertz near field microscope.

    PubMed

    Buersgens, F; Acuna, G; Lang, C H; Potrebic, S I; Manus, S; Kersting, R

    2007-11-01

    We report on the advancement of apertureless terahertz microscopy by active shear force control of the scanning probe. Extreme subwavelength spatial resolution and a maximized image contrast are achieved by maintaining a tip-surface distance of about 20 nm. The constant distance between scanning tip and surface results in terahertz images that mirror the dielectric permittivity of the surface.

  4. Novel functional composites of plasmas and metamaterials

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu

    2012-10-01

    Plasmas, which are fairly frequency-dispersive in their dielectric properties, have tunable and nonlinear features that cannot be achieved using other solids and liquids. Such features on variable complex permittivity can be activated in metamaterial structure; when we combine plasmas with metamaterials which have functional micro-structures leading to designable permeability, we can expect a quite broad range of negative refractive index on its complex plane for electromagnetic waves. Furthermore, if a given electromagnetic wave has sufficient wave amplitude to modulate electron density, such a composite work as a strong nonlinear medium with adjustability through the metamaterial features. Such kinds of arguments are reviewed in our recent reports [1,2]. One of the specific physical properties emerging in plasma metamaterials is an exchange phenomenon between attenuation and phase shift via regulated permeability. Conventional collisional plasmas work simply as attenuators for electromagnetic waves, but superposition of a negative permeability state induces significant phase shift of propagating waves with less attenuation. Another example is simultaneous generation of a high-density plasma with a negative-refractive-index state; we predicted quite strong nonlinear processes with double saddle-node bifurcations during this phenomenon, and verified them in our recent experiments. Such composites of plasmas and metamaterials will provide new scientific opportunities as well as industrial applications.[4pt] [1] O. Sakai et al., Physics of Plasmas, vol. 17 (2010), 123504.[0pt] [2] O. Sakai et al., Plasma Sources Sci. Technol., vol. 21 (2012), 013001.

  5. Controlling dispersion characteristics of terahertz metasurface.

    PubMed

    Qu, Shi-Wei; Wu, Wei-Wei; Chen, Bao-Jie; Yi, Huan; Bai, Xue; Ng, Kung Bo; Chan, Chi Hou

    2015-03-23

    Terahertz (THz) metasurfaces have been explored recently due to their properties such as low material loss and ease of fabrication compared to three-dimensional (3D) metamaterials. Although the dispersion properties of the reflection/transmission-type THz metasurface were observed in some published literature, the method to control them at will has been scarcely reported to the best of our knowledge. In this context, flexible dispersion control of the THz metasurface will lead to great opportunities toward unprecedented THz devices. As an example, a THz metasurface with controllable dispersion characteristics has been successfully demonstrated in this article, and the incident waves at different frequencies from a source in front of the metasurface can be projected into different desired anomalous angular positions. Furthermore, this work provides a potential approach to other kinds of novel THz devices that need controllable metasurface dispersion properties.

  6. Metamaterial enhances natural cooling

    NASA Astrophysics Data System (ADS)

    2017-03-01

    A new metamaterial film that uses passive radiative cooling to dissipate heat from an object and provides cooling without a power input has been developed by a team at the University of Colorado Boulder in the US.

  7. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics

    NASA Astrophysics Data System (ADS)

    Xie, Lijuan; Gao, Weilu; Shu, Jie; Ying, Yibin; Kono, Junichiro

    2015-03-01

    We have detected trace amounts of molecules of antibiotics (kanamycin sulfate) dispersed on metasurfaces with terahertz (THz) spectroscopy. Utilizing the extraordinary optical transmission resonance of an array of square-shaped slits on a silicon substrate at ~0.3 THz, we were able to monitor varying concentrations of kanamycin sulfate as low as ~100 picogram/L. In contrast, the lowest detectable concentration of kanamycin sulfate on silicon without any metallic structure was ~1 gram/L. This dramatic ~1010 times enhancement of sensitivity is due to the near-field enhancement of THz electric fields by the metamaterial structure. This result thus demonstrates the power and usefulness of metamaterial-assisted THz spectroscopy in trace molecular detection for biological and chemical sensing as well as for food product quality and safety inspection and control.

  8. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics

    PubMed Central

    Xie, Lijuan; Gao, Weilu; Shu, Jie; Ying, Yibin; Kono, Junichiro

    2015-01-01

    We have detected trace amounts of molecules of antibiotics (kanamycin sulfate) dispersed on metasurfaces with terahertz (THz) spectroscopy. Utilizing the extraordinary optical transmission resonance of an array of square-shaped slits on a silicon substrate at ~0.3 THz, we were able to monitor varying concentrations of kanamycin sulfate as low as ~100 picogram/L. In contrast, the lowest detectable concentration of kanamycin sulfate on silicon without any metallic structure was ~1 gram/L. This dramatic ~1010 times enhancement of sensitivity is due to the near-field enhancement of THz electric fields by the metamaterial structure. This result thus demonstrates the power and usefulness of metamaterial-assisted THz spectroscopy in trace molecular detection for biological and chemical sensing as well as for food product quality and safety inspection and control. PMID:25728144

  9. Terahertz devices, spectroscopy, and signal processing for biosensing

    NASA Astrophysics Data System (ADS)

    Smiley, Brianna; Marotto, Amanda; Balci, Soner; Park, Seung Jo; Güngördü, M. Zeki; Maleski, Alex; Mollah, A. Shahab; Philip, Elizabath; Kung, Patrick; Kim, Yonghyun; Kim, Seongsin M.

    2016-09-01

    Sub-wavelength metamaterial structures are of great fundamental and practical interest because of their ability to manipulate the propagation of electromagnetic waves. Here we investigate the metamaterials composed of titanium and copper split-ring resonators for use in detection of living cells. Terahertz spectroscopy was utilized to detect a change in resonance frequencies of the bio-sensor in the presence of MDA-MB-231 breast cancer cells in culture in real time. The shift in frequency showed dependency upon cell density. We applied circuit model to interpret the resonance peak shift observed, and not only do we see shifts in resonance frequency but also in capacitance and resistance as time progresses.

  10. Thermochromic Infrared Metamaterials.

    PubMed

    Liu, Xinyu; Padilla, Willie J

    2016-02-03

    An infrared artificial thermochromic material composed of a metamaterial emitter and a bimaterial micro-electro-mechanical system is investigated. A differential emissivity of over 30% is achieved between 623 K and room temperature. The passive metamaterial device demonstrates the ability to independently control the peak wavelength and temperature dependence of the emissivity, and achieves thermal emission following a super Stefan-Boltzmann power curve.

  11. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  12. Tailoring the slow light behavior in terahertz metasurfaces

    SciTech Connect

    Manjappa, Manukumara; Cong, Longqing; Singh, Ranjan; Chiam, Sher-Yi; Bettiol, Andrew A.; Zhang, Weili

    2015-05-04

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces. Our results show that tailoring the coupling between the resonators modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. Observed change in the transmission amplitude is attributed to the change in the amount of destructive interference between the resonators in the vicinity of strong near field coupling. We employ a two-particle model to theoretically study the influence of the coupling between bright and quasi-dark modes on the transmission properties of the system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters, and attenuators at terahertz frequencies.

  13. Strong terahertz absorption in all-dielectric Huygens' metasurfaces.

    PubMed

    Cole, Michael A; Powell, David A; Shadrivov, Ilya V

    2016-09-19

    We propose an all dielectric metamaterial that acts as a perfect terahertz absorber without a ground plane. The unit cell consists of a dielectric cylinder embedded in a low index material. In order to achieve near-perfect terahertz absorption (99.5%) we employ impedance matching of the electric and magnetic resonances within the cylinders of the Huygens' metasurface. The impedance matching is controlled by changing the aspect ratio between the height and diameter of the cylinder. We show that the absorption resonance can be tuned to particular frequencies from 0.3 to 1.9 THz via changing the geometry of the structure while keeping a nearly constant aspect ratio of the cylinders.

  14. Strong terahertz absorption in all-dielectric Huygens’ metasurfaces

    NASA Astrophysics Data System (ADS)

    Cole, Michael A.; Powell, David A.; Shadrivov, Ilya V.

    2016-10-01

    We propose an all dielectric metamaterial that acts as a perfect terahertz absorber without a ground plane. The unit cell consists of a dielectric cylinder embedded in a low index material. In order to achieve near-perfect terahertz absorption (99.5%) we employ impedance matching of the electric and magnetic resonances within the cylinders of the Huygens’ metasurface. The impedance matching is controlled by changing the aspect ratio between the height and diameter of the cylinder. We show that the absorption resonance can be tuned to particular frequencies from 0.3 to 1.9 THz via changing the geometry of the structure while keeping a nearly constant aspect ratio of the cylinders.

  15. Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties

    DOE PAGES

    O'Hara, John F.; Smirnova, Evgenya; Azad, Abul K.; ...

    2007-01-01

    The properties of planar, single-layer metamaterials, or metafilms, are studied by varying the structural components of the split-ring resonators used to comprise the overall medium. Measurements and simulations reveal how minor design variations in split-ring resonator structures can result in significant changes in the macroscopic properties of the metafilm. A transmission-line/circuit model is also used to clarify some of the behavior and design limitations of the metafilms. Though our results are illustrated in the terahertz frequency range, the work has broader implications, particularly with respect to filtering, modulation, and switching devices.

  16. Impact of Substrate and Bright Resonances on Group Velocity in Metamaterial without Dark Resonator.

    PubMed

    Hokmabadi, Mohammad Parvinnezhad; Kim, Ju-Hyung; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M

    2015-09-23

    Manipulating the speed of light has never been more exciting since electromagnetic induced transparency and its classical analogs led to slow light. Here, we report the manipulation of light group velocity in a terahertz metamaterial without needing a dark resonator, but utilizing instead two concentric split-ring bright resonators (meta-atoms) exhibiting a bright Fano resonance in close vicinity of a bright Lorentzian resonance to create a narrowband transmittance. Unlike earlier reports, the bright Fano resonance does not stem from an asymmetry of meta-atoms or an interaction between them. Additionally, we develop a method to determine the metamaterial "effective thickness", which quantifies the influence of the substrate on the metamaterial response and has remained challenging to estimate so far. By doing so, very good agreement between simulated and measured group delays and velocities is accomplished. The proposed structure and method will be useful in designing optical buffers, delay lines, and ultra-sensitive sensors.

  17. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance

    SciTech Connect

    Pitchappa, Prakash; Pei Ho, Chong; Lin, Yu-Sheng; Lee, Chengkuo; Kropelnicki, Piotr; Singh, Navab; Huang, Chia-Yi

    2014-04-14

    We experimentally demonstrate a micro-electro-mechanically tunable metamaterial with enhanced electro-optical performance by increasing the number of movable cantilevers in the symmetrical split ring resonator metamaterial unit cell. Simulations were carried out to understand the interaction of the incident terahertz radiation with out-of-plane deforming metamaterial resonator. In order to improve the overall device performance, the number of released cantilever in a unit cell was increased from one to two, and it was seen that the tunable range was doubled and the switching contrast improved by a factor of around five at 0.7 THz. This simple design approach can be adopted for a wide range of high performance electro-optical devices such as continuously tunable filters, modulators, and electro-optic switches to enable future photonic circuit applications.

  18. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    a) Depiction of metamaterial array of square resonators atop FR4. (b) Metamaterial dimensions and structure...comparison for varying resonator array dimension sizes. ..............23 Figure 12. Absorption derived from raw reflection data...36 x Figure 23. Metamaterial absorber array where resonator dimensions control the detection frequencies and

  19. Photocatalytic metamaterials: TiO2 inverse opals.

    PubMed

    Sordello, Fabrizio; Duca, Clara; Maurino, Valter; Minero, Claudio

    2011-06-07

    The study of the photocatalytic activity of TiO(2) inverse opals showed that these structures behave as metamaterials: their properties arise principally from the 3D periodic structure of the material and marginally from porosity, reflectivity and scattering.

