3D thermography in non-destructive testing of composite structures
NASA Astrophysics Data System (ADS)
Hellstein, Piotr; Szwedo, Mariusz
2016-12-01
The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.
Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-02-16
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components
Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-01-01
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953
NASA Astrophysics Data System (ADS)
Habek, Nikola; Kordić, Milan; Jurenec, Franjo; Dugandžić, Aleksandra
2018-03-01
The activation of brown adipose tissue (BAT) after cold exposure leads to heat production. However, the activation of BAT activity after a meal as part of diet induced thermogenesis is still controversial. A possible reason is that measuring BAT activity by positron emission tomography-computed tomography (PET CT) via accumulation of radiotracer fludeoxyglucose (18F-FDG), which competes with an increase in glucose concentration after a meal, fails as the method of choice. In this study, activity of BAT was determined by infrared thermography. Activation of BAT 30 min after a meal increases glucose consumption, decreases plasma glucose concentration, and leads to changes of body temperature (diet-induced thermogenesis). Detecting pathophysiological changes in BAT activity after a meal by infrared thermography, a non-invasive more sensitive method, will be of great importance for people with increased body weight and diabetes mellitus type 2.
Active thermography in qualitative evaluation of protective materials.
Gralewicz, Grzegorz; Wiecek, Bogusław
2009-01-01
This is a study of the possibilities of a qualitative evaluation of protective materials with active thermography. It presents a simulation of a periodic excitation of a multilayer composite material. Tests were conducted with lock-in thermography on Kevlar composite consisting of 16 layers of Kevlar fabric reinforced with formaldehyde resin with implanted delamination defects. Lock-in thermography is a versatile tool for nondestructive evaluation. It is a fast, remote and nondestructive procedure. Hence, it was used to detect delaminations in the composite structure of materials used in the production of components designed for personal protection. This method directly contributes to an improvement in safety.
NASA Astrophysics Data System (ADS)
Chady, Tomasz; Gorący, Krzysztof
2018-04-01
Active infrared thermography is increasingly used for nondestructive testing of various materials. Properties of this method are creating a unique possibility to utilize it for inspection of composites. In the case of active thermography, an external energy source is usually used to induce a thermal contrast inside tested objects. The conventional heating methods (like halogen lamps or flash lamps) are utilized for this purpose. In this study, we propose to use a cooling unit. The proposed system consists of a thermal imaging infrared camera, which is used to observe the surface of the inspected specimen and a specially designed cooling unit with thermoelectric modules (the Peltier modules).
Laser active thermography for non-destructive testing
NASA Astrophysics Data System (ADS)
Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.
2013-11-01
Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-01-01
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-02-16
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.
Sub-surface defects detection of by using active thermography and advanced image edge detection
NASA Astrophysics Data System (ADS)
Tse, Peter W.; Wang, Gaochao
2017-05-01
Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Griffith, Mark S.; Hopins, John W.; Veneris, Pete H.; Kuykendoll, Kathryn
2006-01-01
This report details the techniques and fidelity associated with aeroheating models constructed in support of the return-to-flight boundary layer transition (BLT) activity for STS-114. This report provides technical descriptions of the methods, materials, and equipment used, as well as the surface quality results obtained with the cast ceramic phosphor thermography models.
Normalized Temperature Contrast Processing in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
Juvenile-onset localized scleroderma activity detection by infrared thermography.
Martini, G; Murray, K J; Howell, K J; Harper, J; Atherton, D; Woo, P; Zulian, F; Black, C M
2002-10-01
The aim of this study was to define the clinical utility of infrared thermography in disease activity detection in localized scleroderma (LS). We retrospectively reviewed 130 thermal images of 40 children with LS and calculated the sensitivity and specificity of thermography, comparing clinical descriptions of the lesions and contemporary thermographs. The reproducibility of thermography was calculated by using the weighted kappa coefficient to determine the level of agreement between two clinicians who reviewed the thermographs independently. The sensitivity of thermography was 92% and specificity was 68%. Full concordance between the two clinicians was observed in 91% of lesions, with a kappa score of 0.82, implying very high reproducibility of this technique. Our results demonstrate that thermography is a promising diagnostic tool when associated with clinical examination in discriminating disease activity, as long as it is applied to lesions without severe atrophy of the skin and subcutaneous fat. Further evaluation is needed to determine whether thermography can predict the future progression of lesions.
A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
Challenges to Global Implementation of Infrared Thermography Technology: Current Perspective
Shterenshis, Michael
2017-01-01
Medical infrared thermography (IT) produces an image of the infrared waves emitted by the human body as part of the thermoregulation process that can vary in intensity based on the health of the person. This review analyzes recent developments in the use of infrared thermography as a screening and diagnostic tool in clinical and nonclinical settings, and identifies possible future routes for improvement of the method. Currently, infrared thermography is not considered to be a fully reliable diagnostic method. If standard infrared protocol is established and a normative database is available, infrared thermography may become a reliable method for detecting inflammatory processes. PMID:29138741
Challenges to Global Implementation of Infrared Thermography Technology: Current Perspective.
Shterenshis, Michael
2017-01-01
Medical infrared thermography (IT) produces an image of the infrared waves emitted by the human body as part of the thermoregulation process that can vary in intensity based on the health of the person. This review analyzes recent developments in the use of infrared thermography as a screening and diagnostic tool in clinical and nonclinical settings, and identifies possible future routes for improvement of the method. Currently, infrared thermography is not considered to be a fully reliable diagnostic method. If standard infrared protocol is established and a normative database is available, infrared thermography may become a reliable method for detecting inflammatory processes.
NASA Astrophysics Data System (ADS)
Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier
2014-05-01
As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the visible spectrum would hinder the projected light beam since a laser with wavelength of 532 nm was used as the coherent light source. Experimentations were successful, but only with mitigated efficiency for shearography [2]. The thermal response was the fastest and it was possible to fully locate all defects. For shearography, the available equipment forced us to restrict the area of observation to only one defect at a time (roughly 100 cm²). Numerical models were designed based on the multiple sample tested in the experimental step of the study. Using the COMSOL© finite elements modeling software, numerous simulations yielded results in accordance with experimental data. Different types of defect could be modeled and showed that both shearography and thermography have different sensibility in function of the nature of the defect. Furthermore, analysis of the simulated results demonstrated a relation between the contrast evolution of the temperature and displacement field. In the near future, we expect to make several improvement to our experimental setup. As for the numerical model, some small disparities between the theoretical and experimental results still remain to be addressed. The numerical model could be improved but to do so it requires to raise the shearographic measurements sampling rate close to the one used for infrared thermography. Once this issue will be resolved, it will be possible to use experimental data to refine the numerical model. So, accurate models will be helpful to optimize the overall efficiency of the coupling of thermal shearography and active infrared thermography for in situ NDT application. References [1] Y.Y. Hung, C.Y. Liand, Image-shearing camera for direct measurement of surface strains, Applied Optics, Vol. 18, n°7, pages 1046-1051, 1979 [2] L-D. Théroux, J. Dumoulin, X. Maldague, Square heating applied to shearography and active infrared thermography measurements coupling: form feasibility test in laboratory to numerical study of pultruded CFRP plates glued on concrete specimen, STRAIN journal, in press
Detection of seal contamination in heat-sealed food packaging based on active infrared thermography
NASA Astrophysics Data System (ADS)
D'huys, Karlien; Saeys, Wouter; De Ketelaere, Bart
2015-05-01
In the food industry packaging is often applied to protect the product from the environment, assuring quality and safety throughout shelf life if properly performed. Packaging quality depends on the material used and the closure (seal). The material is selected based on the specific needs of the food product to be wrapped. However, proper closure of the package is often harder to achieve. One problem possibly jeopardizing seal quality is the presence of food particles between the seal. Seal contamination can cause a decreased seal strength and thus an increased packaging failure risk. It can also trigger the formation of microchannels through which air and microorganisms can enter and spoil the enclosed food. Therefore, early detection and removal of seal-contaminated packages from the production chain is essential. In this work, a pulsed-type active thermography method using the heat of the sealing bars as an excitation source was studied for detecting seal contamination. The cooling profile of contaminated seals was recorded. The detection performance of four processing methods (based on a single frame, a fit of the cooling profile, pulsed phase thermography and a matched filter) was compared. High resolution digital images served as a reference to quantify contamination. The lowest detection limit (equivalent diameter of 0.63 mm) and the lowest processing time (0.42 s per sample) were obtained for the method based on a single frame. Presumably, practical limitations in the recording stage prevented the added value of active thermography to be fully reflected in this application.
NASA Astrophysics Data System (ADS)
Priego Quesada, Jose Ignacio; Martínez Guillamón, Natividad; Cibrián Ortiz de Anda, Rosa M.a.; Psikuta, Agnes; Annaheim, Simon; Rossi, René Michel; Corberán Salvador, José Miguel; Pérez-Soriano, Pedro; Salvador Palmer, Rosario
2015-09-01
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.
Thermography to Inspect Insulation of Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Arens, Ellen; Youngquist, Robert
2011-01-01
Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.
Detecting defects in marine structures by using eddy current infrared thermography.
Swiderski, W
2016-12-01
Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.
The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; DiGregorio, Anthony; Russell, Samuel S.
1999-01-01
Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it more difficult to determine the optimal operating condition for revealing the defects. In order to develop an optimal thermography inspection procedure, we must understand the thermal behavior inside the material subjected to transient heat in order to interpret the thermal images correctly. Fabrication of finite element models of characteristic defects in composite materials subjected to transient heat will enable the development of appropriate procedure for thermography inspection. Design of phantom defects could be modeled and behavior characterized prior to physically building these test parts. Since production of phantom test parts can be very time consuming and laborious, it is important to design good representative defects.
Matsui, Yuko; Murayama, Ryoko; Tanabe, Hidenori; Oe, Makoto; Motoo, Yoshiharu; Wagatsuma, Takanori; Michibuchi, Michiko; Kinoshita, Sachiko; Sakai, Keiko; Konya, Chizuko; Sugama, Junko; Sanada, Hiromi
Early detection of extravasation is important, but conventional methods of detection lack objectivity and reliability. This study evaluated the predictive validity of thermography for identifying extravasation during intravenous antineoplastic therapy. Of 257 patients who received chemotherapy through peripheral veins, extravasation was identified in 26. Thermography was performed every 15 to 30 minutes during the infusions. Sensitivity, specificity, positive predictive value, and negative predictive value using thermography were 84.6%, 94.8%, 64.7%, and 98.2%, respectively. This study showed that thermography offers an accurate prediction of extravasation.
Thermographic venous blood flow characterization with external cooling stimulation
NASA Astrophysics Data System (ADS)
Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh
2018-05-01
Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Bullock, Michael W.
1996-01-01
The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.
Murayama, Ryoko; Tanabe, Hidenori; Oe, Makoto; Motoo, Yoshiharu; Wagatsuma, Takanori; Michibuchi, Michiko; Kinoshita, Sachiko; Sakai, Keiko; Konya, Chizuko; Sugama, Junko; Sanada, Hiromi
2017-01-01
Early detection of extravasation is important, but conventional methods of detection lack objectivity and reliability. This study evaluated the predictive validity of thermography for identifying extravasation during intravenous antineoplastic therapy. Of 257 patients who received chemotherapy through peripheral veins, extravasation was identified in 26. Thermography was performed every 15 to 30 minutes during the infusions. Sensitivity, specificity, positive predictive value, and negative predictive value using thermography were 84.6%, 94.8%, 64.7%, and 98.2%, respectively. This study showed that thermography offers an accurate prediction of extravasation. PMID:29112585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplifiedmore » in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
Computer aided diagnosis of diabetic foot using infrared thermography: A review.
Adam, Muhammad; Ng, Eddie Y K; Tan, Jen Hong; Heng, Marabelle L; Tong, Jasper W K; Acharya, U Rajendra
2017-12-01
Diabetes mellitus (DM) is a chronic metabolic disorder that requires regular medical care to prevent severe complications. The elevated blood glucose level affects the eyes, blood vessels, nerves, heart, and kidneys after the onset. The affected blood vessels (usually due to atherosclerosis) may lead to insufficient blood circulation particularly in the lower extremities and nerve damage (neuropathy), which can result in serious foot complications. Hence, an early detection and treatment can prevent foot complications such as ulcerations and amputations. Clinicians often assess the diabetic foot for sensory deficits with clinical tools, and the resulting foot severity is often manually evaluated. The infrared thermography is a fast, nonintrusive and non-contact method which allows the visualization of foot plantar temperature distribution. Several studies have proposed infrared thermography-based computer aided diagnosis (CAD) methods for diabetic foot. Among them, the asymmetric temperature analysis method is more superior, as it is easy to implement, and yielded satisfactory results in most of the studies. In this paper, the diabetic foot, its pathophysiology, conventional assessments methods, infrared thermography and the different infrared thermography-based CAD analysis methods are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Airborne thermography of temperature patterns in sugar beet piles
NASA Technical Reports Server (NTRS)
Moore, D. G.; Bichsel, S.
1975-01-01
An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.
Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.
2010-01-01
Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028
A new measurement method of coatings thickness based on lock-in thermography
NASA Astrophysics Data System (ADS)
Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao
2016-05-01
Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.
Thermography detection on the fatigue damage
NASA Astrophysics Data System (ADS)
Yang, Bing
It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.
A Review of Microwave Thermography Nondestructive Testing and Evaluation
Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun
2017-01-01
Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control. PMID:28505130
Detection of pathogenic gram negative bacteria using infrared thermography
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John
2012-11-01
Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.
Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.
2004-01-01
New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.
Applicability of active infrared thermography for screening of human breast: a numerical study
NASA Astrophysics Data System (ADS)
Dua, Geetika; Mulaveesala, Ravibabu
2018-03-01
Active infrared thermography is a fast, painless, noncontact, and noninvasive imaging method, complementary to mammography, ultrasound, and magnetic resonance imaging methods for early diagnosis of breast cancer. This technique plays an important role in early detection of breast cancer to women of all ages, including pregnant or nursing women, with different sizes of breast, irrespective of either fatty or dense breast. This proposed complementary technique makes use of infrared emission emanating from the breast. Emanating radiations from the surface of the breast under test are detected with an infrared camera to map the thermal gradients over it, in order to reveal hidden tumors inside it. One of the reliable active infrared thermographic technique, linear frequency modulated thermal wave imaging is adopted to detect tumors present inside the breast. Further, phase and amplitude images are constructed using frequency and time-domain data analysis schemes. Obtained results show the potential of the proposed technique for early diagnosis of breast cancer in fatty as well as dense breasts.
NASA Astrophysics Data System (ADS)
Swiderski, Waldemar
2016-10-01
Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.
Reliable aerial thermography for energy conservation
NASA Technical Reports Server (NTRS)
Jack, J. R.; Bowman, R. L.
1981-01-01
A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.
NASA Astrophysics Data System (ADS)
Montanini, R.; Quattrocchi, A.; Piccolo, S. A.
2016-09-01
Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.
Normalized Temperature Contrast Processing in Flash Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.
Detection of osmotic damages in GRP boat hulls
NASA Astrophysics Data System (ADS)
Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.
2013-09-01
Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.
An approach to parameter estimation for breast tumor by finite element method
NASA Astrophysics Data System (ADS)
Xu, A.-qing; Yang, Hong-qin; Ye, Zhen; Su, Yi-ming; Xie, Shu-sen
2009-02-01
The temperature of human body on the surface of the skin depends on the metabolic activity, the blood flow, and the temperature of the surroundings. Any abnormality in the tissue, such as the presence of a tumor, alters the normal temperature on the skin surface due to increased metabolic activity of the tumor. Therefore, abnormal skin temperature profiles are an indication of diseases such as tumor or cancer. This study is to present an approach to detect the female breast tumor and its related parameter estimations by combination the finite element method with infrared thermography for the surface temperature profile. A 2D simplified breast embedded a tumor model based on the female breast anatomical structure and physiological characteristics was first established, and then finite element method was used to analyze the heat diffuse equation for the surface temperature profiles of the breast. The genetic optimization algorithm was used to estimate the tumor parameters such as depth, size and blood perfusion by minimizing a fitness function involving the temperature profiles simulated data by finite element method to the experimental data obtained by infrared thermography. This preliminary study shows it is possible to determine the depth and the heat generation rate of the breast tumor by using infrared thermography and the optimization analysis, which may play an important role in the female breast healthcare and diseases evaluation or early detection. In order to develop the proposed methodology to be used in clinical, more accurate anatomy 3D breast geometry should be considered in further investigations.
Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging
Hsiao, Yi-Sing; Deng, Cheri X.
2015-01-01
Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634
Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.
Hsiao, Yi-Sing; Deng, Cheri X
2016-02-01
Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Medical applications of model-based dynamic thermography
NASA Astrophysics Data System (ADS)
Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech
2001-03-01
The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.
Tracking composite material damage evolution using Bayesian filtering and flash thermography data
NASA Astrophysics Data System (ADS)
Gregory, Elizabeth D.; Holland, Steve D.
2016-05-01
We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.
Non destructive testing of works of art by terahertz analysis
NASA Astrophysics Data System (ADS)
Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent
2013-11-01
Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.
NASA Astrophysics Data System (ADS)
Maierhofer, Christiane; Röllig, Mathias; Gower, Michael; Lodeiro, Maria; Baker, Graham; Monte, Christian; Adibekyan, Albert; Gutschwager, Berndt; Knazowicka, Lenka; Blahut, Ales
2018-05-01
For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed.
NASA Astrophysics Data System (ADS)
Wang, Gaochao; Tse, Peter W.; Yuan, Maodan
2018-02-01
Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.
Applicability of active infrared thermography for screening of human breast: a numerical study.
Dua, Geetika; Mulaveesala, Ravibabu
2018-03-01
Active infrared thermography is a fast, painless, noncontact, and noninvasive imaging method, complementary to mammography, ultrasound, and magnetic resonance imaging methods for early diagnosis of breast cancer. This technique plays an important role in early detection of breast cancer to women of all ages, including pregnant or nursing women, with different sizes of breast, irrespective of either fatty or dense breast. This proposed complementary technique makes use of infrared emission emanating from the breast. Emanating radiations from the surface of the breast under test are detected with an infrared camera to map the thermal gradients over it, in order to reveal hidden tumors inside it. One of the reliable active infrared thermographic technique, linear frequency modulated thermal wave imaging is adopted to detect tumors present inside the breast. Further, phase and amplitude images are constructed using frequency and time-domain data analysis schemes. Obtained results show the potential of the proposed technique for early diagnosis of breast cancer in fatty as well as dense breasts. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Narrative review: Diabetic foot and infrared thermography
NASA Astrophysics Data System (ADS)
Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Gonzalez-Bernal, J.
2016-09-01
Diabetic foot is one of the major complications experienced by diabetic patients. An early identification and appropriate treatment of diabetic foot problems can prevent devastating consequences such as limb amputation. Several studies have demonstrated that temperature variations in the plantar region can be related to diabetic foot problems. Infrared thermography has been successfully used to detect complication related to diabetic foot, mainly because it is presented as a rapid, non-contact and non-invasive technique to visualize the temperature distribution of the feet. In this review, an overview of studies that relate foot temperature with diabetic foot problems through infrared thermography is presented. Through this research, it can be appreciated the potential of infrared thermography and the benefits that this technique present in this application. This paper also presents the different methods for thermogram analysis and the advantages and disadvantages of each one, being the asymmetric analysis the method most used so far.
Infrared emission contrast for the visualization of subsurface graphical features in artworks
NASA Astrophysics Data System (ADS)
Mercuri, Fulvio; Paoloni, Stefano; Cicero, Cristina; Zammit, Ugo; Orazi, Noemi
2018-03-01
In this paper a method is presented based on the use of active infrared thermography for the detection of subsurface graphical features in artworks. A theoretical model for the thermographic signal describing the physical mechanisms which allow the identification of the buried features has been proposed and thereafter it has been applied to the analysis of the results obtained on specifically made test samples. It is shown that the proposed model predictions adequately describe the experimental results obtained on the test samples. A comparative analysis between the proposed technique and infrared reflectography is also presented. The comparison shows that active thermography can be more effective in the detection of features buried below infrared translucent layers and, in addition, that it can provide information about the depth of the detected features, particularly in highly IR diffusing materials.
Detection of defects in multi-layered aramid composites by ultrasonic IR thermography
NASA Astrophysics Data System (ADS)
Pracht, Monika; Swiderski, Waldemar
2017-10-01
In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting multi-layered aramide composite materials will be presented.
Improved image processing of road pavement defect by infrared thermography
NASA Astrophysics Data System (ADS)
Sim, Jun-Gi
2018-03-01
This paper intends to achieve improved image processing for the clear identification of defects in damaged road pavement structure using infrared thermography non-destructive testing (NDT). To that goal, 4 types of pavement specimen including internal defects were fabricated to exploit the results obtained by heating the specimens by natural light. The results showed that defects located down to a depth of 3 cm could be detected by infrared thermography NDT using the improved image processing method.
Thermography in the detection and follow up of chondromalacia patellae.
Vujcić, M; Nedeljković, R
1991-01-01
Although diagnostic criteria for chondromalacia patellae exist, the disease is often accompanied by physical signs which are limited or non-diagnostic. Thermographic examination was performed in 157 patients with clinical diagnosis of chondromalacia patellae in 86 patients after surgical treatment for chondromalacia, and in 308 controls. Thermography can help the clinicians in establishing the diagnosis of chondromalacia patellae, but by itself is not sufficiently specific. The specificity of thermography was dependent on age, ranging from 90% for the 15-24 year age group to 65% for the 45-54 year age group. Sensitivity of the method was 68%. Thermography can disclose other knee disorders which imitate chondromalacia patellae. Images PMID:1768161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
NASA Astrophysics Data System (ADS)
Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald
2013-03-01
Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.
NASA Astrophysics Data System (ADS)
Dumoulin, Jean; Ibos, Laurent
2010-05-01
In many countries road network ages while road traffic and maintenance costs increase. Nowadays, thousand and thousand kilometers of roads are each year submitted to surface distress survey. They generally lean on pavement surface imaging measurement techniques, mainly in the visible spectrum, coupled with visual inspection or image processing detection of emergent distresses. Nevertheless, optimisation of maintenance works and costs requires an early detection of defects within the pavement structure when they still are hidden from surface. Accordingly, alternative measurement techniques for pavement monitoring are currently under investigation (seismic methods, step frequency radar). On the other hand, strengthening or retrofitting of reinforced concrete structures by externally bonded Fiber Reinforced Polymer (FRP) systems is now a commonly accepted and widespread technique. However, the use of bonding techniques always implies following rigorous installing procedures. To ensure the durability and long-term performance of the FRP reinforcements, conformance checking through an in situ auscultation of the bonded FRP systems is then highly suitable. The quality-control program should involve a set of adequate inspections and tests. Visual inspection and acoustic sounding (hammer tap) are commonly used to detect delaminations (disbonds) but are unable to provide sufficient information about the depth (in case of multilayered composite) and width of debonded areas. Consequently, rapid and efficient inspection methods are also required. Among the non destructive methods under study, active infrared thermography was investigated both for pavement and civil engineering structures through experiments in laboratory and numerical simulations, because of its ability to be also used on field. Pulse Thermography (PT), Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) approaches have been tested onto pavement samples and CFRP bonding on concrete samples in laboratory. In parallel numerical simulations have been used to generate a set of time sequence of thermal maps for simulated samples with and without subsurface defect. Using this set of experimental and simulated data different approaches (thermal contrast, FFT analysis, polynomial interpolation, singular value decomposition…) for defect location have been studied and compared. Defect depth retrieval was also studied on such data using different thermal model coupled to a direct or an inverse approach. Trials were conducted both with an uncooled and cooled infrared camera with different measurement performances. Results obtained will be discussed and analysed in the paper we plan to present. Finally, combining numerical simulations and experiments allows us discussing on the sensitivity influence of the infrared camera used to detect subsurface defects.
Overview of recent Japanese activities in thermographic NDT
NASA Astrophysics Data System (ADS)
Sakagami, Takahide; Ogura, Keiji
1997-04-01
In the past decade, nondestructive testing techniques using infrared thermography, i.e., thermographic NDT techniques, received a lot of attention in many engineering fields in Japan. The first national symposium that specialized in thermographic NDT techniques was held in Tokyo, Japan on November 28-29, 1995, organized by the Research and Technical Committee on Surface Method of the Japanese Society for Nondestructive Inspection (JSNDI). At this symposium, twenty eight presentations including two keynote addresses were given. Over three hundred thermography researchers and engineers (thermographers) attended the symposium. Further, an exhibition of newly developed equipment for infrared thermography featuring the equipment of eleven companies took place concurrently. This symposium played an important role as the first national symposium dedicated to sharing information, ideas and experiences about thermographic NDT among thermographers from both the user and supplier sides. Sessions within the symposium were as follows: Advances in Infrared Imaging Systems; Applications for Composite Materials and Coated Materials; Diagnosis of Equipment/Monitoring, Applications for Structural Materials; Backup Techniques for Thermographic NDT; Infrared Stress Measurement and Contact Problems. This paper briefly describes presentations given in the symposium.
Nondestructive Evaluation of Carbon Fiber Bicycle Frames Using Infrared Thermography
Ibarra-Castanedo, Clemente; Klein, Matthieu; Maldague, Xavier; Sanchez-Beato, Alvaro
2017-01-01
Bicycle frames made of carbon fibre are extremely popular for high-performance cycling due to the stiffness-to-weight ratio, which enables greater power transfer. However, products manufactured using carbon fibre are sensitive to impact damage. Therefore, intelligent nondestructive evaluation is a required step to prevent failures and ensure a secure usage of the bicycle. This work proposes an inspection method based on active thermography, a proven technique successfully applied to other materials. Different configurations for the inspection are tested, including power and heating time. Moreover, experiments are applied to a real bicycle frame with generated impact damage of different energies. Tests show excellent results, detecting the generated damage during the inspection. When the results are combined with advanced image post-processing methods, the SNR is greatly increased, and the size and localization of the defects are clearly visible in the images. PMID:29156650
The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review
NASA Astrophysics Data System (ADS)
Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José
2015-11-01
Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.
NASA Astrophysics Data System (ADS)
Kim, Kyeongsuk; Kim, Kyungsu; Jung, Hyunchul; Chang, Hosub
2010-03-01
Mostly piping which is using for the nuclear power plants are made up of carbon steel pipes. The wall thinning defects occurs by the effect of the flow accelerated corrosion of fluid that flows in carbon steel pipes. The defects could be found on the welding part and anywhere in the pipes. The infrared thermography technique which is one of the non-destructive testing method has used for detecting the defects of various kinds of materials over the years. There is a limitation for measuring the defect of metals that have a big coefficient of thermal diffusion. However, a technique using lock-in method gets over the difficulty. Consequently, the lock-in infrared thermography technique has been applied to the various industry fields. In this paper, the defect thickness of the straight pipe which has an artificial defect the inside of the pipes was measured by using the lock-in infrared thermography technique and the result could be utilized in detecting defects of carbon steel pipes.
Seismic risk evaluation aided by IR thermography
NASA Astrophysics Data System (ADS)
Grinzato, E.; Cadelano, G.; Bison, P.; Petracca, A.
2009-05-01
Conservation of buildings in areas at seismic risk must take prevention into account. The safeguard architectonic heritage is an ambitious objective, but a priority for planning programmes at varying levels of decision making. Preservation and restoration activities must be optimized to cover a vast and widespread historical and architectonic heritage present in many countries. Masonry buildings requires an adequate level of knowledge based on the importance of structural geometry, which may include the damage, details of construction and properties of materials. For identification and classification of masonry is necessary to find shape, type and size of the elements, texture, size of mortar joints, assemblage. The recognition can be done through a visual inspection of the surface of walls, which can be examined, where is not visible, removing a layer of plaster. Thermography is an excellent tool for a fast survey and collection of vital information for this purpose, but it is extremely important define a precise procedure in the development of more efficient monitoring tools. Thermography is a non-destructive method that allows recognizing the structural damage below plaster, detecting the presence of discontinuity in masonry, for added storeys, cavity, filled openings, and repairs. Furthermore, the fast identification of subsurface state allows to select areas where other methods either more penetrating or partially destructive have to be applied. The paper reports experimental results achieved in the mainframe of the European project RECES Modiquus. The main aim of the project is to improve methods, techniques and instruments for facing antiseismic options. Both passive and active thermographic techniques have been applied in different weather conditions and time schemes. A dedicated algorithm has been developed to enhance the visibility of wall bonding.
Oya, Maiko; Takahashi, Toshiaki; Tanabe, Hidenori; Oe, Makoto; Murayama, Ryoko; Yabunaka, Koichi; Matsui, Yuko; Sanada, Hiromi
Infiltration is a frequent complication of infusion therapy. We previously demonstrated the usefulness of infrared thermography as an objective method of detecting infiltration in healthy people. However, whether thermography can detect infiltration in clinical settings remains unknown. Therefore, we report two cases where thermography was useful in detecting infiltration at puncture sites. In both cases, tissue changes were verified ultrasonographically. The patients were a 56-year-old male with cholangitis and a 76-year-old female with hepatoma. In both cases, infiltration symptoms such as swelling and erythema occurred one day after the insertion of a peripheral intravenous catheter. Thermographic images from both patients revealed low-temperature areas spreading from the puncture sites; however, these changes were not observed in other patients. The temperature difference between the low-temperature areas and their surrounding skin surface exceeded 1.0°C. Concurrently, ultrasound images revealed that tissues surrounding the vein had a cobblestone appearance, indicating edema. In both patients, subcutaneous tissue changes suggested infiltration and both had low-temperature areas spreading from the puncture sites. Thus, subcutaneous edema may indicate infusion leakage, resulting in a decrease in the temperature of the associated skin surface. These cases suggest that infrared thermography is an effective method of objectively and noninvasively detecting infiltration.
NASA Astrophysics Data System (ADS)
Eisler, K.; Goldammer, M.; Rothenfusser, M.; Arnold, W.; Homma, C.
2012-05-01
The spectral selective thermography with infrared filters can be used to determine or to distinguish materials such as contaminations on a metallic component. With additional visual information, the indications by the IR signal can be selectively accentuated or suppressed for easier evaluation of passive and active thermography measurements. For flash thermography the detected IR signal between 3.4 and 5.1 μm is analyzed with regard to the spectral material information. The presented hybrid camera uses beam overlapping to obtain combined images of both in the infrared and the visual range.
Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.
NASA Astrophysics Data System (ADS)
Dumoulin, Jean
2013-04-01
Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using direct thermal modelling or inverse thermal modelling will be presented and discussed. Conclusion and perspectives will be proposed in link with structure monitoring or cultural heritage applications. References [1] Maldague, X.P.V. "Theory and practice of infrared technology for non-destructive testing", John Wiley & sons Inc., 2001. [2] Dumoulin J. and Averty R., « Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", QIRT 2012, Naples, Italy, June 2012. [3] J. Dumoulin, L. Ibos, C. Ibarra-Castanedo, A Mazioud, M. Marchetti, X. Maldague and A. Bendada, « Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: comparison between experiments and numerical simulations », Journal of Modern Optics, Special Issue on Advanced Infrared Technology and Applications, Volume 57, Issue 18, October 2010 , pages 1759 - 1769, doi:10.1080/09500340.2010.522738 [4] F. Taillade, M. Quiertant, K. Benzarti, J. Dumoulin, Ch. Aubagnac, Chapter 9: "Nondestructive Evaluation of FRP Strengthening Systems Bonded on Concrete Structures using Pulsed Stimulated Infrared Thermography ", pp 193-208, Book title "Infrared Thermography", Editeur Raghu V. Prakash, ISBN 978-953-51-0242-7, Intech, open access at the following address http://www.intechopen.com/books/editor/infrared-thermography, march 2012. [5] Cooley J.W., Tukey J.W., "An algorithm for the machine calculation of complex Fourier series", Mathematics of Computation, vol. 19, n° 90, 1965, p. 297-301. [6] Rajic N., "Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures", Composite Structures, vol 58, pp 521-528, 2002. [7] Marinetti S., Grinzato E., Bison P. G., Bozzi E., Chimenti M., Pieri G. and Salvetti O. "Statistical analysis of IR thermographic sequences by PCA," Infrared Physics & Technology vol 46 pp 85-91, 2004.
Department of National Defence's use of thermography for facilities maintenance
NASA Astrophysics Data System (ADS)
Kittson, John E.
1990-03-01
Since the late seventies DND through the Director General Works has been actively encouraging the use of thermography as an efficient and effective technique for supporting preventive maintenance quality assurance and energy conservation programs at Canadian Forces Bases (CFBs). This paper will provide an overview of DND''s experiences in the utilization of thermography for facilities maintenance applications. 1. HISTORICAL MILESTONES The following are milestones of DND''s use of thermography: a. Purchase of Infrared Equipment In 1976/77 DND purchased five AGA 750 Infrared Thermovision Systems which were distributed to commands. In 1980/81/82 six AGA liOs five AGA TPT8Os two AGA 782s and one AGA 720 were acquired. Finally DND also purchased seven AGEMA 870 systems during 1987/88. b. First and Second Interdepartaental Building Thermography Courses In 1978 and 1980 DND hosted two building thermography courses that were conducted by Public Works Canada. c. CE Thermographer Specialist Training Courses DND developed a training standard in 1983 for Construction Engineering (CE) Thermographer qualification which included all CE applications of thermography. The first annual inhouse training course was conducted at CFB Borden Ontario in 1984. These are now being conducted at the CFB Chilliwack Detachment in Vernon British Columbia. 2 . MARKETING FACILITIES MAINTENANCE IR Of paramount importance for successfully developing DND appreciation for thermography was providing familiarization training to CE staff at commands and bases. These threeday presentations emphasized motivational factors conducting thermographic surveys and utilizing infrared data of roofs electrical/mechanical systems heating plants steam distribution and building enclosures. These factors consisted mainly of the following objectives: a. preventive maintenance by locating deficiencies to be repaired b. quality assurance by verification of workmanship materials and design c. energy conservation by locating heat loss areas 2 / SPIE Vol. 1313 Thermosense XII (1990)
Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.
Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf
2014-01-14
Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.
AN EVALUATION OF INFRARED THERMOGRAPHY FOR DETECTION OF BUMBLEFOOT (PODODERMATITIS) IN PENGUINS.
Duncan, Ann E; Torgerson-White, Lauri L; Allard, Stephanie M; Schneider, Tom
2016-06-01
The objective of this study was to evaluate infrared thermography as a noninvasive screening tool for detection of pododermatitis during the developing and active stages of disease in three species of penguins: king penguin (Aptenodytes patagonicus) , macaroni penguin (Eudyptes chrysolophus), and rockhopper penguin (Eudyptes chrysocome). In total, 67 penguins were examined every 3 mo over a 15-mo period. At each exam, bumblefoot lesions were characterized and measured, and a timed series of thermal images were collected over a 4-min period. Three different methods were compared for analysis of thermograms. Feet with active lesions that compromise the surface of the foot were compared to feet with inactive lesions and no lesions. The hypothesis was that feet with active lesions would have warmer surface temperatures than the other conditions. Analysis of the data showed that although feet with active bumblefoot lesions are warmer than feet with inactive or no lesions, the variability seen in each individual penguin from one exam day to the next and the overlap seen between temperatures from each condition made thermal imaging an unreliable tool for detection of bumblefoot in the species studied.
NASA Technical Reports Server (NTRS)
Russell, S. S.; Lansing, M. D.
1997-01-01
The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.
Infrared thermography as a diagnostic tool to indicate sick-house-syndrome: a case-study
NASA Astrophysics Data System (ADS)
Ljungberg, Sven-Ake
1996-03-01
Every third child and many adults in Sweden have allergic reactions caused by indoor environmental problems. A lot of buildings constructed during the building-boom period of 1950 - 1990 expose the sick-house-syndrome, due to built-in moisture problems and poor ventilation performance of the building. Leaky building construction, transport of humid air condensing on thermal bridges within the construction gives rise to a humid environment, and forms a base for a microbial deterioration process of organic materials, with emissions hazardous for human health. So far there are no universal and cost efficient techniques or methods developed which could be used to reveal the sick-house-syndrome. In this paper we present the results of a case-study of the sick-house-syndrome, and an investigation concept with a combination of different techniques and methods to detect and to map underlying factors that form the base for microbial activities. The concept includes mobile and indoor thermography, functional control of ventilation systems, tracer gas techniques for measurement of air flow exchange rate in different rooms, microbial investigation of emissions, field inspections within the building construction and the building envelope, and medical investigation of the health status of the people working in the building. Mobile thermography of the exterior facades has been performed with a longwave AGEMA THV 900, respectively THV 1000 infrared system, during the period December 1994 - June 1995, at different and similar weather and radiation conditions, and with the building pressurized at one accession. Indoor thermography has been performed with a shortwave AGEMA THV 470 system, for a selection of objects/surfaces with thermal deviations, indicated in thermograms from the different mobile thermographic surveys. Functional control was performed for the ventilation systems, and air flow rates were measured using tracer gas technique for a selection of rooms with different function, manload and demand of air flow. Field control inspections were performed partly from the inside and partly from the outside of the building. Microbial activities were investigated by traditional measurements of the emissions and contamination of indoor air, and by ocular inspections and laboratory tests of building materials. Despite the fact that the building studied has a complicated composition of surface materials, including glass, wood, steel and concrete panels, it was possible to indirectly indicate surface anomalies, related to microbial deterioration of organic materials, through mold and rot activities, due to in-exfiltration of humid air, causing moisture problems within the construction. The result from this case-study shows that thermography can become an important diagnostic tool in order to detect and map sick-house-syndromes. The project is to be continued.
Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs)
Meola, Carosena; Toscano, Cinzia
2014-01-01
It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted. PMID:28788527
Damage detection in composites using nonlinear ultrasonically modulated thermography
NASA Astrophysics Data System (ADS)
Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.
2018-03-01
This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.
Heberle, Anita Batista dos Santos; de Moura, Marcos Antônio Muniz; de Souza, Mauren Abreu; Nohama, Percy
2014-01-01
Objective to evaluate techniques of massage and pumping in the treatment of postpartum breast engorgement through thermography. Method the study was conducted in the Human Milk Bank of a hospital in Curitiba, Brazil. We randomly selected 16 lactating women with engorgement with the classification lobar, ampullary and glandular, moderate and intense. We compared the differential patterns of temperature, before and after the treatment by means of massage and pumping. Results we found a negative gradient of 0.3°C of temperature between the pre- and post-treatment in the experimental group. Breasts with intense engorgement were 0.7°C warmer when compared with moderate engorgement. Conclusion massage and electromechanical pumping were superior to manual methods when evaluated by thermography. REBEC: U1111-1136-9027. PMID:26107836
Liquid ingress recognition in honeycomb structure by pulsed thermography
NASA Astrophysics Data System (ADS)
Chen, Dapeng; Zeng, Zhi; Tao, Ning; Zhang, Cunlin; Zhang, Zheng
2013-05-01
Pulsed thermography has been proven to be a fast and effective method to detect fluid ingress in aircraft honeycomb structure; however, water and hydraulic oil may have similar appearance in the thermal image sequence. It is meaningful to identify what kind of liquid ingress it is for aircraft maintenance. In this study, honeycomb specimens with glass fiber and aluminum skin are injected different kinds of liquids: water and oil. Pulsed thermography is adopted; a recognition method is proposed to first get the reference curve by linear fitting the beginning of the logarithmic curve, and then an algorithm based on the thermal contrast between liquid and reference is used to recognize what kind of fluid it is by calculating their thermal properties. It is verified with the results of theory and the finite element simulation.
Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.
Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts
Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf
2014-01-01
Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464
NASA Astrophysics Data System (ADS)
Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko
2015-11-01
To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.
Advances in thermographic signal reconstruction
NASA Astrophysics Data System (ADS)
Shepard, Steven M.; Frendberg Beemer, Maria
2015-05-01
Since its introduction in 2001, the Thermographic Signal Reconstruction (TSR) method has emerged as one of the most widely used methods for enhancement and analysis of thermographic sequences, with applications extending beyond industrial NDT into biomedical research, art restoration and botany. The basic TSR process, in which a noise reduced replica of each pixel time history is created, yields improvement over unprocessed image data that is sufficient for many applications. However, examination of the resulting logarithmic time derivatives of each TSR pixel replica provides significant insight into the physical mechanisms underlying the active thermography process. The deterministic and invariant properties of the derivatives have enabled the successful implementation of automated defect recognition and measurement systems. Unlike most approaches to analysis of thermography data, TSR does not depend on flawbackground contrast, so that it can also be applied to characterization and measurement of thermal properties of flaw-free samples. We present a summary of recent advances in TSR, a review of the underlying theory and examples of its implementation.
Optically and non-optically excited thermography for composites: A review
NASA Astrophysics Data System (ADS)
Yang, Ruizhen; He, Yunze
2016-03-01
Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.
Advanced multispectral dynamic thermography as a new tool for inspection of gas-fired furnaces
NASA Astrophysics Data System (ADS)
Pregowski, Piotr; Goleniewski, Grzegorz; Komosa, Wojciech; Korytkowski, Waldemar
2004-04-01
The main special feature of elaborated method is that the dynamic IR thermography (DIRT) bases on forming of single image consisting of pixels of chosen minimum (IMAX) or maximum (IMAX) value, noted during adequately long sequence of thermograms with total independence to the moment of its (image's) capture. In this way, additive or suppressed interferences of fluctuating character become bypassed. Due to this method thereafter elaborated in classic way such "artificial thermogram" offers the quality impossible to achieve with a classic "one shot" method. Although preliminary, results obtained clearly show great potential of the method. and confirmed the validity in decreasing errors caused by fluctuating disturbances. In the case of process furnaces of gas-fired type and especially of coal-fired, application of presented solutions should result in significant increasing the reliability of IR thermography application. By use of properly chosen optical filters and algorithm, elaborated method offers a new potential attractive to test temperature problems other than in tubes , as for example symmetry and efficiency of the furnace heaters.
Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites
NASA Astrophysics Data System (ADS)
Chung, S.; Ley, O.; Godinez, V.; Bandos, B.
2011-06-01
As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.
Neonatal infrared thermography imaging: Analysis of heat flux during different clinical scenarios
NASA Astrophysics Data System (ADS)
Abbas, Abbas K.; Heimann, Konrad; Blazek, Vladimir; Orlikowsky, Thorsten; Leonhardt, Steffen
2012-11-01
IntroductionAn accurate skin temperature measurement of Neonatal Infrared Thermography (NIRT) imaging requires an appropriate calibration process for compensation of external effects (e.g. variation of environmental temperature, variable air velocity or humidity). Although modern infrared cameras can perform such calibration, an additional compensation is required for highly accurate thermography. This compensation which corrects any temperature drift should occur during the NIRT imaging process. We introduce a compensation technique which is based on modeling the physical interactions within the measurement scene and derived the detected temperature signal of the object. Materials and methodsIn this work such compensation was performed for different NIRT imaging application in neonatology (e.g. convective incubators, kangaroo mother care (KMC), and an open radiant warmer). The spatially distributed temperatures of 12 preterm infants (average gestation age 31 weeks) were measured under these different infant care arrangements (i.e. closed care system like a convective incubator, and open care system like kangaroo mother care, and open radiant warmer). ResultsAs errors in measurement of temperature were anticipated, a novel compensation method derived from infrared thermography of the neonate's skin was developed. Moreover, the differences in temperature recording for the 12 preterm infants varied from subject to subject. This variation could be arising from individual experimental setting applied to the same region of interest over the neonate's body. The experimental results for the model-based corrections is verified over the selected patient group. ConclusionThe proposed technique relies on applying model-based correction to the measured temperature and reducing extraneous errors during NIRT. This application specific method is based on different heat flux compartments present in neonatal thermography scene. Furthermore, these results are considered to be groundwork for further investigation, especially when using NIRT imaging arrangement with additional compensation settings together with reference temperature measurements.
Development of Active Microwave Thermography for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Foudazi, Ali
Active Microwave Thermography (AMT) is an integrated nondestructive testing and evaluation (NDT&E) method that incorporates aspects of microwave NDT and thermography techniques. AMT uses a microwave excitation to generate heat and the surface thermal profile of the material or structure under test is subsequently measured using a thermal camera (or IR camera). Utilizing a microwave heat excitation provides advantages over traditional thermal excitations (heat lamps, etc.) including the potential for non-contact, selective and focused heating. During an AMT inspection, two heating mechanisms are possible, referred to as dielectric and induction heating. Dielectric heating occurs as a result of the interaction of microwave energy with lossy dielectric materials which results in dissipated microwave energy and a subsequent increase in temperature. Induction heating is a result of induced surface current on conductive materials with finite conductivity under microwave illumination and subsequently ohmic loss. Due to the unique properties of microwave signals including frequency of operation, power level, and polarization, as well as their interaction with different materials, AMT has strong potential for application in various industries including infrastructure, transportation, aerospace, etc. As such, this Dissertation explores the application of AMT to NDT&E needs in these important industries, including detection and evaluation of defects in single- or multi-layered fiber-reinforced polymer-strengthened cement-based materials, evaluation of steel fiber percentage and distributions in steel fiber reinforced structures, characterization of corrosion ratio on corroded reinforcing steel bars (rebar), and evaluation of covered surface cracks orientation and size in metal structures.
The hybrid thermography approach applied to architectural structures
NASA Astrophysics Data System (ADS)
Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.
2017-07-01
This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.
Infrared thermography for inspecting of pipeline specimen
NASA Astrophysics Data System (ADS)
Chen, Dapeng; Li, Xiaoli; Sun, Zuoming; Zhang, Xiaolong
2018-02-01
Infrared thermography is a fast and effective non-destructive testing method, which has an increasing application in the field of Aeronautics, Astronautic, architecture and medical, et al. Most of the reports about the application of this technology are focus on the specimens of planar, pulse light is often used as the heat stimulation and a plane heat source is generated on the surface of the specimen by the using of a lampshade, however, this method is not suitable for the specimen of non-planar, such as the pipeline. Therefore, in this paper, according the NDT problem of a steel and composite pipeline specimen, ultrasonic and hot water are applied as the heat source respectively, and an IR camera is used to record the temperature varies of the surface of the specimen, defects are revealed by the thermal images sequence processing. Furthermore, the results of light pulse thermography are also shown as comparison, it is indicated that choose the right stimulation method, can get a more effective NDT results for the pipeline specimen.
Clinical applications of computerized thermography
NASA Technical Reports Server (NTRS)
Anbar, Michael
1988-01-01
Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.
Thermal Inspection of Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.
A relative-intensity two-color phosphor thermography system
NASA Technical Reports Server (NTRS)
Merski, N. Ronald
1991-01-01
The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.
Motion-induced eddy current thermography for high-speed inspection
NASA Astrophysics Data System (ADS)
Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian
2017-08-01
This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.
NASA Astrophysics Data System (ADS)
Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.
2012-04-01
Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.
NASA Technical Reports Server (NTRS)
Cramer, K. E.; Winfree, W. P.
2005-01-01
The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the "good" material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated from an analytic model of the thermal response of the material under examination, is used to process the thermal data from the RCC materials. Details of a one-dimensional analytic model and a two-dimensional finite-element model will be presented. An overview of the PCA process as well as a quantitative signal-to-noise comparison of the results of performing both embodiments of PCA on thermographic data from various RCC specimens will be shown. Finally, a number of different applications of this technology to various RCC components will be presented.
Segmenting breast cancerous regions in thermal images using fuzzy active contours
Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad
2016-01-01
Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710 ± 0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically. PMID:28096784
NASA Astrophysics Data System (ADS)
Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian
2017-01-01
Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.
NASA Astrophysics Data System (ADS)
Xie, Jing; Xu, Changhang; Chen, Guoming; Huang, Weiping
2018-06-01
Inductive thermography is one kind of infrared thermography (IRT) technique, which is effective in detection of front surface cracks in metal plates. However, rear surface cracks are usually missed due to their weak indications during inductive thermography. Here we propose a novel approach (AET: AE Thermography) to improve the visibility of rear surface cracks during inductive thermography by employing the Autoencoder (AE) algorithm, which is an important block to construct deep learning architectures. We construct an integrated framework for processing the raw inspection data of inductive thermography using the AE algorithm. Through this framework, underlying features of rear surface cracks are efficiently extracted and new clearer images are constructed. Experiments of inductive thermography were conducted on steel specimens to verify the efficacy of the proposed approach. We visually compare the raw thermograms, the empirical orthogonal functions (EOFs) of the prominent component thermography (PCT) technique and the results of AET. We further quantitatively evaluated AET by calculating crack contrast and signal-to-noise ratio (SNR). The results demonstrate that the proposed AET approach can remarkably improve the visibility of rear surface cracks and then improve the capability of inductive thermography in detecting rear surface cracks in metal plates.
NASA Astrophysics Data System (ADS)
Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.
2016-04-01
On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.
Heterodyne lock-in thermography of early demineralized in dental tissues
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang
2017-12-01
Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.
NASA Astrophysics Data System (ADS)
Rao, K. H. S.; Shah, A. v.; Ruedi, B.
1982-11-01
The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.
Visualization of self-heating of an all climate battery by infrared thermography
NASA Astrophysics Data System (ADS)
Zhang, Guangsheng; Tian, Hua; Ge, Shanhai; Marple, Dan; Sun, Fengchun; Wang, Chao-Yang
2018-02-01
Self-heating Li-ion battery (SHLB), a.k.a. all climate battery, has provided a novel and practical solution to the low temperature power loss challenge. During its rapid self-heating, it is critical to keep the heating process and temperature distributions uniform for superior battery performance, durability and safety. Through infrared thermography of an experimental SHLB cell activated from various low ambient temperatures, we find that temperature distribution is uniform over the active electrode area, suggesting uniform heating. We also find that a hot spot exists at the activation terminal during self-heating, which provides diagnostics for improvement of next generation SHLB cells without the hot spot.
Infrared thermography in the restoration of cultural properties
NASA Astrophysics Data System (ADS)
Carlomagno, Giovanni M.; Carosena, Meola
2001-03-01
Some of the work carried out at DETEC on the use of infrared thermography in the architectural restoration field is examined. Three different techniques, pulse thermography (PT), modulated thermography (MT) and pulse phase thermography (PPT) are analyzed through the control of some art treasures such as mosaics and frescoes. In particular, the following artifacts are considered: mosaics covering some external walls of the building of the Faculty of Engineering of Naples, frescoes in the Duomo of Sarno, frescoes in the Cripta SS. Stefani in Vaste (Le), mosaics and frescoes in the Archeological Museum of Naples coming from Pompeii and Ruvo. It is found that the choice of the technique depends on the specific surface to be tested: if only qualitative information about detachments and cracks are needed the pulse thermography is sufficient; if the surface is not very sensitive to temperature rising, the pulse phase thermography can be applied which gives information about the location of the defected zone. If instead, the analysis regards rare art treasures, lockin thermography is the only response.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.
2006-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced nondestructive evaluation (NDE) techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.
2007-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Rweinhardt, Walter W.
2006-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Phosphor thermography technique in hypersonic wind tunnel - Feasibility study
NASA Astrophysics Data System (ADS)
Edy, J. L.; Bouvier, F.; Baumann, P.; Le Sant, Y.
Probative research has been undertaken at ONERA on a new technique of thermography in hypersonic wind tunnels. This method is based on the heat sensitivity of a luminescent coating applied to the model. The luminescent compound, excited by UV light, emits visible light, the properties of which depend on the phosphor temperature, among other factors. Preliminary blowdown wind tunnel tests have been performed, firstly for spot measurements and then for cartographic measurements using a 3-CCD video camera, a BETACAM video recorder and a digital image processing system. The results provide a good indication of the method feasibility.
Application of the Quadrupole Method for Simulation of Passive Thermography
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.
2017-01-01
Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.
Infrared thermography based on artificial intelligence for carpal tunnel syndrome diagnosis.
Jesensek Papez, B; Palfy, M; Turk, Z
2008-01-01
Thermography for the measurement of surface temperatures is well known in industry, although is not established in medicine despite its safety, lack of pain and invasiveness, easy reproducibility, and low running costs. Promising results have been achieved in nerve entrapment syndromes, although thermography has never represented a real alternative to electromyography. Here an attempt is described to improve the diagnosis of carpal tunnel syndrome with thermography using a computer-based system employing artificial neural networks to analyse the images. Method reliability was tested on 112 images (depicting the dorsal and palmar sides of 26 healthy and 30 pathological hands), with the hand divided into 12 segments and compared relative to a reference. Palmar segments appeared to have no beneficial influence on classification outcome, whereas dorsal segments gave improved outcome with classification success rates near to or over 80%, and finger segments influenced by the median nerve appeared to be of greatest importance. These are preliminary results from a limited number of images and further research will be undertaken as our image database grows.
Quantitative analysis of pulse thermography data for degradation assessment of historical buildings
NASA Astrophysics Data System (ADS)
Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Chiapparino, Antonella
2015-06-01
In the last decades, infrared thermography has been successfully applied to various materials and structures for the assessment of their state of conservation and planning suitable restoration works. To this aim, mathematical models are required to characterize thermal anomaly sources, such as detachments, water infiltration and material decomposition processes. In this paper, an algorithm based on the conservative finite difference method is used to analyse pulse thermography data acquired on an ancient building in the Pompeii archaeological site (Naples, Italy). The numerical study is applied to both broad and narrow elongated thermal anomalies. In particular, from the comparison between simulated and experimental thermal decays, the plaster thickness was characterized in terms of thermal properties and areas of possible future detachments, and moisture infiltration depths were identified.
Development of infrared goggles and prototype
NASA Astrophysics Data System (ADS)
Tsuchimoto, Kouzou; Komatsubara, Shigeyuki; Fujikawa, Masaru; Otsuka, Toshiaki; Kan, Moriyasu; Matsumura, Norihide
2006-05-01
We aimed at developing a hands free type practical wearable thermography which will not hinder walking or working of the person wearing the equipment. We installed a small format camera core module, which was recently developed, into the fire fighter's helmet and incorporated image transmission function over radio to the equipment. We combined this thermography with a see-through type head mount display, and called it "Infrared Goggles". A prototype was developed for verification test of lifesaving support system in fire fighting activities.
NASA Astrophysics Data System (ADS)
Jaspers, Mariëlle E. H.; Maltha, Ilse; Klaessens, John H. G. M.; de Vet, Henrica C. W.; Verdaasdonk, Rudolf M.; van Zuijlen, Paul P. M.
2016-09-01
Adequate assessment of burn wounds is crucial in the management of burn patients. Thermography, as a noninvasive measurement tool, can be utilized to detect the remaining perfusion over large burn wound areas by measuring temperature, thereby reflecting the healing potential (HP) (i.e., number of days that burns require to heal). The objective of this study was to evaluate the clinimetric properties (i.e., reliability and validity) of thermography for measuring burn wound HP. To evaluate reliability, two independent observers performed a thermography measurement of 50 burns. The intraclass correlation coefficient (ICC), the standard error of measurement (SEM), and the limits of agreement (LoA) were calculated. To assess validity, temperature differences between burned and nonburned skin (ΔT) were compared to the HP found by laser Doppler imaging (serving as the reference standard). By applying a visual method, one ΔT cutoff point was identified to differentiate between burns requiring conservative versus surgical treatment. The ICC was 0.99, expressing an excellent correlation between two measurements. The SEM was calculated at 0.22°C, the LoA at -0.58°C and 0.64°C. The ΔT cutoff point was -0.07°C (sensitivity 80% specificity 80%). These results show that thermography is a reliable and valid technique in the assessment of burn wound HP.
Derruau, Stéphane; Renard, Yohann; Pron, Hervé; Taiar, Redha; Abdi, Ellie; Polidori, Guillaume; Lorimier, Sandrine
2018-05-12
Hidradenitis suppurativa (HS) is a chronic, inflammatory, and recurrent skin disease. Surgical excision of wounds appears to be the only curative treatment for the prevention of recurrence of moderate to severe stages. Magnetic resonance imaging (MRI) is a standard reference examination for the detection of HS peri-anal inflammatory fistula. In this case study, the use of real-time medical infrared thermography, in combination with MRI as appropriate imaging, is proposed. The aim is to assist surgeons in the pre- and peri-surgical management of severe perianal hidradenitis suppurativa with the intent to ensure that all diseased lesions were removed during surgery and therefore to limit recurrence. The results show that medical infrared thermography (MIT), coupled with MRI, could be highly effective strategy to address thermally distinguished health tissues and inflammatory sites during excision, as characterised by differential increases in temperature. Medical infrared thermography could be used to check the total excision of inflammatory lesions as a noninvasive method that is not painful, not radiant, and is easily transportable during surgery. Ultimately, this method could be complementary with MRI in providing clinicians with objective data on the status of tissues below the perianal skin surface in the pre- and per-operating management of severe hidradenitis suppurativa. Copyright © 2018 Elsevier B.V. All rights reserved.
Computerized detection of breast cancer with artificial intelligence and thermograms.
Ng, E Y-K; Fok, S C; Peh, Y C; Ng, F C; Sim, L S J
2002-01-01
This paper shows the concurrent use of thermography and artificial neural networks (ANN) for the diagnosis of breast cancer, a disease that is growing in prominence in women all over the world. It has been reported that breast thermography itself could detect breast cancer up to 10 years earlier than the conventional golden methods such as mammography, in particular in the younger patient. However, the accuracy of thermography is dependent on many factors such as the symmetry of the breasts' temperature and temperature stability. A woman's body temperature is known to be stable in certain periods after menstruation and it was found that the accuracy of thermography in women whose thermal images are taken in a suitable period (5th - 12th and 21st day of menstruation) is higher (80%) than the total population of patients (73%). The stability of the body temperature will depend on physiological state. This paper examines the use of ANN to complement the infrared heat radiating from the surface of the body with other physiological data. Four backpropagation neural networks were developed and trained using the results from the Singapore General Hospital patients' physiological data and thermographs. Owing to the inaccuracies found in thermography and the low population size gathered for this project, the networks developed could only accurately diagnose about 61.54% of the breast cancer cases. Nevertheless, the basic neural network framework has been established and it has great potential for future development of an intelligent breast cancer diagnosis system. This would be especially useful to the teenagers and young adults who are unsuitable for mammography at a young age. An intelligent breast thermography-neural network will be able to give an accurate diagnosis of breast cancer and can make a positive impact on breast disease detection.
Infrared thermography for examination of paper structure
NASA Astrophysics Data System (ADS)
Kiiskinen, Harri T.; Pakarinen, Pekka I.
1998-03-01
The paper industry has used IR cameras primarily for troubleshooting, where the most common examples include the examination of the condition of dryer fabrics and dryer cylinders and the analysis of moisture variations in a paper web. Another application extensively using IR thermography is non-destructive testing of composite materials. This paper presents some recently developed laboratory methods using an IR camera to examine paper structure. Specific areas include cockling, moisture content, thermal uniformity, mechanism of failure, and an analysis of the copying process.
Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery
NASA Technical Reports Server (NTRS)
Lee, George
1992-01-01
A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang
2016-10-01
In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.
Quantitative assessment in thermal image segmentation for artistic objects
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sfarra, Stefano; Maldague, Xavier P. V.
2017-07-01
The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve Non-destructive Testing (NDT), Medical analysis (Computer Aid Diagnosis/Detection- CAD), Arts and Archaeology among many others. In the arts and archaeology field, infrared technology provides significant contributions in term of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard Non-Negative Matrix Factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by Non-negative least squares (NNLS) active-set algorithm (SNMF2) and eigen decomposition approaches such as Principal Component Thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) to obtain the thermal features. On one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet based data fusion combines the data of each method with PCT to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue and a fresco were analyzed using the above mentioned methods and interesting results were obtained.
NASA Astrophysics Data System (ADS)
Ishizaki, Takuya; Nagano, Hosei
2015-11-01
A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Zeng, Zhi; Shen, Jingling; Zhang, Cunlin; Zhao, Yuejin
2018-03-01
Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical model for LPSD method is based on the one-dimensional solution of heat conduction without considering the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by defect size by analytical model. Furthermore, we constructed the relation between the characteristic time of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for depth prediction when the effect of defect size was considered, and the rectification results of stainless steel and GFRP samples were presented and discussed.
Investigation of the use of thermography for research and clinical applications in pregnant women
NASA Astrophysics Data System (ADS)
Topalidou, Anastasia; Downe, Soo
2016-03-01
Background: The possibility of using thermal imaging, as a non-invasive method, in medicine may provide potential ability of advanced imaging. Objective: The conduction of a preliminary study in healthy non-pregnant females in order to investigate the imaging ability of thermography and its implementation; and to determine hot and cold areas in order to create a "map" of temperature distribution of the abdomen and the torso. Methods: Participants were 18-45 years old non-pregnant women (n = 10), who were measured at 4 different distances. Two thermal imaging cameras and their corresponding software were used to measure abdomen, low back, left and right side of the torso. Results: There were no statistically significant differences in the mean values of the exported temperatures according the distance and the angle between the camera and the subject. The inferior part of the rectus abdominis muscle recorded the coldest zone and the umbilicus appeared as the most prominent hot spot. Conclusions: Thermography shows to be a potential non-invasive technique offering new options in the evaluation of pregnant and laboring women.
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.
Integration of infrared thermography into various maintenance methodologies
NASA Astrophysics Data System (ADS)
Morgan, William T.
1993-04-01
Maintenance methodologies are in developmental stages throughout the world as global competitiveness drives all industries to improve operational efficiencies. Rapid progress in technical advancements has added an additional strain on maintenance organizations to progressively change. Accompanying needs for advanced training and documentation is the demand for utilization of various analytical instruments and quantitative methods. Infrared thermography is one of the primary elements of engineered approaches to maintenance. Current maintenance methodologies can be divided into six categories; Routine ('Breakdown'), Preventive, Predictive, Proactive, Reliability-Based, and Total Productive (TPM) maintenance. Each of these methodologies have distinctive approaches to achieving improved operational efficiencies. Popular though is that infrared thermography is a Predictive maintenance tool. While this is true, it is also true that it can be effectively integrated into each of the maintenance methodologies for achieving desired results. The six maintenance strategies will be defined. Infrared applications integrated into each will be composed in tabular form.
NASA Astrophysics Data System (ADS)
Madding, Robert P.
1981-01-01
The cost of thermographic information obtained by contracting for a service is compared to that of buying equipment and doing the work in-house. A breakeven analysis method is used to find the number of days per year an instrument must be used to justify buying it. Life-cycle costing techniques are used to find the equivalent annual cost of various classes of thermographic instruments. Results indicate that a full-time person earning 20,000 annually must use a 30,000 instrument at least 73 days per year if thermography can otherwise be contracted for $675 per day. By devoting a person to thermography part-time, the number of inspection days for this case can be reduced to about 28. Further in-house advantage can be gained by considering investment tax credits, salvage value and, to some extent, accelerated depreciation. Techniques for finding the breakeven number of inspection days for other costs are developed. A nomogram is included for rapid comparisons.
NASA Astrophysics Data System (ADS)
Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.
2016-02-01
In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.
Giansanti, Daniele
2008-07-01
A wearable device for skin-contact thermography [Giansanti D, Maccioni G. Development and testing of a wearable integrated thermometer sensor for skin contact thermography. Med Eng Phys 2006 [ahead of print
Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography
NASA Astrophysics Data System (ADS)
Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting
2018-05-01
Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.
Infrared Thermography for Temperature Measurement and Non-Destructive Testing
Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.
2014-01-01
The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096
Exit Presentation: Infrared Thermography on Graphite/Epoxy
NASA Technical Reports Server (NTRS)
Comeaux, Kayla
2010-01-01
This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects
Aerial thermography for energy conservation
NASA Technical Reports Server (NTRS)
Jack, J. R.
1978-01-01
Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.
Thermal comfort of seats as visualized by infrared thermography.
Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão
2017-07-01
Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.
2006-01-01
The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the good material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued when a fixed set of eigenvectors is used to process the thermal data from the RCC materials. These eigen vectors can be generated either from an analytic model of the thermal response of the material under examination, or from a large cross section of experimental data. This paper will provide the details of the analytic model; an overview of the PCA process; as well as a quantitative signal-to-noise comparison of the results of performing both embodiments of PCA on thermographic data from various RCC specimens. Details of a system that has been developed to allow insitu inspection of a majority of shuttle RCC components will be presented along with the acceptance test results for this system. Additionally, the results of applying this technology to the Space Shuttle Discovery after its return from flight will be presented.
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
Field testing of hand-held infrared thermography, phase II TPF-5(247) : final report.
DOT National Transportation Integrated Search
2016-05-01
This report is the second of two volumes that document results from the pooled fund study TPF-5 (247), Development of : Handheld Infrared Thermography, Phase II. The interim report (volume I) studied the implementation of handheld thermography : by p...
Detection of micro solder balls using active thermography and probabilistic neural network
NASA Astrophysics Data System (ADS)
He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning
2017-03-01
Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.
Single nanowire thermal conductivity measurements by Raman thermography.
Doerk, Gregory S; Carraro, Carlo; Maboudian, Roya
2010-08-24
A facile, rapid, and nondestructive technique for determining the thermal conductivity of individual nanowires based on Raman temperature mapping has been demonstrated. Using calculated absorption efficiencies, the thermal conductivities of single cantilevered Si nanowires grown by the vapor-liquid-solid method are measured and the results agree well with values predicted by diffuse phonon boundary scattering. As a measurement performed on the wire, thermal contact effects are avoided and ambient air convection is found to be negligible for the range of diameters measured. The method's versatility is further exemplified in the reverse measurement of a single nanowire absorption efficiency assuming diffuse phonon boundary scattering. The results presented here outline the broad utility that Raman thermography may have for future thermoelectric and photovoltaic characterization of nanostructures.
Remote sensing of land-based voids using computer enhanced infrared thermography
NASA Astrophysics Data System (ADS)
Weil, Gary J.
1989-10-01
Experiments are described in which computer-enhanced infrared thermography techniques are used to detect and describe subsurface land-based voids, such as voids surrounding buried utility pipes, voids in concrete structures such as airport taxiways, abandoned buried utility storage tanks, and caves and underground shelters. Infrared thermography also helps to evaluate bridge deck systems, highway pavements, and garage concrete. The IR thermography techniques make it possible to survey large areas quickly and efficiently. The paper also surveys the advantages and limitations of thermographic testing in comparison with other forms of NDT.
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.
Model based defect characterization in composites
NASA Astrophysics Data System (ADS)
Roberts, R.; Holland, S.
2017-02-01
Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.
A Classification Method for Seed Viability Assessment with Infrared Thermography.
