Science.gov

Sample records for active thin film

  1. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  2. Microscale damping using thin film active materials

    NASA Astrophysics Data System (ADS)

    Kerrigan, Catherine A.; Ho, Ken K.; Mohanchandra, K. P.; Carman, Gregory P.

    2007-04-01

    This paper focuses on understanding and developing a new approach to dampen MEMS structures using both experiments and analytical techniques. Thin film Nitinol and thin film Terfenol-D are evaluated as a damping solution to the micro scale damping problem. Stress induced twin boundary motion in Nitinol is used to passively dampen potentially damaging vibrations. Magnetic domain wall motion is used to passively dampen vibration in Terfenol-D. The thin films of Nitinol, Nitinol/Silicon laminates and Nitinol/Terfenol-D/Nickel laminates have been produced using a sputter deposition process and damping properties have been evaluated. Dynamic testing shows substantial damping (tan δ) measurable in each case. Nitinol film samples were tested in the Differential Scanning Calorimetry (DSC) to determine phase transformation temperatures. The twin boundary mechanism by which energy absorption occurs is present at all points below the Austenite start temperature (approximately 69°C in our film) and therefore allows damping at cold temperatures where traditional materials fail. Thin film in the NiTi/Si laminate was found to produce substantially higher damping (tan δ = 0.28) due to the change in loading condition. The NiTi/Si laminate sample was tested in bending allowing the twin boundaries to be reset by cyclic tensile and compressive loads. The thin film Terfenol-D in the Nitinol/Terfenol-D/Nickel laminate was shown to produce large damping (tan δ = 0.2). In addition to fabricating and testing, an analytical model of a heterogeneous layered thin film damping material was developed and compared to experimental work.

  3. Photoelectrochemical activity of titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Mehdinezhad Roshan, Aida

    Crystalline titanium dioxide (TiO2) thin films have been extensively investigated due to their various applications in a wide range of field such as photocatalysis, solar cells, gas sensors, self-cleaning windows, etc. The general objective of the present work can be categorized into two different parts. The first part of research is to acquire a fundamental understanding of thin film deposition and characterization of materials surfaces produced by Electrolytic Plasma Processing (EPP) and Magnetron Sputtering system. It has been tried to develop a crystalline layer of titanium dioxide thin film using these two techniques. Aluminum and titanium are the substrate materials. Also a part of study is to clean and roughen the substrate prior to the deposition to examine the effect of morphology. Aluminum was chosen as the substrate as well as titanium in order to enable us to get cheaper product. Second main portion of this work is to check the photoelectrochemical response of the deposited film and explore the effect of various parameters of coating process on this photoelectrochemical response.

  4. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  5. Giant optical activity of sugar in thin soap films.

    PubMed

    Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick

    2013-10-15

    We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules leading to a perturbing influence of the asymmetric chiral environment. PMID:23932406

  6. Preparation of silver-activated zinc sulfide thin films

    NASA Technical Reports Server (NTRS)

    Feldman, C.; Swindells, F. E.

    1968-01-01

    Silver improves luminescence and reduces contamination of zinc sulfide phosphors. The silver is added after the zinc sulfide phosphors are deposited in thin films by vapor evaporation, but before calcining, by immersion in a solution of silver salt.

  7. Thin film transistor circuits for active matrix liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Edwards, Martin John

    The demand for a high quality flat panel video display device for use in consumer and professional products has led to the rapid development of Active Matrix Liquid Crystal Displays (AMLCD). The majority of these displays use Thin Film Transistors (TFTs) as the active devices and improvements in the performance of these transistors is creating the opportunity to integrate increasingly sophisticated circuits onto the glass substrates of the displays. This thesis describes a number of aspects of the use of thin film transistor circuits for active matrix liquid crystal displays. The electrical characteristics of TFTs differ in a number of respects from those of conventional MOS devices. This is illustrated with measurements of transistors and simple circuits fabricated using two different low temperature poly-Si TFT technologies. At present the key application for TFT circuits is integration of the row and column drive circuits for active matrix liquid crystal displays. The issues which arise in the design of TFT drive circuits are discussed and the design and operation of a prototype display with integrated drive circuits is described. The availability of high mobility TFTs makes it possible to integrate signal processing functions within the pixels of a display. A novel technique employing digital to analogue conversion of the video data within the pixels of a display is presented. This technique allows the display to be addressed with digital column drive waveforms simplifying the column drive circuit. Operation of the pixel data converters has been demonstrated by the design and measurement of small arrays of test pixels.

  8. Diamondlike Carbon Thin Films From Ion Activated Techniques

    NASA Astrophysics Data System (ADS)

    Moravec, T. J.

    1982-04-01

    Diamondlike carbon thin films can be made by several different processes. We discuss two methods we have used to produce these films: deposition by low energy carbon ion beam and rf decomposition of hydrocarbon gases. In many ways, the films made by the two methods are similar, but there are some slight differences. The films have been characterized by electron spectroscopy, optical spectroscopy and transmission electron microscopy, and these measurements will be discussed. The films are mechanically hard, resist abrasion, transparent in the infrared and less so in the visible with a refractive index that can be varied between 1.8 and 2.3. Very efficient single layer quarterwave AR coatings have been produced on silicon solar cells. Other applications will be discussed.

  9. Effects of mineral tourmaline particles on the photocatalytic activity of TiO2 thin films.

    PubMed

    Meng, Junping; Liang, Jinsheng; Ou, Xiuqin; Ding, Yan; Liang, Guangchuan

    2008-03-01

    Titania composite thin films (T/TiO2) containing tourmaline particles were prepared by a sol-gel method, using alkoxide solutions as precursor. The tourmaline particles and thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and so on. The effects of tourmaline on the photocatalytic activity of TiO2 were measured with methyl orange as an objective photodegradation substance. The results showed that the photocatalytic degradation of methyl orange conformed to the first-order kinetic equation and the composite thin films had better photocatalytic activity due to the cooperation of polarity and the far infrared emission of tourmaline. The T/TiO2 thin films including 0.5 wt% tourmaline exhibited better photocatalytic activity when heat-treated at 250 degrees C for 3 h, than pure TiO2 thin films under the ultraviolet irradiation. PMID:18468139

  10. Effects of mineral tourmaline particles on the photocatalytic activity of TiO2 thin films.

    PubMed

    Meng, Junping; Liang, Jinsheng; Ou, Xiuqin; Ding, Yan; Liang, Guangchuan

    2008-03-01

    Titania composite thin films (T/TiO2) containing tourmaline particles were prepared by a sol-gel method, using alkoxide solutions as precursor. The tourmaline particles and thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and so on. The effects of tourmaline on the photocatalytic activity of TiO2 were measured with methyl orange as an objective photodegradation substance. The results showed that the photocatalytic degradation of methyl orange conformed to the first-order kinetic equation and the composite thin films had better photocatalytic activity due to the cooperation of polarity and the far infrared emission of tourmaline. The T/TiO2 thin films including 0.5 wt% tourmaline exhibited better photocatalytic activity when heat-treated at 250 degrees C for 3 h, than pure TiO2 thin films under the ultraviolet irradiation.

  11. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate.

    PubMed

    Sunil Sekhar, Anandakumari Chandrasekharan; Vinod, Chathakudath Prabhakaran

    2016-01-01

    Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 10³ for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to -NO₂ group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies. PMID:27213321

  12. Gold nanoparticles supported in zirconia-ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst.

    PubMed

    Violi, Ianina L; Zelcer, Andrés; Bruno, Mariano M; Luca, Vittorio; Soler-Illia, Galo J A A

    2015-01-21

    Gold nanoparticles (NP) trapped in the mesopores of mixed zirconia-ceria thin films are prepared in a straightforward and reproducible way. The films exhibit enhanced stability and excellent catalytic activity in nitro-group reduction by borohydride and electrocatalytic activity in CO and ethanol oxidation and oxygen reduction.

  13. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity.

    PubMed

    Henry, J; Mohanraj, K; Sivakumar, G; Umamaheswari, S

    2015-05-15

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350°C and 450°C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichiacoli and Bacillus. PMID:25727293

  14. Nanostructure and strain effects in active thin films for novel electronic device applications

    NASA Astrophysics Data System (ADS)

    Yuan, Zheng

    2007-12-01

    There are many potential applications of ferroelectric thin films that take advantage of their unique dielectric and piezoelectric properties, such as tunable microwave devices and thin-film active sensors for structural health monitoring (SHM). However, many technical issues still restrict practical applications of ferroelectric thin films, including high insertion loss, limited figure of merit, soft mode effect, large temperature coefficients, and others. The main theme of this thesis is the advanced technique developments, and the new ferroelectric thin films syntheses and investigations for novel device applications. A novel method of additional doping has been adopted to (Ba,Sr)TiO 3 (BSTO) thin films on MgO. By introducing 2% Mn into the stoichiometric BSTO, Mn:BSTO thin films have shown a greatly enhanced dielectric tunability and a reduced insertion loss at high frequencies (10-30 GHz). A new record of a large tunability of 80% with a high dielectric constant of 3800 and an extra low dielectric loss of 0.001 at 1 MHz at room-temperature was achieved. Meanwhile, the new highly epitaxial ferroelectric (Pb,Sr)TiO3 (PSTO) thin films have been synthesized on (001) MgO substrates. PSTO films demonstrated excellent high frequency dielectric properties with high dielectric constants above 1420 and large dielectric tunabilities above 34% at room-temperature up to 20 GHz. In addition, a smaller temperature coefficient from 80 K to 300 K was observed in PSTO films compared to BSTO films. These results indicate that the Mn:BSTO and PSTO films are both good candidates for developing room-temperature tunable microwave devices. Furthermore, crystalline ferroelectric BaTiO3 (BTO) thin films have been deposited directly on metal substrate Ni through a unique in-situ substrate pre-oxidation treatment. The highly oriented nanopillar structural BTO films were grown on the buffered layers created by the pre-oxidation treatment. No interdiffusion or reaction was observed at the

  15. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  16. Sulfated glycopolymer thin films - preparation, characterization, and biological activity.

    PubMed

    Grombe, Ringo; Gouzy, Marie F; Maitz, Manfred F; Freundenberg, Uwe; Zschoche, Stefan; Simon, Frank; Pompe, Tilo; Sperling, Claudia; Werner, Carsten

    2007-02-12

    The impact of heparinoid characteristics on model surfaces obtained from immobilization of sole sulfate groups as well as sulfated glycosides, sulfated cellulose, and definite heparin has been investigated. The obtained layers were physico-chemically characterized regarding film thickness, chemical composition, wettability, and surface morphology. Antithrombin adsorption, studied by fluorescence labeling, revealed a strong dependence on the presence of glycosidic structures and on the molecular weight of the grafted saccharide. On contact with whole blood, the coatings resulted in a diminished plasmatic and cellular coagulation in vitro, which did not reflect well the antithrombin binding. Therefore, more complex activating pathways are discussed. PMID:17295407

  17. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    SciTech Connect

    Do, Woori; Jin, Won-Beom; Choi, Jungwan; Bae, Seung-Muk; Kim, Hyoung-June; Kim, Byung-Kuk; Park, Seungho; Hwang, Jin-Ha

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in the electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.

  18. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  19. Enhanced surface activity of SnO2 thin film verified by LM algorithm

    NASA Astrophysics Data System (ADS)

    Choudhury, Sandip Paul; Kumari, Navnita; Bhattacharjee, Ayon

    2016-04-01

    Impedance studies were conducted on spray deposited Cu doped SnO2 thin films. Rietveld analysis provided evidence of non-existence of any other phase due to doping. Controlled injection of ethanol vapor was done to study the surface activity of these films at different temperatures. The cole-cole plots of ethanol absorbed films to that of unexposed thin films were constructed at different temperatures and compared. The studies reveal that the electron scattering process was homogeneous in nature and the film had a narrow relaxation time. Levenberg-Marquardt algorithm with unweighted function was used for theoretical fitting of the cole-cole plots that revealed the weakening of the Fermi pinning level.

  20. Synthesis of Pt-Mo-N Thin Film and Catalytic Activity for Fuel Cells

    SciTech Connect

    Miura, Akira; Tague, Michele E.; Gregoire, John M.; Wen, Xiao-Dong; van Dover, R. Bruce; Abruña, Héctor D.; DiSalvo, Francis J.

    2010-05-13

    Pt-Mo-N composition gradient film was synthesized by combining thin-film deposition techniques and subsequent thermal nitridation. A ternary platinum-based nitride, Pt2Mo3N, showed catalytic activities for fuel cell applications and higher electrochemical stability when it was compared with a PtMo alloy with the same Pt:Mo ratio.

  1. Properties of spray pyrolised ZnO:Sn thin films and their antibacterial activity.

    PubMed

    Manoharan, C; Pavithra, G; Dhanapandian, S; Dhamodaran, P; Shanthi, B

    2015-04-15

    Tin doped zinc oxide (ZnO:Sn) thin films were deposited onto glass substrates by the spray pyrolysis technique with the substrate temperature 400 °C. The structural, optical, photoluminescence (PL) properties and morphological studies were investigated for the films deposited with various doping concentration (0, 2, 4, 6 and 8 at.%) of tin. The XRD results had shown that the films were polycrystalline ZnO with hexagonal wurtzite type structure and the crystallites in the films were oriented along (002) direction. Surface morphology of the films obtained by scanning electron microscope (SEM) exhibited the change in morphology with doping concentration and porous nature for the film with 6 at.% of tin. Atomic force microscopy (AFM) revealed nanometer sized particles with decreased surface roughness for Sn doping. Optical analysis exhibited the band gap value of 2.8 eV for ZnO:Sn (6 at.%) which was lower than the band gap value for undoped ZnO film (3.2 eV). The resistivity of 6 at.% of Sn doped film was 1.28×10(2) Ω cm with increase in the hall mobility and carrier concentration. The ZnO and Sn doped ZnO thin films exhibited antibacterial activity against Staphylococcus aureus. PMID:25686860

  2. Properties of spray pyrolised ZnO:Sn thin films and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Manoharan, C.; Pavithra, G.; Dhanapandian, S.; Dhamodaran, P.; Shanthi, B.

    2015-04-01

    Tin doped zinc oxide (ZnO:Sn) thin films were deposited onto glass substrates by the spray pyrolysis technique with the substrate temperature 400 °C. The structural, optical, photoluminescence (PL) properties and morphological studies were investigated for the films deposited with various doping concentration (0, 2, 4, 6 and 8 at.%) of tin. The XRD results had shown that the films were polycrystalline ZnO with hexagonal wurtzite type structure and the crystallites in the films were oriented along (0 0 2) direction. Surface morphology of the films obtained by scanning electron microscope (SEM) exhibited the change in morphology with doping concentration and porous nature for the film with 6 at.% of tin. Atomic force microscopy (AFM) revealed nanometer sized particles with decreased surface roughness for Sn doping. Optical analysis exhibited the band gap value of 2.8 eV for ZnO:Sn (6 at.%) which was lower than the band gap value for undoped ZnO film (3.2 eV). The resistivity of 6 at.% of Sn doped film was 1.28 × 102 Ω cm with increase in the hall mobility and carrier concentration. The ZnO and Sn doped ZnO thin films exhibited antibacterial activity against Staphylococcus aureus.

  3. Antibacterial activity of microstructured Ag/Au sacrificial anode thin films.

    PubMed

    Köller, Manfred; Sengstock, Christina; Motemani, Yahya; Khare, Chinmay; Buenconsejo, Pio J S; Geukes, Jonathan; Schildhauer, Thomas A; Ludwig, Alfred

    2015-01-01

    Ten different Ag dot arrays (16 to 625 microstructured dots per square mm) were fabricated on a continuous Au thin film and for comparison also on Ti film by sputter deposition and photolithographic patterning. To analyze the antibacterial activity of these microstructured films Escherichia coli and Staphylococcus aureus were placed onto the array surfaces and cultivated overnight. To analyze the viability of planktonic as well as surface adherent bacteria, the applied bacterial fluid was subsequently aspirated, plated on blood agar plates and adherent bacteria were detected by fluorescence microscopy. A particular antibacterial effect towards both bacterial strains was induced by Ag dot arrays on fabricated Au thin film (sacrificial anode system for Ag), due to the release of Ag ions from dissolution of Ag dots in contrast to Ag dot arrays fabricated on the Ti thin films (non-sacrificial anode system for Ag) which remained intact to the original dot shape. The required number of Ag dots on gold film to achieve complete bactericidal effects for both bacterial strains was seven times lower than that observed with Ag dot arrays on Ti film.

  4. Phase-controlled electrochemical activity of epitaxial Mg-spinel thin films

    DOE PAGES

    Feng, Zhenxing; Chen, Xiao; Qiao, Liang; Lipson, Albert L.; Fister, Timothy T.; Zeng, Li; Kim, Chunjoong; Yi, Tanghong; Sa, Niya; Proffit, Danielle L.; et al

    2015-12-07

    We report an approach to control the reversible electrochemical activity (i.e., extraction/insertion) of Mg2+ in a cathode host through the use of phase-pure epitaxially stabilized thin film structures. The epitaxially stabilized MgMn2O4. (MMO) thin films in the distinct tetragonal and cubic phases are shown to exhibit dramatically different properties (in a nonaqueous electrolyte, Mg(TFSI)2 in propylene carbonate): tetragonal MMO shows negligible activity while the cubic MMO (normally found as polymorph at high temperature or high pressure) exhibits reversible Mg2+ activity with associated changes in film structure and Mn oxidation state. Lastly, these results demonstrate a novel strategy for identifying themore » factors that control multivalent cation mobility in next generation battery materials.« less

  5. Phase-controlled electrochemical activity of epitaxial Mg-spinel thin films

    SciTech Connect

    Feng, Zhenxing; Chen, Xiao; Qiao, Liang; Lipson, Albert L.; Fister, Timothy T.; Zeng, Li; Kim, Chunjoong; Yi, Tanghong; Sa, Niya; Proffit, Danielle L.; Burrell, Anthony K.; Cabana, Jordi; Ingram, Brian J.; Biegalski, Michael D.; Bedzyk, Michael J.; Fenter, Paul

    2015-12-07

    We report an approach to control the reversible electrochemical activity (i.e., extraction/insertion) of Mg2+ in a cathode host through the use of phase-pure epitaxially stabilized thin film structures. The epitaxially stabilized MgMn2O4. (MMO) thin films in the distinct tetragonal and cubic phases are shown to exhibit dramatically different properties (in a nonaqueous electrolyte, Mg(TFSI)2 in propylene carbonate): tetragonal MMO shows negligible activity while the cubic MMO (normally found as polymorph at high temperature or high pressure) exhibits reversible Mg2+ activity with associated changes in film structure and Mn oxidation state. Lastly, these results demonstrate a novel strategy for identifying the factors that control multivalent cation mobility in next generation battery materials.

  6. Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films.

    PubMed

    Feng, Zhenxing; Chen, Xiao; Qiao, Liang; Lipson, Albert L; Fister, Timothy T; Zeng, Li; Kim, Chunjoong; Yi, Tanghong; Sa, Niya; Proffit, Danielle L; Burrell, Anthony K; Cabana, Jordi; Ingram, Brian J; Biegalski, Michael D; Bedzyk, Michael J; Fenter, Paul

    2015-12-30

    We report an approach to control the reversible electrochemical activity (i.e., extraction/insertion) of Mg(2+) in a cathode host through the use of phase-pure epitaxially stabilized thin film structures. The epitaxially stabilized MgMn2O4 (MMO) thin films in the distinct tetragonal and cubic phases are shown to exhibit dramatically different properties (in a nonaqueous electrolyte, Mg(TFSI)2 in propylene carbonate): tetragonal MMO shows negligible activity while the cubic MMO (normally found as polymorph at high temperature or high pressure) exhibits reversible Mg(2+) activity with associated changes in film structure and Mn oxidation state. These results demonstrate a novel strategy for identifying the factors that control multivalent cation mobility in next-generation battery materials.

  7. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    PubMed

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-01

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  8. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  9. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release.

  10. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release. PMID:26117788

  11. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  12. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film.

    PubMed

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I; Qamaruddin, Muhammad; Yamani, Zain H

    2015-01-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested. Graphical abstractWO3-surface modified TiO2 film showing better photocatalytic and photoelectrocatalytic activity. PMID:25852351

  13. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  14. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  15. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  16. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  17. Surface enhanced Raman scattering activity of TiN thin film prepared via nitridation of sol-gel derived TiO2 film

    NASA Astrophysics Data System (ADS)

    Dong, Zhanliang; Wei, Hengyong; Chen, Ying; Wang, Ruisheng; Zhao, Junhong; Lin, Jian; Bu, Jinglong; Wei, Yingna; Cui, Yi; Yu, Yun

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is a powerful and non-destructive analytical technique tool for chemical and biological sensing applications. Metal-free SERS substrates have recently been developed by using semiconductor nanostructures. The optical property of TiN film is similar to that of gold. Besides that, its good chemical inertness and thermodynamic stability make TiN thin film an excellent candidate for SERS. In order to investigate its SERS activity, the TiN thin film was successfully prepared via direct nitridation of the sol-gel derived TiO2 thin film on the quartz substrate using ammonia gas as reducing agent. The crystallite structures and morphology of TiN thin film were determined by XRD, RAMAN and FE-SEM. The results show that the thin film obtained is cubic titanium nitride with a lattice parameter of 4.2349 Å. The surface of TiN thin film is rough and with the particles of 50 nm in average sizes. The thickness of TiN thin film is about 130 nm. The TiN thin film displays a surface Plasmon resonance absorption peak at around 476 nm, which can lead to a strong enhancement of the EM field on the interface. The Raman signal of the probe molecule R6G was greatly enhanced through TiN thin film substrates. The enhancement factor is about 4.1×103 and the detection limit achieves 10-6 M for R6G. The TiN thin film substrate also shows a good reproducibility of SERS performance. The results indicate that TiN thin film is an attractive material with potential application in SERS substrates.

  18. Dual Gate Thin Film Transistors Based on Indium Oxide Active Layers

    SciTech Connect

    Kekuda, Dhananjaya; Rao, K. Mohan; Tolpadi, Amita; Chu, C. W.

    2011-07-15

    Polycrystalline Indium Oxide (In{sub 2}O{sub 3}) thin films were employed as an active channel layer for the fabrication of bottom and top gate thin film transistors. While conventional SiO{sub 2} served as a bottom gate dielectric, cross-linked poly-4-vinylphenol (PVP) was used a top gate dielectric. These nano-crystalline TFTs exhibited n-channel behavior with their transport behavior highly dependent on the thickness of the channel. The correlation between the thickness of the active layer and TFT parameters such as on/off ratio, field-effect mobility, threshold voltage were carried out. The optical spectra revealed a high transmittance in the entire visible region, thus making them promising candidates for the display technology.

  19. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  20. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    SciTech Connect

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  1. Sub-THz thermally activated-electrical conductivity of CdS thin films

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur; Scales, John A.

    2016-08-01

    The electrical conductivity of a CdS thin film controlled by grain structures is essential to enhance its photoconductivity to be able to be fit as a window material in CdS/CdTe heterojunction solar cells. In order to characterize a thin film, electromagnetically, we employed an open cavity resonator with a sub-millimeter Vector Network Analyzer. Our technique is capable of measuring complex dielectric permittivity, ɛ ˜ , of a photovoltaic film as thin as 0.1 μm. We measured the real part of the complex dielectric permittivity, ɛre, and electrical conductivity, σre (derived from the imaginary part, ɛim), of unannealed and annealed CdS films with thicknesses ˜0.15 μm on ˜3 mm thick-borosilicate glass substrates, at room temperature. We obtain the (thermally activated) electrical conductivity between 100 and 312 GHz, which is less in annealed samples than in unannealed ones by ˜2 orders of magnitude. Contrary to our expectations, the carrier concentrations extracted from these data by fitting a Drude model are ˜1016 cm-3 (unannealed) and ˜1014 cm-3 (annealed). We investigate the connection between the grain size and carrier concentration.

  2. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    PubMed

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-01

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity. PMID:18991420

  3. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  4. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  5. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors.

    PubMed

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  6. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    PubMed Central

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L.; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  7. Thin-film coatings

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1980-01-01

    Thin, adherent, high density films are discussed with respect to their application in two plasma physics techniques (ion plating and sputtering). The operation of each technique is described as well as what surfaces can be coated, and what kind of materials can be applied. The effects of these films on the mechanical properties of solid surfaces are also discussed.

  8. Photocatalytic Activity of TiO2 Thin Films Obtained by the Sputtering RF in Wastewater

    NASA Astrophysics Data System (ADS)

    Cardona Bedoya, Jairo Armando; Sanchez Velandia, Wilmer Asmed; Delgado Rosero, Miguel Iban; Florido Cuellar, Alex Enrique; Zelaya Angel, Orlando; Mendoza Alvarez, Julio G.

    2011-03-01

    The photocatalytic activity of Ti O2 thin films in wastewater, under an UV irradiation, is studied. The films were prepared on corning glass substrates by the sputtering RF technique. We present evidence on the photocatalytic degradation, carried out by advanced oxidation processes (AOPs) in domestic wastewater pretreated with UASB (upflow anaerobic sludge blanket) reactors. Ti O2 films were illuminated with ultraviolet light during a time of 4 hours (λ ≅ 264 nm). We could see the effect of degraded operation in the absorbance measurement using UV-VIS spectrophotometry. The results show an increased rate of degradation of the wastewater by 30% compared to the values reflected biologically treated wastewater by anaerobic reactors.