  20. Planar Holographic Metasurfaces for Terahertz Focusing

    PubMed Central

    Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel

    2015-01-01

    Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565

  1. Design of a multiband terahertz perfect absorber

    NASA Astrophysics Data System (ADS)

    Dan, Hu; Hong-yan, Wang; Zhen-jie, Tang; Xi-wei, Zhang; Lin, Ju; Hua-ying, Wang

    2016-03-01

    A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region. Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).

  2. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  3. Sub-terahertz microsecond optically controlled switch with GaAs active element beyond the photoelectric threshold.

    PubMed

    Kulygin, M; Denisov, G; Vlasova, K; Andreev, N; Shubin, S; Salahetdinov, S

    2016-01-01

    We study an unusual working regime of a recently developed sub-terahertz microwave cavity-based switch. The resonator cavity includes a semiconductor plate which is illuminated by laser emission beyond the photoelectric threshold. Despite a significant change to the conventional process of photoelectric effect we have found that the switch works. Typical switching performance rate is about 1 μs for the regime. A process of carrier density relaxation beyond the photoelectric threshold is discussed. An idea of diagnostic method for the semiconductor's quality is proposed.

  4. Terahertz plasmonic Bessel beamformer

    SciTech Connect

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-12

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources.

  5. 36th Annual International Conference on Infrared Millimeter and Terahertz Waves

    SciTech Connect

    Mittleman, Daniel M.

    2011-12-31

    The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro-Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers.

  6. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial.

    PubMed

    Nguyen, D M; Soci, Cesare; Ooi, C H Raymond

    2016-02-16

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.

  7. Tensional acoustomechanical soft metamaterials

    NASA Astrophysics Data System (ADS)

    Xin, Fengxian; Lu, Tianjian

    2016-06-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  8. Tensional acoustomechanical soft metamaterials.

    PubMed

    Xin, Fengxian; Lu, Tianjian

    2016-06-06

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  9. Reconfigurable nanomechanical photonic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.

  10. THz-metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Tuong Pham, Van; Park, J. W.; Vu, Dinh Lam; Zheng, H. Y.; Rhee, J. Y.; Kim, K. W.; Lee, Y. P.

    2013-03-01

    An ultrabroad-band metamaterial absorber was investigated in mid-IR regime based on a similar model in previous work. The high absorption of metamaterial was obtained in a band of 8-11.7 THz with energy loss distributed in SiO2, which is appropriate potentially for solar-cell applications. A perfect absorption peak was provided by using a sandwich structure with periodical anti-dot pattern in the IR region, getting closed to visible-band metamaterials. The dimensional parameters were examined for the corresponding fabrication. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  11. Tensional acoustomechanical soft metamaterials

    PubMed Central

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  12. Softening of infrared-active mode of perovskite BaZrO{sub 3} proved by terahertz time-domain spectroscopy

    SciTech Connect

    Helal, M. A.; Mori, T.; Kojima, S.

    2015-05-04

    The low-frequency infrared-active optical modes were studied in a barium zirconate, BaZrO{sub 3}, single crystal with the perovskite structure using terahertz (THz) time-domain spectroscopy (TDS). The real and imaginary parts of the dielectric constants were accurately determined in the frequency range between 0.2 and 2.7 THz. Upon cooling from room temperature to 8 K, the lowest-frequency TO1 mode at 2.32 THz showed a pronounced softening to 1.94 THz. The real part of the dielectric constant at 0.5 THz determined by THz-TDS obeys Barrett's relation, and the existence of a plateau confirms that the quantum effects lead to saturation of the soft mode frequencies of the TO1 and TO2 modes below ≈20 K. This is reminiscent of incipient ferroelectrics with the perovskite structure such as CaTiO{sub 3}.

  13. Three-dimensional metamaterials

    SciTech Connect

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  14. Hierarchical honeycomb auxetic metamaterials.

    PubMed

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-16

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson's ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson's ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  15. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  16. Electro-magnetically controlled acoustic metamaterials with adaptive properties.

    PubMed

    Malinovsky, Vladimir S; Donskoy, Dimitri M

    2012-10-01

    A design of actively controlled metamaterial is proposed and discussed. The metamaterial consists of layers of electrically charged nano or micro particles exposed to external magnetic field. The particles are also attached to compliant layers in a way that the designed structure exhibits two resonances: mechanical spring-mass resonance and electro-magnetic cyclotron resonance. It is shown that if the cyclotron frequency is greater than the mechanical resonance frequency, the designed structure could be highly attenuative (40-60 dB) for vibration and sound waves in very broad frequency range even for wavelength much greater than the thickness of the metamaterial. The approach opens up wide range of opportunities for design of adaptively controlled acoustic metamaterials by controlling magnetic field and/or electrical charges.

  17. Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides.

    PubMed

    Vasilantonakis, Nikolaos; Nasir, Mazhar E; Dickson, Wayne; Wurtz, Gregory A; Zayats, Anatoly V

    2015-05-01

    Hyperbolic metamaterials comprised of an array of plasmonic nanorods provide a unique platform for designing optical sensors and integrating nonlinear and active nanophotonic functionalities. In this work, the waveguiding properties and mode structure of planar anisotropic metamaterial waveguides are characterized experimentally and theoretically. While ordinary modes are the typical guided modes of the highly anisotropic waveguides, extraordinary modes, below the effective plasma frequency, exist in a hyperbolic metamaterial slab in the form of bulk plasmon-polaritons, in analogy to planar-cavity exciton-polaritons in semiconductors. They may have very low or negative group velocity with high effective refractive indices (up to 10) and have an unusual cut-off from the high-frequency side, providing deep-subwavelength (λ0/6-λ0/8 waveguide thickness) single-mode guiding. These properties, dictated by the hyperbolic anisotropy of the metamaterial, may be tuned by altering the geometrical parameters of the nanorod composite.

  18. Metamaterials: Prime time

    NASA Astrophysics Data System (ADS)

    Alù, Andrea

    2016-12-01

    In the past decade, artificial materials with unusual wave interactions have significantly evolved and matured. In honour of the tenth anniversary of the premiere metamaterials conference, we look at the directions in which this field is evolving, and its impact on technology.

  19. Transformation optics and metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  20. Unravelling Origami Metamaterial Behavior

    NASA Astrophysics Data System (ADS)

    Eidini, Maryam; Paulino, Glaucio

    2015-03-01

    Origami has shown to be a substantial source of inspiration for innovative design of mechanical metamaterials for which the material properties arise from their geometry and structural layout. Most research on origami-inspired materials relies on known patterns, especially on classic Miura-ori pattern. In the present research, we have created origami-inspired metamaterials and we have shown that the folded materials possess properties as remarkable as those of Miura-ori on which there is a lot of recent research. We have also introduced and placed emphasis on several important concepts that are confused or overlooked in the literature, e.g. concept of planar Poisson's ratio for folded materials from different conceptual viewpoints, and we have clarified the importance of such concepts by applying them to the folded sheet metamaterials introduced in our research. The new patterns are appropriate for a broad range of applications, from mechanical metamaterials to deployable and kinetic structures, at both small and large scales.

  1. Graphene-polymer multilayer heterostructure for terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Zaiquan; Chen, Caiyun; Wu, Steve Q. Y.; Wang, Bing; Teng, Jinghua; Zheng, Chao; Bao, Qiaoliang

    2013-12-01

    The optical response and plasmon coupling between graphene sheets for graphene/polymer multilayer heterostructures with controlled separation were systematically investigated. Anomalous transmission of light was experimentally observed in mid-infrared range. The position of the broad passband in the transmission spectra was observed to red-shift with the increase of the number of layers.

  2. Experimental Demonstration of Frequency-Agile Terahertz Metamaterials

    DTIC Science & Technology

    2008-01-01

    8-98) Prescribed by ANSI Std Z39-18 deposition of 10 nm of titanium and 200 nm of gold, and then a lift- off process. The metal stripes that had...there is much less current travelling through the silicon regions used to construct the capacitor plates in Fig. 1. In any case, the simulated structures...Sov. Phys. Usp. 10, 509–514 (1968). 2. Shelby, R. A., Smith, D. R. & Schultz , S. Experimental verification of a negative index of refraction. Science

  3. Plasmonic nanorod metamaterials for biosensing

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V.

    2009-11-01

    Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events. Despite undisputed advantages, including spectral tunability, strong enhancement of the local electric field and much better adaptability to modern nanobiotechnology architectures, localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts. Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.

  4. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  5. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  6. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    AFRL-OSR-VA-TR-2014-0184 Colloidal Metamaterials at Optical Frequencies Jennifer Dionne LELAND STANFORD JUNIOR UNIV CA Final Report 07/18/2014...Prescribed by ANSI Std. Z39.18 Colloidal Metamaterials at Optical Frequencies Annual Report, June 30, 2014 A. Investigators PI: Jennifer Dionne...team has combined theoretical and experimental methods to produce a colloidally -synthesized metamaterial fluid, or “metafluid,” exhibiting strong

  7. Modeling and simulation of multilayered thin films for terahertz detection

    NASA Astrophysics Data System (ADS)

    Martin, Michael F.; Alves, Fabio; Santos, Ricardo A. T.; Grbovic, Dragoslav

    2014-06-01

    In this article we demonstrate a method based on Transfer Matrix (TMM) that can be used to analyze optical properties of multilayered thin films and planar metamaterials for terahertz (THz) detection. Producing and testing such films require host substrates that can be up to 4 orders of magnitude thicker than the THz-sensitive films. Therefore, the ability to efficiently model, simulate and accurately predict the optical properties of multilayered structures, with significant differences in thickness, is crucial to designing sensors with maximized absorption. This method, which provides an analytical tool, less computationally intensive then finite element modeling, can be used for films composed of any number of layers with arbitrary thicknesses, aspect ratios and arbitrary angles of incidence. Homogeneous or patterned (metamaterials) films can be modeled enabling accurate analysis of positive and negative index materials indistinctly. Reflection, transmission and absorption of metallic/dielectric nanolaminates, metallic thin films and planar metamaterial films are analyzed and compared with experimental measurements and FE simulations. Results show good agreement for a wide range of structures, materials and frequencies and indicate that the method has a great potential for design and optimization of sophisticated multilayered structures for THz detection and beyond.

  8. Metamaterial apertures for coherent computational imaging on the physical layer.

    PubMed

    Lipworth, Guy; Mrozack, Alex; Hunt, John; Marks, Daniel L; Driscoll, Tom; Brady, David; Smith, David R

    2013-08-01

    We introduce the concept of a metamaterial aperture, in which an underlying reference mode interacts with a designed metamaterial surface to produce a series of complex field patterns. The resonant frequencies of the metamaterial elements are randomly distributed over a large bandwidth (18-26 GHz), such that the aperture produces a rapidly varying sequence of field patterns as a function of the input frequency. As the frequency of operation is scanned, different subsets of metamaterial elements become active, in turn varying the field patterns at the scene. Scene information can thus be indexed by frequency, with the overall effectiveness of the imaging scheme tied to the diversity of the generated field patterns. As the quality (Q-) factor of the metamaterial resonators increases, the number of distinct field patterns that can be generated increases-improving scene estimation. In this work we provide the foundation for computational imaging with metamaterial apertures based on frequency diversity, and establish that for resonators with physically relevant Q-factors, there are potentially enough distinct measurements of a typical scene within a reasonable bandwidth to achieve diffraction-limited reconstructions of physical scenes.

  9. Applications of terahertz-pulsed technology in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Taday, Philip F.

    2010-02-01

    Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.

  10. Advances In Microwave Metamaterials

    NASA Astrophysics Data System (ADS)

    Wigle, James A.