Men, Sen; Yan, Lei; Liu, Jiaxin; Qian, Hua; Luo, Qinjuan
2017-04-12
This paper presents a viability assessment method for Pisum sativum L. seeds based on the infrared thermography technique. In this work, different artificial treatments were conducted to prepare seeds samples with different viability. Thermal images and visible images were recorded every five minutes during the standard five day germination test. After the test, the root length of each sample was measured, which can be used as the viability index of that seed. Each individual seed area in the visible images was segmented with an edge detection method, and the average temperature of the corresponding area in the infrared images was calculated as the representative temperature for this seed at that time. The temperature curve of each seed during germination was plotted. Thirteen characteristic parameters extracted from the temperature curve were analyzed to show the difference of the temperature fluctuations between the seeds samples with different viability. With above parameters, support vector machine (SVM) was used to classify the seed samples into three categories: viable, aged and dead according to the root length, the classification accuracy rate was 95%. On this basis, with the temperature data of only the first three hours during the germination, another SVM model was proposed to classify the seed samples, and the accuracy rate was about 91.67%. From these experimental results, it can be seen that infrared thermography can be applied for the prediction of seed viability, based on the SVM algorithm.
Infrared thermography in the evaluation of meibomian gland dysfunction.
Su, Tai-Yuan; Ho, Wei-Ting; Chiang, Shu-Chiung; Lu, Chien-Yi; Chiang, Huihua Kenny; Chang, Shu-Wen
2017-07-01
To evaluate meibomian gland dysfunction (MGD) by infrared thermography. An observational study was conducted at the Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan. Participants included 89 MGD patients (30 in Grade 1, 49 in Grade 2, and 10 in Grade 3) and 65 controls. The close-eye thermographic images of the eyelid were obtained noninvasively by infrared thermography. Temperatures at 8 regions of interest (ROIs) of the eyelid margin and a reference temperature at the center of the upper eyelid were measured. The temperature ratio was defined as the temperature of ROI divided by the reference temperature. Eyelid margin temperature measured by infrared thermography increased from temporal side (ROI 1) to the nasal side (ROI 8) of the eye in both MGD patients and control groups. The temperature ratios were significantly higher in MGD participants than in controls, especially at ROI 8. The eyelid margin temperature measured by infrared thermography was higher in MGD participants. Further development of this infrared thermography system may become a rapid and non-invasive tool for MGD screening. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.
2006-01-01
Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.
2016-01-01
It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.
Shah, Suraj; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Rad
2012-12-01
Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500 N, 1800 N, and 2100 N, representing 3 times body weight for a 50 kg, 60 kg, and 70 kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2 MPa (at 1500 N), -96.0 MPa (at 1800 N), and -103.5 MPa (at 2100 N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermography's potential for future biomechanical applications. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shrestha, Ranjit; Kim, Wontae
2017-06-01
This paper investigates the possibilities of evaluating non-uniform coating thickness using thermal wave imaging method. A comparative study of pulsed thermography (PT) and lock-in thermography (LIT) based on evaluating the accuracy of predicted coating thickness is presented. In this study, a transient thermal finite element model was created in ANSYS 15. A single square pulse heating for PT and a sinusoidal heating at different modulation frequencies for LIT were used to stimulate the sample according to the experimental procedures. The response of thermally excited surface was recorded and data processing with Fourier transform was carried out to obtain the phase angle. Then calculated phase angle was correlated with the coating thickness. The method demonstrated potential in the evaluation of coating thickness and was successfully applied to measure the non-uniform top layers ranging from 0.1 mm to 0.6 mm; within an accuracy of 0.0003-0.0023 mm for PT and 0.0003-0.0067 mm for LIT. The simulation model enabled a better understanding of PT and LIT and provided a means of establishing the required experimental set-up parameters. This also led to optimization of experimental configurations, thus limiting the number of physical tests necessary.
NASA Astrophysics Data System (ADS)
Le Touz, N.; Toullier, T.; Dumoulin, J.
2017-05-01
The present study addresses the thermal behaviour of a modified pavement structure to prevent icing at its surface in adverse winter time conditions or overheating in hot summer conditions. First a multi-physic model based on infinite elements method was built to predict the evolution of the surface temperature. In a second time, laboratory experiments on small specimen were carried out and the surface temperature was monitored by infrared thermography. Results obtained are analyzed and performances of the numerical model for real scale outdoor application are discussed. Finally conclusion and perspectives are proposed.
Adhesive quality inspection of wind rotor blades using thermography
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Sun, Jiangang; Shen, Jingling; Wang, Xun; Zhang, Cunlin; Zhao, Yuejin
2018-04-01
Wind power is playing an increasingly important role in ensuring electrical safety for human beings. Because wind rotor blades are getting larger and larger in order to harvest wind energy more efficiently, there is a growing demand for nondestructive testing. Due to the glue structure of rotor blades, adhesive quality evaluation is needed. In this study, three adhesive samples with a wall thickness of 13mm, 28mm or 31mm were each designed with a different adhesive situation. The transmission thermography was applied to inspect the samples. The results illustrate that this method is effective to inspect adhesive quality of wind rotor blades.
Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan
2013-01-01
Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810
3D thermography imaging standardization technique for inflammation diagnosis
NASA Astrophysics Data System (ADS)
Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul
2005-01-01
We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.
NASA Astrophysics Data System (ADS)
Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.
2010-04-01
The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.
Principal Components of Thermography analyses of the Silk Tomb, Petra (Jordan)
NASA Astrophysics Data System (ADS)
Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Fort, Rafael
2015-04-01
This communication presents the results of an active thermography survey of the Silk Tomb, which belongs to the Royal Tombs compound in the archaeological city of Petra in Jordan. The Silk Tomb is carved in the variegated Palaeozoic Umm Ishrin sandstone and it is heavily backweathered due to surface runoff from the top of the cliff where it is carved. Moreover, the name "Silk Tomb" was given because of the colourful display of the variegated sandstone due to backweathering. A series of infrared images were taken as the façade was heated by sunlight to perform a Principal Component of Thermography analyses with IR view 1.7.5 software. This was related to indirect moisture measurements (percentage of Wood Moisture Equivalent) taken across the façade, by means of a Protimeter portable moisture meter. Results show how moisture retention is deeply controlled by lithological differences across the façade. Research funded by Geomateriales 2 S2013/MIT-2914 and CEI Moncloa (UPM, UCM, CSIC) through a PICATA contract and the equipment from RedLAbPAt Network
Breast cancer detection in rotational thermography images using texture features
NASA Astrophysics Data System (ADS)
Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.
2014-11-01
Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.
Infrared thermography in newborns: the first hour after birth.
Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold
2003-01-01
It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel
Kurihara, T; Higashi, Y; Suemasu, K; Kanoh, T; Tabei, T; Inoue, K
1993-05-01
We examined temperature differences between a cancerous breast and its counterpart normal one by contact thermography before and after preoperative chemotherapy, and evaluated the relationship between the changes in the thermograms and response to chemotherapy in six patients with breast cancer. We used the following definitions: 1) delta Tmean: temperature differences between a mean temperature of a cancerous breast and that of the contralateral healthy breast; 2) delta Tmax: temperature differences between a cancer-related hyperthermic area in a breast and the mirror area of contralateral breast; 3) and the thermal patterns in thermogram were estimated by the criteria of Tada et al. In responders the thermograms after chemotherapy indicated an improvement in the hyperthermic vascular pattern (HVP) or hyperthermic area and a decrease of delta Tmean and delta Tmax. In contrast, little or no changes were observed in the thermograms of non-responders. Degrees of changes in thermograms reflected the effectiveness of chemotherapy. Our study showed that chemotherapeutic effectiveness may be better evaluated by combining contact thermography with the present method measuring tumor sizes than by only the present one.
[Diagnostic relevance of contact thermography in renal transplantation (author's transl)].
Kopsa, H
1980-01-01
102 renal transplant recipients were checked by contact thermography according to Tricoire for 2 1/2 years. Diagnostic value of this non invasive, quickly available and reproduceable method was investigated. The grafted kidney reveals on the thermographic screen its size, site, and vascularisation. The thermograhic pattern of a well functioning transplant shows warm areas in green, blue and violet colour. Onset of acute or chronic renal rejection leads to impaired heat conduction to the body surface either by oedema or by diminished blood flow. By photographic documentation in natural colour spotted or diffuse cold regions of brown, maroon and orange are seen. In the very early posttransplant period up to two months thermography is helpful in differential diagnosis for those recipients requiring initial haemodialysis treatment. Information is available between non functioning grafts with diminished renal blood supply and transplants with acute tubular necrosis. Impressive thermograms are found by rupture and subrupture of the kidney respectively. Superficial perirenal changes lead to topical temperature elevation as well. The high reliability of 92% correct diagnoses depends on exact application of the thermosensitive film and on determination of the basic individual skin temperature in reference to repeated examinations of the grafted area. Temperature measurement is influenced by subcutaneous abdominal fat distribution and muscle thickness as well as by deep position of the transplant or asymmetry of the lower abdominal region. In the wide field of diagnostic procedures necessary for transplant recipients with complications thermography by Tricoire is recommended.
Kaercher, Thomas; Dietz, Jasna; Jacobi, Christina; Berz, Reinhold; Schneider, Holm
2015-09-01
X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of ectodermal dysplasia. Clinical characteristics include meibomian gland disorder and the resulting hyperevaporative dry eye. In this study, we evaluated meibography and ocular infrared thermography as novel methods to diagnose XLHED. Eight infants, 12 boys and 14 male adults with XLHED and 12 healthy control subjects were subjected to a panel of tests including the ocular surface disease index (OSDI), meibography and infrared thermography, non-invasive measurement of tear film break-up time (NIBUT) and osmolarity, Schirmer's test, lissamine green staining and fluorescein staining. Sensitivity and specificity were determined for single tests and selected test combinations. Meibography had 100% sensitivity and specificity for identifying XLHED. Infrared thermography, a completely non-invasive procedure, revealed a typical pattern for male subjects with XLHED. It was, however, less sensitive (86% for adults and 67% for children) than meibography or a combination of established routine tests. In adults, OSDI and NIBUT were the best single routine tests (sensitivity of 86% and 71%, respectively), whereas increased tear osmolarity appeared as a rather unspecific ophthalmic symptom. In children, NIBUT was the most convincing routine test (sensitivity of 91%). Meibography is the most reliable ophthalmic examination to establish a clinical diagnosis in individuals with suspected hypohidrotic ectodermal dysplasia, even before genetic test results are available. Tear film tests and ocular surface staining are less sensitive in children, but very helpful for estimating the severity of ocular surface disease in individuals with known XLHED.
U.S. market for infrared thermography equipment
NASA Astrophysics Data System (ADS)
Fulop, Gabor F.
1995-03-01
The market for infrared thermography is undergoing dramatic changes. Focal plane array technologies previously dominated by the military are being opened up to the commercial sector, new uncooled technologies are advancing rapidly and entirely new applications are emerging. Maxtech International has carried out its second in-depth analysis of these markets within two years. In 1994, the U.S. market for commercial (and dual-use) infrared thermography equipment reached 100 million and is expected to grow to 250 million by 1999. As part of the analysis, a survey of over 3,900 users of infrared thermography equipment has been completed. Included are segmentation by end-user industry and expected spending projections in various market segments.
NASA Technical Reports Server (NTRS)
Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David
2002-01-01
Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.
Advanced Image Processing for Defect Visualization in Infrared Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1997-01-01
Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.
Evaluation of thermal load during laser corneal refractive surgery using infrared thermography
NASA Astrophysics Data System (ADS)
Brunsmann, U.; Sauer, U.; Arba-Mosquera, S.; Magnago, T.; Triefenbach, N.
2010-09-01
Infrared thermography is used for evaluation of the mean temperature as a measure of thermal load during corneal refractive surgery. An experimental method to determine emissivity and to calibrate the thermografic system is presented. In a case study on the porcine eye two dimensional temperature distributions with lateral resolution of 170 μm and line scans with temporal resolution of 13 μs are discussed with respect to the meaning of mean temperature. Using the newest generation of surgery equipment it is shown, that the mean temperature rise can be kept below 5 °C during myopic laser in situ keratomileusis (LASIK) treatments corresponding to an aberration-free correction of -2.75 diopter.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.
2015-01-01
Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.
Infrared thermographic detection of buried grave sites
NASA Astrophysics Data System (ADS)
Weil, Gary J.; Graf, Richard J.
1992-04-01
Since time began, people have been born and people have died. For a variety of reasons grave sites have had to be located and investigated. These reasons have included legal, criminal, religious, construction and even simple curiosity problems. Destructive testing methods such as shovels and backhoes, have traditionally been used to determine grave site locations in fields, under pavements, and behind hidden locations. These existing techniques are slow, inconvenient, dirty, destructive, visually obtrusive, irritating to relatives, explosive to the media and expensive. A new, nondestructive, non-contact technique, infrared thermography has been developed to address these problems. This paper will describe how infrared thermography works and will be illustrated by several case histories.
NASA Astrophysics Data System (ADS)
Ando, Masatoshi; Sharp, Nathan; Adams, Douglas
2012-04-01
Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.
Evaluation of stator core loss of high speed motor by using thermography camera
NASA Astrophysics Data System (ADS)
Sato, Takeru; Enokizono, Masato
2018-04-01
In order to design a high-efficiency motor, the iron loss that is generated in the motor should be reduced. The iron loss of the motor is generated in a stator core that is produced with an electrical steel sheet. The iron loss characteristics of the stator core and the electrical steel sheet are agreed due to a building factor. To evaluate the iron loss of the motor, the iron loss of the stator core should be measured more accurately. Thus, we proposed the method of the iron loss evaluation of the stator core by using a stator model core. This stator model core has been applied to the surface mounted permanent magnet (PM) motors without windings. By rotate the permanent magnet rotor, the rotating magnetic field is generated in the stator core like a motor under driving. To evaluate the iron loss of the stator model core, the iron loss of the stator core can be evaluated. Also, the iron loss can be calculated by a temperature gradient. When the temperature gradient is measured by using thermography camera, the iron loss of entire stator core can be evaluated as the iron loss distribution. In this paper, the usefulness of the iron loss evaluation method by using the stator model core is shown by the simulation with FEM and the heat measurement with thermography camera.
Year-Round Use Of Thermography In House Doctoring
NASA Astrophysics Data System (ADS)
Gadsby, Kenneth J.; Harrje, David T.; Dutt, Gautam S.
1983-03-01
There have been many presentations of thermographic residential building analyses at the past ThermosInse conferences. A number of these papers have dealt with evaluation of insulation voids and more recently a few have described air leakage detection 2,3 during the colder winter months. This paper will focus on the thermographic application in the House Doctor instrumented energy analysis approach as developed by Princeton University. The central theme will be the application to a year-round research or commercial activity. Some of the conditions that could create thermographic problems, as well as techniques that may be used to lessen these difficulties, thereby extending the thermographic "season" is discussed. Our experiences in summer thermography with and without the use of a building pressurization system is also covered.
NASA Astrophysics Data System (ADS)
Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.
2009-02-01
Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.
The effect of erosion on the fatigue limit of metallic materials for aerospace applications
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Exarchos, D. A.; Matikas, T. E.
2018-03-01
This work deals with the study of the fatigue behavior of metallic materials for aerospace applications which have undergone erosion. Particularly, an innovative non-destructive methodology based on infrared lock-in thermography was applied on aluminum samples for the rapid determination of their fatigue limit. The effect of erosion on the structural integrity of materials can lead to a catastrophic failure and therefore an efficient assessment of the fatigue behavior is of high importance. Infrared thermography (IRT) as a non-destructive, non-contact, real time and full field method can be employed in order the fatigue limit to be rapidly determined. The basic principle of this method is the detection and monitoring of the intrinsically dissipated energy due to the cyclic fatigue loading. This methodology was successfully applied on both eroded and non-eroded aluminum specimens in order the severity of erosion to be evaluated.
Jesensek Papez, B; Palfy, M; Mertik, M; Turk, Z
2009-01-01
This study further evaluated a computer-based infrared thermography (IRT) system, which employs artificial neural networks for the diagnosis of carpal tunnel syndrome (CTS) using a large database of 502 thermal images of the dorsal and palmar side of 132 healthy and 119 pathological hands. It confirmed the hypothesis that the dorsal side of the hand is of greater importance than the palmar side when diagnosing CTS thermographically. Using this method it was possible correctly to classify 72.2% of all hands (healthy and pathological) based on dorsal images and > 80% of hands when only severely affected and healthy hands were considered. Compared with the gold standard electromyographic diagnosis of CTS, IRT cannot be recommended as an adequate diagnostic tool when exact severity level diagnosis is required, however we conclude that IRT could be used as a screening tool for severe cases in populations with high ergonomic risk factors of CTS.
Ginat, Daniel Thomas; Anthony, Gregory J; Christoforidis, Gregory; Oto, Aytekin; Dalag, Leonard; Sammet, Steffen
2018-02-01
The purpose of this study is to compare the image quality of magnetic resonance (MR) treatment planning images and proton resonance frequency (PRF) shift thermography images and inform coil selection for MR-guided laser ablation of tumors in the head and neck region. Laser ablation was performed on an agar phantom and monitored via MR PRF shift thermography on a 3-T scanner, following acquisition of T1-weighted (T1W) planning images. PRF shift thermography images and T2-weighted (T2W) planning images were also performed in the neck region of five normal human volunteers. Signal-to-noise ratios (SNR) and temperature uncertainty were calculated and compared between scans acquired with the quadrature mode body integrated coil and a head and neck neurovascular coil. T1W planning images of the agar phantom produced SNRs of 4.0 and 12.2 for the quadrature mode body integrated coil and head and neck neurovascular coil, respectively. The SNR of the phantom MR thermography magnitude images obtained using the quadrature mode body integrated coil was 14.4 versus 59.6 using the head and neck coil. The average temperature uncertainty for MR thermography performed on the phantom with the quadrature mode body integrated coil was 1.1 versus 0.3 °C with the head and neck coil. T2W planning images of the neck in five human volunteers produced SNRs of 28.3 and 91.0 for the quadrature mode body integrated coil and head and neck coil, respectively. MR thermography magnitude images of the neck in the volunteers obtained using the quadrature mode body integrated coil had a signal-to-noise ratio of 8.3, while the SNR using the head and neck coil was 16.1. The average temperature uncertainty for MR thermography performed on the volunteers with the body coil was 2.5 versus 1.6 °C with the head and neck neurovascular coil. The quadrature mode body integrated coil provides inferior image quality for both basic treatment planning sequences and MR PRF shift thermography compared with a neurovascular coil, but may nevertheless be adequate for clinical purposes.
NASA Technical Reports Server (NTRS)
Seguin, B.; Petit, V.; Devillard, R.; Reich, P.; Thouy, G. (Principal Investigator)
1980-01-01
Evapotranspiration was calculated for both the dry and irrigated zone by four methods which were compared with the energy balance method serving as a reference. Two methods did not involve the surface temperature. They are ETR(n) = R(n), liable to be valid under wet conditions and ET(eq) = (delta/delta + gamma) R(n) i.e, the first term of Penman's equation, adapted to moderately dry conditions. The methods using surface temperature were the combined energy balance aerodynamic approach and a simplified approach proposed by Jackson et al. Tests show the surface temperature methods give relatively satisfactory results both in the dry and wet zone, with a precision of 10% to 15% compared with the reference method. As was to be expected, ET(eq) gave satisfactory results only in the dry zone and ET(Rn) in the irrigated zone. Thermography increased the precision in the estimate of ET relative to the most suitable classical method by 5% to 8% and is equally suitable for both dry and wet conditions. The Jackson method does not require extensive ground measurements and the evaluation of the surface roughness.
Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography
Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos
2016-01-01
Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931
NASA Astrophysics Data System (ADS)
Lopato, Przemyslaw; Chady, Tomasz
2013-03-01
Modern industry makes more and more extensive use of various composite materials. In this paper, for the purposes of various composite materials evaluation, the terahertz imaging method is presented. Basalt fibre-reinforced composites and polymeric anticorrosion coatings are considered. Basalt fibre composites are the innovative materials that are being increasingly used in modern industry. The paper also briefly introduces a specific type of complex coating of steel applied in the industry (e.g. oil or chemical). Two methods of defects detection in the mentioned structures are presented. The first method is based on a system identification, whereas the second one is on the estimation of time-domain signal parameters. Finally, the results achieved during terahertz inspection of coatings are compared with those obtained using active thermography.
Field documentation and client presentation of IR inspections on new masonry structures
NASA Astrophysics Data System (ADS)
McMullan, Phillip C.
1991-03-01
With the adoption of American Concrete Institute's Design Standard 530 (ACI 530-88/ASCE 5-88) and Specifications (ACI 530.1-88/ASCE 6-88) by more governing bodies throughout the United States, the level and method of inspecting masonry structures is rapidly changing. These new standards set forth inspection criteria such that the Professional of Record (i.e., Architect), can determine the level of inspection based on the type and complexity of the structure being built. For example, a hospital would require considerably more inspection than a Seven-Eleven mini-market. However, the standards require that all new masonry buildings must be inspected. Infrared thermography has proven to be an effective tool to assist in the required inspections. These inspections focus on evaluating masonry for compliance with the design specifications with regard to material, structural strength and thermal performance, the use of video infrared thermography provides a thorough systematic method for inspection of structural solids and thermal integrity of masonry structures. In conducting masonry inspections, the creation of a permanent, well-documented record is valuable in avoiding potential controversy over the inspection findings. Therefore, the inspection method, verification of findings, and presentation of the inspection data are key to the successful use of infrared thermography as an inspection tool. This paper will focus on the method of inspection which TSI employs in conducting new masonry inspections. Additionally, an important component of any work is the presentation of the data. We will look at the information which is generated during this type of inspection and how that data can be converted into a usable report for the various parties involved in construction of a new masonry building.
Krewerth, D; Weidner, A; Biermann, H
2013-12-01
The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
NASA Astrophysics Data System (ADS)
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
Spatial and temporal control of thermal waves by using DMDs for interference based crack detection
NASA Astrophysics Data System (ADS)
Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias
2016-02-01
Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.
Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V.
2015-01-01
Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events. PMID:25992743
Assessment of anxiety in open field and elevated plus maze using infrared thermography.
Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe
2016-04-01
Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests. Copyright © 2016 Elsevier Inc. All rights reserved.
Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V
2015-05-08
Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.
Using Infrared Thermography to Assess Emotional Responses to Infants.
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L; Bornstein, Marc H
2015-01-01
Adult-infant interactions operate simultaneously across multiple domains and at multiple levels - from physiology to behavior. Unpackaging and understanding them, therefore, involves analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males. Infrared thermography was used to assess facial temperature changes as a measure of emotional valence, and we used a behavioral rating system to assess adults' expressed preferences. We found greater physiological activation in response to infant stimuli in females than males. As for cognitive preferences, we found greater responses to adult stimuli than to infant stimuli, both in males and females. The results are discuss in light of the Life History Theory. Finally, we discuss the importance of integrating the two data streams on our conclusions.
Feasibility of determining flat roof heat losses using aerial thermography
NASA Technical Reports Server (NTRS)
Bowman, R. L.; Jack, J. R.
1979-01-01
The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.
NASA MUST Paper: Infrared Thermography of Graphite/Epoxy
NASA Technical Reports Server (NTRS)
Comeaux, Kayla; Koshti, Ajay
2010-01-01
The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.
Fuselage disbond inspection procedure using pulsed thermography
NASA Astrophysics Data System (ADS)
Ashbaugh, Mike; Thompson, Jeffrey G.
2002-05-01
One use of pulsed thermography that has shown promise in aircraft inspection for some time is an inspection for disbonds in metallic structures. The FAA has funded research at Wayne State University in this area and Boeing identified a specific inspection requirement for disbonds on Boeing 747 aircraft. Laboratory and subsequent field testing monitored by the AANC has demonstrated the reliability of this type of inspection. As a result Boeing expects to approve a general fuselage disbond inspection procedure using pulsed thermography in the 2nd Quarter of 2001.
Computer Assisted Thermography And Its Application In Ovulation Detection
NASA Astrophysics Data System (ADS)
Rao, K. H.; Shah, A. V.
1984-08-01
Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.
A protocol for analysing thermal stress in insects using infrared thermography.
Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M
2016-02-01
The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Screening for dry eye disease using infrared ocular thermography.
Tan, Li Li; Sanjay, Srinivasan; Morgan, Philip B
2016-12-01
To evaluate the efficacy of infrared (IR) ocular thermography in screening for dry eye disease (DED). IR ocular thermography was performed on 62 dry eye and 63 age- and sex-matched control subjects. Marking of ocular surface and temperature acquisition was done using a novel 'diamond' demarcation method. 30 static- and 30 dynamic-metrics were studied and receiver operating characteristic curves were plotted. Efficacy of the temperature metrics in detecting DED were evaluated singly and in combination in terms of their area under the curve (AUC), Youden's index and discrimination power (DP). Absolute temperature of the extreme nasal conjunctiva 5s and 10s after eye opening were best detectors for DED. With threshold value for the first metric set at 34.7°C, sensitivity and specificity was 87.1% (95% CI: 76.2-94.3%) and 50.8% (95% CI: 37.9-63.6%) respectively. With threshold value for the second metric set at 34.5°C, sensitivity and specificity was 77.6% (95% CI: 64.7-87.5%) and 61.9% (95% CI: 48.8-73.9%) respectively. The two metrics had moderate accuracy and limited performances with AUC of 72% (95% CI: 63-81%) and 73% (95% CI: 64-82%); Youden index of about 0.4 and DP of 1.07 and 1.05 respectively. None of the dynamic metrics was good detector for DED. Combining metrics was not able to increase the AUC. This work suggests some utility for the application of IR ocular thermography for evaluation of dry eye patients. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Pontes, Suzy Maria Montenegro; Melo, Luiz Henrique de Paula; Maia, Nathalia Parente de Sousa; Nogueira, Andrea da Nóbrega Cirino; Vasconcelos, Thiago Brasileiro; Pereira, Eanes Delgado Barros; Bastos, Vasco Pinheiro Diógenes; Holanda, Marcelo Alcantara
2017-01-01
ABSTRACT Objective: To compare the incidence and intensity of acute adverse effects and the variation in the temperature of facial skin by thermography after the use of noninvasive ventilation (NIV). Methods: We included 20 healthy volunteers receiving NIV via oronasal mask for 1 h. The volunteers were randomly divided into two groups according to the ventilatory mode: bilevel positive airway pressure (BiPAP) or continuous positive airway pressure (CPAP). Facial thermography was performed in order to determine the temperature of the face where it was in contact with the mask and of the nasal dorsum at various time points. After removal of the mask, the volunteers completed a questionnaire about adverse effects of NIV. Results: The incidence and intensity of acute adverse effects were higher in the individuals receiving BiPAP than in those receiving CPAP (16.1% vs. 5.6%). Thermographic analysis showed a significant cooling of the facial skin in the two regions of interest immediately after removal of the mask. The more intense acute adverse effects occurred predominantly among the participants in whom the decrease in the mean temperature of the nasal dorsum was lower (14.4% vs. 7.2%). The thermographic visual analysis of the zones of cooling and heating on the face identified areas of hypoperfusion or reactive hyperemia. Conclusions: The use of BiPAP mode was associated with a higher incidence and intensity of NIV-related acute adverse effects. There was an association between acute adverse effects and less cooling of the nasal dorsum immediately after removal of the mask. Cutaneous thermography can be an additional tool to detect adverse effects that the use of NIV has on facial skin. PMID:28538774
NASA Astrophysics Data System (ADS)
Vainer, Boris G.
2005-12-01
This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 °C) fast 128 × 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 µm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate hidrosis, is discovered and described. The term sweatology is introduced to refer to the discussed specific research area in biomedical science.
Vainer, Boris G
2005-12-07
This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 degrees C) fast 128 x 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 microm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate hidrosis, is discovered and described. The term sweatology is introduced to refer to the discussed specific research area in biomedical science.
Application of infrared camera to bituminous concrete pavements: measuring vehicle
NASA Astrophysics Data System (ADS)
Janků, Michal; Stryk, Josef
2017-09-01
Infrared thermography (IR) has been used for decades in certain fields. However, the technological level of advancement of measuring devices has not been sufficient for some applications. Over the recent years, good quality thermal cameras with high resolution and very high thermal sensitivity have started to appear on the market. The development in the field of measuring technologies allowed the use of infrared thermography in new fields and for larger number of users. This article describes the research in progress in Transport Research Centre with a focus on the use of infrared thermography for diagnostics of bituminous road pavements. A measuring vehicle, equipped with a thermal camera, digital camera and GPS sensor, was designed for the diagnostics of pavements. New, highly sensitive, thermal cameras allow to measure very small temperature differences from the moving vehicle. This study shows the potential of a high-speed inspection without lane closures while using IR thermography.
Infrared thermography for wood density estimation
NASA Astrophysics Data System (ADS)
López, Gamaliel; Basterra, Luis-Alfonso; Acuña, Luis
2018-03-01
Infrared thermography (IRT) is becoming a commonly used technique to non-destructively inspect and evaluate wood structures. Based on the radiation emitted by all objects, this technique enables the remote visualization of the surface temperature without making contact using a thermographic device. The process of transforming radiant energy into temperature depends on many parameters, and interpreting the results is usually complicated. However, some works have analyzed the operation of IRT and expanded its applications, as found in the latest literature. This work analyzes the effect of density on the thermodynamic behavior of timber to be determined by IRT. The cooling of various wood samples has been registered, and a statistical procedure that enables one to quantitatively estimate the density of timber has been designed. This procedure represents a new method to physically characterize this material.
Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.
Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao
2018-04-02
Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.
Electromagnetic pulsed thermography for natural cracks inspection
NASA Astrophysics Data System (ADS)
Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing
2017-02-01
Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).
Measuring and Estimating Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2013-01-01
Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.
NASA Astrophysics Data System (ADS)
Sirikham, Adisorn; Zhao, Yifan; Mehnen, Jörn
2017-11-01
Thermography is a promising method for detecting subsurface defects, but accurate measurement of defect depth is still a big challenge because thermographic signals are typically corrupted by imaging noise and affected by 3D heat conduction. Existing methods based on numerical models are susceptible to signal noise and methods based on analytical models require rigorous assumptions that usually cannot be satisfied in practical applications. This paper presents a new method to improve the measurement accuracy of subsurface defect depth through determining the thermal wave reflection coefficient directly from observed data that is usually assumed to be pre-known. This target is achieved through introducing a new heat transfer model that includes multiple physical parameters to better describe the observed thermal behaviour in pulsed thermographic inspection. Numerical simulations are used to evaluate the performance of the proposed method against four selected state-of-the-art methods. Results show that the accuracy of depth measurement has been improved up to 10% when noise level is high and thermal wave reflection coefficients is low. The feasibility of the proposed method in real data is also validated through a case study on characterising flat-bottom holes in carbon fibre reinforced polymer (CFRP) laminates which has a wide application in various sectors of industry.
Defect characterization by inductive heated thermography
NASA Astrophysics Data System (ADS)
Noethen, Matthias; Meyendorf, Norbert
2012-05-01
During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.
Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna.
Mohler, F S; Heath, J E
1988-02-01
The temperature of the pinnae of male New Zealand White rabbits was measured by use of infrared thermography. At ambient temperatures of 15, 20, and 25 degrees C, the average pinna temperatures were 23.0, 28.7, and 36.2 degrees C, respectively. From these temperatures, average heat loss from the total pinna surface area was calculated to be 2.8, 3.3, and 4.4 W, respectively. Preoptic temperature changes also affect the vasomotor state of the rabbit. At an ambient temperature of 20 degrees C, cooling the preoptic area of the rabbit by approximately 1 degree C resulted in an average pinna temperature of 26.5 degrees C and a heat loss of 2.4 W. Heating the preoptic area by approximately 1 degree C resulted in an average pinna temperature of 33.5 degrees C and a heat loss of 5.4 W. Finally, pinna temperatures were measured by use of a thermocouple and infrared thermography simultaneously. When the pinnae were vasodilated, the thermocouple measurements were consistently higher than the pinna surface temperatures measured thermographically. When the pinnae were vasoconstricted, the thermocouple measurements were consistently lower than the pinna surface temperatures measured thermographically. The discrepancy between the two methods of measurement is discussed.
Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review
John, Hannah Eliza; Niumsawatt, Vachara; Whitaker, Iain S.
2016-01-01
Background Infrared thermography (IRT) has become an increasingly utilized adjunct to more expensive and/or invasive investigations in a range of surgical fields, no more so than in plastic surgery. The combination of functional assessment, flow characteristics and anatomical localization has led to increasing applications of this technology. This article aims to perform a systematic review of the clinical applications of IRT in plastic surgery. Methods A systematic literature search using the keywords ‘IRT’ and ‘dynamic infrared thermography (DIRT)’ has been accomplished. A total of 147 papers were extracted from various medical databases, of which 34 articles were subjected to a full read by two independent reviewers, to ensure the papers satisfied the inclusion and exclusion criteria. Studies focusing on the use of IRT in breast cancer diagnosis were excluded. Results A systematic review of 29 publications demonstrated the clinical applications of IRT in plastic surgery today. They include preoperative planning of perforators for free flaps, post operative monitoring of free flaps, use of IRT as an adjunct in burns depth analysis, in assessment of response to treatment in hemangioma and as a diagnostic test for cutaneous melanoma and carpal tunnel syndrome (CTS). Conclusions Modern infrared imaging technology with improved standardization protocols is now a credible, useful non-invasive tool in clinical practice. PMID:27047781
Field testing of hand-held infrared thermography, phase II TPF-5(247) interim report.
DOT National Transportation Integrated Search
2015-12-01
This report describes research completed to develop and implement infrared thermography, a nondestructive evaluation (NDE) : technology for the condition assessment of concrete bridge components. The overall goal of this research was to develop new :...