  9. A thin film active-lens with translational control for dynamically programmable optical zoom

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Park, Suntak; Park, Bongje; Nam, Saekwang; Park, Seung Koo; Kyung, Ki-Uk

    2015-08-01

    We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

  10. Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Manoharan, C.; Pavithra, G.; Bououdina, M.; Dhanapandian, S.; Dhamodharan, P.

    2016-08-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass substrates using spray pyrolysis technique with the substrate temperature of 400 °C. X-ray diffraction analysis indicated that the films were polycrystalline with hexagonal wurtzite structure preferentially oriented along (002) direction. Surface morphology of the films obtained by scanning electron microscopy showed that the grains were of nanoscale size with porous nature for 6 at.% of Al. Atomic force microscopy observations revealed that the particles size and surface roughness of the films decreased with Al-doping. Optical measurements indicated that ZnO:Al (6 at.%) exhibited a band gap of 3.11 eV, which is lower than that of pure ZnO film, i.e. 3.42 eV. Photoluminescence analysis showed weak NBE emission at 396 nm for Al-doped films. The low resistivity, high hall mobility and carrier concentration values were obtained at a doping ratio of 6 at.% of Al. The effective incorporation of 6 at.% of Al into ZnO lattice by occupying Zn sites yielded a well-pronounced antibacterial activity against Staphylococcus aureus.

  11. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  12. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  13. Thin film composite actuators

    NASA Astrophysics Data System (ADS)

    Su, Quanmin; Kim, Taesung; Zheng, Yun; Wuttig, Manfred R.

    1995-05-01

    The mechanical properties of Ni50Ti50 deposited on Si substrates were studied focussing on the interaction of the film and substrate. This interaction determines the transformation characteristics through interface accommodation and mechanical constraints exerted by the substrate stiffness. Substrate stiffness, controlled by the film/substrate thickness ratio, was found to have a substantial influence on the output energy of the film/substrate composite. A switch type composite based on this knowledge was fabricated and tested. The thermo-mechanical properties of Terfenol-D thin films deposited on Si substrates were studied by static and dynamic measurements of film/substrate composite cantilevers. The Curie transition, (Delta) E effect and mechanical damping of the film were measured simultaneously. The stress in the film was controlled by annealing below the recrystallization temperature and determined to vary from -500 MPa, compression, in as deposited films to +480 MPa, tension, in annealed films. The Curie temperature shifts from 80 degree(s)C to 140 degree(s)C as the tension increases while the structure of the film remains amorphous. The stress change induced by annealing also drastically effects the film's damping characteristics. The (Delta) E effect of the amorphous material, about 20%, was used to estimate the magnetostriction, (lambda) s approximately equals 4 (DOT) 10-3.

  14. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  15. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  16. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  17. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    PubMed

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  18. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  19. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  20. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  1. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  3. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  4. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  5. A light-activated optopiezoelectric thin-film actuator for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Hu; Wu, Ting-Jui; Hsu, Cheng-Che; Lee, Chih-Kung; Hsu, Yu-Hsiang

    2015-03-01

    In this paper, we present a new type of piezoelectric composite material, optopiezoelectric thin-film, to serve as a lightactivated micropump for integrating with a microfluidic device. By using a photoconductive material (titanium oxide phthalocyanine) to serve as one of the electrodes of a piezoelectric polyvinylidene fluoride (PVDF) polymer, multiple locations of this optopiezoelectric thin-film can be actuated independently with one driving voltage source and a programmable light mask. Integrating this optopiezoelectric thin-film to a microfluidic device, complex operations of a multi-functioned microfluidic device can potentially be simplified and scaled up. Here, we present our preliminary result to demonstrate the feasibility of using one optopiezoelectric thin-film to serve as two microfluidic micropumps controlled by a light mask.

  6. Novel sol-gel synthesis of cerium-doped ZnO thin films for photocatalytic activity

    SciTech Connect

    Senthilvelan, S.; Chandraboss, V. L.; Karthikeyan, B.; Murugavelu, M.; Loganathan, B.; Natanapatham, L.

    2012-07-23

    The Ce-doped ZnO films on silica glass plates were prepared by sol-gel dip coating technique. The surface morphology of thin films was characterized by means of scanning electron microscopy (SEM). Optical properties of films have been investigated using UV-visible spectroscopy. The photocatalytic activity was established by testing the degradation of Alizarin Red (AR) from aqueous solution. The test of photocatalytic activity of the heat-treated Ce-doped ZnO films were also carried out under visible light irradiation.

  7. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    DOE PAGES

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; Debe, Mark; Steinbach, Andrew J.; Guetaz, L.

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt3Ni7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure plays in surfacemore » area, activity, and durability.« less

  8. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    SciTech Connect

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; Debe, Mark; Steinbach, Andrew J.; Guetaz, L.

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt3Ni7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure plays in surface area, activity, and durability.

  9. Activation of ion-implanted polycrystalline silicon thin films prepared on glass substrates

    SciTech Connect

    So, Byoung-Soo; Bae, Seung-Muk; You, Yil-Hwan; Kim, Young-Hwan; Hwang, Jin-Ha

    2012-10-15

    Phosphorous-implanted polycrystalline Si thin films were subjected to thermal annealing between 300 °C and 650 °C. The thermal activation was monitored electrically and structurally using Hall measurements, Raman spectroscopy, UV–visible spectrophotometry, and transmission electron microscopy. Charge transport information was correlated to the corresponding structural evolution in thermal activation. Phosphorous-implanted activation is divided into short-range ordering at low temperatures and long-range ordering at high temperatures, with the boundary between low and high temperatures set at 425 °C. Short-range ordering allows for significant increase in electronic concentration through substitution of P for Si. Higher temperatures are attributed to long-range ordering, thereby increasing electronic mobility.

  10. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Jongnavakit, P.; Amornpitoksuk, P.; Suwanboon, S.; Ndiege, N.

    2012-08-01

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn2+ solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm2 of 0.5 mol% Cu-doped ZnO thin film are 15.92 μM h-1 and 0.049 μM-1, respectively.

  11. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  12. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  13. Development of visible light activated TiO2 thin films on stainless steel via sol spraying with emphasis on microstructural evolution and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Momeni, Mansour; Golestani-Fard, Farhad; Saghafian, Hasan; Barati, Nastaran; Khanahmadi, Amirhossein

    2015-12-01

    Visible light activated nitrogen doped TiO2 thin films were developed on 304 stainless steel by sol spraying method using a common painting airbrush. Thin films with different thickness were prepared and calcined at various temperatures from 400 to 600 °C. The samples were studied using ellipsometry, XRD, GIXRD, XPS, DRS, SEM and FESEM. Photocatalytic activities of the films were investigated by measuring their ability to degrade methylene blue solution under visible light irradiation. Results revealed that uniform nanostructured films with a thickness range of 29-150 nm were successfully prepared on stainless steel by sol spraying. Doping nitrogen into TiO2 structure restricted the crystallite growth of anatase phase and reduced the band gap energy to 2.85 eV and therefore, activated TiO2 in visible light region. Increasing calcination temperature not only promoted crack formation in thin films, but also encouraged Fe diffusion from substrate into thin films structure. However, the N doped TiO2 film calcined at 500 °C with a thickness of 150 nm indicated a significant photocatalytic activity in visible light with 22% higher efficiency in comparison with undoped TiO2 film. Development of TiO2 based photocatalytic thin films by a simple method of airbrushing, builds up the hope for industrial scale applications in future.

  14. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  15. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  16. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Ponja, Sapna D; Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan P; Carmalt, Claire J

    2015-12-30

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system. PMID:26632854

  17. Thermal activation in Co/Sb nanoparticle-multilayer thin films

    NASA Astrophysics Data System (ADS)

    Madden, Michael R.

    Multilayer "Co" /"Sb" thin films created via electron-beam physical vapor deposition are known to exhibit thermally activated dynamics. Scanning tunneling microscopy has indicated that the "Co" forms nanoparticles within an "Sb" matrix during deposition and subsequently forms nanowires by way of NP migration within the interstices of the confining layers. The electrical resistance of these systems decays during this irreversible aging process in a manner well-modeled by an Arrhenius law. Presently, this phenomenon is shown to possess some degree of tunability with respect to "Co" layer thickness tCo as well as deposition temperature Tdep , whereby characteristic timescales increase with either parameter. Furthermore, fluctuation timescales and activation energies seem to decrease and increase respectively with increasing t Co. An easily calibrated, one-time-use, time-temperature switch based on such systems lies within the realm of plausibility. The results presented here can be considered to be part of an ongoing development of the concept.

  18. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.

    2015-12-01

    In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.

  19. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  20. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  1. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  2. Phase Change Activation and Characterization of Spray-Deposited Poly(vinylidene) Fluoride Piezoelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Riosbaas, Miranda Tiffany

    Structural safety and integrity continues to be an issue of utmost concern in our world today. Existing infrastructures in civil, commercial, and military applications are beginning to see issues associated with age and environmental conditions. In addition, new materials are being put to service that are not yet fully characterized and understood when it comes to long term behavior. In order to assess the structural health of both old and new materials, it is necessary to implement a technique for monitoring wear and tear. Current methods that are being used today typically depend on visual inspection techniques or handheld instruments. These methods are not always ideal for large structures as they become very tedious leading to a substantial amount of both time and money spent. More recently, composite materials have been introduced into applications that can benefit from high strength-to-weight ratio materials. However, the use of more complex materials (such as composites) leads to a high demand of structural health monitoring techniques, since the damage is often internal and not visible to the naked eye. The work performed in this thesis examines the methods that can be used for phase change activation and characterization of sprayable poly(vinylidene) fluoride (PVDF) thin films in order to exploit their piezoelectric characteristics for sensing applications. PVDF is widely accepted to exist in four phases: alpha, beta, gamma, and delta. Alpha phase PVDF is produced directly from the melt and exhibits no piezoelectric properties. The activation or transition from α phase to some combination of beta and/or gamma phase PVDF leads to a polarizable piezoelectric thin film to be used in sensing applications. The work herein presents the methods used to activate phase change in PVDF, such as mechanical stretching, annealing, and chemical composition, to be able to implement PVDF as an impact detection sensor. The results and analysis provided in this thesis will

  3. Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans.

    PubMed

    Yeniyol, Sinem; Mutlu, Ilven; He, Zhiming; Yüksel, Behiye; Boylan, Robert Joseph; Ürgen, Mustafa; Karabuda, Zihni Cüneyt; Basegmez, Cansu; Ricci, John Lawrence

    2015-01-01

    Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). The topology was assessed by White Light Optical Profiling (WLOP) in the Vertical Scanning Interferometer (VSI) mode. Representative height descriptive parameters of roughness R a and R z were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB) dye solution. The antibacterial ability of the photocatalyst was examined by Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2-5 µm) and protruding hills (10-50 µm) on Ti substrates were produced after electrochemical anodization with higher R a and R z surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization. PMID:26576430

  4. Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans

    PubMed Central

    Yeniyol, Sinem; Mutlu, Ilven; He, Zhiming; Yüksel, Behiye; Boylan, Robert Joseph; Ürgen, Mustafa; Karabuda, Zihni Cüneyt; Basegmez, Cansu; Ricci, John Lawrence

    2015-01-01

    Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). The topology was assessed by White Light Optical Profiling (WLOP) in the Vertical Scanning Interferometer (VSI) mode. Representative height descriptive parameters of roughness Ra and Rz were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB) dye solution. The antibacterial ability of the photocatalyst was examined by  Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2–5 µm) and protruding hills (10–50 µm) on Ti substrates were produced after electrochemical anodization with higher Ra and Rz surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization. PMID:26576430

  5. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction.

    PubMed

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan; Vegge, Tejs

    2015-05-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys of Au with mixed Pt-Pd skins. The activity of the binary and ternary catalysts is explained through weakening of the OH binding energy caused by solute elements. However, given the low alloy formation energies it may be difficult to tune and retain the composition under operating conditions. This is particularly challenging for alloys containing Au due to a high propensity of Au to segregate to the surface. We also show that once Au is on the surface it will diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. For the PtPd thin films there is no pronounced driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen reduction. PMID:25865333

  6. Making Glasses Conduct: Electrochemical Doping of Redox-Active Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan

    Optoelectronically-active macromolecules have been established as promising materials in myriad organic electronic applications (e.g., organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices). To date, however, the majority of the work surrounding these materials has focused on materials with a great deal of conjugation along their macromolecular backbones and with varying degrees of crystalline structure. Here, we describe an emerging class of macromolecular charge conductors, radical polymers, that: (1) do not contain conjugation and (2) are completely amorphous glasses. Radical polymers contain non-conjugated macromolecular backbones and stable radical sites along the side chains of the electronically-active materials. In contrast to conjugated polymer systems, these materials conduct charge in the solid state through oxidation-reduction (redox) reactions along these pendant groups. Specifically, we demonstrate that controlling the chemical functionality of the pendant groups and the molecular mobility of the macromolecular backbones significantly impacts the charge transport ability of the pristine (i.e., not doped) radical polymers species. Through proper control of these crucial parameters, we show that radical polymers can have electrical conductivity and charge mobility values on par with commonly-used conjugated polymers. Importantly, we also highlight the ability to dope radical polymers with redox-active small molecule species. This doping, in turn, increases the electrical conductivity of the glassy radical polymer thin films in a manner akin to what is observed in traditional conjugated polymer systems. In this way, we establish a means by which to fabricate optically-transparent and colorless thin film glasses capable of conducting charge in a rather rapid manner. We anticipate that these fundamental insights will prove crucial in developing new transparent conducting layers for future electronic applications.

  7. Thin film interconnect processes

    NASA Astrophysics Data System (ADS)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  8. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  9. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  10. Controlling the activation energy of graphene-like thin films through disorder induced localization

    NASA Astrophysics Data System (ADS)

    Coleman, Christopher; McIntosh, Ross; Bhattacharyya, Somnath

    2013-07-01

    The influence of disorder on the activation energy in few layer graphitic films is demonstrated through combined Raman and temperature dependent transport studies. A laser ablation technique is employed which allows the level of disorder in the sp2-C phase to be controlled and conditions for minimizing the level of disorder are determined. As conditions vary from optimal, Raman measurements show increasing D and G bandwidths while the activation energy, negligible for optimal growth conditions, can be correlated with the level of disorder. This laser ablation technique allows the specific effects of structural disorder in the sp2 phase to be probed while defects act as effective barriers resulting in localization of charge carriers. Electron transmission spectra, calculated with a tight-binding model, account for the change of localization length as a result of disorder in the sp2 hybridized phase. This tandem experimental and theoretical approach shows that the localization length of the thin graphitic films can be tuned with the level of disorder which is controlled through synthesis parameters. This study, which addresses the role of disorder in graphene-like materials, is a prerequisite for device applications.

  11. Release and Skin Permeation of Scopolamine From Thin Polymer Films in Relation to Thermodynamic Activity.

    PubMed

    Kunst, Anders; Lee, Geoffrey

    2016-04-01

    The object was to demonstrate if the diffusional flux of the drug out of a drug-in-adhesive-type matrix and its subsequent permeation through an excised skin membrane is a linear function of the drug's thermodynamic activity in the thin polymer film. The thermodynamic activity, ap(*), is defined here as the degree of saturation of the drug in the polymer. Both release and release/permeation of scopolamine base from 3 different poylacrylate pressure-sensitive adhesives (PSAs) were measured. The values for ap(*) were calculated using previous published saturation solubilities, wp(s), of the drug in the PSAs. Different rates of release and release/permeation were determined between the 3 PSAs. These differences could be accounted for quantitatively by correlating with ap(*) rather than the concentration of the drug in the polymer films. At similar values for ap(*) the same release or release/permeation rates from the different polymers were measured. The differences could not be related to cross-linking or presence of ionizable groups of the polymers that should influence diffusivity.

  12. Release and Skin Permeation of Scopolamine From Thin Polymer Films in Relation to Thermodynamic Activity.

    PubMed

    Kunst, Anders; Lee, Geoffrey

    2016-04-01

    The object was to demonstrate if the diffusional flux of the drug out of a drug-in-adhesive-type matrix and its subsequent permeation through an excised skin membrane is a linear function of the drug's thermodynamic activity in the thin polymer film. The thermodynamic activity, ap(*), is defined here as the degree of saturation of the drug in the polymer. Both release and release/permeation of scopolamine base from 3 different poylacrylate pressure-sensitive adhesives (PSAs) were measured. The values for ap(*) were calculated using previous published saturation solubilities, wp(s), of the drug in the PSAs. Different rates of release and release/permeation were determined between the 3 PSAs. These differences could be accounted for quantitatively by correlating with ap(*) rather than the concentration of the drug in the polymer films. At similar values for ap(*) the same release or release/permeation rates from the different polymers were measured. The differences could not be related to cross-linking or presence of ionizable groups of the polymers that should influence diffusivity. PMID:27019963

  13. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  14. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  15. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  16. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  17. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  18. Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies

    SciTech Connect

    Shinozaki, Kazuma; Pivovar, Bryan S.; Kocha, Shyam S.

    2013-01-01

    Commercially available nanoparticle platinum on high surface area carbon black (Pt/HSC) electrocatalysts were characterized in rotating disk electrode (RDE) setups using varying ink formulations and film drying techniques in an attempt to obtain thin, uniform films and reproducible activity. Electrodes prepared from Nafion-free inks that were dried under an isopropyl alcohol (IPA) atmosphere produced uniform, thin films at low electrocatalyst loadings of ~4.5 mg/cm2 Pt. These Nafion-free/IPA-dried electrodes were found to exhibit oxygen reduction reaction (ORR) activities higher than conventional Nafion-based/Air-dried electrodes by a factor of ~2.8. The magnitude of mass and specific activities were determined to be im ~771 ±56 mA/mgPt and is~812 ±59 mA/cm2Pt respectively and appear to be the highest values reported for RDE measurements on Pt/HSC in 0.1M HClO4 at 20 mV/s and 25°C. Electrochemical diagnostics including ORR I-V profiles, cyclic voltammograms and electrochemical impedance spectroscopy (EIS) studies were conducted to investigate the thin film Pt/HSC electrodes and correlate results to film morphology and electrochemical activity.

  19. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  20. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  1. Thin film magnetism

    SciTech Connect

    Bader, S.D. )

    1990-06-01

    New developments in thin-film magnetism are reviewed with an emphasis on the ultrathin regime. The scope includes relatively simple metallic systems in overlayer, sandwich, and superlattice configurations. Sample fabrication, characterization, and magnetic measurement techniques are outlined by highlighting some of the more modern experimental innovations. Current issues and advances that demonstrate the symbiotic relationship between experiment and theory are then examined, including the surface magnetic anisotropy, the two-dimensional critical behavior, the creation of metastable phases via epitaxy, and phenomena associated with coupled magnetic layers. The review ends with a brief account of the impact of the various contemporary developments on the applications area.

  2. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  3. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    EPA Science Inventory

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  4. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  5. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    NASA Astrophysics Data System (ADS)

    Rebelo, Rita; Manninen, N. K.; Fialho, Luísa; Henriques, Mariana; Carvalho, Sandra

    2016-05-01

    Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Agsbnd O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

  6. Impact of active layer thickness in thin-film transistors based on Zinc Oxide by ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Dominguez, Miguel A.; Flores, Francisco; Luna, Adan; Martinez, Javier; Luna-Lopez, Jose A.; Alcantara, Salvador; Rosales, Pedro; Reyes, Claudia; Orduña, Abdu

    2015-07-01

    In this work, the preparation of Zinc Oxide (ZnO) films by ultrasonic spray pyrolysis at low-temperature and its application in thin-film transistors (TFTs) are presented, as well, the impact of the active layer thickness and gate dielectric thickness in the electrical performance of the ZnO TFTs. A thinner active layer resulted in better transfer characteristics such as higher on/off-current ratio, while a thicker active layer resulted in better output characteristics. The ZnO films were deposited from 0.2 M precursor solution of Zinc acetate in methanol, using air as carrier gas on a hotplate at 200 °C. The ZnO films obtained at 200 °C were characterized by optical transmittance, Photoluminescence spectroscopy and X-ray diffraction.

  7. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  8. Thin films: Past, present, future

    SciTech Connect

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  9. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  10. Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters.

    PubMed

    Zheng, Jian-Lun; Guan, Dong-Xing; Luo, Jun; Zhang, Hao; Davison, William; Cui, Xin-Yi; Wang, Lian-Hong; Ma, Lena Q

    2015-01-01

    Widespread use of bisphenols (BPs) in our daily life results in their elevated concentrations in waters and the need to study their environmental impact, which demands reliable and robust measurement techniques. Diffusive gradients in thin films (DGT) is an in situ passive sampling approach which provides time-integrated data. In this study we developed a new methodology, based on DGT with activated charcoal (AC) as a binding agent, for measuring three BPs (BPA, BPB, and BPF) which incorporated and tested its performance characteristics. Consistent elution efficiencies were obtained using methanol when concentrations of BPs were low and a methanol-NaOH mixture at high concentrations. The diffusion coefficients of BPA, BPB, and BPF in the diffusive gel, measured using an independent diffusion cell, were 5.03 × 10(-6), 5.64 × 10(-6), and 4.44 × 10(-6) cm(2) s(-1) at 25 °C, respectively. DGT with an AC binding gel had a high capacity for BPA, BPB, and BPF at 192, 140, and 194 μg/binding gel disk, respectively, and the binding performance did not deteriorate with time, up to 254 d after production. Time-integrated concentrations of BPs measured in natural waters using DGT devices with AC gels deployed in situ for 7 d were comparable to concentrations measured by an active sampling method. This study demonstrates that AC-based DGT is an effective tool for in situ monitoring of BPs in waters.

  11. High-mobility thin film transistors with neodymium-substituted indium oxide active layer

    SciTech Connect

    Lin, Zhenguo; Lan, Linfeng Xiao, Peng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2015-09-14

    Thin-film transistors (TFTs) with neodymium-substituted indium oxide (InNdO) channel layer were demonstrated. The structural properties of the InNdO films as a function of annealing temperature have been analyzed using X-ray diffraction and transmission electron microscopy. The InNdO thin films showed polycrystalline nature when annealed at 450 °C with a lattice parameter (cubic cell) of 10.255 Å, which is larger than the cubic In{sub 2}O{sub 3} film (10.117 Å). The high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy showed that no Nd{sub 2}O{sub 3} clusters were found in the InNdO film, implying that Nd was incorporated into the In{sub 2}O{sub 3} lattice. The InNdO TFTs annealed at 450 °C exhibited more excellent electrical properties with a high mobility of 20.4 cm{sup 2} V{sup −1} s{sup −1} and better electric bias stability compared to those annealed at 300 °C, which was attributed to the reduction of the scattering centers and/or charge traps due to the decrease of the |Nd3d{sub 5/2}{sup 5}4f{sup 4}O2p{sup −1}〉 electron configuration.

  12. Structural Characterization of Sputtered Silicon Thin Films after Rapid Thermal Annealing for Active-Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mugiraneza, Jean de Dieu; Miyahira, Tomoyuki; Sakamoto, Akinori; Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Itoh, Taketsugu

    2010-12-01

    The microcrystalline phase obtained by adopting a two-step rapid thermal annealing (RTA) process for rf-sputtered silicon films deposited on thermally durable glass was characterized. The optical properties, surface morphology, and internal stress of the annealed Si films are investigated. As the thermally durable glass substrate allows heating of the deposited films at high temperatures, micro-polycrystalline silicon (micro-poly-Si) films of uniform grain size with a smooth surface and a low internal stress could be obtained after annealing at 750 °C. The thermal stress in the Si films was 100 times lower than that found in the films deposited on conventional glass. Uniform grains with an average grain size of 30 nm were observed by transmission electron microscopy (TEM) in the films annealed at 800 °C. These micro-poly-Si films have potential application for fabrication of uniform and reliable thin film transistors (TFTs) for large scale active-matrix organic light emitting diode (AMOLED) displays.

  13. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  14. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  15. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  16. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  17. Resistive switching behavior of photochemical activation solution-processed thin films at low temperatures for flexible memristor applications

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Xu, Zhimou; Yu, Zhiqiang; Zhang, Tao; Zhao, Fei; Sun, Tangyou; Ma, Zhichao; Li, Zeping; Wang, Shuangbao

    2015-03-01

    This study explores deep ultraviolet photochemically activated solution-processed metal-oxide thin films at room temperature for fabrication of flexible memristor active resistive layers. An annealing treatment was not required during the process. Solution processed undoped and Mn-doped ZnO thin films served as active layers in the resistive random access memory structure, prepared at 145 °C. The carrier transports in high and low electrical fields were dominated by Frenkel-Poole emission and thermionic emission, respectively. The trap energy level, which originated primarily from Vo or the singly charged oxygen vacancy, was calculated at 0.49 eV. A flexible structure consisting of Ag/DUV-ZnO/indium tin oxide/polyethylene terephthalate was fabricated successfully and its mechanical performance was investigated.