    2011-12-01

    Metamaterials are a new area of research showing significant promise for an entirely new set of materials, and material properties. Only recently has three-fourths of the entire electromagnetic material space been made available for discoveries, research, and applications. This thesis is a culmination of microwave metamaterial research that has transpired over numerous years at the University of Colorado. New work is presented; some is complete while other work has yet to be finished. Given the significant work efforts, and potential for new and interesting results, I have included some of my partial work to be completed in the future. This thesis begins with background theory to assist readers in fully understanding the mechanisms that drove my research and results obtained. I illustrate the design and manufacture of a metamaterial that can operate within quadrants I and II of the electromagnetic material space (epsilon r > 0 and mur > 0 or epsilonr < 0 and mu r > 0, respectively). Another metamaterial design is presented for operation within quadrant III of the electromagnetic material space (epsilonr < 0 and mur < 0). Lorentz reciprocity is empirically demonstrated for a quadrant I and II metamaterial, as well as a metamaterial enhanced antenna, or meta-antenna. Using this meta-antenna I demonstrate improved gain and directivity, and illuminate how the two are not necessarily coincident in frequency. I demonstrate a meta-lens which provides a double beam pattern for a normally hemispherical antenna, which also provides a null where the antenna alone would provide a peak on boresight. The thesis also presents two related, but different, novel tests intended to be used to definitively illustrate the negative angle of refraction for indices of refraction less than zero. It will be shown how these tests can be used to determine most bulk electromagnetic material properties of the material under test, for both right handed and left handed materials, such as epsilonr

  11. Development of GaN/AlGaN Terahertz Quantum Cascade Laser

    DTIC Science & Technology

    2008-11-19

    AFOSR-Taiwan Nanoscience Initiative Project Final Report Project Title Development of GaN /AlGaN Terahertz Quantum Cascade Laser...DATES COVERED 14-06-2007 to 13-06-2008 4. TITLE AND SUBTITLE Development of GaN -Based Terahertz Quantum Cascade Laser 5a. CONTRACT NUMBER...the GaN /AlGaN active region for terahertz quantum cascade lasers using MOCVD system based on the quantum cascade structure proposed by Prof. Greg Sun

  12. Investigations on polarimetric terahertz frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Yandong; Zhang, Banghong; Notake, Takashi; Minamide, Hiroaki; Olivo, Malini; Sugii, Shigeki

    2014-04-01

    A polarimetric Terahertz frequency-domain spectroscopy system is presented which has an additional polarization measurement function at the Terahertz band. The achromatic Terahertz waveplate, which acts as the key device in the system, is also presented.

  13. Terahertz radiation mixer

    DOEpatents

    Wanke, Michael C.; Allen, S. James; Lee, Mark

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  14. Terahertz sources and detectors

    NASA Astrophysics Data System (ADS)

    Crowe, Thomas W.; Porterfield, David W.; Hesler, Jeffrey L.; Bishop, William L.; Kurtz, David S.; Hui, Kai

    2005-05-01

    Through the support of the US Army Research Office we are developing terahertz sources and detectors suitable for use in the spectroscopy of chemical and biological materials as well as for use in imaging systems to detect concealed weapons. Our technology relies on nonlinear diodes to translate the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks that have been developed for this application include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These components rely on planar Schottky diodes and integrated diode circuits and are therefore easy to assemble and robust. They require no mechanical tuners to achieve high efficiency and broad bandwidth. This paper will review the range of performance that has been achieved with these terahertz components and briefly discuss preliminary results achieved with a spectroscopy system and the development of sources for imaging systems.

  15. Magnetic hyperbolic optical metamaterials

    PubMed Central

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang

    2016-01-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. PMID:27072604

  16. Magnetic hyperbolic optical metamaterials.

    PubMed

    Kruk, Sergey S; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N; Kivshar, Yuri S; Zhang, Xiang

    2016-04-13

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.

  17. Transformable topological mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material.

  18. Magnetic hyperbolic optical metamaterials

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang

    2016-04-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.

  19. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  20. Multiscale metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoyu; Smith, William; Jackson, Julie; Moran, Bryan; Cui, Huachen; Chen, Da; Ye, Jianchao; Fang, Nicholas; Rodriguez, Nicholas; Weisgraber, Todd; Spadaccini, Christopher M.

    2016-10-01

    Materials with three-dimensional micro- and nanoarchitectures exhibit many beneficial mechanical, energy conversion and optical properties. However, these three-dimensional microarchitectures are significantly limited by their scalability. Efforts have only been successful only in demonstrating overall structure sizes of hundreds of micrometres, or contain size-scale gaps of several orders of magnitude. This results in degraded mechanical properties at the macroscale. Here we demonstrate hierarchical metamaterials with disparate three-dimensional features spanning seven orders of magnitude, from nanometres to centimetres. At the macroscale they achieve high tensile elasticity (>20%) not found in their brittle-like metallic constituents, and a near-constant specific strength. Creation of these materials is enabled by a high-resolution, large-area additive manufacturing technique with scalability not achievable by two-photon polymerization or traditional stereolithography. With overall part sizes approaching tens of centimetres, these unique nanostructured metamaterials might find use in a broad array of applications.

  1. Origami based Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing

    2014-08-01

    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials.

  2. Metamaterials and imaging.

    PubMed

    Kim, Minkyung; Rho, Junsuk

    2015-01-01

    Resolution of the conventional lens is limited to half the wavelength of the light source by diffraction. In the conventional optical system, evanescent waves, which carry sub-diffraction spatial information, has exponentially decaying amplitude and therefore cannot reach to the image plane. New optical materials called metamaterials have provided new ways to overcome diffraction limit in imaging by controlling the evanescent waves. Such extraordinary electromagnetic properties can be achieved and controlled through arranging nanoscale building blocks appropriately. Here, we review metamaterial-based lenses which offer the new types of imaging components and functions. Perfect lens, superlenses, hyperlenses, metalenses, flat lenses based on metasurfaces, and non-optical lenses including acoustic hyperlens are described. Not all of them offer sub-diffraction imaging, but they provide new imaging mechanisms by controlling and manipulating the path of light. The underlying physics, design principles, recent advances, major limitations and challenges for the practical applications are discussed in this review.

  3. Metamaterials and imaging

    NASA Astrophysics Data System (ADS)

    Kim, Minkyung; Rho, Junsuk

    2015-11-01

    Resolution of the conventional lens is limited to half the wavelength of the light source by diffraction. In the conventional optical system, evanescent waves, which carry sub-diffraction spatial information, has exponentially decaying amplitude and therefore cannot reach to the image plane. New optical materials called metamaterials have provided new ways to overcome diffraction limit in imaging by controlling the evanescent waves. Such extraordinary electromagnetic properties can be achieved and controlled through arranging nanoscale building blocks appropriately. Here, we review metamaterial-based lenses which offer the new types of imaging components and functions. Perfect lens, superlenses, hyperlenses, metalenses, flat lenses based on metasurfaces, and non-optical lenses including acoustic hyperlens are described. Not all of them offer sub-diffraction imaging, but they provide new imaging mechanisms by controlling and manipulating the path of light. The underlying physics, design principles, recent advances, major limitations and challenges for the practical applications are discussed in this review.

  4. Origami based Mechanical Metamaterials

    PubMed Central

    Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials. PMID:25099402

  5. Hierarchical honeycomb auxetic metamaterials

    NASA Astrophysics Data System (ADS)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  6. Transformable topological mechanical metamaterials

    PubMed Central

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material. PMID:28112155

  7. Hierarchical honeycomb auxetic metamaterials

    PubMed Central

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-01-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners. PMID:26670417

  8. Lattice-induced transparency in planar metamaterials

    NASA Astrophysics Data System (ADS)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan

    2016-10-01

    Lattice modes are intrinsic to periodic structures and they can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed the excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report an experimental observation of a lattice-induced transparency (LIT) by coupling the first-order lattice mode (FOLM) to the structural resonance of a terahertz asymmetric split ring resonator. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM assisted dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes a large change in its bandwidth and resonance position. We propose a three-oscillator model to explain the underlying coupling mechanism in LIT system that shows good agreement with the observed results. Besides controlling the transparency behavior, LIT also shows a huge enhancement in its Q factor and exhibits a high group delay of 28 ps with an enhanced group index of 4.5 ×104 , which could be pivotal in ultrasensitive sensing and slow-light device applications.

  9. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  10. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  11. Terahertz antenna electronic chopper

    SciTech Connect

    Sterczewski, L. A. Grzelczak, M. P.; Plinski, E. F.

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  12. Examining pharmaceuticals using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Sulovská, Kateřina; Křesálek, Vojtěch

    2015-10-01

    Pharmaceutical trafficking is common issue in countries where they are under stricter dispensing regime with monitoring of users. Most commonly smuggled pharmaceuticals include trade names Paralen Plus, Modafen, Clarinase repetabs, Aspirin complex, etc. These are transported mainly from Eastern Europe (e.g. Poland, Ukraine, Russia) to countries like Czech Republic, which is said to have one of the highest number of methamphetamine producers in Europe. The aim of this paper is to describe the possibility of terahertz spectroscopy utilization as an examining tool to distinguish between pharmaceuticals containing pseudoephedrine compounds and those without it. Selected medicaments for experimental part contain as an active ingredient pseudoephedrine hydrochloride or pseudoephedrine sulphate. Results show a possibility to find a pseudoephedrine compound spectra in samples according to previously computed and experimentally found ones, and point out that spectra of same brand names pills may vary according to their expiration date, batch, and amount of absorbed water vapours from ambience. Mislead spectrum also occurs during experimental work in a sample without chosen active ingredient, which shows persistent minor inconveniences of terahertz spectroscopy. All measurement were done on the TPS Spectra 3000 instrument.

  13. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  14. Roadmap on optical metamaterials

    NASA Astrophysics Data System (ADS)

    Urbas, Augustine M.; Jacob, Zubin; Dal Negro, Luca; Engheta, Nader; Boardman, A. D.; Egan, P.; Khanikaev, Alexander B.; Menon, Vinod; Ferrera, Marcello; Kinsey, Nathaniel; DeVault, Clayton; Kim, Jongbum; Shalaev, Vladimir; Boltasseva, Alexandra; Valentine, Jason; Pfeiffer, Carl; Grbic, Anthony; Narimanov, Evgenii; Zhu, Linxiao; Fan, Shanhui; Alù, Andrea; Poutrina, Ekaterina; Litchinitser, Natalia M.; Noginov, Mikhail A.; MacDonald, Kevin F.; Plum, Eric; Liu, Xiaoying; Nealey, Paul F.; Kagan, Cherie R.; Murray, Christopher B.; Pawlak, Dorota A.; Smolyaninov, Igor I.; Smolyaninova, Vera N.; Chanda, Debashis

    2016-09-01

    Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.

  15. Snapping mechanical metamaterials under tension.

    PubMed

    Rafsanjani, Ahmad; Akbarzadeh, Abdolhamid; Pasini, Damiano

    2015-10-21

    A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior.

  16. Modeling of causality with metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.

    2013-02-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.

  17. Topological mechanics of gyroscopic metamaterials

    PubMed Central

    Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.

    2015-01-01

    Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial—composed of coupled gyroscopes on a lattice—that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides. PMID:26561580

  18. Random access actuation of nanowire grid metamaterial

    NASA Astrophysics Data System (ADS)

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I.

    2016-12-01

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  19. Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures.