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Kukkonen, Tuuli M; Binik, Yitzchak M; Amsel, Rhonda; Carrier, Serge
2010-08-01
Thermography is a promising technology for the physiological measurement of sexual arousal in both men and women. This study was designed to extend our previous college student thermography study findings to an older sample (M age = 37.05 years), add an anxiety control group to further examine the specificity of temperature change, and examine the relationship between genital temperature and a continuous measure of subjective sexual arousal. Healthy men (n = 40) and women (n = 39) viewed a neutral film clip after which they were randomly assigned to view one of four other videos: neutral (n = 20), humor (n = 19), anxiety provoking (n = 20) or sexually explicit (n = 20). Genital and thigh temperature were continuously recorded using a TSA ImagIR thermographic camera. Continuous and discrete reports of subjective sexual arousal were also obtained. Results supported the validity of thermography as a measure of sexual arousal: temperature change was specific to the genitals during the sexual arousal condition and was significantly correlated with subjective continuous and discrete reports of sexual arousal. Further development should assess the potential of thermography as a tool for the diagnosis and treatment evaluation of sexual arousal difficulties and for studying sex differences.
Herrick, Ariane L; Murray, Andrea
2018-05-01
Most patients with Raynaud's phenomenon (RP) have "benign" primary RP (PRP), but a minority have an underlying cause, for example a connective tissue disease such as systemic sclerosis (SSc). Secondary RP can be associated with structural as well as functional digital vascular changes and can be very severe, potentially progressing to digital ulceration or gangrene. The first step in management is to establish why the patient has RP. This short review discusses the role of nailfold capillaroscopy and thermography in the assessment of RP. Nailfold capillaroscopy examines microvascular structure, which is normal in PRP but abnormal in most patients with SSc: the inclusion of abnormal nailfold capillaries into the 2013 classification criteria for SSc behoves clinicians diagnosing connective tissue disease to be familiar with the technique. For those without access to the gold standard of high magnification videocapillaroscopy, a low magnification dermatoscope or USB microscope can be used. Thermography measures surface temperature and is therefore an indirect measure of blood blow, assessing digital vascular function (abnormal in both PRP and SSc). Until now, the use of thermography has been mainly confined to specialist centres and used mainly in research: this may change with development of mobile phone thermography. Copyright © 2018 Elsevier B.V. All rights reserved.
Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo
2011-01-01
The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity.
Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo
2011-01-01
The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity. PMID:22346632
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Debasish; Li, Jianlin; Born, Rachael
Note: This is a cover page for the 'Analytical Methods' journal, which was requested by the journal editor for consideration. The article has already been published and the PTS publication ID is 44000. The acknowledgements are same as mentioned in the PTS publication ID 44000.
NASA Astrophysics Data System (ADS)
Popow, Vitalij; Gurka, Martin
2018-03-01
The main advantage of high performance composite material is its exceptional light-weight capability due to individual tailoring of anisotropic fiber lay-up. Its main draw-back is a brittle and complex failure behavior under dynamic loading which requires extensive quality assurance measures and short maintenance intervals. For this reason efficient test methods are required, which not only generate good and reliable results, but are also simple in handling, allow rapid adaptation to different test situations and short measuring times. Especially the knowledge about size and position of a defect is necessary to decide about acceptance or rejection of a structure under investigation. As a promising method for contactless in-line and off-line inspection we used pulsed thermography. For the determination of the depth of the defects we used logarithmic peak second derivative, a widely accepted method. Alternatively an analytical model, describing the adiabatic heating of a solid plate by an instantaneous pulse, was fitted directly to the measurement data. For the determination of defect size four different approaches were investigated and compared with exact values. The measurements were done with continuous carbon-fiber reinforced materials.
DOT National Transportation Integrated Search
1996-09-01
The purpose of this study was to evaluate the use of infrared (IR) thermography and ground penetrating radar (GPR) to find subsurface anomalies, delaminations and de-bonding, on asphalt concrete overlaid concrete bridge decks. The traditional "chaini...
Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley
2010-01-01
Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.
NASA Astrophysics Data System (ADS)
Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven
2017-02-01
Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids.
DOT National Transportation Integrated Search
2015-03-01
The objectives of this study were to assess whether temperature differentials measured using Infrared : Thermography (IRT) occur in an overlay built on top of discontinuities such as joints and cracks and to : study the horizontal and vertical therma...
Infrared imaging for tumor detection using antibodies conjugated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Levy, Arie; Gannot, Israel
2008-04-01
Thermography is a well known approach for cost effective early detection of concourse tumors. However, till now - more than 5 decades after its introduction - it is not considered as a primary tool for cancer early detection, mainly because its poor performance compared to other techniques. This work offers a new thermographic approach for tumor detection which is based on the use of antibody conjugated magnetic nanoparticles ("MNP") as a tumor specific marker. Wename this method "Thermal Beacon Thermography" ("TBT"), and it has the potential to provide considerable advantages over conventional thermographic approach. TBT approach is based on the fact that MNP are producing heat when subjected to an alternating magnetic field ("AMF"). Once these particles are injected to the patient blood stream, they specifically accumulate at the tumor site, providing a local heat source at the tumor that can be activated and deactivated by external control. This heat source can be used as a "thermal beacon" in order to detect and locate tumor by detecting temperature changes at the skin surface using an IR camera and comparing them to a set of pre-calculated numerical predictions. Experiments were conducted using an in vitro tissue model together with industrial inductive heating system and an IR camera. The results shows that this approach can specifically detect small tumor phantom (D=1.5mm) which was embedded below the surface of the tissue phantom.
IR Thermography of International Space Station Radiator Panels
NASA Technical Reports Server (NTRS)
Koshti, Ajay; Winfree, WIlliam; Morton, Richard; Howell, Patricia
2010-01-01
Several non-flight qualification test radiators were inspected using flash thermography. Flash thermography data analysis used raw and second derivative images to detect anomalies (Echotherm and Mosaic). Simple contrast evolutions were plotted for the detected anomalies to help in anomaly characterization. Many out-of-family indications were noted. Some out-of-family indications were classified as cold spot indications and are due to additional adhesive or adhesive layer behind the facesheet. Some out-of-family indications were classified as hot spot indications and are due to void, unbond or lack of adhesive behind the facesheet. The IR inspection helped in assessing expected manufacturing quality of the radiators.
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel
2009-01-01
The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.
NASA Astrophysics Data System (ADS)
Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano
2016-04-01
In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.
Zanghi, Brian M.
2016-01-01
Rectal body temperature (BT) has been documented in exercising dogs to monitor thermoregulation, heat stress risk, and performance during physical activity. Eye (BTeye) and ear (BTear) temperature measured with infrared thermography (IRT) were compared to rectal (BTrec) temperature as the reference method and assess alternative sites to track hyperthermia, possibly to establish BTeye IRT as a passive and non-contact method. BT measures were recorded at 09:00, 11:30, 12:30, and 02:30 from Labrador Retrievers (N = 16) and Beagles (N = 16) while sedentary and with 30-min play-exercise (pre- and 0, 15, 30-min post-exercise). Total exercise locomotor activity counts were recorded to compare relative intensity of play-exercise between breeds. BTrec, BTeye, and BTear were measured within 5 min of the target time. Each BT method was analyzed by analysis of variance for main effects of breed and time. Method differences were compared using Bland–Altman plots and linear regression. Sedentary BT differed by breed for BTrec (p < 0.0001), BTear (p < 0.0001), and BTeye (p = 0.06) with Labs having on average 0.3–0.8°C higher BT compared to Beagles. Readings also declined over time for BTeye (p < 0.0001) and BTear (p < 0.0001), but not for BTrec (p = 0.63) for both breeds. Total exercise (30-min) activity counts did not differ (p = 0.53) between breeds. Time and breed interaction was significant in response to exercise for both BTrec and BTear (p = 0.035 and p = 0.005, respectively), with a marginal interaction (p = 0.09) for BTeye. All the three methods detected hyperthermia with Labs having a higher increase compared to Beagles. Both BTear and BTeye were significantly (p < 0.0001) related to BTrec in all dogs with sedentary or exercise activity. The relationship between BTeye and BTrec improved when monitoring exercise hyperthermia (r = 0.674) versus measures at rest (r = 0.381), whereas BTear was significantly related to BTrec regardless of activity (r = 0.615–0.735). Although BT readings were significantly related, method bias (p < 0.02) was observed for BTeye to slightly underestimate BTrec, whereas no bias was observed between BTear and BTrec. This study demonstrates that IRT technology effectively measures both ear and eye temperature and enables effective monitoring of BT changes at rest, with exercise, and between breeds. However, ear, and not eye, temperature is a better reflection of rectal temperature. PMID:28066775
Air-coupled acoustic thermography for in-situ evaluation
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)
2010-01-01
Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.
NASA Astrophysics Data System (ADS)
Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet
2017-05-01
This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.
Kobayashi, Makoto
2016-04-01
We present a 21-year-old female with Horner syndrome due to spinal cord infarction. In this patient, infrared thermography revealed a hemibody skin temperature increase followed by excessive focal decreases, indicating skin vasomotor hemiparesis and overactivity.
Stewart, M; Webster, J R; Stafford, K J; Schaefer, A L; Verkerk, G A
2010-11-01
Changes in autonomic nervous system (ANS) activity are one of the first phases of a stress response, but they are rarely used to assess the welfare of farm animals. Eye temperature measured using infrared thermography (IRT) is proposed as an indicator of ANS activity because it may reflect changes in blood flow in the capillary beds of the conjunctiva. The aim was to determine whether epinephrine infusion would initiate eye temperature changes in calves. Sixteen 4-mo-old Friesian calves (124±5 kg) were assigned randomly to receive a jugular infusion of either epinephrine (4 μg/kg per min for 5 min) or saline. Eye temperature (°C), heart rate (HR), and HR variability (HRV) were recorded from 15 min before infusion until 10 min after it was completed. Blood samples collected via jugular catheter were assayed for epinephrine, norepinephrine, and cortisol concentrations, and packed cell volume (PCV) was measured. No changes in any variable were observed with the saline infusion. Plasma epinephrine concentrations increased 90-fold with epinephrine infusion, which was associated with a decrease in eye temperature of 1.4±0.05°C. During epinephrine infusion, plasma norepinephrine concentrations decreased by half and HR decreased by 9.3±3.3 beats/min. The HRV measure, the root mean square of successive differences, increased by 49.7±9.2 ms, indicating a compensatory increase in parasympathetic activity. After epinephrine infusion, plasma cortisol concentrations increased by 10.4±1.7 ng/mL and PCV was higher (38 vs. 31±0.1%, epinephrine vs. saline, respectively). These results support the hypothesis that changes in eye temperature are mediated by the sympathetic component of the ANS. Infrared thermography is a noninvasive method to assess ANS activity for evaluating welfare of cattle. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles
2015-03-01
The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.
Dynamic Infrared Thermography Study of Blood Flow Relative to Lower Limp Position
NASA Astrophysics Data System (ADS)
Stathopoulos, I.; Skouroliakou, K.; Michail, C.; Valais, I.
2015-09-01
Thermography is an established method for studying skin temperature distribution. Temperature distribution on body surface is influenced by a variety of physiological mechanisms and has been proven a reliable indicator of various physiological disorders. Blood flow is an important factor that influences body heat diffusion and skin temperature. In an attempt to validate and further elucidate thermal models characterizing the human skin, dynamic thermography of the lower limp in horizontal and vertical position was performed, using a FLIR T460 thermographic camera. Temporal variation of temperature was recorded on five distinct points of the limp. Specific points were initially cooled by the means of an ice cube and measurements of the skin temperature were obtained every 30 seconds as the skin temperature was locally reduced and afterwards restored at its initial value. The return to thermal balance followed roughly the same pattern for all points of measurement, although the heating rate was faster when the foot was in horizontal position. Thermal balance was achieved faster at the spots that were positioned on a vein passage. Our results confirm the influence of blood flow on the thermal regulation of the skin. Spots located over veins exhibit different thermal behaviour due to thermal convection through blood flow. Changing the position of the foot from vertical to horizontal, effectively affects blood perfusion as in the vertical position blood circulation is opposed by gravity.
NASA Astrophysics Data System (ADS)
Carlomagno, Giovanni Maria; Di Maio, Rosa; Fedi, Maurizio; Meola, Carosena
2011-09-01
This work is focused on the integration of infrared thermography and ground penetrating radar for the inspection of architectonic structures. First, laboratory tests were carried out with both techniques by considering an ad hoc specimen made of concrete and with the insertion of anomalies of a different nature and at different depths. Such tests provided helpful information for ongoing inspections in situ, which were later performed in two important Italian archaeological sites, namely Pompeii (Naples) and Nora (Cagliari). In the first site, the exploration was devoted to the analysis of the wall paintings of Villa Imperiale with the aim of evaluating the state of conservation of frescoes as well of the underneath masonry structure. As main findings, the applied techniques allowed outlining some areas, which were damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials, and also for recognition of previous restoration. In the archaeological area of Nora, instead, the attention was driven towards the evaluation of the state of degradation of the theatre remnants. Our prospections show that the front side of the theatre, being more strongly affected by degradation, needs a massive restoration work. As a general result, we demonstrated that a joint interpretation of infrared thermography and ground penetrating radar data supplies detailed 3D information from near-surface to deep layers, which may assist in restoration planning.
NASA Astrophysics Data System (ADS)
Zhao, Shi-bin; Zhang, Cun-lin; Wu, Nai-ming
2011-08-01
Water and hydraulic oil intrusion inside honeycomb sandwich Structure Composite during service has been linked to in-flight failure in some aircraft. There is an ongoing effort to develop nondestructive testing methods to detect the presence of water and hydraulic oil within the sandwich panels. Pulsed thermography(PT) represents an attractive approach in that it is sensitive to the change of thermal properties. Using a flash lamp PT, testing can be applied directly to the surface of the panel. The viability of PT is demonstrated through laboratory imaging of both water and hydraulic oil within sandwich panels. The detection of water and hydraulic oil intrusion using a one-sided flash lamp PT is presented. It is shown that simple detection, as well as spatial localization of water and hydraulic oil within sandwich panels, and assign the quantity of water and hydraulic oil is possible.
NASA Technical Reports Server (NTRS)
Havican, Marie
2012-01-01
Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.
IR-thermography for Quality Prediction in Selective Laser Deburring
NASA Astrophysics Data System (ADS)
Möller, Mauritz; Conrad, Christian; Haimerl, Walter; Emmelmann, Claus
Selective Laser Deburring (SLD) is an innovative edge-refinement process being developed at the Laser Zentrum Nord (LZN) in Hamburg. It offers a wear-free processing of defined radii and bevels at the edges as well as the possibility to deburr several materials with the same laser source. Sheet metal parts of various applications need to be post-processed to remove sharp edges and burrs remaining from the initial production process. Thus, SLD will provide an extended degree of automation for the next generation of manufacturing facilities. This paper investigates the dependence between the deburring result and the temperature field in- and post-process. In order to achieve this, the surface temperature near to the deburred edge is monitored with IR-thermography. Different strategies are discussed for the approach using the IR-information as a quality assurance. Additional experiments are performed to rate the accuracy of the quality prediction method in different deburring applications.
Infrared ocular thermography in dogs with and without keratoconjunctivitis sicca.
Biondi, Flávia; Dornbusch, Peterson T; Sampaio, Manuella; Montiani-Ferreira, Fabiano
2015-01-01
Infrared thermography was used to measure temperature differences of the corneal surface between nasal and temporal limbus regions and central cornea of normal dogs and dogs with keratoconjunctivitis sicca (KCS), in order to establish temperature values in normal canine eyes and in patients with decreased Schirmer tear tests (STT) values. Dogs investigated were all either patients seen at the Veterinary Teaching Hospital of Federal University of Paraná or normal dogs that belonged to the same institution. STT were performed in all eyes. A total of 40 control eyes (STT ≥15 mm/min) and 20 eyes with low STT values (STT ≤14 mm/min) were examined. The mean STT value for eyes with normal STT values was 22.9 ± 3.9 mm/min (mean ± standard deviation), and the mean STT value for eyes with low STT value was 7.2 ± 4.8 mm/min. The mean corneal temperature was significantly lower in eyes with low STT values than in control eyes (P < 0.0001). The following significant correlations were found: (i) Schirmer and breakup time (BUT) (P = 0.0001, r = 0.5); (ii) STT values and corneal surface temperature (P = 0.001, r = 0.256); (iii) STT values and age (P = 0.0001, r = -0.448); (iv) age and corneal surface temperature (P = 0.0001, r = -0.281); and (v) BUT and corneal surface temperature (P = 0.0001, r = 0.36). Thermography is a method that can differentiate between eyes with normal and abnormal STT values. In the future, thermography might be incorporated as part of the ophthalmic examination and perhaps become a popular ancillary test for the diagnoses of ocular surface disorders. © 2013 American College of Veterinary Ophthalmologists.
Zotter, Heinz; Kerbl, Reinhold; Gallistl, Siegfried; Nitsche, Hilde; Borkenstein, Martin
2003-12-01
The aim of this study was to determine whether infrared thermography before and after challenge of the lower leg in cold water may be a useful tool to detect abnormalities in skin blood flow in adolescent asymptomatic patients with type 1 diabetes mellitus (DM1) and to assess the optimal setting of skin temperature measurements. Twenty-five adolescents (10 female, 15 male, mean age 21.2 +/- 6.2 years, body mass index [BMI] 23.0 +/- 2.1 kg/m2) with a duration of DMI of 13.8 +/- 5.4 years and mean HbA1c levels 8.5 +/- 1.3% were compared to age- and sex-matched controls (BMI 22.9 +/- 2.2 kg/m2). Seven defined sites of the lower leg were assessed by infrared thermography before and for 10 min after exposure of the leg to 14 degrees C cold water. As skin temperature before exposure to cold water differs from individual to individual and basal temperature was significantly warmer in patients at the tip of the first (p < 0.05) and fifth (p < 0.05) toe, the rewarming index was calculated in order to compare data. Rewarming indexes of skin temperature during the whole measurement procedure (0-10 min) were significantly lower at the tip of the first (p < 0.05) and fifth (p < 0.01) toes and from minute 2-10 also at the inner ankle (p < 0.05) in patients compared to healthy controls. Rewarming indexes of the other four sites were not significantly different between patients and controls. Infrared thermography of the lower leg after cold water exposure is an easily applicable method and a useful tool to detect abnormalities of skin blood flow in adolescents with DM1 especially at the tips of the first and fifth toes and the inner ankle.
Physiological Parameter Response to Variation of Mental Workload
Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P.
2017-01-01
Objective: To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Background: Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. Method: The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Results: Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation (R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. Conclusion: The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. Application: The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers. PMID:28965433
NASA Astrophysics Data System (ADS)
Mercuri, F.; Caruso, G.; Orazi, N.; Zammit, U.; Cicero, C.; Colacicchi Alessandri, O.; Ferretti, M.; Paoloni, S.
2018-05-01
In this paper, a new method based on the use of infrared thermography is proposed for the characterization of repairs and inserted parts on ancient bronzes. In particular, the quality of the contact between different kind of insertions and the main body of bronze statues is investigated by analysing the heat conduction process occurring across the interface between them. The thermographic results have been used to establish the nature of these inserted elements and the way they have been coupled to the main body of the statue during and after the manufacturing process. A model for the heat conduction based on the numerical finite elements method has been applied to compare the obtained results to the theoretical predictions. Measurements have been first carried out on test samples and then in the field on the Boxer at Rest (Museo Nazionale Romano in Rome), a masterpiece of the Greek Statuary, which contains a large variety of inserted items and repairs which are typical of the manufacturing process of bronze artefacts in general.
Infrared thermography: A potential noninvasive tool to monitor udder health status in dairy cows
Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Jayaprakash, G.; Pushpadass, Heartwin A.; Sivaram, M.; Ramesha, K. P.; Das, D. N.; Kataktalware, Mukund A.; Prakash, M. Arul; Kumar, R. Dhinesh
2016-01-01
The animal husbandry and livestock sectors play a major role in the rural economy, especially for the small and marginal farmers. India has the largest livestock population in the world and ranks first in the milk production. Mastitis is the most common and expensive infectious disease in dairy cattle. The global economic losses per year due to mastitis amounts to USD 35 billion and for Indian dairy industry ₹6000 crores per year. Early detection of mastitis is very important to reduce the economic loss to the dairy farmers and dairy industry. Automated methods for early and reliable detection of mastitis are currently in focus under precision dairying. Skin surface temperature is an important indicator for the diagnosis of cow’s illnesses and for the estimation of their physiological status. Infrared thermography (IRT) is a simple, effective, on-site, and noninvasive method that detects surface heat, which is emitted as infrared radiation and generates pictorial images without causing radiation exposure. In human and bovine medicine, IRT is used as a diagnostic tool for assessment of normal and physiological status. PMID:27847416
Crack detection in oak flooring lamellae using ultrasound-excited thermography
NASA Astrophysics Data System (ADS)
Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle
2018-01-01
Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).
Electromagnetic pulsed thermography for natural cracks inspection
Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing
2017-01-01
Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361
USDA-ARS?s Scientific Manuscript database
Freezing events that occur when plants are actively growing can be a lethal event particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural population...
NASA Astrophysics Data System (ADS)
Omar, M. A.; Parvataneni, R.; Zhou, Y.
2010-09-01
Proposed manuscript describes the implementation of a two step processing procedure, composed of the self-referencing and the Principle Component Thermography (PCT). The combined approach enables the processing of thermograms from transient (flash), steady (halogen) and selective (induction) thermal perturbations. Firstly, the research discusses the three basic processing schemes typically applied for thermography; namely mathematical transformation based processing, curve-fitting processing, and direct contrast based calculations. Proposed algorithm utilizes the self-referencing scheme to create a sub-sequence that contains the maximum contrast information and also compute the anomalies' depth values. While, the Principle Component Thermography operates on the sub-sequence frames by re-arranging its data content (pixel values) spatially and temporally then it highlights the data variance. The PCT is mainly used as a mathematical mean to enhance the defects' contrast thus enabling its shape and size retrieval. The results show that the proposed combined scheme is effective in processing multiple size defects in sandwich steel structure in real-time (<30 Hz) and with full spatial coverage, without the need for a priori defect-free area.
NASA Astrophysics Data System (ADS)
Kauppinen, Timo; Siikanen, Sami
2011-05-01
The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.
Certification of building thermographers: experiences after three courses
NASA Astrophysics Data System (ADS)
Kauppinen, Timo; Hekkanen, Martti; Paloniitty, Sauli; Krankka, Juha
2006-04-01
The certification procedure of building thermographers was started in 2003, even though thermography has been used in Finland in building survey since late 70's. There has been about a 25 years' unorganized and more or less wild period, without any generally accepted rules for interpretation, as well as how to order thermography services, how to report the results, how to do the practical work in the buildings etc. The service was provided by consultants with varied backgrounds. More operators have come into the market and building developers and contractors have begun to use thermography for quality control in new building and in renovation planning. In the year 2004 various organizations in building trade launched a pilot project to certificate building thermographers. The structure and the topics of the course were introduced in Thermosense 2005. By the end of the year 2005 the third course was completed. From the beginning of the procedure to the end of the third course about 40 persons have received a certificate. During the certification process, two guidelines have been published, as part of RT (Building Information) - files: instructions for ordering, for practical field work and for reporting of thermography survey in buildings. The guidelines also contain basics for interpretation. The interpretation is consistent with the other existing directions (building codes etc). At the turn of 2005 - 2006 a new book of building thermography was published. There is still lack of comprehensive as well as unambiguous rules for interpretation. In the paper we will present experiences on the courses, the main problems posed to the participants and findings during the last two - three years' field work. We will also introduce briefly the structure and content of the guidelines and an example how to use thermography as a tool of quality control in new building. The case studies are new one-family houses in a housing fair and exhibition area in the city of Oulu.
Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon
2017-07-26
Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.
Crack growth monitoring at CFRP bond lines
NASA Astrophysics Data System (ADS)
Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.
2016-02-01
With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.
Use of aerial thermography in Canadian energy conservation programs
NASA Technical Reports Server (NTRS)
Cihlar, J.; Brown, R. J.; Lawrence, G.; Barry, J. N.; James, R. B.
1977-01-01
Recent developments in the use of aerial thermography in energy conservation programs within Canada were summarized. Following a brief review of studies conducted during the last three years, methodologies of data acquisition, processing, analysis and interpretation was discussed. Examples of results from an industrial oriented project were presented and recommendations for future basic work were outlined.
ERIC Educational Resources Information Center
Memarian, Negar; Venetsanopoulos, Anastasios N.; Chau, Tom
2011-01-01
Infrared thermography has been recently proposed as an access technology for individuals with disabilities, but body functions and structures pertinent to its use have not been documented. Seven clients (2 adults, 5 youth) with severe disabilities and their primary caregivers participated in this study. All clients had a Gross Motor Functional…
Risks of online advertisement of direct-to-consumer thermography for breast cancer screening.
Lovett, Kimberly M; Liang, Bryan A
2011-12-01
Direct-to-consumer online advertising for thermography as a sole agent with which to diagnose breast cancer is misleading and exploits women who are seeking preventive health care for breast cancer. Regulatory action should be taken against companies who continue to mislead the public to ensure patient safety and evidence-based public health information.
USDA-ARS?s Scientific Manuscript database
Infrared thermography has been used to visualize the freezing process in plants and has greatly enhanced our knowledge of ice nucleation and propagation in plants. The majority of IR analyses have been conducted under controlled rather than natural conditions and often on plant parts instead of wh...
Detection of foreign substances in food using thermography
NASA Astrophysics Data System (ADS)
Meinlschmidt, Peter; Maergner, Volker
2002-03-01
This paper gives a short introduction into the possibility of detecting foreign bodies in food by using IR thermography. The first results shown for combinations of cherries and chocolate and berries contaminated with leaves, stalks, pedicel and thorns could be easily evaluated manually. Therefore the differing emissivity coefficients or the different heat conductivities and/or capacities are used for differentiation. Applying pulse thermography, first heat conductivity measurements of different food materials are performed. Calculating the contrast of possible food / contaminant combinations shows the difficulty of differentiating certain materials. A possible automatic evaluation for raisins contaminated with wooden sticks and almonds blended with stones could be shown. The power of special adapted algorithms using statistical or morphological analysis is shown to distinguish the foreign bodies from the foodstuff.
Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying
2012-03-01
The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.
Ultrasonic emissions during ice nucleation and propagation in plant xylem.
Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan
2015-08-01
Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Pulsed infrared thermography for assessment of ultrasonic welds
NASA Astrophysics Data System (ADS)
McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.
2018-03-01
Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.
Neonatal non-contact respiratory monitoring based on real-time infrared thermography
2011-01-01
Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors. PMID:22243660
NASA Astrophysics Data System (ADS)
Avdelidis, N. P.; Kappatos, V.; Georgoulas, G.; Karvelis, P.; Deli, C. K.; Theodorakeas, P.; Giakas, G.; Tsiokanos, A.; Koui, M.; Jamurtas, A. Z.
2017-04-01
Exercise induced muscle damage (EIMD), is usually experienced in i) humans who have been physically inactive for prolonged periods of time and then begin with sudden training trials and ii) athletes who train over their normal limits. EIMD is not so easy to be detected and quantified, by means of commonly measurement tools and methods. Thermography has been used successfully as a research detection tool in medicine for the last 6 decades but very limited work has been reported on EIMD area. The main purpose of this research is to assess and characterize EIMD, using thermography and image processing techniques. The first step towards that goal is to develop a reliable segmentation technique to isolate the region of interest (ROI). A semi-automatic image processing software was designed and regions of the left and right leg based on superpixels were segmented. The image is segmented into a number of regions and the user is able to intervene providing the regions which belong to each of the two legs. In order to validate the image processing software, an extensive experimental investigation was carried out, acquiring thermographic images of the rectus femoris muscle before, immediately post and 24, 48 and 72 hours after an acute bout of eccentric exercise (5 sets of 15 maximum repetitions), on males and females (20-30 year-old). Results indicate that the semi-automated approach provides an excellent bench-mark that can be used as a clinical reliable tool.
Analysis of lubricating oils in shear friction tests using infrared thermography
NASA Astrophysics Data System (ADS)
Da Silva, José Jorge; Maribondo, Juscelino de Farias
2018-03-01
The aim of this work is to analyze the ability of Thermography to monitor the behavior of SAE 20 W50 API SJ and ISO VG 10 lubricating oils from the thermal point of view until the moment of the lubricant film rupture, characterized by the sudden increase in friction, noise, vibration and Temperature in a shear friction test. The methodology used is based on the analysis of thermograms that indicate temperature profiles during the friction tests and at the moment of mechanical failure, comparing these results with those obtained by a thermocouple. The specimens, consisting of SAE 1045 steel cylindrical pins, are rubbed against a wear ring consisting of a weld-locked bearing under the condition of a boundary lubrication regime. Tests were performed by increasing load conditions up to 180 N at 10, 15 and 20 Hz rotations (600, 900 and 1200 rpm). The results show the qualitative and quantitative capacity of the Thermography in the detection of scuffing considering the emissivity of the lubricating oil film equal to 0,82. It is concluded that the Thermography can be used for the detection of the breaking of the lubricating film in pin-on-ring friction tests.
Implementation of thermographers' certification in Brazil
NASA Astrophysics Data System (ADS)
dos Santos, Laerte; Alves, Luiz M.; da Costa Bortoni, Edson
2011-05-01
In recent years Brazil has experienced extraordinary growth despite the recent economic global crisis. The demand for infrared thermography products and services has accompanied this growth. Like other non-destructive testing and inspection, the results obtained by thermography are highly dependent on the skills of thermographer. Therefore, it is very important to establish a serious and recognized process of certification to assess thermographers' qualifications and help services suppliers to establish credibility with their customers and increase the confidence of these costumers on the quality of these services. The Brazilian Society of Non-Destructive Testing and Inspection, ABENDI, a non-profitable, private technical-scientific entity, recognized nationally and internationally, has observed the necessity of starting a process for certification of thermographers in Brazil. With support of a work group composed by experts from oil and energy industries, transportation, universities and manufactures, the activities started in 2005. This paper describes the economic background required for installation of the certification process, its initial steps, the main characteristics of the Brazilian certification and the expectation for initiating the certification process.
Zanghi, Brian M
2016-01-01
Rectal body temperature (BT) has been documented in exercising dogs to monitor thermoregulation, heat stress risk, and performance during physical activity. Eye (BT eye ) and ear (BT ear ) temperature measured with infrared thermography (IRT) were compared to rectal (BT rec ) temperature as the reference method and assess alternative sites to track hyperthermia, possibly to establish BT eye IRT as a passive and non-contact method. BT measures were recorded at 09:00, 11:30, 12:30, and 02:30 from Labrador Retrievers ( N = 16) and Beagles ( N = 16) while sedentary and with 30-min play-exercise (pre- and 0, 15, 30-min post-exercise). Total exercise locomotor activity counts were recorded to compare relative intensity of play-exercise between breeds. BT rec , BT eye , and BT ear were measured within 5 min of the target time. Each BT method was analyzed by analysis of variance for main effects of breed and time. Method differences were compared using Bland-Altman plots and linear regression. Sedentary BT differed by breed for BT rec ( p < 0.0001), BT ear ( p < 0.0001), and BT eye ( p = 0.06) with Labs having on average 0.3-0.8°C higher BT compared to Beagles. Readings also declined over time for BT eye ( p < 0.0001) and BT ear ( p < 0.0001), but not for BT rec ( p = 0.63) for both breeds. Total exercise (30-min) activity counts did not differ ( p = 0.53) between breeds. Time and breed interaction was significant in response to exercise for both BT rec and BT ear ( p = 0.035 and p = 0.005, respectively), with a marginal interaction ( p = 0.09) for BT eye . All the three methods detected hyperthermia with Labs having a higher increase compared to Beagles. Both BT ear and BT eye were significantly ( p < 0.0001) related to BT rec in all dogs with sedentary or exercise activity. The relationship between BT eye and BT rec improved when monitoring exercise hyperthermia ( r = 0.674) versus measures at rest ( r = 0.381), whereas BT ear was significantly related to BT rec regardless of activity ( r = 0.615-0.735). Although BT readings were significantly related, method bias ( p < 0.02) was observed for BT eye to slightly underestimate BT rec , whereas no bias was observed between BT ear and BT rec . This study demonstrates that IRT technology effectively measures both ear and eye temperature and enables effective monitoring of BT changes at rest, with exercise, and between breeds. However, ear, and not eye, temperature is a better reflection of rectal temperature.
Modeling of the ITER-like wide-angle infrared thermography view of JET.
Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E
2012-10-01
Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.
Hurley-Sanders, Jennifer L; Sladky, Kurt K; Nolan, Elizabeth C; Loomis, Michael R
2015-09-01
A 2-yr-old female red wolf (Canis rufus gregoryi) sustained a degloving injury to the left thoracic limb while in a display habitat. Initial attempts to resolve the extensive wound by using conservative measures were unsuccessful. Subsequent treatment using a free skin graft consisted first of establishment of an adequate granulation bed via cortical bone fenestration. After establishment of a healthy granulation bed was achieved, free skin graft was harvested and transposed over the bed. To monitor viability and incorporation of the graft, serial thermographic imaging was performed. Thermography noninvasively detects radiant heat patterns and can be used to assess vascularization of tissue, potentially allowing early detection of graft failure. In this case, thermography documented successful graft attachment.