  18. A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor

    PubMed Central

    Lee, Junwoo; Choi, Wook; Yoo, Yong Kyoung; Hwang, Kyo Seon; Lee, Sang-Myung; Kang, Sungchul; Kim, Jinseok; Lee, Jeong Hoon

    2014-01-01

    The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS) and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor. PMID:25429407

  19. Organic thin-film transistor arrays for active-matrix organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Lee, Sangyun; Moon, Hyunsik; Kim, Do H.; Koo, Bon-Won; Jeong, Eun-Jeong; Lee, Bang-Lin; Kim, Joo-Young; Lee, Eunkyung; Hahn, Kook-Min; Han, Jeong-Seok; Park, Jung-Il; Seon, Jong-Baek; Kim, Jung-Woo; Chun, Young-Tea; Kim, Sangyeol; Kang, Sung K.

    2007-09-01

    We developed an active matrix organic light-emitting diodes (AMOLEDs) on a glass using two organic thin-film transistors (OTFTs) and a capacitor in a pixel. OTFTs switching-arrays with 64 scan lines and 64 (RGB) data lines were designed and fabricated to drive OLED arrays. In this study, OTFT devices have bottom contact structures with an ink-jet printed polymer semiconductor and an organic insulator as a gate dielectric. The width and length of the switching OTFT is 500μm and 10μm, respectively and the driving OTFT has 900μm channel width with the same channel length. The characteristics of the OTFTs were examined using test cells around display area. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were 10 6, 0.1 cm2/V-sec, order of 8μA and over 70 μA respectively. These properties were enough to drive the AMOLEDs over 60 Hz frame rate. AMOLEDs composed of the OTFT switching arrays and OLEDs made by deposition of small molecule materials were fabricated and driven to make moving images, successfully.

  20. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    PubMed

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported.

  1. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    PubMed

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported. PMID:27491004

  2. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  3. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    SciTech Connect

    Mirigian, Stephen E-mail: smirigian@gmail.com; Schweizer, Kenneth S. E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  4. Photocatalytic activity and stability of TiO{sub 2} and WO{sub 3} thin films

    SciTech Connect

    Carcel, Radu Adrian; Andronic, Luminita Duta, Anca

    2012-08-15

    Photocatalysis represents a viable option for complete degrading the dye molecules resulted in the textile industry, up to products that do not represent environmental threats. The photocatalytic degradation of methyl orange has been investigated using TiO{sub 2}, WO{sub 3} and mixed thin films. The photodegradation efficiency is examined in correlation with the experimental parameters (irradiation time, H{sub 2}O{sub 2} addition and stability), along with the morphology and crystallinity data. The H{sub 2}O{sub 2} addition increases the photodegradation efficiency by providing additional hydroxyl groups and further reducing the recombination of the electron-hole pairs by reacting with the electrons at the catalyst interface. To test the stability of the photocatalytic films in long time running processes, batch series of experiments were conducted using contact periods up to 9 days. The results show that the thin films maintained their photocatalytic properties confirming their stability and viability for up-scaling. Highlights: Black-Right-Pointing-Pointer TiO{sub 2}, WO{sub 3} and mixed thin films Black-Right-Pointing-Pointer We tested the photocatalytic activity and photocatalyst stability over a period up to 9 days of continuous irradiation. Black-Right-Pointing-Pointer The influence of medium pH and oxidizing agent (H{sub 2}O{sub 2}) was analyzed.

  5. Measuring activation patterns of the heart at a microscopic size scale with thin-film sensors.

    PubMed

    Hofer, E; Urban, G; Spach, M S; Schafferhofer, I; Mohr, G; Platzer, D

    1994-05-01

    To study the spread of excitation in ventricular heart preparations we have designed a fast, high-resolution recording and mapping system. Papillary muscles were dissected from the isolated guinea pig hearts. The preparation was fixed in a tissue bath and superfused with Tyrode solution. Linear and two-dimensional arrays of Ag/AgCl electrodes were made on glass with a thin-film technique. The transparent sensors with up to 24 electrodes (spaced 50, 90, or 180 microns apart) were positioned close to the surface of the preparation with a custom-designed three-dimensional micromanipulator. Extracellular signals were simultaneously recorded by a 24-channel data acquisition system with a 200 kHz per channel sample rate, with 12-bit amplitude resolution and a maximum data length of up to 3 MB. Digitized video images of the electrode array and the underlaying preparation were used to identify the locations of the recording sites. A UNIX-based computer system with a custom-designed data acquisition and database program was used to control the instruments and to manage the experimental data. This technique gave signals with excellent signal-to-noise ratios (up to 65 dB) and permitted accurate evaluation of the time and the site of the local activation with high resolution (to within 5 microseconds, 50 microns). We describe the spread of excitation within the area of a few cells and found a substantial dispersion of conduction velocities. Beat-to-beat comparison of activation patterns showed relatively small variations in the spread of excitation (a few microseconds).

  6. Ultra thin gage plastic film

    NASA Technical Reports Server (NTRS)

    Cox, D. W., Jr.; Struble, A. D.

    1971-01-01

    Process utilizing specially modified conventional equipment, with changes in process temperature, pressure, and cooling requirements produces ultra thin 1.56 micron /0.0614 mil/ thick polyethylene film.

  7. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  8. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  9. Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

    PubMed Central

    Wu, Jin-Ming; Djerdj, Igor; von Graberg, Till

    2012-01-01

    Summary Ordered mesoporous, crystalline MgTa2O6 thin films with a mesoscopic nanoarchitecture were synthesized by evaporation-induced self-assembly (EISA) in combination with a sol–gel procedure. Utilization of novel templates, namely the block copolymers KLE (poly(ethylene-co-butylene)-b-poly(ethylene oxide)) and PIB6000 (CH3C(CH3)2(CH2C(CH3)2)107CH2C(CH3)2C6H4O(CH2CH2O)100H), was the key to achieving a stable ordered mesoporous structure even upon crystallization of MgTa2O6 within the mesopore walls. The effect of the calcination temperature on the ability of the mesoporous films to assist the photodegradation of rhodamine B in water was studied. As a result, two maxima in the photocatalytic activity were identified in the calcination temperature range of 550–850 °C, peaking at 700 °C and 790 °C, and the origin of this was investigated by using temperature-dependent X-ray scattering. Optimal activity was obtained when the mesoporous film was heated to 790 °C; at this temperature, crystallinity was significantly high, with MgTa2O6 nanocrystals of 1.6 nm in size (averaged over all reflections), and an ordered mesoporous structure was maintained. When considering the turnover frequency of such photocatalysts, the optimized activity of the present nanoarchitectured MgTa2O6 thin film was ca. four times that of analogous anatase TiO2 films with ordered mesopores. Our study demonstrated that high crystallinity and well-developed mesoporosity have to be achieved in order to optimize the physicochemical performance of mesoporous metal-oxide films. PMID:22428103

  10. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  11. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  12. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  13. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  14. Morphology of Microscopic Thin Rubber Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Briber, Robert; Wang, Howard

    2014-03-01

    Microscopic thin rubber films have been prepared using photolithographic methods. Thin films of low molecular weight polybutadiene have been spun cast on positive photoresists, and transferred to various substrates upon UV exposure for crosslinking and defining the lateral dimension. The morphological scaling of thin rubber films as a function of film dimension and temperature is discussed.

  15. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  16. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  17. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger.

    PubMed

    Pinto, Ricardo J B; Almeida, Adelaide; Fernandes, Susana C M; Freire, Carmen S R; Silvestre, Armando J D; Neto, Carlos Pascoal; Trindade, Tito

    2013-03-01

    Silver has been mainly investigated as an antibacterial agent and less as a fungicide in which concerns antimicrobial properties. In this research, the antifungal activity of composite films of pullulan and Ag nanoparticles (NP) against Aspergillus niger was evaluated using standard protocols. These new materials were prepared as transparent cast films (66-74 μm thickness) from Ag hydrosols containing the polysaccharide. Fungal growth inhibition was observed in the presence of such silver nanocomposite films. Moreover, disruption of the spores cells of A. niger was probed for the first time by means of scanning electron microscopy (SEM). This effect occurred in the presence of the nanocomposites due to Ag NP dispersed as fillers in pullulan. This polysaccharide was used here as a biocompatible matrix, hence making these nanocomposites beneficial for the development of antifungal packaging materials.

  18. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  19. Micromotors using magnetostrictive thin films

    NASA Astrophysics Data System (ADS)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  20. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  1. Polaron activation energy of nano porphyrin nickel(II) thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; El-Denglawey, A.; Elhady, A. F.; Abuelwafa, A. A.

    2014-08-01

    5,10,15,20-Tetraphenyl-21H, 23H-porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160-460 nm) and isochronal annealing in temperature range (300-348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 105 Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott's parameters were determined at low temperature. Seebeck coefficient indicates p-type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.

  2. Polaron activation energy of nano porphyrin nickel(II) thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; El-Denglawey, A.; Elhady, A. F.; Abuelwafa, A. A.

    2015-01-01

    5,10,15,20-Tetraphenyl-21 H, 23 H-porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160-460 nm) and isochronal annealing in temperature range (300-348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 105 Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott's parameters were determined at low temperature. Seebeck coefficient indicates p-type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.

  3. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  4. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  5. Thin film photovoltaics -- Strategy of Eurec Agency

    SciTech Connect

    Bloss, W.H.

    1994-12-31

    European activities in the field of thin film photovoltaics are coordinated in a network by Eurec Agency (European Renewable Energy Centres Agency). Main emphasis lies in the development of an appropriate production technology of CIS and CdTe based photovoltaic modules in an industrial scale. These efforts are supported by a research program on relevant materials, structures and processes for thin film photovoltaics. Substantial progress has been achieved during the last years which opens new perspectives for future trends. Joint efforts in research and development based on CIS are coordinated by the network EUROCIS. A screening program on natural minerals with relevance to photovoltaic performance provides the basis for further strategic steps.

  6. Feasibility Study of Thin Film Thermocouple Piles

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  7. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  8. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  9. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  10. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  11. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    SciTech Connect

    Wang Yige; Wang Li; Li Huanrong Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-03-15

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex.

  12. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  13. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  14. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  15. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  16. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  17. Orientation Control in Thin Films of a High-χ Block Copolymer with a Surface Active Embedded Neutral Layer.

    PubMed

    Zhang, Jieqian; Clark, Michael B; Wu, Chunyi; Li, Mingqi; Trefonas, Peter; Hustad, Phillip D

    2016-01-13

    Directed self-assembly (DSA) of block copolymers (BCPs) is an attractive advanced patterning technology being considered for future integrated circuit manufacturing. By controlling interfacial interactions, self-assembled microdomains in thin films of polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, can be oriented perpendicular to surfaces to form line/space or hole patterns. However, its relatively weak Flory interaction parameter, χ, limits its capability to pattern sub-10 nm features. Many BCPs with higher interaction parameters are capable of forming smaller features, but these "high-χ" BCPs typically have an imbalance in surface energy between the respective blocks that make it difficult to achieve the required perpendicular orientation. To address this challenge, we devised a polymeric surface active additive mixed into the BCP solution, referred to as an embedded neutral layer (ENL), which segregates to the top of the BCP film during casting and annealing and balances the surface tensions at the top of the thin film. The additive comprises a second BCP with a "neutral block" designed to provide matched surface tensions with the respective polymers of the main BCP and a "surface anchoring block" with very low surface energy that drives the material to the air interface during spin-casting and annealing. The surface anchoring block allows the film to be annealed above the glass transition temperature of the two materials without intermixing of the two components. DSA was also demonstrated with this embedded neutral top layer formulation on a chemical patterned template using a single step coat and simple thermal annealing. This ENL technology holds promise to enable the use of high-χ BCPs in advanced patterning applications.

  18. Orientation Control in Thin Films of a High-χ Block Copolymer with a Surface Active Embedded Neutral Layer.

    PubMed

    Zhang, Jieqian; Clark, Michael B; Wu, Chunyi; Li, Mingqi; Trefonas, Peter; Hustad, Phillip D

    2016-01-13

    Directed self-assembly (DSA) of block copolymers (BCPs) is an attractive advanced patterning technology being considered for future integrated circuit manufacturing. By controlling interfacial interactions, self-assembled microdomains in thin films of polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, can be oriented perpendicular to surfaces to form line/space or hole patterns. However, its relatively weak Flory interaction parameter, χ, limits its capability to pattern sub-10 nm features. Many BCPs with higher interaction parameters are capable of forming smaller features, but these "high-χ" BCPs typically have an imbalance in surface energy between the respective blocks that make it difficult to achieve the required perpendicular orientation. To address this challenge, we devised a polymeric surface active additive mixed into the BCP solution, referred to as an embedded neutral layer (ENL), which segregates to the top of the BCP film during casting and annealing and balances the surface tensions at the top of the thin film. The additive comprises a second BCP with a "neutral block" designed to provide matched surface tensions with the respective polymers of the main BCP and a "surface anchoring block" with very low surface energy that drives the material to the air interface during spin-casting and annealing. The surface anchoring block allows the film to be annealed above the glass transition temperature of the two materials without intermixing of the two components. DSA was also demonstrated with this embedded neutral top layer formulation on a chemical patterned template using a single step coat and simple thermal annealing. This ENL technology holds promise to enable the use of high-χ BCPs in advanced patterning applications. PMID:26682931

  19. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  20. A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae.-Chul.; Hwang, Seong-Ju

    2016-08-01

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag3PO4 thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag3PO4 nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag3PO4 from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag+]/[phosphate] ratio enables to maximize the loading amount of Ag3PO4 crystals per the unit area of the deposited film. All the fabricated Ag3PO4 thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag3PO4-ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid.

  1. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-01

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process. PMID:25691097

  2. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-01

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  3. Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films.

    PubMed

    Steinbusch, T P; Tyagi, H K; Schaafsma, M C; Georgiou, G; Gómez Rivas, J

    2014-11-01

    We demonstrate active beam steering of terahertz radiation using a photo-excited thin layer of gallium arsenide. A constant gradient of phase discontinuity along the interface is introduced by an spatially inhomogeneous density of free charge carriers that are photo-generated in the GaAs with an optical pump. The optical pump has been spatially modulated to form the shape of a planar blazed grating. The phase gradient leads to an asymmetry between the +1 and -1 transmission diffracted orders of more than a factor two. Optimization of the grating structure can lead to an asymmetry of more than one order of magnitude. Similar to metasurfaces made of plasmonic antennas, the photo-generated grating is a planar structure that can achieve large beam steering efficiency. Moreover, the photo-generation of such structures provides a platform for active THz beam steering. PMID:25401807

  4. Photocatalytic thin films coupled with polymeric microcapsules for the controlled-release of volatile agents upon solar activation

    NASA Astrophysics Data System (ADS)

    Oliveira, L. F.; Marques, J.; Coutinho, P. J. G.; Parpot, P.; Tavares, C. J.

    2013-06-01

    This work reportson the application of solar-activated photocatalytic thin films that allow the controlled-release of volatile agents (e.g., insecticides, repellents) from the interior of adsorbedpolymericmicrocapsules. In order to standardize the tests, a quantification of the inherent controlled-release of a particular volatile agent is determined by gas chromatography coupled to mass spectroscopy, so that an application can be offered to a wide range of supports from various industrial sectors, such as in textiles (clothing, curtains, mosquito nets). This technology takes advantage of the established photocatalytic property of titanium dioxide (TiO2) for the use as an active surface/site to promote the controlled-release of a specific vapor (volatile agentfrom within the aforementioned microcapsules.

  5. Mechanics of Magnetostrictive Thin Film Deformation and its Application in Active X-ray Optics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli

    High quality imaging system of telescopes in astronomy requires innovations to remove or correct the mid-spatial frequency (MSF) ripples on the mirror surface of lightweight optics. When the telescope is sent to the space, its launch mass is the key point to limit its collecting area. Therefore, the lightweight optics (100-150 mum thick electroplated nickel/cobalt, or 200-400 mum thick glass) is considered to be employed. However, the surface profile of the thin optical surface can't be polished to extremely high accuracy. Instead, the profile is expected to be corrected by applying voltage or magnetic field to drive the coating of smart materials (piezo or magnetostrictive materials) on the back side of the mirrors. During the process, the surface profile correction by the local stress on the 2-d surface is challenging. Both the measurements and the theoretical prediction of the surface profiles after correction are investigated. As a first step in the development of tools to predict the deformation of the coated glass strip samples (20x5x0.1 mm), one commercial magnetically smart material (MSM) was deposited on the samples by the magnetron sputtering method. One experimental setup was established to measure the deflections of these coated samples under an external magnetic field by Zygo NewView white light interferometry (WLI). These deflections agreed well with the results from the developed analytical and numerical analysis under various magnetic field strengths. In the further research, more efforts were made to analyze the full three-dimensional deformation behavior of MSM thin films on a square glass sample (50x50x0.2 mm). With the magnetic field applied, the 2-d surface profile of the coated glass sample was measured by WLI. To better study the deformation of the sample coated with MSMs, a finite element method (FEM) and a theoretical model were developed to predict the deformation of the sample with local misfit strains. The results calculated form the FEM

  6. Ternary compound thin film solar cells

    NASA Technical Reports Server (NTRS)

    Kazmerski, L. L.

    1975-01-01

    A group of ternary compound semiconductor (I-III-VI2) thin films for future applications in photovoltaic devices is proposed. The consideration of these materials (CuInSe2, CuInTe2 and especially CuInS2) for long range device development is emphasized. Much of the activity to date has been concerned with the growth and properties of CuInX2 films. X-ray and electron diffraction analyses, Hall mobility and coefficient, resistivity and carrier concentration variations with substrate and film temperature as well as grain size data have been determined. Both p- and n-type films of CuInS2 and CuInSe2 have been produced. Single and double source deposition techniques have been utilized. Some data have been recorded for annealed films.

  7. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  8. Preparation and photocatalytic activity of MgxZn1-xO thin films on silicon substrate through sol-gel process

    NASA Astrophysics Data System (ADS)

    Liu, Changlong; Shang, Fengjiao; Pan, Guangcai; Wang, Feng; Zhou, Zhitao; Gong, Wanbing; Zi, Zhenfa; Wei, Yiyong; Chen, Xiaoshuang; Lv, Jianguo; He, Gang; Zhang, Miao; Song, Xueping; Sun, Zhaoqi

    2014-06-01

    Magnesium doped zinc oxide (MgxZn1-xO) thin films were synthesized on silicon substrate through sol-gel process. Mg0.15Zn0.85O thin films were annealed at 500-800 °C and ZnO, Mg0.1Zn0.9O, Mg0.05Zn0.95O thin films were annealed at 600 °C for 60 min, respectively. The results show that all the samples are of a hexagonal wurtzite structure of ZnO. The surface morphology is strongly dependent on mean grain size and surface fluctuation. Fourier transform infrared spectra reveal that the vibration peak at 420 cm-1 is of the intrinsic lattice absorption of ZnO. The peak at 1083 cm-1 belongs to Sisbnd Osbnd Si asymmetric stretching vibration. Photoluminescence spectra show that the ultraviolet emission (365-400 nm) and the broad visible emission (469-569 nm) are observed. In particular, Mg0.05Zn0.95O thin film annealed at 600 °C exhibits the highest photocatalytic activity, degrading MO by almost 85.8% after 180 min illumination. The photocatalytic activity of the thin film is a synergistic effect defined by grain size, roughness factor, oxygen defects and amorphous MgO.

  9. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  10. Flexible thin film magnetoimpedance sensors

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz.

  11. Thin film concentrator panel development

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1982-01-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  12. Thin film preparation of semiconducting iron pyrite

    NASA Astrophysics Data System (ADS)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  13. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  14. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    SciTech Connect

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah; Katsuhiro, Uesugi; Hisashi, Fukuda

    2015-08-28

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d{sub 001} = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  15. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    NASA Astrophysics Data System (ADS)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah; Katsuhiro, Uesugi; Hisashi, Fukuda

    2015-08-01

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d001 = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  16. A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Ching-Lin Fan,; Yi-Yan Lin,; Jyu-Yu Chang,; Bo-Jhang Sun,; Yan-Wei Liu,

    2010-06-01

    This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (Δ VTH = ± 0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.

  17. A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Chang, Jyu-Yu; Sun, Bo-Jhang; Liu, Yan-Wei

    2010-06-01

    This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (ΔVTH = ±0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.

  18. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  19. Effect of chlorine activation treatment on electron beam induced current signal distribution of cadmium telluride thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zywitzki, Olaf; Modes, Thomas; Morgner, Henry; Metzner, Christoph; Siepchen, Bastian; Späth, Bettina; Drost, Christian; Krishnakumar, Velappan; Frauenstein, Sven

    2013-10-01

    We have investigated CdTe thin film solar cells without activation treatment and with CdCl2 activation treatment at temperatures between 370 and 430 °C using a constant activation time of 25 min. For this purpose, CdS/CdTe layers were deposited by closed-space-sublimation on FTO coated float glass. The solar cells were characterized by measurements of the JV characteristics and quantum efficiencies. In addition, ion polished cross sections of the solar cells were prepared for high-resolution FE-SEM imaging of the microstructure and the simultaneous registration of electron beam induced current (EBIC) signal distribution. By measurement of the EBIC signal distribution, it can be shown that without activation treatment the CdTe grain boundaries itself and grain boundary near regions exhibit no EBIC signal, whereas centres of some singular grains already show a distinct EBIC signal. In contrast, after the chlorine activation treatment, the grain boundary near regions exhibit a significant higher EBIC signal than the centre of the grains. The results can be discussed as a direct evidence for defect passivation of grain boundary near regions by the chlorine activation treatment. At activation temperature of 430 °C, additionally, a significant grain growth and agglomeration of the CdS layer can be recognized, which is linked with the formation of voids within the CdS layer and a deterioration of pn junction properties.

  20. Plasma synthesis of photocatalytic TiO x thin films

    NASA Astrophysics Data System (ADS)

    Sirghi, L.

    2016-06-01

    The development of efficient photocatalytic materials is promising technology for sustainable and green energy production, fabrication of self-cleaning, bactericidal, and super hydrophilic surfaces, CO2 photoreduction, and decomposition of toxic pollutants in air and water. Semiconductors with good photocatalytic activity have been known for four decades and they are regarded as promising candidates for these new technologies. Low-pressure discharge plasma is one of the most versatile technologies being used for the deposition of photocatalytic semiconductor thin films. This article reviews the main results obtained by the author in using low-pressure plasma for synthesis of TiO x thin films with applications in photocatalysis. Titanium dioxide thin films were obtained by radio frequency magnetron sputtering deposition, plasma enhanced chemical vapour deposition, and high power impulse magnetron sputtering deposition. The effects of the plasma deposition method, plasma parameters, film thickness and substrate on the film structure, chemical composition and photocatalytic activity are investigated. The photocatalytic activity of plasma synthesised TiO x thin films was estimated by UV light induced hydrophilicity. Measurements of photocurrent decay in TiO x thin films in vacuum and air showed that the photocatalytic activity is closely connected to the production, recombination and availability for surface reactions of photo-generated charge carriers. The photocatalytic activity of TiO x thin films was investigated at nanoscale by atomic force microscopy. Microscopic regions of different hydrophilicity on UV light irradiated films are discriminated by AFM atomic force microscopy measurements of adhesion and friction force.

  1. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  2. The enhanced photocatalytic activity and self-cleaning properties of mesoporous SiO2 coated Cu-Bi2O3 thin films.

    PubMed

    Shan, Wenjie; Hu, Yun; Zheng, Mengmeng; Wei, Chaohai

    2015-04-28

    Mesoporous SiO2 coated Cu-Bi2O3 thin films (meso-SiO2/Cu-Bi2O3) were prepared on glass substrates using a simple sol-gel/spin-coating method. The structure and optical properties were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, a UV-vis spectrophotometer and a water contact angle meter. The photocatalytic activity and self-cleaning properties of the films were investigated through the degradation of methyl orange and stearic acid, respectively. It was found that the meso-SiO2/Cu-Bi2O3 thin films were highly transparent and showed excellent superhydrophilicity even in the dark. The thin films exhibited enhanced photocatalytic activity and self-cleaning properties compared to pure Bi2O3 films, which was attributed to the cooperation of the interfacial charge transfer between Bi2O3 and surface Cu species as well as the unique mesoporous SiO2 structure. The results showed that the films can be used as promising self-cleaning and antifogging materials.

  3. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  4. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R.

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  5. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  6. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng

    2014-08-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  7. Method of producing amorphous thin films

    DOEpatents

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  8. Development of Thin-Film Battery Powered Transdermal Medical Devices

    SciTech Connect

    Bates, J.B.; Sein, T.

    1999-07-06

    Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-film battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.

  9. Electro-Optically Active Monomers: Synthesis and Characterization of Thin Films of Liquid Crystalline Substituted Polyacetylenes

    NASA Technical Reports Server (NTRS)

    Duran, R. S.

    1995-01-01

    The overall objective of this study was the description of the behavior of mesogen substituted acetylene monomers and polymers in monolayer films at the air/water interface and as multilayer films including the formation of such films. Fundamental knowledge to be gained would include the effect of balancing hydrophilic and hydrophobic tendencies in a molecule more complex than the classical fatty acids or lipids. The effect of molecular shape on the packing and thus the ultimate stability of monolayers formed from these new molecules was explored. The work takes on the challenge of preorienting monomers in well-ordered arrays prior to attempting polymerization with the hope that order would be preserved in any resulting polymer. New knowledge gained with regard to the acetylenic monomers includes processing of the acetylene monomer into multi-layer films, followed by the design and synthesis of a second generation of improved monomer structure for superior LBK film transfer properties. A third generation of acetylenic monomer was synthesized which approaches more closely the goal of solid state polymerization of these materials. A parallel study took a different approach. The materials are pre-formed poly(phenylene-acetylene) polymers so questions about reactivity are mute. The materials are a variation on the well-known hairy-rod polymers with regard to their Langmuir film-forming properties. Overall, the goal was to demonstrate that these polymers could be processed into NLO materials with novel polar order.