    PubMed

    Parrott, Edward P J; Han, Chunrui; Yan, Fei; Humbert, Georges; Bessaudou, Annie; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2016-05-20

    Vandium dioxide (VO2) shows promise as the basis for a terahertz wave modulator due to its phase transition properties. Its insulator-metal-transition (IMT) can be induced either through temperature changes, optically or electronically. Recently, a metal-VO2 wire grid structure was proposed which was able to increase the modulation depth (MD) from 0.65 to 0.9, suggesting that these simple metallic structures could greatly increase the difference in terahertz transmission for the insulating and metallic states of VO2 based structures. In this paper, we have found that the increase in MD decreases with increasing VO2 conductivity in the metallic state, resulting in a maximum modulation depth of approximately 0.95 for wire grid structures that preserves a high transmission in the insulating state. Surprisingly, we find that deposition of VO2 on top of metallic structures results in reduced performance. However, we find that devices based upon VO2 alone can achieve unexpectedly high performance. In this work we present a device with a switchable wire-grid polariser effect over a broadband frequency range (from 0.3 to 2 THz). To our knowledge this is the first such broadband metamaterial based solely on VO2. The ability to switch on a metamaterial property like this to produce a polarisation effect is very useful for future terahertz optical devices such as rotators and waveplates.

  20. Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures

    NASA Astrophysics Data System (ADS)

    Parrott, Edward P. J.; Han, Chunrui; Yan, Fei; Humbert, Georges; Bessaudou, Annie; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2016-05-01

    Vandium dioxide (VO2) shows promise as the basis for a terahertz wave modulator due to its phase transition properties. Its insulator-metal-transition (IMT) can be induced either through temperature changes, optically or electronically. Recently, a metal-VO2 wire grid structure was proposed which was able to increase the modulation depth (MD) from 0.65 to 0.9, suggesting that these simple metallic structures could greatly increase the difference in terahertz transmission for the insulating and metallic states of VO2 based structures. In this paper, we have found that the increase in MD decreases with increasing VO2 conductivity in the metallic state, resulting in a maximum modulation depth of approximately 0.95 for wire grid structures that preserves a high transmission in the insulating state. Surprisingly, we find that deposition of VO2 on top of metallic structures results in reduced performance. However, we find that devices based upon VO2 alone can achieve unexpectedly high performance. In this work we present a device with a switchable wire-grid polariser effect over a broadband frequency range (from 0.3 to 2 THz). To our knowledge this is the first such broadband metamaterial based solely on VO2. The ability to switch on a metamaterial property like this to produce a polarisation effect is very useful for future terahertz optical devices such as rotators and waveplates.

  1. Microwave metamaterial absorber based on multiple square ring structures

    NASA Astrophysics Data System (ADS)

    Zhou, Weicheng; Wang, Pinghe; Wang, Nan; Jiang, Wei; Dong, Xiaochun; Hu, Song

    2015-11-01

    In this paper, we report the design, analysis, and simulation of quintuple-band metamaterial absorber (MMA) in the microwave region. The absorber is constructed of a delicate periodic patterned structures and a metallic background plane, separated by a dielectric substrate. By manipulating the periodic patterned structures, high absorption can be obtained at five specific resonance frequencies. Moreover, the significantly high absorptions of quintuple-peaks are persistent with polarization independence, and the influence of angle of incidence for both TE and TM modes was also elucidated. For explaining the absorption mechanism of proposed structures, the electric and magnetic field distributions and resistance matching principal were given. Importantly, the design idea has the ability to be extended to other frequencies, like terahertz, infrared and optical frequencies.

  2. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  3. A review of terahertz sources

    NASA Astrophysics Data System (ADS)

    Lewis, R. A.

    2014-09-01

    Bibliometric data set the scene by illustrating the growth of terahertz work and the present interest in terahertz science and technology. After locating terahertz sources within the broader context of terahertz systems, an overview is given of the range of available sources, emphasizing recent developments. The focus then narrows to terahertz sources that rely on surface phenomena. Three are highlighted. Optical rectification, usually thought of as a bulk process, may in addition exhibit a surface contribution, which, in some cases, predominates. Transient surface currents, for convenience often separated into drift and diffusion currents, are well understood according to Monte Carlo modelling. Finally, terahertz surface emission by mechanical means—in the absence of photoexcitation—is described.

  4. A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure

    NASA Astrophysics Data System (ADS)

    Tang, Jingyao; Xiao, Zhongyin; Xu, Kaikai; Liu, Dejun

    2016-08-01

    In this paper, we propose a three-dimensional metamaterial absorber based on tailored resistive film patch array. The numerical results show that a broadband abs orption more than 90% can be achieved from 58.6 to 91.4 GHz for either transverse electric or magnetic polarization wave at normal incidence. And the E-field, surface current and power loss density distributions in the absorber are investigated to explain the physical mechanism of high absorption. In addition, the absorption efficiency of oblique incidence is also elucidated. According to the analysis of the E-field and power loss density distributions, we explain the absorption differences between TE and TM mode at oblique incidence. The proposed metamaterial absorber will pave the way for practical applications, such as sensing, imaging and stealth technology. Importantly, the design idea has the ability to be extended to terahertz, infrared and optical region.

  5. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  6. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications

    PubMed Central

    Amin, M.; Farhat, M.; Baǧcı, H.

    2013-01-01

    We report on a novel electrically tunable hybrid graphene-gold Fano resonator. The proposed metamaterial consists of a square graphene patch and a square gold frame. The destructive interference between the narrow- and broadband dipolar surface plasmons, which are induced respectively on the surfaces of the graphene patch and the gold frame, leads to the plasmonic equivalent of electromagnetically induced transparency (EIT). The response of the metamaterial is polarization independent due to the symmetry of the structure and its spectral features are shown to be highly controllable by changing a gate voltage applied to the graphene patch. Additionally, effective group index of the device is retrieved and is found to be very high within the EIT window suggesting its potential use in slow light applications. Potential outcomes such as high sensing ability and switching at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. PMID:23811780

  7. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure.

    PubMed

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2016-02-04

    Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation.

  8. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure

    PubMed Central

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2016-01-01

    Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation. PMID:26842340

  9. Three Dimensional Micro and Nano Fabrication of Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Fan

    The concept of artificially structured metamateials arises as a promising solution to offer broad tunability of material properties. Rather than on its chemical composition, macroscopic properties of metamateirals depend on the hierarchical assembly of the "artificial atoms" of the structure. Many novel designs have been reported to enable exotic properties of metamaterials. However, experimental realization of these designs is facing a great challenge due to stringent requirements on precise fabrication of subwavelength fine features in three dimensional (3D). In this dissertation, we aim to create powerful and reliable 3D fabrication approaches to bridge the gap between design and realization. Three dimensional fabrication of terahertz (THz) metamaterial and optical metamaterial by additive manufacturing approaches are demonstrated. For fabricating THz metamaterials, the design and testing of a scalable projection micro-stereo-lithography system that offers the 3D fabrication capability is presented. By taking advantage of transformation optics theory, a study in design, fabrication, and characterization of the THz invisibility cloak was performed. The cloak successfully concealed both the geometrical and spectroscopic signatures of an alpha-lactose monohydrate absorber, making it undetectable from 0.3 to 0.6 THz. Following this successful demonstration, we further created the broadband 3D flattened Luneburg lens for THz imaging. The lens is transformed from its original spherical shape and can focus THz plane waves from ultra-wide angles at the focal plane without geometrical aberrations, and vice versa. 2D imaging independent of polarizations is demonstrated. For optical metamaterial, we developed nanoimprint lithography and nanotransfer printing process to realize 3D nano-grating structure in an additive fashion. Based on this method, we successfully designed and created the upright U-shaped spit ring resonators (SRRs) showing artificial magnetism beyond the

  10. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  11. Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics.

    PubMed

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M; Güney, Durdu Ö

    2014-05-09

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%-95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance.

  12. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial.

    PubMed

    Lewandowski, Wiktor; Fruhnert, Martin; Mieczkowski, Józef; Rockstuhl, Carsten; Górecka, Ewa

    2015-03-17

    The availability of metamaterials with properties that can be actively tuned is crucial for the future development of various metamaterial-based technologies. Here we show that by using silver nanoparticles equipped with a thermally responsive organic coating a metamaterial is obtained with reversibly switchable properties. The material investigated exhibits dynamic self-assembly resulting from temperature-dependent changes of organic coating shape, which translates to a switchable spatial distribution of the silver nanoparticles. This in turn strongly influences the optical properties of the entire material. The measured optical characteristics of the material are in excellent agreement with theoretical calculations, which allow us to use the latter to predict a dynamically tunable epsilon-near-zero behaviour of the metamaterial. The suggested methodology opens new routes for tunable metamaterials that operate in the visible region and will enable various applications for soft-matter-based optical devices.

  13. Microlensless interdigitated photoconductive terahertz emitters.

    PubMed

    Singh, Abhishek; Prabhu, S S

    2015-01-26

    We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is, photo excitation can be done at larger area hence avoiding the saturation effect at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors.

  14. Acoustic metamaterial with negative modulus.

    PubMed

    Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo

    2009-04-29

    We present experimental and theoretical results on an acoustic metamaterial that exhibits a negative effective modulus in a frequency range from 0 to 450 Hz. A one-dimensional acoustic metamaterial with an array of side holes on a tube was fabricated. We observed that acoustic waves above 450 Hz propagated well in this structure, but no sound below 450 Hz passed through. The frequency characteristics of the metamaterial has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the experimental results.

  15. Seismic Waveguide of Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Das, Mukunda P.

    We developed a new method of an earthquake-resistant design to support conventional aseismic system using acoustic metamaterials. The device is an attenuator of a seismic wave that reduces the amplitude of the wave exponentially. Constructing a cylindrical shell-type waveguide composed of many Helmholtz resonators that creates a stop-band for the seismic frequency range, we convert the seismic wave into an attenuated one without touching the building that we want to protect. It is a mechanical way to convert the seismic energy into sound and heat.

  16. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  17. Circuit modeling of graphene absorber in terahertz band

    NASA Astrophysics Data System (ADS)

    Taghvaee, Hamid Reza; Nasari, Hadiseh; Abrishamian, Mohammad Sadegh

    2017-01-01

    Here we develop and extend a transmission line method (TLM) to analyze the performance of graphene assisted metamaterial (GM) devices working in the terahertz (THz) band. We demonstrate that a circuit model can be presented for different parts of the device including graphene and also the patterned metallic sheet by analyzing the distribution of surface induced current. In pursuit of evaluating the efficiency and accuracy of our proposed method, we compare its results, obtained from an easy to implement MATLAB code for a typical GM absorber with those obtained from full wave simulations. The excellence of the proposed method in terms of computation time (showing more than 3 orders of magnitude reduction in run time) and memory resource besides producing results with acceptable agreement with the results of full wave simulation (with an error less than 5%) versus incident angle, dielectric thickness and chemical potential, nominates it as a promising approach to simulate other graphene-based devices.

  18. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime.

    PubMed

    Han, Zhanghua; Zhang, Yusheng; Bozhevolnyi, Sergey I

    2015-06-01

    Retardation-based stripe antennas due to the excitation of spoof surface plasmons on a corrugated metal stripe are proposed and numerically studied in the terahertz regime, revealing sharp Fabry-Perot resonances in scattering cross-section spectra with strongly enhanced local fields. The order of the resonance exhibiting the sharpest scattering cross section and strongest field enhancements (FEs) is found to coincide with the number of grooves, due to the hybridization of the antenna resonance with the individual groove resonance. The proposed (spoof surface plasmon-based) antennas with narrow resonances and large FE open up new possibilities for metamaterial design and seem very promising for sensing applications in the terahertz frequencies.