NASA Astrophysics Data System (ADS)
Radkowski, Rafael; Holland, Stephen; Grandin, Robert
2018-04-01
This research addresses inspection location tracking in the field of nondestructive evaluation (NDE) using a computer vision technique to determine the position and orientation of typical NDE equipment in a test setup. The objective is the tracking accuracy for typical NDE equipment to facilitate automatic NDE data integration. Since the employed tracking technique relies on surface curvatures of an object of interest, the accuracy can be only experimentally determined. We work with flash-thermography and conducted an experiment in which we tracked a specimen and a thermography flash hood, measured the spatial relation between both, and used the relation as input to map thermography data onto a 3D model of the specimen. The results indicate an appropriate accuracy, however, unveiled calibration challenges.
2003-09-04
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, performs flash thermography on flight crew lockers. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.
2003-09-04
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, examines flight crew lockers using flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.
Accurate measurements of the thermal diffusivity of thin filaments by lock-in thermography
NASA Astrophysics Data System (ADS)
Salazar, Agustín; Mendioroz, Arantza; Fuente, Raquel; Celorrio, Ricardo
2010-02-01
In lock-in (modulated) thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.
Camera Systems Rapidly Scan Large Structures
NASA Technical Reports Server (NTRS)
2013-01-01
Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.
USDA-ARS?s Scientific Manuscript database
Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of...
Menzel, A; Siewert, C; Gasse, H; Seifert, H; Hoeltig, D; Hennig-Pauka, I
2015-04-01
Current methods of diagnosis of respiratory diseases in swine are invasive, time-consuming and expensive. Infrared thermography (IRT) of the thorax might provide a new method of high specificity to select swine affected with lung alterations for further diagnostics. In this study, layer thickness of different tissues was determined in frozen thorax slices (FTS) by computed tomography (CT) and then related to skin temperatures measured by IRT in healthy pigs. The aim was to determine appropriate regions of interest (ROI) for evaluation of IRT images. Organ layer thicknesses measured in CT images correspond to those measured in FTS. Temperature differences between lung ROIs and abdomen ROIs were positively correlated with lung layer thickness at certain localizations, and negatively correlated with the thickness of the thorax wall and of inner organ layers. Reference values of differences between skin temperatures were established for two ROIs on the thorax with potential practical use for lung health status determination. Respective ROIs were located on vertical lines crossing the 7th (right) and the 10th (left) thoracic vertebrae. The presence of ribs affected skin temperature significantly. © 2014 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol
2018-01-01
Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.
Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun
2018-05-01
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
Investigation of turbulent wedges generated by different single surface roughness elements
NASA Astrophysics Data System (ADS)
Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd
2013-11-01
It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.
Infrared imaging based hyperventilation monitoring through respiration rate estimation
NASA Astrophysics Data System (ADS)
Basu, Anushree; Routray, Aurobinda; Mukherjee, Rashmi; Shit, Suprosanna
2016-07-01
A change in the skin temperature is used as an indicator of physical illness which can be detected through infrared thermography. Thermograms or thermal images can be used as an effective diagnostic tool for monitoring and diagnosis of various diseases. This paper describes an infrared thermography based approach for detecting hyperventilation caused due to stress and anxiety in human beings by computing their respiration rates. The work employs computer vision techniques for tracking the region of interest from thermal video to compute the breath rate. Experiments have been performed on 30 subjects. Corner feature extraction using Minimum Eigenvalue (Shi-Tomasi) algorithm and registration using Kanade Lucas-Tomasi algorithm has been used here. Thermal signature around the extracted region is detected and subsequently filtered through a band pass filter to compute the respiration profile of an individual. If the respiration profile shows unusual pattern and exceeds the threshold we conclude that the person is stressed and tending to hyperventilate. Results obtained are compared with standard contact based methods which have shown significant correlations. It is envisaged that the thermal image based approach not only will help in detecting hyperventilation but can assist in regular stress monitoring as it is non-invasive method.
NASA Astrophysics Data System (ADS)
Lemal, Philipp; Geers, Christoph; Monnier, Christophe A.; Crippa, Federica; Daum, Leopold; Urban, Dominic A.; Rothen-Rutishauser, Barbara; Bonmarin, Mathias; Petri-Fink, Alke; Moore, Thomas L.
2017-04-01
Lock-in thermography (LIT) is a sensitive imaging technique generally used in engineering and materials science (e.g. detecting defects in composite materials). However, it has recently been expanded for investigating the heating power of nanomaterials, such as superparamagnetic iron oxide nanoparticles (SPIONs). Here we implement LIT as a rapid and reproducible method that can evaluate the heating potential of various sizes of SPIONs under an alternating magnetic field (AMF), as well as the limits of detection for each particle size. SPIONs were synthesized via thermal decomposition and stabilized in water via a ligand transfer process. Thermographic measurements of SPIONs were made by stimulating particles of varying sizes and increasing concentrations under an AMF. Furthermore, a commercially available SPION sample was included as an external reference. While the size dependent heating efficiency of SPIONs has been previously described, our objective was to probe the sensitivity limits of LIT. For certain size regimes it was possible to detect signals at concentrations as low as 0.1 mg Fe/mL. Measuring at different concentrations enabled a linear regression analysis and extrapolation of the limit of detection for different size nanoparticles.
Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)
NASA Technical Reports Server (NTRS)
Walker, James L.
1998-01-01
The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.
Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures
NASA Astrophysics Data System (ADS)
Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.
2012-04-01
Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both with and without plaster, reinforced with basalt and glass fiber strips for full height. Beneath FRP strips were simulated defects such as poor bonding or lack of adherence By statistical and algebraic operations, performed on thermographic multitemporal dataset, an attempt was made both to reduce the uncertainties of a typical IR active and passive test, but also to reconstruct exact geometrical shape of the simulated defects that characterize wall samples examined. Results are encouraging but more research is needed on this topic to establish a correct protocol to monitor the FRP performance with time and to quantitatively asses the presence and type of defect in the reinforcing system.
Quantitative NDE of Composite Structures at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.
2015-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.
Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van der Heijden, Ferdi; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van Netten, Jaap J.
2013-03-01
Diabetic foot ulceration is a major complication for patients with diabetes mellitus. If not adequately treated, these ulcers may lead to foot infection, and ultimately to lower extremity amputation, which imposes a major burden to society and great loss in health-related quality of life for patients. Early identification and subsequent preventive treatment have proven useful to limit the incidence of foot ulcers and lower extremity amputation. Thus, the development of new diagnosis tools has become an attractive option. The ultimate objective of our project is to develop an intelligent telemedicine monitoring system for frequent examination on patients' feet, to timely detect pre-signs of ulceration. Inflammation in diabetic feet can be an early and predictive warning sign for ulceration, and temperature has been proven to be a vicarious marker for inflammation. Studies have indicated that infrared dermal thermography of foot soles can be one of the important parameters for assessing the risk of diabetic foot ulceration. This paper covers the feasibility study of using an infrared camera, FLIR SC305, in our setup, to acquire the spatial thermal distribution on the feet soles. With the obtained thermal images, automated detection through image analysis was performed to identify the abnormal increased/decreased temperature and assess the risk for ulceration. The thermography for feet soles of patients with diagnosed diabetic foot complications were acquired before the ordinary foot examinations. Assessment from clinicians and thermography were compared and follow-up measurements were performed to investigate the prediction. A preliminary case study will be presented, indicating that dermal thermography in our proposed setup can be a screening modality to timely detect pre-signs of ulceration.
Use of infrared thermography in children with shock: A case series
Ortiz-Dosal, Alejandra; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J
2014-01-01
Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at “Dr. Ignacio Morones Prieto” Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages. PMID:27489669
NASA Astrophysics Data System (ADS)
Kandemir-Yucel, A.; Tavukcuoglu, A.; Caner-Saltik, E. N.
2007-01-01
The infrared thermography (IRT) and the ultrasonic velocity measurements (UVM) promise to be particularly important to assess the state of deterioration and the adequacy of the boundary and microclimatic conditions for timber elements. These non-destructive methods supported by laboratory analyses of timber samples were conducted on a 13th century monument, Aslanhane Mosque in Ankara, Turkey. The combined interpretation of the results was done to assess the condition of structural timber elements in terms of their state of preservation, the dampness problems and the recent incompatible repairs affecting them. Results indicated that moist areas in the structure were associated with roof drainage problems and the repairs undertaken with cement-based mortars and plasters and oil-based paints. Juxtaposition of the IRT and UVM together with laboratory analyses was found to be useful to assess the soundness of timber, enhanced the accuracy and effectiveness of the survey and facilitated to build up the urgent and long-term conservation programs.
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Walker, James L., II
2008-01-01
A probability of detection study was performed for the detection of impact damage using flash heating infrared thermography on a full scale honeycomb composite structure. The honeycomb structure was an intertank structure from a previous NASA technology demonstration program. The intertank was fabricated from IM7/8552 carbon fiber/epoxy facesheets and aluminum honeycomb core. The intertank was impacted in multiple locations with a range of impact energies utilizing a spherical indenter. In a single blind study, the intertank was inspected with thermography before and after impact damage was incurred. Following thermographic inspection several impact sites were sectioned from the intertank and cross-sectioned for microscopic comparisons of NDE detection and actual damage incurred. The study concluded that thermographic inspection was a good method of detecting delamination damage incurred by impact. The 90/95 confidence level on the probability of detection was close to the impact energy that delaminations were first observed through cross-sectional analysis.
Use of infrared thermography in children with shock: A case series.
Ortiz-Dosal, Alejandra; Kolosovas-Machuca, Eleazar S; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J
2014-01-01
Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at "Dr. Ignacio Morones Prieto" Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages.
Surface temperature/heat transfer measurement using a quantitative phosphor thermography system
NASA Technical Reports Server (NTRS)
Buck, G. M.
1991-01-01
A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.
Phase sensitive thermography for quality assessment of giant magnetostrictive composite materials
NASA Astrophysics Data System (ADS)
Yang, Peng; Law, Chiu T.; Elhajjar, Rani
2017-04-01
Giant magnetostrictive materials are increasingly proposed for smart material applications such as in sensors, actuators, and energy harvesting applications. In a composites form, the materials are combined in particle form with polymer matrix composites. Reviewing the literature on this topic, the reader observes a large amount of variability in the reported properties that are typically based on recording (overall or localized) strain and magnetic field with non-collocating strain gages and a gauss meter, i.e. far field measurements. Previously the linking of the microstructure in magnetostrictive composite to the spatial variability of the localized magnetostrictive response, a significant factor for the composite performance in sensing and acutuation, has not been received adequate attention. In this paper, a full-field phase-sensitive thermography method is proposed to use full-field infrared measurements to infer changes in the microstructure in magnetostrictive polymer composites under a cyclic magnetic field. The results show how defects in the material can be rapidly identified from the proposed approach in inspecting the manufactured smart composites.
The state of the art of conventional flow visualization techniques for wind tunnel testing
NASA Technical Reports Server (NTRS)
Settles, G. S.
1982-01-01
Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.
Roles For Thermography In Utility Company Residential Energy Audits
NASA Astrophysics Data System (ADS)
Schott, William A.
1981-01-01
Basin Electric Power Cooperative, Bismarck, North Dakota, provides wholesale electricity to more than 100 rural electric cooperatives of the Missouri Pasin Region. The Cooperative, in cooperation with Aadland*Hoffmann*Pieri Energy Associates, Inc., Minneapolis, MN has developed a three-fold program which involves the analytical approach, the instructional approach and the motivational approach (A'IsM) to an energy audit. This three-fold program utilizes infrared thermography to pinpoint where heat loss is occurring in the home. The auditor can motivate the homeowner to initiate energy conserving improvements and practices by showing where money can be saved. Infrared thermography is a most valuable tool in helping the rural electrics conserve energy and the nation's natural resources. Over 180 energy auditors have been trained through this program in this area and 5,000 trained in the nation.
Infrared thermography in the architectural field.
Meola, Carosena
2013-01-01
Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites.
Is it possible to revive the flagging interest in thermography for neurology?
NASA Astrophysics Data System (ADS)
Stulin, Igor D.
1993-11-01
The paper describes the results of twenty-years of experience in applying thermography (thermal imaging) in routine and urgent neurology, based on the study of more than ten thousand patients. Stress is laid on the fact that thermography is of great significance for diagnosing dextrocerebral hemorrhagic insult with a manifestation of pronounced hemihypothermia in the paralyzed limbs, identifying paraorbital hyperthermia on the side of rhinogenous cerebral abscess, for instrumental registration of transitory heat-up of the nasolabial region in the case of patients suffering from hypertensive nasal bleeding. Much attention is given to diagnosis of intra- and extracerebral phlebopathy in urgent neurology -- early diagnosis of iatrogenic catheterization phlebitis, interference with the venous return in the paralyzed lower limb. The novelty here is the employment of telethermography for complex diagnosis of cerebral death.
2003-09-04
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, sets up a flight crew lockers for flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.
Toward the design of a wearable system for contact thermography in telemedicine.
Giansanti, Daniele; Maccioni, Giovanni; Bernhardt, Paola
2009-04-01
Thermal imaging of the skin has been used for several decades for monitoring of temperature distribution of human skin for the detection of thermal abnormalities indicating pathologies (malignancies, inflammation, infection, and vascular, dermatological, and rheumatic disorders). Literature has shown that to detect and monitor the thermal abnormalities related to pathologic conditions, there is a need to extend acquisition over 8, 12, 16, or 24 hours. A wearable device is strongly needed in contact thermography to reach the objective of long-term monitoring of contact thermography, especially in telemedicine applications. A wearable system has been designed and constructed that allows the continuous thermographic monitoring of a skin region at the point of affixation. Measurement allowed by this system is direct and not hampered by the influence of the environment--as with IR thermography--nor by the geometry of skin surface (curvatures, roughness) thanks to the flexible adaptation of the sensing head to the surface. The validation of the system embedded in a pilot preliminary telemedicine application was successful. The next step will be the wide focusing and adaptation to telemedicine clinical applications to assess the response to the chemotherapy and tune the therapy at home of the breast cancer or the response to the inflammation care.
Thermographic Data Analyses for Karst Watersheds
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; McCaleb, Rebecca C. (Technical Monitor)
2001-01-01
Aerial thermography is an emerging technology unsurpassed for locating groundwater discharges. Thermography can be used to locate submerged discharges that are extremely difficult to find by other means. In two large projects, thermography was used to identify almost every significant spring at sites underlain by karst aquifers. This technology effectively converts Brown's Type 5 topology to types 1 or 2 (all discharges known), which has a significant impact on dye tracing. At a north Alabama site, springs located by thermography quadrupled the known groundwater discharge in and around the site. For submerged discharges, thermographic temperatures can be measured down the center of the groundwater plume that rises to the surface in the winter. Using the Cornell Mixing (CORMIX) model, flow rate for one submerged spring was estimated. Once identified, estimates of spring recharge area were desired. The size of the area of recharge was estimated by hydrograph separation of flow data from nearby, unregulated surface streams. Monthly recharge estimates were also made and used to show that in north Alabama the mean annual recharge/discharge occurs during May and December. Spring flow measurements for the same county of north Alabama were averaged to obtain mean flows. Then measurements for May only, were averaged. The two averages usually agreed to within 20 percent. This provides evidence that hydrograph separation determinations of recharge are valid.
Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools
NASA Astrophysics Data System (ADS)
Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.
2016-05-01
In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.
NASA Astrophysics Data System (ADS)
Daffara, C.; Parisotto, S.; Mariotti, P. I.
2015-06-01
Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.
Sun, Guanghao; Abe, Nobujiro; Sugiyama, Youhei; Nguyen, Quang Vinh; Nozaki, Kohei; Nakayama, Yosuke; Takei, Osamu; Hakozaki, Yukiya; Abe, Shigeto; Matsui, Takemi
2013-01-01
After the outbreak of severe acute respiratory syndrome (SARS) in 2003, many international airport quarantine stations conducted fever-based screening to identify infected passengers using infrared thermography for preventing global pandemics. Due to environmental factors affecting measurement of facial skin temperature with thermography, some previous studies revealed the limits of authenticity in detecting infectious symptoms. In order to implement more strict entry screening in the epidemic seasons of emerging infectious diseases, we developed an infection screening system for airport quarantines using multi-parameter vital signs. This system can automatically detect infected individuals within several tens of seconds by a neural-network-based discriminant function using measured vital signs, i.e., heart rate obtained by a reflective photo sensor, respiration rate determined by a 10-GHz non-contact respiration radar, and the ear temperature monitored by a thermography. In this paper, to reduce the environmental effects on thermography measurement, we adopted the ear temperature as a new screening indicator instead of facial skin. We tested the system on 13 influenza patients and 33 normal subjects. The sensitivity of the infection screening system in detecting influenza were 92.3%, which was higher than the sensitivity reported in our previous paper (88.0%) with average facial skin temperature.
Polidori, G; Renard, Y; Lorimier, S; Pron, H; Derruau, S; Taiar, R
2017-01-01
The purpose of this case report is to highlight for the first time the way Medical Infrared Thermography can be a helpful tool to assist the surgeon in the surgical treatment of Hidradenitis Suppurativa inflammatory disease. A 36-year-old man with a 7-year history of Hidradenitis Suppurativa presented inflammatory nodules in the left axilla area corresponding to Hurley stage II. Choice is made to surgically treat this patient using a wide excision protocol combined with a postoperative second intention healing. For the study purpose, an IR FLIR SC620 camera (FLIR Systems, Wilsonville, OR), having a high resolution pixel detector of 640×480 pixels for greater accuracy and higher resolution, has been used. For the first time in the literature, this case report on HS disease supports the idea that real-time medical infrared thermography may be helpful in establishing the true extent of disease preoperatively in the surgical room and in a similar manner, that this technique allows the surgeon to ensure all diseased lesions are removed during surgery. At least, medical infrared thermography seems to be a powerful tool to control the final wide surgical wound, in order to minimize recurrence risk of such a disease. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M. (Inventor)
2017-01-01
Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.
Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M. (Inventor)
2015-01-01
Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.
Bioengineering assessment of acupuncture, part 8: innovative moxibustion.
Litscher, Gerhard
2010-01-01
The actual Chinese character for acupuncture, translated literally, means "acupuncture-moxibustion." This shows the enormous importance of moxibustion in Asia for thousands of years. In this review article, the history of the burning of mugwort (moxatherapy) is briefly described. In addition, new technical methods such as new infrared-moxa or laser-moxa devices, electrobian stone moxibustion, and the investigations of a new needle-moxa system using high-tech methods such as thermography, laser Doppler flowmetry, and laser Doppler imaging are presented.
Unruh, Ellen M; Theurer, Miles E; White, Brad J; Larson, Robert L; Drouillard, James S; Schrag, Nora
2017-07-01
OBJECTIVE To determine whether infrared thermographic images obtained the morning after overnight heat abatement could be used as the basis for diagnostic algorithms to predict subsequent heat stress events in feedlot cattle exposed to high ambient temperatures. ANIMALS 60 crossbred beef heifers (mean ± SD body weight, 385.8 ± 20.3 kg). PROCEDURES Calves were housed in groups of 20 in 3 pens without any shade. During the 6 am and 3 pm hours on each of 10 days during a 14-day period when the daily ambient temperature was forecasted to be > 29.4°C, an investigator walked outside each pen and obtained profile digital thermal images of and assigned panting scores to calves near the periphery of the pen. Relationships between infrared thermographic data and panting scores were evaluated with artificial learning models. RESULTS Afternoon panting score was positively associated with morning but not afternoon thermographic data (body surface temperature). Evaluation of multiple artificial learning models indicated that morning body surface temperature was not an accurate predictor of an afternoon heat stress event, and thermographic data were of little predictive benefit, compared with morning and forecasted weather conditions. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated infrared thermography was an objective method to monitor beef calves for heat stress in research settings. However, thermographic data obtained in the morning did not accurately predict which calves would develop heat stress later in the day. The use of infrared thermography as a diagnostic tool for monitoring heat stress in feedlot cattle requires further investigation.
Physiological Parameter Response to Variation of Mental Workload.
Marinescu, Adrian Cornelius; Sharples, Sarah; Ritchie, Alastair Campbell; Sánchez López, Tomas; McDowell, Michael; Morvan, Hervé P
2018-02-01
To examine the relationship between experienced mental workload and physiological response by noninvasive monitoring of physiological parameters. Previous studies have examined how individual physiological measures respond to changes in mental demand and subjective reports of workload. This study explores the response of multiple physiological parameters and quantifies their added value when estimating the level of demand. The study presented was conducted in laboratory conditions and required participants to perform a visual-motor task that imposed varying levels of demand. The data collected consisted of physiological measurements (heart interbeat intervals, breathing rate, pupil diameter, facial thermography), subjective ratings of workload (Instantaneous Self-Assessment Workload Scale [ISA] and NASA-Task Load Index), and the performance. Facial thermography and pupil diameter were demonstrated to be good candidates for noninvasive workload measurements: For seven out of 10 participants, pupil diameter showed a strong correlation ( R values between .61 and .79 at a significance value of .01) with mean ISA normalized values. Facial thermography measures added on average 47.7% to the amount of variability in task performance explained by a regression model. As with the ISA ratings, the relationship between the physiological measures and performance showed strong interparticipant differences, with some individuals demonstrating a much stronger relationship between workload and performance measures than others. The results presented in this paper demonstrate that physiological and pupil diameter can be used for noninvasive real-time measurement of workload. The methods presented in this article, with current technological capabilities, are better suited for workplaces where the person is seated, offering the possibility of being applied to pilots and air traffic controllers.
A review on the application of medical infrared thermal imaging in hands
NASA Astrophysics Data System (ADS)
Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António
2017-09-01
Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.
NASA Astrophysics Data System (ADS)
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.
NASA Astrophysics Data System (ADS)
Sinha, Archana; Gupta, Rajesh
2017-10-01
Delamination significantly affects the performance and reliability of photovoltaic (PV) modules. Recently, an active infrared thermography approach using step heating has been exploited for the detection and characterisation of delamination in PV modules. However, step heating takes longer observation time and causes overheating problems. This paper presents the effects of different thermal excitation waveforms namely rectangular, half-sine and short pulse, on the detection and characterisation of delamination in PV module by experiments and simulations. For simulation, a 3-dimensional electro-thermal model of heat conduction, based on resistance-capacitance network approach, has been exploited to study the variation in maximum thermal contrast and peak contrast time with the delamination thickness and heating parameters. Results show that the rectangular waveform provides better detection of delamination due to higher absolute contrast, while the half-sine waveform allows better characterisation of delamination in the PV modules with low-cost and low-power heat source. The high-energy short pulse enabled quick visualisation of delamination, but has limited practical implementation. The advantages and limitations of each waveform have been highlighted to assess the specific requirement for appropriate choice in the non-destructive thermographic inspection of delamination in PV modules at the manufacturing units or outdoor fields.
NDT of railway components using induction thermography
NASA Astrophysics Data System (ADS)
Netzelmann, U.; Walle, G.; Ehlen, A.; Lugin, S.; Finckbohner, M.; Bessert, S.
2016-02-01
Induction or eddy current thermography is used to detect surface cracks in ferritic steel. The technique is applied to detect surface cracks in rails from a moving test car. Cracks were detected at a train speed between 2 and 15 km/h. An automated demonstrator system for testing railway wheels after production is described. While the wheel is rotated, a robot guides the detection unit consisting of inductor and infrared camera over the surface.
NASA Astrophysics Data System (ADS)
Casey, Alex; Fenoglio, Gabriel; Detrinidad, Humberto
2017-06-01
Under mechanical excitation, energy is known to localize within an energetic material resulting in `hot spot' formation. While many formation mechanisms have been proposed, additional insight to heat generation mechanisms, the effect of binder/crystal interfaces, and predication capabilities can be gained by quantifying the initiation and growth of the hot spots. Phosphor thermography is a well established temperature sensing technique wherein an object's temperature is obtained by collecting the temperature dependent luminescence of an optically excited phosphor. Herein, the phosphor thermography technique has been applied to Dow Corning Sylgard® 184/octahydro 1,3,5,7 tetranitro 1,3,5,7 tetrazocine (HMX) composite materials under mechanical excitation in order to visualize the evolution of the temperature field, and thus hot spot formation, within the binder. Funded by AFOSR. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining
Gao, Bin; Woo, Wai Lok; Tian, Gui Yun
2016-01-01
Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061
Infrared Thermography in the Architectural Field
2013-01-01
Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites. PMID:24319358
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.
2016-01-01
Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streza, M.; Dadarlat, D.; Strzałkowski, K.
An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directlymore » irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.« less
NASA Technical Reports Server (NTRS)
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal
2016-12-03
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493
Early events in plant hypersensitive response leaves revealed by IR thermography
NASA Astrophysics Data System (ADS)
Boccara, Martine; Boue, Christine; De Paepe, Rosine; Boccara, Albert C.
2001-10-01
Infrared thermography is used to reveal the establishment of Erwinia amylovora harpin-induced hypersensitive response (HR) in Nicotiana sylvestris leaves. We observed a decrease in temperature (1-2 degree(s)C) in the harpin infiltrated zone, correlated with an increase in stomatal opening, strongly suggesting that the temperature decrease is due to higher transpiration rate. IRT experiments were conducted in a laboratory environment and could be widely applied for genotype screening and monitoring drug effects.
Pulsed Thermography for Depth Profiling in Marble Sulfation
NASA Astrophysics Data System (ADS)
Bison, P.; Clarelli, F.; Vannozzi, A.
2015-06-01
Deterioration of stones is a complex problem and one of the main concern for people working in the field of conservation and restoration of cultural heritage. One important point in cultural heritage is to obtain information about the damage in a non-invasive way. By this paper, we propose a new non-invasive tool that permits evaluation of the thickness of (gypsum) grown (sulfation) on marble stones, using a mathematical model on data detected by pulsed infrared thermography.
Coupling IR Thermography and BIA to analyse body reaction after one acupuncture session
NASA Astrophysics Data System (ADS)
Piquemal, M.
2013-04-01
Coupling both thermography and bio-Impedance, some biophysical acupuncture mechanisms are statically studied on a small population of 18 subjects. Results show that a possible way of understanding acupuncture, in an electrical way, should be to consider ionic flux redistribution between vascular and extra cell compartments. This is a two steps mechanism. The first one is starting with needles insertion and the second one is lasting with more intensity after removing them from skin.
1992-01-31
1981, and Breckler 1980). Thermography has been used for differential diagnosis of reflex sympathetic dystrophy (Uematsu et al. 1981), rheumatic diseases... dystrophy . Papers such as those by Goodman et al (19B5) and Devereaux et al (1984) indicate that thermography- is consistently of value in diagnosing...Coyle, M.; Becker , C.; and Reilly, A.: Abnormal thermographic findings in asymptomatic volunteers. Thermology 2: 13 - 15, 1986. Harway R: Precision
NASA Technical Reports Server (NTRS)
Ottens, Brian P.; Parker, Bradford; Stephan, Ryan
2005-01-01
One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.
Detection and assessment of electrocution in endangered raptors by infrared thermography
2013-01-01
Background Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. Cases presentation The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. Conclusions These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology. PMID:23880357
Detection and assessment of electrocution in endangered raptors by infrared thermography.
Melero, Mar; González, Fernando; Nicolás, Olga; López, Irene; Jiménez, María de Los Ángeles; Jato-Sánchez, Susana; Sánchez-Vizcaíno, José Manuel
2013-07-23
Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology.
NASA Technical Reports Server (NTRS)
Ottens, Brian; Parker, Brad; Stephen, Ryan
2005-01-01
One of NASA s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.
2003-01-01
Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.
2017-01-01
Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied. PMID:29283430
Katunin, Andrzej
2017-12-28
Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied.
Automated diagnosis of dry eye using infrared thermography images
NASA Astrophysics Data System (ADS)
Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis
2015-07-01
Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.
Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material.
Usamentiaga, Rubén; García, Daniel Fernando
2017-05-18
Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance.
Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material
Usamentiaga, Rubén; García, Daniel Fernando
2017-01-01
Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance. PMID:28524110
Investigation on the thermographic detection of corrosion in RC structures
NASA Astrophysics Data System (ADS)
Tantele, Elia A.; Votsis, Renos A.; Kyriakides, Nicholas; Georgiou, Panagiota G.; Ioannou, Fotia G.
2017-09-01
Corrosion of the steel reinforcement is the main problem of reinforced concrete (RC) structures. Over the past decades, several methods have been developed aiming to detect the corrosion process early in order to minimise the structural damage and consequently the repairing costs. Emphasis was given in developing methods and techniques of non-destructive nature providing fast on-the-spot detection and covering large areas rather that concentrating on single locations. This study, investigates a non-destructive corrosion detection technique for reinforced concrete, which is based on infrared thermography and the difference in thermal characteristics of corroded and non-corroded steel rebars. The technique is based on the principle that corrosion products have poor heat conductivity, and they inhibit the diffusion of heat that is generated in the reinforcing bar due to heating. For the investigation RC specimens, have been constructed in the laboratory using embedded steel bars of different corrosion states. Afterward, one surface of the specimens was heated using an electric device while thermal images were captured at predefined time instants on the opposite surface with an IR camera. The test results showed a clear difference between the thermal characteristics of the corroded and the non-corroded samples, which demonstrates the potential of using thermography in corrosion detection in RC structures.
Ultrasound Burst Phase Thermography (UBP) for Applications in the Automotive Industry
NASA Astrophysics Data System (ADS)
Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.
2003-03-01
The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented.
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, United Space Alliance workers Ross Neubarth and Paul Ogletree (foreground, left and right) look at the monitor for results of thermography on Discoverys nose cap. Behind them is Ken Tauer. Thermography is one type of inspection to verify integrity of hardware before flight. This procedure uses high intensity light to heat areas that are immediately scanned with an infrared camera to check for internal flaws. Discovery is the vehicle assigned to the Return to Flight mission, STS-114.
NASA Astrophysics Data System (ADS)
Zhou, Xunfei; Hsieh, Sheng-Jen
2017-05-01
After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.
Use of radiometer to reform and repair an old living house to passive solar one
NASA Astrophysics Data System (ADS)
Okamoto, Yoshizo; Inagaki, Terumi; Suzuki, Takakazu; Kurokawa, Takashi
1994-03-01
Japanese living houses mainly consist of wooden elements in high-temperature and moist conditions. To modify the hot and humid environment, a conventional old house was partially rebuilt and repaired. Especially in the winter season, a diagnostic thermographic test was used to find deteriorated and leaking parts of interior and exterior walls. Macroscopic deteriorated parts were checked again in detail. The deteriorated element was then removed. During the reconstruction process, a new solar heat and air conditioning system using a silica-gel adsorber and underground water was installed to cool and warm up the living room. Thermography tests of this remodeled house show that room temperature is always constant and mild to human beings, especially in the winter. Temperature and heat flow distribution of flowing air in the living room was measured using thermal net and wire methods. Leaking thermal streak flow of the gap was locally visualized by the IR radiometer and a highly sensitive video camera. It was verified that IR thermography is a useful measuring instrument to check thermal defects of a house.
Non-invasive assessment of the liver using imaging
NASA Astrophysics Data System (ADS)
Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.
2016-12-01
Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.
NASA Astrophysics Data System (ADS)
Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim
2016-01-01
The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1 %), summer (57.6 %), and autumn (64.5 %) showed difference compared to winter (73.0 %; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.
Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures
NASA Astrophysics Data System (ADS)
Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele
2017-09-01
Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.
HeatWave: the next generation of thermography devices
NASA Astrophysics Data System (ADS)
Moghadam, Peyman; Vidas, Stephen
2014-05-01
Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.
NASA Astrophysics Data System (ADS)
Engelhard, Carsten; Scheffer, Andy; Maue, Thomas; Hieftje, Gary M.; Buscher, Wolfgang
2007-10-01
Inductively coupled plasma (ICP) sources typically used for trace elemental determination and speciation were investigated with infrared (IR) thermography to obtain spatially resolved torch temperature distributions. Infrared thermographic imaging is an excellent tool for the monitoring of temperatures in a fast and non-destructive way. This paper presents the first application of IR thermography to inductively coupled plasma torches and the possibility to investigate temperatures and thermal patterns while the ICP is operating and despite background emission from the plasma itself. A fast and easy method is presented for the determination of temperature distributions and stress features within ICP torches. Two different ICP operating torches were studied: a commercially available Fassel-type ICP unit with 14 L min - 1 total Ar consumption and a SHIP torch with the unusually low Ar flow of 0.6 L min - 1 . Spatially resolved infrared images of both torches were obtained and laterally resolved temperature profiles were extracted. After temperature-resolved calibration of the emissivity (between 0.5 and 0.35 at 873-1323 K) and transmission (20% between 3.75 and 4.02 μm) of the fused quartz used in the torch construction, an image correction was applied. Inhomogeneous temperature distributions with locally defined stress areas in the conventional Fassel-type torch were revealed. As a general trend, it was found that the SHIP torch exhibited higher temperatures ( Tmax = 1580 K) than the conventional torch ( Tmax = 730 K). In the former case, torch sites with efficient and inefficient cooling were discovered and the external flow of cooling air (24-48 m s - 1 ) was identified as the limiting factor.
Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L
2018-01-01
An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.
Use Of Thermography In The Diagnostics Of Energy Use In Multifamily Dwellings.
NASA Astrophysics Data System (ADS)
Gadsby, Kenneth J.; Harrje, David T.