  10. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  11. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  12. Perovskite BiFeO3 thin film photocathode performance with visible light activity

    NASA Astrophysics Data System (ADS)

    Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S.

    2016-08-01

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ˜1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm-2 at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h-1 of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm-2 at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h-1 for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis.

  13. Perovskite BiFeO3 thin film photocathode performance with visible light activity

    NASA Astrophysics Data System (ADS)

    Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S.

    2016-08-01

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ∼1.15 V (versus NHE). The photocathode produces a density of ‑0.004 mA cm‑2 at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h‑1 of O2 was produced at an external bias of ‑0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to ‑0.07 mA cm‑2 at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h‑1 for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV–vis spectroscopy, Mott–Schottky plots and j–v curve analysis.

  14. Perovskite BiFeO3 thin film photocathode performance with visible light activity.

    PubMed

    Yilmaz, P; Yeo, D; Chang, H; Loh, L; Dunn, S

    2016-08-26

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ∼1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm(-2) at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h(-1) of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm(-2) at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h(-1) for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis. PMID:27420393

  15. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  16. Highly oriented and physical properties of sprayed anatase Sn-doped TiO2 thin films with an enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dhanapandian, S.; Arunachalam, A.; Manoharan, C.

    2016-03-01

    Pristine TiO2 and Sn-doped TiO2 thin films with different Sn doping levels (2, 4, 6 and 8 at.%) were deposited by employing a simplified spray pyrolysis technique. The XRD pattern of the films confirmed tetragonal structure with the polycrystalline nature. The films exhibited a pure anatase titanium dioxide (TiO2) with a strong orientation along (101) plane. The scanning electron microscopy image of 6 at.% Sn-doped TiO2 thin film depicted nanosized grains with porous nature. The atomic force microscopy study had shown the columnar arrangement of grains with the increase in particle size and surface roughness for 6 at.% Sn-doped TiO2 thin films. The optical transmittance was increased with the decrease in the optical energy band gap. The optical constants such as extinction coefficient and refractive index were determined. The intensity of the photoluminescence emission was observed at 398 nm for doped films. The resistivity decreased with the increasing carrier concentration and Hall mobility. The incorporation of Sn into TiO2 matrix yielded a well-pronounced antibacterial activity for Bacillus subtilis.

  17. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  18. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  19. Thin film photovoltaic panel and method

    DOEpatents

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  20. Domain switching of fatigued ferroelectric thin films

    SciTech Connect

    Tak Lim, Yun; Yeog Son, Jong E-mail: hoponpop@ulsan.ac.kr; Shin, Young-Han E-mail: hoponpop@ulsan.ac.kr

    2014-05-12

    We investigate the domain wall speed of a ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  1. Concentration- and roughness-dependent antibacterial and antifungal activities of CuO thin films and their Cu ion cytotoxicity and elution behavior.

    PubMed

    Shim, Gyu-In; Kim, Seong-Hwan; Eom, Hyung-Woo; Choi, Se-Young

    2015-05-01

    In this study, we aimed to evaluate the antibacterial and antifungal properties, cytotoxicity, and elution behavior of copper oxide (CuO) thin films with varying concentrations and roughness values. CuO films greater than 0.2 mol % showed 99.9 % antimicrobial activity against Escherichia coli, Staphylococcus aureus, Campylobacter jejuni, and Penicillium funiculosum. Cu ions were found to be noncytotoxic in New Zealand white rabbits. The concentration of Cu ions from CuO thin films eluted in drinking water in 24 h at 100 °C was 0.014 μg L(-1), which was below the standard acceptable level of 0.02 μg L(-1). The transmittance of CuO thin film-coated glass was similar to that of parent glass. The antimicrobial activity, cytotoxicity, elution behavior, and transmittance of CuO deposited on glass suggest that these films could be useful in household devices and display devices.

  2. Bias-illumination stress effect in thin film transistors with a nitrogen low-doped IZO active layer

    NASA Astrophysics Data System (ADS)

    Cheremisin, Alexander B.; Kuznetsov, Sergey N.; Stefanovich, Genrikh B.

    2016-10-01

    The effect of ZnO and IZO moderate nitridation on the performance of thin film transistors (TFTs) has been studied by methods of transfer and capacitance-voltage characteristics, isochronal annealing and computer modeling. Layers of ZnO:N and IZO:N were prepared by reactive sputtering. It is shown that nitridation of the ZnO matrix up to a concentration of 9 at.% results in the deterioration of transistor parameters. However, nitridation of the IZO matrix does not impair a transistor’s static parameters and also provides enhanced performance reproducibility. An additional positive effect is manifested in the electrical stress stability of transistor characteristics at negative bias and positive bias in darkness. Negative bias illumination stress (NBIS) of IZO:N structures also causes TFTs’ degradation similar to that for IGZO devices. However, our observations of the NBIS effect have revealed the following important features. Holes trapped under NBIS could not be neutralized by electrons in the channel in the accumulation regime, thus indicating negligible interaction between positively-charged defects and the conduction band. In addition, trapped holes’ depopulation was performed by thermal activation with an isochronal annealing method. An activation energy of ˜0.8 eV was revealed which is interpreted as the energy level of defects above the valence-band maximum. The specified features do not correlate with the assumption of the key role of oxygen vacancies in NBIS that is extensively presented in literature.

  3. Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination

    NASA Astrophysics Data System (ADS)

    Naghibi, Sanaz; Vahed, Shohreh; Torabi, Omid; Jamshidi, Amin; Golabgir, Mohammad Hossein

    2015-02-01

    Antibacterial properties of Fe-doped TiO2 thin films prepared on glass by the sol-gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.

  4. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  5. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  6. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition

    SciTech Connect

    Anders, Andre

    2010-11-26

    The chemistry, microstructure, and catalytic activity of thin films incorporating palladium were studied using scanning and transmission electron microscopies, X-ray diffraction, spectrophotometry, 4-point probe and catalytic tests. The films were synthesized using pulsed filtered cathodic arc and magnetron sputter deposition, i.e. techniques far from thermodynamic equilibrium. Catalytic particles were formed by thermally cycling thin films of the Pd-Pt-O system. The evolution and phase formation in such films as a function of temperature were discussed in terms of the stability of PdO and PtO2 in air. The catalytic efficiency was found to be strongly affected by the chemical composition, with oxidized palladium definitely playing a major role in the combustion of methane. Reactive sputter deposition of thin films in the Pd-Zr-Y-O system allowed us forming microstructures ranging from nanocrystalline zirconia to palladium nanoparticles embedded in a (Zr,Y)4Pd2O matrix. The sequence of phase formation is put in relation to simple thermodynamic considerations.

  7. Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity.

    PubMed

    Arunachalam, A; Dhanapandian, S; Manoharan, C; Sivakumar, G

    2015-03-01

    Zinc doped Titanium dioxide (TiO2: Zn) thin films were deposited onto glass substrates by the spray pyrolysis technique with the substrate temperature 450°C. The structural, optical, photoluminescence (PL) properties and morphological studies were investigated for the films deposited with various doping concentration (0, 2, 4, 6 and 8at.%) of zinc. The results of X-ray diffraction (XRD) had shown the presence of anatase peak with a strong orientation along (101) plane at 8at.% of Zn-doped TiO2 film. Scanning electron microscopy (SEM) study showed the uniform distribution of grains with porous nature. Atomic force microscopy (AFM) observations indicated the tetragonal shape at 8at.% of Zn-doped TiO2 with the particle size and decrease in surface roughness. The emission at 398nm was observed at the 8at.% of Zn-doped TiO2 thin film. The carrier concentration and Hall mobility was increased with doping. The antibacterial activity was highly yielded for the Zn-doped TiO2 thin films.

  8. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  9. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  10. Rapid protein immobilization for thin film continuous flow biocatalysis.

    PubMed

    Britton, Joshua; Raston, Colin L; Weiss, Gregory A

    2016-08-01

    A versatile enzyme immobilization strategy for thin film continuous flow processing is reported. Here, non-covalent and glutaraldehyde bioconjugation are used to immobilize enzymes on the surfaces of borosilicate reactors. This approach requires only ng of protein per reactor tube, with the stock protein solution readily recycled to sequentially coat >10 reactors. Confining reagents to thin films during immobilization reduced the amount of protein, piranha-cleaning solution, and other reagents by ∼96%. Through this technique, there was no loss of catalytic activity over 10 h processing. The results reported here combines the benefits of thin film flow processing with the mild conditions of biocatalysis. PMID:27461146

  11. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  12. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  13. Magnetostrictive thin films for microwave spintronics

    PubMed Central

    Parkes, D. E.; Shelford, L. R.; Wadley, P.; Holý, V.; Wang, M.; Hindmarch, A. T.; van der Laan, G.; Campion, R. P.; Edmonds, K. W.; Cavill, S. A.; Rushforth, A. W.

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. PMID:23860685

  14. Magnetostrictive thin films for microwave spintronics.

    PubMed

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  15. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Heredia, G.; González, L. A.; Alshareef, H. N.; Gnade, B. E.; Quevedo-López, M.

    2010-11-01

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 µA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 µA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented.

  16. Monitoring intracellular calcium in response to GPCR activation using thin-film silicon photodiodes with integrated fluorescence filters.

    PubMed

    Martins, S A M; Moulas, G; Trabuco, J R C; Monteiro, G A; Chu, V; Conde, J P; Prazeres, D M F

    2014-02-15

    G-protein coupled receptor (GPCRs) drug discovery is a thriving strategy in the pharmaceutical industry. The standard approach uses living cells to test millions of compounds in a high-throughput format. Typically, changes in the intracellular levels of key elements in the signaling cascade are monitored using fluorescence or luminescence read-out systems, which require external equipment for signal acquisition. In this work, thin-film amorphous silicon photodiodes with an integrated fluorescence filter were developed to capture the intracellular calcium dynamics in response to the activation of the endogenous muscarinic M1 GPCR of HEK 293T cells. Using the new device it was possible to characterize the potency of carbachol (EC50=10.5 µM) and pirenzepine (IC50=4.2 μM), with the same accuracy as standard microscopy optical systems. The smaller foot-print provided by the detection system makes it an ideal candidate for the future integration in microfluidic devices for drug discovery. PMID:24055937

  17. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures.

    PubMed

    Antonuk, L E; Koniczek, M; McDonald, J; El-Mohri, Y; Zhao, Q; Behravan, M

    2008-01-01

    An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors. PMID:20862269

  18. Carbon nanotube based nanostructured thin films: preparation and application

    NASA Astrophysics Data System (ADS)

    Fu, Li; Yu, Aimin

    2013-08-01

    Hybrid thin films of multi-walled carbon nanotube (MWCNT) and titania were fabricated on quartz slides by alternatively depositing MWCNT and titanium(IV) bis(ammonium lactato) dihydroxide (TALH) via a solution based layer-by-layer (LbL) self-assembly method followed by calcination to convert TALH to crystalline titania. The multilayer film build-up was monitored by UV-vis spectroscopy which indicated the linear growth of the film with the bilayer number. XRD confirmed the formation of anantase titania after heat treatment. The photocatalytic property of the hybrid thin film was evaluated by its capacity to degrade rhodamine B under the UV illumination. Compared with pure TiO2 film, experiments showed that the MWCNT/TiO2 hybrid film had a much higher photocatalytic activity under the same conditions. The first order rate constant of photocatalysis of 30 bilayers of hybrid film was approximately 8-fold higher than that of 30 bilayers of pure TiO2 film. In addition, the degradation efficiency of MWCNT/TiO2 hybrid thin film increased with its thickness while pure titania film remained unchanged. A 30 bilayers hybrid thin film that contains about 0.2 mg MWCNT/TiO2 catalyst was capable of completely degrading 10 mL of 2 mg/L Rh B solution within 5 hours. The results also indicated that the hybrid catalyst could be reused for several cycles.

  19. Thin film bioreactors in space.

    PubMed

    Hughes-Fulford, M; Scheld, H W

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  20. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  1. BDS thin film damage competition

    SciTech Connect

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  2. Wrinkle motifs in thin films

    PubMed Central

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-01-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174

  3. Wrinkle motifs in thin films

    NASA Astrophysics Data System (ADS)

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-03-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as `telephone cord' buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales.

  4. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  5. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  6. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    NASA Astrophysics Data System (ADS)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  7. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  8. Thin film solar cell module

    SciTech Connect

    Gay, R.R.

    1987-01-20

    A thin film solar cell module is described comprising a first solar cell panel containing an array of solar cells consisting of a TFS semiconductor sandwiched between a transparent conductive zinc oxide layer and a transparent conductive layer selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide deposited upon a transparent superstrate, and a second solar cell panel containing an array of solar cells consisting of a CIS semiconductor layer sandwiched between a zinc oxide semiconductor layer and a conductive metal layer deposited upon an insulating substrate. The zinc oxide semiconductor layer contains a first relatively thin layer of high resistivity zinc oxide adjacent the CIS semiconductor and a second relatively thick layer of low resistivity zinc oxide overlying the high resistivity zinc oxide layer. The transparent conductive zinc oxide layer of the first panel faces the low resistivity zinc oxide layer of the second panel, the first and second panels being positioned optically in series and separated by a transparent insulating layer.

  9. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    PubMed

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination. PMID:24670479

  10. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  11. Finite element analyses of thin film active grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  12. Electrochromic thin films from a redox active diarylethene by electrochemical polymerization.

    PubMed

    Yun, Chijung; Seo, Seogjae; Kim, Eunkyoung

    2010-10-01

    A diarylethene substituted with 3,4-(propane-1,3-diyldioxy)thiophene (ProDOT) was synthesized to induce electrochemical deposition of diarylethenes. The ProDOT substituted diarylethene (BTFPP) showed reversible photochromism from colorless to purple upon exposure to a UV light and bleached to colorless by a visibly light. The oxidation potential of the new ProDOT substituted diarylethene was lower than that of the unsubstituted diarylethenes due to the electroactive ProDOT unit. Under an electrochemical condition, the solution of BTFPP gave soluble polymers but deposited insoluble film on a working electrode coated with a PEDOT layer. This result indicates that the PEDOT nano layer (68 nm thick) function as a seeding layer to induce polymerization and electrodeposition of BTFPP. Furthermore electro-copolymerization using a mixture of BTFPP and EDOT afforded electrodeposition of the copolymers on the PEDOT seeding layer. An electrochromic electrode was successfully fabricated by depositing the photochromic BTFPP on an ITO glass, which shows a reversible electrochromic change from violet to sky blue. PMID:21137810

  13. Electrochromic thin films from a redox active diarylethene by electrochemical polymerization.

    PubMed

    Yun, Chijung; Seo, Seogjae; Kim, Eunkyoung

    2010-10-01

    A diarylethene substituted with 3,4-(propane-1,3-diyldioxy)thiophene (ProDOT) was synthesized to induce electrochemical deposition of diarylethenes. The ProDOT substituted diarylethene (BTFPP) showed reversible photochromism from colorless to purple upon exposure to a UV light and bleached to colorless by a visibly light. The oxidation potential of the new ProDOT substituted diarylethene was lower than that of the unsubstituted diarylethenes due to the electroactive ProDOT unit. Under an electrochemical condition, the solution of BTFPP gave soluble polymers but deposited insoluble film on a working electrode coated with a PEDOT layer. This result indicates that the PEDOT nano layer (68 nm thick) function as a seeding layer to induce polymerization and electrodeposition of BTFPP. Furthermore electro-copolymerization using a mixture of BTFPP and EDOT afforded electrodeposition of the copolymers on the PEDOT seeding layer. An electrochromic electrode was successfully fabricated by depositing the photochromic BTFPP on an ITO glass, which shows a reversible electrochromic change from violet to sky blue.

  14. Front and backside processed thin film electronic devices

    DOEpatents

    Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang; Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  15. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  16. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  17. Macro stress mapping on thin film buckling

    SciTech Connect

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  18. Structural characterization of thin film photonic crystals

    SciTech Connect

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  19. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  20. Effect of calcinations temperature on microstructures, photocatalytic activity and self-cleaning property of TiO2 and SnO2/TiO2 thin films prepared by sol-gel dip coating process

    NASA Astrophysics Data System (ADS)

    Sangchay, Weerachai

    2014-06-01

    The purpose of this research was to study the effect of calcinations temperature on phase transformation, crystallite size, morphology, photocatalytic activity and self-cleaning properties of TiO2 and SnO2/TiO2 thin films. The thin films were preparation by sol-gel dip coating process and calcinations at the temperature of 500 °C, 600 °C and 700 °C for 2 h with the heating rate of 10 °C/mim. The microstructures of the fabricated thin films were characterized by XRD and SEM techniques. The photocatalytic activity of the thin films was also tested via the degradation of methylene blue solution under UV irradiation. Finally, self-cleaning properties of thin films were evaluated by measuring the contact angle of water droplet on the thin films with and without UV irradiation. It was found that SnO2/TiO2 thin films calcinations at the temperature of 500 °C shows the highest of photocatalytic activity and self-cleaning properties.

  1. Effect of temperature and concentration of precursors on morphology and photocatalytic activity of zinc oxide thin films prepared by hydrothermal route

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Hakola, H.; Huttunen-Saarivirta, E.; Kannisto, M.; Hyvärinen, L.; Järveläinen, M.; Levänen, E.

    2016-04-01

    Zinc oxide (ZnO) is an important semiconductive material due to its potential applications, such as conductive gas sensors, transparent conductive electrodes, solar cells, and photocatalysts. Photocatalytic activity can be exploited in the decomposition of hazardous pollutants from environment. In this study, we produced zinc oxide thin films on stainless steel plates by hydrothermal method varying the precursor concentration (from 0.029 M to 0.16 M) and the synthesis temperature (from 70 °C to 90 °C). Morphology of the synthesized films was examined using field-emission scanning electron microscopy (FESEM) and photocatalytic activity of the films was characterized using methylene blue decomposition tests. It was found that the morphology of the nanostructures was strongly affected by the precursor concentration and the temperature of the synthesis. At lower concentrations zinc oxide grew as thin needlelike nanorods of uniform length and shape and aligned perpendicular to the stainless steel substrate surface. At higher concentrations the shape of the rods transformed towards hexagon shaped units and further on towards flaky platelets. Temperature changes caused variations in the coating thickness and the orientation of the crystal units. It was also observed, that the photocatalytic activity of the prepared films was clearly dependent on the morphology of the surfaces.

  2. High Performance Airbrushed Organic Thin Film Transistors

    SciTech Connect

    Chan, C.; Richter, L; Dinardo, B; Jaye, C; Conrad, B; Ro, H; Germack, D; Fischer, D; DeLongchamp, D; Gunlach, D

    2010-01-01

    Spray-deposited poly-3-hexylthiophene (P3HT) transistors were characterized using electrical and structural methods. Thin-film transistors with octyltrichlorosilane treated gate dielectrics and spray-deposited P3HT active layers exhibited a saturation regime mobility as high as 0.1 cm{sup 2} V{sup -1} s{sup -1}, which is comparable to the best mobilities observed in high molecular mass P3HT transistors prepared using other methods. Optical and atomic force microscopy showed the presence of individual droplets with an average diameter of 20 {micro}m and appreciable large-scale film inhomogeneities. Despite these inhomogeneities, near-edge x-ray absorption fine structure spectroscopy of the device-relevant channel interface indicated excellent orientation of the P3HT.

  3. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels

    NASA Astrophysics Data System (ADS)

    Head, D. A.; Briels, W. J.; Gompper, Gerhard

    2014-03-01

    In the presence of adenosine triphosphate, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modeling can help to quantify the relationship between individual motors plus filaments to organization and dynamics on molecular and supramolecular length scales. Here, we present results of extensive numerical simulations of active gels where the motors and filaments are confined between two infinite parallel plates. Thermal fluctuations and excluded-volume interactions between filaments are included. A systematic variation of rates for motor motion, attachment, and detachment, including a differential detachment rate from filament ends, reveals a range of nonequilibrium behavior. Strong motor binding produces structured filament aggregates that we refer to as asters, bundles, or layers, whose stability depends on motor speed and differential end detachment. The gross features of the dependence of the observed structures on the motor rate and the filament concentration can be captured by a simple one-filament model. Loosely bound aggregates exhibit superdiffusive mass transport, where filament translocation scales with lag time with nonunique exponents that depend on motor kinetics. An empirical data collapse of filament speed as a function of motor speed and end detachment is found, suggesting a dimensional reduction of the relevant parameter space. We conclude by discussing the perspectives of microscopic modeling in the field of active gels.

  4. Insect thin films as solar collectors.

    PubMed

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  5. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  6. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  7. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  8. Thermally activated conductivity of Si hybrid structure based on ZnPc thin film

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.

    2016-10-01

    In this study, an analysis of temperature-dependent electrical characteristics of ZnPc/p-Si structure has been presented. Conduction mechanisms that are accounted for the organic/inorganic devices are evaluated. At low forward voltage, current-voltage ( I- V) characteristics show ohmic behavior, limiting extraction of holes from p-Si over the ZnPc/p-Si heterojunction. Thermally activated conduction mechanism appears to be space-charge-limited conduction mechanism, taking into account the presence of an exponential trap distribution with total concentration of traps, N t of 5.77 × 1025 m-3. The series resistance is found to be temperature dependent. There is a critical point on the regime of series resistance at 200 K. The capacitance varies with temperature at different rates below and above room temperature, indicating a variation in the dielectric constant.

  9. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  10. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  11. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  12. Thin films for geothermal sensing: Final report

    SciTech Connect

    Not Available

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  13. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  14. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  15. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  16. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  17. Thin-film microelectronic wearable body sensors.

    PubMed

    Neuman, Michael R

    2015-01-01

    This review of various applications of well-established thin-film processing techniques to wearable body sensors gives examples of work done in the author's laboratory over many years. Sensors for the vital signs of body temperature, electrocardiogram, heart rate, breathing pattern and breathing rate are presented along with other applications. Thin-film based sensors have the advantage of small size, high surface area to mass ratio, flexibility, capability for batch production, and compatibility with other microelectronic technologies.

  18. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  19. Thin solid-lubricant films in space

    NASA Astrophysics Data System (ADS)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  20. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2013-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

  1. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed. PMID:27454334

  2. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  3. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  4. Research on polycrystalline thin-film materials, cells, and modules

    SciTech Connect

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1990-11-01

    The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

  5. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  6. Formation and ferromagnetic properties of FeSi thin films

    SciTech Connect

    Shin, Yooleemi; Anh Tuan, Duong; Hwang, Younghun; Viet Cuong, Tran; Cho, Sunglae

    2013-05-07

    In this work, the growth and ferromagnetic properties of {epsilon}-FeSi thin film on Si(100) substrate prepared by molecular beam epitaxy are reported. The inter-diffusion of Fe layer on Si(100) substrate at 600 Degree-Sign C results in polycrystalline {epsilon}-FeSi layer. The determined activation energy was 0.044 eV. The modified magnetism from paramagnetic in bulk to ferromagnetic states in {epsilon}-FeSi thin films was observed. The saturated magnetization and coercive field of {epsilon}-FeSi film are 4.6 emu/cm{sup 3} and 29 Oe at 300 K, respectively.

  7. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  8. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  9. Bimodal swelling responses in microgel thin films.

    PubMed

    Sorrell, Courtney D; Lyon, L Andrew

    2007-04-26

    A series of studies on microgel thin films is described, wherein quartz crystal microgravimetry (QCM), surface plasmon resonance (SPR), and atomic force microscopy (AFM) have been used to probe the properties of microstructured polymer thin films as a function of film architecture and solution pH. Thin films composed of pNIPAm-co-AAc microgels were constructed by using spin-coating layer-by-layer (scLbL) assembly with poly(allylamine hydrochloride) (PAH) as a polycationic "glue". Our findings suggest that the interaction between the negatively charged microgels and the positively charged PAH has a significant impact on the pH responsivity of the film. These effects are observable in both the optical and mechanical behaviors of the films. The most significant changes in behavior are observed when the motional resistance of a quartz oscillator is monitored via QCM experiments. Slight changes to the film architecture and alternating the pH of the environment significantly changes the QCM and SPR responses, suggesting a pH-dependent swelling that is dependent on both particle swelling and polyelectrolyte de-complexation. Together, these studies allow for a deeper understanding of the morphological changes that take place in environmentally responsive microgel-based thin films. PMID:17407344

  10. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  11. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  12. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  13. Microcrystalline organic thin-film solar cells.

    PubMed

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  14. Nanostructured Thin Film Polymer Devices for Constant-Rate Protein Delivery

    PubMed Central

    Bernards, Daniel A.; Lance, Kevin D.; Ciaccio, Natalie A.; Desai, Tejal A.