  19. Terahertz Spectroscopy of Biomolecules

    NASA Astrophysics Data System (ADS)

    Korter, Timothy; Plusquellic, David; Hight Walker, Angela; Heilweil, Edwin

    2002-03-01

    A novel, continuous-wave (CW) terahertz spectrometer has been constructed to investigate the flexibility and dynamics of small biological molecules. Hydrogen bonding interactions, torsional vibrations, and conformational changes are expressed in this far-infrared region of the spectrum. Terahertz (THz) radiation (0 - 4 THz or 0 - 133 wavenumber) is generated at the difference frequency of two near-infrared pump lasers by optical heterodyne mixing at the surface of a solid-state photomixer. This spectrometer has been used to probe the low-frequency vibrational modes of several members of the vitamin B-complex including riboflavin, pantothenic acid, and biotin. Interpretation of these unique THz spectra has been aided by low-frequency Raman experiments as well as ab initio predictions for normal mode frequencies and intensities. Instrumental details, vitamin B-complex analyses, and preliminary results for myoglobin and other large biomolecules will be presented.

  20. Shape morphing Kirigami mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Neville, Robin M.; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-01

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson’s ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  1. Shape morphing Kirigami mechanical metamaterials.

    PubMed

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  2. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved.

  3. Shape morphing Kirigami mechanical metamaterials

    PubMed Central

    Neville, Robin M.; Scarpa, Fabrizio; Pirrera, Alberto

    2016-01-01

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson’s ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures. PMID:27491945

  4. Stimulated Brillouin scattering in metamaterials

    NASA Astrophysics Data System (ADS)

    Smith, M. J. A.; Wolff, C.; Martijn de Sterke, C.; Lapine, M.; Kuhlmey, B. T.; Poulton, C. G.

    2016-10-01

    We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describe the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.

  5. An ultrafast carbon nanotube terahertz polarisation modulator

    SciTech Connect

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B.

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  6. Cavity enhanced terahertz modulation

    SciTech Connect

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  7. Terahertz (THZ) Imaging

    DTIC Science & Technology

    2006-03-01

    robust and low-cost system. 6. Ferguson , B.; Wang, S.; Xi, J.; Gray, D.; Abbott, D.; Zhang, X.-C.; “Linearized inverse scattering for three...about the possibilities of long range terahertz imaging with the same lens. 9. Wang, S.; Ferguson , B.; Zhong, H.; Zhang, X.-C.; “Three...profile of powders is also demonstrated. 16. Ferguson , B.; Wang, S.H.; Abbott, D.; Zhang, X.-C.; “T-ray tomographic imaging” IEEE Tenth International

  8. Discrete solitons in graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Bludov, Yu. V.; Smirnova, D. A.; Kivshar, Yu. S.; Peres, N. M. R.; Vasilevskiy, M. I.

    2015-01-01

    We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schrödinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.

  9. Terahertz plasmonic composites.

    PubMed

    Nemat-Nasser, Syrus C; Amirkhizi, Alireza V; Padilla, Willie J; Basov, Dimitri N; Nemat-Nasser, Sia; Bruzewicz, Derek; Whitesides, George

    2007-03-01

    The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies. Such composites require significant reduction in the thickness and spacing of the wires. We used numerical modeling to design artificial effective plasmonic media with turn-on frequencies in the terahertz range. Prototype samples were produced by lithographically embedding very thin gold strips into a PDMS [poly(dimethylsiloxane)] matrix. These samples were characterized with a Fourier-transform infrared interferometer using the frequency-dependent transmission and Kramers-Kronig relations to determine the electromagnetic properties. We report the characterization results for a sample, demonstrating excellent agreement between theory, computer design, and experiment. To our knowledge this is the first demonstration of the possibility of creating composites with tuned dielectric response at terahertz frequencies.

  10. Textile inspired flexible metamaterial with negative refractive index

    NASA Astrophysics Data System (ADS)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  11. Advanced solitonic metamaterial structures under external magnetophotonic control

    NASA Astrophysics Data System (ADS)

    Boardman, A. D.; Egan, P.

    2013-09-01

    Metamaterial research is an extremely important global activity that promises to change our lives in many different ways, including making objects invisible and having a very dramatic impact upon the energy and medical sectors of society. Behind all of the applications, however, lies the design of metamaterials and this can be led by elegant routes that include nonlinearity, waveguide complexity and structured light. The associated optical device formats often involve coupling to soliton behavior. Vortex formation is going to be a critical feature for future applications focusing attention upon the role of angular momentum in special metamaterial-driven light beams. In this context nonlinear diffraction must be assessed and some discussion of a magnetooptical environment will be included. Solitonic behavior of light beams will be mentioned, including what have now become known as Peregrine solitons.

  12. Electrically Tunable Goos-Hänchen Effect with Graphene in the Terahertz Regime

    DOE PAGES

    Fan, Yuancheng; Shen, Nian-Hai; Zhang, Fuli; ...

    2016-07-14

    Goos-Hänchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, we propose a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shift for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely,more » the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz “rainbow”, a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves.« less

  13. Electrically Tunable Goos-Hänchen Effect with Graphene in the Terahertz Regime

    SciTech Connect

    Fan, Yuancheng; Shen, Nian-Hai; Zhang, Fuli; Wei, Zeyong; Li, Hongqiang; Zhao, Qian; Fu, Quanhong; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.

    2016-07-14

    Goos-Hänchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, we propose a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shift for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely, the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz “rainbow”, a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves.

  14. Acoustic metamaterial with negative parameter

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Yan, Fei; Gu, Hao; Li, Ying

    2014-03-01

    In this paper we present theoretical results on an acoustic metamaterial beam and a bar that exhibit negative effective mass and negative effective stiffness. A one-dimensional acoustic metamaterial with an array of spring-mass subsystems was fabricated. The frequency of the acoustic one dimensional metamaterial structure has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the simulation results. And we use the concept of conventional mechanical vibration absorbers to reveal the actual working mechanism of the acoustic metamaterials. We explain the two vibrate modes which are optical mode and acoustic mode in detail. When the incoming elastic wave in the acoustic metamaterials to resonate the integrated spring-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the beam and stop the wave propagation. Moreover, we explain the negative parameter in acoustic metamaterials.

  15. Metamaterials program at Sandia National Laboratories.

    SciTech Connect

    McCormick, Frederick Bossert

    2010-10-01

    Sandia National Laboratories Metamaterial Science and Technology Program has developed novel HPC-based design tools, wafer scale 3D fabrication processes, and characterization tools to enable thermal IR optical metamaterial application studies.

  16. Hybrid mode tunability in metamaterial nanowaveguides

    NASA Astrophysics Data System (ADS)

    Beig-Mohammadi, Maryam; Sang-Nourpour, Nafiseh; Sanders, Barry C.; Lavoie, Benjamin R.; Kheradmand, Reza

    2017-02-01

    We employ the properties of metamaterials to tailor the modes of metamaterial-dielectric waveguides operating at optical frequencies. We survey the effects of three-dimensional isotropic metamaterial structural parameters on the refractive index of metamaterials and on the hybrid modes in slab metamaterial-dielectric waveguides. Hybrid modes refer to hybrid ordinary-surface plasmon polariton modes in the waveguide structures. We investigate how robust metamaterials are to fluctuations in their structural parameters; specifically, we examine the effects of Gaussian errors on the metamaterials electromagnetic behavior. Our survey enables us to determine the allowable fluctuation limits and from this to identify appropriate unit-cell structure for further applications of metamaterials in waveguide technologies.

  17. Antenna-coupled microcavities for terahertz emission

    SciTech Connect

    Madéo, J. Todorov, Y.; Sirtori, C.

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  18. Resonant metamaterial detectors based on THz quantum-cascade structures

    PubMed Central

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-01-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  19. Terahertz normal mode relaxation in pentaerythritol tetranitrate.

    PubMed

    Pereverzev, Andrey; Sewell, Thomas D

    2011-01-07

    Normal vibrational modes for a three-dimensional defect-free crystal of the high explosive pentaerythritol tetranitrate were obtained in the framework of classical mechanics using a previously published unreactive potential-energy surface [J. Phys. Chem. B 112, 734 (2008)]. Using these results the vibrational density of states was obtained for the entire vibrational frequency range. Relaxation of selectively excited terahertz-active modes was studied using isochoric-isoergic (NVE) molecular dynamics simulations for energy and density conditions corresponding to room temperature and atmospheric pressure. Dependence of the relaxation time on the initial modal excitation was considered for five excitation energies between 10 and 500 kT and shown to be relatively weak. The terahertz absorption spectrum was constructed directly using linewidths obtained from the relaxation times of the excited modes for the case of 10 kT excitation. The spectrum shows reasonably good agreement with experimental results. Dynamics of redistribution of the excited mode energy among the other normal modes was also studied. The results indicate that, for the four terahertz-active initially excited modes considered, there is a small subset of zero wave vector (k = 0) modes that preferentially absorb the energy on a few-picosecond time scale. The majority of the excitation energy, however, is transferred nonspecifically to the bath modes of the system.

  20. Fabrication of Metamaterials by Drawing Techniques

    DTIC Science & Technology

    2012-10-27

    modes in uniaxial metamaterial clad fibers ,” Meta’12 — 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics, (Paris, April...Fleming and B T. Kuhlmey “ Hollow - core uniaxial metamaterial clad fibers : Part I – modal equations and guidance conditions” [11] S. Atakaramians, A...Argyros, S. C. Fleming and B T. Kuhlmey “ Hollow - core uniaxial metamaterial clad fibers : Part II – dispersive metamaterials”

  1. Metamaterial mirrors in optoelectronic devices.

    PubMed

    Esfandyarpour, Majid; Garnett, Erik C; Cui, Yi; McGehee, Michael D; Brongersma, Mark L

    2014-07-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror (φ = π) to that of a perfect magnetic mirror (φ = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band.

  2. Terahertz plasmonic laser radiating in an ultra-narrow beam

    DOE PAGES

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity

  3. Terahertz plasmonic laser radiating in an ultra-narrow beam

    SciTech Connect

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; Kumar, Sushil

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) that is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity

  4. Hierarchical Auxetic Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-02-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  5. Nonlinear metamaterials for holography

    NASA Astrophysics Data System (ADS)

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-08-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.

  6. Nonlinear metamaterials for holography

    PubMed Central

    Almeida, Euclides; Bitton, Ora

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  7. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  8. Hierarchical Auxetic Mechanical Metamaterials

    PubMed Central

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-01-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts. PMID:25670400

  9. Hierarchical auxetic mechanical metamaterials.

    PubMed

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N

    2015-02-11

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  10. Doped Chiral Polymer Metamaterials

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  11. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ∼550 K, with the corresponding free-carrier density adjusted between ∼10{sup 11 }cm{sup −3} and ∼10{sup 17 }cm{sup −3}. This “hot-silicon”-based terahertz attenuator works most effectively at 450–550 K (corresponding to a DC voltage variation of only ∼7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1–2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  12. Review of Terahertz Tomography Techniques

    NASA Astrophysics Data System (ADS)

    Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P.

    2014-04-01

    Terahertz and millimeter waves penetrate various dielectric materials, including plastics, ceramics, crystals, and concrete, allowing terahertz transmission and reflection images to be considered as a new imaging tool complementary to X-Ray or Infrared. Terahertz imaging is a well-established technique in various laboratory and industrial applications. However, these images are often two-dimensional. Three-dimensional, transmission-mode imaging is limited to thin samples, due to the absorption of the sample accumulated in the propagation direction. A tomographic imaging procedure can be used to acquire and to render three-dimensional images in the terahertz frequency range, as in the optical, infrared or X-ray regions of the electromagnetic spectrum. In this paper, after a brief introduction to two dimensional millimeter waves and terahertz imaging we establish the principles of tomography for Terahertz Computed tomography (CT), tomosynthesis (TS), synthetic aperture radar (SAR) and time-of-flight (TOF) terahertz tomography. For each technique, we present advantages, drawbacks and limitations for imaging the internal structure of an object.

  13. Broadband effective magnetic response of inorganic dielectric resonator-based metamaterial for microwave applications

    NASA Astrophysics Data System (ADS)

    Yahiaoui, R.; Chung, U.-C.; Burokur, S. N.; de Lustrac, A.; Elissalde, C.; Maglione, M.; Vigneras, V.; Mounaix, P.