1984-03-01
Rising energy costs have placed a heavy burden on multifamily complex managers in recent years. To reduce energy expenditures these managers are then faced with making difficult decisions as to which building retrofits will prove to be most cost-effective. The Building Energy Research Group at Princeton University has embarked on the development of analysis procedures that will provide these managers with a prioritized list of energy conservation opportunities (ECOs). The case studies presented here illustrate the importance of thermography in this analysis procedure, its impact on the inspection time, and the value of the information gained. The infrared scan often eliminates large areas of the thermal envelope from further inspection and aids the analyst in locating energy losses through construction that would otherwise be difficult to find. Not only does thermography guide us in the choice of ECOs but it also provides us with information that should lead to the construction of better buildings in the future.
Lock-in thermography using a cellphone attachment infrared camera
NASA Astrophysics Data System (ADS)
Razani, Marjan; Parkhimchyk, Artur; Tabatabaei, Nima
2018-03-01
Lock-in thermography (LIT) is a thermal-wave-based, non-destructive testing, technique which has been widely utilized in research settings for characterization and evaluation of biological and industrial materials. However, despite promising research outcomes, the wide spread adaptation of LIT in industry, and its commercialization, is hindered by the high cost of the infrared cameras used in the LIT setups. In this paper, we report on the feasibility of using inexpensive cellphone attachment infrared cameras for performing LIT. While the cost of such cameras is over two orders of magnitude less than their research-grade counterparts, our experimental results on block sample with subsurface defects and tooth with early dental caries suggest that acceptable performance can be achieved through careful instrumentation and implementation of proper data acquisition and image processing steps. We anticipate this study to pave the way for development of low-cost thermography systems and their commercialization as inexpensive tools for non-destructive testing of industrial samples as well as affordable clinical devices for diagnostic imaging of biological tissues.
NASA Astrophysics Data System (ADS)
Altenburg, S. J.; Krankenhagen, R.; Bavendiek, F.
2017-02-01
For thickness determination of polymer based surface protection systems for concrete surfaces, so far only destructive measurement techniques are available. Pulse thermography appears to be well suited for non-destructive thickness evaluation in these systems. Here, we present first results of the development of a respective measurement and analysis procedure. Since surface protection systems consist of a number of layers, a model for the calculation of the surface temperature of a multi-layer structure on a semi-infinite (concrete) substrate in pulse thermography setup was developed. It considers semitransparency of the upmost layer and thermal losses at the surface. It also supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. Simulations for one and three layers on the substrate are presented and first results from fitting the model to experimental data for thickness determination and verification of the model are presented.
Mufford, J T; Paetkau, M J; Flood, N J; Regev-Shoshani, G; Miller, C C; Church, J S
2016-08-01
Many behavioral and physiological studies of laboratory mice employ invasive methods such as radio telemetry to measure key aspects of behavior and physiology. Radio telemetry requires surgical implants, which may impact mouse health and behavior, and thus reduce the reliability of the data collected. We developed a method to measure key aspects of thermoregulatory behavior without compromising animal welfare. We examined the thermoregulatory response to heat stress in a custom-built arena that permitted the use of simultaneous and continuous infrared thermography (IRT) and video capture. This allowed us to measure changes in surface body temperature and determine total distance traveled using EthoVision XT animal tracking software. Locomotor activity and surface body temperature differed between heat-stressed mice and mice kept within their thermal comfort zone. The former had an increase in surface body temperature and a decline in locomotor activity, whereas the latter had a stable surface body temperature and showed greater activity levels. Surface body temperature and locomotor activity are conventionally quantified by measurements taken at regular intervals, which limit the use and accuracy of the data. We obtained data of high resolution (i.e., recorded continuously) and accuracy that allowed for the examination of key physiological measurements such as energy expenditure and peripheral vasomotor tone. This novel experimental method for studying thermoregulatory behavior in mice using non-invasive tools has advantages over radio-telemetry and represents an improvement in laboratory animal welfare. Copyright © 2015 Elsevier B.V. All rights reserved.
Ng, Wan Kee; Ng, Yin Kwee; Tan, Yung Khan
2009-01-01
To evaluate the prospective use of the thermography diagnostic system in assessing sexual function in patients with erectile dysfunction (ED). Thermographs were taken on 14 subjects in a clinical trial conducted at Tan Tock Seng Hospital. After a thorough clinical interview with a standardized questionnaire, patients were scanned for baseline temperature profile before being given an oral dose of sildenafil 100 mg. Subjects were scanned again in the same setting an hour later. If so desired, subjects were given visual stimulation and were allowed minimum direct stimulation, excluding the penis, to elicit erection. Temperature profiles were analyzed using the thermography analysis software in the VarioCAM camera. Three representative cases are presented to illustrate the potential for using the Infrared thermography (IR) diagnostic system in differentiating psychogenic ED. IR was able to capture a significant difference in blood flow to the corpus cavernosum. Subjects with psychogenic ED have higher surface temperatures (34.3 degrees C +/- 0.71 in the flaccid state and 35.3 degrees C +/- 0.2 during erection) compared to subjects with organic ED (33.64 degrees C +/- 0.4 in flaccid and 33.55 degrees C +/- 0.91 during erection). The difference in surface temperature between flaccid and erected states in subjects with organic ED was not significant. The proposed diagnostic test based on IR has tremendous clinical potential in differentiating psychogenic ED from organic ED. IR could potentially be a portable, noninvasive and convenient adjunct in the diagnosis and management of ED.
Application of Infrared Thermography as a Diagnostic Tool of Knee Osteoarthritis
NASA Astrophysics Data System (ADS)
Arfaoui, Ahlem; Bouzid, Mohamed Amine; Pron, Hervé; Taiar, Redha; Polidori, Guillaume
This paper aimed to study the feasibility of application of infrared thermography to detect osteoarthritis of the knee and to compare the distribution of skin temperature between participants with osteoarthritis and those without pathology. All tests were conducted at LACM (Laboratory of Mechanical Stresses Analysis) and the gymnasium of the University of Reims Champagne Ardennes. IR thermography was performed using an IR camera. Ten participants with knee osteoarthritis and 12 reference healthy participants without OA participated in this study. Questionnaires were also used. The participants with osteoarthritis of the knee were selected on clinical examination and a series of radiographs. The level of pain was recorded by using a simple verbal scale (0-4). Infrared thermography reveals relevant disease by highlighting asymmetrical behavior in thermal color maps of both knees. Moreover, a linear evolution of skin temperature in the knee area versus time has been found whatever the participant group is in the first stage following a given effort. Results clearly show that the temperature can be regarded as a key parameter for evaluating pain. Thermal images of the knee were taken with an infrared camera. The study shows that with the advantage of being noninvasive and easily repeatable, IRT appears to be a useful tool to detect quantifiable patterns of surface temperatures and predict the singular thermal behavior of this pathology. It also seems that this non-intrusive technique enables to detect the early clinical manifestations of knee OA.
Applications of the thermography in the animal production
NASA Astrophysics Data System (ADS)
Piñeiro, Carlos; Vizcaino, Elena; Morales, Joaquín.; Manso, Alberto; Díaz, Immaculada; Montalvo, Gema
2015-04-01
Infrared thermography is a working technology for over decades, which have been applied mainly in the buildings. We want to move this use to the animal production in order to help us to detect problems of energy efficiency in the facilities preventing, for example, the animal's welfare. In animal production it is necessary to provide a suitable microclimate according to age and production stage of the animals. This microclimate is achieved in the facilities through the environment modification artificially, providing an appropriate comfort for the animals. Many of the problems detected in farms are related to a poor environmental management and control. This is where infrared thermography becomes an essential diagnostic tool to detect failures in the facilities that will be related with health and performance of the animals. The use of this technology in energy audits for buildings, facilities, etc. is becoming more frequent, enabling the technician to easily detect and assess the temperature and energy losses, and it can be used as a support to draft reports and to transmit the situation to the owner in a visual format. In this way, both will be able to decide what improvements are required. Until now, there was not an appropriate technology with affordable prices and easy to manage enough in order to allow the use of the thermography like a routine tool for the diagnostic of these problems, but currently there are some solutions which are starting to appear on the market to meet the requirements needed by the industry.
Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation
NASA Technical Reports Server (NTRS)
Koshti, Ajay
2014-01-01
The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.
Infrared thermography: A non-invasive window into thermal physiology.
Tattersall, Glenn J
2016-12-01
Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.
Intelligent neonatal monitoring based on a virtual thermal sensor
2014-01-01
Background Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Methods Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate’s geometry. Results The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate’s body surface. Conclusions This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate’s skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming. PMID:24580961
Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites
NASA Astrophysics Data System (ADS)
Juarez, Peter; Leckey, Cara A. C.
2018-04-01
Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.
Liquid crystal foil for the detection of breast cancer
NASA Astrophysics Data System (ADS)
Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk
2016-09-01
Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.
Parametric study of different contributors to tumor thermal profile
NASA Astrophysics Data System (ADS)
Tepper, Michal; Gannot, Israel
2014-03-01
Treating cancer is one of the major challenges of modern medicine. There is great interest in assessing tumor development in in vivo animal and human models, as well as in in vitro experiments. Existing methods are either limited by cost and availability or by their low accuracy and reproducibility. Thermography holds the potential of being a noninvasive, low-cost, irradiative and easy-to-use method for tumor monitoring. Tumors can be detected in thermal images due to their relatively higher or lower temperature compared to the temperature of the healthy skin surrounding them. Extensive research is performed to show the validity of thermography as an efficient method for tumor detection and the possibility of extracting tumor properties from thermal images, showing promising results. However, deducing from one type of experiment to others is difficult due to the differences in tumor properties, especially between different types of tumors or different species. There is a need in a research linking different types of tumor experiments. In this research, parametric analysis of possible contributors to tumor thermal profiles was performed. The effect of tumor geometric, physical and thermal properties was studied, both independently and together, in phantom model experiments and computer simulations. Theoretical and experimental results were cross-correlated to validate the models used and increase the accuracy of simulated complex tumor models. The contribution of different parameters in various tumor scenarios was estimated and the implication of these differences on the observed thermal profiles was studied. The correlation between animal and human models is discussed.
A pyroelectric thermal imaging system for use in medical diagnosis.
Black, C M; Clark, R P; Darton, K; Goff, M R; Norman, T D; Spikes, H A
1990-07-01
The value of infra-red thermography in a number of pathologies, notably rheumatology and vascular diseases, is becoming well established. However, the high cost of thermal scanners and the associated image processing computers has been a limitation to the widespread availability of this technique to the clinical community. This paper describes a relatively inexpensive thermographic system based on a pyroelectric vidicon scanner and a microcomputer. Software has been written with particular reference to the use of thermography in rheumatoid arthritis and vasospastic conditions such as Raynaud's phenomenon.
Nondestructive evaluation of ceramic matrix composite combustor components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J. G.; Verrilli, M. J.; Stephan, R.
Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.
NASA Astrophysics Data System (ADS)
Dumoulin, Jean
2013-04-01
One of the objectives of ISTIMES project was to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, we focused our research and development efforts on uncooled infrared camera techniques due to their promising potential level of dissemination linked to their relative low cost on the market. On the other hand, works were also carried out to identify well adapted implementation protocols and key limits of Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) processing methods to analyse thermal image sequence and retrieve information about the inner structure. So the first part of this research works addresses infrared thermography measurement when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey). In such context, it requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time, thanks to additional measurements. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed [1] with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The whole measurement system was implemented on the "Musmeci" bridge located in Potenza (Italy). No traffic interruption was required during the mounting of our measurement system. The infrared camera was fixed on top of a mast at 6 m elevation from the surface of the bridge deck. A small weather station was added on the same mast at 1 m under the camera. A GPS antenna was also fixed at the basis of the mast and at a same elevation than the bridge deck surface. This trial took place during 4 days, but our system was leaved in stand alone acquisition mode only during 3 days. Thanks to the software developed and the small computer hardware used, thermal image were acquired at a frame rate of 0.1 Hz by averaging 50 thermal images leaving the original camera frame rate fixed at 5 Hz. Each hour, a thermal image sequence was stored on the internal hard drive and data were also retrieved, on demand, by using a wireless connection and a tablet PC. In the second part of this work, thermal image sequences analysis was carried out. Two analysis approaches were studied: one based on the use of the Fast Fourier Transform [2] and the second one based on the Principal Component Analysis [3-4]. Results obtained show that the inner structure of the deck was identified though thermal images were affected by the fact that the bridge was open to traffic during the whole experiments duration. ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663. References [1] Dumoulin J. and Averty R., « Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", QIRT 2012, Naples, Italy, June 2012. [2] Cooley J.W., Tukey J.W., "An algorithm for the machine calculation of complex Fourier series", Mathematics of Computation, vol. 19, n° 90, 1965, p. 297-301. [3] Rajic N., "Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures", Composite Structures, vol 58, pp 521-528, 2002. [4] Marinetti S., Grinzato E., Bison P. G., Bozzi E., Chimenti M., Pieri G. and Salvetti O. "Statistical analysis of IR thermographic sequences by PCA," Infrared Physics & Technology vol 46 pp 85-91, 2004.
Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.
Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S
2017-12-01
Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David
2012-06-01
Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.
[System for organizing the active screening of breast diseases at industrial enterprises].
Pavlov, K A; Mishura, V I; Nazarenko, V P; Karachunskiĭ, M S; Shal'man, Ia S
1982-01-01
The scheme of detection of breast tumors includes such measures of complex screening as self-examination, questionnaires, examination by shop floor doctor, fluoromammography and thermography followed by consultation of an oncologist, needle biopsy and use of surgical manuals. Out of 12,862 females examined by the scheme, 52 (0.4%) had breast tumors (early forms in 23 cases -- 44.2%), 254 (2%) -- benign tumors and cysts; 981 (7.6%) -- dyshormonal mastopathy and 522 (4.0%) -- local fibroadenomatosis.
1988-03-18
The tests were carried out at Le Mayet-de-Montagne (Allier). This test site is used by I.N.A.G. (Institut National d’Astronomie et de Geophysique ...study. Dep. Geophysique , Bureau de Recherches Geologiques et Minieres, B.P. 6009, 45060 Orleans Cedex 2, France 41 - THE USE OF INFRARED THERMOGRAPHY
Nondestructive Evaluation Methods for Characterization of Corrosion: State of the Art Review
1988-12-01
form molecules of hydrogen gas damage is characterized by surface discolora- and leave the surface. Under some circum- tion and deep gouges or pits...large electromagnet and low operating granular corrosion without stress-related crack- frequencies resulted in deep penetration of ing can produce a...focus, and then the spray al. (11) showed that thermography was able to and the focus were moved together down the detect 3-mm deep , 50-mm diameter
NASA Astrophysics Data System (ADS)
Sfarra, S.; Theodorakeas, P.; Ibarra-Castanedo, C.; Avdelidis, N. P.; Paoletti, A.; Paoletti, D.; Hrissagis, K.; Bendada, A.; Koui, M.; Maldague, X.
2011-06-01
The increasing deterioration of panel paintings can be due to physical processes that take place during exhibition or transit, or as a result of temperature and humidity fluctuations within a building, church or museum. In response to environmental alterations, a panel painting can expand or contract and a new equilibrium state is eventually reached. These adjustments though, are usually accompanied by a change in shape in order to accommodate to the new conditions. In this work, a holographic method for detecting detached regions and micro-cracks is described. Some of these defects are confirmed by Thermographic Signal Reconstruction (TSR) technique. In addition, Pulsed Phase Thermography (PPT) and Principal Component Thermography (PCT) allow to identify with greater contrast two artificial defects in Mylar which are crucial to understand the topic of interest: the discrimination between defect materials. Finally, traditional contact ultrasounds applications, are widely applied for the evaluation of the wood quality in several characterization procedures. Inspecting the specimen from the front side, the natural and artificial defects of the specimen are confirmed. Experimental results derived by the application of the integrated methods on an Italian panel painting reproduction, called The Angel specimen, are presented. The main advantages that these techniques can offer to the conservation and restoration of artworks are emphasized.
NASA Astrophysics Data System (ADS)
Álvarez-Tey, G.; Jiménez-Castañeda, R.; Carpio, J.
2017-12-01
The infrared (IR) thermography is a non-destructive technique (NDT) which is used to carry out maintenance quickly and easily in photovoltaic (PV) systems. IR imaging with thermographic cameras under steady state conditions is a usual method for quality control of PV modules and plants in operation. For the proper IR inspection which determines the severity or the importance of the detected findings, it is necessary to consider different aspects of the configuration and the location of the thermographic equipment which allow reducing measuring errors. This paper considers some elements which contribute to the accurate configuration of the thermographic equipment. The influence of the reflected apparent temperature in outdoor IR inspections is analysed and it is proposed a simple method for obtaining it. Besides, the importance of the emissivity in IR thermography is analysed. For that, the value of the emissivity in PV modules of various types both front and rear shape is determined experimentally. It is also studied the proper location of the thermographic equipment in order to minimize reflections of the sun and the sky. For this objective, it is studied the ideal and minimum height of inspection according to the layout of the PV system. In a particular case, it is also analysed the influence of the horizontal angle of thermographic inspection and the reflected radiation.
Parameterisation of non-homogeneities in buried object detection by means of thermography
NASA Astrophysics Data System (ADS)
Stepanić, Josip; Malinovec, Marina; Švaić, Srećko; Krstelj, Vjera
2004-05-01
Landmines and their natural environment form a system of complex dynamics with variable characteristics. A manifestation of that complexity within the context of thermography-based landmines detection is excessive noise in thermograms. That has severely suppressed application of thermography in landmines detection for the purposes of humanitarian demining. (To be differentiated from military demining and demining for military operations other than war [Land Mine Detection DOD's Research Program Needs a Comprehensive Evaluation Strategy, US GAO Report, GAO-01 239, 2001; International Mine Action Standards, Chapter 4.--Glossary. Available at: < http://www.mineactionstandards.org/IMAS_archive/Final/04.10.pdf>].) The discrepancy between the existing role and the actual potential of thermography in humanitarian demining motivated systematic approach to sources of noise in thermograms of buried objects. These sources are variations in mine orientation relative to soil normal, which modify the shape of mine signature on thermograms, as well as non-homogeneities in soil and vegetation layer above the mine, which modify the overall quality of thermograms. This paper analyses the influence of variable mines, and more generally the influence of axially symmetric buried object orientation on the quality of its signature on thermograms. The following two angles have been extracted to serve as parameters describing variation in orientation: (i) θ--angle between the local vertical axis and mine symmetry axis and (ii) ψ--angle between local vertical axis and soil surface normal. Their influence is compared to the influence of (iii) d--the object depth change, which serves as control parameter. The influences are quantified and ranked within a statistically planned experiment. The analysis has proved that among the parameters listed, the most influential one is statistical interaction dψ, followed with the statistical interaction dθ. According to statistical tests, these two combinations are considered the most significant influences. The results show that the currently applied analysis of thermography in humanitarian demining must be broadened by the inclusion of the variations in mine orientation, otherwise a decrease in the probability of mine detection, due to the presence of a systematic error, occurs.
Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V
2017-02-01
The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.
Using infrared thermography for understanding and quantifying soil surface processes
NASA Astrophysics Data System (ADS)
de Lima, João L. M. P.
2017-04-01
At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.
Detection of internal defects in a liquid natural gas tank by use of infrared thermography
NASA Technical Reports Server (NTRS)
Kantsios, A. G.
1978-01-01
The use of an infrared scanning technique to detect defects in the secondary barrier of a liquid natural gas tank is described. The method works by detecting leak-caused temperature differences as low as 0.2 K, but can provide only an approximate idea of the extent of the defect. The nondestructive method was tested in a study of a LNG tank already at its location in a ship; the secondary barrier was located inside the tank wall. Defective areas indicated by the infrared radiometric measurements were confirmed by other probe techniques and by physical examination.
Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography
NASA Technical Reports Server (NTRS)
Heineck, James T.; Schuelein, Erich; Raffel, Markus
2014-01-01
Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian, E-mail: Grosse@tum.de
2015-03-31
In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT)more » system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.« less
Nde of Frp Wrapped Columns Using Infrared Thermography
NASA Astrophysics Data System (ADS)
Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.
2008-02-01
This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.
Huberman, Jackie S; Dawson, Samantha J; Chivers, Meredith L
2017-10-01
Sexual response is a dynamic process, though there is limited knowledge of the time course and relationships among its psychological and physiological components. To address this gap, we concurrently assessed self-reported sexual arousal, genital temperature (with thermography), and genital vasocongestion (with vaginal photoplethysmography [VPP] or penile plethysmography [PPG]) during sexual and nonsexual films in 28 androphilic women (attracted to men) and 27 gynephilic men (attracted to women). Men and women had similarly strong agreement between subjective and genital responses (sexual concordance) with thermography, but this agreement was stronger in men than women with PPG/VPP. The time course of changes in self-reported arousal was most similar to changes in genital temperature (i.e., time to onset and peak response). Time-lagged correlations and multilevel modeling revealed changes in the strength of relationships between aspects of sexual response over time. Results highlight the dynamic nature of sexual response and drawbacks of relying on zero-order correlations to characterize sexual concordance. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
dos Santos, Laerte; da Costa Bortoni, Edson; Barbosa, Luiz C.; Araujo, Reyler A.
2005-03-01
Furnas Centrais Elétricas S.A is one of the greatest companies of the Brazilian electric power sector and a pioneer in using infrared thermography. In the early 70s, the maintenance policy used was a centralized approach, with only one inspection team to cover all the company"s facilities. In the early 90s, FURNAS decided to decentralize the thermography inspections creating several inspection teams. This new maintenance policy presented several advantages when compared to the previous one. However the credibility of the results obtained with the thermal inspection was frequently being questioned, in part due to the lack of a detailed planning to carry out the transition from the centralized inspection to the decentralized one. In some areas of the company it was suggested the inactivation of the thermography. This paper presents the experience of FURNAS with these different maintenance policies and details the procedures which have been taken that nowadays the infrared thermal inspection has become one of the most important techniques of predictive maintenance in the company.
Large-area thermographic inspection of GRP composite marine vessel hulls
NASA Astrophysics Data System (ADS)
Jones, Thomas S.; Berger, Harold; Weaver, Elizabeth
1993-04-01
Every year there is an increase in the number of Glass Reinforced Plastic (GRP) composite vessels the Coast Guard inspects. A fast, nondestructive evaluation (NDE) technique is needed to facilitate these inspections. The technique must be suitable for use in field environments. Through a Small Business Innovation Research (SBIR) contract with the Coast Guard R&D Center, Industrial Quality, Inc. has performed a feasibility study evaluating the use of infrared thermography for such applications. The study demonstrated the ability of infrared thermography to detect hidden flaws through a variety of laminates and sandwich panel core materials. Empirical results matched well with analytical results of the sensitivity of the technique to various sizes of discontinuities at different depths. Following the successful SBIR program results, the Coast Guard R&D Center asked IQI to do a survey of the Steam Yacht Medea. The Medea had been repaired by a unique system of laying foam core and fiberglass over the ship's original steel-clad hull. The hybrid steel/foam core/GRP hull provided an additional structural configuration for the infrared thermography inspection equipment to handle.
Building thermography as a tool in energy audits and building commissioning procedure
NASA Astrophysics Data System (ADS)
Kauppinen, Timo
2007-04-01
A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.
NASA Astrophysics Data System (ADS)
Vainer, Boris G.; Morozov, Vitaly V.
A peculiar branch of biophotonics is a measurement, visualisation and quantitative analysis of infrared (IR) radiation emitted from living object surfaces. Focal plane array (FPA)-based IR cameras make it possible to realize in medicine the so called interventional infrared thermal diagnostics. An integrated technique aimed at the advancement of this new approach in biomedical science and practice is described in the paper. The assembled system includes a high-performance short-wave (2.45-3.05 μm) or long-wave (8-14 μm) IR camera, two laser Doppler flowmeters (LDF) and additional equipment and complementary facilities implementing the monitoring of human cardiovascular status. All these means operate synchronously. It is first ascertained the relationship between infrared thermography (IRT) and LDF data in humans in regard to their systemic cardiovascular reactivity. Blood supply real-time dynamics in a narcotized patient is first visualized and quantitatively represented during surgery in order to observe how the general hyperoxia influences thermoregulatory mechanisms; an abrupt increase in temperature of the upper limb is observed using IRT. It is outlined that the IRT-based integrated technique may act as a take-off runway leading to elaboration of informative new methods directly applicable to medicine and biomedical sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouet, T.; Schmitt, M.; Desuzinges, C.
1990-11-01
Hyperemia associated with an inflammatory response has been investigated in rats, by using four different experimental models, i.e., positive and negative polymer implants from the pharmacopea, operative control, and abscess induced by turpentine oil. 133Xenon clearance, infrared thermography and Laser Doppler Flowmetry (LDF) were used to monitor the subcutaneous local hemodynamic changes from 1 to 40 postoperative days. LDF proved to be a sensitive, reproducible method, able to discriminate positive from negative implants already at the 3rd postoperative day and up to 40 days. This increased local blood flow was also visualized at the site of positive implants at themore » 14th and 21st postoperative days by means of 133Xe Clearance. Additional information obtained by infrared thermography allowed discrimination between positive implants and control sites but only at the very early stage (1 to 3 days). The significance of the different data collected by the three techniques was correlated with histological events occurring at the different implant sites. LDF may therefore represent a useful technique for noninvasive semiquantitative assessment of tissue response to biomaterials.« less
Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca
2015-01-01
The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one. PMID:26100383
Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca
2015-06-23
The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one.
Cifuentes, Ignacio Javier; Dagnino, Bruno Leonardo; Salisbury, María Carolina; Perez, María Eliana; Ortega, Claudia; Maldonado, Daniela
2018-05-01
Dynamic infrared thermography (DIRT) has been used for the preoperative mapping of cutaneous perforators. This technique has shown a positive correlation with intraoperative findings. Our aim was to evaluate the accuracy of perforator mapping with DIRT and augmented reality using a portable projector. For this purpose, three volunteers had both of their anterolateral thighs assessed for the presence and location of cutaneous perforators using DIRT. The obtained image of these "hotspots" was projected back onto the thigh and the presence of Doppler signals within a 10-cm diameter from the midpoint between the lateral patella and the anterior superior iliac spine was assessed using a handheld Doppler device. Hotspots were identified in all six anterolateral thighs and were successfully projected onto the skin. The median number of perforators identified within the area of interest was 5 (range, 3-8) and the median time needed to identify them was 3.5 minutes (range, 3.3-4.0 minutes). Every hotspot was correlated to a Doppler sound signal. In conclusion, augmented reality can be a reliable method for transferring the location of perforators identified by DIRT onto the thigh, facilitating its assessment and yielding a reliable map of potential perforators for flap raising.
Thermal characterization of gallium nitride p-i-n diodes
NASA Astrophysics Data System (ADS)
Dallas, J.; Pavlidis, G.; Chatterjee, B.; Lundh, J. S.; Ji, M.; Kim, J.; Kao, T.; Detchprohm, T.; Dupuis, R. D.; Shen, S.; Graham, S.; Choi, S.
2018-02-01
In this study, various thermal characterization techniques and multi-physics modeling were applied to understand the thermal characteristics of GaN vertical and quasi-vertical power diodes. Optical thermography techniques typically used for lateral GaN device temperature assessment including infrared thermography, thermoreflectance thermal imaging, and Raman thermometry were applied to GaN p-i-n diodes to determine if each technique is capable of providing insight into the thermal characteristics of vertical devices. Of these techniques, thermoreflectance thermal imaging and nanoparticle assisted Raman thermometry proved to yield accurate results and are the preferred methods of thermal characterization of vertical GaN diodes. Along with this, steady state and transient thermoreflectance measurements were performed on vertical and quasi-vertical GaN p-i-n diodes employing GaN and Sapphire substrates, respectively. Electro-thermal modeling was performed to validate measurement results and to demonstrate the effect of current crowding on the thermal response of quasi-vertical diodes. In terms of mitigating the self-heating effect, both the steady state and transient measurements demonstrated the superiority of the tested GaN-on-GaN vertical diode compared to the tested GaN-on-Sapphire quasi-vertical structure.
Automated characterization of diabetic foot using nonlinear features extracted from thermograms
NASA Astrophysics Data System (ADS)
Adam, Muhammad; Ng, Eddie Y. K.; Oh, Shu Lih; Heng, Marabelle L.; Hagiwara, Yuki; Tan, Jen Hong; Tong, Jasper W. K.; Acharya, U. Rajendra
2018-03-01
Diabetic foot is a major complication of diabetes mellitus (DM). The blood circulation to the foot decreases due to DM and hence, the temperature reduces in the plantar foot. Thermography is a non-invasive imaging method employed to view the thermal patterns using infrared (IR) camera. It allows qualitative and visual documentation of temperature fluctuation in vascular tissues. But it is difficult to diagnose these temperature changes manually. Thus, computer assisted diagnosis (CAD) system may help to accurately detect diabetic foot to prevent traumatic outcomes such as ulcerations and lower extremity amputation. In this study, plantar foot thermograms of 33 healthy persons and 33 individuals with type 2 diabetes are taken. These foot images are decomposed using discrete wavelet transform (DWT) and higher order spectra (HOS) techniques. Various texture and entropy features are extracted from the decomposed images. These combined (DWT + HOS) features are ranked using t-values and classified using support vector machine (SVM) classifier. Our proposed methodology achieved maximum accuracy of 89.39%, sensitivity of 81.81% and specificity of 96.97% using only five features. The performance of the proposed thermography-based CAD system can help the clinicians to take second opinion on their diagnosis of diabetic foot.
NASA Astrophysics Data System (ADS)
Bernegger, R.; Altenburg, S. J.; Röllig, M.; Maierhofer, C.
2018-03-01
Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials. We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting.
NASA Astrophysics Data System (ADS)
Lazzi Gazzini, S.; Schädler, R.; Kalfas, A. I.; Abhari, R. S.
2017-02-01
It is technically challenging to measure heat fluxes on the rotating components of gas turbines, yet accurate knowledge of local heat loads under engine-representative conditions is crucial for ensuring the reliability of the designs. In this work, quantitative image processing tools were developed to perform fast and accurate infrared thermography measurements on 3D-shaped film-heaters directly deposited on the turbine endwalls. The newly developed image processing method and instrumentation were used to measure the heat load on the rotor endwalls of an axial turbine. A step-transient heat flux calibration technique is applied to measure the heat flux generated locally by the film heater, thus eliminating the need for a rigorously iso-energetic boundary condition. On-board electronics installed on the rotor record the temperature readings of RTDs installed in the substrate below the heaters in order to evaluate the conductive losses in the solid. Full maps of heat transfer coefficient and adiabatic wall temperature are produced for two different operating conditions, demonstrating the sensitivity of the technique to local flow features and variations in heat transfer due to Reynolds number effect.
Undergraduate Laboratory on a Turbulent Impinging Jet
NASA Astrophysics Data System (ADS)
Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael
2017-11-01
An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses
[Evaluation of the thermal effects of the plasma microtorch by infrared thermography].
Lhuisset, F; Zeboulon, S; Bouchier, G
1991-01-01
This study presents a detailed example of the examination of the tooth treated by thermal therapy, by infrared thermography and the different manners to show the results of the examination. The results of the work shows: the thermal diffusion into the tooth is similar to the thermal diffusion into an isotropic environment, the fusion heat of the dentine is reached without any damage to the pulp. The study of the tooth treated by the thermal action of the MICRO PLASMA SYSTEM confirms the thérapeutical effects of the thermal treatment without any damage to the pulp.
Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study
de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.
2014-01-01
Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915
Detecting hidden exfoliation corrosion in aircraft wing skins using thermography
NASA Astrophysics Data System (ADS)
Prati, John
2000-03-01
A thermal wave (pulse) thermography inspection technique demonstrated the ability to detect hidden subsurface exfoliation corrosion adjacent to countersunk fasteners in aircraft wing skins. In the wing skin, exfoliation corrosion is the result of the interaction between the steel fastener and the aluminum skin material in the presence of moisture. This interaction results in corrosion cracks that tend to grow parallel to the skin surface. The inspection technique developed allows rapid detection and evaluation of hidden (not visible on the surface) corrosion, which extends beyond the head of fastener countersinks in the aluminum skins.
2011-02-01
for a 256 x 256 array to 2 kHz 2 UNCLASSIFIED UNCLASSIFIED DSTO–TN–0986 for a central 64 x 64 sub-array. The second camera, a FLIR SC6000, has an...The first group of inserts (1, 3, 5, 7 and 9) were located at a depth of 15% of the total thickness and the second group (2, 4, 6, 8 and 10) were...thermography was conducted with a nominal input power of 480 W over 1 second duration. The thermal data was acquired at a frame rate of 50 Hz over 750 frames
NASA Astrophysics Data System (ADS)
Dumoulin, Jean; Crinière, Antoine; Averty, Rodolphe
2015-04-01
An infrared system has been developed to monitor transport infrastructures in a standalone configuration. Results obtained on bridges open to traffic allows to retrieve the inner structure of the decks. To complete this study, experiments were carried out over several months to monitor two reinforced concrete beams of 16 m long and 21 T each. Detection of a damaged area over one of the two beams was made by Pulse Phase Thermography approach. Measurements carried out over several months. Finally, conclusion on the robustness of the system is proposed and perspectives are presented.