    2012-01-01

    Herein long-term delivery of proteins from biodegradable thin film devices is demonstrated, where a nanostructured polymer membrane controls release. Protein was sealed between two poly(caprolactone) films, which generated the thin film devices. Protein release for 210 days was shown in vitro, and stable activity was established through 70 days with a model protein. These thin film devices present a promising delivery platform for biologic therapeutics, particularly for application in constrained spaces. PMID:22985294

  15. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  16. Rupture Limit of Thin Moving Films

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Joseph, Daniel D.; Kim, Hyungjun

    2010-11-01

    The rupture of a thin film in another fluid is studied including the effects of disjoining pressure. The study considers the linear stability of a moving viscous film in a motionless inviscid fluid and of a stagnant viscous film in a motionless viscous fluid. These are analyzed by means of the Navier--Stokes equations and the dissipation approximation based on potential flow. Results reveal that the dissipation method provides a good approximation for the case of a moving film, whereas its predictions are off the mark for the stagnant film case. The thickness of the gap at the trough of Kelvin-Helmholtz waves locates the formation of holes. The wavelength at final collapse is determined by the length of waves at the trough of the corrugated film. The disjoining pressure effects cause very fast break-up for very thin films. These effects influence the cutoff wavenumber. In the limit of small gaps on this corrugated film, the Reynolds and Weber numbers tend to zero with the gap size, the Ohnesorge number increases like the reciprocal of the square root and the Hamaker number like the reciprocal of the square of the gap. The motion of the film does not enter at the point of formation of holes. Moreover, for the most unstable wave, the ratio of the wavelength to film thickness is found to decrease with decreasing film thickness.

  17. Holographic analysis of thin films

    NASA Technical Reports Server (NTRS)

    Norden, B. N.; Williams, J. R.

    1970-01-01

    Technique for monitoring deposition of films on surfaces, in place on a real-time basis, reads both the thickness and the uniformity of the deposited film. Holograms are produced from both reflected and transmitted light on one plate.

  18. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  19. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  20. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  1. Magnetoelectric thin film composites with interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  2. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  3. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  4. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  5. Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He

    2016-08-01

    Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10-12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.

  6. Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He

    2016-08-01

    Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm–800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10‑12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.

  7. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  8. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    SciTech Connect

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  9. MOF thin films: existing and future applications.

    PubMed

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  10. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.

  11. Dynamics of Polymer Thin Film Mixtures

    NASA Astrophysics Data System (ADS)

    Besancon, Brian M.; Green, Peter F.; Soles, Christopher L.

    2006-03-01

    We examined the influence of film thickness and composition on the glass transition temperature (Tg) and mean square atomic displacements (MSD) of thin film mixtures of deuterated polystyrene (dPS) and tetramethyl bisphenol-A polycarbonate (TMPC) on Si/SiOx substrates using incoherent elastic neutron scattering (ICNS). The onset of dissipative motions, such as those associated with the glass transition and sub-Tg relaxations, are manifested as ``kinks'' in the curve of elastic intensity (or MSD) versus temperature. From the relevant kinks, the Tg was determined as a function of composition and of film thickness. The dependence of the Tg on film thickness exhibited qualitatively similar trends, at a given composition, as determined by the ICNS and ellipsometry measurements. However, with increasing PS content, the values of Tg measured by INS were consistently larger then those measured by ellipsometry. These results are examined in light of existing models on the thin film glass transition and component blend dynamics.

  12. Electrochemical Analysis of Conducting Polymer Thin Films

    PubMed Central

    Vyas, Ritesh N.; Wang, Bin

    2010-01-01

    Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene) (PPV), in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values. PMID:20480052

  13. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  14. Osteoblastic cell response to thin film of poorly crystalline calcium phosphate apatite formed at low temperatures.

    PubMed

    Hong, Ji-Yeon; Kim, Yoon Jung; Lee, Hee-Woo; Lee, Woo-Kul; Ko, Jea Seung; Kim, Hyun-Man

    2003-08-01

    The response of osteoblastic cells to a thin film of poorly crystalline calcium phosphate apatite crystals (PCA) was examined in vitro. The PCA thin film was prepared on polystyrene culture dishes using highly metastable calcium phosphate ion solution at low temperatures. The PCA thin film was formed through fusion and transformation of granular calcium phosphate particles, which had initially formed on the surface, into a film of calcium phosphate apatite crystal. The PCA thin film was used for cell culture without additional surface treatment. The osteoblastic cell behaviors including adhesion, proliferation, expression of the marker genes, and calcified matrix formation were examined on the PCA thin film using primary osteoblasts or MC3T3-E1 cells. The cells were well attached and had spread in a slender shape over the PCA thin film. The extent of cell proliferation on the PCA thin film is as much as on the plain dishes. In addition, a much larger number of calcified nodules had formed on the PCA thin film than on the plain dish. The expression of the marker genes such as alkaline phosphatase, osteocalcin, osteopontin, osteonectin was apparent. These results demonstrate that the osteoblasts exhibit a full spectrum of cellular activity including the adequate differentiation on the PCA thin film. Therefore, a PCA thin film can be used as a coating material for biomaterials where the surface is not adequate for inducing the full activity of bone cells.

  15. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  16. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  17. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  18. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Yakshin, A. E.; Bijkerk, F.

    2015-08-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  19. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  20. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M. ); Schultz, J.A. ); Schmidt, H.K. ); Chang, R.P.H. . Dept. of Materials Science)

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 [Angstrom]), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 [Angstrom] of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  1. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  2. Threshold-Voltage-Shift Compensation and Suppression Method Using Hydrogenated Amorphous Silicon Thin-Film Transistors for Large Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Oh, Kyonghwan; Kwon, Oh-Kyong

    2012-03-01

    A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.

  3. Thin film calorimetry of polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  4. Thinning and thickening of free-standing smectic films revisited.

    PubMed

    Pikina, Elena S; Ostrovskii, Boris I; de Jeu, Wim H

    2015-03-01

    We present a theoretical explanation of the remarkable thickness instabilities that occur in free-standing smectic films (FSSF) upon changing the external conditions: i) upon heating the film above the bulk smectic disordering temperature, generally the film does not rupture but instead shows successive layer-by-layer thinning transitions; ii) thickening of FSSF, which occurs within the thermal range of the smectic phase upon local heating. All observations reported so far can be explained on the basis of the Landau-de Gennes theory of the smectic state in combination with nucleation theory. In overheated smectic films (thinning) or locally heated FSSF (thickening) an additional normal tensile force appears due to a change of the mean density of the film. In the case of an overheated FSSF the free energy has oscillatory character, and upon heating the balance of tensile and elastic forces breaks down spontaneously. This leads to thinning of the film, which proceeds via thermal nucleation and growing of dislocation loops in the middle plane of the film. The expression for the envelope of the points of thinning as well as estimates of the dynamics of growth of dislocation loops, are in good agreement with experiments. Local heating of a FSSF within the smectic temperature range induces thermal expansion, which shifts the system to a metastable state. This favors nucleation and growth of dislocation loops of excess smectic layers in the middle plane of the film. The activation energy of such dislocation loops attains values below the threshold energy and decreases upon further heating. This leads to local film thickening by many tens of layers. Realization of this scenario depends crucially on the energy dissipated locally in the film. Estimates of the thickness of the growing "island" in the film and of the velocity of the dislocation loop growth are in reasonable agreement with experiments.

  5. Structure of Thin-Film Lithium Microbatteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay F. (Inventor); Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor)

    2003-01-01

    A process for making thin-film batteries including the steps of cleaning a glass or silicon substrate having an amorphous oxide layer several microns thick; defining with a mask the layer shape when depositing cobalt as an adhesion layer and platinum as a current collector; using the same mask as the preceding step to sputter a layer of LiC(0)O2, on the structure while rocking it back and forth; heating the substrate to 300 C. for 30 minutes; sputtering with a new mask that defines the necessary electrolyte area; evaporating lithium metal anodes using an appropriate shadow mask; and, packaging the cell in a dry-room environment by applying a continuous bead of epoxy around the active cell areas and resting a glass slide over the top thereof. The batteries produced by the above process are disclosed.

  6. Chitosan in nanostructured thin films.

    PubMed

    Pavinatto, Felippe J; Caseli, Luciano; Oliveira, Osvaldo N

    2010-08-01

    This review paper brings an overview of the use of chitosans in nanostructured films produced with the Langmuir-Blodgett (LB) or the electrostatic layer-by-layer (LbL) techniques, with emphasis on their possible applications. From a survey in the literature one may identify three main types of study with chitosan in nanostructured films. First, the interaction between chitosans and phospholipid Langmuir monolayers has been investigated for probing the mechanisms of chitosan action in their biological applications, with the monolayers serving as cell membrane models. In the second type, chitosan serves as a matrix for immobilization of biomolecules in LB as well as in LbL films, for which chitosan is suitable to help preserve the bioactivity of such biomolecules for long periods of time even in dry, solid films. An important application of these chitosan-containing films is in sensing and biosensing. The third type of study involves exploiting the mechanical and biocompatibility properties of chitosan in producing films with enhanced properties, for example, for tissue engineering. It is emphasized that chitosans have been proven excellent building blocks to produce films with controlled molecular architecture, allowing for synergy between distinct materials. We also discuss the prospects of the field, following a critical review of the latest developments in nanostructured chitosan films. PMID:20590156

  7. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  8. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  9. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  10. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  11. Vibration welding system with thin film sensor

    DOEpatents

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  12. Thin film silicon photovoltaic module performance assessment

    NASA Astrophysics Data System (ADS)

    Jennings, Christina

    1987-06-01

    This report evaluates the performance through December, 1986 of 15 commercially-available thin film silicon-hydrogen alloy PV modules manufactured by ARCO Solar, Chronar, ECD/Sovonics, and Solarex. Advances in the technology are indicated by the performance improvements associated with each generation of thin film silicon-hydrogen alloy PV modules introduced to the commercial market. Mounted at a 30 degree tilt facing due south, all of the thin film PV modules under evaluation have experienced decreased efficiency and fill factor on initial sun exposure. Midday efficiency tends to be highest during the summer and lowest during the winter. The seasonal change in midday air mass from 1.0 during the summer to 1.4 during the winter is among the factors that counteract the temperature effects and cause lowered efficiency and fill factor values during the winter.

  13. Fracture of nanoporous organosilicate thin films

    NASA Astrophysics Data System (ADS)

    Gage, David Maxwell

    Nanoporous organosilicate thin films are attractive candidates for a number of emerging technologies, ranging from biotechnology to optics and microelectronics. However, integration of these materials is challenged by their fragile nature and susceptibility to mechanical failure. Debonding and cohesive cracking of the organosilicate film are principal concerns that threaten the reliability and yield of device structures. Despite the intense interest in these materials, there is currently a need for greater understanding of the relationship between glass structure and thermomechanical integrity. The objective of this research was to investigate strategies for improving mechanical performance through variations in film chemistry, process conditions, and pore morphology. Several approaches to effecting improvements in elastic and fracture properties were examined in depth, including post-deposition curing, molecular reinforcement using hydrocarbon network groups, and manipulation of pore size and architecture. Detailed structural characterization was employed along with quantitative fracture mechanics based testing methods. It was shown that ultra-violet irradiation and electron bombardment post-deposition treatments can significantly impact glass structure in ways that cannot be achieved through thermal activation alone. Both techniques demonstrated high porogen removal efficiency and enhanced the glass matrix through increased network connectivity and local bond rearrangements. The increases in network connectivity were achieved predominantly through the replacement of terminal groups, particularly methyl and silanol groups, with Si-O network bonds. Nuclear magnetic resonance spectroscopy was shown to be a powerful and quantitative method for gaining new insight into the underlying cure reactions and mechanisms. It was demonstrated that curing leads to significant progressive enhancement of elastic modulus and adhesive fracture energies due to increased network bond

  14. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins.

    PubMed

    Kato, Katsuya; Nakamura, Hitomi; Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol-gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO)20(PO)70(EO)20) or F127 ((EO)106(PO)70(EO)106), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A-IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. PMID:24857463

  15. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  16. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  17. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  18. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  19. Borocarbide thin films and tunneling measurements.

    SciTech Connect

    Iavarone, M.; Andreone, A.; Cassinese, A.; Dicapual, R.; giannil, L.; Vagliol, R.; DeWilde, Y.; Crabtree, G. W.

    2000-06-15

    The results obtained by their group in thin film fabrication and STM tunneling on superconducting borocarbides YNi{sub 2}B{sub 2}C have been be briefly reviewed. Results concerning the microwave surface impedance and the S/N planar junctions on LuNi{sub 2}B{sub 2}C thin films have been also presented and analyzed. These new data unambiguously confirm the full BCS nature of the superconducting gap in borocarbides and the absence of significant pair-breaking effects in LuNi{sub 2}B{sub 2}C.

  20. Perovskite thin films via atomic layer deposition.

    PubMed

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  1. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  2. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  3. Stable freestanding thin films of pure water

    SciTech Connect

    Weon, B. M.; Je, J. H.; Hwu, Y.; Margaritondo, G.

    2008-03-10

    Obtaining water microstructures is very difficult because of low viscosity and high surface tension. We produced stable freestanding thin films of pure water by x-ray bombardment of small liquid volumes in capillary tubes. A detailed characterization with phase-contrast radiology demonstrated a lifetime beyond 1 h with no chemical stabilizer for micron-thickness films with half-millimeter-level diameter. This can be attributed to the interplay of two x-ray effects: water evaporation and surface charging.

  4. Dynamics of liquid films and thin jets

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  5. Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure.

    PubMed

    Salah, Numan; Hameed, A; Aslam, M; Babkair, Saeed S; Bahabri, F S

    2016-07-15

    Vanadium doped ZnO powders were used as precursors to deposit thin films of V(5+) incorporated ZnO nanoparticles on glass substrates by the pulsed laser deposition technique. The observed variations in Raman signals, visible region shift in the diffuse reflectance spectra along with a small shift in the (101) reflections of the X-ray diffraction (XRD) confirmed the insertion of V(5+) ions in ZnO lattice. No other additional reflection in the XRD results other than ZnO further endorsed the occupation of lattice positions by V entities rather than independent oxide formation. The asymmetric XPS peaks of Zn2p and V2p core levels confirmed the existence of both in the vicinity. The existence of minimal proportion of V(3+) along with V(5+) states varied the alteration of the oxidation states V in the synthetic route. The SEM images at various resolutions displayed the uniform distribution identical nanoparticles without the presence of additional phases in the deposited films. The SEM cross-section measurements revealed the uniform thickness of ∼90 nm of each film, whereas the surface studies of the films were performed by AFM. The as-synthesized films were tested for photocatalytic activity in sunlight illumination for the removal of 2-chlorophenol. The unique feature of the study was the estimation of the photocatalytic activity 20 ppm of 2-chlorophenol by exposing the low exposed area. The degradation of the substrate was measured by liquid phase UV-vis spectroscopy, whereas total organic carbon measurement revealed the mineralization of the substrate. The released Cl(-) ions were also measured by ion chromatography. The estimated flatband potentials and pHzpc values of the V doped materials, by Mott-Schottky analysis and zeta potential measurements respectively, were correlated with the photocatalytic activity. The kinetics of the photocatalytic degradation/mineralization process was estimated and results were correlated with the plausible mechanism.

  6. Instabilities and waves in thin films of living fluids

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Ramaswamy, Sriram

    2009-03-01

    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys Fluids 13 (2001) 1160] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.

  7. Instabilities and waves in thin films of living fluids.

    PubMed

    Sankararaman, Sumithra; Ramaswamy, Sriram

    2009-03-20

    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. Fluids 13 1160 (2001)10.1063/1.1359748] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory. PMID:19392245

  8. Instabilities and Waves in Thin Films of Living Fluids

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Ramaswamy, Sriram

    2009-03-01

    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. FluidsPHFLE61070-6631 13 1160 (2001)10.1063/1.1359748] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.

  9. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, Fred; Truher, Joel B.; Kaschmitter, James L.; Colella, Nicholas J.

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  10. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  11. Resistivity minimum in granular composites and thin metallic films

    NASA Astrophysics Data System (ADS)

    Gerber, A.; Kishon, I.; Bartov, D.; Karpovski, M.

    2016-09-01

    We analyze the temperature dependence of conductivity in thick granular ferromagnetic compounds NiSi O2 and in thin weakly coupled films of Fe, Ni, and Py in the vicinity of the metal-to-insulator transition. Development of a resistivity minimum followed by a logarithmic variation of conductivity at lower temperatures is attributed to the granular structure of compounds and thin films fabricated by conventional deposition techniques. The resistivity minimum is identified as a transition between temperature dependent intragranular metallic conductance and thermally activated intergranular tunneling.

  12. Processing of thin SU-8 films

    NASA Astrophysics Data System (ADS)

    Keller, Stephan; Blagoi, Gabriela; Lillemose, Michael; Haefliger, Daniel; Boisen, Anja

    2008-12-01

    This paper summarizes the results of the process optimization for SU-8 films with thicknesses <=5 µm. The influence of soft-bake conditions, exposure dose and post-exposure-bake parameters on residual film stress, structural stability and lithographic resolution was investigated. Conventionally, the SU-8 is soft-baked after spin coating to remove the solvent. After the exposure, a post-exposure bake at a high temperature TPEB >= 90 °C is required to cross-link the resist. However, for thin SU-8 films this often results in cracking or delamination due to residual film stress. The approach of the process optimization is to keep a considerable amount of the solvent in the SU-8 before exposure to facilitate photo-acid diffusion and to increase the mobility of the monomers. The experiments demonstrate that a replacement of the soft-bake by a short solvent evaporation time at ambient temperature allows cross-linking of the thin SU-8 films even at a low TPEB = 50 °C. Fourier-transform infrared spectroscopy is used to confirm the increased cross-linking density. The low thermal stress due to the reduced TPEB and the improved structural stability result in crack-free structures and solve the issue of delamination. The knowledge of the influence of different processing parameters on the responses allows the design of optimized processes for thin SU-8 films depending on the specific application.

  13. Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions

    NASA Astrophysics Data System (ADS)

    Koshida, N.; Kojima, A.; Ikegami, N.; Suda, R.; Yagi, M.; Shirakashi, J.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Totsu, K.; Esashi, M.

    2015-03-01

    Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100×100 emitters (each size: 10×10 μm2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10×10 nm2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated ctive-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without

  14. Study of iron mononitride thin films

    SciTech Connect

    Tayal, Akhil Gupta, Mukul Phase, D. M. Reddy, V. R. Gupta, Ajay

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  15. Electrodeposited CuInSe{sub 2} thin film devices

    SciTech Connect

    Raffaelle, R.P.; Mantovani, J.G.; Friedfeld, R.B.; Bailey, S.G.; Hubbard, S.M.

    1997-12-31

    The authors have been investigating the electrochemical deposition of thin films and junctions based on copper indium diselenide (CIS). CIS is considered to be one of the best absorber materials for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a simple and inexpensive method for producing thin-film CIS. The authors have produced both p and n type CIS thin films, as well as a CIS pn junction electrodeposited from a single aqueous solution. Optical bandgaps were determined for these thin films using transmission spectroscopy. Current versus voltage characteristics were measured for Schottky barriers on the individual films and for the pn junction.

  16. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  17. Metastable oxygen incorporation into thin film NiO by low temperature active oxidation: Influence on hole conduction

    SciTech Connect

    Aydogdu, Gulgun H.; Ruzmetov, Dmitry; Ramanathan, Shriram

    2010-12-01

    The ability to controllably tune cation valence state and resulting electrical conductivity of transition metal-oxides such as NiO is of great interest for a range of solid state electronic and energy devices and more recently in understanding electron correlation phenomena at complex oxide interfaces. Here, we demonstrate that it is possible to enhance electrical conductivity of NiO thin films by one order of magnitude by photoexcitation and three orders of magnitude by ozone treatment at as low as 310 K. The change occurs within nearly 2000 s and, thereafter, reaches a self-limiting value. A surprising difference is seen at 400 K: ultraviolet photon and ozone treatments cause only a marginal reduction in resistance in the first few minutes and, then, the resistance begins to increase and recovers its original value. This unusual reversal is explained by considering metastable incorporation of oxygen in NiO and oxygen equilibration with the environment. Variation in nickel valence state prior to and after photoexcitation and ozone treatment, investigated by x-ray photoelectron spectroscopy, provides mechanistic insights into resistance trends. This study demonstrates photon-assisted and ozone oxidation as effective low temperature routes to tune the electrical properties as well as metastably incorporate oxygen into oxides with direct influence on electrical conduction properties.

  18. Rim instability of bursting thin smectic films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  19. Organic thin films based sensor applications

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2006-03-01

    Organic semiconductors, such as pentacene, are particularly interesting because of its potential for various applications including thin film transistors (TFTs), electronic papers, radio frequency identification cards (RFIDs), and sensors. In this paper, we review recent progress in organic electronics with emphasis on their applications for sensing devices, and investigate the morphologies of pentacene films deposited on SiO II and Si surfaces at different substrate temperatures. Scanning electron microcopy (SEM) micrographs from a nominally 50nm-thick pentacene film on SiO II indicate that the grain sizes of pentacene film increase with an increase in substrate temperature. In addition, the grain size on clean silicon grown at a substrate temperature of 100 degrees C is markedly larger that on SiO II, ranging 10~20μm. Based on this morphological investigation on pentacene films, various types of organic sensors and devices with conjunction with interdigitated, gated and ungated structures are presented.

  20. Scanning capacitance microscopy for thin film measurements

    NASA Astrophysics Data System (ADS)

    Lee, D. T.; Pelz, J. P.; Bhushan, Bharat

    2006-03-01

    We have used direct, low-frequency scanning capacitance microscopy measurements to characterize variations in thin, dielectric films with up to 1 nm thickness and ~200 nm lateral resolution. This technique may be used on metallic as well as semiconducting substrates because it does not rely upon d C/d V measurements. We also find that the sensitivity of capacitance to film thickness can be enhanced by an aqueous meniscus that typically forms between the atomic force microscope tip and the sample surface. Further, we quantified the nanometre-scale capacitance of the tip-meniscus-sample system that is sensitive to variations in film thickness by making simultaneous capacitance and cantilever deflection measurements. This capacitance is used along with an average film thickness to quantify variations in film thickness.

  1. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  2. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  3. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  4. US polycrystalline thin film solar cells program

    SciTech Connect

    Ullal, H S; Zweibel, K; Mitchell, R L

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  5. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  6. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  7. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    SciTech Connect

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  8. Chitinase activity on amorphous chitin thin films: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study.

    PubMed

    Wang, Chao; Kittle, Joshua D; Qian, Chen; Roman, Maren; Esker, Alan R

    2013-08-12

    Chitinases are widely distributed in nature and have wide-ranging pharmaceutical and biotechnological applications. This work highlights a real-time and label-free method to assay Chitinase activity via a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). The chitin substrate was prepared by spincoating a trimethylsilyl chitin solution onto a silica substrate, followed by regeneration to amorphous chitin (RChi). The QCM-D and AFM results clearly showed that the hydrolysis rate of RChi films increased as Chitinase (from Streptomyces griseus) concentrations increased, and the optimal temperature and pH for Chitinase activity were around 37 °C and 6-8, respectively. The Chitinase showed greater activity on chitin substrates, having a high degree of acetylation, than on chitosan substrates, having a low degree of acetylation.

  9. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  10. Co-activation effect of chlorine on the physical properties of CdS thin films prepared by CBD technique for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Amanullah, F. M.; Al-Shammari, A. S.; Al-Dhafiri, A. M.

    2005-10-01

    A simple chemical bath deposition (CBD) technique with ultrasonication has been developed and successfully used to deposit cadmium sulfide (CdS) thin films onto glass substrates from a bath containing cadmium salt and thiourea. The structural and electrical properties of the CdS films were investigated. From the X-ray diffraction pattern, the CdS films were found in both hexagonal and cubic phases. Electrical resistivity, carrier concentration and carrier mobility of the films have been reported. The electrical resistivity of the as-deposited-annealed films was in the range 106-108 cm and low for chlorine-doped-annealed films (10-2-102 cm). From the Hall measurements, the films showed n-type conductivity. All the results are presented and discussed. The results of the obtained films are promising to find application in optoelectronic devices as well as window material in heterojunction solar cell fabrication.

  11. Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films

    NASA Astrophysics Data System (ADS)

    Grzibovskis, Raitis; Vembris, Aivars; Pudzs, Kaspars

    2016-08-01

    Nowadays most organic devices consist of thin (below 100 nm) layers. Information about the morphology and energy levels of thin films at such thickness is essential for the high efficiency devices. In this work we have investigated thin films of 2-(4-[N,N-dimethylamino]-benzylidene)-indene-1,3-dione (DMABI) and 2-(4-(bis(2-(trityloxy)ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph). DMABI-6Ph is the same DMABI molecule with attached bulky groups which assist formation of amorphous films from solutions. Polycrystalline structure was obtained for the DMABI thin films prepared by thermal evaporation in vacuum and amorphous structure for the DMABI-6Ph films prepared by spin-coating method. Images taken by SEM showed separate crystals or islands at the thickness of the samples below 100 nm. The ionization energy of the studied compounds was determined using photoemission yield spectroscopy. A vacuum level shift of 0.40 eV was observed when ITO electrode was covered with the thin film of the organic compound. Despite of the same active part of the investigated molecules the ITO/DMABI interface is blocking electrons while ITO/DMABI-6Ph interface is blocking holes.

  12. Electrolyte and Electrode Passivation for Thin Film Batteries

    NASA Technical Reports Server (NTRS)

    West, W.; Whitacre, J.; Ratnakumar, B.; Brandon, E.; Blosiu, J.; Surampudi, S.