    2014-03-01

    A single-sized dielectric cylinder-based metamaterial is fabricated from TiO2 nanoparticles, using a bottom-up approach. The sub-elements constituting the metalayer are embedded in a nonmagnetic transparent host matrix in the microwave regime and arranged in a square lattice. We demonstrate numerically and experimentally a broadband magnetic activity. The key feature to achieve this performance remains in the high aspect ratio of the metamaterial building blocks. This is a very promising step towards complex electromagnetic functions, involving low-cost metamaterials with simple fabrication.

  14. Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires.

    PubMed

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-10-27

    We experimentally demonstrate a magnetically tunable left-handed metamaterial by introducing yttrium iron garnet rods into SRRs/wires array. It shows that the left-handed passband of the metamaterial can be continuously and reversibly adjusted by external dc applied magnetic fields. Retrieved effective parameters based on simulated scattering parameters show that tunable effective refraction index can be conveniently realized in a broad frequency range by changing the applied magnetic field. Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability.

  15. Chiral Metamaterials: retrieval of the effective parameters with and without substrate

    SciTech Connect

    Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.

    2010-06-23

    After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate.

  16. Terahertz Sensing of Materials

    NASA Astrophysics Data System (ADS)

    Xuan, G.; Ghosh, S.; Kim, S.; Lv, P.-C.; Buma, T.; Weng, B.; Barner, K.; Kolodzey, J.

    2007-06-01

    Biomolecules such as DNA and proteins exhibit a wealth of modes in the Terahertz (THz) range from the rotational, vibrational and stretching modes of biomolecules. Many materials such as drywall that are opaque to human eyes are transparent to THz. Therefore, it can be used as a powerful tool for biomolecular sensing, biomedical analysis and through-the-wall imaging. Experiments were carried out to study the absorption of various materials including DNA and see-through imaging of drywall using FTIR spectrometer and Time Domain Spectroscopy (TDS) system.

  17. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  18. Perfect selective metamaterial solar absorbers.

    PubMed

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  19. Negative refraction in semiconductor metamaterials.

    PubMed

    Hoffman, Anthony J; Alekseyev, Leonid; Howard, Scott S; Franz, Kale J; Wasserman, Dan; Podolskiy, Viktor A; Narimanov, Evgenii E; Sivco, Deborah L; Gmachl, Claire

    2007-12-01

    An optical metamaterial is a composite in which subwavelength features, rather than the constituent materials, control the macroscopic electromagnetic properties of the material. Recently, properly designed metamaterials have garnered much interest because of their unusual interaction with electromagnetic waves. Whereas nature seems to have limits on the type of materials that exist, newly invented metamaterials are not bound by such constraints. These newly accessible electromagnetic properties make these materials an excellent platform for demonstrating unusual optical phenomena and unique applications such as subwavelength imaging and planar lens design. 'Negative-index materials', as first proposed, required the permittivity, epsilon, and permeability, mu, to be simultaneously less than zero, but such materials face limitations. Here, we demonstrate a comparatively low-loss, three-dimensional, all-semiconductor metamaterial that exhibits negative refraction for all incidence angles in the long-wave infrared region and requires only an anisotropic dielectric function with a single resonance. Using reflection and transmission measurements and a comprehensive model of the material, we demonstrate that our material exhibits negative refraction. This is furthermore confirmed through a straightforward beam optics experiment. This work will influence future metamaterial designs and their incorporation into optical semiconductor devices.

  20. Multi-band slow light metamaterial.

    PubMed

    Zhu, Lei; Meng, Fan-Yi; Fu, Jia-Hui; Wu, Qun; Hua, Jun

    2012-02-13

    In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

  1. Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region.

    PubMed

    Okada, Takanori; Nagai, Masaya; Tanaka, Koichiro

    2008-04-14

    We investigated surface phonon polariton in cesium iodide with terahertz time-domain attenuated total reflection method in Otto configuration, which gives us both information on amplitude and phase of surface electromagnetic mode directly. Systematic experiments with precise control of the distance between a prism and an active material show that the abrupt change of pi-phase jump appears sensitively under polariton picture satisfied when the local electric field at the interface becomes a maximum. This demonstration will open the novel phase-detection terahertz sensor using the active medium causing the strong enhancement of terahertz electric field.

  2. Electrically tunable infrared metamaterial devices

    SciTech Connect

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  3. Three-component gyrotropic metamaterial

    NASA Astrophysics Data System (ADS)

    Tralle, Igor; ZiÈ©ba, Paweł; Paśko, Wioletta

    2014-06-01

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of μ, while the other two would be responsible for the negativity of ɛ. The first component of the mixture is the "swarm" of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg1-xCdxTe-compound as well as relative concentrations of the mixture components are established.

  4. Terahertz pulsed imaging in vivo

    NASA Astrophysics Data System (ADS)

    Pickwell-MacPherson, E.

    2011-03-01

    Terahertz (1012 Hz) pulsed imaging is a totally non-destructive and non-ionising imaging modality and thus potential applications in medicine are being investigated. In this paper we present results using our hand-held terahertz probe that has been designed for in vivo use. In particular, we use the terahertz probe to perform reflection geometry in vivo measurements of human skin. The hand-held terahertz probe gives more flexibility than a typical flat-bed imaging system, but it also results in noisier data and requires existing processing methods to be improved. We describe the requirements and limitations of system geometry, data acquisition rate, image resolution and penetration depth and explain how various factors are dependent on each other. We show how some of the physical limitations can be overcome using novel data processing methods.

  5. EDITORIAL: Focus on terahertz plasmonics

    NASA Astrophysics Data System (ADS)

    Rahm, Marco; Nahata, Ajay; Akalin, Tahsin; Beruete, Miguel; Sorolla, Mario

    2015-10-01

    Plasmonics is one of the growing fields in modern photonics that has garnered increasing interest over the last few years. In this focus issue, the specific challenges concerning terahertz plasmonics have been addressed and most recent advances in this specific field have been highlighted. The articles demonstrate the diversity and the opportunities of this rich field by covering a variety of topics ranging from the propagation of surface plasmon polaritons (SPPs) on artificially structures surfaces, 2D manipulation of surface plasmons and SPPs, plasmonic focusing, plasmonic high-Q resonators for sensing applications, plasmonically enhanced terahertz antennas to terahertz field manipulation by use of plasmonic structures. The articles substantiate the impact of plasmonics and its great innovative potential for terahertz technology. In memory of Professor Mario Sorolla Ayza.

  6. Development of components for cost effective terahertz measurement system: terahertz quantum cascade laser and terahertz quantum well infrared photo-detector

    NASA Astrophysics Data System (ADS)

    Hosako, Iwao; Sekine, Norihiko; Patrashin, Mikhail; Yasuda, Hiroaki

    2007-09-01

    Terahertz imaging and spectroscopy have attracted a lot of attention in recent years, because monocycle terahertz radiation can be generated using an ultra-short pulse laser and semiconductor device technologies. The availability of monocycle terahertz radiation sources has encouraged innovative research and development activities worldwide in an extremely wide range of applications, from security to medical systems. However, the fundamental device technology, namely the semiconductor emitter, amplifier, modulator, focal plane array detector, and optical thin film among others, in the terahertz frequencies has not yet been fully established. Therefore, a measurement system in the terahertz range remains a costly alternative. We report in this paper our recent developments of a terahertz quantum cascade laser (THz-QCL) and a terahertz quantum well photo-detector (THz-QWIP). We believe that the combination of a semiconductor emitter (THz-QCL) and a semiconductor detector array (THz-QWIP) is a good choice for developing a cost-effective measurement system for a given terahertz range (from 1.5 THz to 5.0 THz), because both of these items are based on mass-production semiconductor fabrication techniques. We fabricated the THz-QCLs using a resonant longitudinal-optical phonon depopulation (RPD) scheme, which is made up of both a GaAs/AlGaAs material system and a GaSb/AlGaSb material system. The GaAs/AlGaAs THz-QCL has already successfully demonstrated a high peak power (about 30 milliwatts in pulsed operation) operation at 3.1 THz and a high operating temperature (123K). On the other hand, we have fabricated a THz-QWIP structure consisting of 20 periods of GaAs/Al 0.02Ga 0.98As quantum wells with a grating coupler on the top of detector devices, and successfully operated it at 3 THz with a responsivity of 13mA/W. We now believe we are ready to make a cost-effective measurement system, although both of the devices still require cryogenic coolers.

  7. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials

    NASA Astrophysics Data System (ADS)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M.

    2015-11-01

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  8. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    PubMed

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  9. Development of chiral and achiral double negative metamaterials in the THz regime

    NASA Astrophysics Data System (ADS)

    Wongkasem, N.; Akyurtlu, A.; Marx, K. A.

    2006-10-01

    Materials that support strong, tunable magnetic and electric properties in the terahertz (THz) frequency range have a wide range of applications including sue in: security screening, medical imaging, bio-sensing, remote sensing, metrology, and spectroscopy. The main challenge in assembling metamaterials (MTM) aimed at higher frequency applications is the difficulty of the fabrication process. This is because metamaterials are composed of inclusions that are scaled down in size to operate at high frequencies. Consequently, a model of spilt-ring resonator(SRR)/wire MTM is proposed which can create a double-negative (DNG) passband approximately two and a half times higher than those of the conventional SRR/wire structures, by using the same dimensions. Increasing the size of the repeating structure will significantly improve the ease of fabrication when we deal with devices at high frequencies. In this paper, we demonstrate the theoretical design and experimental validations of DNG metamaterials in the THz regime. Furthermore, a novel structure is presented, which demonstrates not only DNG properties but also chirality. The form of handedness sensitive rotation of the polarization state and elliptization of visible light diffracted from the chiral structures are properties attractive to the optoelectronic technologies such as photonic bandgap crystals and microsculptured films.

  10. Tunable acoustic double negativity metamaterial.

    PubMed

    Liang, Z; Willatzen, M; Li, J; Christensen, J

    2012-01-01

    Man-made composite materials called "metamaterials" allow for the creation of unusual wave propagation behavior. Acoustic and elastic metamaterials in particular, can pave the way for the full control of sound in realizing cloaks of invisibility, perfect lenses and much more. In this work we design acousto-elastic surface modes that are similar to surface plasmons in metals and on highly conducting surfaces perforated by holes. We combine a structure hosting these modes together with a gap material supporting negative modulus and collectively producing negative dispersion. By analytical techniques and full-wave simulations we attribute the observed behavior to the mass density and bulk modulus being simultaneously negative.

  11. Magnetically tunable metamaterial perfect absorber

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Feng, Ningyue; Wang, Qingmin; Hao, Yanan; Huang, Shanguo; Bi, Ke

    2016-06-01

    A magnetically tunable metamaterial perfect absorber (MPA) based on ferromagnetic resonance is experimentally and numerically demonstrated. The ferrite-based MPA is composed of an array of ferrite rods and a metallic ground plane. Frequency dependent absorption of the ferrite-based MPA under a series of applied magnetic fields is discussed. An absorption peak induced by ferromagnetic resonance appears in the range of 8-12 GHz under a certain magnetic field. Both the simulated and experimental results demonstrate that the absorption frequency of the ferrite-based MPA can be tuned by the applied magnetic field. This work provides an effective way to fabricate the magnetically tunable metamaterial perfect absorber.

  12. Universality and scaling in metamaterials

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier

    2016-09-01

    It has been demonstrated by many theoretical and experimentals works that Mie resonances are at the heart of the effective properties of dielectric metamaterials. These resonances indeed allow for the onset of tailorable macroscopic magnetic properties. They were shown to provide a convenient way to study the transition between photonic crystals and metamaterials. In the present work, we show that the band structure linked to theses resonances is largely scale invariant and also, to some extend, robust with regard to disorder. These results do not rely heavily on a specific type of wave, suggesting that the same kind of results can be obtained for acoustic or gravity waves.