The mechanical and electrochemical properties of bulk metallic glasses
NASA Astrophysics Data System (ADS)
Morrison, Mark Lee
The objectives of this study were to define and model the electrochemical and mechanical behaviors of BMGs, in addition to the interactions between these. The electrochemical behaviors of Zr-, Ti-, and Ca-based BMGs have been studied in various environments. Moreover, the electrochemical behaviors of several common, crystalline materials have also been characterized in the same environments to facilitate comparisons. Mechanical characterization of the Vitreloy 105 alloy was conducted through four-point bend fatigue testing, as well as tensile testing with in situ thermography. After the electrochemical and mechanical behaviors of the Vit 105 BMG alloy were defined separately, the corrosion-fatigue behavior of this alloy was studied. Corrosion-fatigue tests were conducted in a 0.6 M NaCl electrolyte, identical to one of the environments in which the electrochemical behavior was previously defined. The environmental effect was found to be significant at most stress levels, with decreasing effects at higher stress levels due to decreasing time in the detrimental environment, and severely depressed the corrosion-fatigue endurance limit. Cyclic-anodic-polarization tests were conducted during cyclic loading to elucidate the effect of cyclic stresses on the electrochemical behavior. It was found that a stress range of 900 MPa resulted in active pitting at the open-circuit potentials. The degradation mechanism was determined to be stress-assisted dissolution, not hydrogen embrittlement. Finally, tensile tests were conducted with the Vit 105 BMG alloy with in situ infrared (IR) thermography to observe the evolution of shear bands during deformation. More importantly, the length, location, sequence, temperature evolution, and velocity of individual shear bands have been quantified through the use of IR thermography. Based upon all of these studies on a variety of BMG alloy systems, the most important factor in the mechanical and electrochemical behavior was found to be material quality and homogeneity. Therefore, future research on the improvement of BMG alloys should be focused on this area.
The roles of vibration analysis and infrared thermography in monitoring air-handling equipment
NASA Astrophysics Data System (ADS)
Wurzbach, Richard N.
2003-04-01
Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.
Self-heating and failure in scalable graphene devices
Beechem, Thomas E.; Shaffer, Ryan A.; Nogan, John; ...
2016-06-09
Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. As a result, morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.
Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.
Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.
Beer, S K; Lawson, S A
2013-08-01
An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples.
Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers
Lantada, Andrés Díaz; Rebollo, María Ángeles Santamaría
2013-01-01
A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c) the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed. PMID:28788401
2004-03-10
KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance (USA), prepares equipment to examine a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with USA, points to an area of a Reinforced Carbon Carbon panel just examined using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance (USA), examines a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Jim Landy, NDE specialist with United Space Alliance, sets up equipment to examine a Reinforced Carbon Carbon panel using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.
In-Flight Flow Visualization Using Infrared Thermography
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Shiu, H. J.; Banks D. W.
1997-01-01
The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.
Characterization of emission microscopy and liquid crystal thermography in IC fault localization
NASA Astrophysics Data System (ADS)
Lau, C. K.; Sim, K. S.
2013-05-01
This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization. It is necessary for a failure analyst to use both techniques when one of the techniques produces no result.
Comparative study on the efficiency of some optical methods for artwork diagnostics
NASA Astrophysics Data System (ADS)
Schirripa Spagnolo, Giuseppe; Ambrosini, Dario; Paoletti, Domenica
2001-10-01
Scientific investigation methods are founding their place besides the stylistic-historical study methods in art research works. In particular, optical techniques, transferred from other fields or developed ad hoc, can make a strong contribution to the safeguarding and exploitation of cultural heritage. This paper describes the use of different optical techniques, such as holographic interferometry, decorrelation, shearography and ESPI, in the diagnostics of works of art. A comparison between different methods is obtained by performing tests on specially designed models, prepared using typical techniques and materials. Inside the model structure, a number of defects of known types, form and extension are inserted. The different features of each technique are outlined and a comparison with IR thermography is also carried out.
Dimitrijevic, I M; Kocic, M N; Lazovic, M P; Mancic, D D; Marinkovic, O K; Zlatanovic, D S
2016-08-01
Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. Some studies have shown that infrared thermography can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy. This study aimed to examine the correlation of the regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy. This cross-sectional study was conducted at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were recruited, with the following clinical parameters evaluated: (1) pain intensity by using a visual analogue scale, separately at rest and during active movement; (2) mobility of the lumbar spine by Schober test and the fingertip-to-floor test; and (3) functional status by the Oswestry Disability Index. Temperature differences between the symmetrical regions of the lower extremities were detected by infrared thermography. A quantitative analysis of thermograms determined the regions of interest with maximum thermal deficit. Correlation of maximum thermal deficit with each tested parameter was then determined. A significant and strong positive correlation was found between the regional thermal deficit and pain intensity at rest, as well as pain during active movements (rVAS - rest=0.887, rVAS - activity=0.890; P<0.001). The regional thermal deficit significantly and strongly correlated with the Oswestry Disability Index score and limited mobility of the lumbar spine (P<0.001). In patients with unilateral lumbosacral radiculopathy, the values of regional thermal deficit of the affected lower extremity are correlated with pain intensity, mobility of the lumbar spine, and functional status of the patient.
Industrial application of thermal image processing and thermal control
NASA Astrophysics Data System (ADS)
Kong, Lingxue
2001-09-01
Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.
Measurement of temperature induced in bone during drilling in minimally invasive foot surgery.
Omar, Noor Azzizah; McKinley, John C
2018-02-19
There has been growing interest in minimally invasive foot surgery due to the benefits it delivers in post-operative outcomes in comparison to conventional open methods of surgery. One of the major factors determining the protocol in minimally invasive surgery is to prevent iatrogenic thermal osteonecrosis. The aim of the study is to look at various drilling parameters in a minimally invasive surgery setting that would reduce the risk of iatrogenic thermal osteonecrosis. Sixteen fresh-frozen tarsal bones and two metatarsal bones were retrieved from three individuals and drilled using various settings. The parameters considered were drilling speed, drill diameter, and inter-individual cortical variability. Temperature measurements of heat generated at the drilling site were collected using two methods; thermocouple probe and infrared thermography. The data obtained were quantitatively analysed. There was a significant difference in the temperatures generated with different drilling speeds (p<0.05). However, there was no significant difference in temperatures recorded between the bones of different individuals and in bones drilled using different drill diameters. Thermocouple showed significantly more sensitive tool in measuring temperature compared to infrared thermography. Drilling at an optimal speed significantly reduced the risk of iatrogenic thermal osteonecrosis by maintaining temperature below the threshold level. Although different drilling diameters did not produce significant differences in temperature generation, there is a need for further study on the mechanical impact of using different drill diameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clinical Application Of Advanced Infrared Thermography (IRT) In Locomotor Diseases
NASA Astrophysics Data System (ADS)
Engel, Joachim-Michael
1983-11-01
Locomotor diseases is a wide range of about 450 different illnesses with all different pathologies, clinical and prognostic features and response to treatment. No single method will be able to cover the whole spectrum of local and systemic signs and symptoms. Nevertheless there is a need for objective measurements at the site of disease: clinical examination is often enough depending from subjective estimations and personal experiance of the clinician. Laboratory tests only show the systemic effect of the disease, like inflammation. X-rays are restricted to the detection of structural changes appearing late during the pathological process, even when using different techniques. Here IRT offers several advantages to the clinician as well as to the patient. As a non invasive method it monitors the course of disease at the anatomic site of pathology. Quantitative figures calculated from the thermogram,either taken at steady-state or during dynamic tests, are essential for differential diagnosis and follow-up. Advanced IRT camera systems fulfill all requirements set up for medical thermography recently by the National Bureau of Standards. Although, the user should check his system daily with regard to precision of absolute temperature measurements. Standardisation of recording technique is essential as well,to get reliable results. Ambient conditions must be adapted to the locomotor disease pathology under study. Advanced IRT systems , e.g. ZEISS-IKOTHERM, together with image processing capability and special software, e.g. THERMOTOM package, are valuable tools to the rheumatologist for diagnosing and monitoring locomotor diseases.
NASA Astrophysics Data System (ADS)
Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei
2016-07-01
A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.
Key technique study and application of infrared thermography in hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
LI, Ming; Yang, Yan-guang; Li, Zhi-hui; Zhu, Zhi-wei; Zhou, Jia-sui
2014-11-01
The solutions to some key techniques using infrared thermographic technique in hypersonic wind tunnel, such as temperature measurement under great measurement angle, the corresponding relation between model spatial coordinates and the ones in infrared map, the measurement uncertainty analysis of the test data etc., are studied. The typical results in the hypersonic wind tunnel test are presented, including the comparison of the transfer rates on a thin skin flat plate model with a wedge measured with infrared thermography and thermocouple, the experimental study heating effect on the flat plate model impinged by plume flow and the aerodynamic heating on the lift model.
2003-10-29
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers remove the overhead crane from the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.
2003-10-29
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is secured on a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.
2003-10-29
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, packing material is placed over the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.
2003-10-29
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is lowered toward a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.
Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.
2012-01-01
Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Walker, james; Roth, Don; Hopkins, Dale
2010-01-01
This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.
Divertor power and particle fluxes between and during type-I ELMs in the ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Dux, R.; Eich, T.; Fischer, R.; Giannone, L.; Harhausen, J.; Herrmann, A.; Müller, H. W.; Pautasso, G.; Wischmeier, M.; ASDEX Upgrade Team
2008-08-01
Particle, electric charge and power fluxes for type-I ELMy H-modes are measured in the divertor of the ASDEX Upgrade tokamak by triple Langmuir probes, shunts, infrared (IR) thermography and spectroscopy. The discharges are in the medium to high density range, resulting in predominantly convective edge localized modes (ELMs) with moderate fractional stored energy losses of 2% or below. Time resolved data over ELM cycles are obtained by coherent averaging of typically one hundred similar ELMs, spatial profiles from the flush-mounted Langmuir probes are obtained by strike point sweeps. The application of simple physics models is used to compare different diagnostics and to make consistency checks, e.g. the standard sheath model applied to the Langmuir probes yields power fluxes which are compared with the thermographic measurements. In between ELMs, Langmuir probe and thermography power loads appear consistent in the outer divertor, taking into account additional load due to radiation and charge exchange neutrals measured by thermography. The inner divertor is completely detached and no significant power flow by charged particles is measured. During ELMs, quite similar power flux profiles are found in the outer divertor by thermography and probes, albeit larger uncertainties in Langmuir probe evaluation during ELMs have to be taken into account. In the inner divertor, ELM power fluxes from thermography are a factor 10 larger than those derived from probes using the standard sheath model. This deviation is too large to be caused by deficiencies of probe analysis. The total ELM energy deposition from IR is about a factor 2 higher in the inner divertor compared with the outer divertor. Spectroscopic measurements suggest a quite moderate contribution of radiation to the target power load. Shunt measurements reveal a significant positive charge flow into the inner target during ELMs. The net number of elementary charges correlates well with the total core particle loss obtained from highly resolved density profiles. As a consequence, the discrepancy between probe and IR measurements is attributed to the ion power channel via a high mean impact energy of the ions at the inner target. The dominant contributing mechanism is proposed to be the directed loss of ions from the pedestal region into the inner divertor.
PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.
2008-01-01
Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.
Shuttle Entry Imaging Using Infrared Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve
2007-01-01
During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.
Investigation of the low-level modulated light action
NASA Astrophysics Data System (ADS)
Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.
1994-07-01
Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.
Skin temperature reveals the intensity of acute stress
Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.
2015-01-01
Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785
Skin temperature reveals the intensity of acute stress.
Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F
2015-12-01
Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Belkacemi, Mohamed; Stolz, Christophe; Mathieu, Alexandre; Lemaitre, Guillaume; Massich, Joan; Aubreton, Olivier
2015-11-01
Today, industries ensure the quality of their manufactured products through computer vision techniques and nonconventional imaging. Three-dimensional (3-D) scanners and nondestructive testing (NDT) systems are commonly used independently for such applications. Furthermore, these approaches combined constitute hybrid systems, providing a 3-D reconstruction and NDT analysis. These systems, however, suffer from drawbacks such as errors during the data fusion and higher cost for manufacturers. In an attempt to solve these problems, a single active thermography system based on scanning-from-heating is proposed in this paper. In addition to 3-D digitization of the object, our contributions are twofold: (1) the nonthrough defect detection for a homogeneous metallic object and (2) fiber orientation assessment for a long fiber composite material. The experiments on steel and aluminum plates show that our method achieves the detection of nonthrough defects. Additionally, the estimation of the fiber orientation is evaluated on carbon-fiber composite material.
Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography
NASA Astrophysics Data System (ADS)
Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon
2011-04-01
Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.
Cifuentes, Ignacio Javier; Dagnino, Bruno Leonardo; Salisbury, María Carolina; Perez, María Eliana; Ortega, Claudia; Maldonado, Daniela
2018-01-01
Dynamic infrared thermography (DIRT) has been used for the preoperative mapping of cutaneous perforators. This technique has shown a positive correlation with intraoperative findings. Our aim was to evaluate the accuracy of perforator mapping with DIRT and augmented reality using a portable projector. For this purpose, three volunteers had both of their anterolateral thighs assessed for the presence and location of cutaneous perforators using DIRT. The obtained image of these “hotspots” was projected back onto the thigh and the presence of Doppler signals within a 10-cm diameter from the midpoint between the lateral patella and the anterior superior iliac spine was assessed using a handheld Doppler device. Hotspots were identified in all six anterolateral thighs and were successfully projected onto the skin. The median number of perforators identified within the area of interest was 5 (range, 3–8) and the median time needed to identify them was 3.5 minutes (range, 3.3–4.0 minutes). Every hotspot was correlated to a Doppler sound signal. In conclusion, augmented reality can be a reliable method for transferring the location of perforators identified by DIRT onto the thigh, facilitating its assessment and yielding a reliable map of potential perforators for flap raising. PMID:29788686
Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography
Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee
2012-01-01
A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050
NASA Astrophysics Data System (ADS)
Gavrilov, Dmitry J.
Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary. Moreover, this analysis should be done on a regular basis to prevent defects from increasing in size over time. Conventional methods, such as infrared photography and X-ray radiography may not be suitable for this application, because most of detachments are too deep for infrared to reach them, and too thin for providing enough contrast on X-ray images. This highlights the need for the development of methodsfor detection of hidden defects and structure of art pieces to detect the structure of art pieces and any hidden defects present. Thermography has strong potential as a tool for non-invasive analysis of works of art and only recently has it been actively promoted into this field. However, due to the general unpredictability of the structure of brushstrokes as well as the properties of paint, it is difficult to apply a physical model to the analysis of paintings. In addition, an improved method is proposed. This proposed method is mainly based on PCT, but it is capable of returning clear images of subsurface defects and the structure of the support. Unlike standard PCT images, the images acquired by this method do not exhibit visually similar features.
Tomography reconstruction methods for damage diagnosis of wood structure in construction field
NASA Astrophysics Data System (ADS)
Qiu, Qiwen; Lau, Denvid
2018-03-01
The structural integrity of wood building element plays a critical role in the public safety, which requires effective methods for diagnosis of internal damage inside the wood body. Conventionally, the non-destructive testing (NDT) methods such as X-ray computed tomography, thermography, radar imaging reconstruction method, ultrasonic tomography, nuclear magnetic imaging techniques, and sonic tomography have been used to obtain the information about the internal structure of wood. In this paper, the applications, advantages and disadvantages of these traditional tomography methods are reviewed. Additionally, the present article gives an overview of recently developed tomography approach that relies on the use of mechanical and electromagnetic waves for assessing the structural integrity of wood buildings. This developed tomography reconstruction method is believed to provide a more accurate, reliable, and comprehensive assessment of wood structural integrity
McHugh, N J; Elvins, D M; Ring, E F
1993-03-01
We describe a case of irreversible severe vibration-white-finger (VWF) occurring in a male who used a compression-hammer daily at work for a 20-year period. Infra-red thermography following either a cold provocation or a vibratory stress was a sensitive objective method of documenting the condition. Persistent elevation of IgG anticardiolipin antibodies (aCL) was found in his serum and may be a marker of endothelial damage associated with either VWF or the patient's coincidental valvular heart disease.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James
2013-01-01
An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.
NASA Astrophysics Data System (ADS)
Bicanic, D.; Streza, M.; Dóka, O.; Valinger, D.; Luterotti, S.; Ajtony, Zs.; Kurtanjek, Z.; Dadarlat, D.
2015-09-01
Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC.
Correlation of BAT activity with thyroid metabolic activity in patients with fibromyalgia
NASA Astrophysics Data System (ADS)
Costa, A. P. C.; Maia, J. M.; Brioschi, M. L.; Machado, J. E. M. M.
2017-03-01
The objective of this research is to correlate the brown fat activity (BAT) with the metabolic activity of thyroid in patients with fibromyalgia syndrome (FS). For the development of the research, it was select a database containing 132 patients of a thermography clinic, male and female, with age over 18 years old; where the images selected were anteroposterior orthostasis top and anteroposterior in cervical extension. In the program Flir Report, it was possible to demarcate the region of the left and right interscapular and thyroid of each patient by getting the respective temperatures, in addition to view the hyper-radiation ("signal of mantle") in the interscapular. Temperature was organized in table format, and statistical analysis was performed in the program Microcal Origin 6.0. As conclusion, it was found that the greater the metabolic activity of thyroid in patients with fibromyalgia, the greater will be the metabolic rate of brown fat (BAT).
Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.
Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano
2016-09-01
Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.
Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses
López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli
2012-01-01
The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025
Pedreira, Amanda A; Wanderley, Flavia G; Sa, Maira F; Viena, Camila S; Perez, Adriano; Hoshi, Ryuichi; Leite, Marcia P; Reis, Silvia R; Medrado, Alena P
2016-08-01
A randomized, blind, controlled clinical study was conducted with a convenience sample of 24 patients to evaluate the effectiveness of an aluminum gallium arsenide (AlGaAs) infrared laser 808 nm after third molar extraction by the use of infrared thermography technique. Patients were divided into four groups: erupted third molars were extracted from the patients in Group I and Group II, and impacted third molars were extracted from the patients in Group III and Group IV. Group I and Group III received mock laser therapy in which the device was powered off, and Group II and Group IV were exposed to laser light. Postoperative clinical parameters related to the third molar extraction were evaluated; these parameters included pain, trismus and edema. Circulatory patterns were also evaluated by infrared thermography that exhibited local temperature coefficient at different postoperative periods. A slight improvement was observed for swelling, pain and trismus in patients who received laser irradiation, although the differences were not statistically significant (P>0.05). Laser therapy had a significant influence on the local circulation in the area near the temporomandibular joint, as determined by infrared thermography (P<0.05). Laser therapy was able to change the local circulation, although it did not significantly influence swelling, pain or trismus during the postoperative period.
Thermography and sonic anemometry to analyze air heaters in Mediterranean greenhouses.
López, Alejandro; Valera, Diego L; Molina-Aiz, Francisco; Peña, Araceli
2012-10-16
The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W ∙ m(-2)) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.
2016-01-01
A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Dan Phillips (left) and Donald Nielen, with United Space Alliance, watch a monitor as Jim Landy, NDE specialist with USA, prepares to examine a Reinforced Carbon Carbon panel (on the table, center) using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.
NASA Astrophysics Data System (ADS)
Menegassi, Silvio Renato Oliveira; Barcellos, Júlio Otavio Jardim; Dias, Eduardo Antunes; Koetz, Celso; Pereira, Gabriel Ribas; Peripolli, Vanessa; McManus, Concepta; Canozzi, Maria Eugênia Andrighetto; Lopes, Flávio Guiselli
2015-03-01
The aim of this study was to assess the seasonal effects of the environment on semen quality in bulls, using infrared thermography. Sperm motility (M), mass motion (MM), and vigor (VIG) were evaluated in sperm samples from 17 Bradford bulls aged approximately 24 months at the beginning of the study. Infrared thermography images and data were collected using an infrared FLIR T 300 camera and Quick Report 1.2 SP2 software to determine the temperature of the proximal and distal poles of the testis and to assess the testicular temperature gradient. The seasonal effects on physiological, seminal, and climatic variables were analyzed by the GLM ANOVA and CORR procedures using SAS®. The microclimatic factors were recorded in hourly intervals, and the daily mean temperature and mean relative humidity were calculated to determine the daily temperature-humidity index (THI) every day for 1 year. The temperature gradient (TG) variations of the testes were significantly higher in the autumn (4.5 °C), winter (4.0 °C), and spring (2.9 °C) compared to summer (0.9 °C) ( P < 0.05). Ocular globe temperatures were lower in the winter (27.6 °C) and autumn (26.8 °C) compared to summer (33.9 °C) and spring (31.1 °C) ( P < 0.05). The average MM (2.58), M (52.64), and VIG (2.70) of the semen decreased in the summer compared to other seasons ( P < 0.01). The TG was negatively correlated with THI (-0.44; P < 0.05). For the seminal variables, MaD (-0.45; P < 0.05) and TD (-0.50; P < 0.01) presented a negative correlation with TG. The TG had a positive correlation between M and VIG, which had values of 0.36 and 0.35, respectively ( P < 0.05). We have concluded that infrared thermography can be used to assess the testicular temperature gradient and its consequences on physical and quantitative aspects of sperm.
Hybrid analysis for indicating patients with breast cancer using temperature time series.
Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura
2016-07-01
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Multilayer material characterization using thermographic signal reconstruction
NASA Astrophysics Data System (ADS)
Shepard, Steven M.; Beemer, Maria Frendberg
2016-02-01
Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.
NASA programs in advanced sensors and measurement technology for aeronautical applications
NASA Astrophysics Data System (ADS)
Conway, Bruce A.
NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.
Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P
2002-06-01
There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.
Dynamics of thermographic skin temperature response during squat exercise at two different speeds.
Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro
2016-07-01
Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying
2017-12-01
Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2017-12-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2018-02-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
Uses of infrared thermography in the low-cost solar array program
NASA Technical Reports Server (NTRS)
Glazer, S. D.
1982-01-01
The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.
Kim, Su Wan; Song, Heesung
2017-12-01
We report the case of a 19-year-old man who presented with a 12-year history of progressive fatigue, feeling hot, excessive sweating, and numbness in the left arm. He had undergone multimodal imaging and was diagnosed as having Klippel-Trénaunay-Weber syndrome (KTWS). This is a rare congenital disease, defined by combinations of nevus flammeus, venous and lymphatic malformation, and hypertrophy of the affected limbs. Lower extremities are affected mostly. Conventional modalities for evaluating KTWS are ultrasonography, CT, MRI, lymphoscintigraphy, and angiography. There are few reports on multimodal imaging of upper extremities of KTWS patients, and this is the first report of an infrared thermography in KTWS.
Mobile Infrared Thermographic Surveys Of Buildings Within A Community
NASA Astrophysics Data System (ADS)
Allen, Sharon
1988-01-01
Over the years, constant developments and improvements have been made in the portability of infrared equipment. The ability to move around and travel from job to job easily greatly enhances the effectiveness of most in-field infrared thermographic surveys. Many vehicles have been modified to offer mobile infrared thermographic services. This paper describes one approach, and the results, to mobile infrared thermography. It covers the various stages in adapting a vehicle for mobile infrared thermography (IR) and problems encountered along the way. Originally designed for scanning electrical distribution lines, the "IR Van" also serves as a mobile unit for building diagnostics. The paper addresses building diagnostic applications for mobile IR and some of the findings recorded during an initial community investigation.
Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulsh, Michael; Porter, Jason M.; Bittinat, Daniel C.
2016-04-01
Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDEmore » containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection.« less
NASA Astrophysics Data System (ADS)
Wallen, B.; Trautz, A.; Smits, K. M.
2014-12-01
The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.
Remote Infrared Thermal Sensing of Sewer Voids, Four-Year Update
NASA Astrophysics Data System (ADS)
Weil, Gary J.
1988-01-01
When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along for the ride. These collapses endanger public health and safety. Repairing a sewer before such a cave-in is obviously the preferred method. Emergency repairs cost far more than prevention measures - often millions of dollars more. Many combined sewers in the St. Louis area, as in many of America's cities, are more than 125 years old and are subject to structural failure. In 1981 alone, St. Louis had 4,000 sewer collapses and an astronomical repair bill. These and similar problems have been described as "a crisis of national proportions. The question addressed by this paper is how to detect unseen problem areas in sewer systems before they give way. At the present, progressive sewer administrations may use crawl crews to inspect sewers when problems are suspected. This can be extremely costly and dangerous, and a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Infrared Thermography has been found by sewer districts and independent evaluation engineering firms to be an extremely accurate method of finding sewer voids, before they can cause expensive and dangerous problems. This technique uses a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently. This paper reviews our initial paper presented to The International Society for Optical Engineering in October of 1983 and presents an update of our experience, both successes and failures, in several large-scale void detection projects. Infrared Thermographic techniques of non-destructive testing will have major implications for cities and for the engineering profession because it promises to make the crisis of infrastructure repair and rehabilitation more manageable. Intelligent, systematic use of this relatively low cost void detection method, Infrared Thermography, may revolutionize the way sewer problems are handled in the future.
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang
2018-03-01
Defects presented on the facades of a building do have profound impacts on extending the life cycle of the building. How to identify the defects is a crucial issue; destructive and non-destructive methods are usually employed to identify the defects presented on a building. Destructive methods always cause the permanent damages for the examined objects; on the other hand, non-destructive testing (NDT) methods have been widely applied to detect those defects presented on exterior layers of a building. However, NDT methods cannot provide efficient and reliable information for identifying the defects because of the huge examination areas. Infrared thermography is often applied to quantitative energy performance measurements for building envelopes. Defects on the exterior layer of buildings may be caused by several factors: ventilation losses, conduction losses, thermal bridging, defective services, moisture condensation, moisture ingress, and structure defects. Analyzing the collected thermal images can be quite difficult when the spatial variations of surface temperature are small. In this paper the authors employ image segmentation to cluster those pixels with similar surface temperatures such that the processed thermal images can be composed of limited groups. The surface temperature distribution in each segmented group is homogenous. In doing so, the regional boundaries of the segmented regions can be identified and extracted. A terrestrial laser scanner (TLS) is widely used to collect the point clouds of a building, and those point clouds are applied to reconstruct the 3D model of the building. A mapping model is constructed such that the segmented thermal images can be projected onto the 2D image of the specified 3D building. In this paper, the administrative building in Chaoyang University campus is used as an example. The experimental results not only provide the defect information but also offer their corresponding spatial locations in the 3D model.
Head, J F; Wang, F; Elliott, R L
1993-11-30
Our recent retrospective analysis of the clinical records of patients who had breast thermography demonstrated that an abnormal thermogram was associated with an increased risk of breast cancer and a poorer prognosis for the breast cancer patient. This study included 100 normal patients, 100 living cancer patients, and 126 deceased cancer patients. Abnormal thermograms included asymmetric focal hot spots, areolar and periareolar heat, diffuse global heat, vessel discrepancy, or thermographic edge sign. Incidence and prognosis were directly related to thermographic results: only 28% of the noncancer patients had an abnormal thermogram, compared to 65% of living cancer patients and 88% of deceased cancer patients. Further studies were undertaken to determine if thermography is an independent prognostic indicator. Comparison to the components of the TNM classification system showed that only clinical size was significantly larger (p = 0.006) in patients with abnormal thermograms. Age, menopausal status, and location of tumor (left or right breast) were not related to thermographic results. Progesterone and estrogen receptor status was determined by both the cytosol-DCC and immunocytochemical methods, and neither receptor status showed any clear relationship to the thermographic results. Prognostic indicators that are known to be related to tumor growth rate were then compared to thermographic results. The concentration of ferritin in the tumor was significantly higher (p = 0.021) in tumors from patients with abnormal thermograms (1512 +/- 2027, n = 50) compared to tumors from patients with normal thermograms (762 +/- 620, n = 21). Both the proportion of cells in DNA synthesis (S-phase) and proliferating (S-phase plus G2M-phase, proliferative index) were significantly higher in patients with abnormal thermograms. The expression of the proliferation-associated tumor antigen Ki-67 was also associated with an abnormal thermogram. The strong relationships of thermographic results with these three growth rate-related prognostic indicators suggest that breast cancer patients with abnormal thermograms have faster-growing tumors that are more likely to have metastasized and to recur with a shorter disease-free interval.
Emerging nondestructive inspection methods for aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, A; Dahlke, L; Gieske, J
This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with amore » discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.« less
NASA Astrophysics Data System (ADS)
Shoval, Asaf; Tepper, Michal; Tikochkiy, Jenny; Gur, Leah Ben; Markovich, Gil; Keisari, Yona; Gannot, Israel
2016-07-01
This paper describes a minimally invasive method for detection and growth inhibition of tumors that utilizes the unique properties of super paramagnetic nanoparticles. To demonstrate the feasibility of this method, dimercaptosuccinic acid-coated magnetite nanoparticles were successfully fabricated and used. Those nanoparticles were simultaneously used for magnetoacoustic detection of tumors and for specific hyperthermia treatment in C57BL/J mice injected with Lewis lung carcinoma cells. The in vivo acoustic signal attributed to the nanoparticles was 4.4 dB, while the single session hyperthermia treatment caused a reduction of 50% in tumor growing rate. In addition, a thermography-based method was applied to monitor the efficacy of the hyperthermia treatment. The presented method has the potential to revolutionize current cancer treatment by enabling diagnosis and treatment under real-time feedback in one session.
Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan
2014-07-01
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.
Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan
2014-07-01
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arthritis inflammation monitored by subcutaneous millimeter wave thermography.
Edrich, J; Smyth, C J
1978-01-01
A new technique for remote, noninvasive mapping of temperature elevations of the human joints is described; it uses the mm wave radiation emitted by the human body. A solid state switched scanner for 68 GHz is described which overcomes the depth limitations of conventional, infrared thermographs and can measure to subcutaneous depths of several mm with a temperature resolution of 0.25 degrees C. Measurements on rheumatoid arthritic knee joints are presented which show little correlation with simultaneously measured skin temperatures. Significant longterm thermographic changes induced by steroid injection indicate a potential for objective patient monitoring and development of new treatment methods.
Thermographic Inspections Save Skins and Prevent Blackouts
NASA Technical Reports Server (NTRS)
2003-01-01
Scanning thermography involves heating a component s surface and subsequently measuring the surface temperature, using an infrared camera to identify structural defects such as corrosion and disbonding. It is a completely noninvasive and noncontacting process. Scans can detect defects in conventional metals and plastics, as well as in bonded aluminum composites, plastic- and resinbased composites, and laminated structures. The apparatus used for scanning is highly portable and can cover the surface of a test material up to six times faster than conventional thermography. NASA scientists affirm that the technology is an invaluable asset to the airlines, detecting potential defects that can cause structural failure.In 1996, ThermTech Services, Inc., of Stuart, Florida, approached NASA in an effort to evaluate the technology for application in the power and process industries, where corrosion is of serious concern. ThermTech Services proceeded to develop the application for inspecting boiler waterwall tubing at fossil-fueled electric-generating stations. In 1999, ThermTech purchased the rights to NASA s patented technology and developed the specialized equipment required to apply the inspecting method to power plant components. The ThermTech robotic system using NASA technology has proved to be extremely successful and cost effective in performing detailed inspections of large structures such as boiler waterwalls and aboveground chemical storage tanks. It is capable of inspecting a waterwall, tank-wall, or other large surfaces at a rate of approximately 10 square feet per minute or faster.
Robinson, Lindsay J; Law, James M; Symonds, Michael E; Budge, Helen
2016-04-01
What is the central question of this study? Does psychological stress, which is known to promote cortisol secretion, simultaneously activate brown adipose tissue function in healthy adult females? What is the main finding and its importance? One explanation for the pronounced differences in brown adipose tissue function between individuals lies in their responsiveness to psychological stress and, as such, should be taken into account when examining its in vivo stimulation. Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR ). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR . A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT prevalence and activity measured by other modalities. Consistent assessment of this uniquely metabolic tissue is fundamental to the discovery of potential therapeutic strategies against metabolic disease. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Sejling, Anne-Sophie; Lange, Kai H W; Frandsen, Christian S; Diemar, Sarah S; Tarnow, Lise; Faber, Jens; Holst, Jens J; Hartmann, Bolette; Hilsted, Linda; Kjaer, Troels W; Juhl, Claus B; Thorsteinsson, Birger; Pedersen-Bjergaard, Ulrik
2015-08-01
Hypoglycaemia is associated with reduced skin temperature (Ts). We studied whether infrared thermography can detect Ts changes during hypoglycaemia in patients with type 1 diabetes and how the Ts response differs between patients with normal hypoglycaemia awareness and hypoglycaemia unawareness. Twenty-four patients with type 1 diabetes (ten aware, 14 unaware) were studied during normoglycaemia (5.0-6.0 mmol/l), hypoglycaemia (2.0-2.5 mmol/l) and during recovery from hypoglycaemia (5.0-6.0 mmol/l) using hyperinsulinaemic glucose clamping. During each 1 h phase, Ts was measured twice by infrared thermography imaging in pre-defined areas (nose, glabella and the five left fingertips), symptoms of hypoglycaemia were scored and blood was sampled. Ts decreased during hypoglycaemia on the nose and glabella. The highest decrements were recorded on the nose (aware: -2.6 °C, unaware: -1.1 °C). In aware patients, the differences in temperature were statistically significant on both nose and glabella, whereas there was only a trend in the unaware group. There was a significant difference in hypoglycaemia-induced temperature changes between the groups. Patients in the aware group had higher hypoglycaemia symptom scores and higher adrenaline (epinephrine) levels during hypoglycaemia. The hypoglycaemia-associated decrement in Ts can be assessed by infrared thermography and is larger in patients with normal hypoglycaemia awareness compared with unaware patients.