    2000-01-01

    Passivation films for thin film batteries have been prepared and the conductivity and voltage stability window have been measured. Thin films of Li2CO3 have a large voltage stability window of 4.8V, which facilitates the use of this film as a passivation at both the lithium anode-electrolyte interface at high cathodic potentials.

  13. Thin blend films of cellulose and polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  14. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics.

    PubMed

    Arnold, Michael S; Blackburn, Jeffrey L; Crochet, Jared J; Doorn, Stephen K; Duque, Juan G; Mohite, Aditya; Telg, Hagen

    2013-09-28

    The search for environmentally clean energy sources has spawned a wave of research into the use of carbon nanomaterials for photovoltaic applications. In particular, research using semiconducting single-walled carbon nanotubes has undergone dramatic transformations due to the availability of high quality samples through colloidal separation techniques. This has led to breakthrough discoveries on how energy and charge transport occurs in these materials and points to applications in energy harvesting. We present a review of the relevant photophysics of carbon nanotubes that dictate processes important for integration as active and passive material elements in thin film photovoltaics. Fundamental processes ranging from light absorption and internal conversion to exciton transport and dissociation are discussed in detail from both a spectroscopic and a device perspective. We also give a perspective on the future of these fascinating materials to be used as active and passive material elements in photovoltaics.

  15. Thin film diamond microstructure applications

    NASA Technical Reports Server (NTRS)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  16. Doping in zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zheng

    Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ˜1019 cm -3, indicating a carrier-mediated mechanism for

  17. Numerical simulations of thin film thermal flow

    NASA Astrophysics Data System (ADS)

    Liao, Hung; Cale, Timothy S.

    1994-12-01

    The thin film thermal flow process in long trenches is analyzed using a simulator which solves the equations which govern viscous, incompressible fluid flow. The total thermal baking process is divided into small time steps. At each time step, we solve the governing equations using the penalty function formulation and the Galerkin finite element method to obtain local velocity vectors. The free surface of the flowing film is updated according to these local velocity vectors. As an example application, we simulate the flow of boron and phosphorus doped silicon dioxide glass films in 2 micrometer high by 2 micrometer wide, infinitely long trenches, for which two-dimensional profile evolution is appropriate. The simulated film profiles show that the local leveling rate of a film is a sensitive function of surface curvature. The simulation program predicts that lower viscosity and thicker films have superior planarization properties compared with higher viscosity and thinner films. These trends are in agreement with empirical observations and previous modeling and simulation work on glass film planarization processes.

  18. Molecular tailoring of interfaces for thin film on substrate systems

    NASA Astrophysics Data System (ADS)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  19. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  20. Inference on the Production Mechanism of ZnO Thin Films from Activated Water and Dimethylzinc Molecules

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu; Ishikawa, Takuma; Nishihara, Yushin; Yasui, Kanji; Nishiyama, Hiroshi; Inoue, Yasunobu; Kashiwagi, Yusaku; Ushijima, Mitsuru

    2013-09-01

    The reaction of Zn(CH3)2 and activated H2O produced in a reaction of H2 and O2 on a Pt catalyst and effused from a nozzle was examined both experimentally and theoretically. This reaction has been shown to be effective in the preparation of high-quality ZnO films. Laser-induced fluorescence measurements showed that radical species, such as H atoms and OH radicals, do not play major roles. The rotational temperature of H2O, measured with a coherent anti-Stokes Raman scattering technique, was 250 K. This low rotational temperature suggests that H2O molecules must be accelerated along the beam axis and that the collisional energy between Zn(CH3)2 and H2O is as high as 43 kJ mol-1. This energy is higher than the potential barrier to produce HOZnCH3+CH4, 38 kJ mol-1, obtained by ab initio calculations at the MP2/LANL2DZ level of theory. HOZnCH3 thus produced can be the strongest candidate ZnO film precursor.

  1. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  2. Ferroelectric Thin Films for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Udayakumar, K. R.

    This study yokes together the feasibility of a family of PbO-based perovskite-structured ferroelectric thin films as functional elements in nonvolatile random access memories (NVRAMs), in high capacity dynamic RAMs, and in a new class of flexure wave piezoelectric ultrasonic micromotors. The dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films were dependent on thickness; at saturation, the films were characterized by a relative permittivity of 1300, remanent polarization of 36 muC/cm^2 and breakdown strength of over 1 MV/cm. The temperature dependence of permittivity revealed an anomalous behavior with the film annealing temperature. Based on the ferroelectric properties in the bulk, thin films in the lead zirconate -lead zinc niobate (PZ-PZN) solid solution system at 8-12% PZN, examined as alternate compositions for ferroelectric memories, feature switched charges of 4-14 mu C/cm^2, with coercive and saturation voltages less than the semiconductor operating voltage of 5 V. Rapid thermally annealed lead magnesium niobate titanate films were privy to weak signal dielectric permittivity of 2900, remanent polarization of 11 muC/cm^2, and a storage density of 210 fC/mum^2 at 5 V; the films merit consideration for potential applications in ultra large scale integrated circuits as also ferroelectric nonvolatile RAMs. The high breakdown strength and relative permittivity of the PZT films entail maximum stored energy density 10^3 times larger than a silicon electrostatic motor. The longitudinal piezoelectric strain coefficient d_{33 } was measured to be 220 pC/N at a dc bias of 75 kV/cm. The transverse piezoelectric strain coefficient d_{31} bore a nonlinear relationship with the electric field; at 200 kV/cm, d _{31} was -88 pC/N. The development of the piezoelectric ultrasonic micromotors from the PZT thin films, and the architecture of the stator structures are described. Nonoptimized prototype micromotors show rotational velocities of 100

  3. Nanoscale phenomena in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  4. Bendable, free-standing calcite thin films.

    PubMed

    Nakamura, Shiho; Naka, Kensuke

    2015-02-17

    Since the hardness and toughness of natural nacre are determined by hierarchical microstructures with organic matters, it is of great importance to control the microstructures of artificial free-standing CaCO3 thin films. However, the fabrication of such films has so far been quite limited, to the extent that their mechanical properties have not been reported. To address this, free-standing calcite thin films were prepared through repeated cycles of layer-by-layer deposition of vaterite precursor composite particles with organic polymers, followed by a phase transition to calcite. In this way, two distinct calcite thin film types were produced based on either 3.2 or 1.0 wt % organic material, with subsequent three-point bending tests revealing that both exhibit elastic bending prior to fracture. More importantly, by increasing the organic content from 1.0 to 3.2 wt %, the bending strength increased from 0.95 ± 0.26 MPa to 1.90 ± 0.21 MPa. PMID:25621634

  5. Microphase separation of block copolymer thin films.

    PubMed

    Zhang, Jilin; Yu, Xinhong; Yang, Ping; Peng, Juan; Luo, Chunxia; Huang, Weihuan; Han, Yanchun

    2010-04-01

    Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.

  6. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  7. When are thin films of metals metallic?

    NASA Astrophysics Data System (ADS)

    Plummer, E. W.; Dowben, P. A.

    1993-04-01

    There is an increasing body of experimental information suggesting that very thin films of materials, normally considered to be metals, exhibit behavior characteristic of a nonmetal. In almost all cases, there is a nonmetal-to-metal transition as a function of film density or thickness, frequently accompanied by a structural transition. Amazingly, this behavior seems to occur for metal films on metal substrates, as well as for metals on semiconductors. The identification of this phenomena and the subsequent explanation has been slow in developing, due to the inability to directly measure the conductivity of a submonolayer film. This paper will discuss the evidence accumulated from variety of spectroscopic experimental techniques for three systems: a Mott-Hubbard transition, a Peierls-like distortion, and a Wilson transition.

  8. Molecular Dynamic Simulation of Thin Film Growth Stress Evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Haifeng

    2011-12-01

    With the increasing demand for thin films across a wide range of technology, especially in electronic and magnetic applications, controlling the stresses in deposited thin films has become one of the more important challenges in modern engineering. It is well known that large intrinsic stress---in the magnitude of several gigapascals---can result during the thin film preparation. The magnitude of stress depends on the deposition technique, film thickness, types and structures of materials used as films and substrates, as well as other factors. Such large intrinsic stress may lead to film cracking and peeling in case of tensile stress, and delamination and blistering in case of compression. However it may also have beneficial effects on optoelectronics and its applications. For example, intrinsic stresses can be used to change the electronic band gap of semiconducting materials. The far-reaching fields of microelectronics and optoelectronics depend critically on the properties, behavior, and reliable performance of deposited thin films. Thus, understanding and controlling the origins and behavior of such intrinsic stresses in deposited thin films is a highly active field of research. In this study, on-going tensile stress evolution during Volmer-Weber growth mode was analyzed through numerical methods. A realistic model with semi-cylinder shape free surfaces was used and molecular dynamics simulations were conducted. Simulations were at room temperature (300 K), and 10 nanometer diameter of islands were used. A deposition rate that every 3 picoseconds deposit one atom was chosen for simulations. The deposition energy was and lattice orientation is [0 0 1]. Five different random seeds were used to ensure average behaviors. In the first part of this study, initial coalescence stress was first calculated by comparing two similar models, which only differed in the distance between two neighboring islands. Three different substrate thickness systems were analyzed to

  9. Computational modeling of muscular thin films for cardiac repair

    NASA Astrophysics Data System (ADS)

    Böl, Markus; Reese, Stefanie; Parker, Kevin Kit; Kuhl, Ellen

    2009-03-01

    Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.

  10. Exploiting Elasticity with Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Croll, Andrew

    2014-03-01

    Soft matter is often dominated by long-ranging mechanical distortion and is thus intimately linked to elastic theory. The detailed understanding provided by theory has allowed remarkable technological achievements to be made with polymers and other soft systems. However, as technology pushes lengthscales downward many challenges have arisen and even basic problems such as measuring Young's modulus become difficult. To move forward, many polymer thin-film researchers have been attracted to the simple repetitive buckling pattern known as wrinkling because the instability provides a convenient tool to measure mechanical properties. As with all technology the wrinkle system does have physical limits on its applicability, several of which may not be obvious and may have implications for extreme measurement. Here we highlight some of our recent work examining the limits of this elastic pattern and the implications for thin polymer films. We first show how the morphology of ultra-thin wrinkled polystyrene and polystyrene-block-poly(2-vinylpyridine) films show signs of localization effects - a clear deviation from linear elasticity. We go on to show how roughness, in certain cases, can induce similar morphologies, even in the limits of vanishing applied stress. As random roughness influences a film's elastic behaviour it is natural to examine periodic roughness as means to control localization and create more complex morphologies. Colloidal polystyrene is an excellent test material as it can easily be assembled in highly ordered crystalline monolayers. Remarkably, this ``discrete'' polymer film shows the same wrinkled morphology as does a continuum film. We show how a completely different type of elasticity is necessary to explain the effect, that of a granular material. More disordered ``glassy'' colloidal monolayers provide a means to push our understanding of the granular elastic theory, and suggest an interesting, albeit highly speculative limit for extreme continuum

  11. Thin film composition with biological substance and method of making

    DOEpatents

    Campbell, Allison A.; Song, Lin

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  12. Crystal structure, defects and plasticity in pentacene thin films

    NASA Astrophysics Data System (ADS)

    Drummy, Lawrence Fisher, Jr.

    Pentacene is a crystalline organic molecular material currently under investigation for use as the active layer in all-organic flexible electronic devices. For pentacene and materials like it to be developed and integrated into useful devices, a greater understanding of their growth, crystal structure, defects and mechanical behavior in the thin film form must be obtained. Low-dose High Resolution Electron Microscopy (HREM) was used to image pentacene structure and defects with lattice resolution. A new technique, Low Voltage Electron Microscopy (LVEM), was used to characterize pentacene and other organic thin films with high contrast. Pentacene thin films were produced by vacuum sublimation onto various crystalline and amorphous substrates. The crystal structure and morphology of the films were characterized using microscopy and diffraction techniques, and a new orthorhombic crystal structure was found in very thin films. Although the bulk energy of this orthorhombic phase is higher than the pentacene triclinic phase, it is thermodynamically stable at low film thickness because of its low (001) surface energy. Single crystal growth of the triclinic phase was studied by complementing molecular mechanics simulations of surface energies with experimental images of pentacene films. Details of the structural relaxations near defects in pentacene thin films were investigated using HREM and Electron Diffraction (ED). Characteristic streaking in ED patterns gave evidence for anisotropic relaxations near molecular vacancies. Direct images of grain boundaries in the as-grown films gave insight into molecular reorganization under internal strain. Finally, the plasticity of pentacene was investigated by rubbing, scratching and nanoindentation. Alignment of the thermally evaporated films was achieved under a controlled load scratch. Evidence for single crystalline texturing inside the scratched region was seen using HREM, with the contact plane being {110} type

  13. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE PAGES

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore » field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  14. Thermal conductivities of thin, sputtered optical films

    SciTech Connect

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO{sub 2}/Si{sub 3}N{sub 4}){sup n} and Al(Al{sub 2}O{sub 3}/AIN){sup n}. Sputtered films of more conventional materials like SiO{sub 2}, Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented.

  15. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  16. A Multilayered Thin Film Insulator for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Blaha, Charles A.; Busfield, A. Rachel; Thomas, Valarie D.

    2002-01-01

    The status of work to develop a reliable high temperature dielectric thin film for use with thin film sensors is presented. The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensor and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high temperature ceramics, a sequence of insulating layers was devised that prevents pinholes from forming completely through the insulator and maintains high electrical resistivity at high temperatures. The major technical challenge remaining is to optimize the fabrication of the insulator with respect to composition to achieve a reliable high temperature insulating film. Data from the testing of various potentially insulating thin film systems is presented and their application to thin film sensors is also discussed.

  17. Diode laser processed crystalline silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Varlamov, S.; Eggleston, B.; Dore, J.; Evans, R.; Ong, D.; Kunz, O.; Huang, J.; Schubert, U.; Kim, K. H.; Egan, R.; Green, M.

    2013-03-01

    Line-focus diode laser is applied to advance crystalline silicon thin-film solar cell technology. Three new processes have been developed: 1) defect annealing/dopant activation; 2) dopant diffusion; 3) liquid phase crystallisation of thin films. The former two processes are applied to either create a solar cell device from pre-crystallised films or improve its performance while reducing the maximum temperature experienced by substrate. The later process is applied to amorphous silicon films to obtain high crystal and electronic quality material for thin-film solar cells with higher efficiency potential. Defect annealing/dopant activation and dopant diffusion in a few micron thick poly-Si films are achieved by scanning with line-focus 808 nm diode laser beam at 15-24 kW/cm2 laser power and 2~6 ms exposure. Temperature profile in the film during the treatment is independent from laser power and exposure but determined by beam shape. Solar cell open-circuit voltages of about 500 mV after such laser treatments is similar or even higher than voltages after standard rapid-thermal treatments while the highest temperature experienced by glass is 300C lower. Amorphous silicon films can be melted and subsequently liquid-phase crystallised by a single scan of line laser beam at about 20 kW/cm2 power and 10-15 ms exposure. Solar cells made of laser-crystallised material achieve 557 mV opencircuit voltage and 8.4% efficiency. Electronic quality of such cells is consistent with efficiencies exceeding 13% and it is currently limited by research-level simplified cell metallisation.

  18. Multi-block copolymers in thin films.

    NASA Astrophysics Data System (ADS)

    Maniadis, Panagiotis; Kober, Edward; Lookman, Turab

    2008-03-01

    We study the behavior of an ABn multi-block copolymer confined to a thin film, using self consistent field theory (SCFT) methods. Due to the breaking of symmetry in the direction of confinement, the propagators do not obey the usual diffusion equation. We derive the diffusion equation which correctly describes the confined polymer system and find that it differs from the original in an area which is approximately 3 times the Kuhn length of the polymer, close to the surface of the film. We use the modified diffusion equation to study the structure of the confined polymer.

  19. Nonlinear viscoelastic characterization of thin polyethylene film

    NASA Technical Reports Server (NTRS)

    Wilbeck, J. S.

    1981-01-01

    In order to understand the state of stress and strain in a typical balloon fabricated from thin polyethylene film, experiment data in the literature reviewed. It was determined that the film behaves as a nonlinear viscoelasticity material and should be characterized accordingly. A simple uniaxial, nonlinear viscoelastic model was developed for predicting stress given a certain strain history. The simple model showed good qualitative agreement with results of constant rate, uniaxial accurately predicting stresses for cyclic strain histories typical of balloon flights. A program was outlined which will result in the development of a more complex nonlinear viscoelastic model.

  20. Meniscus Instability in a Thin Elastic Film

    NASA Astrophysics Data System (ADS)

    Ghatak, Animangsu; Chaudhury, Manoj K.; Shenoy, Vijay; Sharma, Ashutosh

    2000-11-01

    A new kind of meniscus instability leading to the formation of stationary fingers with a well-defined spacing has been observed in experiments with elastomeric films confined between a plane rigid glass and a thin curved glass plate. The wavelength of the instability increases linearly with the thickness of the confined film, but it is remarkably insensitive to the compliance and the energetics of the system. However, lateral amplitude (length) of the fingers depends on the compliance of the system and on the radius of curvature of the glass plate. A simple linear stability analysis is used to explain the underlying physics and the key observed features of the instability.

  1. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  2. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  3. Amorphous In-Ga-Zn-O Thin Film Transistor Current-Scaling Pixel Electrode Circuit for Active-Matrix Organic Light-Emitting Displays

    NASA Astrophysics Data System (ADS)

    Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy

    2009-03-01

    In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.

  4. Driving Method Compensating for the Hysteresis of Polycrystalline Silicon Thin-Film Transistors for Active-Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Jung, Myoung-Hoon; Kim, Ohyun; Kim, Byeong-Koo; Chung, Hoon-Ju

    2009-05-01

    A new driving method for active-matrix organic light-emitting diode displays is proposed and evaluated. The pixel structure of the proposed driving method is composed of three thin-film transistors (TFTs) and one capacitor. It inserts black data into display images to reset driving TFTs for the purpose of maintaining constant electrical characteristics of driving TFTs. The proposed driving scheme is less sensitive to the hysteresis of low-temperature polycrystalline silicon (LTPS) TFTs than the conventional pixel structure with two TFTs and one capacitor, and this scheme can virtually eliminate the recoverable residual image that occurs owing to the hysteresis characteristics of LTPS TFTs. In the proposed driving scheme, black data are inserted into displayed images so that the motion image quality is improved.

  5. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  6. New Driving Scheme to Improve Hysteresis Characteristics of Organic Thin Film Transistor-Driven Active-Matrix Organic Light Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshihiro; Nakajima, Yoshiki; Takei, Tatsuya; Fujisaki, Yoshihide; Fukagawa, Hirohiko; Suzuki, Mitsunori; Motomura, Genichi; Sato, Hiroto; Tokito, Shizuo; Fujikake, Hideo

    2011-02-01

    A new driving scheme for an active-matrix organic light emitting diode (AMOLED) display was developed to prevent the picture quality degradation caused by the hysteresis characteristics of organic thin film transistors (OTFTs). In this driving scheme, the gate electrode voltage of a driving-OTFT is directly controlled through the storage capacitor so that the operating point for the driving-OTFT is on the same hysteresis curve for every pixel after signal data are stored in the storage capacitor. Although the number of OTFTs in each pixel for the AMOLED display is restricted because OTFT size should be large enough to drive organic light emitting diodes (OLEDs) due to their small carrier mobility, it can improve the picture quality for an OTFT-driven flexible OLED display with the basic two transistor-one capacitor circuitry.

  7. Transparent Pixel Circuit with Threshold Voltage Compensation Using ZnO Thin-Film Transistors for Active-Matrix Organic Light Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Yang, Ik-Seok; Kwon, Oh-Kyong

    2009-03-01

    A transparent pixel circuit with a threshold voltage compensating scheme using ZnO thin-film transistors (TFTs) for active-matrix organic light emitting diode (AMOLED) displays is proposed. This circuit consists of five n-type ZnO TFTs and two capacitors and can compensate for the threshold voltage variation of ZnO TFTs in real time. From simulation results, the maximum deviation of the emission current of the pixel circuit with a threshold voltage variation of ±1 V is determined to be less than 10 nA. From measurement results, it is verified that the maximum deviation of measured emission currents with measurement position in a glass substrate is less than 15 nA in a higher current range, and the deviation of emission current with time is less than 3%.

  8. Effect of thermal annealing treatments on the optical activation of Tb3+ -doped amorphous SiC:H thin films

    NASA Astrophysics Data System (ADS)

    Guerra, J. A.; De Zela, F.; Tucto, K.; Montañez, L.; Töfflinger, J. A.; Winnacker, A.; Weingärtner, R.

    2016-09-01

    The effect of the annealing temperature on the light emission intensity of Tb-doped a-SiC:H thin films was investigated for different Tb concentrations under sub-bandgap photon excitation. We present a detailed discussion of rare-earth thermal activation in order to determine the optimal Tb concentration and annealing temperature for the highest Tb-related light emission intensity. Two independent processes that enhance the emission intensity are identified and incorporated in a rate equation. These are the thermally-induced increase of luminescence centers and the inhibition of host-mediated non-radiative recombinations. Finally, the presented analysis revealed a suppression of the self-quenching effect when increasing the annealing temperature.

  9. Microwave response of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio

    1991-01-01

    We have studied the microwave response of YBa2Cu3O(7 - delta), Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O high transition temperature superconducting (HTS) thin films by performing power transmission measurements. These measurements were carried out in the temperature range of 300 K to 20 K and at frequencies within the range of 30 to 40 GHz. Through these measurements we have determined the magnetic penetration depth (lambda), the complex conductivity (sigma(sup *) = sigma(sub 1) - j sigma(sub 2)) and the surface resistance (R(sub s)). An estimate of the intrinsic penetration depth (lambda approx. 121 nm) for the YBa2Cu3O(7 - delta) HTS has been obtained from the film thickness dependence of lambda. This value compares favorably with the best values reported so far (approx. 140 nm) in single crystals and high quality c-axis oriented thin films. Furthermore, it was observed that our technique is sensitive to the intrinsic anisotropy of lambda in this superconductor. Values of lambda are also reported for Bi-based and Tl-based thin films. We observed that for the three types of superconductors, both sigma(sub 1) and sigma(sub 2) increased when cooling the films below their transition temperature. The measured R(sub s) are in good agreement with other R(sub S) values obtained using resonant activity techniques if we assume a quadratic frequency dependence. Our analysis shows that, of the three types of HTS films studied, the YBa2Cu3O(7 - delta) thin film, deposited by laser ablation and off-axis magnetron sputtering are the most promising for microwave applications.

  10. Multiferroic oxide thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  11. Generalized Ellipsometry on Ferromagnetic Sculptured Thin Films.

    NASA Astrophysics Data System (ADS)

    Schmidt, Daniel; Hofmann, Tino; Mok, Kah; Schmidt, Heidemarie; Skomski, Ralf; Schubert, Eva; Schubert, Mathias

    2011-03-01

    We present and discuss generalized ellipsometry and generalized vector-magneto-optic ellipsometry investigations on cobalt nanostructured thin films with slanted, highly-spatially coherent, columnar arrangement. The samples were prepared by glancing angle deposition. The thin films are highly transparent and reveal strong form-induced birefringence. We observe giant Kerr rotation in the visible spectral region, tunable by choice of the nanostructure geometry. Spatial magnetization orientation hysteresis and magnetization magnitude hysteresis properties are studied using a 3-dimensional Helmholtz coil arrangement allowing for arbitrary magnetic field direction at the sample position for field strengths up to 0.4 Tesla. Analysis of data obtained within this novel vector-magneto-optic setup reveals magnetization anisotropy of the Co slanted nanocolumns supported by mean-field theory modeling.

  12. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  13. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  14. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  15. EBSD analysis of electroplated magnetite thin films

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Teng, C. L.; Ryan, M. P.; Hartmann, U.; Mücklich, F.

    2010-05-01

    By means of electron backscatter diffraction (EBSD), we analyse the crystallographic orientation of electroplated magnetite thin films on Si/copper substrates. Varying the voltage during the electroplating procedure, the resulting surface properties are differing considerably. While a high voltage produces larger but individual grains on the surface, the surfaces become smoother on decreasing voltage. Good quality Kikuchi patterns could be obtained from all samples; even on individual grains, where the surface and the edges could be measured. The spatial resolution of the EBSD measurement could be increased to about 10 nm; thus enabling a detailed analysis of single magnetite grains. The thin film samples are polycrystalline and do not exhibit a preferred orientation. EBSD reveals that the grain size changes depending on the processing conditions, while the detected misorientation angles stay similar.

  16. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  17. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  18. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    PubMed

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased. PMID:24922214

  19. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  20. Thin-film optical shutter. Final report

    SciTech Connect

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  1. Large-area thin-film modules

    NASA Technical Reports Server (NTRS)

    Tyan, Y. S.; Perez-Albuerne, E. A.

    1985-01-01

    The low cost potential of thin film solar cells can only be fully realized if large area modules can be made economically with good production yields. This paper deals with two of the critical challenges. A scheme is presented which allows the simple, economical realization of the long recognized, preferred module structure of monolithic integration. Another scheme reduces the impact of shorting defects and, as a result, increases the production yields. Analytical results demonstrating the utilization and advantages of such schemes are discussed.