  13. Intense terahertz radiation and their applications

    NASA Astrophysics Data System (ADS)

    Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T.

    2016-09-01

    In this paper, we will review both past and recent progresses in the generation, detection and application of intense terahertz (THz) radiation. We will restrict the review to laser based intense few-cycle THz sources, and thus will not include sources such as synchrotron-based or narrowband sources. We will first review the various methods used for generating intense THz radiation, including photoconductive antennas (PCAs), optical rectification sources (especially the tilted-pulse-front lithium niobate source and the DAST source, but also those using other crystals), air plasma THz sources and relativistic laser-plasma sources. Next, we will give a brief introduction on the common methods for coherent THz detection techniques (namely the PCA technique and the electro-optic sampling), and point out the limitations of these techniques for measuring intense THz radiation. We will then review three techniques that are highly suited for detecting intense THz radiation, namely the air breakdown coherent detection technique, various single-shot THz detection techniques, and the spectral-domain interferometry technique. Finally, we will give an overview of the various applications that have been made possible with such intense THz sources, including nonlinear THz spectroscopy of condensed matter (optical-pump/THz-probe, THz-pump/THz-probe, THz-pump/optical-probe), nonlinear THz optics, resonant and non-resonant control of material (such as switching of superconductivity, magnetic and polarization switching) and controlling the nonlinear response of metamaterials. We will also provide a short perspective on the future of intense THz sources and their applications.

  14. Quantum computing Hyper Terahertz Facility opens

    NASA Astrophysics Data System (ADS)

    Singh Chadha, Kulvinder

    2016-01-01

    A new facility has opened at the University of Surrey to use terahertz radiation for quantum computing. The Hyper Terahertz Facility (HTF) is a joint collaboration between the University of Surrey and the National Physical Laboratory (NPL).

  15. Terahertz polariton propagation in patterned materials.

    PubMed

    Stoyanov, Nikolay S; Ward, David W; Feurer, Thomas; Nelson, Keith A

    2002-10-01

    Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing. Terahertz 'polaritonics', in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90 degrees turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach-Zehnder interferometer. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform.

  16. Existence conditions for bulk large-wavevector waves in metal-dielectric and graphene-dielectric multilayer hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergei V.; Andryieuski, Andrei; Lavrinenko, Andrei V.; Sipe, J. E.

    2014-05-01

    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in arbitrary subwavelength periodic multilayers structures. Treating the elementary excitation in the unit cell of the structure as a generalized resonance pole of reflection coefficient and using Bloch's theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metaldielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectricmultilayers tend to support high-k waves and explore the range of parameters, where this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The suggested formalism is applicable to a large variety of structures, such as continuous or structured microwave, terahertz (THz) and optical metamaterials, optical waveguide arrays, 2D plasmonic and acoustic metamaterials.

  17. Ultrafast modulation of near-field heat transfer with tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Huang, Yong; Wang, Ju; Zhu, Ke-Yong

    2013-02-01

    We propose a mechanism of active near-field heat transfer modulation relying on externally tunable metamaterials. A large modulation effect is observed and can be explained by the coupling of surface modes, which is dramatically varied in the presence of controllable magnetoelectric coupling in metamaterials. We finally discuss how a practical picosecond-scale thermal modulator can be made. This modulator allows manipulating nanoscale heat flux in an ultrafast and noncontact (by optical means) manner.

  18. View on the history of electromagnetics of metamaterials: Evolution of the congress series of complex media

    NASA Astrophysics Data System (ADS)

    Sihvola, Ari; Semchenko, Igor; Khakhomov, Sergei

    2014-08-01

    This article describes some of the paths through which electromagnetics research of complex media and metamaterials has reached the present active state. In particular, events of a period in 1990s will be illuminated during which new scientific contacts between Former Soviet Union and the West were established. The series of chiral and bianisotropic meetings between 1993 and 2006 appear as a precursor to today's series of metamaterials congresses.

  19. Terahertz emission from GaN-based nanophononic structures: the nexus between scale and frequency

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.

    2011-12-01

    We report a newly-found terahertz generation mechanism related with acoustic standing waves confined within GaN-based piezoelectric layers and its frequency control by adapting relevant active layer thicknesses.

  20. Buckling in a topological metamaterial

    NASA Astrophysics Data System (ADS)

    Meeussen, Anne; Paulose, Jayson; Vitelli, Vincenzo

    2015-03-01

    Controlling the nonlinear response of mechanical metamaterials paves the way toward designing materials with adaptive and tunable mechanical properties. Buckling, a change in load-bearing state from axial compression to off-axis deformation, is a ubiquitous nonlinear instability that is often exploited to change the local or global mechanical response in metamaterials composed of slender elements. We create localized buckling regions in cellular metamaterials by engineering states of self-stress, regions where the response is dominated by stretching or compression of the constituent beams rather than bending at the stiff hinges connecting them. Unique to our approach is the use of topological states of self-stress, which originate in a topological invariant that characterizes the vibrational spectrum of the repeating unit cell. Unlike typical states of self-stress which result from additional geometric constraints induced by excess beams in a region, these topological states do not change the number of beams at each hinge. We demonstrate the phenomenon through numerical calculations of the linear response of the proposed metamaterial, and through experiments probing the nonlinear regime including localized buckling at specific regions.

  1. Embedded Meta-Material Antennas

    DTIC Science & Technology

    2009-01-31

    of electronic warfare signal and information processing systems. To realize such systems, the key is to miniaturize antennas that transmit and...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas , new materials...and technologies have to be incorporated. For this purpose, the PI has designed and demonstrated miniaturized antennas by introducing metamaterials

  2. Metamaterials and Conformal Antenna Technologies

    DTIC Science & Technology

    2013-03-01

    1.0 MET AMA TERIALS BASED OPTICAL COMPONENTS .............................................. ...... 2 1.1 Superresolution Imaging Using a 3D...several entirely new optical components including superlenses with superresolution imaging, and lenses that achieve superfocussing, using...metamaterials. 1.1 SUPERRESOLUTION IMAGING USING A 3D MET AMA TERIAL NANOLENS Superresolution imaging beyond Abbe’s diffraction limit can be achieved by

  3. Optical forces in nanorod metamaterial.

    PubMed

    Bogdanov, Andrey A; Shalin, Alexander S; Ginzburg, Pavel

    2015-10-30

    Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the 'topological transition' from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found.

  4. Programmable Kiri-Kirigami Metamaterials.

    PubMed

    Tang, Yichao; Lin, Gaojian; Yang, Shu; Yi, Yun Kyu; Kamien, Randall D; Yin, Jie

    2017-03-01

    Programmable kirigami metamaterials with controllable local tilting orientations on demand through prescribed notches are constructed through a new approach of kiri-kirgami, and their actuation of pore opening via both mechanical stretching and temperature, along with their potential application as skins for energy-saving buildings, is discussed.

  5. Hyperbolic metamaterials: fundamentals and applications.

    PubMed

    Shekhar, Prashant; Atkinson, Jonathan; Jacob, Zubin

    2014-01-01

    Metamaterials are nano-engineered media with designed properties beyond those available in nature with applications in all aspects of materials science. In particular, metamaterials have shown promise for next generation optical materials with electromagnetic responses that cannot be obtained from conventional media. We review the fundamental properties of metamaterials with hyperbolic dispersion and present the various applications where such media offer potential for transformative impact. These artificial materials support unique bulk electromagnetic states which can tailor light-matter interaction at the nanoscale. We present a unified view of practical approaches to achieve hyperbolic dispersion using thin film and nanowire structures. We also review current research in the field of hyperbolic metamaterials such as sub-wavelength imaging and broadband photonic density of states engineering. The review introduces the concepts central to the theory of hyperbolic media as well as nanofabrication and characterization details essential to experimentalists. Finally, we outline the challenges in the area and offer a set of directions for future work.

  6. Integrated terahertz optoelectronics

    NASA Astrophysics Data System (ADS)

    Liang, Guozhen; Wang, Qi Jie

    2016-11-01

    Currently, terahertz (THz) optical systems are based on bulky free-space optics. This is due to the lack of a common platform onto which different THz components, e.g., source, waveguide, modulator and detector, can be monolithically integrated. With the development of THz quantum cascade laser (QCL), it has been realized that the QCL chip may be such a platform for integrated THz photonics. Here, we report our recent works where the THz QCL is integrated with passive or optoelectronic components. They are: 1) integrated graphene modulator with THz QCL achieving 100% modulation depth and fast speed; 2) phase-locked THz QCL with integrated plasmonic waveguide and subwavelength antennas realizing dynamically widely tunable polarizations.

  7. Nonlinear terahertz superconducting plasmonics

    NASA Astrophysics Data System (ADS)

    Wu, Jingbo; Zhang, Caihong; Liang, Lanju; Jin, Biaobing; Kawayama, Iwao; Murakami, Hironaru; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masayoshi; Wu, Peiheng

    2014-10-01

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  8. Random access actuation of nanowire grid metamaterial.

    PubMed

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I

    2016-12-02

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  9. Family of graphene-assisted resonant surface optical excitations for terahertz devices

    PubMed Central

    Lin, I-Tan; Liu, Jia-Ming; Tsai, Hsin-Cheng; Wu, Kaung-Hsiung; Syu, Jheng-Yuan; Su, Ching-Yuan

    2016-01-01

    The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region. PMID:27739504

  10. Room temperature detector array technology for the terahertz to far-infrared.

    SciTech Connect

    Camacho, Ryan; Shaw, Michael; Zhang, X.; Tao, Hu; Lentine, Anthony L.; Wright, Jeremy Benjamin; Shaner, Eric Arthur; Trotter, Douglas Chandler; Averitt, Richard D.; Kadlec, Emil G; Rakich, Peter T.

    2011-10-01

    Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.

  11. Implementation of optical dielectric metamaterials: A review

    NASA Astrophysics Data System (ADS)

    Corbitt, Shandra J.; Francoeur, Mathieu; Raeymaekers, Bart

    2015-06-01

    Metamaterials are a class of man-made materials with exotic electromagnetic properties. The ability to fabricate three-dimensional macroscale metamaterials would enable embedding these structures in engineering applications and devices, to take advantage of their unique properties. This paper reviews the implementation of optical Mie resonance-based dielectric (MRD) metamaterials, as opposed to the more commonly used metallic-based metamaterials. Design constraints are derived based on Mie theory and related to fabrication specifications. Techniques to fabricate optical dielectric metamaterials are reviewed, including electron-beam lithography, focused ion beam lithography, nanoimprint lithography, and directed self-assembly. The limitations of each fabrication method are critically evaluated in light of the design constraints. The challenges that must be overcome to achieve fabrication and implementation of macroscale three-dimensional MRD metamaterials are discussed.

  12. Terahertz wave absorption via preformed air plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ji; Zhang, LiangLiang; Wu, Tong; Zhang, CunLin; Zhao, YueJin

    2016-12-01

    Terahertz wave generation from laser-induced air plasma has continued to be an exciting field of research over the course of the past decade. In this paper, we report on an investigation concerning terahertz wave absorption with preformed plasma created by another laser pulse. We examine terahertz absorption behavior by varying the pump power and then analyze the polarization effect of the preplasma beam on terahertz wave absorption. The results of experiments conducted in which a type-I beta barium borate (BBO) crystal is placed before the preformed air plasma indicate that the fundamental (ω) and second harmonic (2ω) pulses can also influence terahertz absorption.