Karst Groundwater Hydrologic Analyses Based on Aerial Thermography
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; Keith, A. G.
2000-01-01
On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.
Stabentheiner, Anton; Kovac, Helmut; Hetz, Stefan K.; Käfer, Helmut; Stabentheiner, Gabriel
2012-01-01
Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O2 consumption or CO2 production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13–30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of respiratory traces. PMID:22723718
Recent use of medical infrared thermography in skin neoplasms.
Magalhaes, C; Vardasca, R; Mendes, J
2018-03-25
Infrared thermal imaging captures the infrared radiation emitted by the skin surface. The thermograms contain valuable information, since the temperature distribution can be used to characterize physiological anomalies. Thus, the use of infrared thermal imaging (IRT) has been studied as a possible medical tool to aid in the diagnosis of skin oncological lesions. The aim of this review is to assess the current state of the applications of IRT in skin neoplasm identification and characterization. A literature survey was conducted using the reference bibliographic databases: Scopus, PubMed and ISI Web of Science. Keywords (thermography, infrared imaging, thermal imaging and skin cancer) were combined and its presence was verified at the title and abstract of the article or as a main topic. Only articles published after 2013 were considered during this search. In total, 55 articles were encountered, resulting in 14 publications for revision after applying the exclusion criteria. It was denoted that IRT have been used to characterize and distinguish between malignant and benign neoplasms and different skin cancer types. IRT has also been successfully applied in the treatment evaluation of these types of lesions. Trends and future challenges have been established to improve the application of IRT in this field, disclosing that dynamic thermography is a promising tool for early identification of oncological skin conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Flash Infrared Thermography Contrast Data Analysis Technique
NASA Technical Reports Server (NTRS)
Koshti, Ajay
2014-01-01
This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.
Mohammed, Javed Ayoub; Balma-Mena, Alexandra; Chakkittakandiyil, Ajith; Matea, Florentina; Pope, Elena
2014-09-01
Infantile hemangiomas (IHs) are common benign tumors of infancy that have the potential to interfere with vital organ function and cause permanent disfigurement. Currently, few objective and validated measures exist to assess IHs. To determine the utility of infrared thermography in assessing and monitoring the growth of IHs. In a prospective cohort study conducted at an outpatient dermatology clinic of a tertiary care hospital between February 2011 and December 2012, a convenience sample of 42 infants aged 0 to 6 months with an IH were enrolled. The mean age of the study group was 3.7 months, with the majority of IHs being mixed type (57%) affecting the head and neck (81%). Of the infants, 36 (86%) were receiving active treatment during the study period, and patients were followed for a minimum of 3 clinical visits, at least 1 month apart. Ability of infrared thermography to assess the proliferation and involution of IHs compared with a visual analog scale. Secondary outcomes were reliability, ease of use, and parental acceptance of the instrument. The mean temperature difference at baseline was 1.9°F (95% CI, 1.2°F to 2.7°F), which peaked at 3 months to 2.5°F (95% CI, 0.8°F to 4.2°F), and decreased progressively to 0.2°F (95% CI, -1.1°F to 1.4°F) at 18.5 months (P < .001). This change in temperature was inversely correlated with mean visual analog scale (r = -0.25). Mean temperature differences recorded at baseline and 30 minutes later were not significant (least squares mean baseline temperature, 87.9°F [95% CI, 87.4°F to 88.3°F], vs least squares mean temperature after 30 minutes, 88.1°F [95% CI, 87.7°F to 88.6°F] [P = .14]). Multivariate analysis demonstrated facial location (F(1,365) = 47.63, P < .001), IH type (F(2,365) = 3.26, P = .04), age (F(2,365) = 7.03, P = .001), and surface area at baseline (F(2,365) = 8.18, P < .001) as factors significantly affecting temperature difference over time. Only IH type (Wald χ(22) = 6.79, P = .03) and treatment (Wald χ(21) = 4.29, P = .04) significantly affected time to reach a zero-temperature difference. All caregivers (100%) reported IRT to be easy to implement, quick to perform, and comfortable for their child. Infrared thermography is a reliable and valid measure of IH growth that is noninvasive, convenient, and well tolerated by infants, making it well suited to daily clinical practice. It has the potential to provide real-time objective results that can be used for routine monitoring and evaluating treatment efficacy.
Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers
NASA Astrophysics Data System (ADS)
Radevici, Ivan; Tiira, Jonna; Oksanen, Jani
2017-02-01
Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munis, R.H.; Marshall, S.J.; Bush, M.A.
1976-09-01
During the winter of 1973-74 a mobile infrared thermography system was used to survey campus buildings at Dartmouth College, Hanover, New Hampshire. Both qualitative and quantitative data are presented regarding heat flow through a small area of a wall of one brick dormitory building before and after installation of aluminum reflectors between radiators and the wall. These data were used to estimate annual cost savings for 22 buildings of similar construction having aluminum reflectors installed behind 1100 radiators. The data were then compared with the actual savings which were calculated from condensate meter data. The discrepancy between estimated and actualmore » annual cost savings is explained in detail along with all assumptions required for these calculations.« less
Infrared Imaging; A casebook in clinical medicine
NASA Astrophysics Data System (ADS)
Ring, Francis
2015-09-01
Infrared thermal imaging is a rapid and non-invasive procedure for mapping skin temperature distribution of the human body. Advanced software and high-resolution infrared detectors has allowed for a renaissance in the use of infrared thermal imaging or thermography in medical research and practice. After a review of theory, technology and methodology of medical infrared imaging, the remainder of the book consists of a collection of clinical case studies demonstrating the wide variety of applications of thermography in modern medicine. The combined expertise from a number of centres is used to create this database of images and cases that will be invaluable for medical researchers and practitioners in making diagnoses and measuring treatment efficacy. This book is recommended reading for practising and training radiographers, medical physicists and clinicians.
Localization of wood floor structure by infrared thermography
NASA Astrophysics Data System (ADS)
Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.
2008-03-01
One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.
Infrared-thermography imaging system multiapplications for manufacturing
NASA Astrophysics Data System (ADS)
Stern, Sharon A.
1990-03-01
Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.
A Review of Optical NDT Technologies
Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong
2011-01-01
Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045
Modeling of the Multiparameter Inverse Task of Transient Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Y. A.
1998-01-01
Transient thermography employs preheated surface temperature variations caused by delaminations, cracks, voids, corroded regions, etc. Often, it is enough to detect these changes to declare a defect in a workpiece. It is also desirable to obtain additional information about the defect from the thermal response. The planar size, depth, and thermal resistance of the detected defects are the parameters of interest. In this paper a digital image processing technique is applied to simulated thermal responses in order to obtain the geometry of the inclusion-type defects in a flat panel. A three-dimensional finite difference model in Cartesian coordinates is used for the numerical simulations. Typical physical properties of polymer graphite composites are assumed. Using different informative parameters of the thermal response for depth estimation is discussed.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
NASA Astrophysics Data System (ADS)
Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice
2017-10-01
Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.
Evaluation of tear evaporation from ocular surface by functional infrared thermography.
Tan, Jen-Hong; Ng, E Y K; Acharya, U Rajendra
2010-11-01
A novel technique was developed to measure tear evaporation and monitor its variation with respect to time, for the studying of ocular physiology based on dynamic functional infrared thermography and the first law of thermodynamics using the measured ocular surface temperatures (OSTs). This is a noninvasive, noncontact temperature measuring method that is widely applied in the field of biomedicine. A simple method based on the ocular thermal data was proposed to measure the rate of tear evaporation. The OST of 60 normal subjects were recorded in the form of sequential thermal images. For each thermal sequence, the ocular region was selected and warped to a standard form. Thermal data within the regions were processed, on the basis of the first law of thermodynamics to derive the evaporation rate. For elder subjects (aged above 35), the rate was determined to be 55.82 Wm(-2) and for younger subjects, the rate was 58.9 Wm(-2). The corneal rate of evaporation in elder subjects was found statistically (p < 0.11) larger than their younger counterparts. The rate of blinking was observed to be related to the variation of evaporation rate. The authors have measured the evaporation rate on a sequence of thermographic images. A region of interest was selected at first and the same region on all the images were warped into a standard form. Calculations were performed based on the thermal data in those regions to obtain the values of interest. The authors found that the tear evaporation rate for subjects of all age groups was 57.36 +/- 12.73 Wm(-2) and the corneal tear evaporation was higher in elder subjects. The corneal rate of evaporation fluctuated in a larger magnitude in subjects who blinked more than average.
Thermographic inspection and quality assurance of energy conservation procedures for electric buses
NASA Astrophysics Data System (ADS)
Fennell, Henri C.
1998-03-01
Electric buses are one of the solutions for improving air quality in our cities. Many states are adopting 'no new diesel bus' policies, thus increasing the pressure to develop alternative vehicles. The fledgling electric vehicle technology suffers from acceptance problems by major transit authorities due primarily to limited travel range from each battery charge. Utilizing electric buses in the Northeast has the added problem of maintaining an adequate cabin temperature without the availability of heat from a diesel motor. Heating the passenger cabin with an electric heater which draws from the batteries' stored energy significantly reduces the already modest range of these vehicles; therefore, energy conservation measures play an important role in allowing electric vehicles to provide practical transit services. IR thermography, in conjunction with air leakage pressurization diagnostics, has proven to be an excellent tool for developing energy-efficient bus designs as well as a valuable in-service performance testing method. This paper is based on tests performed on several Advanced Vehicle Systems, Inc. electric buses during research performed under Northeast Alternative Vehicle Consortium and Defense Advanced Research Projects Agency grants. The work demonstrates the thermographic methods used and the real- world increased performance of retrofitted and newly designed buses resulting from this initial Portland Transit retrofit project and in a follow-up project to develop a cold weather specification for a new generation of electric buses. Early diagnostic and new-technology follow-up thermographic performance testing was paralleled by energy modeling of early baseline and re-designed vehicles. Modeling and performance data are included. As a result of this research, thermography, air-leakage/pressurization testing, and fog analysis techniques are now being used regularly in research and development and quality assurance procedures by electric bus manufacturers.
Screening for tinea unguium by thermography in older adults with subungual hyperkeratosis.
Miura, Yuka; Takehara, Kimie; Nakagami, Gojiro; Amemiya, Ayumi; Kanazawa, Toshiki; Kimura, Nao; Kishi, Chihiro; Koyano, Yuiko; Tamai, Nao; Nakamura, Tetsuro; Kawashima, Makoto; Tsunemi, Yuichiro; Sanada, Hiromi
2015-08-01
The purpose of the present study was to assess the difference in foot temperature between tinea unguium-positive older adults with subungual hyperkeratosis and tinea unguium-negative older adults with subungual hyperkeratosis to develop a temperature-based screening method for tinea unguium. The present cross-sectional, observational study investigated 51 residents with subungual hyperkeratosis in two facilities covered by long-term care insurance between October 2011 and December 2011. One dermatologist recorded the clinical signs of abnormal toenails. Nail specimens were collected from all abnormal nails, and the presence of tinea unguium was confirmed when fungus was detected by direct microscopy. Foot temperature was measured by infrared thermography. A receiver operating characteristic curve was used to assess the ability to determine whether residents with subungual hyperkeratosis have tinea unguium and to determine the cut-off point. Among the people with subungual hyperkeratosis, the mean toe temperature in the tinea unguium-positive group (30.2 ± 2.6°C) was significantly lower than that in the tinea unguium-negative group (32.8 ± 3.2°C, P = 0.001). The area under the receiver operating characteristic curve was 0.74 (95% confidence interval 0.621-0.876), and the threshold temperature was set at 33.0°C, resulting in a sensitivity of 81.8% and specificity of 65.7%. Our study suggests that foot temperature can be used to screen for tinea unguium in people with subungual hyperkeratosis. This non-invasive and simple screening method would help clinicians to set priorities in terms of carrying out direct microscopy to diagnose tinea unguium in elderly residents in care facilities. © 2014 Japan Geriatrics Society.
A method of measuring the effective thermal conductivity of thermoplastic foams
NASA Astrophysics Data System (ADS)
Asséko, André Chateau Akué; Cosson, Benoit; Chaki, Salim; Duborper, Clément; Lacrampe, Marie-France; Krawczak, Patricia
2017-10-01
An inverse method for determining the in-plane effective thermal conductivity of porous thermoplastics was implemented by coupling infrared thermography experiments and numerical solution of heat transfer in straight fins having temperature-dependent convective heat transfer coefficient. The obtained effective thermal conductivity values were compared with previous results obtained using a numerical solution based on periodic homogenization techniques (NSHT) in which the microstructure heterogeneity of extruded polymeric polyethylene (PE) foam in which pores are filled with air with different levels of open and closed porosity was taken into account and Transient Plane Source Technique (TPS) in order to verify the accuracy of the proposed method. The new method proposed in the present study is in good agreement with both NSHT and TPS. It is also applicable to structural materials such as composites, e.g. unidirectional fiber-reinforced plastics, where heat transfer is very different according to the fiber direction (parallel or transverse to the fibers).
Current and Prospective Methods for Plant Disease Detection
Fang, Yi; Ramasamy, Ramaraja P.
2015-01-01
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as to maximize productivity and ensure agricultural sustainability, advanced disease detection and prevention in crops are imperative. This paper reviews the direct and indirect disease identification methods currently used in agriculture. Laboratory-based techniques such as polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) and gas chromatography-mass spectrometry (GC-MS) are some of the direct detection methods. Indirect methods include thermography, fluorescence imaging and hyperspectral techniques. Finally, the review also provides a comprehensive overview of biosensors based on highly selective bio-recognition elements such as enzyme, antibody, DNA/RNA and bacteriophage as a new tool for the early identification of crop diseases. PMID:26287253
Characterization of Laser Cleaning of Artworks
Marczak, Jan; Koss, Andrzej; Targowski, Piotr; Góra, Michalina; Strzelec, Marek; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Ostrowski, Roman; Rycyk, Antoni
2008-01-01
The main tasks of conservators of artworks and monuments are the estimation and analysis of damages (present condition), object conservation (cleaning process), and the protection of an object against further degradation. One of the physical methods that is becoming more and more popular for dirt removal is the laser cleaning method. This method is non-contact, selective, local, controlled, self-limiting, gives immediate feedback and preserves even the gentlest of relief - the trace of a paintbrush. Paper presents application of different, selected physical sensing methods to characterize condition of works of art as well as laser cleaning process itself. It includes, tested in our laboratories, optical surface measurements (e.g. colorimetry, scatterometry, interferometry), infrared thermography, optical coherent tomography and acoustic measurements for “on-line” evaluation of cleaning progress. Results of laser spectrometry analyses (LIBS, Raman) will illustrate identification and dating of objects superficial layers. PMID:27873884
Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites
NASA Technical Reports Server (NTRS)
2001-01-01
Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.
A new leakage measurement method for damaged seal material
NASA Astrophysics Data System (ADS)
Wang, Shen; Yao, Xue Feng; Yang, Heng; Yuan, Li; Dong, Yi Feng
2018-07-01
In this paper, a new leakage measurement method based on the temperature field and temperature gradient field is proposed for detecting the leakage location and measuring the leakage rate in damaged seal material. First, a heat transfer leakage model is established, which can calculate the leakage rate based on the temperature gradient field near the damaged zone. Second, a finite element model of an infinite plate with a damaged zone is built to calculate the leakage rate, which fits the simulated leakage rate well. Finally, specimens in a tubular rubber seal with different damage shapes are used to conduct the leakage experiment, validating the correctness of this new measurement principle for the leakage rate and the leakage position. The results indicate the feasibility of the leakage measurement method for damaged seal material based on the temperature gradient field from infrared thermography.
NASA Astrophysics Data System (ADS)
Reznicek, R.
The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.
A Multiscale Surface Water Temperature Data Acquisition Platform: Tests on Lake Geneva, Switzerland
NASA Astrophysics Data System (ADS)
Barry, D. A.; Irani Rahaghi, A.; Lemmin, U.; Riffler, M.; Wunderle, S.
2015-12-01
An improved understanding of surface transport processes is necessary to predict sediment, pollutant and phytoplankton patterns in large lakes. Lake surface water temperature (LSWT), which varies in space and time, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Satellite data can be suitable for detecting large-scale thermal patterns, but not meso- or small scale processes. Lake surface thermography, investigated in this study, has finer resolution compared to satellite images. Thermography at the meso-scale provides the ability to ground-truth satellite imagery over scales of one to several satellite image pixels. On the other hand, thermography data can be used as a control in schemes to upscale local measurements that account for surface energy fluxes and the vertical energy budget. Independently, since such data can be collected at high frequency, they can be also useful in capturing changes in the surface signatures of meso-scale eddies and thus to quantify mixing processes. In the present study, we report results from a Balloon Launched Imaging and Monitoring Platform (BLIMP), which was developed in order to measure the LSWT at meso-scale. The BLIMP consists of a small balloon that is tethered to a boat and equipped with thermal and RGB cameras, as well as other instrumentation for location and communication. Several deployments were carried out on Lake Geneva. In a typical deployment, the BLIMP is towed by a boat, and collects high frequency data from different heights (i.e., spatial resolutions) and locations. Simultaneous ground-truthing of the BLIMP data is achieved using an autonomous craft that collects a variety of data, including in situ surface/near surface temperatures, radiation and meteorological data in the area covered by the BLIMP images. With suitable scaling, our results show good consistency between in situ, BLIMP and concurrent satellite data. In addition, the BLIMP thermography reveals (hydrodynamically-driven) structures in the LSWT - an obvious example being mixing of river discharges.
NASA Astrophysics Data System (ADS)
Izdebski, Krzysztof; Jarosz, Paweł; Usydus, Ireneusz
2017-02-01
Ventilation, speech and singing must use facial musculature to complete these motor tasks and these tasks are fueled by the air we inhale. This motor process requires increase in the blood flow as the muscles contract and relax, therefore skin surface temperature changes are expected. Hence, we used thermography to image these effects. The system used was the thermography camera model FLIR X6580sc with a chilled detector (FLIR Systems Advanced Thermal Solutions, 27700 SW Parkway Ave Wilsonville, OR 97070, USA). To assure improved imaging, the room temperature was air-conditioned to +18° C. All images were recoded at the speed of 30 f/s. Acquired data were analyzed with FLIR Research IR Max Version 4 software and software filters. In this preliminary study a male subject was imaged from frontal and lateral views simultaneously while he performed normal resting ventilation, speech and song. The lateral image was captured in a stainless steel mirror. Results showed different levels of heat flow in the facial musculature as a function of these three tasks. Also, we were able to capture the exalted air jet directionality. The breathing jet was discharged in horizontal direction, speaking voice jet was discharged downwards while singing jet went upward. We interpreted these jet directions as representing different gas content of air expired during these different tasks, with speech having less oxygen than singing. Further studies examining gas exchange during various forms of speech and song and emotional states are warranted.
Thermodynamic inspection of concrete using a controlled heat source
NASA Astrophysics Data System (ADS)
Milne, James M.
1990-10-01
Concrete is not quite such a non-destructable material as many are led to believe. It can deteriorate with time due to changes in the chemistry, the effect of moisture penetration and the corrosion of reinforcing steel bars. Much of this damage occurs relatively close to the surface, sometimes revealed by discolourations or the presence of cracks and sometimes as spallation when the corrosion products of steel cause delamination of the near surface concrete. These effects may occur in good quality concrete but their severity and rapidity of onset may be enhanced by fabrication defects when aggregates may not be to specification or the packing conditions cause porosity. It may thus be months or even years afterwards that these defects come to light. As a consequence a new industry has been formed to inspect concrete structures which may include X-ray equipment, linac accelerators, gamma isotope sources, ultrasonics, radar and of course thermography. Each of these nethods will have their own particular attractive features and merits. But most of these activities tend to be used more as a "fire fighting" service than as one ensuring regular maintenance of critical structures or even as quality control of structures during building. Quite often it seems that Non-destructive Testing is turned into a litigation service for dissatisfied customers and thermography is no stranger to this topic. It is heartening to see that the ASTM organisation in the USA and British Standards are encouraging and developing suitable standards for the inspection of concrete by thermographic techniques.
Discovery Orbiter Major Modifications
2003-08-27
In the Vehicle Assembly Building, Jim Landy, NDE specialist, sets up a flight crew lockers for flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.
NASA Technical Reports Server (NTRS)
1977-01-01
A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.
Infrared thermal wave nondestructive technology on the defect in the shell of solid rocket motor
NASA Astrophysics Data System (ADS)
Zhang, Wei; Song, Yuanjia; Yang, Zhengwei; Li, Ming; Tian, Gan
2010-10-01
Based on the active infrared thermography nondestructive testing (NDT) technology, which is an emerging method and developed in the areas of aviation, spaceflight and national defence, the samples including glass fiber flat bottom hole sample, glass fiber inclusion sample and steel flat bottom hole sample that the shell materials of Solid Rocket Motor (SRM) were heated by a high energy flash lamp. The subsurface flaws can be detected through measuring temperature difference between flaws and materials. The results of the experiments show that: 1) the technique is a fast and effective inspection method, which is used for detecting the composites more easily than the metals. And it also can primarily identify the defect position and size according to the thermal image maps. 2) A best inspection time at when the area of hot spot is the same with that of defect is exited, which can be used to estimate the defect size. The bigger the defect area, the easier it could be detected and also the less of the error for estimating defect area. 3). The infrared thermal images obtained from experiments always have high noise, especially for metal materials due to high reflectivity and environmental factors, which need to be further processed.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building, Jim Landy, NDE specialist, performs flash thermography on flight crew lockers. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building, Jim Landy, NDE specialist, examines flight crew lockers using flash thermography. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.
Screening for breast cancer in a high-risk series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodard, E.D.; Hempelmann, L.H.; Janus, J.
1982-01-01
A unique cohort of women at increased risk of breast cancer because of prior X-ray treatment of acute mastitis and their selected high-risk siblings were offered periodic breast cancer screening including physical examination of the breasts, mammography, and thermography. Twelve breast cancers were detected when fewer than four would have been expected based on age-specific breast cancer detection rates from the National Cancer institute/American Cancer Society Breast Cancer Demonstration Detection Projects. Mammograpy was positive in all cases but physical examination was positive in only three cases. Thermography was an unreliable indicator of disease. Given the concern over radiation-induced risk, usemore » of low-dose technique and of criteria for participation that select women at high risk of breast cancer will maximize the benefit/risk ratio for mammography screening.« less
Screening for breast cancer in a high-risk series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodard, E.D.; Hempelmann, L.H.; Janus, J.
1982-01-01
A unique cohort of women at increased risk of breast cancer because of prior X-ray treatment of acute mastitis and their selected high-risk siblings were offered periodic breast cancer screening including physical examination of the breasts, mammography, and thermography. Twelve breast cancers were detected when fewer than four would have been expected based on age-specific breast cancer detection rates from the National Cancer Institute/American Cancer Society Breast Cancer Demonstration Detection Projects. Mammography was positive in all cases but physical examination was positive in only three cases. Thermography was an unreliable indicator of disease. Given the concern over radiation-induced risk, usemore » of low-dose technique and of criteria for participation that select women at high risk of breast cancer will maximize the benefit/risk ratio for mammography screening.« less
Monitoring the fracture behavior of metal matrix composites by combined NDE methodologies
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Exarchos, D. A.; Mpalaskas, A. C.; Matikas, T. E.
2015-03-01
Current work deals with the non-destructive evaluation (NDE) of the fatigue behavior of metal matrix composites (MMCs) materials using Infrared Thermography (IRT) and Acoustic Emission (AE). AE monitoring was employed to record a wide spectrum of cracking events enabling the characterization of the severity of fracture in relation to the applied load. IR thermography as a non-destructive, real-time and non-contact technique, allows the detection of heat waves generated by the thermo-mechanical coupling during mechanical loading of the sample. In this study an IR methodology, based on the monitoring of the intrinsically dissipated energy, was applied for the determination of the fatigue limit of A359/SiCp composites. The thermographic monitoring is in agreement with the AE results enabling the reliable monitoring of the MMCs' fatigue behavior.
NASA Astrophysics Data System (ADS)
Ibarra-Castanedo, Clemente; Sfarra, Stefano; Klein, Matthieu; Maldague, Xavier
2017-05-01
The experimental results from infrared thermography surveys over two buildings externally exposed walls are presented. Data acquisition was performed on a static configuration by recording direct and indirect solar loading during several days and was processed using advanced signal processing techniques in order to increase signal-to-noise ratio and signature contrast of the elements of interest. It is demonstrated that it is possible to detect the thermal signature of large internal structures as well as surface features under such thermographic scenarios. Results from a long-wave microbolometer compared favorably to those from a mid-wave cooled infrared camera for the detection of large subsurface features from unprocessed images. In both cases, however, advanced signal processing greatly improved contrast of the internal features.
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Naikan, V. N. A.
2017-12-01
Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.
Use Of Infrared Thermography For The Identification Of Design And Construction Faults In Buildings
NASA Astrophysics Data System (ADS)
Seeber, Stephen A.
1984-03-01
Many design and construction details can affect building energy consumption in unex-pected ways. Further, design and construction errors can increase building energy consumption, result in discomfort to building occupants and cause structural damage to the building. Infrared inspections can easily evaluate the energy efficiency of various aspects of a building's design and identify flaws that might otherwise be detected as a result of occupants' complaints or damage to the building's mechanical or structural systems. Infrared thermography can be used by the architect to evaluate his designs and by the contractor to control the quality of construction. This paper discusses a number of issues that can help determine the effectiveness of infrared building surveys. Following this, three case stud-ies will be presented to illustrate design flaws that were detected through infrared build-ing surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tralshawala, Nilesh; Howard, Don; Knight, Bryon
2008-02-28
In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropicmore » carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.« less
Investigation of non-reciprocal magnon propagation using lock-in thermography
NASA Astrophysics Data System (ADS)
Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg
2017-04-01
We have investigated the unidirectional spin wave heat conveyer effect in a 200 nm thin yttrium iron garnet (YIG) film using lock-in thermography (LIT). This originates from the non-reciprocal propagation of magnons, which leads to an asymmetric heat transport. To excite the spin waves we use two different respective antenna geometries: a coplanar waveguide (CPW) or a ‘microstrip’-like antenna on top of the YIG. By using the CPW and comparing the results for the Damon-Eshbach and the backward volume modes we are able to show that the origin of the asymmetric heat profile are indeed the non-reciprocal spin waves. Using the ‘microstrip’-like geometry we can confirm these results and we can even observe a distinct excitation profile along the antenna due to small field inhomogeneities.
Sodium sulfate crystallisation monitoring using IR thermography
NASA Astrophysics Data System (ADS)
Vazquez, P.; Thomachot-Schneider, C.; Mouhoubi, K.; Bodnar, J.-L.; Avdelidis, N. P.; Charles, D.; Benavente, D.
2018-03-01
In this work, the evaporation of sodium sulfate droplets with different concentrations and at different temperatures were studied using infrared thermography (IRT). IRT allows to detect the evaporation evolution, the crystal growth and for the first time, to observe in vivo the heat release related to sodium sulfate crystallisation. A detailed study revealed that dendritic Thenardite III crystals appeared at the edge of all the crystallised droplets, though they showed a fast increase of temperature related to crystallisation only when a hydrated phase crystallised also from the droplet. The observation of the heat of crystallisation is thus directly related to the supersaturation of the droplet and consequently to temperature. In addition, IRT detection is circumscribed by the location of crystallisation. The heat can be observed and measured only when the crystallisation occurs in the interface solution - air.
Yeo, Sharon; Tan, Jen Hong; Acharya, U Rajendra; Sudarshan, Vidya K; Tong, Louis
2016-04-01
Lid warming is the major treatment for meibomian gland dysfunction (MGD). The purpose of the study was to determine the longitudinal changes of tear evaporation after lid warming in patients with MGD. Ninety patients with MGD were enrolled from a dry eye clinic at Singapore National Eye Center in an interventional trial. Participants were treated with hot towel (n = 22), EyeGiene (n = 22), or Blephasteam (n = 22) twice daily or a single 12-minute session of Lipiflow (n = 24). Ocular surface infrared thermography was performed at baseline and 4 and 12 weeks after the treatment, and image features were extracted from the captured images. The baseline of conjunctival tear evaporation (TE) rate (n = 90) was 66.1 ± 21.1 W/min. The rates were not significantly different between sexes, ages, symptom severities, tear breakup times, Schirmer test, corneal fluorescein staining, or treatment groups. Using a general linear model (repeat measures), the conjunctival TE rate was reduced with time after treatment. A higher baseline evaporation rate (≥ 66 W/min) was associated with greater reduction of evaporation rate after treatment. Seven of 10 thermography features at baseline were predictive of reduction in irritative symptoms after treatment. Conjunctival TE rates can be effectively reduced by lid warming treatment in some MGD patients. Individual baseline thermography image features can be predictive of the response to lid warming therapy. For patients that do not have excessive TE, additional therapy, for example, anti-inflammatory therapy, may be required.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John
2016-05-01
Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Philip, John
2017-01-01
We study the alternating magnetic field induced heating of a water based ferrofluid containing tetramethyl ammonium hydroxide coated iron oxide nanoparticles using infrared thermography and compare the results obtained from the conventional fiber optic temperature sensor. Experiments are performed on ferrofluid samples of five different concentrations and under four different external field amplitudes at a fixed frequency. The temperature rise curves measured using both the infrared thermography and fiber optic sensor are found to be very similar up to a certain time interval, above which deviations are observed, which are attributed to the internal and external convection phenomena. A correction methodology is developed to account for the convection losses. The convection corrected specific absorption rate is found to be in good agreement with the values obtained from the conventional fiber optic temperature sensor, within a maximum error of ±3.4%. The highest specific absorption rate obtained in the present study is 135.98 (±4.6) W/gFe for a sample concentration of 3 wt.%, at an external field amplitude and a frequency of 63.0 kA m-1 and 126 kHz, respectively. The specific absorption rate is found to decrease with increasing sample concentration, due to the enhancement of dipolar interaction with increasing sample concentration due to agglomeration. This study validates the efficacy and universal applicability of IRT as an alternate, real time, non-contact and wide area temperature measurement methodology for magnetic fluid hyperthermia experiments without any sample contamination.
Training in Innovative Technologies for Close-Range Sensing in Alpine Terrain
NASA Astrophysics Data System (ADS)
Rutzinger, M.; Bremer, M.; Höfle, B.; Hämmerle, M.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Scaioni, M.; Wujanz, D.; Zieher, T.
2018-05-01
The 2nd international summer school "Close-range sensing techniques in Alpine terrain" was held in July 2017 in Obergurgl, Austria. Participants were trained in selected close-range sensing methods, such as photogrammetry, laser scanning and thermography. The program included keynotes, lectures and hands-on assignments combining field project planning, data acquisition, processing, quality assessment and interpretation. Close-range sensing was applied for different research questions of environmental monitoring in high mountain environments, such as geomorphologic process quantification, natural hazard management and vegetation mapping. The participants completed an online questionnaire evaluating the summer school, its content and organisation, which helps to improve future summer schools.
Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.
Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang
2017-01-23
In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.
Study of heating capacity of focused IR light soldering systems.
Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H
2013-10-07
An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices.
A portable thermal imaging device as a feedback system for breast cancer treatment
NASA Astrophysics Data System (ADS)
Hoffer, Oshrit A.; Ben-David, Merav A.; Katz, Eyal; Sholomov, Meny; Kelson, Itzhak; Gannot, Israel
2018-02-01
Breast cancer is the most frequently diagnosed cancer among women in the Western world. Currently, no imaging technique assesses tumor heat generation and vasculature changes during radiotherapy in viable tumor and as adjuvant therapy. Thermography is a non-ionizing, non-invasive, portable and low-cost imaging modality. The purpose of this study was to investigate the use of thermography in cancer treatment monitoring for feedback purposes. Six stage-IV breast cancer patients with viable breast tumor and 8 patients (9 breasts) who underwent tumor resection were monitored by a thermal camera prior to radiotherapy sessions over several weeks of radiation treatment. The thermal changes over the treated breast were calculated and analyzed for comparison with healthy surrounded breast tissue or contralateral breast. A model of a breast with a tumor was created. The COMSOL FEM software was used to carry out the analysis. The effects of tumor metabolism and breast tissue perfusion on the temperature difference were analyzed. All patients with active tumors exhibited drops in maximal temperature of the tumor during radiation therapy. The patients who underwent radiotherapy as adjuvant treatment exhibited a rise in maximal temperature over the treated breast in correlation with skin erythema during radiation. This difference between the groups was statistically significant (P=0.001). The simulated human breast cancer models analysis showed that tumor aggressiveness reduction causes decrease in the tumor temperature. Inflammation causes vasodilatation and increases tissue perfusion, resulted in an increase in breast tissue temperature. A correlation was demonstrated between the clinical outcome and the simulation. We report a method for monitoring cancer response to radiation therapy, which measures the physiological response along with clinical response. These anticipatory efficacy evaluations of radiotherapy during treatment may further promote changes in treatment regimen, either radiation associated or combination as in chemo-radiation protocols. The probable treatment delivery changes may incorporate the total dose delivery, fraction dose and intensity as well as adding chemotherapy for non-responding tumors during radiotherapy. All the above possibilities will contribute to the advances of individualized, personalized cancer treatment for optimal treatment effectiveness.
Myers, Matthew R; Giridhar, Dushyanth
2011-06-01
In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam
2011-12-01
Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.