  2. Structures for dense, crack free thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  3. Thin film dynamics of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Lebon, Luc; Limat, Laurent

    2012-11-01

    We present here viscoelastic fluids in thin film flows, such as liquid bells or liquid curtains. The viscoelastic property of the liquids exhibits specific dynamics in such flows. In the case of bells, the elastic strength tends to extend the bell size for example. In the case of curtain flows, original behaviour of holes are observed with specific growth mechanism for bubbles trapped in the flow.

  4. Laser annealing of thin organic films

    NASA Astrophysics Data System (ADS)

    Agashkov, A. V.; Ivlev, G. D.; Filippov, V. V.; Kashko, I. A.; Shulitski, B. G.

    2010-09-01

    Microstructure of defects in organic solar cells containing PEDOT:PSS:Sorbitol layer has been studied and conditions for successful pulsed laser annealing of them have been determined. Investigation with oblique illumination showed that radial symmetry of fine structure is an intrinsic property of either separated discotic defects or block structure. Our study shows that pulsed laser annealing of organic thin films in inert atmosphere has promising future.

  5. Laser annealing of thin organic films

    NASA Astrophysics Data System (ADS)

    Agashkov, A. V.; Ivlev, G. D.; Filippov, V. V.; Kashko, I. A.; Shulitski, B. G.

    2011-02-01

    Microstructure of defects in organic solar cells containing PEDOT:PSS:Sorbitol layer has been studied and conditions for successful pulsed laser annealing of them have been determined. Investigation with oblique illumination showed that radial symmetry of fine structure is an intrinsic property of either separated discotic defects or block structure. Our study shows that pulsed laser annealing of organic thin films in inert atmosphere has promising future.

  6. Stable localized patterns in thin liquid films

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.; Oron, Alexander

    1991-01-01

    We study a 2-D nonlinear evolution equation which describes the 3-D spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. We show that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability) allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  7. Design and characterization of thin film microcoolers

    NASA Astrophysics Data System (ADS)

    LaBounty, Chris; Shakouri, Ali; Bowers, John E.

    2001-04-01

    Thin film coolers can provide large cooling power densities compared to bulk thermoelectrics due to the close spacing of hot and cold junctions. Important parameters in the design of such coolers are investigated theoretically and experimentally. A three-dimensional (3D) finite element simulator (ANSYS) is used to model self-consistently thermal and electrical properties of a complete device structure. The dominant three-dimensional thermal and electrical spreading resistances acquired from the 3D simulation are also used in a one-dimensional model (MATLAB) to obtain faster, less rigorous results. Heat conduction, Joule heating, thermoelectric and thermionic cooling are included in these models as well as nonideal effects such as contact resistance, finite thermal resistance of the substrate and the heat sink, and heat generation in the wire bonds. Simulations exhibit good agreement with experimental results from InGaAsP-based thin film thermionic emission coolers which have demonstrated maximum cooling of 1.15 °C at room temperature. With the nonideal effects minimized, simulations predict that single stage thin film coolers can provide up to 20-30 °C degrees centigrade cooling with cooling power densities of several 1000 W/cm2.

  8. Molecular theory of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Meng, Shihong

    A molecular theory has been developed to describe the isotropic-nematic transitoon of model nematogens in bulk and in thin films. The surfaces of thin films can be hard surfaces or coated with surfactant monolayers. The theory only includes hard body interactions between all molecule species: solvent, nematogens and surfactants. We have studied the influence of the separation between confining walls, concentration of nematogens, as well as the surface anchoring and areal density of surfactant at the interface upon the phases of nematogens. We have explained the possible existence of planar degenerate phase through entropic pictures and have confirmed close to the bulk isotropic-nematic transition point, the order of the phases of nematogens from isotropic to nematic then back to isotropic when varying the areal density of surfactant monolayers at interfaces. From the results obtained, we believe that we have captured the main competing interactions between surfactants and nematogens and our molecular level theory is capable of describing these two interactions of different natures. Our results can provide a guideline for molecular design of biosensors. We have modeled the molecular systems with as much simplification as possible while retaining the main features. The thesis is arranged into introduction, results on bulk, thin films confined between hard walls and between surfactant monolayers.

  9. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  10. Thin Dielectric Films Containing Tb{sup 3+} Ions For Application In Thin Film Solar Cells

    SciTech Connect

    Sendova-Vassileva, M.; Angelov, O.; Dimova-Malmovska, D.; Baumgartner, K.; Carius, R.; Hollaender, B.

    2010-01-21

    Thin transparent dielectric films containing Tb{sup 3+} are developed for application as spectral converters of the solar spectrum in thin film silicon solar cells. The results on the deposition and characterization of thin SiO{sub 2} and Al{sub 2}O{sub 3} films containing Tb{sup 3+} ions are presented. The films are prepared by RF magnetron co-sputtering, a well established technique for large area coatings. Photoluminescence (PL) is measured at room temperature, using the 488 nm line of an Ar laser and a nitrogen-cooled CCD camera attached to a monochromator. The dependence of the PL intensity on the concentration of Tb in the film is studied. It is found that the intensity exhibits a maximum at about 1 at.%. Annealing studies are performed on SiO{sub 2}:Tb with two different methods to improve the PL intensity. In both regimes of annealing, the best results for thin SiO{sub 2}:Tb films are obtained in the temperature range of 650-700 deg. C. After treatment at this temperature the Tb PL increases 2.5-3 times.

  11. Raman characterization of platinum diselenide thin films

    NASA Astrophysics Data System (ADS)

    O'Brien, Maria; McEvoy, Niall; Motta, Carlo; Zheng, Jian-Yao; Berner, Nina C.; Kotakoski, Jani; Elibol, Kenan; Pennycook, Timothy J.; Meyer, Jannik C.; Yim, Chanyoung; Abid, Mohamed; Hallam, Toby; Donegan, John F.; Sanvito, Stefano; Duesberg, Georg S.

    2016-06-01

    Platinum diselenide (PtSe2) is a newly discovered 2D material which is of great interest for applications in electronics and catalysis. PtSe2 films were synthesized by thermally assisted selenization of predeposited platinum films and scanning transmission electron microscopy revealed the crystal structure of these films to be 1T. Raman scattering of these films was studied as a function of film thickness, laser wavelength and laser polarization. E g and A 1g Raman active modes were identified using polarization measurements in the Raman setup. These modes were found to display a clear position and intensity dependence with film thickness, for multiple excitation wavelengths, and their peak positions agree with simulated phonon dispersion curves for PtSe2. These results highlight the practicality of using Raman spectroscopy as a prime characterization technique for newly synthesized 2D materials.

  12. Thin film cadmium telluride photovoltaic cells

    SciTech Connect

    Compaan, A.; Bohn, R. )

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  13. Semileaky thin-film optical isolator

    SciTech Connect

    Kirsch, S.T.; Biolsi, W.A.; Blank, S.L.; Tien, P.K.; Martin, R.J.; Bridenbaugh, P.M.; Grabbe, P.

    1981-05-01

    Two interesting effects have been experimentally demonstrated for the first time: (1) simultaneous reciprocal and nonreciprocal mode conversion to achieve an isolation effect and (2) magneto-optic switching between guided and radiation modes. These effects were observed in connection with the construction of a previously proposed thin-film optical isolator. The isolator consists of a piece of LiNbO/sub 3/ placed on top of a thin film of yttrium ion garnet (YIG) with a selenium layer to avoid optical contact problems. The isolator, which is 1 cm long, exhibited 10 dB of isolation at lambda = 1.15 ..mu..m. The observed isolation was better than theoretical predictions and a mysterious isolation direction dependence on mode order was observed. Although the device had 10 dB of insertion loss and required a magnetic field of 40 Oe, with a slight change in wavelength and film composition, it should be possible to reduce the insertion loss and field required to under 1 dB and 0.1 Oe, respectively. These characteristics combined with broad tolerances on film thickness and the length of the isolation region, broadband operation (from lambda = 1.1 to 4.5 ..mu..m), and easy construction and adjustment make the isolator very attractive for use in integrated optics.

  14. Dynamic Characterization of Thin Film Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  15. Thin Films Characterization by Ultra Trace Metrology

    SciTech Connect

    Danel, A.; Nolot, E.; Decorps, T.; Lardin, T.; Veillerot, M.; Lhostis, S.; Campidelli, Y.; Calvo-Munoz, M.-L.; Kohno, H.; Yamagami, M.

    2007-09-26

    Sensitive and accurate characterization of thin films used in nanoelectronics, thinner than a few nm, represents a challenge for many conventional methods, especially when considering in-line control. With capabilities in the E10 at/cm{sup 2} (<1/10 000 of a mono layer), methods usually dedicated to contamination analysis appear promising, especially TXRF thanks to its non invasive and ease of use aspects, and to its measurement speed and mapping capability. This study shows that the range of linear results from TXRF can be extended to thicknesses of a few nm when using an incident angle higher than the critical angle of the analyzed film. Thus, despite degraded performances in terms of low detection limit, TXRF can provide a direct and very sensitive reading of some critical deposition processes. A dynamic repeatability better than 1% (standard deviation) has been obtained for the control of a 0.6 nm Al{sub 2}O{sub 3} tunnel oxide deposited on a magnetic stack. On the other hand, composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Under the best conditions, determination of the composition of Co -based self aligned barriers (CoWP and CoWMoPB films with Co concentration >80%) is done with a precision of 6% on P, 8% on Mo and 13% on W (standard deviation)

  16. Thin film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Bohn, R.

    1992-04-01

    This report describes research to develop vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD), and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl(sub 2), as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO2-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally (greater than or equal to 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater.

  17. Thermal properties of methyltrimethoxysilane aerogel thin films

    NASA Astrophysics Data System (ADS)

    Acquaroli, Leandro N.; Newby, Pascal; Santato, Clara; Peter, Yves-Alain

    2016-10-01

    Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m-1 K-1 and 9.8 × 10-9 m2 s-1. A model was used to identify the components (solid, gaseous and radiative) of the total thermal conductivity of the aerogel.

  18. Negative differential conductivity in thin ferroelectric films

    NASA Astrophysics Data System (ADS)

    Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander

    2014-11-01

    A phenomenon of negative differential conductivity in ferroelectric thin films is discussed. We proposed that the reason is polarization recovery current arising at current-voltage I(V) measurements as a result of polarization relaxation after pre-polarization of ferroelectric film. Simulation of this current by Weibull distribution provides a good correlation with the experimental data. The obtained values of the recovered polarization Prec and the field strength Erec at which the recovery polarization current reaches maximum do not depend on the voltage sweep rate and are well correlated with the values of polarization relaxation Prel and coercive field strength Ec obtained from dielectric hysteresis loop. It is shown that the current density due to polarization recovery Jrec may exceed by about an order the ohmic current density JΩ in ferroelectric film at Ec.

  19. Supramolecular structure of electroactive polymer thin films

    NASA Astrophysics Data System (ADS)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  20. Electrohydrodynamic instabilities in thin trilayer liquid films.

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-11-01

    When DC or AC electric fields are applied to a thin liquid film, the interface may become unstable and form a series of pillars. We examine how the presence of a second liquid interface influences pillar dynamics and morphologies. For perfect dielectric films, linear stability analysis of a lubrication-approximation-based model shows that the root mean square voltage governs the pillar behavior. For leaky dielectric films, Floquet theory is applied to carry out the linear stability analysis, and reveals that the accumulation of free charge at each interface depends on the conductivities in the adjoining phases and that high frequencies of the AC electric field may be used to control this accumulation at each interface independently. The results presented here may of interest for the controlled creation of surface topographical features in applications such as patterned coatings and microelectronics.

  1. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  2. Two-fluid measurements on thin films

    NASA Astrophysics Data System (ADS)

    Mopsik, Frederick I.

    1992-05-01

    The two-fluid technique to measure the dielectric constant and thickness of a thin polymeric film is discussed. The advantages include the ability to make a non-contacting measurement both of the effective electrical thickness of the film as well as the dielectric constant. The requirements for an accurate measurement are examined and the error as a function of the cell spacing, sample thickness, and dielectric constant of the second fluid are evaluated. The specifications of both the cell and the second fluid are examined. For the cell, it must be stable to good accuracy with handling, settable to small gaps, and have a well-defined electrode area through the use of a guard ring with a narrow guard gap. A design of a holder that is suitable for films from 6 micrometers to 50 micrometers is illustrated.

  3. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  4. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  5. Ultrasound-Assisted Synthesis of Titania Nanoparticles, Characterization of Their Thin Films, and Activity in Photooxidation of β-Naphthol

    NASA Astrophysics Data System (ADS)

    Hurain, Syyeda Sana; Habib, Amir; Hussain, Syed Muzammil; Ul-Haq, Noaman

    2015-11-01

    Nanosized titania (TiO2) films and powders were prepared from titanium isopropoxide by ultrasonication then ultrasonic aerosol-assisted chemical vapor deposition (UAACVD). X-ray diffraction (XRD), used to study the crystal structure, phase, and crystallite size of TiO2 samples annealed at 500°C, revealed anatase was the main crystalline phase. Scanning electron microscopy and atomic force microscopy revealed the quasi-spherical morphology of the TiO2 nanoparticles; average size distribution was in the range 20-35 nm. Ultraviolet-visible spectroscopy was used to evaluate the photocatalytic activity of the anatase TiO2, on the basis of efficiency of degradation of β-naphthol. Pure TiO2 nanoparticles synthesized by use of sonication-UAACVD then calcination at 500°C enabled effective photodegradation under UV light. This method of synthesis of TiO2 is superior to the reflux-UAACVD method with titanium isopropoxide as precursor.

  6. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    NASA Astrophysics Data System (ADS)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  7. Preparation of thin polymer films for infrared reaction rate studies

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1970-01-01

    Procedure for preparing thin films for infrared spectrophotometric analysis involves pressing of a neat mixture of reactants between nonreactive thin polymer films with noninterfering absorption bands. Pressing is done under a pressure that gives desirable thickness. Following this process, the film sandwich is cut to accommodate the laboratory instrument.

  8. Memristive behaviour of spin coated titania thin film

    NASA Astrophysics Data System (ADS)

    Kamarozaman, N. S.; Herman, S. H.; Mahmudin, M. A.

    2014-08-01

    This paper presents the memristive behaviour of spin coated titania thin films. The precursor molarity of titania thin film was varied from 0.05 to 0.4 M to study the effect of precursor molarity on the memristive behaviour of the thin films. From the observation, although the film thickness increased with the precursor molarity, the resistance ratios of the best switching loop for all samples showed no significant differences. However, it was found that the sample with less precursor molarity (device that having thinner film) required lesser time to produce the stable switching loop compared to the sample with higher precursor molarity (device that having thicker film).

  9. PREFACE: 15th International Conference on Thin Films (ICTF-15)

    NASA Astrophysics Data System (ADS)

    Takai, Osamu; Saito, Nagahiro; Zettsu, Nobuyuki; Cho, Sung-Pyo; Terashima, Chiaki; Ueno, Tomonaga; Sakai, Osamu; Miyazaki, Seiichi; Yoshimura, Kazuki; Akamatsu, Kensuke; Ito, Takahiro; Yogo, Toshinobu; Inoue, Yasushi; Ohtake, Naoto; Yoshida, Tsukasa; Tosa, Masahiro; Takai, Madoka; Fujiwara, Yasufumi; Matsuda, Naoki; Teshima, Katsuya; Seki, Takahiro; Matsunaga, Katsuyuki; Fujita, Daisuke

    2013-03-01

    in the ancient temples and shrines, as well as private houses, which are built in styles unique to Kyoto. Furthermore, many festivals, ceremonies and traditional activities reveal the will of this city to convey and develop its 1200-year-old culture. Participants of the conference will also be able to see many world heritage sites in the city. Moreover, November is the best time of year to visit Kyoto. We hope you will enjoy Kyoto very much. We would like to offer our thanks for all the contributions from the members of the International Advisory Committee and Organizing Committee, Symposium Chairs, the Secretary General, the Thin Film Division of IUVSTA (chair: Professor Dr Alberto Tagliaferro), IUVSTA, VSJ and other cooperating societies, and to all of the supporting organizations and enterprises. We would also like to express our thanks to all of the participants, secretariat members and members of the supporting staff. I am very pleased to welcome you to ICTF-15 and Kyoto! Director Professor Dr Osamu Takai Chairperson of ICTF-15 EcoTopia Science Institute, and Department of Materials, Physics and Energy Engineering Graduate School of Engineering Nagoya University Japan

  10. Processing of magnetostrictive thin film devices

    NASA Astrophysics Data System (ADS)

    Loveless, Michael Ray

    (Tb,Dy)Fesb2 intermetallic alloys exhibit very large magnetostrictive strains. Alloys with composition near Tbsb{0.3}Dysb{0.7}Fesb2, known as Terfenol-D, are of particular interest because this is the composition where room temperature anisotropy compensation occurs and the moment can be easily rotated. Terfenol-D has a cubic Laves phase structure and exhibits maximum magnetostrictive strain along $ directions at room temperature. Bulk Terfenol-D tends to grow as twinned dendritic sheets with $ orientation. Recently, there has been increased interest in Terfenol-D thin film devices. Crystallographic texture can change the magnetostrictive properties of thin films. It is the purpose of this research to study the effect of postdeposition annealing and magnetic annealing treatments on the microstructure of Terfenol-D thin films. It is predicted that textured films can be obtained by exploiting increased magnetocrystalline anisotropy at elevated temperatures. This would improve the low field magnetostrictive strains attainable for device applications. Also of recent interest is the fabrication of magnetostrictive composites. Increased toughness and durability are attainable at the cost of reduced magnetostrictive performance. Terfenol-D composites have been made with polymers. Composites with metals would be stronger and tougher but conventional high temperature processing routes cause unwanted reactions. Temperatures high enough to allow appreciable diffusion for sintering would also allow the metal binder phase to interdiffuse with Terfenol-D. This work also examines the feasibility of explosive compaction of Terfenol-D-metal composites. The short duration, on the order of microseconds, of the pressure and temperature pulse experienced by the powder leads to compaction at near room temperature. This is expected to prevent unwanted reactions between Terfenol-D and the metal binder.

  11. Thin Film Evolution Over a Thin Porous Layer: Modeling a Tear Film on a Contact Lens

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel; Nong, Kumnit

    2010-11-01

    We examine a mathematical model that describes the behavior of the pre-contact lens tear film of a human eye. Our work examines the effect of contact lens thickness and lens permeability and slip on the film dynamics. A mathematical model for the evolution of the tear film is derived using a lubrication approximation applied to the hydrodynamic equations of motion in the fluid film and the porous layer. The model is a nonlinear fourth order partial differential equation subject to boundary conditions and an initial condition for post-blink film evolution. We find that increasing the lens thickness, permeability and slip all contribute to an increase in the film thinning rate although for parameter values typical for contact lens wear these modifications are minor. The presence of the contact lens can, however, fundamentally change the nature of the rupture dynamics as the inclusion of the porous lens leads to rupture in finite time rather than infinite time.

  12. Pulsed laser deposition and characterization of cellulase thin films

    NASA Astrophysics Data System (ADS)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  13. Ion induced spinodal dewetting of thin solid films

    SciTech Connect

    Repetto, Luca; Setina Batic, Barbara; Firpo, Giuseppe; Piano, Emanuele; Valbusa, Ugo

    2012-05-28

    We present experimental data and numerical simulations in order to show that the mechanism of spinodal dewetting is active during ion beam irradiation of thin solid films. The expected scaling law for the characteristic wavelengths versus the initial film thickness is modified by the presence of sputtering. The conclusion is fully supported by model simulation which shows a square law dependence for null sputtering yield and a bimodal trend when sputtering is included. This result is in contrast to earlier studies and opens the possibility to control and use ion induced dewetting for the fabrication of functional nanostructures.

  14. Resistance switching in polyvinylidene fluoride (PVDF) thin films

    SciTech Connect

    Pramod, K.; Sahu, Binaya Kumar; Gangineni, R. B.

    2015-06-24

    Polyvinylidene fluoride (PDVF), one of the best electrically active polymer material & an interesting candidate to address the electrical control of its functional properties like ferroelectricity, piezoelectricity, pyroelectricity etc. In the current work, with the help of spin coater and DC magnetron sputtering techniques, semi-crystallized PVDF thin films prominent in alpha phase is prepared in capacitor like structure and their electrical characterization is emphasized. In current-voltage (I-V) and resistance-voltage (R-V) measurements, clear nonlinearity and resistance switching has been observed for films prepared using 7 wt% 2-butanone and 7 wt% Dimethyl Sulfoxide (DMSO) solvents.

  15. Metal nanoparticles enhanced optical absorption in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Wanlu; Liu, Fang; Qu, Di; Xu, Qi; Huang, Yidong

    2011-12-01

    The plasmonic enhanced absorption for thin film solar cells with silver nanoparticles (NPs) deposited on top of the amorphous silicon film (a-Si:H) solar cells and embedded inside the active layer of organic solar cells (OSCs) has been simulated and analyzed. Obvious optical absorption enhancement is obtained not only at vertical incidence but also at oblique incidence. By properly adjusting the period and size of NPs, an increased absorption enhancement of about 120% and 140% is obtained for a-Si:H solar cells and OSCs, respectively.

  16. Additive chemistry and distributions in NTD photoresist thin films

    NASA Astrophysics Data System (ADS)

    Thackeray, James; Hong, Chang-Young; Clark, Michael B.

    2016-03-01

    The lithographic performance of photoresists is a function of the vertical distribution of formulation components, such as photoacid generator (PAG) molecules, in photoresist thin films and how these components undergo chemical modification and migrate within the film during the lithography processing steps. This paper will discuss how GCIB-SIMS depth profiles were used to monitor the PAG and quencher base distributions before and after exposure and post-exposure bake processing steps for different PAG/photoresist formulations. The authors show that the use of surface active quencher in an NTD photoresist leads to better resist profiles, superior DOF and better OPC performance.

  17. Resistance switching in polyvinylidene fluoride (PVDF) thin films

    NASA Astrophysics Data System (ADS)

    Pramod, K.; Sahu, Binaya Kumar; Gangineni, R. B.

    2015-06-01

    Polyvinylidene fluoride (PDVF), one of the best electrically active polymer material & an interesting candidate to address the electrical control of its functional properties like ferroelectricity, piezoelectricity, pyroelectricity etc. In the current work, with the help of spin coater and DC magnetron sputtering techniques, semi-crystallized PVDF thin films prominent in alpha phase is prepared in capacitor like structure and their electrical characterization is emphasized. In current-voltage (I-V) and resistance-voltage (R-V) measurements, clear nonlinearity and resistance switching has been observed for films prepared using 7 wt% 2-butanone and 7 wt% Dimethyl Sulfoxide (DMSO) solvents.

  18. Colloidal Particles in Thin Nematic Wetting Films.

    PubMed

    Jeridi, Haifa; Tasinkevych, Mykola; Othman, Tahar; Blanc, Christophe

    2016-09-01

    We experimentally and theoretically study the variety of elastic deformations that appear when colloidal inclusions are embedded in thin wetting films of a nematic liquid crystal with hybrid anchoring conditions. In the thickest films, the elastic dipoles formed by particles and their accompanying defects share features with the patterns commonly observed in liquid crystal cells. When the film gets thinner than the particles size, however, the capillary effects strongly modify the appearance of the elastic dipoles and the birefringence patterns. The influence of the film thickness and particles sizes on the patterns has been explored. The main experimental features and the transitions observed at large scale-with respect to the inclusions' size-are explained with a simple two-dimensional Ansatz, combining capillarity and nematic elasticity. In a second step, we discuss the origin of the variety of observed textures. Developing a three-dimensional Landau-de Gennes model at the scale of the particles, we show that the presence of free interfaces and the beads confinement yield metastable configurations that are quenched during the film spreading or the beads trapping at interfaces. PMID:27538098

  19. Preparation of graphene thin films for radioactive samples.

    PubMed

    Roteta, Miguel; Fernández-Martínez, Rodolfo; Mejuto, Marcos; Rucandio, Isabel

    2016-03-01

    A new method for the preparation of conductive thin films is presented. The metallization of VYNS films guarantees the electrical conductivity but it results in the breaking of a high proportion of them. Graphene, a two-dimensional nanostructure of monolayer or few layers graphite has attracted a great deal of attention because of its excellent properties such as a good chemical stability, mechanical resistance and extraordinary electronic transport properties. In this work, the possibilities of graphene have been explored as a way to produce electrical conductive thin films without an extra metallization process. The procedure starts with preparing homogenous suspensions of reduced graphene oxide (rGO) in conventional VYNS solutions. Ultra-sonication is used to ensure a good dispersibility of rGO. Graphene oxide (GO) is prepared via oxidation of graphite and subsequent exfoliation by sonication. Different chemically rGO were obtained by reaction with hydrazine sulfate, sodium borohydride, ascorbic acid and hydroiodic acid as reducing agents. The preparation of the thin graphene films is done in a similar way as the conventional VYNS foil preparation procedure. Drops of the solution are deposited onto water. The graphene films have been used to prepare sources containing some electron capture radionuclides ((109)Cd, (55)Fe, (139)Ce) with an activity in the order of 3kBq. The samples have been measured to test the attainable low energy electron efficiency and the energy resolution of Auger and conversion electrons by 4π (electron capture)-γ coincidence measurements. The 4π (electron capture)-γ coincidence setup includes a pressurized proportional counter and a NaI(Tl) detector. Tests with different pressures up to 1000kPa were carried out. All these tests show similar values in both parameters (efficiency and resolution) as those obtained by using the conventional metallized films without the drawback of the high percentage of broken films.