  13. Theory, experiment and applications of metamaterials

    NASA Astrophysics Data System (ADS)

    Tang, WenXuan; Mei, ZhongLei; Cui, TieJun

    2015-12-01

    In this review article, a brief introduction on the theory, experiments and applications of metamaterials is presented. The main focuses are concentrated on the composing meta-atoms, the method of transformation optics, the experimental demonstration of negative refraction, and the realizations of invisibility cloaks and electromagnetic black hole. At the end of this review, some typical applications of metamaterials, including high-performance antennas made of zero-refractive-index materials, inhomogeneous metamaterial lenses, and planar metasurfaces, are introduced in details.

  14. Metamaterials for Miniaturization of Optical Components

    DTIC Science & Technology

    2014-09-24

    AFRL-OSR-VA-TR-2014-0226 METAMATERIALS FOR MINIATURIZATION OF OPTICAL COMPONENTS Aleksandr Figotin UNIVERSITY OF CALIFORNIA IRVINE Final Report 09/24...8-98) v Prescribed by ANSI Std. Z39.18 10/09/2014 Final 30/06/2011-30/06/2014 METAMATERIALS FOR MINIATURIZATION OF OPTICAL COMPONENTS FA9550-11-1...relativistic and spinorial aspects of our neoclassical electromagnetic theory. Metamaterials , fundamentals of electromagnetic theory, dissipation, magnetic

  15. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-01

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.

  16. Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots

    PubMed Central

    Zhang, Yusheng; Han, Zhanghua

    2015-01-01

    Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials. PMID:26691003

  17. Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots.

    PubMed

    Zhang, Yusheng; Han, Zhanghua

    2015-12-22

    Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials.

  18. Flexible frequency selective metamaterials for microwave applications.

    PubMed

    Gao, Bo; Yuen, Matthew M F; Ye, Terry Tao

    2017-03-21

    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  19. Flexible frequency selective metamaterials for microwave applications

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Yuen, Matthew M. F.; Ye, Terry Tao

    2017-03-01

    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  20. Characterization of anisotropic acoustic metamaterial slabs

    NASA Astrophysics Data System (ADS)

    Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young

    2016-01-01

    In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.

  1. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  2. Flexible frequency selective metamaterials for microwave applications

    PubMed Central

    Gao, Bo; Yuen, Matthew M. F; Ye, Terry Tao

    2017-01-01

    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces. PMID:28322338

  3. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  4. Electrically controlled nonlinear optical generation and signal processing in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Wenshan

    2016-09-01

    Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).

  5. Metamaterial-enabled transformation optics

    NASA Astrophysics Data System (ADS)

    Landy, Nathan

    Transformation Optics is a design methodology that uses the form invariance of Maxwell's equations to distort electromagnetic fields. This distortion is imposed on a region of space by mimicking a curvilinear coordinate system with prescribed magnetoelectric material parameters. By simply specifying the correct coordinate transformation, researchers have created such exotic devices as invisibility cloaks, ``perfect'' lenses, and illusion devices. Unfortunately, these devices typically require correspondingly exotic material parameters that do not occur in Nature. Researchers have therefore turned to complex artificial media known as metamaterials to approximate the desired responses. However, the metamaterial design process is complex, and there are limitations on the responses that they achieve. In this dissertation, we explore both the applicability and limitations of metamaterials in Transformation Optics design. We begin in Chapter 2 by investigating the freedoms available to use in the transformation optics design process itself. We show that quasi-conformal mappings may be used to alleviate some of the complexity of material design in both two- and three-dimensional design. We then go on in Chapter 3 to apply this method to the design of a transformation-optics modified optic. We show that even a highly-approximate implementation of such a lens would retain many of the key performance feautures that we would expect from a full material prescription. However, the approximations made in the design of our lens may not be valid in other areas of transformation optical design. For instance, the high-frequency approximations of our lens design ignore the effects of impedance mismatch, and the approximation is not valid when the material parameters vary on the order of a wavelength. Therefore, in Chapter 4 we use other freedoms available to us to design a full-parameter cloak of invisibility. By tailoring the electromagnetic environment of our cloak, we are able to

  6. Electronic and thermally tunable infrared metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Shrekenhamer, David; Miragliotta, Joseph A.; Brinkley, Matthew; Fan, Kebin; Peng, Fenglin; Montoya, John A.; Gauza, Sebastian; Wu, Shin-Tson; Padilla, Willie J.

    2016-09-01

    In this paper, we report a computational and experimental study using tunable infrared (IR) metamaterial absorbers (MMAs) to demonstrate frequency tunable (7%) and amplitude modulation (61%) designs. The dynamic tuning of each structure was achieved through the addition of an active material—liquid crystals (LC) or vanadium dioxide (VO2)-within the unit cell of the MMA architecture. In both systems, an applied stimulus (electric field or temperature) induced a dielectric change in the active material and subsequent variation in the absorption and reflection properties of the MMA in the mid- to long-wavelength region of the IR (MWIR and LWIR, respectively). These changes were observed to be reversible for both systems and dynamic in the LC-based structure.

  7. A Compressed Terahertz Imaging Method

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Pan, Rui; Xiong, Wei; He, Ting; Shen, Jing-Ling

    2012-10-01

    A compressed terahertz imaging method using a terahertz time domain spectroscopy system (THz-TDSS) is suggested and demonstrated. In the method, a parallel THz wave with the beam diameter 4cm from a usual THz-TDSS is used and a square shaped 2D echelon is placed in front of an imaged object. We confirm both in simulation and in experiment that only one terahertz time domain spectrum is needed to image the object. The image information is obtained from the compressed THz signal by deconvolution signal processing, and therefore the whole imaging time is greatly reduced in comparison with some other pulsed THz imaging methods. The present method will hopefully be used in real-time imaging.

  8. Terahertz Science, Technology, and Communication

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  9. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  10. Dynamic frequency tuning of electric and magnetic metamaterial response

    SciTech Connect

    O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

    2014-09-16

    A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

  11. Industrial Applications of Terahertz Imaging

    NASA Astrophysics Data System (ADS)

    Zeitler, J. Axel; Shen, Yao-Chun

    This chapter gives a concise overview of potential industrial applications for terahertz imaging that have been reported over the past decade with a discussion of the major advantages and limitations of each approach. In the second half of the chapter we discuss in more detail how terahertz imaging can be used to investigate the microstructure of pharmaceutical dosage forms. A particular focus in this context is the nondestructive measurement of the coating thickness of polymer coated tablets, both by means of high resolution offline imaging in research and development as well as for in-line quality control during production.

  12. Terahertz Analysis of Quinacridone Pigments

    NASA Astrophysics Data System (ADS)

    Squires, A. D.; Kelly, M.; Lewis, R. A.

    2017-03-01

    We present terahertz spectroscopy and analysis of two commercially available quinacridone pigments in the 0.5-4.5 THz range. Our results show a clear distinction between quinacridone red and magenta pigments. We reveal four definite absorptions in the terahertz regime common to both pigments, but offset between the pigments by ˜0.2 THz. The lowest-energy line in each pigment is observed to increase in frequency by ˜0.1 THz as the temperature is reduced from 300 to 12 K.

  13. Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators

    SciTech Connect

    Feiginov, Michael

    2015-09-21

    We present a theoretical analysis of traveling-wave microstrip resonant-tunneling-diode (RTD) oscillators. Such oscillators are similar to terahertz (THz) quantum-cascade lasers (QCLs) with a metal-metal waveguide and with just the active part of a single QCL period (an RTD) as their active core. Assuming realistic parameters of RTDs, we show that the microstrip RTD oscillators should be working at sub-THz and THz frequencies. Contrary to the contemporary THz QCLs, RTD microstrips are room-temperature oscillators. The major loss- and gain-enhancement mechanisms in RTD microstrips are identified.

  14. Ultrafast terahertz emission properties in GaAs semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Aihua; Shi, Yulei; Zhou, Qingli

    2015-08-01

    Ultrafast carrier dynamics in Schottky barriers is an extremely active area of research in recent years. The observation of the generation of terahertz pulses from metal/semiconductor interfaces provides a technique to characterize electronic properties of these materials. However, a detailed analysis of these phenomena has not been performed satisfactorily. In this work, the measurements of optically generated terahertz emission from Au/GaAs interfaces are investigated in detail. We observe that, under high laser power excitation, terahertz signals from bare GaAs wafers and Au/GaAs samples exhibit an opposite polarity. The polarity-flip behaviors in the terahertz beams are also observed in the temperature-dependent measurements and the femtosecond pump-generation studies of the Au/GaAs interfaces. These effects can be fully explained in terms of the dynamics of carrier transfer in the Au/GaAs Schottky barriers, which involves the internal photoelectric emission and the electron tunneling effect, and picosecond time constants are found for these processes.

  15. Fluctuational electrodynamics of hyperbolic metamaterials

    SciTech Connect

    Guo, Yu; Jacob, Zubin

    2014-06-21

    We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.

  16. Manipulating Complex Light with Metamaterials

    PubMed Central

    Zeng, Jinwei; Wang, Xi; Sun, Jingbo; Pandey, Apra; Cartwright, Alexander N.; Litchinitser, Natalia M.

    2013-01-01

    Recent developments in the field of metamaterials have revealed unparalleled opportunities for “engineering” space for light propagation; opening a new paradigm in spin- and quantum-related phenomena in optical physics. Here we show that unique optical properties of metamaterials (MMs) open unlimited prospects to “engineer” light itself. We propose and demonstrate for the first time a novel way of complex light manipulation in few-mode optical fibers using optical MMs. Most importantly, these studies highlight how unique properties of MMs, namely the ability to manipulate both electric and magnetic field components of electromagnetic (EM) waves, open new degrees of freedom in engineering complex polarization states of light at will, while preserving its orbital angular momentum (OAM) state. These results lay the first steps in manipulating complex light in optical fibers, likely providing new opportunities for high capacity communication systems, quantum information, and on-chip signal processing. PMID:24084836

  17. Distributed source model for the full-wave electromagnetic simulation of nonlinear terahertz generation.

    PubMed

    Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek

    2012-07-30

    The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.

  18. Terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Koehler, Ruedeger; Tredicucci, Alessandro; Beltram, Fabio; Beere, Harvey E.; Linfield, Edmund H.; Davies, A. G.; Ritchie, David A.

    2003-07-01

    The terahertz region (1-10 THz) of the electromagnetic spectrum offers ample opportunities in spectroscopy, free space communications, remote sensing and medical imaging. Yet, the use of THz radiation in all these fields has been hampered by the lack of appropriate, convenient sources. We here report on unipolar semiconductor injection lasers that emit at THz frequencies (4.3 THz, λ ~ 69μm and 3.5 THz, λ ~ 85μm) and possess the potential for device-like implementation. They are based on the quantum cascade scheme employing interminiband transitions in the technologically mature AlGaAs/GaAs material system and feature a novel kind of waveguide loosely relying on the surface plasmon concpt. Continuous-wave laser emission is achieved with low thresholds of a few hundred A/cm2 up to 45 K heat sink temperature and maximum output powers of more than 4mW. Under pulsed excitation, peak output powers of 4.5mW at low temperatures and still 1 mW at 65 K are measured. The amximum operating temperature is 67 K.

  19. Ultrafast Modulation of Optical Metamaterials

    DTIC Science & Technology

    2009-09-28

    interferometer arrangement for absolute phase measurement. A 20-MHz super-continuum fiber laser providing 5ps pulses with wavelength covering from 450 to...t̂ ) and reflection ( r̂ ) coefficients. A Michelson -type interferometer is implemented for absolute phase measurement. The near-infrared tunable...behavior of optical modulation in a metamaterial with the “fishnet” structure [7]. Using femtosecond pump-probe spectroscopy with an interferometer

  20. Three-component gyrotropic metamaterial

    SciTech Connect

    Tralle, Igor Ziȩba, Paweł; Paśko, Wioletta

    2014-06-21

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of μ, while the other two would be responsible for the negativity of ε. The first component of the mixture is the “swarm” of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg{sub 1−x}Cd{sub x}Te-compound as well as relative concentrations of the mixture components are established.