  20. Preparation of graphene thin films for radioactive samples.

    PubMed

    Roteta, Miguel; Fernández-Martínez, Rodolfo; Mejuto, Marcos; Rucandio, Isabel

    2016-03-01

    A new method for the preparation of conductive thin films is presented. The metallization of VYNS films guarantees the electrical conductivity but it results in the breaking of a high proportion of them. Graphene, a two-dimensional nanostructure of monolayer or few layers graphite has attracted a great deal of attention because of its excellent properties such as a good chemical stability, mechanical resistance and extraordinary electronic transport properties. In this work, the possibilities of graphene have been explored as a way to produce electrical conductive thin films without an extra metallization process. The procedure starts with preparing homogenous suspensions of reduced graphene oxide (rGO) in conventional VYNS solutions. Ultra-sonication is used to ensure a good dispersibility of rGO. Graphene oxide (GO) is prepared via oxidation of graphite and subsequent exfoliation by sonication. Different chemically rGO were obtained by reaction with hydrazine sulfate, sodium borohydride, ascorbic acid and hydroiodic acid as reducing agents. The preparation of the thin graphene films is done in a similar way as the conventional VYNS foil preparation procedure. Drops of the solution are deposited onto water. The graphene films have been used to prepare sources containing some electron capture radionuclides ((109)Cd, (55)Fe, (139)Ce) with an activity in the order of 3kBq. The samples have been measured to test the attainable low energy electron efficiency and the energy resolution of Auger and conversion electrons by 4π (electron capture)-γ coincidence measurements. The 4π (electron capture)-γ coincidence setup includes a pressurized proportional counter and a NaI(Tl) detector. Tests with different pressures up to 1000kPa were carried out. All these tests show similar values in both parameters (efficiency and resolution) as those obtained by using the conventional metallized films without the drawback of the high percentage of broken films. PMID:26651168

  1. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  2. Polymer Substrates For Lightweight, Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R.

    1993-01-01

    Substrates survive high deposition temperatures. High-temperature-resistant polymers candidate materials for use as substrates of lightweight, flexible, radiation-resistant solar photovoltaic cells. According to proposal, thin films of copper indium diselenide or cadmium telluride deposited on substrates to serve as active semiconductor layers of cells, parts of photovoltaic power arrays having exceptionally high power-to-weight ratios. Flexibility of cells exploited to make arrays rolled up for storage.

  3. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  4. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  5. Low-Cost Detection of Thin Film Stress during Fabrication

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  6. High performance thin-film composite forward osmosis membrane.

    PubMed

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A; Schiffman, Jessica D; Elimelech, Menachem

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 mum) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m(2-)h(-1), while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution.

  7. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  8. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures

    NASA Astrophysics Data System (ADS)

    Ahnood, Arman; Zhou, H.; Suzuki, Y.; Sliz, R.; Fabritius, T.; Nathan, Arokia; Amaratunga, G. A. J.

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  9. High- Tc thin-film magnetometer

    SciTech Connect

    Miklich, A.H.; Wellstood, F.C.; Kingston, J.J.; Clarke, J. ); Colclough, M.S. ); Cardona, A.H.; Bourne, L.C.; Olson, W.L.; Eddy, M.M. )

    1990-09-01

    We have constructed and tested high-{Tc} magnetometers by coupling a high-{Tc} thin-film Superconducting QUantum Interference Device (SQUID) to two different high-{Tc} thin-film flux transformers. The SQUID was made from Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8+y} films grown on MgO, with junctions consisting of native grain boundaries. The flux transformers were made from YBa{sub 2}Cu{sub 3}O{sub 7-x}, and each had 10-turn input coils and a single-turn pickup loop. The first transformer, which was patterned with a combination of shadow masks and photolithography, yielded a magnetic field gain of about {minus}7.5, functioned up to 79 K, and gave a magnetic field sensitivity B{sub N} (10 Hz) {approx} 3.1 pT Hz{sup {minus}1/2}at 38 K. The second transformer, which was patterned entirely by photolithography, yielded a gain of about {minus}8.7, functioned up to 25 K, and had a sensitivity B{sub N} (10 Hz) {approx} 3.5 pT Hz{sup {minus}1/2} at 4.2 K. In both cases, the limiting noise arose in the SQUID. 10 refs., 5 figs., 1 tab.

  10. PZT Thin Film Piezoelectric Traveling Wave Motor

    NASA Technical Reports Server (NTRS)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  11. Stripe glasses in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-02-01

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.

  12. Stripe glasses in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Principi, Alessandro; Katsnelson, Mikhail

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. The magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both the stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 30 mT can lead to the formation of defects in the stripe pattern.

  13. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    PubMed

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics. PMID:26676997

  14. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    PubMed

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  15. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  16. Thinning of drying latex films due to surfactant.

    PubMed

    Gundabala, Venkata R; Routh, Alexander F

    2006-11-01

    Lateral non-uniformities in surfactant distribution in drying latex films induce surface tension gradients at the film surface and lead to film thinning through surfactant spreading. Here we investigate the influence of the surfactant driven to the air-water interface, during the early stages of latex film drying, on the film thinning process which could possibly lead to film rupture. A film height evolution equation is coupled with conservation equations for particles and surfactant, within the lubrication approximation, and solved numerically, to obtain the film height, particle volume fraction, and surfactant concentration profiles. Parametric analysis identifies the effect of drying rate, dispersion viscosity and initial particle volume fraction on film thinning and reveals the conditions under which films could rupture. The results from surface profilometry conform qualitatively to the model predictions.

  17. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  18. Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect

    Ambrose Wolf; Ken Peterson; Matt O'Keefe; Wayne Huebner; Bill Kuhn

    2012-04-19

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

  19. Electrical responses of artificial DNA nanostructures on solution-processed In-Ga-Zn-O thin-film transistors with multistacked active layers.

    PubMed

    Jung, Joohye; Kim, Si Joon; Yoon, Doo Hyun; Kim, Byeonghoon; Park, Sung Ha; Kim, Hyun Jae

    2013-01-01

    We propose solution-processed In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) with multistacked active layers for detecting artificial deoxyribonucleic acid (DNA). Enhanced sensing ability and stable electrical performance of TFTs were achieved through use of multistacked active layers. Our IGZO TFT had a turn-on voltage (V(on)) of -0.8 V and a subthreshold swing (SS) value of 0.48 V/decade. A dry-wet method was adopted to immobilize double-crossover DNA on the IGZO surface, after which an anomalous hump effect accompanying a significant decrease in V(on) (-13.6 V) and degradation of SS (1.29 V/decade) was observed. This sensing behavior was attributed to the middle interfaces of the multistacked active layers and the negatively charged phosphate groups on the DNA backbone, which generated a parasitic path in the TFT device. These results compared favorably with those reported for conventional field-effect transistor-based DNA sensors with remarkable sensitivity and stability. PMID:23211212

  20. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  1. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  2. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  3. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  4. Thin-Film Photovoltaics: Status and Applications to Space Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  5. Applications of thin-film photovoltaics for space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The authors discuss the potential applications of thin-film polycrystalline and amorphous cells for space. There have been great advances in thin-film solar cells for terrestrial applications. Transfer of this technology to space applications could result in ultra low-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper indium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon arrays. The possibility of using thin-film multi-bandgap cascade solar cells is discussed.

  6. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  7. Rechargeable thin film battery and method for making the same

    DOEpatents

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  8. Piezoelectric thin films and their applications for electronics

    NASA Astrophysics Data System (ADS)

    Yoshino, Yukio

    2009-03-01

    ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.

  9. Structural characterization of impurified zinc oxide thin films

    SciTech Connect

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  10. Rechargeable thin-film electrochemical generator

    DOEpatents

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  11. Photochemical Deposition of Patterned Gold Thin Films

    NASA Astrophysics Data System (ADS)

    Kumaran, Abbu Udaiyar Senthil; Miyawaki, Tetsuya; Ichimura, Masaya

    2006-12-01

    We present a novel route for patterned gold thin-film deposition on glass substrates with the help of UV-light irradiation. Chloroauric acid (HAuCl4) is used as a source material and sodium sulfite (Na2SO3) acts as a reducing agent in an aqueous solution. Ethylene diamine (EDA) is added to increase the solution stability. The deposition solution is injected on the substrate. A patterned metal mask is placed 5 mm above the substrate, and the solution is illuminated for 15 min by an ultrahigh-pressure mercury arc lamp. A patterned Au film with a thickness of 0.1-0.2 μm is deposited.

  12. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  13. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    PubMed

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-01

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping. PMID:26599729

  14. Effective dynamics for ferromagnetic thin films

    SciTech Connect

    Garcia-Cervera, Carlos J.; E, Weinan

    2001-07-01

    In a ferromagnetic material, the dynamics of the relaxation process are affected by the presence of a strong shape or material anisotropy. In this article, we systematically explore this fact to derive the effective dynamical equation for a soft ferromagnetic thin film. We show that, as a consequence of the interplay between shape anisotropy and damping, the gyromagnetic term is effectively also a damping term for the in-plane components of the magnetization distribution. We validate our result through numerical simulation of the original Landau{endash}Lifshitz equation and our effective equation. {copyright} 2001 American Institute of Physics.

  15. Robust, Thin Optical Films for Extreme Environments

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  16. Thin film photovoltaic device with multilayer substrate

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  17. Thin film dielectric microstrip kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Sank, Daniel; McHugh, Sean; Lucero, Erik A.; Merrill, Andrew; Gao, Jiansong; Pappas, David; Moore, David; Zmuidzinas, Jonas

    2010-03-01

    Microwave kinetic inductance detectors, or MKIDs, are a type of low temperature detector that exhibit intrinsic frequency domain multiplexing at microwave frequencies. We present the first theory and measurements on a MKID based on a microstrip transmission line resonator. A complete characterization of the dielectric loss and noise properties of these resonators is performed, and agrees well with the derived theory. A competitive noise equivalent power of 5×10-17 W Hz-1/2 at 10 Hz has been demonstrated. The resonators exhibit the highest quality factors known in a microstrip resonator with a deposited thin film dielectric.

  18. Thin-Film Photovoltaic Device Fabrication

    NASA Technical Reports Server (NTRS)

    Scofield, John H.

    2003-01-01

    This project will primarily involve the fabrication and characterization of thin films and devices for photovoltaic applications. The materials involved include Il-VI materials such as zinc oxide, cadmium sulfide, and doped analogs. The equipment ot be used will be sputtering and physical evaporations. The types of characterization includes electrical, XRD, SEM and CV and related measurements to establish the efficiency of the devices. The faculty fellow will be involved in a research team composed of NASA and University researchers as well as students and other junior researchers.

  19. Stable localized patterns in thin liquid films

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.; Oron, Alexander

    1992-01-01

    A two-dimensional nonlinear evolution equation is studied which describes the three-dimensional spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. It is shown that the equation has a Liapunov functional, and this fact is exploited to demonstrate that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability), allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  20. Dynamical SCFT Simulations of Solvent Annealed Thin Films

    NASA Astrophysics Data System (ADS)

    Paradiso, Sean; Delaney, Kris; Ceniceros, Hector; Garcia-Cervera, Carlos; Fredrickson, Glenn

    2014-03-01

    Block copolymer thin films are ideal candidates for a broad range of technologies including rejection layers for ultrafiltration membranes, proton-exchange membranes in solar cells, optically active coatings, and lithographic masks for bit patterning storage media. Optimizing the performance of these materials often hinges on tuning the orientation and long-range order of the film's internal nanostructure. In response, solvent annealing techniques have been developed for their promise to afford additional flexibility in tuning thin film morphology, but pronounced processing history dependence and a dizzying parameter space have resulted in slow progress towards developing clear design rules for solvent annealing systems. In this talk, we will report recent theoretical progress in understanding the self assembly dynamics relevant to solvent-annealed and solution-cast block copolymer films. Emphasis will be placed on evaporation-induced ordering trends in both the slow and fast drying regimes for cylinder-forming block copolymers from initially ordered and disordered films, along with the role solvent selectivity plays in the ordering dynamics.

  1. Pulsed laser deposition of anatase thin films on textile substrates

    NASA Astrophysics Data System (ADS)

    Krämer, André; Kunz, Clemens; Gräf, Stephan; Müller, Frank A.

    2015-10-01

    Pulsed laser deposition (PLD) is a highly versatile tool to prepare functional thin film coatings. In our study we utilised a Q-switched CO2 laser with a pulse duration τ ≈ 300 ns, a laser wavelength λ = 10.59 μm, a repetition frequency frep = 800 Hz and a peak power Ppeak = 15 kW to deposit crystalline anatase thin films on carbon fibre fabrics. For this purpose, preparatory experiments were performed on silicon substrates to optimise the anatase deposition conditions including the influence of different substrate temperatures and oxygen partial pressures. Processing parameters were then transferred to deposit anatase on carbon fibres. Scanning electron microscopy, X-ray diffraction analyses, Raman spectroscopy and tactile profilometry were used to characterise the samples and to reveal the formation of phase pure anatase without the occurrence of a secondary rutile phase. Methanol conversion test were used to prove the photocatalytic activity of the coated carbon fibres.

  2. Directed Assembly of Nanofilled Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    Facile directed self-assembly (DSA) of multicomponent thin films is important for potential technological applications. This requires a fine control of a complex interplay of processing parameters that need to be properly optimized for different organized structures. This talk will discuss some of our recent success towards realizing tunable DSA of soft matter multicomponent systems involving a dispersion of polymer-grafted nanoparticles in block copolymer or homopolymer matrices. DSA methods for such multicomponent films will be discussed. These include the use of zone-annealing with soft-shear to create highly anisotropic nanoparticle arrays, while direct immersion annealing (DIA) has been used to order nanoparticle filled films by dipping the films into controlled solvent quality solvent mixtures. A recently observed phenomena of confinement driven entropic order and phase segregation of polymer grafted nanoparticles in similar and dissimilar polymer matrices in melt state will be discussed. A high density of nano particles of different types ranging from metallic to inorganic to organic were patterned almost exclusively into channels via topographical soft confinement using entropic forces. Enthalpic interactions between the nanoparticle grafted layer and the polymer matrix could be used as a further handle to tune the directed assembly of the nanoparticles. The phenomena will be discussed in terms of confinement parameters, partition coefficient, free energy gain and entropic versus enthalpic interactions.

  3. High Tc thin film and device development

    SciTech Connect

    Betts, K.; Burbank, M.B.; Cragg, A.; Fife, A.A.; Kubik, P.R.; Lee, S.; Chaklader, A.C.D.; Roemer, G.; Heinrich, B.; Chrzanowski, J.

    1989-03-01

    Thin films of the high Tc superconductor YBa/sub 2/Cu/sub 3/O/sub y/ have been deposited on various substrates by diode and magnetron sputtering using bulk sintered targets. These films have been analyzed by a variety of methods - SEM, X-rays, Electron Beam Microprobe, Mass Spectrometry and Raman Spectroscopy. The stoichiometries of the films have been measured as a function of the radial position from the centre of the sputtered beam at a fixed target-substrate distance. Patterning of the films has been carried out to form planar structures such as strip lines, microbridges and RF SQUIDs. DC current-voltage characteristics of the microbridges were measured as a function of temperature. RF SQUID behaviour has been observed for single loop devices and their properties established at 4.2 K and higher temperatures. Flux locked noise spectra with a 1/f noise power response were recorded in the frequency range 0.01 to approx.100 Hz. RF SQUID signals have been observed for temperatures up to 55 K.

  4. Phase transitions in pure and dilute thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  5. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    -style collectors. Sputtering offers considerable flexibility in coating conditions, including a wide variety of metal and dielectric targets. Coating designs range from simple two or three layer coatings to complex coatings that are purposely graded to be metal-rich at their base and oxide-rich at their surface in order to yield the desired solar selective properties. In these cermet coatings, molecular islands of metal are thought to be embedded in a three dimensional matrix of dielectric. Recent work has identified the use of custom made ion beam sputter deposition targets to produce coatings containing molecular mixtures of metal and dielectric. The targets are cylindrical and the surface consists of a gradually changing composition of metal and dielectric. Rotating the cylinder under the beam during ion beam sputter deposition yields a coating that is a molecular mixture of metal and dielectric, with the composition changing through the thickness of the coating. The optical properties of these coatings are not only dependent on their thickness and chemical composition, but are also dependent on the extent of the through thickness gradient established during deposition. This paper presents a summary of the optical properties of several thin film molecular mixtures designed as solar selective coatings. Optical performance is first identified as a function of wavelength, from the ultraviolet to the visible and infrared. Coating composition, thickness, and gradient from metal to dielectric also play an important role. Additional work for future activities is also identified.

  6. Acetone-activated polyimide electrospun nanofiber membrane for thin-film microextraction and thermal desorption-gas chromatography-mass spectrometric analysis of phenols in environmental water.

    PubMed

    Li, Shenghong; Wu, Dapeng; Yan, Xiaohui; Guan, Yafeng

    2015-09-11

    In this work, a polyimide nanofiber membrane was electrospun and applied as sorbent for thin film microextraction (TFME). After TFME of phenols in water samples, direct thermal desorption of the sorbent at 300°C followed by gas chromatography-mass spectrometric (TD-GC-MS) analysis was carried out. The extraction efficiency of TFME was enhanced by 6-12 times for phenols after activation with acetone. The positive effect of acetone activation was correlated to the increased hydrophilicity of the membrane. Extraction parameters, including mass of nanofiber membrane, pH value, NaCl concentration and extraction time, were optimized. Under optimal conditions, the LODs and LOQs for analysis of phenols in spiked purified water were 0.0006-0.008 and 0.002-0.025μgL(-1), respectively. The linearity range was more than two orders of magnitude (R>0.99). The RSDs of intra-batch and inter-batch were 4.3-7.4% and 2.7-10.6% (n=3). Finally the method was applied to real samples, including tap water, sea water, and waste water. These results indicate that the polyimide nanofiber membrane is a promising candidate as TFME sorbent for determination of polar analytes in water samples coupled with TD-GC-MS.

  7. Photocatalytic activity of bipolar pulsed magnetron sputter deposited TiO2/TiWOx thin films

    NASA Astrophysics Data System (ADS)

    Weng, Ko-Wei; Hu, Chung-Hsuan; Hua, Li-Yu; Lee, Chin-Tan; Zhao, Yu-Xiang; Chang, Julian; Yang, Shu-Yi; Han, Sheng

    2016-08-01

    Titanium oxide films were formed by sputtering and then TiWOx films were deposited by bipolar pulsed magnetron sputtering with pure titanium and tungsten metal targets. The sputtering of titanium oxide with tungsten enhanced the orientation of the TiO2 (1 0 1) plane of the specimen assemblies. The main varying parameter was the tungsten pulse power. Titanium oxide sputtered with tungsten using a pulsing power of 50 W exhibited a superior hydrophilic property, and a contact angle of 13.1°. This fabrication conditions maximized the photocatalytic decomposition of methylene blue solution. The mechanism by which the titanium oxide was sputtered with tungsten involves the photogeneration of holes and electron traps, inhibiting the hole-electron recombination, enhancing hydrophilicity and reducing the contact angle.

  8. Fabrication and Performance of Organic Thin Film Solar Cells Using the Brush Painting Method

    NASA Astrophysics Data System (ADS)

    Ishihara, Hirohumi; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    As organic solar thin films fabricated by an active layer of organic materials are economical, lightweight, and flexible, as well as facilitating processing, organic solar cells have attracted considerable attention within the past few decades as a clean energy source. With this in mind, there have been global investigations and studies of the power conversion efficiency (PCE) within organic solar cells. In organic thin-film solar cells, the effect of the performance is not only dependent on an adopted active material but also the molecular orientation on the electrode. Using the mixed solution of Poly (3-hexylthiophene) and PCBM, both dissolved by solvent, an organic thin film is fabricated using the paint method (The conceptual diagram of the paint method is shown in Fig. 1) The form of the thin film was evaluated, an organic thin-film solar cell using the paint method for the active layer was made, and its performance was evaluated and examined. Using the mixed solution of Poly(3-hexylthiophene) and PCBM, both dissolved by solvent, an organic thin film is fabricated using the paint method (The conceptual diagram of the paint method is shown in Fig. 1) The morphology of the thin film was evaluated using an AFM image, UV/vis spectra, and so forth. Based on these data, an organic thin-film solar cell that used the paint method for the active layer was fabricated, and the performance was evaluated and examined. For the organic thin film solar cell fabricated using the brush painting method, the open-circuit voltage (Voc) is 0.41 V, the short circuit current density (Jsc) is 2.07 mA/cm2, and the fill factor is 0.34. The efficiency η of PCE becomes 0.29%.

  9. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    SciTech Connect

    Genfa Wu; Anne-Marie Valente; H. Phillips; Haipeng Wang; Andy Wu; T. J. Renk; P Provencio

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV. The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.

  10. Electrodeposited CulnSe2 Thin Film Junctions

    NASA Technical Reports Server (NTRS)

    Raffaelle, R. P.; Mantovani, J. G.; Bailey, S. G.; Hepp, A. F.; Gordon, E. M.; Haraway, R.

    1998-01-01

    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

  11. Electrodeposited CuInSe2 Thin Film Junctions

    NASA Technical Reports Server (NTRS)

    Raffaelle, R. P.; Mantovani, J. G.; Bailey, S. G.; Hepp, A. F.; Gordon, E. M.; Haraway, R.

    1997-01-01

    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

  12. Optical thin film metrology for optoelectronics

    NASA Astrophysics Data System (ADS)

    Petrik, Peter

    2012-12-01

    The manufacturing of optoelectronic thin films is of key importance, because it underpins a significant number of industries. The aim of the European joint research project for optoelectronic thin film characterization (IND07) in the European Metrology Research Programme of EURAMET is to develop optical and X-ray metrologies for the assessment of quality as well as key parameters of relevant materials and layer systems. This work is intended to be a step towards the establishment of validated reference metrologies for the reliable characterization, and the development of calibrated reference samples with well-defined and controlled parameters. In a recent comprehensive study (including XPS, AES, GD-OES, GD-MS, SNMS, SIMS, Raman, SE, RBS, ERDA, GIXRD), Abou-Ras et al. (Microscopy and Microanalysis 17 [2011] 728) demonstrated that most characterization techniques have limitations and bottle-necks, and the agreement of the measurement results in terms of accurate, absolute values is not as perfect as one would expect. This paper focuses on optical characterization techniques, laying emphasis on hardware and model development, which determine the kind and number of parameters that can be measured, as well as their accuracy. Some examples will be discussed including optical techniques and materials for photovoltaics, biosensors and waveguides.

  13. Structuring of thin film solar cells

    NASA Astrophysics Data System (ADS)

    Eberhardt, Gabriele; Banse, Henrik; Wagner, Uwe; Peschel, Thomas

    2010-02-01

    Laser structuring of different types of thin film layers is a state of the art process in the photovoltaic industry. TCO layers and molybdenum are structured with e.g. 1064 nm lasers. Amorphous silicon, microcrystalline silicon or cadmium telluride are ablated with 515/532 nm lasers. Typical pulse durations of the lasers in use for these material ablation processes are in the nanosecond range. Up to now the common process for CIS/CIGS cells is needle structuring. Hard metal needles scribe lines with a width of 30 to 60 μm into the semiconductor material. A laser technology would have some advantages compared to mechanical scribing. The precision of the lines would be higher (no chipping effects), the laser has no wear out. The dead area (distance from P1 structuring line to P3 structuring line) can be significantly smaller with the laser technology. So we investigate the structuring of CIS/CIGS materials with ultra short pulse lasers of different wavelengths. The ablation rates and the structuring speeds versus the repetition rates have been established. For the different layer thicknesses and line widths we determined the necessary energy densities. After all tests we can calculate the possible reduction of the dead area on the thin film module. The new technology will result in an increase in the efficiency per module of up to 4 %.

  14. Antimony selenide thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  15. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  16. ``Verso'' laser cleaning of mechanically thin films

    NASA Astrophysics Data System (ADS)

    Barone, Alberto; Bloisi, Francesco; Vicari, Luciano

    2003-03-01

    In usual dry laser cleaning of opaque samples, short laser pulses are projected onto the sample surface to be cleaned. Energy transferred from light ejects extraneous particles away from the surface. Laser beam fluence is limited by the damage reached by high temperature that the sample surface can produce. We have experimentally shown that for thin samples, the thermo-elastic wave propagates within the whole sample thickness, thus also the rear surface, while temperature effects are limited to the front surface. Therefore, the proposed "verso" laser cleaning technique (the pulsed laser beam impinges on rear sample surface) can be applied to any opaque "mechanically thin" film and is useful for samples having delicate treatments on the surface to be cleaned (e.g. written paper, painted tiles, magnetic films). We have applied our technique to paper sheets showing that it is possible to efficiently clean the surface without damaging ink marks on it. Using a probe beam deflection (PBD) technique in both direct and reverse configuration we have shown that the "verso" cleaning effect is due to the higher penetration depth of the thermo-elastic wave with respect to the temperature profile propagation.

  17. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  18. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  19. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    PubMed

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites. PMID:26972476

  20. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    PubMed Central

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites. PMID:26972476